ETH Price: $1,796.27 (-0.34%)

Transaction Decoder

Block:
18147895 at Sep-16-2023 09:42:59 AM +UTC
Transaction Fee:
0.001417333150986417 ETH $2.55
Gas Used:
171,109 Gas / 8.283218013 Gwei

Emitted Events:

240 FreaksNGuilds.Approval( owner=0xe4e2fcc5d9580128b043d12e013da428353bc950, approved=0x00000000...000000000, tokenId=7332 )
241 FreaksNGuilds.Transfer( from=0xe4e2fcc5d9580128b043d12e013da428353bc950, to=[Sender] 0xe60459440ac5e1c92796f2651ad6c9c5926e18db, tokenId=7332 )
242 Seaport.OrderFulfilled( orderHash=4F82AD3D7A6B36AC0799B617C6F8AC9052922937E04A0C5574C2B3929EAB3AC9, offerer=0xe4e2fcc5d9580128b043d12e013da428353bc950, zone=0x004C0050...C00560C00, recipient=[Sender] 0xe60459440ac5e1c92796f2651ad6c9c5926e18db, offer=, consideration= )

Account State Difference:

  Address   Before After State Difference Code
0x00000000...c0aAF14dC
(Seaport 1.5)
0x1D02982f...314fcC218
(Celestial Key: Deployer)
0.000470213190825 Eth0.000470713190825 Eth0.0000005
0x380ea0C4...8b0273EeC
(Flashbots: Builder)
1.472821187821016787 Eth1.472826321091016787 Eth0.00000513327
0xe4E2FCC5...8353bC950 0.019220878647468154 Eth0.019320378647468154 Eth0.0000995
0xE6045944...5926E18dB
0.006961301455448194 Eth
Nonce: 5
0.005443968304461777 Eth
Nonce: 6
0.001517333150986417

Execution Trace

ETH 0.0001 ElementExSwapV2.batchBuyWithETH( tradeBytes=0x000A000000000000000000000000000000005AF3107A4000000005E4E7ACAB24000000000000000000000000000000000000000000000000000000000000008000000000000000000000000000000000000000000000000000000000000005C00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000E60459440AC5E1C92796F2651AD6C9C5926E18DB00000000000000000000000000000000000000000000000000000000000000A00000000000000000000000000000000000000000000000000000000000000001000000000000000000000000000000000000000000000000000000000000000100000000000000000000000000000000000000000000000000000000000004600000000000000000000000000000000000000000000000000000000000000520000000000000000000000000E4E2FCC5D9580128B043D12E013DA428353BC950000000000000000000000000004C00500000AD104D7DBD00E3AE0A5C00560C000000000000000000000000000000000000000000000000000000000000000160000000000000000000000000000000000000000000000000000000000000022000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000064DEC0B90000000000000000000000000000000000000000000000000000000065064DB9000000000000000000000000000000000000000000000000000000000000000072DB8C0B000000000000000000000000000000000000000058FE6C41FEF81FE80000007B02230091A7ED01230072F7006A004D60A8D4E71D599B8104250F0000000000000000000000000000000000000000000000000000000000000000000200000000000000000000000000000000000000000000000000000000000000010000000000000000000000000000000000000000000000000000000000000002000000000000000000000000380EA0C4FC26ADFF2172DCEE2F2DE0E8B0273EEC0000000000000000000000000000000000000000000000000000000000001CA400000000000000000000000000000000000000000000000000000000000000010000000000000000000000000000000000000000000000000000000000000001000000000000000000000000000000000000000000000000000000000000000200000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000005A7EA627B80000000000000000000000000000000000000000000000000000005A7EA627B800000000000000000000000000E4E2FCC5D9580128B043D12E013DA428353BC950000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000746A528800000000000000000000000000000000000000000000000000000000746A5288000000000000000000000000001D02982FAAB9D70D526A0F821EE1C71314FCC2180000000000000000000000000000000000000000000000000000000000000083059C6D415246A45B5BA6D68B9D6D34439CD89A0A5CE2D1B9AA28CA6570E659129ED41B8D3095A8C1220C2495E8E44EA7793345F93AE1716D9C5AACC921D7FF6F0000000C1D230FC5C9EFA2E96E4F19A66D0B90DCB36BA7DB03100C89C9171310B27E296A8FA2C690E204F491739EEC58DC14B7D69EC962C7FDD7923B966B14C4C2E94A000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 )
  • ETH 0.0001 Seaport.fulfillAdvancedOrder( [{name:parameters, type:tuple, order:1, indexed:false, value:[{name:offerer, type:address, order:1, indexed:false, value:0xe4E2FCC5D9580128B043d12e013da428353bC950, valueString:0xe4E2FCC5D9580128B043d12e013da428353bC950}, {name:zone, type:address, order:2, indexed:false, value:0x004C00500000aD104D7DBd00e3ae0A5C00560C00, valueString:0x004C00500000aD104D7DBd00e3ae0A5C00560C00}, {name:offer, type:tuple[], order:3, indexed:false}, {name:consideration, type:tuple[], order:4, indexed:false}, {name:orderType, type:uint8, order:5, indexed:false, value:0, valueString:0}, {name:startTime, type:uint256, order:6, indexed:false, value:1692319929, valueString:1692319929}, {name:endTime, type:uint256, order:7, indexed:false, value:1694911929, valueString:1694911929}, {name:zoneHash, type:bytes32, order:8, indexed:false, value:0000000000000000000000000000000000000000000000000000000000000000, valueString:0000000000000000000000000000000000000000000000000000000000000000}, {name:salt, type:uint256, order:9, indexed:false, value:51951570786726798460324975021501917861654789585098516727720019864088072429544, valueString:51951570786726798460324975021501917861654789585098516727720019864088072429544}, {name:conduitKey, type:bytes32, order:10, indexed:false, value:0000007B02230091A7ED01230072F7006A004D60A8D4E71D599B8104250F0000, valueString:0000007B02230091A7ED01230072F7006A004D60A8D4E71D599B8104250F0000}, {name:totalOriginalConsiderationItems, type:uint256, order:11, indexed:false, value:2, valueString:2}], valueString:[{name:offerer, type:address, order:1, indexed:false, value:0xe4E2FCC5D9580128B043d12e013da428353bC950, valueString:0xe4E2FCC5D9580128B043d12e013da428353bC950}, {name:zone, type:address, order:2, indexed:false, value:0x004C00500000aD104D7DBd00e3ae0A5C00560C00, valueString:0x004C00500000aD104D7DBd00e3ae0A5C00560C00}, {name:offer, type:tuple[], order:3, indexed:false}, {name:consideration, type:tuple[], order:4, indexed:false}, {name:orderType, type:uint8, order:5, indexed:false, value:0, valueString:0}, {name:startTime, type:uint256, order:6, indexed:false, value:1692319929, valueString:1692319929}, {name:endTime, type:uint256, order:7, indexed:false, value:1694911929, valueString:1694911929}, {name:zoneHash, type:bytes32, order:8, indexed:false, value:0000000000000000000000000000000000000000000000000000000000000000, valueString:0000000000000000000000000000000000000000000000000000000000000000}, {name:salt, type:uint256, order:9, indexed:false, value:51951570786726798460324975021501917861654789585098516727720019864088072429544, valueString:51951570786726798460324975021501917861654789585098516727720019864088072429544}, {name:conduitKey, type:bytes32, order:10, indexed:false, value:0000007B02230091A7ED01230072F7006A004D60A8D4E71D599B8104250F0000, valueString:0000007B02230091A7ED01230072F7006A004D60A8D4E71D599B8104250F0000}, {name:totalOriginalConsiderationItems, type:uint256, order:11, indexed:false, value:2, valueString:2}]}, {name:numerator, type:uint120, order:2, indexed:false, value:1, valueString:1}, {name:denominator, type:uint120, order:3, indexed:false, value:1, valueString:1}, {name:signature, type:bytes, order:4, indexed:false, value:0x059C6D415246A45B5BA6D68B9D6D34439CD89A0A5CE2D1B9AA28CA6570E659129ED41B8D3095A8C1220C2495E8E44EA7793345F93AE1716D9C5AACC921D7FF6F0000000C1D230FC5C9EFA2E96E4F19A66D0B90DCB36BA7DB03100C89C9171310B27E296A8FA2C690E204F491739EEC58DC14B7D69EC962C7FDD7923B966B14C4C2E94A, valueString:0x059C6D415246A45B5BA6D68B9D6D34439CD89A0A5CE2D1B9AA28CA6570E659129ED41B8D3095A8C1220C2495E8E44EA7793345F93AE1716D9C5AACC921D7FF6F0000000C1D230FC5C9EFA2E96E4F19A66D0B90DCB36BA7DB03100C89C9171310B27E296A8FA2C690E204F491739EEC58DC14B7D69EC962C7FDD7923B966B14C4C2E94A}, {name:extraData, type:bytes, order:5, indexed:false, value:0x, valueString:0x}], , fulfillerConduitKey=0000000000000000000000000000000000000000000000000000000000000000, recipient=0xE60459440ac5e1C92796F2651Ad6C9C5926E18dB ) => ( fulfilled=True )
    • Null: 0x000...001.daa32f02( )
    • ETH 0.0000995 0xe4e2fcc5d9580128b043d12e013da428353bc950.CALL( )
    • ETH 0.0000005 Celestial Key: Deployer.CALL( )
    • Conduit.execute( transfers= ) => ( transfers= )
      • FreaksNGuilds.transferFrom( from=0xe4E2FCC5D9580128B043d12e013da428353bC950, to=0xE60459440ac5e1C92796F2651Ad6C9C5926E18dB, tokenId=7332 )
        File 1 of 4: ElementExSwapV2
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.15;
        import "@openzeppelin/contracts/token/ERC1155/IERC1155.sol";
        import "./storage/LibFeatureStorage.sol";
        import "./Aggregator.sol";
        import "./libs/Ownable.sol";
        contract ElementExSwapV2 is Aggregator, Ownable {
            struct Method {
                bytes4 methodID;
                string methodName;
            }
            struct Feature {
                address feature;
                string name;
                Method[] methods;
            }
            event FeatureFunctionUpdated(
                bytes4 indexed methodID,
                address oldFeature,
                address newFeature
            );
            function registerFeatures(Feature[] calldata features) external onlyOwner {
                unchecked {
                    for (uint256 i = 0; i < features.length; ++i) {
                        registerFeature(features[i]);
                    }
                }
            }
            function registerFeature(Feature calldata feature) public onlyOwner {
                unchecked {
                    address impl = feature.feature;
                    require(impl != address(0), "registerFeature: invalid feature address.");
                    LibFeatureStorage.Storage storage stor = LibFeatureStorage.getStorage();
                    stor.featureNames[impl] = feature.name;
                    Method[] calldata methods = feature.methods;
                    for (uint256 i = 0; i < methods.length; ++i) {
                        bytes4 methodID = methods[i].methodID;
                        address oldFeature = stor.featureImpls[methodID];
                        if (oldFeature == address(0)) {
                            stor.methodIDs.push(methodID);
                        }
                        stor.featureImpls[methodID] = impl;
                        stor.methodNames[methodID] = methods[i].methodName;
                        emit FeatureFunctionUpdated(methodID, oldFeature, impl);
                    }
                }
            }
            function unregister(bytes4[] calldata methodIDs) external onlyOwner {
                unchecked {
                    uint256 removedFeatureCount;
                    LibFeatureStorage.Storage storage stor = LibFeatureStorage.getStorage();
                    // Update storage.featureImpls
                    for (uint256 i = 0; i < methodIDs.length; ++i) {
                        bytes4 methodID = methodIDs[i];
                        address impl = stor.featureImpls[methodID];
                        if (impl != address(0)) {
                            removedFeatureCount++;
                            stor.featureImpls[methodID] = address(0);
                        }
                        emit FeatureFunctionUpdated(methodID, impl, address(0));
                    }
                    if (removedFeatureCount == 0) {
                        return;
                    }
                    // Remove methodIDs from storage.methodIDs
                    bytes4[] storage storMethodIDs = stor.methodIDs;
                    for (uint256 i = storMethodIDs.length; i > 0; --i) {
                        bytes4 methodID = storMethodIDs[i - 1];
                        if (stor.featureImpls[methodID] == address(0)) {
                            if (i != storMethodIDs.length) {
                                storMethodIDs[i - 1] = storMethodIDs[storMethodIDs.length - 1];
                            }
                            delete storMethodIDs[storMethodIDs.length - 1];
                            storMethodIDs.pop();
                            if (removedFeatureCount == 1) { // Finished
                                return;
                            }
                            --removedFeatureCount;
                        }
                    }
                }
            }
            /// @dev Fallback for just receiving ether.
            receive() external payable {}
            /// @dev Forwards calls to the appropriate implementation contract.
            uint256 private constant STORAGE_ID_FEATURE = 1 << 128;
            fallback() external payable {
                assembly {
                    // Copy methodID to memory 0x00~0x04
                    calldatacopy(0, 0, 4)
                    // Store LibFeatureStorage.slot to memory 0x20~0x3F
                    mstore(0x20, STORAGE_ID_FEATURE)
                    // Calculate impl.slot and load impl from storage
                    let impl := sload(keccak256(0, 0x40))
                    if iszero(impl) {
                        // revert("Not implemented method.")
                        mstore(0, 0x08c379a000000000000000000000000000000000000000000000000000000000)
                        mstore(0x20, 0x0000002000000000000000000000000000000000000000000000000000000000)
                        mstore(0x40, 0x000000174e6f7420696d706c656d656e746564206d6574686f642e0000000000)
                        mstore(0x60, 0)
                        revert(0, 0x64)
                    }
                    calldatacopy(0, 0, calldatasize())
                    if iszero(delegatecall(gas(), impl, 0, calldatasize(), 0, 0)) {
                        // Failed, copy the returned data and revert.
                        returndatacopy(0, 0, returndatasize())
                        revert(0, returndatasize())
                    }
                    // Success, copy the returned data and return.
                    returndatacopy(0, 0, returndatasize())
                    return(0, returndatasize())
                }
            }
            function approveERC20(IERC20 token, address operator, uint256 amount) external onlyOwner {
                token.approve(operator, amount);
            }
            function rescueETH(address recipient) external onlyOwner {
                address to = (recipient != address(0)) ? recipient : msg.sender;
                _transferEth(to, address(this).balance);
            }
            function rescueERC20(address asset, address recipient) external onlyOwner {
                address to = (recipient != address(0)) ? recipient : msg.sender;
                _transferERC20(asset, to, IERC20(asset).balanceOf(address(this)));
            }
            function rescueERC721(address asset, uint256[] calldata ids , address recipient) external onlyOwner {
                assembly {
                    // selector for transferFrom(address,address,uint256)
                    mstore(0, 0x23b872dd00000000000000000000000000000000000000000000000000000000)
                    mstore(0x4, address())
                    switch recipient
                    case 0 { mstore(0x24, caller()) }
                    default { mstore(0x24, recipient) }
                    for { let offset := ids.offset } lt(offset, calldatasize()) { offset := add(offset, 0x20) } {
                        // tokenID
                        mstore(0x44, calldataload(offset))
                        if iszero(call(gas(), asset, 0, 0, 0x64, 0, 0)) {
                            returndatacopy(0, 0, returndatasize())
                            revert(0, returndatasize())
                        }
                    }
                }
            }
            function onERC1155Received(address, address, uint256, uint256, bytes calldata) external virtual returns (bytes4) {
                return this.onERC1155Received.selector;
            }
            function onERC1155BatchReceived(address, address, uint256[] calldata, uint256[] calldata, bytes calldata) external virtual returns (bytes4) {
                return this.onERC1155BatchReceived.selector;
            }
            function onERC721Received(address, address, uint256, bytes calldata) external virtual returns (bytes4) {
                return 0x150b7a02;
            }
            function onERC721Received(address, uint256, bytes calldata) external virtual returns (bytes4) {
                return 0xf0b9e5ba;
            }
            function supportsInterface(bytes4 interfaceId) external virtual returns (bool) {
                return interfaceId == this.supportsInterface.selector;
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts v4.4.1 (token/ERC1155/IERC1155.sol)
        pragma solidity ^0.8.0;
        import "../../utils/introspection/IERC165.sol";
        /**
         * @dev Required interface of an ERC1155 compliant contract, as defined in the
         * https://eips.ethereum.org/EIPS/eip-1155[EIP].
         *
         * _Available since v3.1._
         */
        interface IERC1155 is IERC165 {
            /**
             * @dev Emitted when `value` tokens of token type `id` are transferred from `from` to `to` by `operator`.
             */
            event TransferSingle(address indexed operator, address indexed from, address indexed to, uint256 id, uint256 value);
            /**
             * @dev Equivalent to multiple {TransferSingle} events, where `operator`, `from` and `to` are the same for all
             * transfers.
             */
            event TransferBatch(
                address indexed operator,
                address indexed from,
                address indexed to,
                uint256[] ids,
                uint256[] values
            );
            /**
             * @dev Emitted when `account` grants or revokes permission to `operator` to transfer their tokens, according to
             * `approved`.
             */
            event ApprovalForAll(address indexed account, address indexed operator, bool approved);
            /**
             * @dev Emitted when the URI for token type `id` changes to `value`, if it is a non-programmatic URI.
             *
             * If an {URI} event was emitted for `id`, the standard
             * https://eips.ethereum.org/EIPS/eip-1155#metadata-extensions[guarantees] that `value` will equal the value
             * returned by {IERC1155MetadataURI-uri}.
             */
            event URI(string value, uint256 indexed id);
            /**
             * @dev Returns the amount of tokens of token type `id` owned by `account`.
             *
             * Requirements:
             *
             * - `account` cannot be the zero address.
             */
            function balanceOf(address account, uint256 id) external view returns (uint256);
            /**
             * @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {balanceOf}.
             *
             * Requirements:
             *
             * - `accounts` and `ids` must have the same length.
             */
            function balanceOfBatch(address[] calldata accounts, uint256[] calldata ids)
                external
                view
                returns (uint256[] memory);
            /**
             * @dev Grants or revokes permission to `operator` to transfer the caller's tokens, according to `approved`,
             *
             * Emits an {ApprovalForAll} event.
             *
             * Requirements:
             *
             * - `operator` cannot be the caller.
             */
            function setApprovalForAll(address operator, bool approved) external;
            /**
             * @dev Returns true if `operator` is approved to transfer ``account``'s tokens.
             *
             * See {setApprovalForAll}.
             */
            function isApprovedForAll(address account, address operator) external view returns (bool);
            /**
             * @dev Transfers `amount` tokens of token type `id` from `from` to `to`.
             *
             * Emits a {TransferSingle} event.
             *
             * Requirements:
             *
             * - `to` cannot be the zero address.
             * - If the caller is not `from`, it must be have been approved to spend ``from``'s tokens via {setApprovalForAll}.
             * - `from` must have a balance of tokens of type `id` of at least `amount`.
             * - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155Received} and return the
             * acceptance magic value.
             */
            function safeTransferFrom(
                address from,
                address to,
                uint256 id,
                uint256 amount,
                bytes calldata data
            ) external;
            /**
             * @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {safeTransferFrom}.
             *
             * Emits a {TransferBatch} event.
             *
             * Requirements:
             *
             * - `ids` and `amounts` must have the same length.
             * - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155BatchReceived} and return the
             * acceptance magic value.
             */
            function safeBatchTransferFrom(
                address from,
                address to,
                uint256[] calldata ids,
                uint256[] calldata amounts,
                bytes calldata data
            ) external;
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.15;
        library LibFeatureStorage {
            uint256 constant STORAGE_ID_FEATURE = 1 << 128;
            struct Storage {
                // Mapping of methodID -> feature implementation
                mapping(bytes4 => address) featureImpls;
                // Mapping of feature implementation -> feature name
                mapping(address => string) featureNames;
                // Record methodIDs
                bytes4[] methodIDs;
                // Mapping of methodID -> method name
                mapping(bytes4 => string) methodNames;
            }
            /// @dev Get the storage bucket for this contract.
            function getStorage() internal pure returns (Storage storage stor) {
                // Dip into assembly to change the slot pointed to by the local
                // variable `stor`.
                // See https://solidity.readthedocs.io/en/v0.6.8/assembly.html?highlight=slot#access-to-external-variables-functions-and-libraries
                assembly { stor.slot := STORAGE_ID_FEATURE }
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.15;
        import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
        import "./interfaces/IAggregator.sol";
        import "./libs/FixinTokenSpender.sol";
        import "./libs/ReentrancyGuard.sol";
        abstract contract Aggregator is IAggregator, ReentrancyGuard, FixinTokenSpender {
            uint256 private constant SEAPORT_MARKET_ID = 1;
            address private constant SEAPORT = 0x00000000006c3852cbEf3e08E8dF289169EdE581;
            uint256 private constant ELEMENT_MARKET_ID = 2;
            address private constant ELEMENT = 0x20F780A973856B93f63670377900C1d2a50a77c4;
            uint256 private constant WETH_MARKET_ID = 999;
            address private constant WETH = 0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2;
            // markets.slot == 0
            // markets.data.slot == keccak256(markets.slot) == 0x290decd9548b62a8d60345a988386fc84ba6bc95484008f6362f93160ef3e563
            uint256 private constant MARKETS_DATA_SLOT = 0x290decd9548b62a8d60345a988386fc84ba6bc95484008f6362f93160ef3e563;
            // 168 bits(ethValue)
            uint256 private constant ETH_VALUE_MASK = (1 << 168) - 1;
            // 160 bits(proxy)
            uint256 private constant PROXY_MASK = (1 << 160) - 1;
            function batchBuyWithETH(bytes calldata tradeBytes) external override payable {
                uint256 ethBalanceBefore;
                assembly { ethBalanceBefore := sub(selfbalance(), callvalue()) }
                // trade
                _trade(tradeBytes);
                // return remaining ETH (if any)
                assembly {
                    if eq(selfbalance(), ethBalanceBefore) {
                        return(0, 0)
                    }
                    if gt(selfbalance(), ethBalanceBefore) {
                        let success := call(gas(), caller(), sub(selfbalance(), ethBalanceBefore), 0, 0, 0, 0)
                        return(0, 0)
                    }
                }
                revert("Failed to return ETH.");
            }
            function batchBuyWithERC20s(
                ERC20Pair[] calldata erc20Pairs,
                bytes calldata tradeBytes,
                address[] calldata dustTokens
            ) external override payable nonReentrant {
                // transfer ERC20 tokens from the sender to this contract
                _transferERC20Pairs(erc20Pairs);
                // trade
                _trade(tradeBytes);
                // return dust tokens (if any)
                _returnDust(dustTokens);
                // return remaining ETH (if any)
                assembly {
                    if gt(selfbalance(), 0) {
                        let success := call(gas(), caller(), selfbalance(), 0, 0, 0, 0)
                    }
                }
            }
            function _trade(bytes calldata tradeBytes) internal {
                assembly {
                    let anySuccess
                    let itemLength
                    let end := add(tradeBytes.offset, tradeBytes.length)
                    let ptr := mload(0x40) // free memory pointer
                    // nextOffset == offset + 28bytes[2 + 1 + 21 + 4] + itemLength
                    for { let offset := tradeBytes.offset } lt(offset, end) { offset := add(add(offset, 28), itemLength) } {
                        // head == [2 bytes(marketId) + 1 bytes(continueIfFailed) + 21 bytes(ethValue) + 4 bytes(itemLength) + 4 bytes(item)]
                        // head == [16 bits(marketId) + 8 bits(continueIfFailed) + 168 bits(ethValue) + 32 bits(itemLength) + 32 bits(item)]
                        let head := calldataload(offset)
                        // itemLength = (head >> 32) & 0xffffffff
                        itemLength := and(shr(32, head), 0xffffffff)
                        // itemOffset == offset + 28
                        // copy item.data to memory ptr
                        calldatacopy(ptr, add(offset, 28), itemLength)
                        // marketId = head >> (8 + 168 + 32 + 32) = head >> 240
                        let marketId := shr(240, head)
                        // Seaport
                        if eq(marketId, SEAPORT_MARKET_ID) {
                            // ethValue = (head >> 64) & ETH_VALUE_MASK
                            // SEAPORT.call{value: ethValue}(item)
                            if iszero(call(gas(), SEAPORT, and(shr(64, head), ETH_VALUE_MASK), ptr, itemLength, 0, 0)) {
                                _revertOrContinue(head)
                                continue
                            }
                            anySuccess := 1
                            continue
                        }
                        // ElementEx
                        if eq(marketId, ELEMENT_MARKET_ID) {
                            // ethValue = (head >> 64) & ETH_VALUE_MASK
                            // ELEMENT.call{value: ethValue}(item)
                            if iszero(call(gas(), ELEMENT, and(shr(64, head), ETH_VALUE_MASK), ptr, itemLength, 0, 0)) {
                                _revertOrContinue(head)
                                continue
                            }
                            anySuccess := 1
                            continue
                        }
                        // WETH
                        if eq(marketId, WETH_MARKET_ID) {
                            let methodId := and(head, 0xffffffff)
                            // WETH.deposit();
                            if eq(methodId, 0xd0e30db0) {
                                if iszero(call(gas(), WETH, and(shr(64, head), ETH_VALUE_MASK), ptr, itemLength, 0, 0)) {
                                    _revertOrContinue(head)
                                    continue
                                }
                                anySuccess := 1
                                continue
                            }
                            // WETH.withdraw();
                            if eq(methodId, 0x2e1a7d4d) {
                                if iszero(call(gas(), WETH, 0, ptr, itemLength, 0, 0)) {
                                    _revertOrContinue(head)
                                    continue
                                }
                                anySuccess := 1
                                continue
                            }
                            // Do not support other methods.
                            _revertOrContinue(head)
                            continue
                        }
                        // Others
                        // struct Market {
                        //        address proxy;
                        //        bool isLibrary;
                        //        bool isActive;
                        //  }
                        // [80 bits(unused) + 8 bits(isActive) + 8 bits(isLibrary) + 160 bits(proxy)]
                        // [10 bytes(unused) + 1 bytes(isActive) + 1 bytes(isLibrary) + 20 bytes(proxy)]
                        // market.slot = markets.data.slot + marketId
                        // market = sload(market.slot)
                        let market := sload(add(MARKETS_DATA_SLOT, marketId))
                        // if (!market.isActive)
                        if iszero(byte(10, market)) {
                            // if (!continueIfFailed)
                            if iszero(byte(2, head)) {
                                 // revert("Inactive market.")
                                mstore(0, 0x08c379a000000000000000000000000000000000000000000000000000000000)
                                mstore(0x20, 0x0000002000000000000000000000000000000000000000000000000000000000)
                                mstore(0x40, 0x00000010496e616374697665206d61726b65742e000000000000000000000000)
                                mstore(0x60, 0)
                                revert(0, 0x64)
                            }
                            continue
                        }
                        // if (!market.isLibrary)
                        if iszero(byte(11, market)) {
                            // ethValue = (head >> 64) & ETH_VALUE_MASK
                            // market.proxy.call{value: ethValue}(item)
                            if iszero(call(gas(), and(market, PROXY_MASK), and(shr(64, head), ETH_VALUE_MASK), ptr, itemLength, 0, 0)) {
                                _revertOrContinue(head)
                                continue
                            }
                            anySuccess := 1
                            continue
                        }
                        // market.proxy.delegatecall(item)
                        if iszero(delegatecall(gas(), and(market, PROXY_MASK), ptr, itemLength, 0, 0)) {
                            _revertOrContinue(head)
                            continue
                        }
                        anySuccess := 1
                    }
                    // if (!anySuccess)
                    if iszero(anySuccess) {
                        if gt(tradeBytes.length, 0) {
                            if iszero(returndatasize()) {
                                // revert("No order succeeded.")
                                mstore(0, 0x08c379a000000000000000000000000000000000000000000000000000000000)
                                mstore(0x20, 0x0000002000000000000000000000000000000000000000000000000000000000)
                                mstore(0x40, 0x000000134e6f206f72646572207375636365656465642e000000000000000000)
                                mstore(0x60, 0)
                                revert(0, 0x64)
                            }
                            // revert(returnData)
                            returndatacopy(0, 0, returndatasize())
                            revert(0, returndatasize())
                        }
                    }
                    function _revertOrContinue(head) {
                        // head == [2 bytes(marketId) + 1 bytes(continueIfFailed) + 21 bytes(ethValue) + 4 bytes(itemLength) + 4 bytes(item)]
                        // if (!continueIfFailed)
                        if iszero(byte(2, head)) {
                            if iszero(returndatasize()) {
                                mstore(0, head)
                                revert(0, 0x20)
                            }
                            returndatacopy(0, 0, returndatasize())
                            revert(0, returndatasize())
                        }
                    }
                }
            }
            function _transferERC20Pairs(ERC20Pair[] calldata erc20Pairs) internal {
                // transfer ERC20 tokens from the sender to this contract
                if (erc20Pairs.length > 0) {
                    assembly {
                        let ptr := mload(0x40)
                        let end := add(erc20Pairs.offset, mul(erc20Pairs.length, 0x40))
                        // selector for transferFrom(address,address,uint256)
                        mstore(ptr, 0x23b872dd00000000000000000000000000000000000000000000000000000000)
                        mstore(add(ptr, 0x04), caller())
                        mstore(add(ptr, 0x24), address())
                        for { let offset := erc20Pairs.offset } lt(offset, end) { offset := add(offset, 0x40) } {
                            let amount := calldataload(add(offset, 0x20))
                            if gt(amount, 0) {
                                mstore(add(ptr, 0x44), amount)
                                let success := call(gas(), calldataload(offset), 0, ptr, 0x64, 0, 0)
                            }
                        }
                    }
                }
            }
            function _returnDust(address[] calldata tokens) internal {
                // return remaining tokens (if any)
                for (uint256 i; i < tokens.length; ) {
                    _transferERC20WithoutCheck(tokens[i], msg.sender, IERC20(tokens[i]).balanceOf(address(this)));
                    unchecked { ++i; }
                }
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.15;
        import "../storage/LibOwnableStorage.sol";
        /**
         * @dev Contract module which provides a basic access control mechanism, where
         * there is an account (an owner) that can be granted exclusive access to
         * specific functions.
         *
         * By default, the owner account will be the one that deploys the contract. This
         * can later be changed with {transferOwnership}.
         *
         * This module is used through inheritance. It will make available the modifier
         * `onlyOwner`, which can be applied to your functions to restrict their use to
         * the owner.
         */
        abstract contract Ownable {
            event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
            /**
             * @dev Initializes the contract setting the deployer as the initial owner.
             */
            constructor() {
                if (owner() == address(0)) {
                    _transferOwnership(msg.sender);
                }
            }
            /**
             * @dev Returns the address of the current owner.
             */
            function owner() public view virtual returns (address) {
                return LibOwnableStorage.getStorage().owner;
            }
            /**
             * @dev Throws if called by any account other than the owner.
             */
            modifier onlyOwner() {
                require(owner() == msg.sender, "Ownable: caller is not the owner");
                _;
            }
            /**
             * @dev Transfers ownership of the contract to a new account (`newOwner`).
             * Can only be called by the current owner.
             */
            function transferOwnership(address newOwner) public virtual onlyOwner {
                require(newOwner != address(0), "Ownable: new owner is the zero address");
                _transferOwnership(newOwner);
            }
            /**
             * @dev Transfers ownership of the contract to a new account (`newOwner`).
             * Internal function without access restriction.
             */
            function _transferOwnership(address newOwner) private {
                LibOwnableStorage.Storage storage stor = LibOwnableStorage.getStorage();
                address oldOwner = stor.owner;
                stor.owner = newOwner;
                emit OwnershipTransferred(oldOwner, newOwner);
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)
        pragma solidity ^0.8.0;
        /**
         * @dev Interface of the ERC165 standard, as defined in the
         * https://eips.ethereum.org/EIPS/eip-165[EIP].
         *
         * Implementers can declare support of contract interfaces, which can then be
         * queried by others ({ERC165Checker}).
         *
         * For an implementation, see {ERC165}.
         */
        interface IERC165 {
            /**
             * @dev Returns true if this contract implements the interface defined by
             * `interfaceId`. See the corresponding
             * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
             * to learn more about how these ids are created.
             *
             * This function call must use less than 30 000 gas.
             */
            function supportsInterface(bytes4 interfaceId) external view returns (bool);
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts v4.4.1 (token/ERC20/IERC20.sol)
        pragma solidity ^0.8.0;
        /**
         * @dev Interface of the ERC20 standard as defined in the EIP.
         */
        interface IERC20 {
            /**
             * @dev Returns the amount of tokens in existence.
             */
            function totalSupply() external view returns (uint256);
            /**
             * @dev Returns the amount of tokens owned by `account`.
             */
            function balanceOf(address account) external view returns (uint256);
            /**
             * @dev Moves `amount` tokens from the caller's account to `recipient`.
             *
             * Returns a boolean value indicating whether the operation succeeded.
             *
             * Emits a {Transfer} event.
             */
            function transfer(address recipient, uint256 amount) external returns (bool);
            /**
             * @dev Returns the remaining number of tokens that `spender` will be
             * allowed to spend on behalf of `owner` through {transferFrom}. This is
             * zero by default.
             *
             * This value changes when {approve} or {transferFrom} are called.
             */
            function allowance(address owner, address spender) external view returns (uint256);
            /**
             * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
             *
             * Returns a boolean value indicating whether the operation succeeded.
             *
             * IMPORTANT: Beware that changing an allowance with this method brings the risk
             * that someone may use both the old and the new allowance by unfortunate
             * transaction ordering. One possible solution to mitigate this race
             * condition is to first reduce the spender's allowance to 0 and set the
             * desired value afterwards:
             * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
             *
             * Emits an {Approval} event.
             */
            function approve(address spender, uint256 amount) external returns (bool);
            /**
             * @dev Moves `amount` tokens from `sender` to `recipient` using the
             * allowance mechanism. `amount` is then deducted from the caller's
             * allowance.
             *
             * Returns a boolean value indicating whether the operation succeeded.
             *
             * Emits a {Transfer} event.
             */
            function transferFrom(
                address sender,
                address recipient,
                uint256 amount
            ) external returns (bool);
            /**
             * @dev Emitted when `value` tokens are moved from one account (`from`) to
             * another (`to`).
             *
             * Note that `value` may be zero.
             */
            event Transfer(address indexed from, address indexed to, uint256 value);
            /**
             * @dev Emitted when the allowance of a `spender` for an `owner` is set by
             * a call to {approve}. `value` is the new allowance.
             */
            event Approval(address indexed owner, address indexed spender, uint256 value);
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.15;
        interface IAggregator {
            struct ERC20Pair {
                address token;
                uint256 amount;
            }
            function batchBuyWithETH(bytes calldata tradeBytes) external payable;
            function batchBuyWithERC20s(
                ERC20Pair[] calldata erc20Pairs,
                bytes calldata tradeBytes,
                address[] calldata dustTokens
            ) external payable;
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.15;
        /// @dev Helpers for moving tokens around.
        abstract contract FixinTokenSpender {
            // Mask of the lower 20 bytes of a bytes32.
            uint256 constant private ADDRESS_MASK = (1 << 160) - 1;
            /// @dev Transfers ERC20 tokens from `owner` to `to`.
            /// @param token The token to spend.
            /// @param owner The owner of the tokens.
            /// @param to The recipient of the tokens.
            /// @param amount The amount of `token` to transfer.
            function _transferERC20From(address token, address owner, address to, uint256 amount) internal {
                uint256 success;
                assembly {
                    let ptr := mload(0x40) // free memory pointer
                    // selector for transferFrom(address,address,uint256)
                    mstore(ptr, 0x23b872dd00000000000000000000000000000000000000000000000000000000)
                    mstore(add(ptr, 0x04), and(owner, ADDRESS_MASK))
                    mstore(add(ptr, 0x24), and(to, ADDRESS_MASK))
                    mstore(add(ptr, 0x44), amount)
                    success := call(gas(), and(token, ADDRESS_MASK), 0, ptr, 0x64, ptr, 32)
                    let rdsize := returndatasize()
                    // Check for ERC20 success. ERC20 tokens should return a boolean,
                    // but some don't. We accept 0-length return data as success, or at
                    // least 32 bytes that starts with a 32-byte boolean true.
                    success := and(
                        success,                             // call itself succeeded
                        or(
                            iszero(rdsize),                  // no return data, or
                            and(
                                iszero(lt(rdsize, 32)),      // at least 32 bytes
                                eq(mload(ptr), 1)            // starts with uint256(1)
                            )
                        )
                    )
                }
                require(success != 0, "_transferERC20/TRANSFER_FAILED");
            }
            /// @dev Transfers ERC20 tokens from ourselves to `to`.
            /// @param token The token to spend.
            /// @param to The recipient of the tokens.
            /// @param amount The amount of `token` to transfer.
            function _transferERC20(address token, address to, uint256 amount) internal {
                uint256 success;
                assembly {
                    let ptr := mload(0x40) // free memory pointer
                    // selector for transfer(address,uint256)
                    mstore(ptr, 0xa9059cbb00000000000000000000000000000000000000000000000000000000)
                    mstore(add(ptr, 0x04), and(to, ADDRESS_MASK))
                    mstore(add(ptr, 0x24), amount)
                    success := call(gas(), and(token, ADDRESS_MASK), 0, ptr, 0x44, ptr, 32)
                    let rdsize := returndatasize()
                    // Check for ERC20 success. ERC20 tokens should return a boolean,
                    // but some don't. We accept 0-length return data as success, or at
                    // least 32 bytes that starts with a 32-byte boolean true.
                    success := and(
                        success,                             // call itself succeeded
                        or(
                            iszero(rdsize),                  // no return data, or
                            and(
                                iszero(lt(rdsize, 32)),      // at least 32 bytes
                                eq(mload(ptr), 1)            // starts with uint256(1)
                            )
                        )
                    )
                }
                require(success != 0, "_transferERC20/TRANSFER_FAILED");
            }
            function _transferERC20FromWithoutCheck(address token, address owner, address to, uint256 amount) internal {
                assembly {
                    if gt(amount, 0) {
                        let ptr := mload(0x40) // free memory pointer
                        // selector for transferFrom(address,address,uint256)
                        mstore(ptr, 0x23b872dd00000000000000000000000000000000000000000000000000000000)
                        mstore(add(ptr, 0x04), and(owner, ADDRESS_MASK))
                        mstore(add(ptr, 0x24), and(to, ADDRESS_MASK))
                        mstore(add(ptr, 0x44), amount)
                        let success := call(gas(), and(token, ADDRESS_MASK), 0, ptr, 0x64, 0, 0)
                    }
                }
            }
            function _transferERC20WithoutCheck(address token, address to, uint256 amount) internal {
                assembly {
                    if gt(amount, 0) {
                        let ptr := mload(0x40) // free memory pointer
                        // selector for transfer(address,uint256)
                        mstore(ptr, 0xa9059cbb00000000000000000000000000000000000000000000000000000000)
                        mstore(add(ptr, 0x04), and(to, ADDRESS_MASK))
                        mstore(add(ptr, 0x24), amount)
                        let success := call(gas(), and(token, ADDRESS_MASK), 0, ptr, 0x44, 0, 0)
                    }
                }
            }
            /// @dev Transfers some amount of ETH to the given recipient and
            ///      reverts if the transfer fails.
            /// @param recipient The recipient of the ETH.
            /// @param amount The amount of ETH to transfer.
            function _transferEth(address recipient, uint256 amount) internal {
                assembly {
                    if gt(amount, 0) {
                        if iszero(call(gas(), recipient, amount, 0, 0, 0, 0)) {
                            // revert("_transferEth/TRANSFER_FAILED")
                            mstore(0, 0x08c379a000000000000000000000000000000000000000000000000000000000)
                            mstore(0x20, 0x0000002000000000000000000000000000000000000000000000000000000000)
                            mstore(0x40, 0x0000001c5f7472616e736665724574682f5452414e534645525f4641494c4544)
                            mstore(0x60, 0)
                            revert(0, 0x64)
                        }
                    }
                }
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.15;
        import "../storage/LibOwnableStorage.sol";
        abstract contract ReentrancyGuard {
            constructor() {
                LibOwnableStorage.Storage storage stor = LibOwnableStorage.getStorage();
                if (stor.reentrancyStatus == 0) {
                    stor.reentrancyStatus = 1;
                }
            }
            modifier nonReentrant() {
                LibOwnableStorage.Storage storage stor = LibOwnableStorage.getStorage();
                require(stor.reentrancyStatus == 1, "ReentrancyGuard: reentrant call");
                stor.reentrancyStatus = 2;
                _;
                stor.reentrancyStatus = 1;
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.15;
        library LibOwnableStorage {
            uint256 constant STORAGE_ID_OWNABLE = 2 << 128;
            struct Storage {
                uint256 reentrancyStatus;
                address owner;
            }
            /// @dev Get the storage bucket for this contract.
            function getStorage() internal pure returns (Storage storage stor) {
                assembly { stor.slot := STORAGE_ID_OWNABLE }
            }
        }
        

        File 2 of 4: FreaksNGuilds
        // SPDX-License-Identifier: MIT
        pragma solidity 0.8.11;
        import "./interfaces/Interfaces.sol";
        import "./interfaces/Structs.sol";
        import "@openzeppelin/contracts/access/Ownable.sol";
        import "@openzeppelin/contracts/utils/cryptography/MerkleProof.sol";
        import "@openzeppelin/contracts/security/Pausable.sol";
        import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
        import "@openzeppelin/contracts/token/ERC721/IERC721.sol";
        import "@openzeppelin/contracts/token/ERC1155/IERC1155.sol";
        import "erc721a/contracts/ERC721A.sol";
        import "../base/controllable.sol";
        contract FreaksNGuilds is Controllable, Pausable, Ownable, ERC721A("Freaks N Guilds", "FnG") {
          using MerkleProof for bytes32[];
          /*///////////////////////////////////////////////////////////////
                            Global STATE
            //////////////////////////////////////////////////////////////*/
          bytes32 internal entropySauce;
          bytes32 public whitelistRoot;
          uint256 public constant FNG_PRICE_ETH_PUBLIC = 0.099 ether;
          uint256 public constant FNG_PRICE_ETH_WHITELIST = 0.09 ether;
          uint256 public constant FNG_PRICE_ETH_HOLDERS = 0.07 ether;
          uint256 public constant FNG_PRICE_FBX = 1000 ether;
          IFBX public fbx;
          ICKEY public ckey;
          IVAULT public vault;
          uint256 public maxSupply;
          uint256 public maxCelestialSupply;
          uint256 public celestialSupply;
          uint256 public freakSupply;
          uint256 public saleState;
          uint256 public maxWlMints;
          uint256 public maxPubMints;
          uint8 internal cBody = 1;
          uint8 internal cLevel = 1;
          uint8 internal cPP = 1;
          uint8 internal offHand = 0;
          mapping(uint256 => Freak) public freaks;
          mapping(uint256 => Celestial) public celestials;
          /// mapping of token ids to bool indicating whether the key has been used to mint
          mapping(uint256 => bool) public redeemedCKEYs;
          /// mapping of whitelisted addresses indicating quantity minted through whitelist mint
          mapping(address => uint256) public whitelistMinted;
          /// mapping of public addresses indicating quantity minted through public mint
          mapping(address => uint256) public publicMinted;
          MetadataHandlerLike public metadaHandler;
          /*///////////////////////////////////////////////////////////////
                            MODIFIERS 
            //////////////////////////////////////////////////////////////*/
          modifier noCheaters() {
            uint256 size = 0;
            address acc = msg.sender;
            assembly {
              size := extcodesize(acc)
            }
            require(msg.sender == tx.origin, "you're trying to cheat!");
            require(size == 0, "you're trying to cheat!");
            _;
            // We'll use the last caller hash to add entropy to next caller
            entropySauce = keccak256(abi.encodePacked(acc, block.coinbase));
          }
          /*///////////////////////////////////////////////////////////////
                            Constructor
            //////////////////////////////////////////////////////////////*/
          constructor(
            uint256 _maxSupply,
            uint256 _maxCelestialSupply,
            address _fbx,
            address _ckey,
            address _metadataHandler,
            address _vault,
            bytes32 _whitelistRoot
          ) {
            maxSupply = _maxSupply;
            maxCelestialSupply = _maxCelestialSupply;
            fbx = IFBX(_fbx);
            ckey = ICKEY(_ckey);
            vault = IVAULT(_vault);
            metadaHandler = MetadataHandlerLike(_metadataHandler);
            whitelistRoot = _whitelistRoot;
            maxWlMints = 2;
            maxPubMints = 4;
            _pause();
          }
          /*///////////////////////////////////////////////////////////////
                            PUBLIC FUNCTIONS
            //////////////////////////////////////////////////////////////*/
          /// @dev Call the `metadaHandler` to retrieve the tokenURI for each character.
          function tokenURI(uint256 id) public view override returns (string memory) {
            require(_exists(id), "token does not exist");
            if (!isFreak(id)) {
              // Celestial
              Celestial memory celestial = celestials[id];
              return metadaHandler.getCelestialTokenURI(id, celestial);
            } else if (isFreak(id)) {
              // Freak
              Freak memory freak = freaks[id];
              return metadaHandler.getFreakTokenURI(id, freak);
            } else {
              return ""; // placeholder for compile
            }
          }
          /*///////////////////////////////////////////////////////////////
                           MINT FUNCTIONS
            //////////////////////////////////////////////////////////////*/
          /// @notice Buy one or more tokens with ETH.
          function mintWithETH(uint256 amount) external payable noCheaters whenNotPaused {
            uint256 supply = _currentIndex;
            require(supply + amount <= maxSupply + 1, "maximum supply reached");
            if (msg.sender != owner()) {
              require(amount > 0 && amount + publicMinted[msg.sender] <= maxPubMints, "Invalid quantity");
              require(saleState == 2, "Mint stage not live");
              require(msg.value >= amount * FNG_PRICE_ETH_PUBLIC, "invalid ether amount");
            }
            uint256 rand = _rand();
            for (uint256 i = 0; i < amount; i++) {
              uint256 rNum = rand % 100;
              if (rNum < 15 && celestialSupply < 1500) {
                _revealCelestial(rNum, supply);
                rand = _randomize(rand, supply);
              } else {
                _revealFreak(rNum, supply);
                rand = _randomize(rand, supply);
              }
              supply += 1;
            }
            _mint(msg.sender, amount, "", false);
            publicMinted[msg.sender] += amount;
          }
          /// @notice Buy one or more tokens with ETH while holding celestial key.
          function mintWithETHHoldersOnly(uint256[] memory ckeyIds) external payable noCheaters whenNotPaused {
            require(saleState != 2, "Mint stage not live");
            uint256 supply = _currentIndex;
            uint256 amount = ckeyIds.length;
            require(amount > 0, "invalid token ID");
            require(supply + amount <= maxSupply + 1, "maximum supply reached");
            if (msg.sender != owner()) {
              require(msg.value >= amount * FNG_PRICE_ETH_HOLDERS, "invalid ether amount");
            }
            uint256 rand = _rand();
            for (uint256 i = 0; i < amount; i++) {
              require(msg.sender == ckey.ownerOf(ckeyIds[i]) || vault._depositedBlocks(msg.sender, ckeyIds[i]) != 0, "invalid token ID");
              require(!redeemedCKEYs[ckeyIds[i]], "token already used to mint");
              redeemedCKEYs[ckeyIds[i]] = true;
              uint256 rNum = rand % 100;
              if (rNum < 15 && celestialSupply < 1500) {
                _revealCelestial(rNum, supply);
                rand = _randomize(rand, supply);
              } else {
                _revealFreak(rNum, supply);
                rand = _randomize(rand, supply);
              }
              supply += 1;
            }
            _mint(msg.sender, amount, "", false);
          }
          /// @notice Buy one or more tokens with ETH with whitelisted address
          function mintWithETHWhitelist(uint256 amount, bytes32[] memory proof) external payable whenNotPaused {
            require(saleState == 1, "Mint stage not live");
            uint256 supply = _currentIndex;
            require(supply + amount <= maxSupply + 1, "maximum supply reached");
            require(amount > 0 && amount + whitelistMinted[msg.sender] <= maxWlMints, "Invalid quantity for whitelist mint");
            require(msg.value >= amount * FNG_PRICE_ETH_WHITELIST, "invalid ether amount");
            bytes32 leaf = keccak256(abi.encodePacked(msg.sender));
            require(proof.verify(whitelistRoot, leaf), "Invalid proof");
            uint256 rand = _rand();
            for (uint256 i = 0; i < amount; i++) {
              uint256 rNum = rand % 100;
              if (rNum < 15 && celestialSupply < 1500) {
                _revealCelestial(rNum, supply);
                rand = _randomize(rand, supply);
              } else {
                _revealFreak(rNum, supply);
                rand = _randomize(rand, supply);
              }
              supply += 1;
            }
            _mint(msg.sender, amount, "", false);
            whitelistMinted[msg.sender] += amount;
          }
          /// @notice Buy one or more tokens with FBX.
          function mintWithFBX(uint256 amount) external noCheaters whenNotPaused {
            require(saleState != 2, "Mint stage not live");
            uint256 supply = _currentIndex;
            require(supply + amount <= maxSupply + 1, "maximum supply reached");
            uint256 rand = _rand();
            for (uint256 i = 0; i < amount; i++) {
              uint256 rNum = rand % 100;
              if (rNum < 15 && celestialSupply < 1500) {
                _revealCelestial(rNum, supply);
                rand = _randomize(rand, supply);
              } else {
                _revealFreak(rNum, supply);
                rand = _randomize(rand, supply);
              }
              supply++;
            }
            fbx.burn(msg.sender, FNG_PRICE_FBX * amount);
            _mint(msg.sender, amount, "", false);
          }
          function burn(uint256 tokenId) external onlyOwner {
            if(isFreak(tokenId)){
              delete freaks[tokenId];
              freakSupply -= 1;
            }else{
              delete celestials[tokenId];
              celestialSupply -= 1;
            }
            _burn(tokenId);
          }
          function _revealCelestial(uint256 rNum, uint256 id) internal {
            uint256 _rNum = _randomize(rNum, id);
            uint8 healthMod = _calcMod(_rNum);
            _rNum = _randomize(_rNum, id);
            uint8 powMod = _calcMod(_rNum);
            Celestial memory celestial = Celestial(healthMod, powMod, cPP, cLevel);
            celestials[id] = celestial;
            celestialSupply += 1;
          }
          function _revealFreak(uint256 rNum, uint256 id) internal {
            uint256 _rNum = _randomize(rNum, id);
            uint8 species = uint8((_rNum % 3) + 1);
            _rNum = _randomize(_rNum, id);
            uint8 mainHand = uint8((_rNum % 3) + 1);
            _rNum = _randomize(_rNum, id);
            uint8 body = uint8((_rNum % 3) + 1);
            _rNum = _randomize(_rNum, id);
            uint8 power = _calcPow(species, _rNum);
            _rNum = _randomize(_rNum, id);
            uint8 health = _calcHealth(species, _rNum);
            _rNum = _randomize(_rNum, id);
            uint8 armor = uint8((_rNum % 3) + 1); 
            uint8 criticalStrikeMod = 0;
            Freak memory freak = Freak(species, body, armor, mainHand, offHand, power, health, criticalStrikeMod);
            freaks[id] = freak;
            freakSupply += 1;
          }
          /*///////////////////////////////////////////////////////////////
                            VIEWERS
            //////////////////////////////////////////////////////////////*/
          function getFreakAttributes(uint256 tokenId) external view returns (Freak memory) {
            require(_exists(tokenId), "token does not exist");
            return (freaks[tokenId]);
          }
          function getCelestialAttributes(uint256 tokenId) external view returns (Celestial memory) {
            require(_exists(tokenId), "token does not exist");
            return (celestials[tokenId]);
          }
          function isFreak(uint256 tokenId) public view returns (bool) {
            require(_exists(tokenId), "token does not exist");
            return freaks[tokenId].species != 0 ? true : false;
          }
          function getSpecies(uint256 tokenId) external view returns (uint8) {
            require(isFreak(tokenId) == true);
            return freaks[tokenId].species;
          }
          function getTokens(address addr) external view returns (uint256[] memory tokens) {
            uint256 balanceLength = balanceOf(addr);
            tokens = new uint256[](balanceLength);
            uint256 index = 0;
            for (uint256 j =  1; j < _currentIndex; j++) {
              if (ownerOf(j) == addr) {
                tokens[index] = j;
                index += 1;
              }
            }
            return tokens;
          }
          /*///////////////////////////////////////////////////////////////
                            INTERNAL  HELPERS
            //////////////////////////////////////////////////////////////*/
          /// @dev Overriden to start mints at id #1.
          function _startTokenId() internal pure override returns (uint256) {
            return 1;
          }
          /// @dev Create a bit more of randomness
          function _randomize(uint256 rand, uint256 spicy) internal pure returns (uint256) {
            return uint256(keccak256(abi.encode(rand, spicy)));
          }
          function _rand() internal view returns (uint256) {
            return
              uint256(keccak256(abi.encodePacked(msg.sender, block.timestamp, block.basefee, block.timestamp, entropySauce)));
          }
          function _calcMod(uint256 rNum) internal pure returns (uint8) {
            return uint8((rNum % 4) + 5);
          }
          function _calcHealth(uint8 species, uint256 rNum) internal pure returns (uint8) {
            uint8 baseHealth = 90; // ogre
            if (species == 1) {
              baseHealth = 50; // troll
            } else if (species == 2) {
              baseHealth = 70; // fairy
            }
            // might need to cast? we will see...
            return uint8((rNum % 21) + baseHealth);
          }
          function _calcPow(uint8 species, uint256 rNum) internal pure returns (uint8) {
            uint8 basePow = 90; //ogre
            if (species == 1) {
              basePow = 115; // troll
            } else if (species == 2) {
              basePow = 65; //fairy
            }
            // might need to cast? we will see...
            return uint8((rNum % 21) + basePow);
          }
          /*///////////////////////////////////////////////////////////////
                            ADMIN
          //////////////////////////////////////////////////////////////*/
          function setSaleState(uint256 newSaleState) external onlyOwner {
            saleState = newSaleState;
          }
          /// @notice See {ERC721-isApprovedForAll}.
          function isApprovedForAll(address owner, address operator) public view override returns (bool) {
            // if (!marketplacesApproved) return auth[operator] || super.isApprovedForAll(owner, operator);
            return
              isController(operator) ||
              // operator == address(ProxyRegistry(opensea).proxies(owner)) ||
              // operator == looksrare ||
              super.isApprovedForAll(owner, operator);
          }
          function setMaxMints(uint256 _maxWlMints, uint256 _maxPubMints) external onlyOwner {
            maxWlMints = _maxWlMints;
            maxPubMints = _maxPubMints;
          }
          function setPause(bool _pauseToggle) external onlyOwner {
            if (_pauseToggle == true) {
              _pause();
            } else {
              _unpause();
            }
          }
          function setWhitelistRoot(bytes32 root) external onlyOwner {
            whitelistRoot = root;
          }
          function setContracts(address _fbx, address _ckey, address _vault, address _metadataHandler) external onlyOwner {
            fbx = IFBX(_fbx);
            ckey = ICKEY(_ckey);
            vault = IVAULT(_vault);
            metadaHandler = MetadataHandlerLike(_metadataHandler);
          }
            /// @notice Withdraw `amount` of ether to msg.sender.
          function withdraw(uint256 amount) external onlyOwner {
            payable(msg.sender).transfer(amount);
          }
          /// @notice Withdraw `amount` of `token` to the sender.
          function withdrawERC20(IERC20 token, uint256 amount) external onlyOwner {
            token.transfer(msg.sender, amount);
          }
          /// @notice Withdraw `tokenId` of `token` to the sender.
          function withdrawERC721(IERC721 token, uint256 tokenId) external onlyOwner {
            token.safeTransferFrom(address(this), msg.sender, tokenId);
          }
          /// @notice Withdraw `tokenId` with amount of `value` from `token` to the sender.
          function withdrawERC1155(
            IERC1155 token,
            uint256 tokenId,
            uint256 value
          ) external onlyOwner {
            token.safeTransferFrom(address(this), msg.sender, tokenId, value, "");
          }
          /// @notice Add or edit contract controllers.
          /// @param addrs Array of addresses to be added/edited.
          /// @param state New controller state of addresses.
          function setControllers(address[] calldata addrs, bool state) external onlyOwner {
            for (uint256 i = 0; i < addrs.length; i++) super._setController(addrs[i], state);
          }
        }
        // SPDX-License-Identifier: Unlicense
        pragma solidity 0.8.11;
        import "./Structs.sol";
        interface MetadataHandlerLike {
          function getCelestialTokenURI(uint256 id, Celestial memory character) external view returns (string memory);
          function getFreakTokenURI(uint256 id, Freak memory character) external view returns (string memory);
        }
        interface InventoryCelestialsLike {
          function getAttributes(Celestial memory character, uint256 id) external pure returns (bytes memory);
          function getImage(uint256 id) external view returns (bytes memory);
        }
        interface InventoryFreaksLike {
          function getAttributes(Freak memory character, uint256 id) external view returns (bytes memory);
          function getImage(Freak memory character) external view returns (bytes memory);
        }
        interface IFnG {
          function transferFrom(
            address from,
            address to,
            uint256 id
          ) external;
          function ownerOf(uint256 id) external returns (address owner);
          function isFreak(uint256 tokenId) external view returns (bool);
          function getSpecies(uint256 tokenId) external view returns (uint8);
          function getFreakAttributes(uint256 tokenId) external view returns (Freak memory);
          function setFreakAttributes(uint256 tokenId, Freak memory attributes) external;
          function getCelestialAttributes(uint256 tokenId) external view returns (Celestial memory);
          function setCelestialAttributes(uint256 tokenId, Celestial memory attributes) external;
        }
        interface IFBX {
          function mint(address to, uint256 amount) external;
          function burn(address from, uint256 amount) external;
        }
        interface ICKEY {
          function ownerOf(uint256 tokenId) external returns (address);
        }
        interface IVAULT {
          function depositsOf(address account) external view returns (uint256[] memory);
          function _depositedBlocks(address account, uint256 tokenId) external returns(uint256);
        }
        interface ERC20Like {
          function balanceOf(address from) external view returns (uint256 balance);
          function burn(address from, uint256 amount) external;
          function mint(address from, uint256 amount) external;
          function transfer(address to, uint256 amount) external;
        }
        interface ERC1155Like {
          function mint(
            address to,
            uint256 id,
            uint256 amount
          ) external;
          function burn(
            address from,
            uint256 id,
            uint256 amount
          ) external;
        }
        interface ERC721Like {
          function transferFrom(
            address from,
            address to,
            uint256 id
          ) external;
          function transfer(address to, uint256 id) external;
          function ownerOf(uint256 id) external returns (address owner);
          function mint(address to, uint256 tokenid) external;
        }
        interface PortalLike {
          function sendMessage(bytes calldata) external;
        }
        // SPDX-License-Identifier: MIT
        pragma solidity 0.8.11;
        struct Freak {
          uint8 species;
          uint8 body;
          uint8 armor;
          uint8 mainHand;
          uint8 offHand;
          uint8 power;
          uint8 health;
          uint8 criticalStrikeMod;
        }
        struct Celestial {
          uint8 healthMod;
          uint8 powMod;
          uint8 cPP;
          uint8 cLevel;
        }
        struct Layer {
          string name;
          string data;
        }
        struct LayerInput {
          string name;
          string data;
          uint8 layerIndex;
          uint8 itemIndex;
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts v4.4.1 (access/Ownable.sol)
        pragma solidity ^0.8.0;
        import "../utils/Context.sol";
        /**
         * @dev Contract module which provides a basic access control mechanism, where
         * there is an account (an owner) that can be granted exclusive access to
         * specific functions.
         *
         * By default, the owner account will be the one that deploys the contract. This
         * can later be changed with {transferOwnership}.
         *
         * This module is used through inheritance. It will make available the modifier
         * `onlyOwner`, which can be applied to your functions to restrict their use to
         * the owner.
         */
        abstract contract Ownable is Context {
            address private _owner;
            event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
            /**
             * @dev Initializes the contract setting the deployer as the initial owner.
             */
            constructor() {
                _transferOwnership(_msgSender());
            }
            /**
             * @dev Returns the address of the current owner.
             */
            function owner() public view virtual returns (address) {
                return _owner;
            }
            /**
             * @dev Throws if called by any account other than the owner.
             */
            modifier onlyOwner() {
                require(owner() == _msgSender(), "Ownable: caller is not the owner");
                _;
            }
            /**
             * @dev Leaves the contract without owner. It will not be possible to call
             * `onlyOwner` functions anymore. Can only be called by the current owner.
             *
             * NOTE: Renouncing ownership will leave the contract without an owner,
             * thereby removing any functionality that is only available to the owner.
             */
            function renounceOwnership() public virtual onlyOwner {
                _transferOwnership(address(0));
            }
            /**
             * @dev Transfers ownership of the contract to a new account (`newOwner`).
             * Can only be called by the current owner.
             */
            function transferOwnership(address newOwner) public virtual onlyOwner {
                require(newOwner != address(0), "Ownable: new owner is the zero address");
                _transferOwnership(newOwner);
            }
            /**
             * @dev Transfers ownership of the contract to a new account (`newOwner`).
             * Internal function without access restriction.
             */
            function _transferOwnership(address newOwner) internal virtual {
                address oldOwner = _owner;
                _owner = newOwner;
                emit OwnershipTransferred(oldOwner, newOwner);
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.5.0) (utils/cryptography/MerkleProof.sol)
        pragma solidity ^0.8.0;
        /**
         * @dev These functions deal with verification of Merkle Trees proofs.
         *
         * The proofs can be generated using the JavaScript library
         * https://github.com/miguelmota/merkletreejs[merkletreejs].
         * Note: the hashing algorithm should be keccak256 and pair sorting should be enabled.
         *
         * See `test/utils/cryptography/MerkleProof.test.js` for some examples.
         */
        library MerkleProof {
            /**
             * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
             * defined by `root`. For this, a `proof` must be provided, containing
             * sibling hashes on the branch from the leaf to the root of the tree. Each
             * pair of leaves and each pair of pre-images are assumed to be sorted.
             */
            function verify(
                bytes32[] memory proof,
                bytes32 root,
                bytes32 leaf
            ) internal pure returns (bool) {
                return processProof(proof, leaf) == root;
            }
            /**
             * @dev Returns the rebuilt hash obtained by traversing a Merklee tree up
             * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
             * hash matches the root of the tree. When processing the proof, the pairs
             * of leafs & pre-images are assumed to be sorted.
             *
             * _Available since v4.4._
             */
            function processProof(bytes32[] memory proof, bytes32 leaf) internal pure returns (bytes32) {
                bytes32 computedHash = leaf;
                for (uint256 i = 0; i < proof.length; i++) {
                    bytes32 proofElement = proof[i];
                    if (computedHash <= proofElement) {
                        // Hash(current computed hash + current element of the proof)
                        computedHash = _efficientHash(computedHash, proofElement);
                    } else {
                        // Hash(current element of the proof + current computed hash)
                        computedHash = _efficientHash(proofElement, computedHash);
                    }
                }
                return computedHash;
            }
            function _efficientHash(bytes32 a, bytes32 b) private pure returns (bytes32 value) {
                assembly {
                    mstore(0x00, a)
                    mstore(0x20, b)
                    value := keccak256(0x00, 0x40)
                }
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts v4.4.1 (security/Pausable.sol)
        pragma solidity ^0.8.0;
        import "../utils/Context.sol";
        /**
         * @dev Contract module which allows children to implement an emergency stop
         * mechanism that can be triggered by an authorized account.
         *
         * This module is used through inheritance. It will make available the
         * modifiers `whenNotPaused` and `whenPaused`, which can be applied to
         * the functions of your contract. Note that they will not be pausable by
         * simply including this module, only once the modifiers are put in place.
         */
        abstract contract Pausable is Context {
            /**
             * @dev Emitted when the pause is triggered by `account`.
             */
            event Paused(address account);
            /**
             * @dev Emitted when the pause is lifted by `account`.
             */
            event Unpaused(address account);
            bool private _paused;
            /**
             * @dev Initializes the contract in unpaused state.
             */
            constructor() {
                _paused = false;
            }
            /**
             * @dev Returns true if the contract is paused, and false otherwise.
             */
            function paused() public view virtual returns (bool) {
                return _paused;
            }
            /**
             * @dev Modifier to make a function callable only when the contract is not paused.
             *
             * Requirements:
             *
             * - The contract must not be paused.
             */
            modifier whenNotPaused() {
                require(!paused(), "Pausable: paused");
                _;
            }
            /**
             * @dev Modifier to make a function callable only when the contract is paused.
             *
             * Requirements:
             *
             * - The contract must be paused.
             */
            modifier whenPaused() {
                require(paused(), "Pausable: not paused");
                _;
            }
            /**
             * @dev Triggers stopped state.
             *
             * Requirements:
             *
             * - The contract must not be paused.
             */
            function _pause() internal virtual whenNotPaused {
                _paused = true;
                emit Paused(_msgSender());
            }
            /**
             * @dev Returns to normal state.
             *
             * Requirements:
             *
             * - The contract must be paused.
             */
            function _unpause() internal virtual whenPaused {
                _paused = false;
                emit Unpaused(_msgSender());
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.5.0) (token/ERC20/IERC20.sol)
        pragma solidity ^0.8.0;
        /**
         * @dev Interface of the ERC20 standard as defined in the EIP.
         */
        interface IERC20 {
            /**
             * @dev Returns the amount of tokens in existence.
             */
            function totalSupply() external view returns (uint256);
            /**
             * @dev Returns the amount of tokens owned by `account`.
             */
            function balanceOf(address account) external view returns (uint256);
            /**
             * @dev Moves `amount` tokens from the caller's account to `to`.
             *
             * Returns a boolean value indicating whether the operation succeeded.
             *
             * Emits a {Transfer} event.
             */
            function transfer(address to, uint256 amount) external returns (bool);
            /**
             * @dev Returns the remaining number of tokens that `spender` will be
             * allowed to spend on behalf of `owner` through {transferFrom}. This is
             * zero by default.
             *
             * This value changes when {approve} or {transferFrom} are called.
             */
            function allowance(address owner, address spender) external view returns (uint256);
            /**
             * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
             *
             * Returns a boolean value indicating whether the operation succeeded.
             *
             * IMPORTANT: Beware that changing an allowance with this method brings the risk
             * that someone may use both the old and the new allowance by unfortunate
             * transaction ordering. One possible solution to mitigate this race
             * condition is to first reduce the spender's allowance to 0 and set the
             * desired value afterwards:
             * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
             *
             * Emits an {Approval} event.
             */
            function approve(address spender, uint256 amount) external returns (bool);
            /**
             * @dev Moves `amount` tokens from `from` to `to` using the
             * allowance mechanism. `amount` is then deducted from the caller's
             * allowance.
             *
             * Returns a boolean value indicating whether the operation succeeded.
             *
             * Emits a {Transfer} event.
             */
            function transferFrom(
                address from,
                address to,
                uint256 amount
            ) external returns (bool);
            /**
             * @dev Emitted when `value` tokens are moved from one account (`from`) to
             * another (`to`).
             *
             * Note that `value` may be zero.
             */
            event Transfer(address indexed from, address indexed to, uint256 value);
            /**
             * @dev Emitted when the allowance of a `spender` for an `owner` is set by
             * a call to {approve}. `value` is the new allowance.
             */
            event Approval(address indexed owner, address indexed spender, uint256 value);
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts v4.4.1 (token/ERC721/IERC721.sol)
        pragma solidity ^0.8.0;
        import "../../utils/introspection/IERC165.sol";
        /**
         * @dev Required interface of an ERC721 compliant contract.
         */
        interface IERC721 is IERC165 {
            /**
             * @dev Emitted when `tokenId` token is transferred from `from` to `to`.
             */
            event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);
            /**
             * @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
             */
            event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);
            /**
             * @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets.
             */
            event ApprovalForAll(address indexed owner, address indexed operator, bool approved);
            /**
             * @dev Returns the number of tokens in ``owner``'s account.
             */
            function balanceOf(address owner) external view returns (uint256 balance);
            /**
             * @dev Returns the owner of the `tokenId` token.
             *
             * Requirements:
             *
             * - `tokenId` must exist.
             */
            function ownerOf(uint256 tokenId) external view returns (address owner);
            /**
             * @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
             * are aware of the ERC721 protocol to prevent tokens from being forever locked.
             *
             * Requirements:
             *
             * - `from` cannot be the zero address.
             * - `to` cannot be the zero address.
             * - `tokenId` token must exist and be owned by `from`.
             * - If the caller is not `from`, it must be have been allowed to move this token by either {approve} or {setApprovalForAll}.
             * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
             *
             * Emits a {Transfer} event.
             */
            function safeTransferFrom(
                address from,
                address to,
                uint256 tokenId
            ) external;
            /**
             * @dev Transfers `tokenId` token from `from` to `to`.
             *
             * WARNING: Usage of this method is discouraged, use {safeTransferFrom} whenever possible.
             *
             * Requirements:
             *
             * - `from` cannot be the zero address.
             * - `to` cannot be the zero address.
             * - `tokenId` token must be owned by `from`.
             * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
             *
             * Emits a {Transfer} event.
             */
            function transferFrom(
                address from,
                address to,
                uint256 tokenId
            ) external;
            /**
             * @dev Gives permission to `to` to transfer `tokenId` token to another account.
             * The approval is cleared when the token is transferred.
             *
             * Only a single account can be approved at a time, so approving the zero address clears previous approvals.
             *
             * Requirements:
             *
             * - The caller must own the token or be an approved operator.
             * - `tokenId` must exist.
             *
             * Emits an {Approval} event.
             */
            function approve(address to, uint256 tokenId) external;
            /**
             * @dev Returns the account approved for `tokenId` token.
             *
             * Requirements:
             *
             * - `tokenId` must exist.
             */
            function getApproved(uint256 tokenId) external view returns (address operator);
            /**
             * @dev Approve or remove `operator` as an operator for the caller.
             * Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller.
             *
             * Requirements:
             *
             * - The `operator` cannot be the caller.
             *
             * Emits an {ApprovalForAll} event.
             */
            function setApprovalForAll(address operator, bool _approved) external;
            /**
             * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
             *
             * See {setApprovalForAll}
             */
            function isApprovedForAll(address owner, address operator) external view returns (bool);
            /**
             * @dev Safely transfers `tokenId` token from `from` to `to`.
             *
             * Requirements:
             *
             * - `from` cannot be the zero address.
             * - `to` cannot be the zero address.
             * - `tokenId` token must exist and be owned by `from`.
             * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
             * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
             *
             * Emits a {Transfer} event.
             */
            function safeTransferFrom(
                address from,
                address to,
                uint256 tokenId,
                bytes calldata data
            ) external;
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts v4.4.1 (token/ERC1155/IERC1155.sol)
        pragma solidity ^0.8.0;
        import "../../utils/introspection/IERC165.sol";
        /**
         * @dev Required interface of an ERC1155 compliant contract, as defined in the
         * https://eips.ethereum.org/EIPS/eip-1155[EIP].
         *
         * _Available since v3.1._
         */
        interface IERC1155 is IERC165 {
            /**
             * @dev Emitted when `value` tokens of token type `id` are transferred from `from` to `to` by `operator`.
             */
            event TransferSingle(address indexed operator, address indexed from, address indexed to, uint256 id, uint256 value);
            /**
             * @dev Equivalent to multiple {TransferSingle} events, where `operator`, `from` and `to` are the same for all
             * transfers.
             */
            event TransferBatch(
                address indexed operator,
                address indexed from,
                address indexed to,
                uint256[] ids,
                uint256[] values
            );
            /**
             * @dev Emitted when `account` grants or revokes permission to `operator` to transfer their tokens, according to
             * `approved`.
             */
            event ApprovalForAll(address indexed account, address indexed operator, bool approved);
            /**
             * @dev Emitted when the URI for token type `id` changes to `value`, if it is a non-programmatic URI.
             *
             * If an {URI} event was emitted for `id`, the standard
             * https://eips.ethereum.org/EIPS/eip-1155#metadata-extensions[guarantees] that `value` will equal the value
             * returned by {IERC1155MetadataURI-uri}.
             */
            event URI(string value, uint256 indexed id);
            /**
             * @dev Returns the amount of tokens of token type `id` owned by `account`.
             *
             * Requirements:
             *
             * - `account` cannot be the zero address.
             */
            function balanceOf(address account, uint256 id) external view returns (uint256);
            /**
             * @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {balanceOf}.
             *
             * Requirements:
             *
             * - `accounts` and `ids` must have the same length.
             */
            function balanceOfBatch(address[] calldata accounts, uint256[] calldata ids)
                external
                view
                returns (uint256[] memory);
            /**
             * @dev Grants or revokes permission to `operator` to transfer the caller's tokens, according to `approved`,
             *
             * Emits an {ApprovalForAll} event.
             *
             * Requirements:
             *
             * - `operator` cannot be the caller.
             */
            function setApprovalForAll(address operator, bool approved) external;
            /**
             * @dev Returns true if `operator` is approved to transfer ``account``'s tokens.
             *
             * See {setApprovalForAll}.
             */
            function isApprovedForAll(address account, address operator) external view returns (bool);
            /**
             * @dev Transfers `amount` tokens of token type `id` from `from` to `to`.
             *
             * Emits a {TransferSingle} event.
             *
             * Requirements:
             *
             * - `to` cannot be the zero address.
             * - If the caller is not `from`, it must be have been approved to spend ``from``'s tokens via {setApprovalForAll}.
             * - `from` must have a balance of tokens of type `id` of at least `amount`.
             * - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155Received} and return the
             * acceptance magic value.
             */
            function safeTransferFrom(
                address from,
                address to,
                uint256 id,
                uint256 amount,
                bytes calldata data
            ) external;
            /**
             * @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {safeTransferFrom}.
             *
             * Emits a {TransferBatch} event.
             *
             * Requirements:
             *
             * - `ids` and `amounts` must have the same length.
             * - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155BatchReceived} and return the
             * acceptance magic value.
             */
            function safeBatchTransferFrom(
                address from,
                address to,
                uint256[] calldata ids,
                uint256[] calldata amounts,
                bytes calldata data
            ) external;
        }
        // SPDX-License-Identifier: MIT
        // Creator: Chiru Labs
        pragma solidity ^0.8.4;
        import '@openzeppelin/contracts/token/ERC721/IERC721.sol';
        import '@openzeppelin/contracts/token/ERC721/IERC721Receiver.sol';
        import '@openzeppelin/contracts/token/ERC721/extensions/IERC721Metadata.sol';
        import '@openzeppelin/contracts/token/ERC721/extensions/IERC721Enumerable.sol';
        import '@openzeppelin/contracts/utils/Address.sol';
        import '@openzeppelin/contracts/utils/Context.sol';
        import '@openzeppelin/contracts/utils/Strings.sol';
        import '@openzeppelin/contracts/utils/introspection/ERC165.sol';
        error ApprovalCallerNotOwnerNorApproved();
        error ApprovalQueryForNonexistentToken();
        error ApproveToCaller();
        error ApprovalToCurrentOwner();
        error BalanceQueryForZeroAddress();
        error MintedQueryForZeroAddress();
        error BurnedQueryForZeroAddress();
        error AuxQueryForZeroAddress();
        error MintToZeroAddress();
        error MintZeroQuantity();
        error OwnerIndexOutOfBounds();
        error OwnerQueryForNonexistentToken();
        error TokenIndexOutOfBounds();
        error TransferCallerNotOwnerNorApproved();
        error TransferFromIncorrectOwner();
        error TransferToNonERC721ReceiverImplementer();
        error TransferToZeroAddress();
        error URIQueryForNonexistentToken();
        /**
         * @dev Implementation of https://eips.ethereum.org/EIPS/eip-721[ERC721] Non-Fungible Token Standard, including
         * the Metadata extension. Built to optimize for lower gas during batch mints.
         *
         * Assumes serials are sequentially minted starting at _startTokenId() (defaults to 0, e.g. 0, 1, 2, 3..).
         *
         * Assumes that an owner cannot have more than 2**64 - 1 (max value of uint64) of supply.
         *
         * Assumes that the maximum token id cannot exceed 2**256 - 1 (max value of uint256).
         */
        contract ERC721A is Context, ERC165, IERC721, IERC721Metadata {
            using Address for address;
            using Strings for uint256;
            // Compiler will pack this into a single 256bit word.
            struct TokenOwnership {
                // The address of the owner.
                address addr;
                // Keeps track of the start time of ownership with minimal overhead for tokenomics.
                uint64 startTimestamp;
                // Whether the token has been burned.
                bool burned;
            }
            // Compiler will pack this into a single 256bit word.
            struct AddressData {
                // Realistically, 2**64-1 is more than enough.
                uint64 balance;
                // Keeps track of mint count with minimal overhead for tokenomics.
                uint64 numberMinted;
                // Keeps track of burn count with minimal overhead for tokenomics.
                uint64 numberBurned;
                // For miscellaneous variable(s) pertaining to the address
                // (e.g. number of whitelist mint slots used).
                // If there are multiple variables, please pack them into a uint64.
                uint64 aux;
            }
            // The tokenId of the next token to be minted.
            uint256 internal _currentIndex;
            // The number of tokens burned.
            uint256 internal _burnCounter;
            // Token name
            string private _name;
            // Token symbol
            string private _symbol;
            // Mapping from token ID to ownership details
            // An empty struct value does not necessarily mean the token is unowned. See ownershipOf implementation for details.
            mapping(uint256 => TokenOwnership) internal _ownerships;
            // Mapping owner address to address data
            mapping(address => AddressData) private _addressData;
            // Mapping from token ID to approved address
            mapping(uint256 => address) private _tokenApprovals;
            // Mapping from owner to operator approvals
            mapping(address => mapping(address => bool)) private _operatorApprovals;
            constructor(string memory name_, string memory symbol_) {
                _name = name_;
                _symbol = symbol_;
                _currentIndex = _startTokenId();
            }
            /**
             * To change the starting tokenId, please override this function.
             */
            function _startTokenId() internal view virtual returns (uint256) {
                return 0;
            }
            /**
             * @dev See {IERC721Enumerable-totalSupply}.
             * @dev Burned tokens are calculated here, use _totalMinted() if you want to count just minted tokens.
             */
            function totalSupply() public view returns (uint256) {
                // Counter underflow is impossible as _burnCounter cannot be incremented
                // more than _currentIndex - _startTokenId() times
                unchecked {
                    return _currentIndex - _burnCounter - _startTokenId();
                }
            }
            /**
             * Returns the total amount of tokens minted in the contract.
             */
            function _totalMinted() internal view returns (uint256) {
                // Counter underflow is impossible as _currentIndex does not decrement,
                // and it is initialized to _startTokenId()
                unchecked {
                    return _currentIndex - _startTokenId();
                }
            }
            /**
             * @dev See {IERC165-supportsInterface}.
             */
            function supportsInterface(bytes4 interfaceId) public view virtual override(ERC165, IERC165) returns (bool) {
                return
                    interfaceId == type(IERC721).interfaceId ||
                    interfaceId == type(IERC721Metadata).interfaceId ||
                    super.supportsInterface(interfaceId);
            }
            /**
             * @dev See {IERC721-balanceOf}.
             */
            function balanceOf(address owner) public view override returns (uint256) {
                if (owner == address(0)) revert BalanceQueryForZeroAddress();
                return uint256(_addressData[owner].balance);
            }
            /**
             * Returns the number of tokens minted by `owner`.
             */
            function _numberMinted(address owner) internal view returns (uint256) {
                if (owner == address(0)) revert MintedQueryForZeroAddress();
                return uint256(_addressData[owner].numberMinted);
            }
            /**
             * Returns the number of tokens burned by or on behalf of `owner`.
             */
            function _numberBurned(address owner) internal view returns (uint256) {
                if (owner == address(0)) revert BurnedQueryForZeroAddress();
                return uint256(_addressData[owner].numberBurned);
            }
            /**
             * Returns the auxillary data for `owner`. (e.g. number of whitelist mint slots used).
             */
            function _getAux(address owner) internal view returns (uint64) {
                if (owner == address(0)) revert AuxQueryForZeroAddress();
                return _addressData[owner].aux;
            }
            /**
             * Sets the auxillary data for `owner`. (e.g. number of whitelist mint slots used).
             * If there are multiple variables, please pack them into a uint64.
             */
            function _setAux(address owner, uint64 aux) internal {
                if (owner == address(0)) revert AuxQueryForZeroAddress();
                _addressData[owner].aux = aux;
            }
            /**
             * Gas spent here starts off proportional to the maximum mint batch size.
             * It gradually moves to O(1) as tokens get transferred around in the collection over time.
             */
            function ownershipOf(uint256 tokenId) internal view returns (TokenOwnership memory) {
                uint256 curr = tokenId;
                unchecked {
                    if (_startTokenId() <= curr && curr < _currentIndex) {
                        TokenOwnership memory ownership = _ownerships[curr];
                        if (!ownership.burned) {
                            if (ownership.addr != address(0)) {
                                return ownership;
                            }
                            // Invariant:
                            // There will always be an ownership that has an address and is not burned
                            // before an ownership that does not have an address and is not burned.
                            // Hence, curr will not underflow.
                            while (true) {
                                curr--;
                                ownership = _ownerships[curr];
                                if (ownership.addr != address(0)) {
                                    return ownership;
                                }
                            }
                        }
                    }
                }
                revert OwnerQueryForNonexistentToken();
            }
            /**
             * @dev See {IERC721-ownerOf}.
             */
            function ownerOf(uint256 tokenId) public view override returns (address) {
                return ownershipOf(tokenId).addr;
            }
            /**
             * @dev See {IERC721Metadata-name}.
             */
            function name() public view virtual override returns (string memory) {
                return _name;
            }
            /**
             * @dev See {IERC721Metadata-symbol}.
             */
            function symbol() public view virtual override returns (string memory) {
                return _symbol;
            }
            /**
             * @dev See {IERC721Metadata-tokenURI}.
             */
            function tokenURI(uint256 tokenId) public view virtual override returns (string memory) {
                if (!_exists(tokenId)) revert URIQueryForNonexistentToken();
                string memory baseURI = _baseURI();
                return bytes(baseURI).length != 0 ? string(abi.encodePacked(baseURI, tokenId.toString())) : '';
            }
            /**
             * @dev Base URI for computing {tokenURI}. If set, the resulting URI for each
             * token will be the concatenation of the `baseURI` and the `tokenId`. Empty
             * by default, can be overriden in child contracts.
             */
            function _baseURI() internal view virtual returns (string memory) {
                return '';
            }
            /**
             * @dev See {IERC721-approve}.
             */
            function approve(address to, uint256 tokenId) public override {
                address owner = ERC721A.ownerOf(tokenId);
                if (to == owner) revert ApprovalToCurrentOwner();
                if (_msgSender() != owner && !isApprovedForAll(owner, _msgSender())) {
                    revert ApprovalCallerNotOwnerNorApproved();
                }
                _approve(to, tokenId, owner);
            }
            /**
             * @dev See {IERC721-getApproved}.
             */
            function getApproved(uint256 tokenId) public view override returns (address) {
                if (!_exists(tokenId)) revert ApprovalQueryForNonexistentToken();
                return _tokenApprovals[tokenId];
            }
            /**
             * @dev See {IERC721-setApprovalForAll}.
             */
            function setApprovalForAll(address operator, bool approved) public override {
                if (operator == _msgSender()) revert ApproveToCaller();
                _operatorApprovals[_msgSender()][operator] = approved;
                emit ApprovalForAll(_msgSender(), operator, approved);
            }
            /**
             * @dev See {IERC721-isApprovedForAll}.
             */
            function isApprovedForAll(address owner, address operator) public view virtual override returns (bool) {
                return _operatorApprovals[owner][operator];
            }
            /**
             * @dev See {IERC721-transferFrom}.
             */
            function transferFrom(
                address from,
                address to,
                uint256 tokenId
            ) public virtual override {
                _transfer(from, to, tokenId);
            }
            /**
             * @dev See {IERC721-safeTransferFrom}.
             */
            function safeTransferFrom(
                address from,
                address to,
                uint256 tokenId
            ) public virtual override {
                safeTransferFrom(from, to, tokenId, '');
            }
            /**
             * @dev See {IERC721-safeTransferFrom}.
             */
            function safeTransferFrom(
                address from,
                address to,
                uint256 tokenId,
                bytes memory _data
            ) public virtual override {
                _transfer(from, to, tokenId);
                if (to.isContract() && !_checkContractOnERC721Received(from, to, tokenId, _data)) {
                    revert TransferToNonERC721ReceiverImplementer();
                }
            }
            /**
             * @dev Returns whether `tokenId` exists.
             *
             * Tokens can be managed by their owner or approved accounts via {approve} or {setApprovalForAll}.
             *
             * Tokens start existing when they are minted (`_mint`),
             */
            function _exists(uint256 tokenId) internal view returns (bool) {
                return _startTokenId() <= tokenId && tokenId < _currentIndex &&
                    !_ownerships[tokenId].burned;
            }
            function _safeMint(address to, uint256 quantity) internal {
                _safeMint(to, quantity, '');
            }
            /**
             * @dev Safely mints `quantity` tokens and transfers them to `to`.
             *
             * Requirements:
             *
             * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called for each safe transfer.
             * - `quantity` must be greater than 0.
             *
             * Emits a {Transfer} event.
             */
            function _safeMint(
                address to,
                uint256 quantity,
                bytes memory _data
            ) internal {
                _mint(to, quantity, _data, true);
            }
            /**
             * @dev Mints `quantity` tokens and transfers them to `to`.
             *
             * Requirements:
             *
             * - `to` cannot be the zero address.
             * - `quantity` must be greater than 0.
             *
             * Emits a {Transfer} event.
             */
            function _mint(
                address to,
                uint256 quantity,
                bytes memory _data,
                bool safe
            ) internal {
                uint256 startTokenId = _currentIndex;
                if (to == address(0)) revert MintToZeroAddress();
                if (quantity == 0) revert MintZeroQuantity();
                _beforeTokenTransfers(address(0), to, startTokenId, quantity);
                // Overflows are incredibly unrealistic.
                // balance or numberMinted overflow if current value of either + quantity > 1.8e19 (2**64) - 1
                // updatedIndex overflows if _currentIndex + quantity > 1.2e77 (2**256) - 1
                unchecked {
                    _addressData[to].balance += uint64(quantity);
                    _addressData[to].numberMinted += uint64(quantity);
                    _ownerships[startTokenId].addr = to;
                    _ownerships[startTokenId].startTimestamp = uint64(block.timestamp);
                    uint256 updatedIndex = startTokenId;
                    uint256 end = updatedIndex + quantity;
                    if (safe && to.isContract()) {
                        do {
                            emit Transfer(address(0), to, updatedIndex);
                            if (!_checkContractOnERC721Received(address(0), to, updatedIndex++, _data)) {
                                revert TransferToNonERC721ReceiverImplementer();
                            }
                        } while (updatedIndex != end);
                        // Reentrancy protection
                        if (_currentIndex != startTokenId) revert();
                    } else {
                        do {
                            emit Transfer(address(0), to, updatedIndex++);
                        } while (updatedIndex != end);
                    }
                    _currentIndex = updatedIndex;
                }
                _afterTokenTransfers(address(0), to, startTokenId, quantity);
            }
            /**
             * @dev Transfers `tokenId` from `from` to `to`.
             *
             * Requirements:
             *
             * - `to` cannot be the zero address.
             * - `tokenId` token must be owned by `from`.
             *
             * Emits a {Transfer} event.
             */
            function _transfer(
                address from,
                address to,
                uint256 tokenId
            ) private {
                TokenOwnership memory prevOwnership = ownershipOf(tokenId);
                bool isApprovedOrOwner = (_msgSender() == prevOwnership.addr ||
                    isApprovedForAll(prevOwnership.addr, _msgSender()) ||
                    getApproved(tokenId) == _msgSender());
                if (!isApprovedOrOwner) revert TransferCallerNotOwnerNorApproved();
                if (prevOwnership.addr != from) revert TransferFromIncorrectOwner();
                if (to == address(0)) revert TransferToZeroAddress();
                _beforeTokenTransfers(from, to, tokenId, 1);
                // Clear approvals from the previous owner
                _approve(address(0), tokenId, prevOwnership.addr);
                // Underflow of the sender's balance is impossible because we check for
                // ownership above and the recipient's balance can't realistically overflow.
                // Counter overflow is incredibly unrealistic as tokenId would have to be 2**256.
                unchecked {
                    _addressData[from].balance -= 1;
                    _addressData[to].balance += 1;
                    _ownerships[tokenId].addr = to;
                    _ownerships[tokenId].startTimestamp = uint64(block.timestamp);
                    // If the ownership slot of tokenId+1 is not explicitly set, that means the transfer initiator owns it.
                    // Set the slot of tokenId+1 explicitly in storage to maintain correctness for ownerOf(tokenId+1) calls.
                    uint256 nextTokenId = tokenId + 1;
                    if (_ownerships[nextTokenId].addr == address(0)) {
                        // This will suffice for checking _exists(nextTokenId),
                        // as a burned slot cannot contain the zero address.
                        if (nextTokenId < _currentIndex) {
                            _ownerships[nextTokenId].addr = prevOwnership.addr;
                            _ownerships[nextTokenId].startTimestamp = prevOwnership.startTimestamp;
                        }
                    }
                }
                emit Transfer(from, to, tokenId);
                _afterTokenTransfers(from, to, tokenId, 1);
            }
            /**
             * @dev Destroys `tokenId`.
             * The approval is cleared when the token is burned.
             *
             * Requirements:
             *
             * - `tokenId` must exist.
             *
             * Emits a {Transfer} event.
             */
            function _burn(uint256 tokenId) internal virtual {
                TokenOwnership memory prevOwnership = ownershipOf(tokenId);
                _beforeTokenTransfers(prevOwnership.addr, address(0), tokenId, 1);
                // Clear approvals from the previous owner
                _approve(address(0), tokenId, prevOwnership.addr);
                // Underflow of the sender's balance is impossible because we check for
                // ownership above and the recipient's balance can't realistically overflow.
                // Counter overflow is incredibly unrealistic as tokenId would have to be 2**256.
                unchecked {
                    _addressData[prevOwnership.addr].balance -= 1;
                    _addressData[prevOwnership.addr].numberBurned += 1;
                    // Keep track of who burned the token, and the timestamp of burning.
                    _ownerships[tokenId].addr = prevOwnership.addr;
                    _ownerships[tokenId].startTimestamp = uint64(block.timestamp);
                    _ownerships[tokenId].burned = true;
                    // If the ownership slot of tokenId+1 is not explicitly set, that means the burn initiator owns it.
                    // Set the slot of tokenId+1 explicitly in storage to maintain correctness for ownerOf(tokenId+1) calls.
                    uint256 nextTokenId = tokenId + 1;
                    if (_ownerships[nextTokenId].addr == address(0)) {
                        // This will suffice for checking _exists(nextTokenId),
                        // as a burned slot cannot contain the zero address.
                        if (nextTokenId < _currentIndex) {
                            _ownerships[nextTokenId].addr = prevOwnership.addr;
                            _ownerships[nextTokenId].startTimestamp = prevOwnership.startTimestamp;
                        }
                    }
                }
                emit Transfer(prevOwnership.addr, address(0), tokenId);
                _afterTokenTransfers(prevOwnership.addr, address(0), tokenId, 1);
                // Overflow not possible, as _burnCounter cannot be exceed _currentIndex times.
                unchecked {
                    _burnCounter++;
                }
            }
            /**
             * @dev Approve `to` to operate on `tokenId`
             *
             * Emits a {Approval} event.
             */
            function _approve(
                address to,
                uint256 tokenId,
                address owner
            ) private {
                _tokenApprovals[tokenId] = to;
                emit Approval(owner, to, tokenId);
            }
            /**
             * @dev Internal function to invoke {IERC721Receiver-onERC721Received} on a target contract.
             *
             * @param from address representing the previous owner of the given token ID
             * @param to target address that will receive the tokens
             * @param tokenId uint256 ID of the token to be transferred
             * @param _data bytes optional data to send along with the call
             * @return bool whether the call correctly returned the expected magic value
             */
            function _checkContractOnERC721Received(
                address from,
                address to,
                uint256 tokenId,
                bytes memory _data
            ) private returns (bool) {
                try IERC721Receiver(to).onERC721Received(_msgSender(), from, tokenId, _data) returns (bytes4 retval) {
                    return retval == IERC721Receiver(to).onERC721Received.selector;
                } catch (bytes memory reason) {
                    if (reason.length == 0) {
                        revert TransferToNonERC721ReceiverImplementer();
                    } else {
                        assembly {
                            revert(add(32, reason), mload(reason))
                        }
                    }
                }
            }
            /**
             * @dev Hook that is called before a set of serially-ordered token ids are about to be transferred. This includes minting.
             * And also called before burning one token.
             *
             * startTokenId - the first token id to be transferred
             * quantity - the amount to be transferred
             *
             * Calling conditions:
             *
             * - When `from` and `to` are both non-zero, `from`'s `tokenId` will be
             * transferred to `to`.
             * - When `from` is zero, `tokenId` will be minted for `to`.
             * - When `to` is zero, `tokenId` will be burned by `from`.
             * - `from` and `to` are never both zero.
             */
            function _beforeTokenTransfers(
                address from,
                address to,
                uint256 startTokenId,
                uint256 quantity
            ) internal virtual {}
            /**
             * @dev Hook that is called after a set of serially-ordered token ids have been transferred. This includes
             * minting.
             * And also called after one token has been burned.
             *
             * startTokenId - the first token id to be transferred
             * quantity - the amount to be transferred
             *
             * Calling conditions:
             *
             * - When `from` and `to` are both non-zero, `from`'s `tokenId` has been
             * transferred to `to`.
             * - When `from` is zero, `tokenId` has been minted for `to`.
             * - When `to` is zero, `tokenId` has been burned by `from`.
             * - `from` and `to` are never both zero.
             */
            function _afterTokenTransfers(
                address from,
                address to,
                uint256 startTokenId,
                uint256 quantity
            ) internal virtual {}
        }
        // SPDX-License-Identifier: MIT
        pragma solidity 0.8.11;
        /// @title Controllable
        abstract contract Controllable {
          /// @notice address => is controller.
          mapping(address => bool) private _isController;
          /// @notice Require the caller to be a controller.
          modifier onlyController() {
            require(_isController[msg.sender], "Controllable: Caller is not a controller");
            _;
          }
          /// @notice Check if `addr` is a controller.
          function isController(address addr) public view returns (bool) {
            return _isController[addr];
          }
          /// @notice Set the `addr` controller status to `status`.
          function _setController(address addr, bool status) internal {
            _isController[addr] = status;
          }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
        pragma solidity ^0.8.0;
        /**
         * @dev Provides information about the current execution context, including the
         * sender of the transaction and its data. While these are generally available
         * via msg.sender and msg.data, they should not be accessed in such a direct
         * manner, since when dealing with meta-transactions the account sending and
         * paying for execution may not be the actual sender (as far as an application
         * is concerned).
         *
         * This contract is only required for intermediate, library-like contracts.
         */
        abstract contract Context {
            function _msgSender() internal view virtual returns (address) {
                return msg.sender;
            }
            function _msgData() internal view virtual returns (bytes calldata) {
                return msg.data;
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)
        pragma solidity ^0.8.0;
        /**
         * @dev Interface of the ERC165 standard, as defined in the
         * https://eips.ethereum.org/EIPS/eip-165[EIP].
         *
         * Implementers can declare support of contract interfaces, which can then be
         * queried by others ({ERC165Checker}).
         *
         * For an implementation, see {ERC165}.
         */
        interface IERC165 {
            /**
             * @dev Returns true if this contract implements the interface defined by
             * `interfaceId`. See the corresponding
             * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
             * to learn more about how these ids are created.
             *
             * This function call must use less than 30 000 gas.
             */
            function supportsInterface(bytes4 interfaceId) external view returns (bool);
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts v4.4.1 (token/ERC721/IERC721Receiver.sol)
        pragma solidity ^0.8.0;
        /**
         * @title ERC721 token receiver interface
         * @dev Interface for any contract that wants to support safeTransfers
         * from ERC721 asset contracts.
         */
        interface IERC721Receiver {
            /**
             * @dev Whenever an {IERC721} `tokenId` token is transferred to this contract via {IERC721-safeTransferFrom}
             * by `operator` from `from`, this function is called.
             *
             * It must return its Solidity selector to confirm the token transfer.
             * If any other value is returned or the interface is not implemented by the recipient, the transfer will be reverted.
             *
             * The selector can be obtained in Solidity with `IERC721.onERC721Received.selector`.
             */
            function onERC721Received(
                address operator,
                address from,
                uint256 tokenId,
                bytes calldata data
            ) external returns (bytes4);
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts v4.4.1 (token/ERC721/extensions/IERC721Metadata.sol)
        pragma solidity ^0.8.0;
        import "../IERC721.sol";
        /**
         * @title ERC-721 Non-Fungible Token Standard, optional metadata extension
         * @dev See https://eips.ethereum.org/EIPS/eip-721
         */
        interface IERC721Metadata is IERC721 {
            /**
             * @dev Returns the token collection name.
             */
            function name() external view returns (string memory);
            /**
             * @dev Returns the token collection symbol.
             */
            function symbol() external view returns (string memory);
            /**
             * @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token.
             */
            function tokenURI(uint256 tokenId) external view returns (string memory);
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.5.0) (token/ERC721/extensions/IERC721Enumerable.sol)
        pragma solidity ^0.8.0;
        import "../IERC721.sol";
        /**
         * @title ERC-721 Non-Fungible Token Standard, optional enumeration extension
         * @dev See https://eips.ethereum.org/EIPS/eip-721
         */
        interface IERC721Enumerable is IERC721 {
            /**
             * @dev Returns the total amount of tokens stored by the contract.
             */
            function totalSupply() external view returns (uint256);
            /**
             * @dev Returns a token ID owned by `owner` at a given `index` of its token list.
             * Use along with {balanceOf} to enumerate all of ``owner``'s tokens.
             */
            function tokenOfOwnerByIndex(address owner, uint256 index) external view returns (uint256);
            /**
             * @dev Returns a token ID at a given `index` of all the tokens stored by the contract.
             * Use along with {totalSupply} to enumerate all tokens.
             */
            function tokenByIndex(uint256 index) external view returns (uint256);
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.5.0) (utils/Address.sol)
        pragma solidity ^0.8.1;
        /**
         * @dev Collection of functions related to the address type
         */
        library Address {
            /**
             * @dev Returns true if `account` is a contract.
             *
             * [IMPORTANT]
             * ====
             * It is unsafe to assume that an address for which this function returns
             * false is an externally-owned account (EOA) and not a contract.
             *
             * Among others, `isContract` will return false for the following
             * types of addresses:
             *
             *  - an externally-owned account
             *  - a contract in construction
             *  - an address where a contract will be created
             *  - an address where a contract lived, but was destroyed
             * ====
             *
             * [IMPORTANT]
             * ====
             * You shouldn't rely on `isContract` to protect against flash loan attacks!
             *
             * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
             * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
             * constructor.
             * ====
             */
            function isContract(address account) internal view returns (bool) {
                // This method relies on extcodesize/address.code.length, which returns 0
                // for contracts in construction, since the code is only stored at the end
                // of the constructor execution.
                return account.code.length > 0;
            }
            /**
             * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
             * `recipient`, forwarding all available gas and reverting on errors.
             *
             * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
             * of certain opcodes, possibly making contracts go over the 2300 gas limit
             * imposed by `transfer`, making them unable to receive funds via
             * `transfer`. {sendValue} removes this limitation.
             *
             * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
             *
             * IMPORTANT: because control is transferred to `recipient`, care must be
             * taken to not create reentrancy vulnerabilities. Consider using
             * {ReentrancyGuard} or the
             * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
             */
            function sendValue(address payable recipient, uint256 amount) internal {
                require(address(this).balance >= amount, "Address: insufficient balance");
                (bool success, ) = recipient.call{value: amount}("");
                require(success, "Address: unable to send value, recipient may have reverted");
            }
            /**
             * @dev Performs a Solidity function call using a low level `call`. A
             * plain `call` is an unsafe replacement for a function call: use this
             * function instead.
             *
             * If `target` reverts with a revert reason, it is bubbled up by this
             * function (like regular Solidity function calls).
             *
             * Returns the raw returned data. To convert to the expected return value,
             * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
             *
             * Requirements:
             *
             * - `target` must be a contract.
             * - calling `target` with `data` must not revert.
             *
             * _Available since v3.1._
             */
            function functionCall(address target, bytes memory data) internal returns (bytes memory) {
                return functionCall(target, data, "Address: low-level call failed");
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
             * `errorMessage` as a fallback revert reason when `target` reverts.
             *
             * _Available since v3.1._
             */
            function functionCall(
                address target,
                bytes memory data,
                string memory errorMessage
            ) internal returns (bytes memory) {
                return functionCallWithValue(target, data, 0, errorMessage);
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
             * but also transferring `value` wei to `target`.
             *
             * Requirements:
             *
             * - the calling contract must have an ETH balance of at least `value`.
             * - the called Solidity function must be `payable`.
             *
             * _Available since v3.1._
             */
            function functionCallWithValue(
                address target,
                bytes memory data,
                uint256 value
            ) internal returns (bytes memory) {
                return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
            }
            /**
             * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
             * with `errorMessage` as a fallback revert reason when `target` reverts.
             *
             * _Available since v3.1._
             */
            function functionCallWithValue(
                address target,
                bytes memory data,
                uint256 value,
                string memory errorMessage
            ) internal returns (bytes memory) {
                require(address(this).balance >= value, "Address: insufficient balance for call");
                require(isContract(target), "Address: call to non-contract");
                (bool success, bytes memory returndata) = target.call{value: value}(data);
                return verifyCallResult(success, returndata, errorMessage);
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
             * but performing a static call.
             *
             * _Available since v3.3._
             */
            function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
                return functionStaticCall(target, data, "Address: low-level static call failed");
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
             * but performing a static call.
             *
             * _Available since v3.3._
             */
            function functionStaticCall(
                address target,
                bytes memory data,
                string memory errorMessage
            ) internal view returns (bytes memory) {
                require(isContract(target), "Address: static call to non-contract");
                (bool success, bytes memory returndata) = target.staticcall(data);
                return verifyCallResult(success, returndata, errorMessage);
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
             * but performing a delegate call.
             *
             * _Available since v3.4._
             */
            function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
                return functionDelegateCall(target, data, "Address: low-level delegate call failed");
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
             * but performing a delegate call.
             *
             * _Available since v3.4._
             */
            function functionDelegateCall(
                address target,
                bytes memory data,
                string memory errorMessage
            ) internal returns (bytes memory) {
                require(isContract(target), "Address: delegate call to non-contract");
                (bool success, bytes memory returndata) = target.delegatecall(data);
                return verifyCallResult(success, returndata, errorMessage);
            }
            /**
             * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the
             * revert reason using the provided one.
             *
             * _Available since v4.3._
             */
            function verifyCallResult(
                bool success,
                bytes memory returndata,
                string memory errorMessage
            ) internal pure returns (bytes memory) {
                if (success) {
                    return returndata;
                } else {
                    // Look for revert reason and bubble it up if present
                    if (returndata.length > 0) {
                        // The easiest way to bubble the revert reason is using memory via assembly
                        assembly {
                            let returndata_size := mload(returndata)
                            revert(add(32, returndata), returndata_size)
                        }
                    } else {
                        revert(errorMessage);
                    }
                }
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts v4.4.1 (utils/Strings.sol)
        pragma solidity ^0.8.0;
        /**
         * @dev String operations.
         */
        library Strings {
            bytes16 private constant _HEX_SYMBOLS = "0123456789abcdef";
            /**
             * @dev Converts a `uint256` to its ASCII `string` decimal representation.
             */
            function toString(uint256 value) internal pure returns (string memory) {
                // Inspired by OraclizeAPI's implementation - MIT licence
                // https://github.com/oraclize/ethereum-api/blob/b42146b063c7d6ee1358846c198246239e9360e8/oraclizeAPI_0.4.25.sol
                if (value == 0) {
                    return "0";
                }
                uint256 temp = value;
                uint256 digits;
                while (temp != 0) {
                    digits++;
                    temp /= 10;
                }
                bytes memory buffer = new bytes(digits);
                while (value != 0) {
                    digits -= 1;
                    buffer[digits] = bytes1(uint8(48 + uint256(value % 10)));
                    value /= 10;
                }
                return string(buffer);
            }
            /**
             * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
             */
            function toHexString(uint256 value) internal pure returns (string memory) {
                if (value == 0) {
                    return "0x00";
                }
                uint256 temp = value;
                uint256 length = 0;
                while (temp != 0) {
                    length++;
                    temp >>= 8;
                }
                return toHexString(value, length);
            }
            /**
             * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
             */
            function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
                bytes memory buffer = new bytes(2 * length + 2);
                buffer[0] = "0";
                buffer[1] = "x";
                for (uint256 i = 2 * length + 1; i > 1; --i) {
                    buffer[i] = _HEX_SYMBOLS[value & 0xf];
                    value >>= 4;
                }
                require(value == 0, "Strings: hex length insufficient");
                return string(buffer);
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts v4.4.1 (utils/introspection/ERC165.sol)
        pragma solidity ^0.8.0;
        import "./IERC165.sol";
        /**
         * @dev Implementation of the {IERC165} interface.
         *
         * Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check
         * for the additional interface id that will be supported. For example:
         *
         * ```solidity
         * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
         *     return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
         * }
         * ```
         *
         * Alternatively, {ERC165Storage} provides an easier to use but more expensive implementation.
         */
        abstract contract ERC165 is IERC165 {
            /**
             * @dev See {IERC165-supportsInterface}.
             */
            function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
                return interfaceId == type(IERC165).interfaceId;
            }
        }
        

        File 3 of 4: Seaport
        // SPDX-License-Identifier: MIT
        pragma solidity 0.8.17;
        import { Consideration } from "./lib/Consideration.sol";
        /**
         * @title Seaport
         * @custom:version 1.5
         * @author 0age (0age.eth)
         * @custom:coauthor d1ll0n (d1ll0n.eth)
         * @custom:coauthor transmissions11 (t11s.eth)
         * @custom:coauthor James Wenzel (emo.eth)
         * @custom:contributor Kartik (slokh.eth)
         * @custom:contributor LeFevre (lefevre.eth)
         * @custom:contributor Joseph Schiarizzi (CupOJoseph.eth)
         * @custom:contributor Aspyn Palatnick (stuckinaboot.eth)
         * @custom:contributor Stephan Min (stephanm.eth)
         * @custom:contributor Ryan Ghods (ralxz.eth)
         * @custom:contributor Daniel Viau (snotrocket.eth)
         * @custom:contributor hack3r-0m (hack3r-0m.eth)
         * @custom:contributor Diego Estevez (antidiego.eth)
         * @custom:contributor Chomtana (chomtana.eth)
         * @custom:contributor Saw-mon and Natalie (sawmonandnatalie.eth)
         * @custom:contributor 0xBeans (0xBeans.eth)
         * @custom:contributor 0x4non (punkdev.eth)
         * @custom:contributor Laurence E. Day (norsefire.eth)
         * @custom:contributor vectorized.eth (vectorized.eth)
         * @custom:contributor karmacoma (karmacoma.eth)
         * @custom:contributor horsefacts (horsefacts.eth)
         * @custom:contributor UncarvedBlock (uncarvedblock.eth)
         * @custom:contributor Zoraiz Mahmood (zorz.eth)
         * @custom:contributor William Poulin (wpoulin.eth)
         * @custom:contributor Rajiv Patel-O'Connor (rajivpoc.eth)
         * @custom:contributor tserg (tserg.eth)
         * @custom:contributor cygaar (cygaar.eth)
         * @custom:contributor Meta0xNull (meta0xnull.eth)
         * @custom:contributor gpersoon (gpersoon.eth)
         * @custom:contributor Matt Solomon (msolomon.eth)
         * @custom:contributor Weikang Song (weikangs.eth)
         * @custom:contributor zer0dot (zer0dot.eth)
         * @custom:contributor Mudit Gupta (mudit.eth)
         * @custom:contributor leonardoalt (leoalt.eth)
         * @custom:contributor cmichel (cmichel.eth)
         * @custom:contributor PraneshASP (pranesh.eth)
         * @custom:contributor JasperAlexander (jasperalexander.eth)
         * @custom:contributor Ellahi (ellahi.eth)
         * @custom:contributor zaz (1zaz1.eth)
         * @custom:contributor berndartmueller (berndartmueller.eth)
         * @custom:contributor dmfxyz (dmfxyz.eth)
         * @custom:contributor daltoncoder (dontkillrobots.eth)
         * @custom:contributor 0xf4ce (0xf4ce.eth)
         * @custom:contributor phaze (phaze.eth)
         * @custom:contributor hrkrshnn (hrkrshnn.eth)
         * @custom:contributor axic (axic.eth)
         * @custom:contributor leastwood (leastwood.eth)
         * @custom:contributor 0xsanson (sanson.eth)
         * @custom:contributor blockdev (blockd3v.eth)
         * @custom:contributor fiveoutofnine (fiveoutofnine.eth)
         * @custom:contributor shuklaayush (shuklaayush.eth)
         * @custom:contributor dravee (dravee.eth)
         * @custom:contributor 0xPatissier
         * @custom:contributor pcaversaccio
         * @custom:contributor David Eiber
         * @custom:contributor csanuragjain
         * @custom:contributor sach1r0
         * @custom:contributor twojoy0
         * @custom:contributor ori_dabush
         * @custom:contributor Daniel Gelfand
         * @custom:contributor okkothejawa
         * @custom:contributor FlameHorizon
         * @custom:contributor vdrg
         * @custom:contributor dmitriia
         * @custom:contributor bokeh-eth
         * @custom:contributor asutorufos
         * @custom:contributor rfart(rfa)
         * @custom:contributor Riley Holterhus
         * @custom:contributor big-tech-sux
         * @notice Seaport is a generalized native token/ERC20/ERC721/ERC1155
         *         marketplace with lightweight methods for common routes as well as
         *         more flexible methods for composing advanced orders or groups of
         *         orders. Each order contains an arbitrary number of items that may be
         *         spent (the "offer") along with an arbitrary number of items that must
         *         be received back by the indicated recipients (the "consideration").
         */
        contract Seaport is Consideration {
            /**
             * @notice Derive and set hashes, reference chainId, and associated domain
             *         separator during deployment.
             *
             * @param conduitController A contract that deploys conduits, or proxies
             *                          that may optionally be used to transfer approved
             *                          ERC20/721/1155 tokens.
             */
            constructor(address conduitController) Consideration(conduitController) {}
            /**
             * @dev Internal pure function to retrieve and return the name of this
             *      contract.
             *
             * @return The name of this contract.
             */
            function _name() internal pure override returns (string memory) {
                // Return the name of the contract.
                assembly {
                    mstore(0x20, 0x20)
                    mstore(0x47, 0x07536561706f7274)
                    return(0x20, 0x60)
                }
            }
            /**
             * @dev Internal pure function to retrieve the name of this contract as a
             *      string that will be used to derive the name hash in the constructor.
             *
             * @return The name of this contract as a string.
             */
            function _nameString() internal pure override returns (string memory) {
                // Return the name of the contract.
                return "Seaport";
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity 0.8.17;
        import {
            ConsiderationInterface
        } from "../interfaces/ConsiderationInterface.sol";
        import {
            AdvancedOrder,
            BasicOrderParameters,
            CriteriaResolver,
            Execution,
            Fulfillment,
            FulfillmentComponent,
            Order,
            OrderComponents
        } from "./ConsiderationStructs.sol";
        import { OrderCombiner } from "./OrderCombiner.sol";
        import {
            CalldataStart,
            CalldataPointer
        } from "../helpers/PointerLibraries.sol";
        import {
            Offset_fulfillAdvancedOrder_criteriaResolvers,
            Offset_fulfillAvailableAdvancedOrders_cnsdrationFlflmnts,
            Offset_fulfillAvailableAdvancedOrders_criteriaResolvers,
            Offset_fulfillAvailableAdvancedOrders_offerFulfillments,
            Offset_fulfillAvailableOrders_considerationFulfillments,
            Offset_fulfillAvailableOrders_offerFulfillments,
            Offset_matchAdvancedOrders_criteriaResolvers,
            Offset_matchAdvancedOrders_fulfillments,
            Offset_matchOrders_fulfillments,
            OrderParameters_counter_offset
        } from "./ConsiderationConstants.sol";
        /**
         * @title Consideration
         * @author 0age (0age.eth)
         * @custom:coauthor d1ll0n (d1ll0n.eth)
         * @custom:coauthor transmissions11 (t11s.eth)
         * @custom:coauthor James Wenzel (emo.eth)
         * @custom:version 1.5
         * @notice Consideration is a generalized native token/ERC20/ERC721/ERC1155
         *         marketplace that provides lightweight methods for common routes as
         *         well as more flexible methods for composing advanced orders or groups
         *         of orders. Each order contains an arbitrary number of items that may
         *         be spent (the "offer") along with an arbitrary number of items that
         *         must be received back by the indicated recipients (the
         *         "consideration").
         */
        contract Consideration is ConsiderationInterface, OrderCombiner {
            /**
             * @notice Derive and set hashes, reference chainId, and associated domain
             *         separator during deployment.
             *
             * @param conduitController A contract that deploys conduits, or proxies
             *                          that may optionally be used to transfer approved
             *                          ERC20/721/1155 tokens.
             */
            constructor(address conduitController) OrderCombiner(conduitController) {}
            /**
             * @notice Accept native token transfers during execution that may then be
             *         used to facilitate native token transfers, where any tokens that
             *         remain will be transferred to the caller. Native tokens are only
             *         acceptable mid-fulfillment (and not during basic fulfillment).
             */
            receive() external payable {
                // Ensure the reentrancy guard is currently set to accept native tokens.
                _assertAcceptingNativeTokens();
            }
            /**
             * @notice Fulfill an order offering an ERC20, ERC721, or ERC1155 item by
             *         supplying Ether (or other native tokens), ERC20 tokens, an ERC721
             *         item, or an ERC1155 item as consideration. Six permutations are
             *         supported: Native token to ERC721, Native token to ERC1155, ERC20
             *         to ERC721, ERC20 to ERC1155, ERC721 to ERC20, and ERC1155 to
             *         ERC20 (with native tokens supplied as msg.value). For an order to
             *         be eligible for fulfillment via this method, it must contain a
             *         single offer item (though that item may have a greater amount if
             *         the item is not an ERC721). An arbitrary number of "additional
             *         recipients" may also be supplied which will each receive native
             *         tokens or ERC20 items from the fulfiller as consideration. Refer
             *         to the documentation for a more comprehensive summary of how to
             *         utilize this method and what orders are compatible with it.
             *
             * @param parameters Additional information on the fulfilled order. Note
             *                   that the offerer and the fulfiller must first approve
             *                   this contract (or their chosen conduit if indicated)
             *                   before any tokens can be transferred. Also note that
             *                   contract recipients of ERC1155 consideration items must
             *                   implement `onERC1155Received` to receive those items.
             *
             * @return fulfilled A boolean indicating whether the order has been
             *                   successfully fulfilled.
             */
            function fulfillBasicOrder(
                BasicOrderParameters calldata parameters
            ) external payable override returns (bool fulfilled) {
                // Validate and fulfill the basic order.
                fulfilled = _validateAndFulfillBasicOrder(parameters);
            }
            /**
             * @notice Fulfill an order offering an ERC20, ERC721, or ERC1155 item by
             *         supplying Ether (or other native tokens), ERC20 tokens, an ERC721
             *         item, or an ERC1155 item as consideration. Six permutations are
             *         supported: Native token to ERC721, Native token to ERC1155, ERC20
             *         to ERC721, ERC20 to ERC1155, ERC721 to ERC20, and ERC1155 to
             *         ERC20 (with native tokens supplied as msg.value). For an order to
             *         be eligible for fulfillment via this method, it must contain a
             *         single offer item (though that item may have a greater amount if
             *         the item is not an ERC721). An arbitrary number of "additional
             *         recipients" may also be supplied which will each receive native
             *         tokens or ERC20 items from the fulfiller as consideration. Refer
             *         to the documentation for a more comprehensive summary of how to
             *         utilize this method and what orders are compatible with it. Note
             *         that this function costs less gas than `fulfillBasicOrder` due to
             *         the zero bytes in the function selector (0x00000000) which also
             *         results in earlier function dispatch.
             *
             * @param parameters Additional information on the fulfilled order. Note
             *                   that the offerer and the fulfiller must first approve
             *                   this contract (or their chosen conduit if indicated)
             *                   before any tokens can be transferred. Also note that
             *                   contract recipients of ERC1155 consideration items must
             *                   implement `onERC1155Received` to receive those items.
             *
             * @return fulfilled A boolean indicating whether the order has been
             *                   successfully fulfilled.
             */
            function fulfillBasicOrder_efficient_6GL6yc(
                BasicOrderParameters calldata parameters
            ) external payable override returns (bool fulfilled) {
                // Validate and fulfill the basic order.
                fulfilled = _validateAndFulfillBasicOrder(parameters);
            }
            /**
             * @notice Fulfill an order with an arbitrary number of items for offer and
             *         consideration. Note that this function does not support
             *         criteria-based orders or partial filling of orders (though
             *         filling the remainder of a partially-filled order is supported).
             *
             * @custom:param order        The order to fulfill. Note that both the
             *                            offerer and the fulfiller must first approve
             *                            this contract (or the corresponding conduit if
             *                            indicated) to transfer any relevant tokens on
             *                            their behalf and that contracts must implement
             *                            `onERC1155Received` to receive ERC1155 tokens
             *                            as consideration.
             * @param fulfillerConduitKey A bytes32 value indicating what conduit, if
             *                            any, to source the fulfiller's token approvals
             *                            from. The zero hash signifies that no conduit
             *                            should be used (and direct approvals set on
             *                            this contract).
             *
             * @return fulfilled A boolean indicating whether the order has been
             *                   successfully fulfilled.
             */
            function fulfillOrder(
                /**
                 * @custom:name order
                 */
                Order calldata,
                bytes32 fulfillerConduitKey
            ) external payable override returns (bool fulfilled) {
                // Convert order to "advanced" order, then validate and fulfill it.
                fulfilled = _validateAndFulfillAdvancedOrder(
                    _toAdvancedOrderReturnType(_decodeOrderAsAdvancedOrder)(
                        CalldataStart.pptr()
                    ),
                    new CriteriaResolver[](0), // No criteria resolvers supplied.
                    fulfillerConduitKey,
                    msg.sender
                );
            }
            /**
             * @notice Fill an order, fully or partially, with an arbitrary number of
             *         items for offer and consideration alongside criteria resolvers
             *         containing specific token identifiers and associated proofs.
             *
             * @custom:param advancedOrder     The order to fulfill along with the
             *                                 fraction of the order to attempt to fill.
             *                                 Note that both the offerer and the
             *                                 fulfiller must first approve this
             *                                 contract (or their conduit if indicated
             *                                 by the order) to transfer any relevant
             *                                 tokens on their behalf and that contracts
             *                                 must implement `onERC1155Received` to
             *                                 receive ERC1155 tokens as consideration.
             *                                 Also note that all offer and
             *                                 consideration components must have no
             *                                 remainder after multiplication of the
             *                                 respective amount with the supplied
             *                                 fraction for the partial fill to be
             *                                 considered valid.
             * @custom:param criteriaResolvers An array where each element contains a
             *                                 reference to a specific offer or
             *                                 consideration, a token identifier, and a
             *                                 proof that the supplied token identifier
             *                                 is contained in the merkle root held by
             *                                 the item in question's criteria element.
             *                                 Note that an empty criteria indicates
             *                                 that any (transferable) token identifier
             *                                 on the token in question is valid and
             *                                 that no associated proof needs to be
             *                                 supplied.
             * @param fulfillerConduitKey      A bytes32 value indicating what conduit,
             *                                 if any, to source the fulfiller's token
             *                                 approvals from. The zero hash signifies
             *                                 that no conduit should be used (and
             *                                 direct approvals set on this contract).
             * @param recipient                The intended recipient for all received
             *                                 items, with `address(0)` indicating that
             *                                 the caller should receive the items.
             *
             * @return fulfilled A boolean indicating whether the order has been
             *                   successfully fulfilled.
             */
            function fulfillAdvancedOrder(
                /**
                 * @custom:name advancedOrder
                 */
                AdvancedOrder calldata,
                /**
                 * @custom:name criteriaResolvers
                 */
                CriteriaResolver[] calldata,
                bytes32 fulfillerConduitKey,
                address recipient
            ) external payable override returns (bool fulfilled) {
                // Validate and fulfill the order.
                fulfilled = _validateAndFulfillAdvancedOrder(
                    _toAdvancedOrderReturnType(_decodeAdvancedOrder)(
                        CalldataStart.pptr()
                    ),
                    _toCriteriaResolversReturnType(_decodeCriteriaResolvers)(
                        CalldataStart.pptr(
                            Offset_fulfillAdvancedOrder_criteriaResolvers
                        )
                    ),
                    fulfillerConduitKey,
                    _substituteCallerForEmptyRecipient(recipient)
                );
            }
            /**
             * @notice Attempt to fill a group of orders, each with an arbitrary number
             *         of items for offer and consideration. Any order that is not
             *         currently active, has already been fully filled, or has been
             *         cancelled will be omitted. Remaining offer and consideration
             *         items will then be aggregated where possible as indicated by the
             *         supplied offer and consideration component arrays and aggregated
             *         items will be transferred to the fulfiller or to each intended
             *         recipient, respectively. Note that a failing item transfer or an
             *         issue with order formatting will cause the entire batch to fail.
             *         Note that this function does not support criteria-based orders or
             *         partial filling of orders (though filling the remainder of a
             *         partially-filled order is supported).
             *
             * @custom:param orders                    The orders to fulfill. Note that
             *                                         both the offerer and the
             *                                         fulfiller must first approve this
             *                                         contract (or the corresponding
             *                                         conduit if indicated) to transfer
             *                                         any relevant tokens on their
             *                                         behalf and that contracts must
             *                                         implement `onERC1155Received` to
             *                                         receive ERC1155 tokens as
             *                                         consideration.
             * @custom:param offerFulfillments         An array of FulfillmentComponent
             *                                         arrays indicating which offer
             *                                         items to attempt to aggregate
             *                                         when preparing executions. Note
             *                                         that any offer items not included
             *                                         as part of a fulfillment will be
             *                                         sent unaggregated to the caller.
             * @custom:param considerationFulfillments An array of FulfillmentComponent
             *                                         arrays indicating which
             *                                         consideration items to attempt to
             *                                         aggregate when preparing
             *                                         executions.
             * @param fulfillerConduitKey              A bytes32 value indicating what
             *                                         conduit, if any, to source the
             *                                         fulfiller's token approvals from.
             *                                         The zero hash signifies that no
             *                                         conduit should be used (and
             *                                         direct approvals set on this
             *                                         contract).
             * @param maximumFulfilled                 The maximum number of orders to
             *                                         fulfill.
             *
             * @return availableOrders An array of booleans indicating if each order
             *                         with an index corresponding to the index of the
             *                         returned boolean was fulfillable or not.
             * @return executions      An array of elements indicating the sequence of
             *                         transfers performed as part of matching the given
             *                         orders.
             */
            function fulfillAvailableOrders(
                /**
                 * @custom:name orders
                 */
                Order[] calldata,
                /**
                 * @custom:name offerFulfillments
                 */
                FulfillmentComponent[][] calldata,
                /**
                 * @custom:name considerationFulfillments
                 */
                FulfillmentComponent[][] calldata,
                bytes32 fulfillerConduitKey,
                uint256 maximumFulfilled
            )
                external
                payable
                override
                returns (
                    bool[] memory /* availableOrders */,
                    Execution[] memory /* executions */
                )
            {
                // Convert orders to "advanced" orders and fulfill all available orders.
                return
                    _fulfillAvailableAdvancedOrders(
                        _toAdvancedOrdersReturnType(_decodeOrdersAsAdvancedOrders)(
                            CalldataStart.pptr()
                        ), // Convert to advanced orders.
                        new CriteriaResolver[](0), // No criteria resolvers supplied.
                        _toNestedFulfillmentComponentsReturnType(
                            _decodeNestedFulfillmentComponents
                        )(
                            CalldataStart.pptr(
                                Offset_fulfillAvailableOrders_offerFulfillments
                            )
                        ),
                        _toNestedFulfillmentComponentsReturnType(
                            _decodeNestedFulfillmentComponents
                        )(
                            CalldataStart.pptr(
                                Offset_fulfillAvailableOrders_considerationFulfillments
                            )
                        ),
                        fulfillerConduitKey,
                        msg.sender,
                        maximumFulfilled
                    );
            }
            /**
             * @notice Attempt to fill a group of orders, fully or partially, with an
             *         arbitrary number of items for offer and consideration per order
             *         alongside criteria resolvers containing specific token
             *         identifiers and associated proofs. Any order that is not
             *         currently active, has already been fully filled, or has been
             *         cancelled will be omitted. Remaining offer and consideration
             *         items will then be aggregated where possible as indicated by the
             *         supplied offer and consideration component arrays and aggregated
             *         items will be transferred to the fulfiller or to each intended
             *         recipient, respectively. Note that a failing item transfer or an
             *         issue with order formatting will cause the entire batch to fail.
             *
             * @custom:param advancedOrders            The orders to fulfill along with
             *                                         the fraction of those orders to
             *                                         attempt to fill. Note that both
             *                                         the offerer and the fulfiller
             *                                         must first approve this contract
             *                                         (or their conduit if indicated by
             *                                         the order) to transfer any
             *                                         relevant tokens on their behalf
             *                                         and that contracts must implement
             *                                         `onERC1155Received` to receive
             *                                         ERC1155 tokens as consideration.
             *                                         Also note that all offer and
             *                                         consideration components must
             *                                         have no remainder after
             *                                         multiplication of the respective
             *                                         amount with the supplied fraction
             *                                         for an order's partial fill
             *                                         amount to be considered valid.
             * @custom:param criteriaResolvers         An array where each element
             *                                         contains a reference to a
             *                                         specific offer or consideration,
             *                                         a token identifier, and a proof
             *                                         that the supplied token
             *                                         identifier is contained in the
             *                                         merkle root held by the item in
             *                                         question's criteria element. Note
             *                                         that an empty criteria indicates
             *                                         that any (transferable) token
             *                                         identifier on the token in
             *                                         question is valid and that no
             *                                         associated proof needs to be
             *                                         supplied.
             * @custom:param offerFulfillments         An array of FulfillmentComponent
             *                                         arrays indicating which offer
             *                                         items to attempt to aggregate
             *                                         when preparing executions. Note
             *                                         that any offer items not included
             *                                         as part of a fulfillment will be
             *                                         sent unaggregated to the caller.
             * @custom:param considerationFulfillments An array of FulfillmentComponent
             *                                         arrays indicating which
             *                                         consideration items to attempt to
             *                                         aggregate when preparing
             *                                         executions.
             * @param fulfillerConduitKey              A bytes32 value indicating what
             *                                         conduit, if any, to source the
             *                                         fulfiller's token approvals from.
             *                                         The zero hash signifies that no
             *                                         conduit should be used (and
             *                                         direct approvals set on this
             *                                         contract).
             * @param recipient                        The intended recipient for all
             *                                         received items, with `address(0)`
             *                                         indicating that the caller should
             *                                         receive the offer items.
             * @param maximumFulfilled                 The maximum number of orders to
             *                                         fulfill.
             *
             * @return availableOrders An array of booleans indicating if each order
             *                         with an index corresponding to the index of the
             *                         returned boolean was fulfillable or not.
             * @return executions      An array of elements indicating the sequence of
             *                         transfers performed as part of matching the given
             *                         orders.
             */
            function fulfillAvailableAdvancedOrders(
                /**
                 * @custom:name advancedOrders
                 */
                AdvancedOrder[] calldata,
                /**
                 * @custom:name criteriaResolvers
                 */
                CriteriaResolver[] calldata,
                /**
                 * @custom:name offerFulfillments
                 */
                FulfillmentComponent[][] calldata,
                /**
                 * @custom:name considerationFulfillments
                 */
                FulfillmentComponent[][] calldata,
                bytes32 fulfillerConduitKey,
                address recipient,
                uint256 maximumFulfilled
            )
                external
                payable
                override
                returns (
                    bool[] memory /* availableOrders */,
                    Execution[] memory /* executions */
                )
            {
                // Fulfill all available orders.
                return
                    _fulfillAvailableAdvancedOrders(
                        _toAdvancedOrdersReturnType(_decodeAdvancedOrders)(
                            CalldataStart.pptr()
                        ),
                        _toCriteriaResolversReturnType(_decodeCriteriaResolvers)(
                            CalldataStart.pptr(
                                Offset_fulfillAvailableAdvancedOrders_criteriaResolvers
                            )
                        ),
                        _toNestedFulfillmentComponentsReturnType(
                            _decodeNestedFulfillmentComponents
                        )(
                            CalldataStart.pptr(
                                Offset_fulfillAvailableAdvancedOrders_offerFulfillments
                            )
                        ),
                        _toNestedFulfillmentComponentsReturnType(
                            _decodeNestedFulfillmentComponents
                        )(
                            CalldataStart.pptr(
                                Offset_fulfillAvailableAdvancedOrders_cnsdrationFlflmnts
                            )
                        ),
                        fulfillerConduitKey,
                        _substituteCallerForEmptyRecipient(recipient),
                        maximumFulfilled
                    );
            }
            /**
             * @notice Match an arbitrary number of orders, each with an arbitrary
             *         number of items for offer and consideration along with a set of
             *         fulfillments allocating offer components to consideration
             *         components. Note that this function does not support
             *         criteria-based or partial filling of orders (though filling the
             *         remainder of a partially-filled order is supported). Any unspent
             *         offer item amounts or native tokens will be transferred to the
             *         caller.
             *
             * @custom:param orders       The orders to match. Note that both the
             *                            offerer and fulfiller on each order must first
             *                            approve this contract (or their conduit if
             *                            indicated by the order) to transfer any
             *                            relevant tokens on their behalf and each
             *                            consideration recipient must implement
             *                            `onERC1155Received` to receive ERC1155 tokens.
             * @custom:param fulfillments An array of elements allocating offer
             *                            components to consideration components. Note
             *                            that each consideration component must be
             *                            fully met for the match operation to be valid,
             *                            and that any unspent offer items will be sent
             *                            unaggregated to the caller.
             *
             * @return executions An array of elements indicating the sequence of
             *                    transfers performed as part of matching the given
             *                    orders. Note that unspent offer item amounts or native
             *                    tokens will not be reflected as part of this array.
             */
            function matchOrders(
                /**
                 * @custom:name orders
                 */
                Order[] calldata,
                /**
                 * @custom:name fulfillments
                 */
                Fulfillment[] calldata
            ) external payable override returns (Execution[] memory /* executions */) {
                // Convert to advanced, validate, and match orders using fulfillments.
                return
                    _matchAdvancedOrders(
                        _toAdvancedOrdersReturnType(_decodeOrdersAsAdvancedOrders)(
                            CalldataStart.pptr()
                        ),
                        new CriteriaResolver[](0), // No criteria resolvers supplied.
                        _toFulfillmentsReturnType(_decodeFulfillments)(
                            CalldataStart.pptr(Offset_matchOrders_fulfillments)
                        ),
                        msg.sender
                    );
            }
            /**
             * @notice Match an arbitrary number of full, partial, or contract orders,
             *         each with an arbitrary number of items for offer and
             *         consideration, supplying criteria resolvers containing specific
             *         token identifiers and associated proofs as well as fulfillments
             *         allocating offer components to consideration components. Any
             *         unspent offer item amounts will be transferred to the designated
             *         recipient (with the null address signifying to use the caller)
             *         and any unspent native tokens will be returned to the caller.
             *
             * @custom:param advancedOrders    The advanced orders to match. Note that
             *                                 both the offerer and fulfiller on each
             *                                 order must first approve this contract
             *                                 (or their conduit if indicated by the
             *                                 order) to transfer any relevant tokens on
             *                                 their behalf and each consideration
             *                                 recipient must implement
             *                                 `onERC1155Received` to receive ERC1155
             *                                 tokens. Also note that the offer and
             *                                 consideration components for each order
             *                                 must have no remainder after multiplying
             *                                 the respective amount with the supplied
             *                                 fraction for the group of partial fills
             *                                 to be considered valid.
             * @custom:param criteriaResolvers An array where each element contains a
             *                                 reference to a specific offer or
             *                                 consideration, a token identifier, and a
             *                                 proof that the supplied token identifier
             *                                 is contained in the merkle root held by
             *                                 the item in question's criteria element.
             *                                 Note that an empty criteria indicates
             *                                 that any (transferable) token identifier
             *                                 on the token in question is valid and
             *                                 that no associated proof needs to be
             *                                 supplied.
             * @custom:param fulfillments      An array of elements allocating offer
             *                                 components to consideration components.
             *                                 Note that each consideration component
             *                                 must be fully met for the match operation
             *                                 to be valid, and that any unspent offer
             *                                 items will be sent unaggregated to the
             *                                 designated recipient.
             * @param recipient                The intended recipient for all unspent
             *                                 offer item amounts, or the caller if the
             *                                 null address is supplied.
             *
             * @return executions An array of elements indicating the sequence of
             *                     transfers performed as part of matching the given
             *                     orders. Note that unspent offer item amounts or
             *                     native tokens will not be reflected as part of this
             *                     array.
             */
            function matchAdvancedOrders(
                /**
                 * @custom:name advancedOrders
                 */
                AdvancedOrder[] calldata,
                /**
                 * @custom:name criteriaResolvers
                 */
                CriteriaResolver[] calldata,
                /**
                 * @custom:name fulfillments
                 */
                Fulfillment[] calldata,
                address recipient
            ) external payable override returns (Execution[] memory /* executions */) {
                // Validate and match the advanced orders using supplied fulfillments.
                return
                    _matchAdvancedOrders(
                        _toAdvancedOrdersReturnType(_decodeAdvancedOrders)(
                            CalldataStart.pptr()
                        ),
                        _toCriteriaResolversReturnType(_decodeCriteriaResolvers)(
                            CalldataStart.pptr(
                                Offset_matchAdvancedOrders_criteriaResolvers
                            )
                        ),
                        _toFulfillmentsReturnType(_decodeFulfillments)(
                            CalldataStart.pptr(Offset_matchAdvancedOrders_fulfillments)
                        ),
                        _substituteCallerForEmptyRecipient(recipient)
                    );
            }
            /**
             * @notice Cancel an arbitrary number of orders. Note that only the offerer
             *         or the zone of a given order may cancel it. Callers should ensure
             *         that the intended order was cancelled by calling `getOrderStatus`
             *         and confirming that `isCancelled` returns `true`.
             *
             * @param orders The orders to cancel.
             *
             * @return cancelled A boolean indicating whether the supplied orders have
             *                   been successfully cancelled.
             */
            function cancel(
                OrderComponents[] calldata orders
            ) external override returns (bool cancelled) {
                // Cancel the orders.
                cancelled = _cancel(orders);
            }
            /**
             * @notice Validate an arbitrary number of orders, thereby registering their
             *         signatures as valid and allowing the fulfiller to skip signature
             *         verification on fulfillment. Note that validated orders may still
             *         be unfulfillable due to invalid item amounts or other factors;
             *         callers should determine whether validated orders are fulfillable
             *         by simulating the fulfillment call prior to execution. Also note
             *         that anyone can validate a signed order, but only the offerer can
             *         validate an order without supplying a signature.
             *
             * @custom:param orders The orders to validate.
             *
             * @return validated A boolean indicating whether the supplied orders have
             *                   been successfully validated.
             */
            function validate(
                /**
                 * @custom:name orders
                 */
                Order[] calldata
            ) external override returns (bool /* validated */) {
                return
                    _validate(_toOrdersReturnType(_decodeOrders)(CalldataStart.pptr()));
            }
            /**
             * @notice Cancel all orders from a given offerer with a given zone in bulk
             *         by incrementing a counter. Note that only the offerer may
             *         increment the counter.
             *
             * @return newCounter The new counter.
             */
            function incrementCounter() external override returns (uint256 newCounter) {
                // Increment current counter for the supplied offerer.  Note that the
                // counter is incremented by a large, quasi-random interval.
                newCounter = _incrementCounter();
            }
            /**
             * @notice Retrieve the order hash for a given order.
             *
             * @custom:param order The components of the order.
             *
             * @return orderHash The order hash.
             */
            function getOrderHash(
                /**
                 * @custom:name order
                 */
                OrderComponents calldata
            ) external view override returns (bytes32 orderHash) {
                CalldataPointer orderPointer = CalldataStart.pptr();
                // Derive order hash by supplying order parameters along with counter.
                orderHash = _deriveOrderHash(
                    _toOrderParametersReturnType(
                        _decodeOrderComponentsAsOrderParameters
                    )(orderPointer),
                    // Read order counter
                    orderPointer.offset(OrderParameters_counter_offset).readUint256()
                );
            }
            /**
             * @notice Retrieve the status of a given order by hash, including whether
             *         the order has been cancelled or validated and the fraction of the
             *         order that has been filled. Since the _orderStatus[orderHash]
             *         does not get set for contract orders, getOrderStatus will always
             *         return (false, false, 0, 0) for those hashes. Note that this
             *         function is susceptible to view reentrancy and so should be used
             *         with care when calling from other contracts.
             *
             * @param orderHash The order hash in question.
             *
             * @return isValidated A boolean indicating whether the order in question
             *                     has been validated (i.e. previously approved or
             *                     partially filled).
             * @return isCancelled A boolean indicating whether the order in question
             *                     has been cancelled.
             * @return totalFilled The total portion of the order that has been filled
             *                     (i.e. the "numerator").
             * @return totalSize   The total size of the order that is either filled or
             *                     unfilled (i.e. the "denominator").
             */
            function getOrderStatus(
                bytes32 orderHash
            )
                external
                view
                override
                returns (
                    bool isValidated,
                    bool isCancelled,
                    uint256 totalFilled,
                    uint256 totalSize
                )
            {
                // Retrieve the order status using the order hash.
                return _getOrderStatus(orderHash);
            }
            /**
             * @notice Retrieve the current counter for a given offerer.
             *
             * @param offerer The offerer in question.
             *
             * @return counter The current counter.
             */
            function getCounter(
                address offerer
            ) external view override returns (uint256 counter) {
                // Return the counter for the supplied offerer.
                counter = _getCounter(offerer);
            }
            /**
             * @notice Retrieve configuration information for this contract.
             *
             * @return version           The contract version.
             * @return domainSeparator   The domain separator for this contract.
             * @return conduitController The conduit Controller set for this contract.
             */
            function information()
                external
                view
                override
                returns (
                    string memory version,
                    bytes32 domainSeparator,
                    address conduitController
                )
            {
                // Return the information for this contract.
                return _information();
            }
            /**
             * @dev Gets the contract offerer nonce for the specified contract offerer.
             *      Note that this function is susceptible to view reentrancy and so
             *      should be used with care when calling from other contracts.
             *
             * @param contractOfferer The contract offerer for which to get the nonce.
             *
             * @return nonce The contract offerer nonce.
             */
            function getContractOffererNonce(
                address contractOfferer
            ) external view override returns (uint256 nonce) {
                nonce = _contractNonces[contractOfferer];
            }
            /**
             * @notice Retrieve the name of this contract.
             *
             * @return contractName The name of this contract.
             */
            function name()
                external
                pure
                override
                returns (string memory /* contractName */)
            {
                // Return the name of the contract.
                return _name();
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity 0.8.17;
        import { Side, ItemType, OrderType } from "./ConsiderationEnums.sol";
        import {
            AdvancedOrder,
            ConsiderationItem,
            CriteriaResolver,
            Execution,
            Fulfillment,
            FulfillmentComponent,
            OfferItem,
            OrderParameters,
            ReceivedItem
        } from "./ConsiderationStructs.sol";
        import { OrderFulfiller } from "./OrderFulfiller.sol";
        import { FulfillmentApplier } from "./FulfillmentApplier.sol";
        import {
            _revertConsiderationNotMet,
            _revertInsufficientNativeTokensSupplied,
            _revertInvalidNativeOfferItem,
            _revertNoSpecifiedOrdersAvailable
        } from "./ConsiderationErrors.sol";
        import {
            AccumulatorDisarmed,
            ConsiderationItem_recipient_offset,
            Execution_offerer_offset,
            NonMatchSelector_InvalidErrorValue,
            NonMatchSelector_MagicMask,
            OneWord,
            OneWordShift,
            OrdersMatchedTopic0,
            ReceivedItem_amount_offset,
            ReceivedItem_recipient_offset,
            TwoWords
        } from "./ConsiderationConstants.sol";
        /**
         * @title OrderCombiner
         * @author 0age
         * @notice OrderCombiner contains logic for fulfilling combinations of orders,
         *         either by matching offer items to consideration items or by
         *         fulfilling orders where available.
         */
        contract OrderCombiner is OrderFulfiller, FulfillmentApplier {
            /**
             * @dev Derive and set hashes, reference chainId, and associated domain
             *      separator during deployment.
             *
             * @param conduitController A contract that deploys conduits, or proxies
             *                          that may optionally be used to transfer approved
             *                          ERC20/721/1155 tokens.
             */
            constructor(address conduitController) OrderFulfiller(conduitController) {}
            /**
             * @notice Internal function to attempt to fill a group of orders, fully or
             *         partially, with an arbitrary number of items for offer and
             *         consideration per order alongside criteria resolvers containing
             *         specific token identifiers and associated proofs. Any order that
             *         is not currently active, has already been fully filled, or has
             *         been cancelled will be omitted. Remaining offer and consideration
             *         items will then be aggregated where possible as indicated by the
             *         supplied offer and consideration component arrays and aggregated
             *         items will be transferred to the fulfiller or to each intended
             *         recipient, respectively. Note that a failing item transfer or an
             *         issue with order formatting will cause the entire batch to fail.
             *
             * @param advancedOrders            The orders to fulfill along with the
             *                                  fraction of those orders to attempt to
             *                                  fill. Note that both the offerer and the
             *                                  fulfiller must first approve this
             *                                  contract (or a conduit if indicated by
             *                                  the order) to transfer any relevant
             *                                  tokens on their behalf and that
             *                                  contracts must implement
             *                                  `onERC1155Received` in order to receive
             *                                  ERC1155 tokens as consideration. Also
             *                                  note that all offer and consideration
             *                                  components must have no remainder after
             *                                  multiplication of the respective amount
             *                                  with the supplied fraction for an
             *                                  order's partial fill amount to be
             *                                  considered valid.
             * @param criteriaResolvers         An array where each element contains a
             *                                  reference to a specific offer or
             *                                  consideration, a token identifier, and a
             *                                  proof that the supplied token identifier
             *                                  is contained in the merkle root held by
             *                                  the item in question's criteria element.
             *                                  Note that an empty criteria indicates
             *                                  that any (transferable) token
             *                                  identifier on the token in question is
             *                                  valid and that no associated proof needs
             *                                  to be supplied.
             * @param offerFulfillments         An array of FulfillmentComponent arrays
             *                                  indicating which offer items to attempt
             *                                  to aggregate when preparing executions.
             * @param considerationFulfillments An array of FulfillmentComponent arrays
             *                                  indicating which consideration items to
             *                                  attempt to aggregate when preparing
             *                                  executions.
             * @param fulfillerConduitKey       A bytes32 value indicating what conduit,
             *                                  if any, to source the fulfiller's token
             *                                  approvals from. The zero hash signifies
             *                                  that no conduit should be used (and
             *                                  direct approvals set on Consideration).
             * @param recipient                 The intended recipient for all received
             *                                  items.
             * @param maximumFulfilled          The maximum number of orders to fulfill.
             *
             * @return availableOrders An array of booleans indicating if each order
             *                         with an index corresponding to the index of the
             *                         returned boolean was fulfillable or not.
             * @return executions      An array of elements indicating the sequence of
             *                         transfers performed as part of matching the given
             *                         orders.
             */
            function _fulfillAvailableAdvancedOrders(
                AdvancedOrder[] memory advancedOrders,
                CriteriaResolver[] memory criteriaResolvers,
                FulfillmentComponent[][] memory offerFulfillments,
                FulfillmentComponent[][] memory considerationFulfillments,
                bytes32 fulfillerConduitKey,
                address recipient,
                uint256 maximumFulfilled
            )
                internal
                returns (
                    bool[] memory /* availableOrders */,
                    Execution[] memory /* executions */
                )
            {
                // Validate orders, apply amounts, & determine if they use conduits.
                (
                    bytes32[] memory orderHashes,
                    bool containsNonOpen
                ) = _validateOrdersAndPrepareToFulfill(
                        advancedOrders,
                        criteriaResolvers,
                        false, // Signifies that invalid orders should NOT revert.
                        maximumFulfilled,
                        recipient
                    );
                // Aggregate used offer and consideration items and execute transfers.
                return
                    _executeAvailableFulfillments(
                        advancedOrders,
                        offerFulfillments,
                        considerationFulfillments,
                        fulfillerConduitKey,
                        recipient,
                        orderHashes,
                        containsNonOpen
                    );
            }
            /**
             * @dev Internal function to validate a group of orders, update their
             *      statuses, reduce amounts by their previously filled fractions, apply
             *      criteria resolvers, and emit OrderFulfilled events. Note that this
             *      function needs to be called before
             *      _aggregateValidFulfillmentConsiderationItems to set the memory
             *      layout that _aggregateValidFulfillmentConsiderationItems depends on.
             *
             * @param advancedOrders    The advanced orders to validate and reduce by
             *                          their previously filled amounts.
             * @param criteriaResolvers An array where each element contains a reference
             *                          to a specific order as well as that order's
             *                          offer or consideration, a token identifier, and
             *                          a proof that the supplied token identifier is
             *                          contained in the order's merkle root. Note that
             *                          a root of zero indicates that any transferable
             *                          token identifier is valid and that no proof
             *                          needs to be supplied.
             * @param revertOnInvalid   A boolean indicating whether to revert on any
             *                          order being invalid; setting this to false will
             *                          instead cause the invalid order to be skipped.
             * @param maximumFulfilled  The maximum number of orders to fulfill.
             * @param recipient         The intended recipient for all items that do not
             *                          already have a designated recipient and are not
             *                          already used as part of a provided fulfillment.
             *
             * @return orderHashes     The hashes of the orders being fulfilled.
             * @return containsNonOpen A boolean indicating whether any restricted or
             *                         contract orders are present within the provided
             *                         array of advanced orders.
             */
            function _validateOrdersAndPrepareToFulfill(
                AdvancedOrder[] memory advancedOrders,
                CriteriaResolver[] memory criteriaResolvers,
                bool revertOnInvalid,
                uint256 maximumFulfilled,
                address recipient
            ) internal returns (bytes32[] memory orderHashes, bool containsNonOpen) {
                // Ensure this function cannot be triggered during a reentrant call.
                _setReentrancyGuard(true); // Native tokens accepted during execution.
                // Declare an error buffer indicating status of any native offer items.
                // Native tokens may only be provided as part of contract orders or when
                // fulfilling via matchOrders or matchAdvancedOrders; if bits indicating
                // these conditions are not met have been set, throw.
                uint256 invalidNativeOfferItemErrorBuffer;
                // Use assembly to set the value for the second bit of the error buffer.
                assembly {
                    /**
                     * Use the 231st bit of the error buffer to indicate whether the
                     * current function is not matchAdvancedOrders or matchOrders.
                     *
                     * sig                                func
                     * -----------------------------------------------------------------
                     * 1010100000010111010001000 0 000100 matchOrders
                     * 1111001011010001001010110 0 010010 matchAdvancedOrders
                     * 1110110110011000101001010 1 110100 fulfillAvailableOrders
                     * 1000011100100000000110110 1 000001 fulfillAvailableAdvancedOrders
                     *                           ^ 7th bit
                     */
                    invalidNativeOfferItemErrorBuffer := and(
                        NonMatchSelector_MagicMask,
                        calldataload(0)
                    )
                }
                // Declare variables for later use.
                AdvancedOrder memory advancedOrder;
                uint256 terminalMemoryOffset;
                unchecked {
                    // Read length of orders array and place on the stack.
                    uint256 totalOrders = advancedOrders.length;
                    // Track the order hash for each order being fulfilled.
                    orderHashes = new bytes32[](totalOrders);
                    // Determine the memory offset to terminate on during loops.
                    terminalMemoryOffset = (totalOrders + 1) << OneWordShift;
                }
                // Skip overflow checks as all for loops are indexed starting at zero.
                unchecked {
                    // Declare inner variables.
                    OfferItem[] memory offer;
                    ConsiderationItem[] memory consideration;
                    // Iterate over each order.
                    for (uint256 i = OneWord; i < terminalMemoryOffset; i += OneWord) {
                        // Retrieve order using assembly to bypass out-of-range check.
                        assembly {
                            advancedOrder := mload(add(advancedOrders, i))
                        }
                        // Determine if max number orders have already been fulfilled.
                        if (maximumFulfilled == 0) {
                            // Mark fill fraction as zero as the order will not be used.
                            advancedOrder.numerator = 0;
                            // Continue iterating through the remaining orders.
                            continue;
                        }
                        // Validate it, update status, and determine fraction to fill.
                        (
                            bytes32 orderHash,
                            uint256 numerator,
                            uint256 denominator
                        ) = _validateOrderAndUpdateStatus(
                                advancedOrder,
                                revertOnInvalid
                            );
                        // Do not track hash or adjust prices if order is not fulfilled.
                        if (numerator == 0) {
                            // Mark fill fraction as zero if the order is not fulfilled.
                            advancedOrder.numerator = 0;
                            // Continue iterating through the remaining orders.
                            continue;
                        }
                        // Otherwise, track the order hash in question.
                        assembly {
                            mstore(add(orderHashes, i), orderHash)
                        }
                        // Decrement the number of fulfilled orders.
                        // Skip underflow check as the condition before
                        // implies that maximumFulfilled > 0.
                        --maximumFulfilled;
                        // Place the start time for the order on the stack.
                        uint256 startTime = advancedOrder.parameters.startTime;
                        // Place the end time for the order on the stack.
                        uint256 endTime = advancedOrder.parameters.endTime;
                        // Retrieve array of offer items for the order in question.
                        offer = advancedOrder.parameters.offer;
                        // Read length of offer array and place on the stack.
                        uint256 totalOfferItems = offer.length;
                        {
                            // Determine the order type, used to check for eligibility
                            // for native token offer items as well as for the presence
                            // of restricted and contract orders (or non-open orders).
                            OrderType orderType = advancedOrder.parameters.orderType;
                            // Utilize assembly to efficiently check for order types.
                            // Note that these checks expect that there are no order
                            // types beyond the current set (0-4) and will need to be
                            // modified if more order types are added.
                            assembly {
                                // Declare a variable indicating if the order is not a
                                // contract order. Cache in scratch space to avoid stack
                                // depth errors.
                                let isNonContract := lt(orderType, 4)
                                mstore(0, isNonContract)
                                // Update the variable indicating if the order is not an
                                // open order, remaining set if it has been set already.
                                containsNonOpen := or(containsNonOpen, gt(orderType, 1))
                            }
                        }
                        // Iterate over each offer item on the order.
                        for (uint256 j = 0; j < totalOfferItems; ++j) {
                            // Retrieve the offer item.
                            OfferItem memory offerItem = offer[j];
                            // If the offer item is for the native token and the order
                            // type is not a contract order type, set the first bit of
                            // the error buffer to true.
                            assembly {
                                invalidNativeOfferItemErrorBuffer := or(
                                    invalidNativeOfferItemErrorBuffer,
                                    lt(mload(offerItem), mload(0))
                                )
                            }
                            // Apply order fill fraction to offer item end amount.
                            uint256 endAmount = _getFraction(
                                numerator,
                                denominator,
                                offerItem.endAmount
                            );
                            // Reuse same fraction if start and end amounts are equal.
                            if (offerItem.startAmount == offerItem.endAmount) {
                                // Apply derived amount to both start and end amount.
                                offerItem.startAmount = endAmount;
                            } else {
                                // Apply order fill fraction to offer item start amount.
                                offerItem.startAmount = _getFraction(
                                    numerator,
                                    denominator,
                                    offerItem.startAmount
                                );
                            }
                            // Adjust offer amount using current time; round down.
                            uint256 currentAmount = _locateCurrentAmount(
                                offerItem.startAmount,
                                endAmount,
                                startTime,
                                endTime,
                                false // round down
                            );
                            // Update amounts in memory to match the current amount.
                            // Note that the end amount is used to track spent amounts.
                            offerItem.startAmount = currentAmount;
                            offerItem.endAmount = currentAmount;
                        }
                        // Retrieve array of consideration items for order in question.
                        consideration = (advancedOrder.parameters.consideration);
                        // Read length of consideration array and place on the stack.
                        uint256 totalConsiderationItems = consideration.length;
                        // Iterate over each consideration item on the order.
                        for (uint256 j = 0; j < totalConsiderationItems; ++j) {
                            // Retrieve the consideration item.
                            ConsiderationItem memory considerationItem = (
                                consideration[j]
                            );
                            // Apply fraction to consideration item end amount.
                            uint256 endAmount = _getFraction(
                                numerator,
                                denominator,
                                considerationItem.endAmount
                            );
                            // Reuse same fraction if start and end amounts are equal.
                            if (
                                considerationItem.startAmount ==
                                considerationItem.endAmount
                            ) {
                                // Apply derived amount to both start and end amount.
                                considerationItem.startAmount = endAmount;
                            } else {
                                // Apply fraction to consideration item start amount.
                                considerationItem.startAmount = _getFraction(
                                    numerator,
                                    denominator,
                                    considerationItem.startAmount
                                );
                            }
                            // Adjust consideration amount using current time; round up.
                            uint256 currentAmount = (
                                _locateCurrentAmount(
                                    considerationItem.startAmount,
                                    endAmount,
                                    startTime,
                                    endTime,
                                    true // round up
                                )
                            );
                            considerationItem.startAmount = currentAmount;
                            // Utilize assembly to manually "shift" the recipient value,
                            // then to copy the start amount to the recipient.
                            // Note that this sets up the memory layout that is
                            // subsequently relied upon by
                            // _aggregateValidFulfillmentConsiderationItems.
                            assembly {
                                // Derive the pointer to the recipient using the item
                                // pointer along with the offset to the recipient.
                                let considerationItemRecipientPtr := add(
                                    considerationItem,
                                    ConsiderationItem_recipient_offset // recipient
                                )
                                // Write recipient to endAmount, as endAmount is not
                                // used from this point on and can be repurposed to fit
                                // the layout of a ReceivedItem.
                                mstore(
                                    add(
                                        considerationItem,
                                        ReceivedItem_recipient_offset // old endAmount
                                    ),
                                    mload(considerationItemRecipientPtr)
                                )
                                // Write startAmount to recipient, as recipient is not
                                // used from this point on and can be repurposed to
                                // track received amounts.
                                mstore(considerationItemRecipientPtr, currentAmount)
                            }
                        }
                    }
                }
                // If the first bit is set, a native offer item was encountered on an
                // order that is not a contract order. If the 231st bit is set in the
                // error buffer, the current function is not matchOrders or
                // matchAdvancedOrders. If the value is 1 + (1 << 230), then both the
                // 1st and 231st bits were set; in that case, revert with an error.
                if (
                    invalidNativeOfferItemErrorBuffer ==
                    NonMatchSelector_InvalidErrorValue
                ) {
                    _revertInvalidNativeOfferItem();
                }
                // Apply criteria resolvers to each order as applicable.
                _applyCriteriaResolvers(advancedOrders, criteriaResolvers);
                // Emit an event for each order signifying that it has been fulfilled.
                // Skip overflow checks as all for loops are indexed starting at zero.
                unchecked {
                    bytes32 orderHash;
                    // Iterate over each order.
                    for (uint256 i = OneWord; i < terminalMemoryOffset; i += OneWord) {
                        assembly {
                            orderHash := mload(add(orderHashes, i))
                        }
                        // Do not emit an event if no order hash is present.
                        if (orderHash == bytes32(0)) {
                            continue;
                        }
                        // Retrieve order using assembly to bypass out-of-range check.
                        assembly {
                            advancedOrder := mload(add(advancedOrders, i))
                        }
                        // Retrieve parameters for the order in question.
                        OrderParameters memory orderParameters = (
                            advancedOrder.parameters
                        );
                        // Emit an OrderFulfilled event.
                        _emitOrderFulfilledEvent(
                            orderHash,
                            orderParameters.offerer,
                            orderParameters.zone,
                            recipient,
                            orderParameters.offer,
                            orderParameters.consideration
                        );
                    }
                }
            }
            /**
             * @dev Internal function to fulfill a group of validated orders, fully or
             *      partially, with an arbitrary number of items for offer and
             *      consideration per order and to execute transfers. Any order that is
             *      not currently active, has already been fully filled, or has been
             *      cancelled will be omitted. Remaining offer and consideration items
             *      will then be aggregated where possible as indicated by the supplied
             *      offer and consideration component arrays and aggregated items will
             *      be transferred to the fulfiller or to each intended recipient,
             *      respectively. Note that a failing item transfer or an issue with
             *      order formatting will cause the entire batch to fail.
             *
             * @param advancedOrders            The orders to fulfill along with the
             *                                  fraction of those orders to attempt to
             *                                  fill. Note that both the offerer and the
             *                                  fulfiller must first approve this
             *                                  contract (or the conduit if indicated by
             *                                  the order) to transfer any relevant
             *                                  tokens on their behalf and that
             *                                  contracts must implement
             *                                  `onERC1155Received` in order to receive
             *                                  ERC1155 tokens as consideration. Also
             *                                  note that all offer and consideration
             *                                  components must have no remainder after
             *                                  multiplication of the respective amount
             *                                  with the supplied fraction for an
             *                                  order's partial fill amount to be
             *                                  considered valid.
             * @param offerFulfillments         An array of FulfillmentComponent arrays
             *                                  indicating which offer items to attempt
             *                                  to aggregate when preparing executions.
             * @param considerationFulfillments An array of FulfillmentComponent arrays
             *                                  indicating which consideration items to
             *                                  attempt to aggregate when preparing
             *                                  executions.
             * @param fulfillerConduitKey       A bytes32 value indicating what conduit,
             *                                  if any, to source the fulfiller's token
             *                                  approvals from. The zero hash signifies
             *                                  that no conduit should be used, with
             *                                  direct approvals set on Consideration.
             * @param recipient                 The intended recipient for all items
             *                                  that do not already have a designated
             *                                  recipient and are not already used as
             *                                  part of a provided fulfillment.
             * @param orderHashes               An array of order hashes for each order.
             * @param containsNonOpen           A boolean indicating whether any
             *                                  restricted or contract orders are
             *                                  present within the provided array of
             *                                  advanced orders.
             *
             * @return availableOrders An array of booleans indicating if each order
             *                         with an index corresponding to the index of the
             *                         returned boolean was fulfillable or not.
             * @return executions      An array of elements indicating the sequence of
             *                         transfers performed as part of matching the given
             *                         orders.
             */
            function _executeAvailableFulfillments(
                AdvancedOrder[] memory advancedOrders,
                FulfillmentComponent[][] memory offerFulfillments,
                FulfillmentComponent[][] memory considerationFulfillments,
                bytes32 fulfillerConduitKey,
                address recipient,
                bytes32[] memory orderHashes,
                bool containsNonOpen
            )
                internal
                returns (bool[] memory availableOrders, Execution[] memory executions)
            {
                // Retrieve length of offer fulfillments array and place on the stack.
                uint256 totalOfferFulfillments = offerFulfillments.length;
                // Retrieve length of consideration fulfillments array & place on stack.
                uint256 totalConsiderationFulfillments = (
                    considerationFulfillments.length
                );
                // Allocate an execution for each offer and consideration fulfillment.
                executions = new Execution[](
                    totalOfferFulfillments + totalConsiderationFulfillments
                );
                // Skip overflow checks as all for loops are indexed starting at zero.
                unchecked {
                    // Track number of filtered executions.
                    uint256 totalFilteredExecutions = 0;
                    // Iterate over each offer fulfillment.
                    for (uint256 i = 0; i < totalOfferFulfillments; ) {
                        // Derive aggregated execution corresponding with fulfillment.
                        Execution memory execution = _aggregateAvailable(
                            advancedOrders,
                            Side.OFFER,
                            offerFulfillments[i],
                            fulfillerConduitKey,
                            recipient
                        );
                        // If the execution is filterable...
                        if (_isFilterableExecution(execution)) {
                            // Increment total filtered executions.
                            ++totalFilteredExecutions;
                        } else {
                            // Otherwise, assign the execution to the executions array.
                            executions[i - totalFilteredExecutions] = execution;
                        }
                        // Increment iterator.
                        ++i;
                    }
                    // Iterate over each consideration fulfillment.
                    for (uint256 i = 0; i < totalConsiderationFulfillments; ) {
                        // Derive aggregated execution corresponding with fulfillment.
                        Execution memory execution = _aggregateAvailable(
                            advancedOrders,
                            Side.CONSIDERATION,
                            considerationFulfillments[i],
                            fulfillerConduitKey,
                            address(0) // unused
                        );
                        // If the execution is filterable...
                        if (_isFilterableExecution(execution)) {
                            // Increment total filtered executions.
                            ++totalFilteredExecutions;
                        } else {
                            // Otherwise, assign the execution to the executions array.
                            executions[
                                i + totalOfferFulfillments - totalFilteredExecutions
                            ] = execution;
                        }
                        // Increment iterator.
                        ++i;
                    }
                    // If some number of executions have been filtered...
                    if (totalFilteredExecutions != 0) {
                        // reduce the total length of the executions array.
                        assembly {
                            mstore(
                                executions,
                                sub(mload(executions), totalFilteredExecutions)
                            )
                        }
                    }
                }
                // Revert if no orders are available.
                if (executions.length == 0) {
                    _revertNoSpecifiedOrdersAvailable();
                }
                // Perform final checks and return.
                availableOrders = _performFinalChecksAndExecuteOrders(
                    advancedOrders,
                    executions,
                    orderHashes,
                    recipient,
                    containsNonOpen
                );
                return (availableOrders, executions);
            }
            /**
             * @dev Internal function to perform a final check that each consideration
             *      item for an arbitrary number of fulfilled orders has been met and to
             *      trigger associated executions, transferring the respective items.
             *
             * @param advancedOrders  The orders to check and perform executions for.
             * @param executions      An array of elements indicating the sequence of
             *                        transfers to perform when fulfilling the given
             *                        orders.
             * @param orderHashes     An array of order hashes for each order.
             * @param recipient       The intended recipient for all items that do not
             *                        already have a designated recipient and are not
             *                        used as part of a provided fulfillment.
             * @param containsNonOpen A boolean indicating whether any restricted or
             *                        contract orders are present within the provided
             *                        array of advanced orders.
             *
             * @return availableOrders An array of booleans indicating if each order
             *                         with an index corresponding to the index of the
             *                         returned boolean was fulfillable or not.
             */
            function _performFinalChecksAndExecuteOrders(
                AdvancedOrder[] memory advancedOrders,
                Execution[] memory executions,
                bytes32[] memory orderHashes,
                address recipient,
                bool containsNonOpen
            ) internal returns (bool[] memory /* availableOrders */) {
                // Retrieve the length of the advanced orders array and place on stack.
                uint256 totalOrders = advancedOrders.length;
                // Initialize array for tracking available orders.
                bool[] memory availableOrders = new bool[](totalOrders);
                // Initialize an accumulator array. From this point forward, no new
                // memory regions can be safely allocated until the accumulator is no
                // longer being utilized, as the accumulator operates in an open-ended
                // fashion from this memory pointer; existing memory may still be
                // accessed and modified, however.
                bytes memory accumulator = new bytes(AccumulatorDisarmed);
                {
                    // Declare a variable for the available native token balance.
                    uint256 nativeTokenBalance;
                    // Retrieve the length of the executions array and place on stack.
                    uint256 totalExecutions = executions.length;
                    // Iterate over each execution.
                    for (uint256 i = 0; i < totalExecutions; ) {
                        // Retrieve the execution and the associated received item.
                        Execution memory execution = executions[i];
                        ReceivedItem memory item = execution.item;
                        // If execution transfers native tokens, reduce value available.
                        if (item.itemType == ItemType.NATIVE) {
                            // Get the current available balance of native tokens.
                            assembly {
                                nativeTokenBalance := selfbalance()
                            }
                            // Ensure that sufficient native tokens are still available.
                            if (item.amount > nativeTokenBalance) {
                                _revertInsufficientNativeTokensSupplied();
                            }
                        }
                        // Transfer the item specified by the execution.
                        _transfer(
                            item,
                            execution.offerer,
                            execution.conduitKey,
                            accumulator
                        );
                        // Skip overflow check as for loop is indexed starting at zero.
                        unchecked {
                            ++i;
                        }
                    }
                }
                // Skip overflow checks as all for loops are indexed starting at zero.
                unchecked {
                    // Iterate over each order.
                    for (uint256 i = 0; i < totalOrders; ++i) {
                        // Retrieve the order in question.
                        AdvancedOrder memory advancedOrder = advancedOrders[i];
                        // Skip the order in question if not being not fulfilled.
                        if (advancedOrder.numerator == 0) {
                            // Explicitly set availableOrders at the given index to
                            // guard against the possibility of dirtied memory.
                            availableOrders[i] = false;
                            continue;
                        }
                        // Mark the order as available.
                        availableOrders[i] = true;
                        // Retrieve the order parameters.
                        OrderParameters memory parameters = advancedOrder.parameters;
                        {
                            // Retrieve offer items.
                            OfferItem[] memory offer = parameters.offer;
                            // Read length of offer array & place on the stack.
                            uint256 totalOfferItems = offer.length;
                            // Iterate over each offer item to restore it.
                            for (uint256 j = 0; j < totalOfferItems; ++j) {
                                // Retrieve the offer item in question.
                                OfferItem memory offerItem = offer[j];
                                // Transfer to recipient if unspent amount is not zero.
                                // Note that the transfer will not be reflected in the
                                // executions array.
                                if (offerItem.startAmount != 0) {
                                    // Replace the endAmount parameter with the recipient to
                                    // make offerItem compatible with the ReceivedItem input
                                    // to _transfer and cache the original endAmount so it
                                    // can be restored after the transfer.
                                    uint256 originalEndAmount = _replaceEndAmountWithRecipient(
                                            offerItem,
                                            recipient
                                        );
                                    // Transfer excess offer item amount to recipient.
                                    _toOfferItemInput(_transfer)(
                                        offerItem,
                                        parameters.offerer,
                                        parameters.conduitKey,
                                        accumulator
                                    );
                                    // Restore the original endAmount in offerItem.
                                    assembly {
                                        mstore(
                                            add(
                                                offerItem,
                                                ReceivedItem_recipient_offset
                                            ),
                                            originalEndAmount
                                        )
                                    }
                                }
                                // Restore original amount on the offer item.
                                offerItem.startAmount = offerItem.endAmount;
                            }
                        }
                        {
                            // Read consideration items & ensure they are fulfilled.
                            ConsiderationItem[] memory consideration = (
                                parameters.consideration
                            );
                            // Read length of consideration array & place on stack.
                            uint256 totalConsiderationItems = consideration.length;
                            // Iterate over each consideration item.
                            for (uint256 j = 0; j < totalConsiderationItems; ++j) {
                                ConsiderationItem memory considerationItem = (
                                    consideration[j]
                                );
                                // Retrieve remaining amount on consideration item.
                                uint256 unmetAmount = considerationItem.startAmount;
                                // Revert if the remaining amount is not zero.
                                if (unmetAmount != 0) {
                                    _revertConsiderationNotMet(i, j, unmetAmount);
                                }
                                // Utilize assembly to restore the original value.
                                assembly {
                                    // Write recipient to startAmount.
                                    mstore(
                                        add(
                                            considerationItem,
                                            ReceivedItem_amount_offset
                                        ),
                                        mload(
                                            add(
                                                considerationItem,
                                                ConsiderationItem_recipient_offset
                                            )
                                        )
                                    )
                                }
                            }
                        }
                    }
                }
                // Trigger any accumulated transfers via call to the conduit.
                _triggerIfArmed(accumulator);
                // Determine whether any native token balance remains.
                uint256 remainingNativeTokenBalance;
                assembly {
                    remainingNativeTokenBalance := selfbalance()
                }
                // Return any remaining native token balance to the caller.
                if (remainingNativeTokenBalance != 0) {
                    _transferNativeTokens(
                        payable(msg.sender),
                        remainingNativeTokenBalance
                    );
                }
                // If any restricted or contract orders are present in the group of
                // orders being fulfilled, perform any validateOrder or ratifyOrder
                // calls after all executions and related transfers are complete.
                if (containsNonOpen) {
                    // Iterate over each order a second time.
                    for (uint256 i = 0; i < totalOrders; ) {
                        // Ensure the order in question is being fulfilled.
                        if (availableOrders[i]) {
                            // Check restricted orders and contract orders.
                            _assertRestrictedAdvancedOrderValidity(
                                advancedOrders[i],
                                orderHashes,
                                orderHashes[i]
                            );
                        }
                        // Skip overflow checks as for loop is indexed starting at zero.
                        unchecked {
                            ++i;
                        }
                    }
                }
                // Clear the reentrancy guard.
                _clearReentrancyGuard();
                // Return the array containing available orders.
                return availableOrders;
            }
            /**
             * @dev Internal function to emit an OrdersMatched event using the same
             *      memory region as the existing order hash array.
             *
             * @param orderHashes An array of order hashes to include as an argument for
             *                    the OrdersMatched event.
             */
            function _emitOrdersMatched(bytes32[] memory orderHashes) internal {
                assembly {
                    // Load the array length from memory.
                    let length := mload(orderHashes)
                    // Get the full size of the event data - one word for the offset,
                    // one for the array length and one per hash.
                    let dataSize := add(TwoWords, shl(OneWordShift, length))
                    // Get pointer to start of data, reusing word before array length
                    // for the offset.
                    let dataPointer := sub(orderHashes, OneWord)
                    // Cache the existing word in memory at the offset pointer.
                    let cache := mload(dataPointer)
                    // Write an offset of 32.
                    mstore(dataPointer, OneWord)
                    // Emit the OrdersMatched event.
                    log1(dataPointer, dataSize, OrdersMatchedTopic0)
                    // Restore the cached word.
                    mstore(dataPointer, cache)
                }
            }
            /**
             * @dev Internal function to match an arbitrary number of full or partial
             *      orders, each with an arbitrary number of items for offer and
             *      consideration, supplying criteria resolvers containing specific
             *      token identifiers and associated proofs as well as fulfillments
             *      allocating offer components to consideration components.
             *
             * @param advancedOrders    The advanced orders to match. Note that both the
             *                          offerer and fulfiller on each order must first
             *                          approve this contract (or their conduit if
             *                          indicated by the order) to transfer any relevant
             *                          tokens on their behalf and each consideration
             *                          recipient must implement `onERC1155Received` in
             *                          order to receive ERC1155 tokens. Also note that
             *                          the offer and consideration components for each
             *                          order must have no remainder after multiplying
             *                          the respective amount with the supplied fraction
             *                          in order for the group of partial fills to be
             *                          considered valid.
             * @param criteriaResolvers An array where each element contains a reference
             *                          to a specific order as well as that order's
             *                          offer or consideration, a token identifier, and
             *                          a proof that the supplied token identifier is
             *                          contained in the order's merkle root. Note that
             *                          an empty root indicates that any (transferable)
             *                          token identifier is valid and that no associated
             *                          proof needs to be supplied.
             * @param fulfillments      An array of elements allocating offer components
             *                          to consideration components. Note that each
             *                          consideration component must be fully met in
             *                          order for the match operation to be valid.
             * @param recipient         The intended recipient for all unspent offer
             *                          item amounts.
             *
             * @return executions An array of elements indicating the sequence of
             *                    transfers performed as part of matching the given
             *                    orders.
             */
            function _matchAdvancedOrders(
                AdvancedOrder[] memory advancedOrders,
                CriteriaResolver[] memory criteriaResolvers,
                Fulfillment[] memory fulfillments,
                address recipient
            ) internal returns (Execution[] memory /* executions */) {
                // Validate orders, update order status, and determine item amounts.
                (
                    bytes32[] memory orderHashes,
                    bool containsNonOpen
                ) = _validateOrdersAndPrepareToFulfill(
                        advancedOrders,
                        criteriaResolvers,
                        true, // Signifies that invalid orders should revert.
                        advancedOrders.length,
                        recipient
                    );
                // Emit OrdersMatched event, providing an array of matched order hashes.
                _emitOrdersMatched(orderHashes);
                // Fulfill the orders using the supplied fulfillments and recipient.
                return
                    _fulfillAdvancedOrders(
                        advancedOrders,
                        fulfillments,
                        orderHashes,
                        recipient,
                        containsNonOpen
                    );
            }
            /**
             * @dev Internal function to fulfill an arbitrary number of orders, either
             *      full or partial, after validating, adjusting amounts, and applying
             *      criteria resolvers.
             *
             * @param advancedOrders  The orders to match, including a fraction to
             *                        attempt to fill for each order.
             * @param fulfillments    An array of elements allocating offer components
             *                        to consideration components. Note that the final
             *                        amount of each consideration component must be
             *                        zero for a match operation to be considered valid.
             * @param orderHashes     An array of order hashes for each order.
             * @param recipient       The intended recipient for all items that do not
             *                        already have a designated recipient and are not
             *                        used as part of a provided fulfillment.
             * @param containsNonOpen A boolean indicating whether any restricted or
             *                        contract orders are present within the provided
             *                        array of advanced orders.
             *
             * @return executions An array of elements indicating the sequence of
             *                    transfers performed as part of matching the given
             *                    orders.
             */
            function _fulfillAdvancedOrders(
                AdvancedOrder[] memory advancedOrders,
                Fulfillment[] memory fulfillments,
                bytes32[] memory orderHashes,
                address recipient,
                bool containsNonOpen
            ) internal returns (Execution[] memory executions) {
                // Retrieve fulfillments array length and place on the stack.
                uint256 totalFulfillments = fulfillments.length;
                // Allocate executions by fulfillment and apply them to each execution.
                executions = new Execution[](totalFulfillments);
                // Skip overflow checks as all for loops are indexed starting at zero.
                unchecked {
                    // Track number of filtered executions.
                    uint256 totalFilteredExecutions = 0;
                    // Iterate over each fulfillment.
                    for (uint256 i = 0; i < totalFulfillments; ++i) {
                        /// Retrieve the fulfillment in question.
                        Fulfillment memory fulfillment = fulfillments[i];
                        // Derive the execution corresponding with the fulfillment.
                        Execution memory execution = _applyFulfillment(
                            advancedOrders,
                            fulfillment.offerComponents,
                            fulfillment.considerationComponents,
                            i
                        );
                        // If the execution is filterable...
                        if (_isFilterableExecution(execution)) {
                            // Increment total filtered executions.
                            ++totalFilteredExecutions;
                        } else {
                            // Otherwise, assign the execution to the executions array.
                            executions[i - totalFilteredExecutions] = execution;
                        }
                    }
                    // If some number of executions have been filtered...
                    if (totalFilteredExecutions != 0) {
                        // reduce the total length of the executions array.
                        assembly {
                            mstore(
                                executions,
                                sub(mload(executions), totalFilteredExecutions)
                            )
                        }
                    }
                }
                // Perform final checks and execute orders.
                _performFinalChecksAndExecuteOrders(
                    advancedOrders,
                    executions,
                    orderHashes,
                    recipient,
                    containsNonOpen
                );
                // Return the executions array.
                return executions;
            }
            /**
             * @dev Internal pure function to determine whether a given execution is
             *      filterable and may be removed from the executions array. The offerer
             *      and the recipient must be the same address and the item type cannot
             *      indicate a native token transfer.
             *
             * @param execution The execution to check for filterability.
             *
             * @return filterable A boolean indicating whether the execution in question
             *                    can be filtered from the executions array.
             */
            function _isFilterableExecution(
                Execution memory execution
            ) internal pure returns (bool filterable) {
                // Utilize assembly to efficiently determine if execution is filterable.
                assembly {
                    // Retrieve the received item referenced by the execution.
                    let item := mload(execution)
                    // Determine whether the execution is filterable.
                    filterable := and(
                        // Determine if offerer and recipient are the same address.
                        eq(
                            // Retrieve the recipient's address from the received item.
                            mload(add(item, ReceivedItem_recipient_offset)),
                            // Retrieve the offerer's address from the execution.
                            mload(add(execution, Execution_offerer_offset))
                        ),
                        // Determine if received item's item type is non-zero, thereby
                        // indicating that the execution does not involve native tokens.
                        iszero(iszero(mload(item)))
                    )
                }
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.13;
        /*
         * -------------------------- Disambiguation & Other Notes ---------------------
         *    - The term "head" is used as it is in the documentation for ABI encoding,
         *      but only in reference to dynamic types, i.e. it always refers to the
         *      offset or pointer to the body of a dynamic type. In calldata, the head
         *      is always an offset (relative to the parent object), while in memory,
         *      the head is always the pointer to the body. More information found here:
         *      https://docs.soliditylang.org/en/v0.8.17/abi-spec.html#argument-encoding
         *        - Note that the length of an array is separate from and precedes the
         *          head of the array.
         *
         *    - The term "body" is used in place of the term "head" used in the ABI
         *      documentation. It refers to the start of the data for a dynamic type,
         *      e.g. the first word of a struct or the first word of the first element
         *      in an array.
         *
         *    - The term "pointer" is used to describe the absolute position of a value
         *      and never an offset relative to another value.
         *        - The suffix "_ptr" refers to a memory pointer.
         *        - The suffix "_cdPtr" refers to a calldata pointer.
         *
         *    - The term "offset" is used to describe the position of a value relative
         *      to some parent value. For example, OrderParameters_conduit_offset is the
         *      offset to the "conduit" value in the OrderParameters struct relative to
         *      the start of the body.
         *        - Note: Offsets are used to derive pointers.
         *
         *    - Some structs have pointers defined for all of their fields in this file.
         *      Lines which are commented out are fields that are not used in the
         *      codebase but have been left in for readability.
         */
        // Declare constants for name, version, and reentrancy sentinel values.
        // Name is right padded, so it touches the length which is left padded. This
        // enables writing both values at once. Length goes at byte 95 in memory, and
        // name fills bytes 96-109, so both values can be written left-padded to 77.
        uint256 constant NameLengthPtr = 0x4D;
        uint256 constant NameWithLength = 0x0d436F6E73696465726174696F6E;
        uint256 constant information_version_offset = 0;
        uint256 constant information_version_cd_offset = 0x60;
        uint256 constant information_domainSeparator_offset = 0x20;
        uint256 constant information_conduitController_offset = 0x40;
        uint256 constant information_versionLengthPtr = 0x63;
        uint256 constant information_versionWithLength = 0x03312e35; // 1.5
        uint256 constant information_length = 0xa0;
        uint256 constant _NOT_ENTERED = 1;
        uint256 constant _ENTERED = 2;
        uint256 constant _ENTERED_AND_ACCEPTING_NATIVE_TOKENS = 3;
        uint256 constant Offset_fulfillAdvancedOrder_criteriaResolvers = 0x20;
        uint256 constant Offset_fulfillAvailableOrders_offerFulfillments = 0x20;
        uint256 constant Offset_fulfillAvailableOrders_considerationFulfillments = 0x40;
        uint256 constant Offset_fulfillAvailableAdvancedOrders_criteriaResolvers = 0x20;
        uint256 constant Offset_fulfillAvailableAdvancedOrders_offerFulfillments = 0x40;
        uint256 constant Offset_fulfillAvailableAdvancedOrders_cnsdrationFlflmnts = (
            0x60
        );
        uint256 constant Offset_matchOrders_fulfillments = 0x20;
        uint256 constant Offset_matchAdvancedOrders_criteriaResolvers = 0x20;
        uint256 constant Offset_matchAdvancedOrders_fulfillments = 0x40;
        // Common Offsets
        // Offsets for identically positioned fields shared by:
        // OfferItem, ConsiderationItem, SpentItem, ReceivedItem
        uint256 constant Selector_length = 0x4;
        uint256 constant Common_token_offset = 0x20;
        uint256 constant Common_identifier_offset = 0x40;
        uint256 constant Common_amount_offset = 0x60;
        uint256 constant Common_endAmount_offset = 0x80;
        uint256 constant SpentItem_size = 0x80;
        uint256 constant SpentItem_size_shift = 0x7;
        uint256 constant OfferItem_size = 0xa0;
        uint256 constant OfferItem_size_with_length = 0xc0;
        uint256 constant ReceivedItem_size_excluding_recipient = 0x80;
        uint256 constant ReceivedItem_size = 0xa0;
        uint256 constant ReceivedItem_amount_offset = 0x60;
        uint256 constant ReceivedItem_recipient_offset = 0x80;
        uint256 constant ReceivedItem_CommonParams_size = 0x60;
        uint256 constant ConsiderationItem_size = 0xc0;
        uint256 constant ConsiderationItem_size_with_length = 0xe0;
        uint256 constant ConsiderationItem_recipient_offset = 0xa0;
        // Store the same constant in an abbreviated format for a line length fix.
        uint256 constant ConsiderItem_recipient_offset = 0xa0;
        uint256 constant Execution_offerer_offset = 0x20;
        uint256 constant Execution_conduit_offset = 0x40;
        // uint256 constant OrderParameters_offerer_offset = 0x00;
        uint256 constant OrderParameters_zone_offset = 0x20;
        uint256 constant OrderParameters_offer_head_offset = 0x40;
        uint256 constant OrderParameters_consideration_head_offset = 0x60;
        // uint256 constant OrderParameters_orderType_offset = 0x80;
        uint256 constant OrderParameters_startTime_offset = 0xa0;
        uint256 constant OrderParameters_endTime_offset = 0xc0;
        uint256 constant OrderParameters_zoneHash_offset = 0xe0;
        // uint256 constant OrderParameters_salt_offset = 0x100;
        uint256 constant OrderParameters_conduit_offset = 0x120;
        uint256 constant OrderParameters_counter_offset = 0x140;
        uint256 constant Fulfillment_itemIndex_offset = 0x20;
        uint256 constant AdvancedOrder_head_size = 0xa0;
        uint256 constant AdvancedOrder_numerator_offset = 0x20;
        uint256 constant AdvancedOrder_denominator_offset = 0x40;
        uint256 constant AdvancedOrder_signature_offset = 0x60;
        uint256 constant AdvancedOrder_extraData_offset = 0x80;
        uint256 constant OrderStatus_ValidatedAndNotCancelled = 1;
        uint256 constant OrderStatus_filledNumerator_offset = 0x10;
        uint256 constant OrderStatus_filledDenominator_offset = 0x88;
        uint256 constant ThirtyOneBytes = 0x1f;
        uint256 constant OneWord = 0x20;
        uint256 constant TwoWords = 0x40;
        uint256 constant ThreeWords = 0x60;
        uint256 constant FourWords = 0x80;
        uint256 constant FiveWords = 0xa0;
        uint256 constant OneWordShift = 0x5;
        uint256 constant TwoWordsShift = 0x6;
        uint256 constant SixtyThreeBytes = 0x3f;
        uint256 constant OnlyFullWordMask = 0xffffffe0;
        uint256 constant FreeMemoryPointerSlot = 0x40;
        uint256 constant ZeroSlot = 0x60;
        uint256 constant DefaultFreeMemoryPointer = 0x80;
        uint256 constant Slot0x80 = 0x80;
        uint256 constant Slot0xA0 = 0xa0;
        // uint256 constant BasicOrder_endAmount_cdPtr = 0x104;
        uint256 constant BasicOrder_common_params_size = 0xa0;
        uint256 constant BasicOrder_considerationHashesArray_ptr = 0x160;
        uint256 constant BasicOrder_receivedItemByteMap = (
            0x0000010102030000000000000000000000000000000000000000000000000000
        );
        uint256 constant BasicOrder_offeredItemByteMap = (
            0x0203020301010000000000000000000000000000000000000000000000000000
        );
        bytes32 constant OrdersMatchedTopic0 = (
            0x4b9f2d36e1b4c93de62cc077b00b1a91d84b6c31b4a14e012718dcca230689e7
        );
        uint256 constant EIP712_Order_size = 0x180;
        uint256 constant EIP712_OfferItem_size = 0xc0;
        uint256 constant EIP712_ConsiderationItem_size = 0xe0;
        uint256 constant AdditionalRecipient_size = 0x40;
        uint256 constant AdditionalRecipient_size_shift = 0x6;
        uint256 constant EIP712_DomainSeparator_offset = 0x02;
        uint256 constant EIP712_OrderHash_offset = 0x22;
        uint256 constant EIP712_DigestPayload_size = 0x42;
        uint256 constant EIP712_domainData_nameHash_offset = 0x20;
        uint256 constant EIP712_domainData_versionHash_offset = 0x40;
        uint256 constant EIP712_domainData_chainId_offset = 0x60;
        uint256 constant EIP712_domainData_verifyingContract_offset = 0x80;
        uint256 constant EIP712_domainData_size = 0xa0;
        // Minimum BulkOrder proof size: 64 bytes for signature + 3 for key + 32 for 1
        // sibling. Maximum BulkOrder proof size: 65 bytes for signature + 3 for key +
        // 768 for 24 siblings.
        uint256 constant BulkOrderProof_minSize = 0x63;
        uint256 constant BulkOrderProof_rangeSize = 0x2e2;
        uint256 constant BulkOrderProof_lengthAdjustmentBeforeMask = 0x1d;
        uint256 constant BulkOrderProof_lengthRangeAfterMask = 0x2;
        uint256 constant BulkOrderProof_keyShift = 0xe8;
        uint256 constant BulkOrderProof_keySize = 0x3;
        uint256 constant BulkOrder_Typehash_Height_One = (
            0x3ca2711d29384747a8f61d60aad3c450405f7aaff5613541dee28df2d6986d32
        );
        uint256 constant BulkOrder_Typehash_Height_Two = (
            0xbf8e29b89f29ed9b529c154a63038ffca562f8d7cd1e2545dda53a1b582dde30
        );
        uint256 constant BulkOrder_Typehash_Height_Three = (
            0x53c6f6856e13104584dd0797ca2b2779202dc2597c6066a42e0d8fe990b0024d
        );
        uint256 constant BulkOrder_Typehash_Height_Four = (
            0xa02eb7ff164c884e5e2c336dc85f81c6a93329d8e9adf214b32729b894de2af1
        );
        uint256 constant BulkOrder_Typehash_Height_Five = (
            0x39c9d33c18e050dda0aeb9a8086fb16fc12d5d64536780e1da7405a800b0b9f6
        );
        uint256 constant BulkOrder_Typehash_Height_Six = (
            0x1c19f71958cdd8f081b4c31f7caf5c010b29d12950be2fa1c95070dc47e30b55
        );
        uint256 constant BulkOrder_Typehash_Height_Seven = (
            0xca74fab2fece9a1d58234a274220ad05ca096a92ef6a1ca1750b9d90c948955c
        );
        uint256 constant BulkOrder_Typehash_Height_Eight = (
            0x7ff98d9d4e55d876c5cfac10b43c04039522f3ddfb0ea9bfe70c68cfb5c7cc14
        );
        uint256 constant BulkOrder_Typehash_Height_Nine = (
            0xbed7be92d41c56f9e59ac7a6272185299b815ddfabc3f25deb51fe55fe2f9e8a
        );
        uint256 constant BulkOrder_Typehash_Height_Ten = (
            0xd1d97d1ef5eaa37a4ee5fbf234e6f6d64eb511eb562221cd7edfbdde0848da05
        );
        uint256 constant BulkOrder_Typehash_Height_Eleven = (
            0x896c3f349c4da741c19b37fec49ed2e44d738e775a21d9c9860a69d67a3dae53
        );
        uint256 constant BulkOrder_Typehash_Height_Twelve = (
            0xbb98d87cc12922b83759626c5f07d72266da9702d19ffad6a514c73a89002f5f
        );
        uint256 constant BulkOrder_Typehash_Height_Thirteen = (
            0xe6ae19322608dd1f8a8d56aab48ed9c28be489b689f4b6c91268563efc85f20e
        );
        uint256 constant BulkOrder_Typehash_Height_Fourteen = (
            0x6b5b04cbae4fcb1a9d78e7b2dfc51a36933d023cf6e347e03d517b472a852590
        );
        uint256 constant BulkOrder_Typehash_Height_Fifteen = (
            0xd1eb68309202b7106b891e109739dbbd334a1817fe5d6202c939e75cf5e35ca9
        );
        uint256 constant BulkOrder_Typehash_Height_Sixteen = (
            0x1da3eed3ecef6ebaa6e5023c057ec2c75150693fd0dac5c90f4a142f9879fde8
        );
        uint256 constant BulkOrder_Typehash_Height_Seventeen = (
            0xeee9a1392aa395c7002308119a58f2582777a75e54e0c1d5d5437bd2e8bf6222
        );
        uint256 constant BulkOrder_Typehash_Height_Eighteen = (
            0xc3939feff011e53ab8c35ca3370aad54c5df1fc2938cd62543174fa6e7d85877
        );
        uint256 constant BulkOrder_Typehash_Height_Nineteen = (
            0x0efca7572ac20f5ae84db0e2940674f7eca0a4726fa1060ffc2d18cef54b203d
        );
        uint256 constant BulkOrder_Typehash_Height_Twenty = (
            0x5a4f867d3d458dabecad65f6201ceeaba0096df2d0c491cc32e6ea4e64350017
        );
        uint256 constant BulkOrder_Typehash_Height_TwentyOne = (
            0x80987079d291feebf21c2230e69add0f283cee0b8be492ca8050b4185a2ff719
        );
        uint256 constant BulkOrder_Typehash_Height_TwentyTwo = (
            0x3bd8cff538aba49a9c374c806d277181e9651624b3e31111bc0624574f8bca1d
        );
        uint256 constant BulkOrder_Typehash_Height_TwentyThree = (
            0x5d6a3f098a0bc373f808c619b1bb4028208721b3c4f8d6bc8a874d659814eb76
        );
        uint256 constant BulkOrder_Typehash_Height_TwentyFour = (
            0x1d51df90cba8de7637ca3e8fe1e3511d1dc2f23487d05dbdecb781860c21ac1c
        );
        uint256 constant receivedItemsHash_ptr = 0x60;
        /*
         *  Memory layout in _prepareBasicFulfillmentFromCalldata of
         *  data for OrderFulfilled
         *
         *   event OrderFulfilled(
         *     bytes32 orderHash,
         *     address indexed offerer,
         *     address indexed zone,
         *     address fulfiller,
         *     SpentItem[] offer,
         *       > (itemType, token, id, amount)
         *     ReceivedItem[] consideration
         *       > (itemType, token, id, amount, recipient)
         *   )
         *
         *  - 0x00: orderHash
         *  - 0x20: fulfiller
         *  - 0x40: offer offset (0x80)
         *  - 0x60: consideration offset (0x120)
         *  - 0x80: offer.length (1)
         *  - 0xa0: offerItemType
         *  - 0xc0: offerToken
         *  - 0xe0: offerIdentifier
         *  - 0x100: offerAmount
         *  - 0x120: consideration.length (1 + additionalRecipients.length)
         *  - 0x140: considerationItemType
         *  - 0x160: considerationToken
         *  - 0x180: considerationIdentifier
         *  - 0x1a0: considerationAmount
         *  - 0x1c0: considerationRecipient
         *  - ...
         */
        // Minimum length of the OrderFulfilled event data.
        // Must be added to the size of the ReceivedItem array for additionalRecipients
        // (0xa0 * additionalRecipients.length) to calculate full size of the buffer.
        uint256 constant OrderFulfilled_baseSize = 0x1e0;
        uint256 constant OrderFulfilled_selector = (
            0x9d9af8e38d66c62e2c12f0225249fd9d721c54b83f48d9352c97c6cacdcb6f31
        );
        // Minimum offset in memory to OrderFulfilled event data.
        // Must be added to the size of the EIP712 hash array for additionalRecipients
        // (32 * additionalRecipients.length) to calculate the pointer to event data.
        uint256 constant OrderFulfilled_baseOffset = 0x180;
        uint256 constant OrderFulfilled_consideration_length_baseOffset = 0x2a0;
        uint256 constant OrderFulfilled_offer_length_baseOffset = 0x200;
        // Related constants used for restricted order checks on basic orders.
        uint256 constant OrderFulfilled_baseDataSize = 0x160;
        // uint256 constant ValidateOrder_offerDataOffset = 0x184;
        // uint256 constant RatifyOrder_offerDataOffset = 0xc4;
        // uint256 constant OrderFulfilled_orderHash_offset = 0x00;
        uint256 constant OrderFulfilled_fulfiller_offset = 0x20;
        uint256 constant OrderFulfilled_offer_head_offset = 0x40;
        uint256 constant OrderFulfilled_offer_body_offset = 0x80;
        uint256 constant OrderFulfilled_consideration_head_offset = 0x60;
        uint256 constant OrderFulfilled_consideration_body_offset = 0x120;
        // BasicOrderParameters
        uint256 constant BasicOrder_parameters_cdPtr = 0x04;
        uint256 constant BasicOrder_considerationToken_cdPtr = 0x24;
        uint256 constant BasicOrder_considerationIdentifier_cdPtr = 0x44;
        uint256 constant BasicOrder_considerationAmount_cdPtr = 0x64;
        uint256 constant BasicOrder_offerer_cdPtr = 0x84;
        uint256 constant BasicOrder_zone_cdPtr = 0xa4;
        uint256 constant BasicOrder_offerToken_cdPtr = 0xc4;
        uint256 constant BasicOrder_offerIdentifier_cdPtr = 0xe4;
        uint256 constant BasicOrder_offerAmount_cdPtr = 0x104;
        uint256 constant BasicOrder_basicOrderType_cdPtr = 0x124;
        uint256 constant BasicOrder_startTime_cdPtr = 0x144;
        uint256 constant BasicOrder_endTime_cdPtr = 0x164;
        // uint256 constant BasicOrder_zoneHash_cdPtr = 0x184;
        // uint256 constant BasicOrder_salt_cdPtr = 0x1a4;
        uint256 constant BasicOrder_offererConduit_cdPtr = 0x1c4;
        uint256 constant BasicOrder_fulfillerConduit_cdPtr = 0x1e4;
        uint256 constant BasicOrder_totalOriginalAdditionalRecipients_cdPtr = 0x204;
        uint256 constant BasicOrder_additionalRecipients_head_cdPtr = 0x224;
        uint256 constant BasicOrder_signature_cdPtr = 0x244;
        uint256 constant BasicOrder_additionalRecipients_length_cdPtr = 0x264;
        uint256 constant BasicOrder_additionalRecipients_data_cdPtr = 0x284;
        uint256 constant BasicOrder_parameters_ptr = 0x20;
        uint256 constant BasicOrder_basicOrderType_range = 0x18; // 24 values
        /*
         *  Memory layout in _prepareBasicFulfillmentFromCalldata of
         *  EIP712 data for ConsiderationItem
         *   - 0x80: ConsiderationItem EIP-712 typehash (constant)
         *   - 0xa0: itemType
         *   - 0xc0: token
         *   - 0xe0: identifier
         *   - 0x100: startAmount
         *   - 0x120: endAmount
         *   - 0x140: recipient
         */
        uint256 constant BasicOrder_considerationItem_typeHash_ptr = 0x80; // memoryPtr
        uint256 constant BasicOrder_considerationItem_itemType_ptr = 0xa0;
        uint256 constant BasicOrder_considerationItem_token_ptr = 0xc0;
        uint256 constant BasicOrder_considerationItem_identifier_ptr = 0xe0;
        uint256 constant BasicOrder_considerationItem_startAmount_ptr = 0x100;
        uint256 constant BasicOrder_considerationItem_endAmount_ptr = 0x120;
        // uint256 constant BasicOrder_considerationItem_recipient_ptr = 0x140;
        /*
         *  Memory layout in _prepareBasicFulfillmentFromCalldata of
         *  EIP712 data for OfferItem
         *   - 0x80:  OfferItem EIP-712 typehash (constant)
         *   - 0xa0:  itemType
         *   - 0xc0:  token
         *   - 0xe0:  identifier (reused for offeredItemsHash)
         *   - 0x100: startAmount
         *   - 0x120: endAmount
         */
        uint256 constant BasicOrder_offerItem_typeHash_ptr = 0x80;
        uint256 constant BasicOrder_offerItem_itemType_ptr = 0xa0;
        uint256 constant BasicOrder_offerItem_token_ptr = 0xc0;
        // uint256 constant BasicOrder_offerItem_identifier_ptr = 0xe0;
        // uint256 constant BasicOrder_offerItem_startAmount_ptr = 0x100;
        uint256 constant BasicOrder_offerItem_endAmount_ptr = 0x120;
        /*
         *  Memory layout in _prepareBasicFulfillmentFromCalldata of
         *  EIP712 data for Order
         *   - 0x80:   Order EIP-712 typehash (constant)
         *   - 0xa0:   orderParameters.offerer
         *   - 0xc0:   orderParameters.zone
         *   - 0xe0:   keccak256(abi.encodePacked(offerHashes))
         *   - 0x100:  keccak256(abi.encodePacked(considerationHashes))
         *   - 0x120:  orderType
         *   - 0x140:  startTime
         *   - 0x160:  endTime
         *   - 0x180:  zoneHash
         *   - 0x1a0:  salt
         *   - 0x1c0:  conduit
         *   - 0x1e0:  _counters[orderParameters.offerer] (from storage)
         */
        uint256 constant BasicOrder_order_typeHash_ptr = 0x80;
        uint256 constant BasicOrder_order_offerer_ptr = 0xa0;
        // uint256 constant BasicOrder_order_zone_ptr = 0xc0;
        uint256 constant BasicOrder_order_offerHashes_ptr = 0xe0;
        uint256 constant BasicOrder_order_considerationHashes_ptr = 0x100;
        uint256 constant BasicOrder_order_orderType_ptr = 0x120;
        uint256 constant BasicOrder_order_startTime_ptr = 0x140;
        // uint256 constant BasicOrder_order_endTime_ptr = 0x160;
        // uint256 constant BasicOrder_order_zoneHash_ptr = 0x180;
        // uint256 constant BasicOrder_order_salt_ptr = 0x1a0;
        // uint256 constant BasicOrder_order_conduitKey_ptr = 0x1c0;
        uint256 constant BasicOrder_order_counter_ptr = 0x1e0;
        uint256 constant BasicOrder_additionalRecipients_head_ptr = 0x240;
        uint256 constant BasicOrder_signature_ptr = 0x260;
        uint256 constant BasicOrder_startTimeThroughZoneHash_size = 0x60;
        uint256 constant ContractOrder_orderHash_offerer_shift = 0x60;
        uint256 constant Counter_blockhash_shift = 0x80;
        // Signature-related
        bytes32 constant EIP2098_allButHighestBitMask = (
            0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
        );
        bytes32 constant ECDSA_twentySeventhAndTwentyEighthBytesSet = (
            0x0000000000000000000000000000000000000000000000000000000101000000
        );
        uint256 constant ECDSA_MaxLength = 65;
        uint256 constant ECDSA_signature_s_offset = 0x40;
        uint256 constant ECDSA_signature_v_offset = 0x60;
        bytes32 constant EIP1271_isValidSignature_selector = (
            0x1626ba7e00000000000000000000000000000000000000000000000000000000
        );
        uint256 constant EIP1271_isValidSignature_digest_negativeOffset = 0x40;
        uint256 constant EIP1271_isValidSignature_selector_negativeOffset = 0x44;
        uint256 constant EIP1271_isValidSignature_calldata_baseLength = 0x64;
        uint256 constant EIP1271_isValidSignature_signature_head_offset = 0x40;
        uint256 constant EIP_712_PREFIX = (
            0x1901000000000000000000000000000000000000000000000000000000000000
        );
        uint256 constant ExtraGasBuffer = 0x20;
        uint256 constant CostPerWord = 0x3;
        uint256 constant MemoryExpansionCoefficientShift = 0x9;
        uint256 constant Create2AddressDerivation_ptr = 0x0b;
        uint256 constant Create2AddressDerivation_length = 0x55;
        uint256 constant MaskOverByteTwelve = (
            0x0000000000000000000000ff0000000000000000000000000000000000000000
        );
        uint256 constant MaskOverLastTwentyBytes = (
            0x000000000000000000000000ffffffffffffffffffffffffffffffffffffffff
        );
        uint256 constant AddressDirtyUpperBitThreshold = (
            0x0000000000000000000000010000000000000000000000000000000000000000
        );
        uint256 constant MaskOverFirstFourBytes = (
            0xffffffff00000000000000000000000000000000000000000000000000000000
        );
        uint256 constant Conduit_execute_signature = (
            0x4ce34aa200000000000000000000000000000000000000000000000000000000
        );
        uint256 constant MaxUint8 = 0xff;
        uint256 constant MaxUint120 = 0xffffffffffffffffffffffffffffff;
        uint256 constant Conduit_execute_ConduitTransfer_ptr = 0x20;
        uint256 constant Conduit_execute_ConduitTransfer_length = 0x01;
        uint256 constant Conduit_execute_ConduitTransfer_offset_ptr = 0x04;
        uint256 constant Conduit_execute_ConduitTransfer_length_ptr = 0x24;
        uint256 constant Conduit_execute_transferItemType_ptr = 0x44;
        uint256 constant Conduit_execute_transferToken_ptr = 0x64;
        uint256 constant Conduit_execute_transferFrom_ptr = 0x84;
        uint256 constant Conduit_execute_transferTo_ptr = 0xa4;
        uint256 constant Conduit_execute_transferIdentifier_ptr = 0xc4;
        uint256 constant Conduit_execute_transferAmount_ptr = 0xe4;
        uint256 constant OneConduitExecute_size = 0x104;
        // Sentinel value to indicate that the conduit accumulator is not armed.
        uint256 constant AccumulatorDisarmed = 0x20;
        uint256 constant AccumulatorArmed = 0x40;
        uint256 constant Accumulator_conduitKey_ptr = 0x20;
        uint256 constant Accumulator_selector_ptr = 0x40;
        uint256 constant Accumulator_array_offset_ptr = 0x44;
        uint256 constant Accumulator_array_length_ptr = 0x64;
        uint256 constant Accumulator_itemSizeOffsetDifference = 0x3c;
        uint256 constant Accumulator_array_offset = 0x20;
        uint256 constant Conduit_transferItem_size = 0xc0;
        uint256 constant Conduit_transferItem_token_ptr = 0x20;
        uint256 constant Conduit_transferItem_from_ptr = 0x40;
        uint256 constant Conduit_transferItem_to_ptr = 0x60;
        uint256 constant Conduit_transferItem_identifier_ptr = 0x80;
        uint256 constant Conduit_transferItem_amount_ptr = 0xa0;
        uint256 constant Ecrecover_precompile = 0x1;
        uint256 constant Ecrecover_args_size = 0x80;
        uint256 constant Signature_lower_v = 27;
        // Bitmask that only gives a non-zero value if masked with a non-match selector.
        uint256 constant NonMatchSelector_MagicMask = (
            0x4000000000000000000000000000000000000000000000000000000000
        );
        // First bit indicates that a NATIVE offer items has been used and the 231st bit
        // indicates that a non match selector has been called.
        uint256 constant NonMatchSelector_InvalidErrorValue = (
            0x4000000000000000000000000000000000000000000000000000000001
        );
        /**
         * @dev Selector and offsets for generateOrder
         *
         * function generateOrder(
         *   address fulfiller,
         *   SpentItem[] calldata minimumReceived,
         *   SpentItem[] calldata maximumSpent,
         *   bytes calldata context
         * )
         */
        uint256 constant generateOrder_selector = 0x98919765;
        uint256 constant generateOrder_selector_offset = 0x1c;
        uint256 constant generateOrder_head_offset = 0x04;
        uint256 constant generateOrder_minimumReceived_head_offset = 0x20;
        uint256 constant generateOrder_maximumSpent_head_offset = 0x40;
        uint256 constant generateOrder_context_head_offset = 0x60;
        uint256 constant generateOrder_base_tail_offset = 0x80;
        uint256 constant generateOrder_maximum_returndatasize = 0xffff;
        uint256 constant ratifyOrder_selector = 0xf4dd92ce;
        uint256 constant ratifyOrder_selector_offset = 0x1c;
        uint256 constant ratifyOrder_head_offset = 0x04;
        // uint256 constant ratifyOrder_offer_head_offset = 0x00;
        uint256 constant ratifyOrder_consideration_head_offset = 0x20;
        uint256 constant ratifyOrder_context_head_offset = 0x40;
        uint256 constant ratifyOrder_orderHashes_head_offset = 0x60;
        uint256 constant ratifyOrder_contractNonce_offset = 0x80;
        uint256 constant ratifyOrder_base_tail_offset = 0xa0;
        uint256 constant validateOrder_selector = 0x17b1f942;
        uint256 constant validateOrder_selector_offset = 0x1c;
        uint256 constant validateOrder_head_offset = 0x04;
        uint256 constant validateOrder_zoneParameters_offset = 0x20;
        // uint256 constant ZoneParameters_orderHash_offset = 0x00;
        uint256 constant ZoneParameters_fulfiller_offset = 0x20;
        uint256 constant ZoneParameters_offerer_offset = 0x40;
        uint256 constant ZoneParameters_offer_head_offset = 0x60;
        uint256 constant ZoneParameters_consideration_head_offset = 0x80;
        uint256 constant ZoneParameters_extraData_head_offset = 0xa0;
        uint256 constant ZoneParameters_orderHashes_head_offset = 0xc0;
        uint256 constant ZoneParameters_startTime_offset = 0xe0;
        uint256 constant ZoneParameters_endTime_offset = 0x100;
        uint256 constant ZoneParameters_zoneHash_offset = 0x120;
        uint256 constant ZoneParameters_base_tail_offset = 0x140;
        uint256 constant ZoneParameters_selectorAndPointer_length = 0x24;
        uint256 constant ZoneParameters_basicOrderFixedElements_length = 0x64;
        // ConsiderationDecoder Constants
        uint256 constant OrderParameters_head_size = 0x0160;
        uint256 constant OrderParameters_totalOriginalConsiderationItems_offset = (
            0x0140
        );
        uint256 constant AdvancedOrderPlusOrderParameters_head_size = 0x0200;
        uint256 constant Order_signature_offset = 0x20;
        uint256 constant Order_head_size = 0x40;
        uint256 constant AdvancedOrder_fixed_segment_0 = 0x40;
        uint256 constant CriteriaResolver_head_size = 0xa0;
        uint256 constant CriteriaResolver_fixed_segment_0 = 0x80;
        uint256 constant CriteriaResolver_criteriaProof_offset = 0x80;
        uint256 constant FulfillmentComponent_mem_tail_size = 0x40;
        uint256 constant FulfillmentComponent_mem_tail_size_shift = 0x6;
        uint256 constant Fulfillment_head_size = 0x40;
        uint256 constant Fulfillment_considerationComponents_offset = 0x20;
        uint256 constant OrderComponents_OrderParameters_common_head_size = 0x0140;
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.13;
        import {
            AdvancedOrder,
            BasicOrderParameters,
            CriteriaResolver,
            Execution,
            Fulfillment,
            FulfillmentComponent,
            Order,
            OrderComponents
        } from "../lib/ConsiderationStructs.sol";
        /**
         * @title ConsiderationInterface
         * @author 0age
         * @custom:version 1.5
         * @notice Consideration is a generalized native token/ERC20/ERC721/ERC1155
         *         marketplace. It minimizes external calls to the greatest extent
         *         possible and provides lightweight methods for common routes as well
         *         as more flexible methods for composing advanced orders.
         *
         * @dev ConsiderationInterface contains all external function interfaces for
         *      Consideration.
         */
        interface ConsiderationInterface {
            /**
             * @notice Fulfill an order offering an ERC721 token by supplying Ether (or
             *         the native token for the given chain) as consideration for the
             *         order. An arbitrary number of "additional recipients" may also be
             *         supplied which will each receive native tokens from the fulfiller
             *         as consideration.
             *
             * @param parameters Additional information on the fulfilled order. Note
             *                   that the offerer must first approve this contract (or
             *                   their preferred conduit if indicated by the order) for
             *                   their offered ERC721 token to be transferred.
             *
             * @return fulfilled A boolean indicating whether the order has been
             *                   successfully fulfilled.
             */
            function fulfillBasicOrder(
                BasicOrderParameters calldata parameters
            ) external payable returns (bool fulfilled);
            /**
             * @notice Fulfill an order with an arbitrary number of items for offer and
             *         consideration. Note that this function does not support
             *         criteria-based orders or partial filling of orders (though
             *         filling the remainder of a partially-filled order is supported).
             *
             * @param order               The order to fulfill. Note that both the
             *                            offerer and the fulfiller must first approve
             *                            this contract (or the corresponding conduit if
             *                            indicated) to transfer any relevant tokens on
             *                            their behalf and that contracts must implement
             *                            `onERC1155Received` to receive ERC1155 tokens
             *                            as consideration.
             * @param fulfillerConduitKey A bytes32 value indicating what conduit, if
             *                            any, to source the fulfiller's token approvals
             *                            from. The zero hash signifies that no conduit
             *                            should be used, with direct approvals set on
             *                            Consideration.
             *
             * @return fulfilled A boolean indicating whether the order has been
             *                   successfully fulfilled.
             */
            function fulfillOrder(
                Order calldata order,
                bytes32 fulfillerConduitKey
            ) external payable returns (bool fulfilled);
            /**
             * @notice Fill an order, fully or partially, with an arbitrary number of
             *         items for offer and consideration alongside criteria resolvers
             *         containing specific token identifiers and associated proofs.
             *
             * @param advancedOrder       The order to fulfill along with the fraction
             *                            of the order to attempt to fill. Note that
             *                            both the offerer and the fulfiller must first
             *                            approve this contract (or their preferred
             *                            conduit if indicated by the order) to transfer
             *                            any relevant tokens on their behalf and that
             *                            contracts must implement `onERC1155Received`
             *                            to receive ERC1155 tokens as consideration.
             *                            Also note that all offer and consideration
             *                            components must have no remainder after
             *                            multiplication of the respective amount with
             *                            the supplied fraction for the partial fill to
             *                            be considered valid.
             * @param criteriaResolvers   An array where each element contains a
             *                            reference to a specific offer or
             *                            consideration, a token identifier, and a proof
             *                            that the supplied token identifier is
             *                            contained in the merkle root held by the item
             *                            in question's criteria element. Note that an
             *                            empty criteria indicates that any
             *                            (transferable) token identifier on the token
             *                            in question is valid and that no associated
             *                            proof needs to be supplied.
             * @param fulfillerConduitKey A bytes32 value indicating what conduit, if
             *                            any, to source the fulfiller's token approvals
             *                            from. The zero hash signifies that no conduit
             *                            should be used, with direct approvals set on
             *                            Consideration.
             * @param recipient           The intended recipient for all received items,
             *                            with `address(0)` indicating that the caller
             *                            should receive the items.
             *
             * @return fulfilled A boolean indicating whether the order has been
             *                   successfully fulfilled.
             */
            function fulfillAdvancedOrder(
                AdvancedOrder calldata advancedOrder,
                CriteriaResolver[] calldata criteriaResolvers,
                bytes32 fulfillerConduitKey,
                address recipient
            ) external payable returns (bool fulfilled);
            /**
             * @notice Attempt to fill a group of orders, each with an arbitrary number
             *         of items for offer and consideration. Any order that is not
             *         currently active, has already been fully filled, or has been
             *         cancelled will be omitted. Remaining offer and consideration
             *         items will then be aggregated where possible as indicated by the
             *         supplied offer and consideration component arrays and aggregated
             *         items will be transferred to the fulfiller or to each intended
             *         recipient, respectively. Note that a failing item transfer or an
             *         issue with order formatting will cause the entire batch to fail.
             *         Note that this function does not support criteria-based orders or
             *         partial filling of orders (though filling the remainder of a
             *         partially-filled order is supported).
             *
             * @param orders                    The orders to fulfill. Note that both
             *                                  the offerer and the fulfiller must first
             *                                  approve this contract (or the
             *                                  corresponding conduit if indicated) to
             *                                  transfer any relevant tokens on their
             *                                  behalf and that contracts must implement
             *                                  `onERC1155Received` to receive ERC1155
             *                                  tokens as consideration.
             * @param offerFulfillments         An array of FulfillmentComponent arrays
             *                                  indicating which offer items to attempt
             *                                  to aggregate when preparing executions.
             * @param considerationFulfillments An array of FulfillmentComponent arrays
             *                                  indicating which consideration items to
             *                                  attempt to aggregate when preparing
             *                                  executions.
             * @param fulfillerConduitKey       A bytes32 value indicating what conduit,
             *                                  if any, to source the fulfiller's token
             *                                  approvals from. The zero hash signifies
             *                                  that no conduit should be used, with
             *                                  direct approvals set on this contract.
             * @param maximumFulfilled          The maximum number of orders to fulfill.
             *
             * @return availableOrders An array of booleans indicating if each order
             *                         with an index corresponding to the index of the
             *                         returned boolean was fulfillable or not.
             * @return executions      An array of elements indicating the sequence of
             *                         transfers performed as part of matching the given
             *                         orders. Note that unspent offer item amounts or
             *                         native tokens will not be reflected as part of
             *                         this array.
             */
            function fulfillAvailableOrders(
                Order[] calldata orders,
                FulfillmentComponent[][] calldata offerFulfillments,
                FulfillmentComponent[][] calldata considerationFulfillments,
                bytes32 fulfillerConduitKey,
                uint256 maximumFulfilled
            )
                external
                payable
                returns (bool[] memory availableOrders, Execution[] memory executions);
            /**
             * @notice Attempt to fill a group of orders, fully or partially, with an
             *         arbitrary number of items for offer and consideration per order
             *         alongside criteria resolvers containing specific token
             *         identifiers and associated proofs. Any order that is not
             *         currently active, has already been fully filled, or has been
             *         cancelled will be omitted. Remaining offer and consideration
             *         items will then be aggregated where possible as indicated by the
             *         supplied offer and consideration component arrays and aggregated
             *         items will be transferred to the fulfiller or to each intended
             *         recipient, respectively. Note that a failing item transfer or an
             *         issue with order formatting will cause the entire batch to fail.
             *
             * @param advancedOrders            The orders to fulfill along with the
             *                                  fraction of those orders to attempt to
             *                                  fill. Note that both the offerer and the
             *                                  fulfiller must first approve this
             *                                  contract (or their preferred conduit if
             *                                  indicated by the order) to transfer any
             *                                  relevant tokens on their behalf and that
             *                                  contracts must implement
             *                                  `onERC1155Received` to enable receipt of
             *                                  ERC1155 tokens as consideration. Also
             *                                  note that all offer and consideration
             *                                  components must have no remainder after
             *                                  multiplication of the respective amount
             *                                  with the supplied fraction for an
             *                                  order's partial fill amount to be
             *                                  considered valid.
             * @param criteriaResolvers         An array where each element contains a
             *                                  reference to a specific offer or
             *                                  consideration, a token identifier, and a
             *                                  proof that the supplied token identifier
             *                                  is contained in the merkle root held by
             *                                  the item in question's criteria element.
             *                                  Note that an empty criteria indicates
             *                                  that any (transferable) token
             *                                  identifier on the token in question is
             *                                  valid and that no associated proof needs
             *                                  to be supplied.
             * @param offerFulfillments         An array of FulfillmentComponent arrays
             *                                  indicating which offer items to attempt
             *                                  to aggregate when preparing executions.
             * @param considerationFulfillments An array of FulfillmentComponent arrays
             *                                  indicating which consideration items to
             *                                  attempt to aggregate when preparing
             *                                  executions.
             * @param fulfillerConduitKey       A bytes32 value indicating what conduit,
             *                                  if any, to source the fulfiller's token
             *                                  approvals from. The zero hash signifies
             *                                  that no conduit should be used, with
             *                                  direct approvals set on this contract.
             * @param recipient                 The intended recipient for all received
             *                                  items, with `address(0)` indicating that
             *                                  the caller should receive the items.
             * @param maximumFulfilled          The maximum number of orders to fulfill.
             *
             * @return availableOrders An array of booleans indicating if each order
             *                         with an index corresponding to the index of the
             *                         returned boolean was fulfillable or not.
             * @return executions      An array of elements indicating the sequence of
             *                         transfers performed as part of matching the given
             *                         orders. Note that unspent offer item amounts or
             *                         native tokens will not be reflected as part of
             *                         this array.
             */
            function fulfillAvailableAdvancedOrders(
                AdvancedOrder[] calldata advancedOrders,
                CriteriaResolver[] calldata criteriaResolvers,
                FulfillmentComponent[][] calldata offerFulfillments,
                FulfillmentComponent[][] calldata considerationFulfillments,
                bytes32 fulfillerConduitKey,
                address recipient,
                uint256 maximumFulfilled
            )
                external
                payable
                returns (bool[] memory availableOrders, Execution[] memory executions);
            /**
             * @notice Match an arbitrary number of orders, each with an arbitrary
             *         number of items for offer and consideration along with a set of
             *         fulfillments allocating offer components to consideration
             *         components. Note that this function does not support
             *         criteria-based or partial filling of orders (though filling the
             *         remainder of a partially-filled order is supported). Any unspent
             *         offer item amounts or native tokens will be transferred to the
             *         caller.
             *
             * @param orders       The orders to match. Note that both the offerer and
             *                     fulfiller on each order must first approve this
             *                     contract (or their conduit if indicated by the order)
             *                     to transfer any relevant tokens on their behalf and
             *                     each consideration recipient must implement
             *                     `onERC1155Received` to enable ERC1155 token receipt.
             * @param fulfillments An array of elements allocating offer components to
             *                     consideration components. Note that each
             *                     consideration component must be fully met for the
             *                     match operation to be valid.
             *
             * @return executions An array of elements indicating the sequence of
             *                    transfers performed as part of matching the given
             *                    orders. Note that unspent offer item amounts or
             *                    native tokens will not be reflected as part of this
             *                    array.
             */
            function matchOrders(
                Order[] calldata orders,
                Fulfillment[] calldata fulfillments
            ) external payable returns (Execution[] memory executions);
            /**
             * @notice Match an arbitrary number of full or partial orders, each with an
             *         arbitrary number of items for offer and consideration, supplying
             *         criteria resolvers containing specific token identifiers and
             *         associated proofs as well as fulfillments allocating offer
             *         components to consideration components. Any unspent offer item
             *         amounts will be transferred to the designated recipient (with the
             *         null address signifying to use the caller) and any unspent native
             *         tokens will be returned to the caller.
             *
             * @param orders            The advanced orders to match. Note that both the
             *                          offerer and fulfiller on each order must first
             *                          approve this contract (or a preferred conduit if
             *                          indicated by the order) to transfer any relevant
             *                          tokens on their behalf and each consideration
             *                          recipient must implement `onERC1155Received` in
             *                          order to receive ERC1155 tokens. Also note that
             *                          the offer and consideration components for each
             *                          order must have no remainder after multiplying
             *                          the respective amount with the supplied fraction
             *                          in order for the group of partial fills to be
             *                          considered valid.
             * @param criteriaResolvers An array where each element contains a reference
             *                          to a specific order as well as that order's
             *                          offer or consideration, a token identifier, and
             *                          a proof that the supplied token identifier is
             *                          contained in the order's merkle root. Note that
             *                          an empty root indicates that any (transferable)
             *                          token identifier is valid and that no associated
             *                          proof needs to be supplied.
             * @param fulfillments      An array of elements allocating offer components
             *                          to consideration components. Note that each
             *                          consideration component must be fully met in
             *                          order for the match operation to be valid.
             * @param recipient         The intended recipient for all unspent offer
             *                          item amounts, or the caller if the null address
             *                          is supplied.
             *
             * @return executions An array of elements indicating the sequence of
             *                    transfers performed as part of matching the given
             *                    orders. Note that unspent offer item amounts or native
             *                    tokens will not be reflected as part of this array.
             */
            function matchAdvancedOrders(
                AdvancedOrder[] calldata orders,
                CriteriaResolver[] calldata criteriaResolvers,
                Fulfillment[] calldata fulfillments,
                address recipient
            ) external payable returns (Execution[] memory executions);
            /**
             * @notice Cancel an arbitrary number of orders. Note that only the offerer
             *         or the zone of a given order may cancel it. Callers should ensure
             *         that the intended order was cancelled by calling `getOrderStatus`
             *         and confirming that `isCancelled` returns `true`.
             *
             * @param orders The orders to cancel.
             *
             * @return cancelled A boolean indicating whether the supplied orders have
             *                   been successfully cancelled.
             */
            function cancel(
                OrderComponents[] calldata orders
            ) external returns (bool cancelled);
            /**
             * @notice Validate an arbitrary number of orders, thereby registering their
             *         signatures as valid and allowing the fulfiller to skip signature
             *         verification on fulfillment. Note that validated orders may still
             *         be unfulfillable due to invalid item amounts or other factors;
             *         callers should determine whether validated orders are fulfillable
             *         by simulating the fulfillment call prior to execution. Also note
             *         that anyone can validate a signed order, but only the offerer can
             *         validate an order without supplying a signature.
             *
             * @param orders The orders to validate.
             *
             * @return validated A boolean indicating whether the supplied orders have
             *                   been successfully validated.
             */
            function validate(
                Order[] calldata orders
            ) external returns (bool validated);
            /**
             * @notice Cancel all orders from a given offerer with a given zone in bulk
             *         by incrementing a counter. Note that only the offerer may
             *         increment the counter.
             *
             * @return newCounter The new counter.
             */
            function incrementCounter() external returns (uint256 newCounter);
            /**
             * @notice Fulfill an order offering an ERC721 token by supplying Ether (or
             *         the native token for the given chain) as consideration for the
             *         order. An arbitrary number of "additional recipients" may also be
             *         supplied which will each receive native tokens from the fulfiller
             *         as consideration. Note that this function costs less gas than
             *         `fulfillBasicOrder` due to the zero bytes in the function
             *         selector (0x00000000) which also results in earlier function
             *         dispatch.
             *
             * @param parameters Additional information on the fulfilled order. Note
             *                   that the offerer must first approve this contract (or
             *                   their preferred conduit if indicated by the order) for
             *                   their offered ERC721 token to be transferred.
             *
             * @return fulfilled A boolean indicating whether the order has been
             *                   successfully fulfilled.
             */
            function fulfillBasicOrder_efficient_6GL6yc(
                BasicOrderParameters calldata parameters
            ) external payable returns (bool fulfilled);
            /**
             * @notice Retrieve the order hash for a given order.
             *
             * @param order The components of the order.
             *
             * @return orderHash The order hash.
             */
            function getOrderHash(
                OrderComponents calldata order
            ) external view returns (bytes32 orderHash);
            /**
             * @notice Retrieve the status of a given order by hash, including whether
             *         the order has been cancelled or validated and the fraction of the
             *         order that has been filled.
             *
             * @param orderHash The order hash in question.
             *
             * @return isValidated A boolean indicating whether the order in question
             *                     has been validated (i.e. previously approved or
             *                     partially filled).
             * @return isCancelled A boolean indicating whether the order in question
             *                     has been cancelled.
             * @return totalFilled The total portion of the order that has been filled
             *                     (i.e. the "numerator").
             * @return totalSize   The total size of the order that is either filled or
             *                     unfilled (i.e. the "denominator").
             */
            function getOrderStatus(
                bytes32 orderHash
            )
                external
                view
                returns (
                    bool isValidated,
                    bool isCancelled,
                    uint256 totalFilled,
                    uint256 totalSize
                );
            /**
             * @notice Retrieve the current counter for a given offerer.
             *
             * @param offerer The offerer in question.
             *
             * @return counter The current counter.
             */
            function getCounter(
                address offerer
            ) external view returns (uint256 counter);
            /**
             * @notice Retrieve configuration information for this contract.
             *
             * @return version           The contract version.
             * @return domainSeparator   The domain separator for this contract.
             * @return conduitController The conduit Controller set for this contract.
             */
            function information()
                external
                view
                returns (
                    string memory version,
                    bytes32 domainSeparator,
                    address conduitController
                );
            function getContractOffererNonce(
                address contractOfferer
            ) external view returns (uint256 nonce);
            /**
             * @notice Retrieve the name of this contract.
             *
             * @return contractName The name of this contract.
             */
            function name() external view returns (string memory contractName);
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.13;
        type CalldataPointer is uint256;
        type ReturndataPointer is uint256;
        type MemoryPointer is uint256;
        using CalldataPointerLib for CalldataPointer global;
        using MemoryPointerLib for MemoryPointer global;
        using ReturndataPointerLib for ReturndataPointer global;
        using CalldataReaders for CalldataPointer global;
        using ReturndataReaders for ReturndataPointer global;
        using MemoryReaders for MemoryPointer global;
        using MemoryWriters for MemoryPointer global;
        CalldataPointer constant CalldataStart = CalldataPointer.wrap(0x04);
        MemoryPointer constant FreeMemoryPPtr = MemoryPointer.wrap(0x40);
        uint256 constant IdentityPrecompileAddress = 0x4;
        uint256 constant OffsetOrLengthMask = 0xffffffff;
        uint256 constant _OneWord = 0x20;
        uint256 constant _FreeMemoryPointerSlot = 0x40;
        /// @dev Allocates `size` bytes in memory by increasing the free memory pointer
        ///    and returns the memory pointer to the first byte of the allocated region.
        // (Free functions cannot have visibility.)
        // solhint-disable-next-line func-visibility
        function malloc(uint256 size) pure returns (MemoryPointer mPtr) {
            assembly {
                mPtr := mload(_FreeMemoryPointerSlot)
                mstore(_FreeMemoryPointerSlot, add(mPtr, size))
            }
        }
        // (Free functions cannot have visibility.)
        // solhint-disable-next-line func-visibility
        function getFreeMemoryPointer() pure returns (MemoryPointer mPtr) {
            mPtr = FreeMemoryPPtr.readMemoryPointer();
        }
        // (Free functions cannot have visibility.)
        // solhint-disable-next-line func-visibility
        function setFreeMemoryPointer(MemoryPointer mPtr) pure {
            FreeMemoryPPtr.write(mPtr);
        }
        library CalldataPointerLib {
            function lt(
                CalldataPointer a,
                CalldataPointer b
            ) internal pure returns (bool c) {
                assembly {
                    c := lt(a, b)
                }
            }
            function gt(
                CalldataPointer a,
                CalldataPointer b
            ) internal pure returns (bool c) {
                assembly {
                    c := gt(a, b)
                }
            }
            function eq(
                CalldataPointer a,
                CalldataPointer b
            ) internal pure returns (bool c) {
                assembly {
                    c := eq(a, b)
                }
            }
            function isNull(CalldataPointer a) internal pure returns (bool b) {
                assembly {
                    b := iszero(a)
                }
            }
            /// @dev Resolves an offset stored at `cdPtr + headOffset` to a calldata.
            ///      pointer `cdPtr` must point to some parent object with a dynamic
            ///      type's head stored at `cdPtr + headOffset`.
            function pptr(
                CalldataPointer cdPtr,
                uint256 headOffset
            ) internal pure returns (CalldataPointer cdPtrChild) {
                cdPtrChild = cdPtr.offset(
                    cdPtr.offset(headOffset).readUint256() & OffsetOrLengthMask
                );
            }
            /// @dev Resolves an offset stored at `cdPtr` to a calldata pointer.
            ///      `cdPtr` must point to some parent object with a dynamic type as its
            ///      first member, e.g. `struct { bytes data; }`
            function pptr(
                CalldataPointer cdPtr
            ) internal pure returns (CalldataPointer cdPtrChild) {
                cdPtrChild = cdPtr.offset(cdPtr.readUint256() & OffsetOrLengthMask);
            }
            /// @dev Returns the calldata pointer one word after `cdPtr`.
            function next(
                CalldataPointer cdPtr
            ) internal pure returns (CalldataPointer cdPtrNext) {
                assembly {
                    cdPtrNext := add(cdPtr, _OneWord)
                }
            }
            /// @dev Returns the calldata pointer `_offset` bytes after `cdPtr`.
            function offset(
                CalldataPointer cdPtr,
                uint256 _offset
            ) internal pure returns (CalldataPointer cdPtrNext) {
                assembly {
                    cdPtrNext := add(cdPtr, _offset)
                }
            }
            /// @dev Copies `size` bytes from calldata starting at `src` to memory at
            ///      `dst`.
            function copy(
                CalldataPointer src,
                MemoryPointer dst,
                uint256 size
            ) internal pure {
                assembly {
                    calldatacopy(dst, src, size)
                }
            }
        }
        library ReturndataPointerLib {
            function lt(
                ReturndataPointer a,
                ReturndataPointer b
            ) internal pure returns (bool c) {
                assembly {
                    c := lt(a, b)
                }
            }
            function gt(
                ReturndataPointer a,
                ReturndataPointer b
            ) internal pure returns (bool c) {
                assembly {
                    c := gt(a, b)
                }
            }
            function eq(
                ReturndataPointer a,
                ReturndataPointer b
            ) internal pure returns (bool c) {
                assembly {
                    c := eq(a, b)
                }
            }
            function isNull(ReturndataPointer a) internal pure returns (bool b) {
                assembly {
                    b := iszero(a)
                }
            }
            /// @dev Resolves an offset stored at `rdPtr + headOffset` to a returndata
            ///      pointer. `rdPtr` must point to some parent object with a dynamic
            ///      type's head stored at `rdPtr + headOffset`.
            function pptr(
                ReturndataPointer rdPtr,
                uint256 headOffset
            ) internal pure returns (ReturndataPointer rdPtrChild) {
                rdPtrChild = rdPtr.offset(
                    rdPtr.offset(headOffset).readUint256() & OffsetOrLengthMask
                );
            }
            /// @dev Resolves an offset stored at `rdPtr` to a returndata pointer.
            ///    `rdPtr` must point to some parent object with a dynamic type as its
            ///    first member, e.g. `struct { bytes data; }`
            function pptr(
                ReturndataPointer rdPtr
            ) internal pure returns (ReturndataPointer rdPtrChild) {
                rdPtrChild = rdPtr.offset(rdPtr.readUint256() & OffsetOrLengthMask);
            }
            /// @dev Returns the returndata pointer one word after `cdPtr`.
            function next(
                ReturndataPointer rdPtr
            ) internal pure returns (ReturndataPointer rdPtrNext) {
                assembly {
                    rdPtrNext := add(rdPtr, _OneWord)
                }
            }
            /// @dev Returns the returndata pointer `_offset` bytes after `cdPtr`.
            function offset(
                ReturndataPointer rdPtr,
                uint256 _offset
            ) internal pure returns (ReturndataPointer rdPtrNext) {
                assembly {
                    rdPtrNext := add(rdPtr, _offset)
                }
            }
            /// @dev Copies `size` bytes from returndata starting at `src` to memory at
            /// `dst`.
            function copy(
                ReturndataPointer src,
                MemoryPointer dst,
                uint256 size
            ) internal pure {
                assembly {
                    returndatacopy(dst, src, size)
                }
            }
        }
        library MemoryPointerLib {
            function copy(
                MemoryPointer src,
                MemoryPointer dst,
                uint256 size
            ) internal view {
                assembly {
                    let success := staticcall(
                        gas(),
                        IdentityPrecompileAddress,
                        src,
                        size,
                        dst,
                        size
                    )
                    if or(iszero(returndatasize()), iszero(success)) {
                        revert(0, 0)
                    }
                }
            }
            function lt(
                MemoryPointer a,
                MemoryPointer b
            ) internal pure returns (bool c) {
                assembly {
                    c := lt(a, b)
                }
            }
            function gt(
                MemoryPointer a,
                MemoryPointer b
            ) internal pure returns (bool c) {
                assembly {
                    c := gt(a, b)
                }
            }
            function eq(
                MemoryPointer a,
                MemoryPointer b
            ) internal pure returns (bool c) {
                assembly {
                    c := eq(a, b)
                }
            }
            function isNull(MemoryPointer a) internal pure returns (bool b) {
                assembly {
                    b := iszero(a)
                }
            }
            function hash(
                MemoryPointer ptr,
                uint256 length
            ) internal pure returns (bytes32 _hash) {
                assembly {
                    _hash := keccak256(ptr, length)
                }
            }
            /// @dev Returns the memory pointer one word after `mPtr`.
            function next(
                MemoryPointer mPtr
            ) internal pure returns (MemoryPointer mPtrNext) {
                assembly {
                    mPtrNext := add(mPtr, _OneWord)
                }
            }
            /// @dev Returns the memory pointer `_offset` bytes after `mPtr`.
            function offset(
                MemoryPointer mPtr,
                uint256 _offset
            ) internal pure returns (MemoryPointer mPtrNext) {
                assembly {
                    mPtrNext := add(mPtr, _offset)
                }
            }
            /// @dev Resolves a pointer at `mPtr + headOffset` to a memory
            ///    pointer. `mPtr` must point to some parent object with a dynamic
            ///    type's pointer stored at `mPtr + headOffset`.
            function pptr(
                MemoryPointer mPtr,
                uint256 headOffset
            ) internal pure returns (MemoryPointer mPtrChild) {
                mPtrChild = mPtr.offset(headOffset).readMemoryPointer();
            }
            /// @dev Resolves a pointer stored at `mPtr` to a memory pointer.
            ///    `mPtr` must point to some parent object with a dynamic type as its
            ///    first member, e.g. `struct { bytes data; }`
            function pptr(
                MemoryPointer mPtr
            ) internal pure returns (MemoryPointer mPtrChild) {
                mPtrChild = mPtr.readMemoryPointer();
            }
        }
        library CalldataReaders {
            /// @dev Reads the value at `cdPtr` and applies a mask to return only the
            ///    last 4 bytes.
            function readMaskedUint256(
                CalldataPointer cdPtr
            ) internal pure returns (uint256 value) {
                value = cdPtr.readUint256() & OffsetOrLengthMask;
            }
            /// @dev Reads the bool at `cdPtr` in calldata.
            function readBool(
                CalldataPointer cdPtr
            ) internal pure returns (bool value) {
                assembly {
                    value := calldataload(cdPtr)
                }
            }
            /// @dev Reads the address at `cdPtr` in calldata.
            function readAddress(
                CalldataPointer cdPtr
            ) internal pure returns (address value) {
                assembly {
                    value := calldataload(cdPtr)
                }
            }
            /// @dev Reads the bytes1 at `cdPtr` in calldata.
            function readBytes1(
                CalldataPointer cdPtr
            ) internal pure returns (bytes1 value) {
                assembly {
                    value := calldataload(cdPtr)
                }
            }
            /// @dev Reads the bytes2 at `cdPtr` in calldata.
            function readBytes2(
                CalldataPointer cdPtr
            ) internal pure returns (bytes2 value) {
                assembly {
                    value := calldataload(cdPtr)
                }
            }
            /// @dev Reads the bytes3 at `cdPtr` in calldata.
            function readBytes3(
                CalldataPointer cdPtr
            ) internal pure returns (bytes3 value) {
                assembly {
                    value := calldataload(cdPtr)
                }
            }
            /// @dev Reads the bytes4 at `cdPtr` in calldata.
            function readBytes4(
                CalldataPointer cdPtr
            ) internal pure returns (bytes4 value) {
                assembly {
                    value := calldataload(cdPtr)
                }
            }
            /// @dev Reads the bytes5 at `cdPtr` in calldata.
            function readBytes5(
                CalldataPointer cdPtr
            ) internal pure returns (bytes5 value) {
                assembly {
                    value := calldataload(cdPtr)
                }
            }
            /// @dev Reads the bytes6 at `cdPtr` in calldata.
            function readBytes6(
                CalldataPointer cdPtr
            ) internal pure returns (bytes6 value) {
                assembly {
                    value := calldataload(cdPtr)
                }
            }
            /// @dev Reads the bytes7 at `cdPtr` in calldata.
            function readBytes7(
                CalldataPointer cdPtr
            ) internal pure returns (bytes7 value) {
                assembly {
                    value := calldataload(cdPtr)
                }
            }
            /// @dev Reads the bytes8 at `cdPtr` in calldata.
            function readBytes8(
                CalldataPointer cdPtr
            ) internal pure returns (bytes8 value) {
                assembly {
                    value := calldataload(cdPtr)
                }
            }
            /// @dev Reads the bytes9 at `cdPtr` in calldata.
            function readBytes9(
                CalldataPointer cdPtr
            ) internal pure returns (bytes9 value) {
                assembly {
                    value := calldataload(cdPtr)
                }
            }
            /// @dev Reads the bytes10 at `cdPtr` in calldata.
            function readBytes10(
                CalldataPointer cdPtr
            ) internal pure returns (bytes10 value) {
                assembly {
                    value := calldataload(cdPtr)
                }
            }
            /// @dev Reads the bytes11 at `cdPtr` in calldata.
            function readBytes11(
                CalldataPointer cdPtr
            ) internal pure returns (bytes11 value) {
                assembly {
                    value := calldataload(cdPtr)
                }
            }
            /// @dev Reads the bytes12 at `cdPtr` in calldata.
            function readBytes12(
                CalldataPointer cdPtr
            ) internal pure returns (bytes12 value) {
                assembly {
                    value := calldataload(cdPtr)
                }
            }
            /// @dev Reads the bytes13 at `cdPtr` in calldata.
            function readBytes13(
                CalldataPointer cdPtr
            ) internal pure returns (bytes13 value) {
                assembly {
                    value := calldataload(cdPtr)
                }
            }
            /// @dev Reads the bytes14 at `cdPtr` in calldata.
            function readBytes14(
                CalldataPointer cdPtr
            ) internal pure returns (bytes14 value) {
                assembly {
                    value := calldataload(cdPtr)
                }
            }
            /// @dev Reads the bytes15 at `cdPtr` in calldata.
            function readBytes15(
                CalldataPointer cdPtr
            ) internal pure returns (bytes15 value) {
                assembly {
                    value := calldataload(cdPtr)
                }
            }
            /// @dev Reads the bytes16 at `cdPtr` in calldata.
            function readBytes16(
                CalldataPointer cdPtr
            ) internal pure returns (bytes16 value) {
                assembly {
                    value := calldataload(cdPtr)
                }
            }
            /// @dev Reads the bytes17 at `cdPtr` in calldata.
            function readBytes17(
                CalldataPointer cdPtr
            ) internal pure returns (bytes17 value) {
                assembly {
                    value := calldataload(cdPtr)
                }
            }
            /// @dev Reads the bytes18 at `cdPtr` in calldata.
            function readBytes18(
                CalldataPointer cdPtr
            ) internal pure returns (bytes18 value) {
                assembly {
                    value := calldataload(cdPtr)
                }
            }
            /// @dev Reads the bytes19 at `cdPtr` in calldata.
            function readBytes19(
                CalldataPointer cdPtr
            ) internal pure returns (bytes19 value) {
                assembly {
                    value := calldataload(cdPtr)
                }
            }
            /// @dev Reads the bytes20 at `cdPtr` in calldata.
            function readBytes20(
                CalldataPointer cdPtr
            ) internal pure returns (bytes20 value) {
                assembly {
                    value := calldataload(cdPtr)
                }
            }
            /// @dev Reads the bytes21 at `cdPtr` in calldata.
            function readBytes21(
                CalldataPointer cdPtr
            ) internal pure returns (bytes21 value) {
                assembly {
                    value := calldataload(cdPtr)
                }
            }
            /// @dev Reads the bytes22 at `cdPtr` in calldata.
            function readBytes22(
                CalldataPointer cdPtr
            ) internal pure returns (bytes22 value) {
                assembly {
                    value := calldataload(cdPtr)
                }
            }
            /// @dev Reads the bytes23 at `cdPtr` in calldata.
            function readBytes23(
                CalldataPointer cdPtr
            ) internal pure returns (bytes23 value) {
                assembly {
                    value := calldataload(cdPtr)
                }
            }
            /// @dev Reads the bytes24 at `cdPtr` in calldata.
            function readBytes24(
                CalldataPointer cdPtr
            ) internal pure returns (bytes24 value) {
                assembly {
                    value := calldataload(cdPtr)
                }
            }
            /// @dev Reads the bytes25 at `cdPtr` in calldata.
            function readBytes25(
                CalldataPointer cdPtr
            ) internal pure returns (bytes25 value) {
                assembly {
                    value := calldataload(cdPtr)
                }
            }
            /// @dev Reads the bytes26 at `cdPtr` in calldata.
            function readBytes26(
                CalldataPointer cdPtr
            ) internal pure returns (bytes26 value) {
                assembly {
                    value := calldataload(cdPtr)
                }
            }
            /// @dev Reads the bytes27 at `cdPtr` in calldata.
            function readBytes27(
                CalldataPointer cdPtr
            ) internal pure returns (bytes27 value) {
                assembly {
                    value := calldataload(cdPtr)
                }
            }
            /// @dev Reads the bytes28 at `cdPtr` in calldata.
            function readBytes28(
                CalldataPointer cdPtr
            ) internal pure returns (bytes28 value) {
                assembly {
                    value := calldataload(cdPtr)
                }
            }
            /// @dev Reads the bytes29 at `cdPtr` in calldata.
            function readBytes29(
                CalldataPointer cdPtr
            ) internal pure returns (bytes29 value) {
                assembly {
                    value := calldataload(cdPtr)
                }
            }
            /// @dev Reads the bytes30 at `cdPtr` in calldata.
            function readBytes30(
                CalldataPointer cdPtr
            ) internal pure returns (bytes30 value) {
                assembly {
                    value := calldataload(cdPtr)
                }
            }
            /// @dev Reads the bytes31 at `cdPtr` in calldata.
            function readBytes31(
                CalldataPointer cdPtr
            ) internal pure returns (bytes31 value) {
                assembly {
                    value := calldataload(cdPtr)
                }
            }
            /// @dev Reads the bytes32 at `cdPtr` in calldata.
            function readBytes32(
                CalldataPointer cdPtr
            ) internal pure returns (bytes32 value) {
                assembly {
                    value := calldataload(cdPtr)
                }
            }
            /// @dev Reads the uint8 at `cdPtr` in calldata.
            function readUint8(
                CalldataPointer cdPtr
            ) internal pure returns (uint8 value) {
                assembly {
                    value := calldataload(cdPtr)
                }
            }
            /// @dev Reads the uint16 at `cdPtr` in calldata.
            function readUint16(
                CalldataPointer cdPtr
            ) internal pure returns (uint16 value) {
                assembly {
                    value := calldataload(cdPtr)
                }
            }
            /// @dev Reads the uint24 at `cdPtr` in calldata.
            function readUint24(
                CalldataPointer cdPtr
            ) internal pure returns (uint24 value) {
                assembly {
                    value := calldataload(cdPtr)
                }
            }
            /// @dev Reads the uint32 at `cdPtr` in calldata.
            function readUint32(
                CalldataPointer cdPtr
            ) internal pure returns (uint32 value) {
                assembly {
                    value := calldataload(cdPtr)
                }
            }
            /// @dev Reads the uint40 at `cdPtr` in calldata.
            function readUint40(
                CalldataPointer cdPtr
            ) internal pure returns (uint40 value) {
                assembly {
                    value := calldataload(cdPtr)
                }
            }
            /// @dev Reads the uint48 at `cdPtr` in calldata.
            function readUint48(
                CalldataPointer cdPtr
            ) internal pure returns (uint48 value) {
                assembly {
                    value := calldataload(cdPtr)
                }
            }
            /// @dev Reads the uint56 at `cdPtr` in calldata.
            function readUint56(
                CalldataPointer cdPtr
            ) internal pure returns (uint56 value) {
                assembly {
                    value := calldataload(cdPtr)
                }
            }
            /// @dev Reads the uint64 at `cdPtr` in calldata.
            function readUint64(
                CalldataPointer cdPtr
            ) internal pure returns (uint64 value) {
                assembly {
                    value := calldataload(cdPtr)
                }
            }
            /// @dev Reads the uint72 at `cdPtr` in calldata.
            function readUint72(
                CalldataPointer cdPtr
            ) internal pure returns (uint72 value) {
                assembly {
                    value := calldataload(cdPtr)
                }
            }
            /// @dev Reads the uint80 at `cdPtr` in calldata.
            function readUint80(
                CalldataPointer cdPtr
            ) internal pure returns (uint80 value) {
                assembly {
                    value := calldataload(cdPtr)
                }
            }
            /// @dev Reads the uint88 at `cdPtr` in calldata.
            function readUint88(
                CalldataPointer cdPtr
            ) internal pure returns (uint88 value) {
                assembly {
                    value := calldataload(cdPtr)
                }
            }
            /// @dev Reads the uint96 at `cdPtr` in calldata.
            function readUint96(
                CalldataPointer cdPtr
            ) internal pure returns (uint96 value) {
                assembly {
                    value := calldataload(cdPtr)
                }
            }
            /// @dev Reads the uint104 at `cdPtr` in calldata.
            function readUint104(
                CalldataPointer cdPtr
            ) internal pure returns (uint104 value) {
                assembly {
                    value := calldataload(cdPtr)
                }
            }
            /// @dev Reads the uint112 at `cdPtr` in calldata.
            function readUint112(
                CalldataPointer cdPtr
            ) internal pure returns (uint112 value) {
                assembly {
                    value := calldataload(cdPtr)
                }
            }
            /// @dev Reads the uint120 at `cdPtr` in calldata.
            function readUint120(
                CalldataPointer cdPtr
            ) internal pure returns (uint120 value) {
                assembly {
                    value := calldataload(cdPtr)
                }
            }
            /// @dev Reads the uint128 at `cdPtr` in calldata.
            function readUint128(
                CalldataPointer cdPtr
            ) internal pure returns (uint128 value) {
                assembly {
                    value := calldataload(cdPtr)
                }
            }
            /// @dev Reads the uint136 at `cdPtr` in calldata.
            function readUint136(
                CalldataPointer cdPtr
            ) internal pure returns (uint136 value) {
                assembly {
                    value := calldataload(cdPtr)
                }
            }
            /// @dev Reads the uint144 at `cdPtr` in calldata.
            function readUint144(
                CalldataPointer cdPtr
            ) internal pure returns (uint144 value) {
                assembly {
                    value := calldataload(cdPtr)
                }
            }
            /// @dev Reads the uint152 at `cdPtr` in calldata.
            function readUint152(
                CalldataPointer cdPtr
            ) internal pure returns (uint152 value) {
                assembly {
                    value := calldataload(cdPtr)
                }
            }
            /// @dev Reads the uint160 at `cdPtr` in calldata.
            function readUint160(
                CalldataPointer cdPtr
            ) internal pure returns (uint160 value) {
                assembly {
                    value := calldataload(cdPtr)
                }
            }
            /// @dev Reads the uint168 at `cdPtr` in calldata.
            function readUint168(
                CalldataPointer cdPtr
            ) internal pure returns (uint168 value) {
                assembly {
                    value := calldataload(cdPtr)
                }
            }
            /// @dev Reads the uint176 at `cdPtr` in calldata.
            function readUint176(
                CalldataPointer cdPtr
            ) internal pure returns (uint176 value) {
                assembly {
                    value := calldataload(cdPtr)
                }
            }
            /// @dev Reads the uint184 at `cdPtr` in calldata.
            function readUint184(
                CalldataPointer cdPtr
            ) internal pure returns (uint184 value) {
                assembly {
                    value := calldataload(cdPtr)
                }
            }
            /// @dev Reads the uint192 at `cdPtr` in calldata.
            function readUint192(
                CalldataPointer cdPtr
            ) internal pure returns (uint192 value) {
                assembly {
                    value := calldataload(cdPtr)
                }
            }
            /// @dev Reads the uint200 at `cdPtr` in calldata.
            function readUint200(
                CalldataPointer cdPtr
            ) internal pure returns (uint200 value) {
                assembly {
                    value := calldataload(cdPtr)
                }
            }
            /// @dev Reads the uint208 at `cdPtr` in calldata.
            function readUint208(
                CalldataPointer cdPtr
            ) internal pure returns (uint208 value) {
                assembly {
                    value := calldataload(cdPtr)
                }
            }
            /// @dev Reads the uint216 at `cdPtr` in calldata.
            function readUint216(
                CalldataPointer cdPtr
            ) internal pure returns (uint216 value) {
                assembly {
                    value := calldataload(cdPtr)
                }
            }
            /// @dev Reads the uint224 at `cdPtr` in calldata.
            function readUint224(
                CalldataPointer cdPtr
            ) internal pure returns (uint224 value) {
                assembly {
                    value := calldataload(cdPtr)
                }
            }
            /// @dev Reads the uint232 at `cdPtr` in calldata.
            function readUint232(
                CalldataPointer cdPtr
            ) internal pure returns (uint232 value) {
                assembly {
                    value := calldataload(cdPtr)
                }
            }
            /// @dev Reads the uint240 at `cdPtr` in calldata.
            function readUint240(
                CalldataPointer cdPtr
            ) internal pure returns (uint240 value) {
                assembly {
                    value := calldataload(cdPtr)
                }
            }
            /// @dev Reads the uint248 at `cdPtr` in calldata.
            function readUint248(
                CalldataPointer cdPtr
            ) internal pure returns (uint248 value) {
                assembly {
                    value := calldataload(cdPtr)
                }
            }
            /// @dev Reads the uint256 at `cdPtr` in calldata.
            function readUint256(
                CalldataPointer cdPtr
            ) internal pure returns (uint256 value) {
                assembly {
                    value := calldataload(cdPtr)
                }
            }
            /// @dev Reads the int8 at `cdPtr` in calldata.
            function readInt8(
                CalldataPointer cdPtr
            ) internal pure returns (int8 value) {
                assembly {
                    value := calldataload(cdPtr)
                }
            }
            /// @dev Reads the int16 at `cdPtr` in calldata.
            function readInt16(
                CalldataPointer cdPtr
            ) internal pure returns (int16 value) {
                assembly {
                    value := calldataload(cdPtr)
                }
            }
            /// @dev Reads the int24 at `cdPtr` in calldata.
            function readInt24(
                CalldataPointer cdPtr
            ) internal pure returns (int24 value) {
                assembly {
                    value := calldataload(cdPtr)
                }
            }
            /// @dev Reads the int32 at `cdPtr` in calldata.
            function readInt32(
                CalldataPointer cdPtr
            ) internal pure returns (int32 value) {
                assembly {
                    value := calldataload(cdPtr)
                }
            }
            /// @dev Reads the int40 at `cdPtr` in calldata.
            function readInt40(
                CalldataPointer cdPtr
            ) internal pure returns (int40 value) {
                assembly {
                    value := calldataload(cdPtr)
                }
            }
            /// @dev Reads the int48 at `cdPtr` in calldata.
            function readInt48(
                CalldataPointer cdPtr
            ) internal pure returns (int48 value) {
                assembly {
                    value := calldataload(cdPtr)
                }
            }
            /// @dev Reads the int56 at `cdPtr` in calldata.
            function readInt56(
                CalldataPointer cdPtr
            ) internal pure returns (int56 value) {
                assembly {
                    value := calldataload(cdPtr)
                }
            }
            /// @dev Reads the int64 at `cdPtr` in calldata.
            function readInt64(
                CalldataPointer cdPtr
            ) internal pure returns (int64 value) {
                assembly {
                    value := calldataload(cdPtr)
                }
            }
            /// @dev Reads the int72 at `cdPtr` in calldata.
            function readInt72(
                CalldataPointer cdPtr
            ) internal pure returns (int72 value) {
                assembly {
                    value := calldataload(cdPtr)
                }
            }
            /// @dev Reads the int80 at `cdPtr` in calldata.
            function readInt80(
                CalldataPointer cdPtr
            ) internal pure returns (int80 value) {
                assembly {
                    value := calldataload(cdPtr)
                }
            }
            /// @dev Reads the int88 at `cdPtr` in calldata.
            function readInt88(
                CalldataPointer cdPtr
            ) internal pure returns (int88 value) {
                assembly {
                    value := calldataload(cdPtr)
                }
            }
            /// @dev Reads the int96 at `cdPtr` in calldata.
            function readInt96(
                CalldataPointer cdPtr
            ) internal pure returns (int96 value) {
                assembly {
                    value := calldataload(cdPtr)
                }
            }
            /// @dev Reads the int104 at `cdPtr` in calldata.
            function readInt104(
                CalldataPointer cdPtr
            ) internal pure returns (int104 value) {
                assembly {
                    value := calldataload(cdPtr)
                }
            }
            /// @dev Reads the int112 at `cdPtr` in calldata.
            function readInt112(
                CalldataPointer cdPtr
            ) internal pure returns (int112 value) {
                assembly {
                    value := calldataload(cdPtr)
                }
            }
            /// @dev Reads the int120 at `cdPtr` in calldata.
            function readInt120(
                CalldataPointer cdPtr
            ) internal pure returns (int120 value) {
                assembly {
                    value := calldataload(cdPtr)
                }
            }
            /// @dev Reads the int128 at `cdPtr` in calldata.
            function readInt128(
                CalldataPointer cdPtr
            ) internal pure returns (int128 value) {
                assembly {
                    value := calldataload(cdPtr)
                }
            }
            /// @dev Reads the int136 at `cdPtr` in calldata.
            function readInt136(
                CalldataPointer cdPtr
            ) internal pure returns (int136 value) {
                assembly {
                    value := calldataload(cdPtr)
                }
            }
            /// @dev Reads the int144 at `cdPtr` in calldata.
            function readInt144(
                CalldataPointer cdPtr
            ) internal pure returns (int144 value) {
                assembly {
                    value := calldataload(cdPtr)
                }
            }
            /// @dev Reads the int152 at `cdPtr` in calldata.
            function readInt152(
                CalldataPointer cdPtr
            ) internal pure returns (int152 value) {
                assembly {
                    value := calldataload(cdPtr)
                }
            }
            /// @dev Reads the int160 at `cdPtr` in calldata.
            function readInt160(
                CalldataPointer cdPtr
            ) internal pure returns (int160 value) {
                assembly {
                    value := calldataload(cdPtr)
                }
            }
            /// @dev Reads the int168 at `cdPtr` in calldata.
            function readInt168(
                CalldataPointer cdPtr
            ) internal pure returns (int168 value) {
                assembly {
                    value := calldataload(cdPtr)
                }
            }
            /// @dev Reads the int176 at `cdPtr` in calldata.
            function readInt176(
                CalldataPointer cdPtr
            ) internal pure returns (int176 value) {
                assembly {
                    value := calldataload(cdPtr)
                }
            }
            /// @dev Reads the int184 at `cdPtr` in calldata.
            function readInt184(
                CalldataPointer cdPtr
            ) internal pure returns (int184 value) {
                assembly {
                    value := calldataload(cdPtr)
                }
            }
            /// @dev Reads the int192 at `cdPtr` in calldata.
            function readInt192(
                CalldataPointer cdPtr
            ) internal pure returns (int192 value) {
                assembly {
                    value := calldataload(cdPtr)
                }
            }
            /// @dev Reads the int200 at `cdPtr` in calldata.
            function readInt200(
                CalldataPointer cdPtr
            ) internal pure returns (int200 value) {
                assembly {
                    value := calldataload(cdPtr)
                }
            }
            /// @dev Reads the int208 at `cdPtr` in calldata.
            function readInt208(
                CalldataPointer cdPtr
            ) internal pure returns (int208 value) {
                assembly {
                    value := calldataload(cdPtr)
                }
            }
            /// @dev Reads the int216 at `cdPtr` in calldata.
            function readInt216(
                CalldataPointer cdPtr
            ) internal pure returns (int216 value) {
                assembly {
                    value := calldataload(cdPtr)
                }
            }
            /// @dev Reads the int224 at `cdPtr` in calldata.
            function readInt224(
                CalldataPointer cdPtr
            ) internal pure returns (int224 value) {
                assembly {
                    value := calldataload(cdPtr)
                }
            }
            /// @dev Reads the int232 at `cdPtr` in calldata.
            function readInt232(
                CalldataPointer cdPtr
            ) internal pure returns (int232 value) {
                assembly {
                    value := calldataload(cdPtr)
                }
            }
            /// @dev Reads the int240 at `cdPtr` in calldata.
            function readInt240(
                CalldataPointer cdPtr
            ) internal pure returns (int240 value) {
                assembly {
                    value := calldataload(cdPtr)
                }
            }
            /// @dev Reads the int248 at `cdPtr` in calldata.
            function readInt248(
                CalldataPointer cdPtr
            ) internal pure returns (int248 value) {
                assembly {
                    value := calldataload(cdPtr)
                }
            }
            /// @dev Reads the int256 at `cdPtr` in calldata.
            function readInt256(
                CalldataPointer cdPtr
            ) internal pure returns (int256 value) {
                assembly {
                    value := calldataload(cdPtr)
                }
            }
        }
        library ReturndataReaders {
            /// @dev Reads value at `rdPtr` & applies a mask to return only last 4 bytes
            function readMaskedUint256(
                ReturndataPointer rdPtr
            ) internal pure returns (uint256 value) {
                value = rdPtr.readUint256() & OffsetOrLengthMask;
            }
            /// @dev Reads the bool at `rdPtr` in returndata.
            function readBool(
                ReturndataPointer rdPtr
            ) internal pure returns (bool value) {
                assembly {
                    returndatacopy(0, rdPtr, _OneWord)
                    value := mload(0)
                }
            }
            /// @dev Reads the address at `rdPtr` in returndata.
            function readAddress(
                ReturndataPointer rdPtr
            ) internal pure returns (address value) {
                assembly {
                    returndatacopy(0, rdPtr, _OneWord)
                    value := mload(0)
                }
            }
            /// @dev Reads the bytes1 at `rdPtr` in returndata.
            function readBytes1(
                ReturndataPointer rdPtr
            ) internal pure returns (bytes1 value) {
                assembly {
                    returndatacopy(0, rdPtr, _OneWord)
                    value := mload(0)
                }
            }
            /// @dev Reads the bytes2 at `rdPtr` in returndata.
            function readBytes2(
                ReturndataPointer rdPtr
            ) internal pure returns (bytes2 value) {
                assembly {
                    returndatacopy(0, rdPtr, _OneWord)
                    value := mload(0)
                }
            }
            /// @dev Reads the bytes3 at `rdPtr` in returndata.
            function readBytes3(
                ReturndataPointer rdPtr
            ) internal pure returns (bytes3 value) {
                assembly {
                    returndatacopy(0, rdPtr, _OneWord)
                    value := mload(0)
                }
            }
            /// @dev Reads the bytes4 at `rdPtr` in returndata.
            function readBytes4(
                ReturndataPointer rdPtr
            ) internal pure returns (bytes4 value) {
                assembly {
                    returndatacopy(0, rdPtr, _OneWord)
                    value := mload(0)
                }
            }
            /// @dev Reads the bytes5 at `rdPtr` in returndata.
            function readBytes5(
                ReturndataPointer rdPtr
            ) internal pure returns (bytes5 value) {
                assembly {
                    returndatacopy(0, rdPtr, _OneWord)
                    value := mload(0)
                }
            }
            /// @dev Reads the bytes6 at `rdPtr` in returndata.
            function readBytes6(
                ReturndataPointer rdPtr
            ) internal pure returns (bytes6 value) {
                assembly {
                    returndatacopy(0, rdPtr, _OneWord)
                    value := mload(0)
                }
            }
            /// @dev Reads the bytes7 at `rdPtr` in returndata.
            function readBytes7(
                ReturndataPointer rdPtr
            ) internal pure returns (bytes7 value) {
                assembly {
                    returndatacopy(0, rdPtr, _OneWord)
                    value := mload(0)
                }
            }
            /// @dev Reads the bytes8 at `rdPtr` in returndata.
            function readBytes8(
                ReturndataPointer rdPtr
            ) internal pure returns (bytes8 value) {
                assembly {
                    returndatacopy(0, rdPtr, _OneWord)
                    value := mload(0)
                }
            }
            /// @dev Reads the bytes9 at `rdPtr` in returndata.
            function readBytes9(
                ReturndataPointer rdPtr
            ) internal pure returns (bytes9 value) {
                assembly {
                    returndatacopy(0, rdPtr, _OneWord)
                    value := mload(0)
                }
            }
            /// @dev Reads the bytes10 at `rdPtr` in returndata.
            function readBytes10(
                ReturndataPointer rdPtr
            ) internal pure returns (bytes10 value) {
                assembly {
                    returndatacopy(0, rdPtr, _OneWord)
                    value := mload(0)
                }
            }
            /// @dev Reads the bytes11 at `rdPtr` in returndata.
            function readBytes11(
                ReturndataPointer rdPtr
            ) internal pure returns (bytes11 value) {
                assembly {
                    returndatacopy(0, rdPtr, _OneWord)
                    value := mload(0)
                }
            }
            /// @dev Reads the bytes12 at `rdPtr` in returndata.
            function readBytes12(
                ReturndataPointer rdPtr
            ) internal pure returns (bytes12 value) {
                assembly {
                    returndatacopy(0, rdPtr, _OneWord)
                    value := mload(0)
                }
            }
            /// @dev Reads the bytes13 at `rdPtr` in returndata.
            function readBytes13(
                ReturndataPointer rdPtr
            ) internal pure returns (bytes13 value) {
                assembly {
                    returndatacopy(0, rdPtr, _OneWord)
                    value := mload(0)
                }
            }
            /// @dev Reads the bytes14 at `rdPtr` in returndata.
            function readBytes14(
                ReturndataPointer rdPtr
            ) internal pure returns (bytes14 value) {
                assembly {
                    returndatacopy(0, rdPtr, _OneWord)
                    value := mload(0)
                }
            }
            /// @dev Reads the bytes15 at `rdPtr` in returndata.
            function readBytes15(
                ReturndataPointer rdPtr
            ) internal pure returns (bytes15 value) {
                assembly {
                    returndatacopy(0, rdPtr, _OneWord)
                    value := mload(0)
                }
            }
            /// @dev Reads the bytes16 at `rdPtr` in returndata.
            function readBytes16(
                ReturndataPointer rdPtr
            ) internal pure returns (bytes16 value) {
                assembly {
                    returndatacopy(0, rdPtr, _OneWord)
                    value := mload(0)
                }
            }
            /// @dev Reads the bytes17 at `rdPtr` in returndata.
            function readBytes17(
                ReturndataPointer rdPtr
            ) internal pure returns (bytes17 value) {
                assembly {
                    returndatacopy(0, rdPtr, _OneWord)
                    value := mload(0)
                }
            }
            /// @dev Reads the bytes18 at `rdPtr` in returndata.
            function readBytes18(
                ReturndataPointer rdPtr
            ) internal pure returns (bytes18 value) {
                assembly {
                    returndatacopy(0, rdPtr, _OneWord)
                    value := mload(0)
                }
            }
            /// @dev Reads the bytes19 at `rdPtr` in returndata.
            function readBytes19(
                ReturndataPointer rdPtr
            ) internal pure returns (bytes19 value) {
                assembly {
                    returndatacopy(0, rdPtr, _OneWord)
                    value := mload(0)
                }
            }
            /// @dev Reads the bytes20 at `rdPtr` in returndata.
            function readBytes20(
                ReturndataPointer rdPtr
            ) internal pure returns (bytes20 value) {
                assembly {
                    returndatacopy(0, rdPtr, _OneWord)
                    value := mload(0)
                }
            }
            /// @dev Reads the bytes21 at `rdPtr` in returndata.
            function readBytes21(
                ReturndataPointer rdPtr
            ) internal pure returns (bytes21 value) {
                assembly {
                    returndatacopy(0, rdPtr, _OneWord)
                    value := mload(0)
                }
            }
            /// @dev Reads the bytes22 at `rdPtr` in returndata.
            function readBytes22(
                ReturndataPointer rdPtr
            ) internal pure returns (bytes22 value) {
                assembly {
                    returndatacopy(0, rdPtr, _OneWord)
                    value := mload(0)
                }
            }
            /// @dev Reads the bytes23 at `rdPtr` in returndata.
            function readBytes23(
                ReturndataPointer rdPtr
            ) internal pure returns (bytes23 value) {
                assembly {
                    returndatacopy(0, rdPtr, _OneWord)
                    value := mload(0)
                }
            }
            /// @dev Reads the bytes24 at `rdPtr` in returndata.
            function readBytes24(
                ReturndataPointer rdPtr
            ) internal pure returns (bytes24 value) {
                assembly {
                    returndatacopy(0, rdPtr, _OneWord)
                    value := mload(0)
                }
            }
            /// @dev Reads the bytes25 at `rdPtr` in returndata.
            function readBytes25(
                ReturndataPointer rdPtr
            ) internal pure returns (bytes25 value) {
                assembly {
                    returndatacopy(0, rdPtr, _OneWord)
                    value := mload(0)
                }
            }
            /// @dev Reads the bytes26 at `rdPtr` in returndata.
            function readBytes26(
                ReturndataPointer rdPtr
            ) internal pure returns (bytes26 value) {
                assembly {
                    returndatacopy(0, rdPtr, _OneWord)
                    value := mload(0)
                }
            }
            /// @dev Reads the bytes27 at `rdPtr` in returndata.
            function readBytes27(
                ReturndataPointer rdPtr
            ) internal pure returns (bytes27 value) {
                assembly {
                    returndatacopy(0, rdPtr, _OneWord)
                    value := mload(0)
                }
            }
            /// @dev Reads the bytes28 at `rdPtr` in returndata.
            function readBytes28(
                ReturndataPointer rdPtr
            ) internal pure returns (bytes28 value) {
                assembly {
                    returndatacopy(0, rdPtr, _OneWord)
                    value := mload(0)
                }
            }
            /// @dev Reads the bytes29 at `rdPtr` in returndata.
            function readBytes29(
                ReturndataPointer rdPtr
            ) internal pure returns (bytes29 value) {
                assembly {
                    returndatacopy(0, rdPtr, _OneWord)
                    value := mload(0)
                }
            }
            /// @dev Reads the bytes30 at `rdPtr` in returndata.
            function readBytes30(
                ReturndataPointer rdPtr
            ) internal pure returns (bytes30 value) {
                assembly {
                    returndatacopy(0, rdPtr, _OneWord)
                    value := mload(0)
                }
            }
            /// @dev Reads the bytes31 at `rdPtr` in returndata.
            function readBytes31(
                ReturndataPointer rdPtr
            ) internal pure returns (bytes31 value) {
                assembly {
                    returndatacopy(0, rdPtr, _OneWord)
                    value := mload(0)
                }
            }
            /// @dev Reads the bytes32 at `rdPtr` in returndata.
            function readBytes32(
                ReturndataPointer rdPtr
            ) internal pure returns (bytes32 value) {
                assembly {
                    returndatacopy(0, rdPtr, _OneWord)
                    value := mload(0)
                }
            }
            /// @dev Reads the uint8 at `rdPtr` in returndata.
            function readUint8(
                ReturndataPointer rdPtr
            ) internal pure returns (uint8 value) {
                assembly {
                    returndatacopy(0, rdPtr, _OneWord)
                    value := mload(0)
                }
            }
            /// @dev Reads the uint16 at `rdPtr` in returndata.
            function readUint16(
                ReturndataPointer rdPtr
            ) internal pure returns (uint16 value) {
                assembly {
                    returndatacopy(0, rdPtr, _OneWord)
                    value := mload(0)
                }
            }
            /// @dev Reads the uint24 at `rdPtr` in returndata.
            function readUint24(
                ReturndataPointer rdPtr
            ) internal pure returns (uint24 value) {
                assembly {
                    returndatacopy(0, rdPtr, _OneWord)
                    value := mload(0)
                }
            }
            /// @dev Reads the uint32 at `rdPtr` in returndata.
            function readUint32(
                ReturndataPointer rdPtr
            ) internal pure returns (uint32 value) {
                assembly {
                    returndatacopy(0, rdPtr, _OneWord)
                    value := mload(0)
                }
            }
            /// @dev Reads the uint40 at `rdPtr` in returndata.
            function readUint40(
                ReturndataPointer rdPtr
            ) internal pure returns (uint40 value) {
                assembly {
                    returndatacopy(0, rdPtr, _OneWord)
                    value := mload(0)
                }
            }
            /// @dev Reads the uint48 at `rdPtr` in returndata.
            function readUint48(
                ReturndataPointer rdPtr
            ) internal pure returns (uint48 value) {
                assembly {
                    returndatacopy(0, rdPtr, _OneWord)
                    value := mload(0)
                }
            }
            /// @dev Reads the uint56 at `rdPtr` in returndata.
            function readUint56(
                ReturndataPointer rdPtr
            ) internal pure returns (uint56 value) {
                assembly {
                    returndatacopy(0, rdPtr, _OneWord)
                    value := mload(0)
                }
            }
            /// @dev Reads the uint64 at `rdPtr` in returndata.
            function readUint64(
                ReturndataPointer rdPtr
            ) internal pure returns (uint64 value) {
                assembly {
                    returndatacopy(0, rdPtr, _OneWord)
                    value := mload(0)
                }
            }
            /// @dev Reads the uint72 at `rdPtr` in returndata.
            function readUint72(
                ReturndataPointer rdPtr
            ) internal pure returns (uint72 value) {
                assembly {
                    returndatacopy(0, rdPtr, _OneWord)
                    value := mload(0)
                }
            }
            /// @dev Reads the uint80 at `rdPtr` in returndata.
            function readUint80(
                ReturndataPointer rdPtr
            ) internal pure returns (uint80 value) {
                assembly {
                    returndatacopy(0, rdPtr, _OneWord)
                    value := mload(0)
                }
            }
            /// @dev Reads the uint88 at `rdPtr` in returndata.
            function readUint88(
                ReturndataPointer rdPtr
            ) internal pure returns (uint88 value) {
                assembly {
                    returndatacopy(0, rdPtr, _OneWord)
                    value := mload(0)
                }
            }
            /// @dev Reads the uint96 at `rdPtr` in returndata.
            function readUint96(
                ReturndataPointer rdPtr
            ) internal pure returns (uint96 value) {
                assembly {
                    returndatacopy(0, rdPtr, _OneWord)
                    value := mload(0)
                }
            }
            /// @dev Reads the uint104 at `rdPtr` in returndata.
            function readUint104(
                ReturndataPointer rdPtr
            ) internal pure returns (uint104 value) {
                assembly {
                    returndatacopy(0, rdPtr, _OneWord)
                    value := mload(0)
                }
            }
            /// @dev Reads the uint112 at `rdPtr` in returndata.
            function readUint112(
                ReturndataPointer rdPtr
            ) internal pure returns (uint112 value) {
                assembly {
                    returndatacopy(0, rdPtr, _OneWord)
                    value := mload(0)
                }
            }
            /// @dev Reads the uint120 at `rdPtr` in returndata.
            function readUint120(
                ReturndataPointer rdPtr
            ) internal pure returns (uint120 value) {
                assembly {
                    returndatacopy(0, rdPtr, _OneWord)
                    value := mload(0)
                }
            }
            /// @dev Reads the uint128 at `rdPtr` in returndata.
            function readUint128(
                ReturndataPointer rdPtr
            ) internal pure returns (uint128 value) {
                assembly {
                    returndatacopy(0, rdPtr, _OneWord)
                    value := mload(0)
                }
            }
            /// @dev Reads the uint136 at `rdPtr` in returndata.
            function readUint136(
                ReturndataPointer rdPtr
            ) internal pure returns (uint136 value) {
                assembly {
                    returndatacopy(0, rdPtr, _OneWord)
                    value := mload(0)
                }
            }
            /// @dev Reads the uint144 at `rdPtr` in returndata.
            function readUint144(
                ReturndataPointer rdPtr
            ) internal pure returns (uint144 value) {
                assembly {
                    returndatacopy(0, rdPtr, _OneWord)
                    value := mload(0)
                }
            }
            /// @dev Reads the uint152 at `rdPtr` in returndata.
            function readUint152(
                ReturndataPointer rdPtr
            ) internal pure returns (uint152 value) {
                assembly {
                    returndatacopy(0, rdPtr, _OneWord)
                    value := mload(0)
                }
            }
            /// @dev Reads the uint160 at `rdPtr` in returndata.
            function readUint160(
                ReturndataPointer rdPtr
            ) internal pure returns (uint160 value) {
                assembly {
                    returndatacopy(0, rdPtr, _OneWord)
                    value := mload(0)
                }
            }
            /// @dev Reads the uint168 at `rdPtr` in returndata.
            function readUint168(
                ReturndataPointer rdPtr
            ) internal pure returns (uint168 value) {
                assembly {
                    returndatacopy(0, rdPtr, _OneWord)
                    value := mload(0)
                }
            }
            /// @dev Reads the uint176 at `rdPtr` in returndata.
            function readUint176(
                ReturndataPointer rdPtr
            ) internal pure returns (uint176 value) {
                assembly {
                    returndatacopy(0, rdPtr, _OneWord)
                    value := mload(0)
                }
            }
            /// @dev Reads the uint184 at `rdPtr` in returndata.
            function readUint184(
                ReturndataPointer rdPtr
            ) internal pure returns (uint184 value) {
                assembly {
                    returndatacopy(0, rdPtr, _OneWord)
                    value := mload(0)
                }
            }
            /// @dev Reads the uint192 at `rdPtr` in returndata.
            function readUint192(
                ReturndataPointer rdPtr
            ) internal pure returns (uint192 value) {
                assembly {
                    returndatacopy(0, rdPtr, _OneWord)
                    value := mload(0)
                }
            }
            /// @dev Reads the uint200 at `rdPtr` in returndata.
            function readUint200(
                ReturndataPointer rdPtr
            ) internal pure returns (uint200 value) {
                assembly {
                    returndatacopy(0, rdPtr, _OneWord)
                    value := mload(0)
                }
            }
            /// @dev Reads the uint208 at `rdPtr` in returndata.
            function readUint208(
                ReturndataPointer rdPtr
            ) internal pure returns (uint208 value) {
                assembly {
                    returndatacopy(0, rdPtr, _OneWord)
                    value := mload(0)
                }
            }
            /// @dev Reads the uint216 at `rdPtr` in returndata.
            function readUint216(
                ReturndataPointer rdPtr
            ) internal pure returns (uint216 value) {
                assembly {
                    returndatacopy(0, rdPtr, _OneWord)
                    value := mload(0)
                }
            }
            /// @dev Reads the uint224 at `rdPtr` in returndata.
            function readUint224(
                ReturndataPointer rdPtr
            ) internal pure returns (uint224 value) {
                assembly {
                    returndatacopy(0, rdPtr, _OneWord)
                    value := mload(0)
                }
            }
            /// @dev Reads the uint232 at `rdPtr` in returndata.
            function readUint232(
                ReturndataPointer rdPtr
            ) internal pure returns (uint232 value) {
                assembly {
                    returndatacopy(0, rdPtr, _OneWord)
                    value := mload(0)
                }
            }
            /// @dev Reads the uint240 at `rdPtr` in returndata.
            function readUint240(
                ReturndataPointer rdPtr
            ) internal pure returns (uint240 value) {
                assembly {
                    returndatacopy(0, rdPtr, _OneWord)
                    value := mload(0)
                }
            }
            /// @dev Reads the uint248 at `rdPtr` in returndata.
            function readUint248(
                ReturndataPointer rdPtr
            ) internal pure returns (uint248 value) {
                assembly {
                    returndatacopy(0, rdPtr, _OneWord)
                    value := mload(0)
                }
            }
            /// @dev Reads the uint256 at `rdPtr` in returndata.
            function readUint256(
                ReturndataPointer rdPtr
            ) internal pure returns (uint256 value) {
                assembly {
                    returndatacopy(0, rdPtr, _OneWord)
                    value := mload(0)
                }
            }
            /// @dev Reads the int8 at `rdPtr` in returndata.
            function readInt8(
                ReturndataPointer rdPtr
            ) internal pure returns (int8 value) {
                assembly {
                    returndatacopy(0, rdPtr, _OneWord)
                    value := mload(0)
                }
            }
            /// @dev Reads the int16 at `rdPtr` in returndata.
            function readInt16(
                ReturndataPointer rdPtr
            ) internal pure returns (int16 value) {
                assembly {
                    returndatacopy(0, rdPtr, _OneWord)
                    value := mload(0)
                }
            }
            /// @dev Reads the int24 at `rdPtr` in returndata.
            function readInt24(
                ReturndataPointer rdPtr
            ) internal pure returns (int24 value) {
                assembly {
                    returndatacopy(0, rdPtr, _OneWord)
                    value := mload(0)
                }
            }
            /// @dev Reads the int32 at `rdPtr` in returndata.
            function readInt32(
                ReturndataPointer rdPtr
            ) internal pure returns (int32 value) {
                assembly {
                    returndatacopy(0, rdPtr, _OneWord)
                    value := mload(0)
                }
            }
            /// @dev Reads the int40 at `rdPtr` in returndata.
            function readInt40(
                ReturndataPointer rdPtr
            ) internal pure returns (int40 value) {
                assembly {
                    returndatacopy(0, rdPtr, _OneWord)
                    value := mload(0)
                }
            }
            /// @dev Reads the int48 at `rdPtr` in returndata.
            function readInt48(
                ReturndataPointer rdPtr
            ) internal pure returns (int48 value) {
                assembly {
                    returndatacopy(0, rdPtr, _OneWord)
                    value := mload(0)
                }
            }
            /// @dev Reads the int56 at `rdPtr` in returndata.
            function readInt56(
                ReturndataPointer rdPtr
            ) internal pure returns (int56 value) {
                assembly {
                    returndatacopy(0, rdPtr, _OneWord)
                    value := mload(0)
                }
            }
            /// @dev Reads the int64 at `rdPtr` in returndata.
            function readInt64(
                ReturndataPointer rdPtr
            ) internal pure returns (int64 value) {
                assembly {
                    returndatacopy(0, rdPtr, _OneWord)
                    value := mload(0)
                }
            }
            /// @dev Reads the int72 at `rdPtr` in returndata.
            function readInt72(
                ReturndataPointer rdPtr
            ) internal pure returns (int72 value) {
                assembly {
                    returndatacopy(0, rdPtr, _OneWord)
                    value := mload(0)
                }
            }
            /// @dev Reads the int80 at `rdPtr` in returndata.
            function readInt80(
                ReturndataPointer rdPtr
            ) internal pure returns (int80 value) {
                assembly {
                    returndatacopy(0, rdPtr, _OneWord)
                    value := mload(0)
                }
            }
            /// @dev Reads the int88 at `rdPtr` in returndata.
            function readInt88(
                ReturndataPointer rdPtr
            ) internal pure returns (int88 value) {
                assembly {
                    returndatacopy(0, rdPtr, _OneWord)
                    value := mload(0)
                }
            }
            /// @dev Reads the int96 at `rdPtr` in returndata.
            function readInt96(
                ReturndataPointer rdPtr
            ) internal pure returns (int96 value) {
                assembly {
                    returndatacopy(0, rdPtr, _OneWord)
                    value := mload(0)
                }
            }
            /// @dev Reads the int104 at `rdPtr` in returndata.
            function readInt104(
                ReturndataPointer rdPtr
            ) internal pure returns (int104 value) {
                assembly {
                    returndatacopy(0, rdPtr, _OneWord)
                    value := mload(0)
                }
            }
            /// @dev Reads the int112 at `rdPtr` in returndata.
            function readInt112(
                ReturndataPointer rdPtr
            ) internal pure returns (int112 value) {
                assembly {
                    returndatacopy(0, rdPtr, _OneWord)
                    value := mload(0)
                }
            }
            /// @dev Reads the int120 at `rdPtr` in returndata.
            function readInt120(
                ReturndataPointer rdPtr
            ) internal pure returns (int120 value) {
                assembly {
                    returndatacopy(0, rdPtr, _OneWord)
                    value := mload(0)
                }
            }
            /// @dev Reads the int128 at `rdPtr` in returndata.
            function readInt128(
                ReturndataPointer rdPtr
            ) internal pure returns (int128 value) {
                assembly {
                    returndatacopy(0, rdPtr, _OneWord)
                    value := mload(0)
                }
            }
            /// @dev Reads the int136 at `rdPtr` in returndata.
            function readInt136(
                ReturndataPointer rdPtr
            ) internal pure returns (int136 value) {
                assembly {
                    returndatacopy(0, rdPtr, _OneWord)
                    value := mload(0)
                }
            }
            /// @dev Reads the int144 at `rdPtr` in returndata.
            function readInt144(
                ReturndataPointer rdPtr
            ) internal pure returns (int144 value) {
                assembly {
                    returndatacopy(0, rdPtr, _OneWord)
                    value := mload(0)
                }
            }
            /// @dev Reads the int152 at `rdPtr` in returndata.
            function readInt152(
                ReturndataPointer rdPtr
            ) internal pure returns (int152 value) {
                assembly {
                    returndatacopy(0, rdPtr, _OneWord)
                    value := mload(0)
                }
            }
            /// @dev Reads the int160 at `rdPtr` in returndata.
            function readInt160(
                ReturndataPointer rdPtr
            ) internal pure returns (int160 value) {
                assembly {
                    returndatacopy(0, rdPtr, _OneWord)
                    value := mload(0)
                }
            }
            /// @dev Reads the int168 at `rdPtr` in returndata.
            function readInt168(
                ReturndataPointer rdPtr
            ) internal pure returns (int168 value) {
                assembly {
                    returndatacopy(0, rdPtr, _OneWord)
                    value := mload(0)
                }
            }
            /// @dev Reads the int176 at `rdPtr` in returndata.
            function readInt176(
                ReturndataPointer rdPtr
            ) internal pure returns (int176 value) {
                assembly {
                    returndatacopy(0, rdPtr, _OneWord)
                    value := mload(0)
                }
            }
            /// @dev Reads the int184 at `rdPtr` in returndata.
            function readInt184(
                ReturndataPointer rdPtr
            ) internal pure returns (int184 value) {
                assembly {
                    returndatacopy(0, rdPtr, _OneWord)
                    value := mload(0)
                }
            }
            /// @dev Reads the int192 at `rdPtr` in returndata.
            function readInt192(
                ReturndataPointer rdPtr
            ) internal pure returns (int192 value) {
                assembly {
                    returndatacopy(0, rdPtr, _OneWord)
                    value := mload(0)
                }
            }
            /// @dev Reads the int200 at `rdPtr` in returndata.
            function readInt200(
                ReturndataPointer rdPtr
            ) internal pure returns (int200 value) {
                assembly {
                    returndatacopy(0, rdPtr, _OneWord)
                    value := mload(0)
                }
            }
            /// @dev Reads the int208 at `rdPtr` in returndata.
            function readInt208(
                ReturndataPointer rdPtr
            ) internal pure returns (int208 value) {
                assembly {
                    returndatacopy(0, rdPtr, _OneWord)
                    value := mload(0)
                }
            }
            /// @dev Reads the int216 at `rdPtr` in returndata.
            function readInt216(
                ReturndataPointer rdPtr
            ) internal pure returns (int216 value) {
                assembly {
                    returndatacopy(0, rdPtr, _OneWord)
                    value := mload(0)
                }
            }
            /// @dev Reads the int224 at `rdPtr` in returndata.
            function readInt224(
                ReturndataPointer rdPtr
            ) internal pure returns (int224 value) {
                assembly {
                    returndatacopy(0, rdPtr, _OneWord)
                    value := mload(0)
                }
            }
            /// @dev Reads the int232 at `rdPtr` in returndata.
            function readInt232(
                ReturndataPointer rdPtr
            ) internal pure returns (int232 value) {
                assembly {
                    returndatacopy(0, rdPtr, _OneWord)
                    value := mload(0)
                }
            }
            /// @dev Reads the int240 at `rdPtr` in returndata.
            function readInt240(
                ReturndataPointer rdPtr
            ) internal pure returns (int240 value) {
                assembly {
                    returndatacopy(0, rdPtr, _OneWord)
                    value := mload(0)
                }
            }
            /// @dev Reads the int248 at `rdPtr` in returndata.
            function readInt248(
                ReturndataPointer rdPtr
            ) internal pure returns (int248 value) {
                assembly {
                    returndatacopy(0, rdPtr, _OneWord)
                    value := mload(0)
                }
            }
            /// @dev Reads the int256 at `rdPtr` in returndata.
            function readInt256(
                ReturndataPointer rdPtr
            ) internal pure returns (int256 value) {
                assembly {
                    returndatacopy(0, rdPtr, _OneWord)
                    value := mload(0)
                }
            }
        }
        library MemoryReaders {
            /// @dev Reads the memory pointer at `mPtr` in memory.
            function readMemoryPointer(
                MemoryPointer mPtr
            ) internal pure returns (MemoryPointer value) {
                assembly {
                    value := mload(mPtr)
                }
            }
            /// @dev Reads value at `mPtr` & applies a mask to return only last 4 bytes
            function readMaskedUint256(
                MemoryPointer mPtr
            ) internal pure returns (uint256 value) {
                value = mPtr.readUint256() & OffsetOrLengthMask;
            }
            /// @dev Reads the bool at `mPtr` in memory.
            function readBool(MemoryPointer mPtr) internal pure returns (bool value) {
                assembly {
                    value := mload(mPtr)
                }
            }
            /// @dev Reads the address at `mPtr` in memory.
            function readAddress(
                MemoryPointer mPtr
            ) internal pure returns (address value) {
                assembly {
                    value := mload(mPtr)
                }
            }
            /// @dev Reads the bytes1 at `mPtr` in memory.
            function readBytes1(
                MemoryPointer mPtr
            ) internal pure returns (bytes1 value) {
                assembly {
                    value := mload(mPtr)
                }
            }
            /// @dev Reads the bytes2 at `mPtr` in memory.
            function readBytes2(
                MemoryPointer mPtr
            ) internal pure returns (bytes2 value) {
                assembly {
                    value := mload(mPtr)
                }
            }
            /// @dev Reads the bytes3 at `mPtr` in memory.
            function readBytes3(
                MemoryPointer mPtr
            ) internal pure returns (bytes3 value) {
                assembly {
                    value := mload(mPtr)
                }
            }
            /// @dev Reads the bytes4 at `mPtr` in memory.
            function readBytes4(
                MemoryPointer mPtr
            ) internal pure returns (bytes4 value) {
                assembly {
                    value := mload(mPtr)
                }
            }
            /// @dev Reads the bytes5 at `mPtr` in memory.
            function readBytes5(
                MemoryPointer mPtr
            ) internal pure returns (bytes5 value) {
                assembly {
                    value := mload(mPtr)
                }
            }
            /// @dev Reads the bytes6 at `mPtr` in memory.
            function readBytes6(
                MemoryPointer mPtr
            ) internal pure returns (bytes6 value) {
                assembly {
                    value := mload(mPtr)
                }
            }
            /// @dev Reads the bytes7 at `mPtr` in memory.
            function readBytes7(
                MemoryPointer mPtr
            ) internal pure returns (bytes7 value) {
                assembly {
                    value := mload(mPtr)
                }
            }
            /// @dev Reads the bytes8 at `mPtr` in memory.
            function readBytes8(
                MemoryPointer mPtr
            ) internal pure returns (bytes8 value) {
                assembly {
                    value := mload(mPtr)
                }
            }
            /// @dev Reads the bytes9 at `mPtr` in memory.
            function readBytes9(
                MemoryPointer mPtr
            ) internal pure returns (bytes9 value) {
                assembly {
                    value := mload(mPtr)
                }
            }
            /// @dev Reads the bytes10 at `mPtr` in memory.
            function readBytes10(
                MemoryPointer mPtr
            ) internal pure returns (bytes10 value) {
                assembly {
                    value := mload(mPtr)
                }
            }
            /// @dev Reads the bytes11 at `mPtr` in memory.
            function readBytes11(
                MemoryPointer mPtr
            ) internal pure returns (bytes11 value) {
                assembly {
                    value := mload(mPtr)
                }
            }
            /// @dev Reads the bytes12 at `mPtr` in memory.
            function readBytes12(
                MemoryPointer mPtr
            ) internal pure returns (bytes12 value) {
                assembly {
                    value := mload(mPtr)
                }
            }
            /// @dev Reads the bytes13 at `mPtr` in memory.
            function readBytes13(
                MemoryPointer mPtr
            ) internal pure returns (bytes13 value) {
                assembly {
                    value := mload(mPtr)
                }
            }
            /// @dev Reads the bytes14 at `mPtr` in memory.
            function readBytes14(
                MemoryPointer mPtr
            ) internal pure returns (bytes14 value) {
                assembly {
                    value := mload(mPtr)
                }
            }
            /// @dev Reads the bytes15 at `mPtr` in memory.
            function readBytes15(
                MemoryPointer mPtr
            ) internal pure returns (bytes15 value) {
                assembly {
                    value := mload(mPtr)
                }
            }
            /// @dev Reads the bytes16 at `mPtr` in memory.
            function readBytes16(
                MemoryPointer mPtr
            ) internal pure returns (bytes16 value) {
                assembly {
                    value := mload(mPtr)
                }
            }
            /// @dev Reads the bytes17 at `mPtr` in memory.
            function readBytes17(
                MemoryPointer mPtr
            ) internal pure returns (bytes17 value) {
                assembly {
                    value := mload(mPtr)
                }
            }
            /// @dev Reads the bytes18 at `mPtr` in memory.
            function readBytes18(
                MemoryPointer mPtr
            ) internal pure returns (bytes18 value) {
                assembly {
                    value := mload(mPtr)
                }
            }
            /// @dev Reads the bytes19 at `mPtr` in memory.
            function readBytes19(
                MemoryPointer mPtr
            ) internal pure returns (bytes19 value) {
                assembly {
                    value := mload(mPtr)
                }
            }
            /// @dev Reads the bytes20 at `mPtr` in memory.
            function readBytes20(
                MemoryPointer mPtr
            ) internal pure returns (bytes20 value) {
                assembly {
                    value := mload(mPtr)
                }
            }
            /// @dev Reads the bytes21 at `mPtr` in memory.
            function readBytes21(
                MemoryPointer mPtr
            ) internal pure returns (bytes21 value) {
                assembly {
                    value := mload(mPtr)
                }
            }
            /// @dev Reads the bytes22 at `mPtr` in memory.
            function readBytes22(
                MemoryPointer mPtr
            ) internal pure returns (bytes22 value) {
                assembly {
                    value := mload(mPtr)
                }
            }
            /// @dev Reads the bytes23 at `mPtr` in memory.
            function readBytes23(
                MemoryPointer mPtr
            ) internal pure returns (bytes23 value) {
                assembly {
                    value := mload(mPtr)
                }
            }
            /// @dev Reads the bytes24 at `mPtr` in memory.
            function readBytes24(
                MemoryPointer mPtr
            ) internal pure returns (bytes24 value) {
                assembly {
                    value := mload(mPtr)
                }
            }
            /// @dev Reads the bytes25 at `mPtr` in memory.
            function readBytes25(
                MemoryPointer mPtr
            ) internal pure returns (bytes25 value) {
                assembly {
                    value := mload(mPtr)
                }
            }
            /// @dev Reads the bytes26 at `mPtr` in memory.
            function readBytes26(
                MemoryPointer mPtr
            ) internal pure returns (bytes26 value) {
                assembly {
                    value := mload(mPtr)
                }
            }
            /// @dev Reads the bytes27 at `mPtr` in memory.
            function readBytes27(
                MemoryPointer mPtr
            ) internal pure returns (bytes27 value) {
                assembly {
                    value := mload(mPtr)
                }
            }
            /// @dev Reads the bytes28 at `mPtr` in memory.
            function readBytes28(
                MemoryPointer mPtr
            ) internal pure returns (bytes28 value) {
                assembly {
                    value := mload(mPtr)
                }
            }
            /// @dev Reads the bytes29 at `mPtr` in memory.
            function readBytes29(
                MemoryPointer mPtr
            ) internal pure returns (bytes29 value) {
                assembly {
                    value := mload(mPtr)
                }
            }
            /// @dev Reads the bytes30 at `mPtr` in memory.
            function readBytes30(
                MemoryPointer mPtr
            ) internal pure returns (bytes30 value) {
                assembly {
                    value := mload(mPtr)
                }
            }
            /// @dev Reads the bytes31 at `mPtr` in memory.
            function readBytes31(
                MemoryPointer mPtr
            ) internal pure returns (bytes31 value) {
                assembly {
                    value := mload(mPtr)
                }
            }
            /// @dev Reads the bytes32 at `mPtr` in memory.
            function readBytes32(
                MemoryPointer mPtr
            ) internal pure returns (bytes32 value) {
                assembly {
                    value := mload(mPtr)
                }
            }
            /// @dev Reads the uint8 at `mPtr` in memory.
            function readUint8(MemoryPointer mPtr) internal pure returns (uint8 value) {
                assembly {
                    value := mload(mPtr)
                }
            }
            /// @dev Reads the uint16 at `mPtr` in memory.
            function readUint16(
                MemoryPointer mPtr
            ) internal pure returns (uint16 value) {
                assembly {
                    value := mload(mPtr)
                }
            }
            /// @dev Reads the uint24 at `mPtr` in memory.
            function readUint24(
                MemoryPointer mPtr
            ) internal pure returns (uint24 value) {
                assembly {
                    value := mload(mPtr)
                }
            }
            /// @dev Reads the uint32 at `mPtr` in memory.
            function readUint32(
                MemoryPointer mPtr
            ) internal pure returns (uint32 value) {
                assembly {
                    value := mload(mPtr)
                }
            }
            /// @dev Reads the uint40 at `mPtr` in memory.
            function readUint40(
                MemoryPointer mPtr
            ) internal pure returns (uint40 value) {
                assembly {
                    value := mload(mPtr)
                }
            }
            /// @dev Reads the uint48 at `mPtr` in memory.
            function readUint48(
                MemoryPointer mPtr
            ) internal pure returns (uint48 value) {
                assembly {
                    value := mload(mPtr)
                }
            }
            /// @dev Reads the uint56 at `mPtr` in memory.
            function readUint56(
                MemoryPointer mPtr
            ) internal pure returns (uint56 value) {
                assembly {
                    value := mload(mPtr)
                }
            }
            /// @dev Reads the uint64 at `mPtr` in memory.
            function readUint64(
                MemoryPointer mPtr
            ) internal pure returns (uint64 value) {
                assembly {
                    value := mload(mPtr)
                }
            }
            /// @dev Reads the uint72 at `mPtr` in memory.
            function readUint72(
                MemoryPointer mPtr
            ) internal pure returns (uint72 value) {
                assembly {
                    value := mload(mPtr)
                }
            }
            /// @dev Reads the uint80 at `mPtr` in memory.
            function readUint80(
                MemoryPointer mPtr
            ) internal pure returns (uint80 value) {
                assembly {
                    value := mload(mPtr)
                }
            }
            /// @dev Reads the uint88 at `mPtr` in memory.
            function readUint88(
                MemoryPointer mPtr
            ) internal pure returns (uint88 value) {
                assembly {
                    value := mload(mPtr)
                }
            }
            /// @dev Reads the uint96 at `mPtr` in memory.
            function readUint96(
                MemoryPointer mPtr
            ) internal pure returns (uint96 value) {
                assembly {
                    value := mload(mPtr)
                }
            }
            /// @dev Reads the uint104 at `mPtr` in memory.
            function readUint104(
                MemoryPointer mPtr
            ) internal pure returns (uint104 value) {
                assembly {
                    value := mload(mPtr)
                }
            }
            /// @dev Reads the uint112 at `mPtr` in memory.
            function readUint112(
                MemoryPointer mPtr
            ) internal pure returns (uint112 value) {
                assembly {
                    value := mload(mPtr)
                }
            }
            /// @dev Reads the uint120 at `mPtr` in memory.
            function readUint120(
                MemoryPointer mPtr
            ) internal pure returns (uint120 value) {
                assembly {
                    value := mload(mPtr)
                }
            }
            /// @dev Reads the uint128 at `mPtr` in memory.
            function readUint128(
                MemoryPointer mPtr
            ) internal pure returns (uint128 value) {
                assembly {
                    value := mload(mPtr)
                }
            }
            /// @dev Reads the uint136 at `mPtr` in memory.
            function readUint136(
                MemoryPointer mPtr
            ) internal pure returns (uint136 value) {
                assembly {
                    value := mload(mPtr)
                }
            }
            /// @dev Reads the uint144 at `mPtr` in memory.
            function readUint144(
                MemoryPointer mPtr
            ) internal pure returns (uint144 value) {
                assembly {
                    value := mload(mPtr)
                }
            }
            /// @dev Reads the uint152 at `mPtr` in memory.
            function readUint152(
                MemoryPointer mPtr
            ) internal pure returns (uint152 value) {
                assembly {
                    value := mload(mPtr)
                }
            }
            /// @dev Reads the uint160 at `mPtr` in memory.
            function readUint160(
                MemoryPointer mPtr
            ) internal pure returns (uint160 value) {
                assembly {
                    value := mload(mPtr)
                }
            }
            /// @dev Reads the uint168 at `mPtr` in memory.
            function readUint168(
                MemoryPointer mPtr
            ) internal pure returns (uint168 value) {
                assembly {
                    value := mload(mPtr)
                }
            }
            /// @dev Reads the uint176 at `mPtr` in memory.
            function readUint176(
                MemoryPointer mPtr
            ) internal pure returns (uint176 value) {
                assembly {
                    value := mload(mPtr)
                }
            }
            /// @dev Reads the uint184 at `mPtr` in memory.
            function readUint184(
                MemoryPointer mPtr
            ) internal pure returns (uint184 value) {
                assembly {
                    value := mload(mPtr)
                }
            }
            /// @dev Reads the uint192 at `mPtr` in memory.
            function readUint192(
                MemoryPointer mPtr
            ) internal pure returns (uint192 value) {
                assembly {
                    value := mload(mPtr)
                }
            }
            /// @dev Reads the uint200 at `mPtr` in memory.
            function readUint200(
                MemoryPointer mPtr
            ) internal pure returns (uint200 value) {
                assembly {
                    value := mload(mPtr)
                }
            }
            /// @dev Reads the uint208 at `mPtr` in memory.
            function readUint208(
                MemoryPointer mPtr
            ) internal pure returns (uint208 value) {
                assembly {
                    value := mload(mPtr)
                }
            }
            /// @dev Reads the uint216 at `mPtr` in memory.
            function readUint216(
                MemoryPointer mPtr
            ) internal pure returns (uint216 value) {
                assembly {
                    value := mload(mPtr)
                }
            }
            /// @dev Reads the uint224 at `mPtr` in memory.
            function readUint224(
                MemoryPointer mPtr
            ) internal pure returns (uint224 value) {
                assembly {
                    value := mload(mPtr)
                }
            }
            /// @dev Reads the uint232 at `mPtr` in memory.
            function readUint232(
                MemoryPointer mPtr
            ) internal pure returns (uint232 value) {
                assembly {
                    value := mload(mPtr)
                }
            }
            /// @dev Reads the uint240 at `mPtr` in memory.
            function readUint240(
                MemoryPointer mPtr
            ) internal pure returns (uint240 value) {
                assembly {
                    value := mload(mPtr)
                }
            }
            /// @dev Reads the uint248 at `mPtr` in memory.
            function readUint248(
                MemoryPointer mPtr
            ) internal pure returns (uint248 value) {
                assembly {
                    value := mload(mPtr)
                }
            }
            /// @dev Reads the uint256 at `mPtr` in memory.
            function readUint256(
                MemoryPointer mPtr
            ) internal pure returns (uint256 value) {
                assembly {
                    value := mload(mPtr)
                }
            }
            /// @dev Reads the int8 at `mPtr` in memory.
            function readInt8(MemoryPointer mPtr) internal pure returns (int8 value) {
                assembly {
                    value := mload(mPtr)
                }
            }
            /// @dev Reads the int16 at `mPtr` in memory.
            function readInt16(MemoryPointer mPtr) internal pure returns (int16 value) {
                assembly {
                    value := mload(mPtr)
                }
            }
            /// @dev Reads the int24 at `mPtr` in memory.
            function readInt24(MemoryPointer mPtr) internal pure returns (int24 value) {
                assembly {
                    value := mload(mPtr)
                }
            }
            /// @dev Reads the int32 at `mPtr` in memory.
            function readInt32(MemoryPointer mPtr) internal pure returns (int32 value) {
                assembly {
                    value := mload(mPtr)
                }
            }
            /// @dev Reads the int40 at `mPtr` in memory.
            function readInt40(MemoryPointer mPtr) internal pure returns (int40 value) {
                assembly {
                    value := mload(mPtr)
                }
            }
            /// @dev Reads the int48 at `mPtr` in memory.
            function readInt48(MemoryPointer mPtr) internal pure returns (int48 value) {
                assembly {
                    value := mload(mPtr)
                }
            }
            /// @dev Reads the int56 at `mPtr` in memory.
            function readInt56(MemoryPointer mPtr) internal pure returns (int56 value) {
                assembly {
                    value := mload(mPtr)
                }
            }
            /// @dev Reads the int64 at `mPtr` in memory.
            function readInt64(MemoryPointer mPtr) internal pure returns (int64 value) {
                assembly {
                    value := mload(mPtr)
                }
            }
            /// @dev Reads the int72 at `mPtr` in memory.
            function readInt72(MemoryPointer mPtr) internal pure returns (int72 value) {
                assembly {
                    value := mload(mPtr)
                }
            }
            /// @dev Reads the int80 at `mPtr` in memory.
            function readInt80(MemoryPointer mPtr) internal pure returns (int80 value) {
                assembly {
                    value := mload(mPtr)
                }
            }
            /// @dev Reads the int88 at `mPtr` in memory.
            function readInt88(MemoryPointer mPtr) internal pure returns (int88 value) {
                assembly {
                    value := mload(mPtr)
                }
            }
            /// @dev Reads the int96 at `mPtr` in memory.
            function readInt96(MemoryPointer mPtr) internal pure returns (int96 value) {
                assembly {
                    value := mload(mPtr)
                }
            }
            /// @dev Reads the int104 at `mPtr` in memory.
            function readInt104(
                MemoryPointer mPtr
            ) internal pure returns (int104 value) {
                assembly {
                    value := mload(mPtr)
                }
            }
            /// @dev Reads the int112 at `mPtr` in memory.
            function readInt112(
                MemoryPointer mPtr
            ) internal pure returns (int112 value) {
                assembly {
                    value := mload(mPtr)
                }
            }
            /// @dev Reads the int120 at `mPtr` in memory.
            function readInt120(
                MemoryPointer mPtr
            ) internal pure returns (int120 value) {
                assembly {
                    value := mload(mPtr)
                }
            }
            /// @dev Reads the int128 at `mPtr` in memory.
            function readInt128(
                MemoryPointer mPtr
            ) internal pure returns (int128 value) {
                assembly {
                    value := mload(mPtr)
                }
            }
            /// @dev Reads the int136 at `mPtr` in memory.
            function readInt136(
                MemoryPointer mPtr
            ) internal pure returns (int136 value) {
                assembly {
                    value := mload(mPtr)
                }
            }
            /// @dev Reads the int144 at `mPtr` in memory.
            function readInt144(
                MemoryPointer mPtr
            ) internal pure returns (int144 value) {
                assembly {
                    value := mload(mPtr)
                }
            }
            /// @dev Reads the int152 at `mPtr` in memory.
            function readInt152(
                MemoryPointer mPtr
            ) internal pure returns (int152 value) {
                assembly {
                    value := mload(mPtr)
                }
            }
            /// @dev Reads the int160 at `mPtr` in memory.
            function readInt160(
                MemoryPointer mPtr
            ) internal pure returns (int160 value) {
                assembly {
                    value := mload(mPtr)
                }
            }
            /// @dev Reads the int168 at `mPtr` in memory.
            function readInt168(
                MemoryPointer mPtr
            ) internal pure returns (int168 value) {
                assembly {
                    value := mload(mPtr)
                }
            }
            /// @dev Reads the int176 at `mPtr` in memory.
            function readInt176(
                MemoryPointer mPtr
            ) internal pure returns (int176 value) {
                assembly {
                    value := mload(mPtr)
                }
            }
            /// @dev Reads the int184 at `mPtr` in memory.
            function readInt184(
                MemoryPointer mPtr
            ) internal pure returns (int184 value) {
                assembly {
                    value := mload(mPtr)
                }
            }
            /// @dev Reads the int192 at `mPtr` in memory.
            function readInt192(
                MemoryPointer mPtr
            ) internal pure returns (int192 value) {
                assembly {
                    value := mload(mPtr)
                }
            }
            /// @dev Reads the int200 at `mPtr` in memory.
            function readInt200(
                MemoryPointer mPtr
            ) internal pure returns (int200 value) {
                assembly {
                    value := mload(mPtr)
                }
            }
            /// @dev Reads the int208 at `mPtr` in memory.
            function readInt208(
                MemoryPointer mPtr
            ) internal pure returns (int208 value) {
                assembly {
                    value := mload(mPtr)
                }
            }
            /// @dev Reads the int216 at `mPtr` in memory.
            function readInt216(
                MemoryPointer mPtr
            ) internal pure returns (int216 value) {
                assembly {
                    value := mload(mPtr)
                }
            }
            /// @dev Reads the int224 at `mPtr` in memory.
            function readInt224(
                MemoryPointer mPtr
            ) internal pure returns (int224 value) {
                assembly {
                    value := mload(mPtr)
                }
            }
            /// @dev Reads the int232 at `mPtr` in memory.
            function readInt232(
                MemoryPointer mPtr
            ) internal pure returns (int232 value) {
                assembly {
                    value := mload(mPtr)
                }
            }
            /// @dev Reads the int240 at `mPtr` in memory.
            function readInt240(
                MemoryPointer mPtr
            ) internal pure returns (int240 value) {
                assembly {
                    value := mload(mPtr)
                }
            }
            /// @dev Reads the int248 at `mPtr` in memory.
            function readInt248(
                MemoryPointer mPtr
            ) internal pure returns (int248 value) {
                assembly {
                    value := mload(mPtr)
                }
            }
            /// @dev Reads the int256 at `mPtr` in memory.
            function readInt256(
                MemoryPointer mPtr
            ) internal pure returns (int256 value) {
                assembly {
                    value := mload(mPtr)
                }
            }
        }
        library MemoryWriters {
            /// @dev Writes `valuePtr` to memory at `mPtr`.
            function write(MemoryPointer mPtr, MemoryPointer valuePtr) internal pure {
                assembly {
                    mstore(mPtr, valuePtr)
                }
            }
            /// @dev Writes a boolean `value` to `mPtr` in memory.
            function write(MemoryPointer mPtr, bool value) internal pure {
                assembly {
                    mstore(mPtr, value)
                }
            }
            /// @dev Writes an address `value` to `mPtr` in memory.
            function write(MemoryPointer mPtr, address value) internal pure {
                assembly {
                    mstore(mPtr, value)
                }
            }
            /// @dev Writes a bytes32 `value` to `mPtr` in memory.
            /// Separate name to disambiguate literal write parameters.
            function writeBytes32(MemoryPointer mPtr, bytes32 value) internal pure {
                assembly {
                    mstore(mPtr, value)
                }
            }
            /// @dev Writes a uint256 `value` to `mPtr` in memory.
            function write(MemoryPointer mPtr, uint256 value) internal pure {
                assembly {
                    mstore(mPtr, value)
                }
            }
            /// @dev Writes an int256 `value` to `mPtr` in memory.
            /// Separate name to disambiguate literal write parameters.
            function writeInt(MemoryPointer mPtr, int256 value) internal pure {
                assembly {
                    mstore(mPtr, value)
                }
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.13;
        import {
            BasicOrderType,
            ItemType,
            OrderType,
            Side
        } from "./ConsiderationEnums.sol";
        import {
            CalldataPointer,
            MemoryPointer
        } from "../helpers/PointerLibraries.sol";
        /**
         * @dev An order contains eleven components: an offerer, a zone (or account that
         *      can cancel the order or restrict who can fulfill the order depending on
         *      the type), the order type (specifying partial fill support as well as
         *      restricted order status), the start and end time, a hash that will be
         *      provided to the zone when validating restricted orders, a salt, a key
         *      corresponding to a given conduit, a counter, and an arbitrary number of
         *      offer items that can be spent along with consideration items that must
         *      be received by their respective recipient.
         */
        struct OrderComponents {
            address offerer;
            address zone;
            OfferItem[] offer;
            ConsiderationItem[] consideration;
            OrderType orderType;
            uint256 startTime;
            uint256 endTime;
            bytes32 zoneHash;
            uint256 salt;
            bytes32 conduitKey;
            uint256 counter;
        }
        /**
         * @dev An offer item has five components: an item type (ETH or other native
         *      tokens, ERC20, ERC721, and ERC1155, as well as criteria-based ERC721 and
         *      ERC1155), a token address, a dual-purpose "identifierOrCriteria"
         *      component that will either represent a tokenId or a merkle root
         *      depending on the item type, and a start and end amount that support
         *      increasing or decreasing amounts over the duration of the respective
         *      order.
         */
        struct OfferItem {
            ItemType itemType;
            address token;
            uint256 identifierOrCriteria;
            uint256 startAmount;
            uint256 endAmount;
        }
        /**
         * @dev A consideration item has the same five components as an offer item and
         *      an additional sixth component designating the required recipient of the
         *      item.
         */
        struct ConsiderationItem {
            ItemType itemType;
            address token;
            uint256 identifierOrCriteria;
            uint256 startAmount;
            uint256 endAmount;
            address payable recipient;
        }
        /**
         * @dev A spent item is translated from a utilized offer item and has four
         *      components: an item type (ETH or other native tokens, ERC20, ERC721, and
         *      ERC1155), a token address, a tokenId, and an amount.
         */
        struct SpentItem {
            ItemType itemType;
            address token;
            uint256 identifier;
            uint256 amount;
        }
        /**
         * @dev A received item is translated from a utilized consideration item and has
         *      the same four components as a spent item, as well as an additional fifth
         *      component designating the required recipient of the item.
         */
        struct ReceivedItem {
            ItemType itemType;
            address token;
            uint256 identifier;
            uint256 amount;
            address payable recipient;
        }
        /**
         * @dev For basic orders involving ETH / native / ERC20 <=> ERC721 / ERC1155
         *      matching, a group of six functions may be called that only requires a
         *      subset of the usual order arguments. Note the use of a "basicOrderType"
         *      enum; this represents both the usual order type as well as the "route"
         *      of the basic order (a simple derivation function for the basic order
         *      type is `basicOrderType = orderType + (4 * basicOrderRoute)`.)
         */
        struct BasicOrderParameters {
            // calldata offset
            address considerationToken; // 0x24
            uint256 considerationIdentifier; // 0x44
            uint256 considerationAmount; // 0x64
            address payable offerer; // 0x84
            address zone; // 0xa4
            address offerToken; // 0xc4
            uint256 offerIdentifier; // 0xe4
            uint256 offerAmount; // 0x104
            BasicOrderType basicOrderType; // 0x124
            uint256 startTime; // 0x144
            uint256 endTime; // 0x164
            bytes32 zoneHash; // 0x184
            uint256 salt; // 0x1a4
            bytes32 offererConduitKey; // 0x1c4
            bytes32 fulfillerConduitKey; // 0x1e4
            uint256 totalOriginalAdditionalRecipients; // 0x204
            AdditionalRecipient[] additionalRecipients; // 0x224
            bytes signature; // 0x244
            // Total length, excluding dynamic array data: 0x264 (580)
        }
        /**
         * @dev Basic orders can supply any number of additional recipients, with the
         *      implied assumption that they are supplied from the offered ETH (or other
         *      native token) or ERC20 token for the order.
         */
        struct AdditionalRecipient {
            uint256 amount;
            address payable recipient;
        }
        /**
         * @dev The full set of order components, with the exception of the counter,
         *      must be supplied when fulfilling more sophisticated orders or groups of
         *      orders. The total number of original consideration items must also be
         *      supplied, as the caller may specify additional consideration items.
         */
        struct OrderParameters {
            address offerer; // 0x00
            address zone; // 0x20
            OfferItem[] offer; // 0x40
            ConsiderationItem[] consideration; // 0x60
            OrderType orderType; // 0x80
            uint256 startTime; // 0xa0
            uint256 endTime; // 0xc0
            bytes32 zoneHash; // 0xe0
            uint256 salt; // 0x100
            bytes32 conduitKey; // 0x120
            uint256 totalOriginalConsiderationItems; // 0x140
            // offer.length                          // 0x160
        }
        /**
         * @dev Orders require a signature in addition to the other order parameters.
         */
        struct Order {
            OrderParameters parameters;
            bytes signature;
        }
        /**
         * @dev Advanced orders include a numerator (i.e. a fraction to attempt to fill)
         *      and a denominator (the total size of the order) in addition to the
         *      signature and other order parameters. It also supports an optional field
         *      for supplying extra data; this data will be provided to the zone if the
         *      order type is restricted and the zone is not the caller, or will be
         *      provided to the offerer as context for contract order types.
         */
        struct AdvancedOrder {
            OrderParameters parameters;
            uint120 numerator;
            uint120 denominator;
            bytes signature;
            bytes extraData;
        }
        /**
         * @dev Orders can be validated (either explicitly via `validate`, or as a
         *      consequence of a full or partial fill), specifically cancelled (they can
         *      also be cancelled in bulk via incrementing a per-zone counter), and
         *      partially or fully filled (with the fraction filled represented by a
         *      numerator and denominator).
         */
        struct OrderStatus {
            bool isValidated;
            bool isCancelled;
            uint120 numerator;
            uint120 denominator;
        }
        /**
         * @dev A criteria resolver specifies an order, side (offer vs. consideration),
         *      and item index. It then provides a chosen identifier (i.e. tokenId)
         *      alongside a merkle proof demonstrating the identifier meets the required
         *      criteria.
         */
        struct CriteriaResolver {
            uint256 orderIndex;
            Side side;
            uint256 index;
            uint256 identifier;
            bytes32[] criteriaProof;
        }
        /**
         * @dev A fulfillment is applied to a group of orders. It decrements a series of
         *      offer and consideration items, then generates a single execution
         *      element. A given fulfillment can be applied to as many offer and
         *      consideration items as desired, but must contain at least one offer and
         *      at least one consideration that match. The fulfillment must also remain
         *      consistent on all key parameters across all offer items (same offerer,
         *      token, type, tokenId, and conduit preference) as well as across all
         *      consideration items (token, type, tokenId, and recipient).
         */
        struct Fulfillment {
            FulfillmentComponent[] offerComponents;
            FulfillmentComponent[] considerationComponents;
        }
        /**
         * @dev Each fulfillment component contains one index referencing a specific
         *      order and another referencing a specific offer or consideration item.
         */
        struct FulfillmentComponent {
            uint256 orderIndex;
            uint256 itemIndex;
        }
        /**
         * @dev An execution is triggered once all consideration items have been zeroed
         *      out. It sends the item in question from the offerer to the item's
         *      recipient, optionally sourcing approvals from either this contract
         *      directly or from the offerer's chosen conduit if one is specified. An
         *      execution is not provided as an argument, but rather is derived via
         *      orders, criteria resolvers, and fulfillments (where the total number of
         *      executions will be less than or equal to the total number of indicated
         *      fulfillments) and returned as part of `matchOrders`.
         */
        struct Execution {
            ReceivedItem item;
            address offerer;
            bytes32 conduitKey;
        }
        /**
         * @dev Restricted orders are validated post-execution by calling validateOrder
         *      on the zone. This struct provides context about the order fulfillment
         *      and any supplied extraData, as well as all order hashes fulfilled in a
         *      call to a match or fulfillAvailable method.
         */
        struct ZoneParameters {
            bytes32 orderHash;
            address fulfiller;
            address offerer;
            SpentItem[] offer;
            ReceivedItem[] consideration;
            bytes extraData;
            bytes32[] orderHashes;
            uint256 startTime;
            uint256 endTime;
            bytes32 zoneHash;
        }
        /**
         * @dev Zones and contract offerers can communicate which schemas they implement
         *      along with any associated metadata related to each schema.
         */
        struct Schema {
            uint256 id;
            bytes metadata;
        }
        using StructPointers for OrderComponents global;
        using StructPointers for OfferItem global;
        using StructPointers for ConsiderationItem global;
        using StructPointers for SpentItem global;
        using StructPointers for ReceivedItem global;
        using StructPointers for BasicOrderParameters global;
        using StructPointers for AdditionalRecipient global;
        using StructPointers for OrderParameters global;
        using StructPointers for Order global;
        using StructPointers for AdvancedOrder global;
        using StructPointers for OrderStatus global;
        using StructPointers for CriteriaResolver global;
        using StructPointers for Fulfillment global;
        using StructPointers for FulfillmentComponent global;
        using StructPointers for Execution global;
        using StructPointers for ZoneParameters global;
        /**
         * @dev This library provides a set of functions for converting structs to
         *      pointers.
         */
        library StructPointers {
            /**
             * @dev Get a MemoryPointer from OrderComponents.
             *
             * @param obj The OrderComponents object.
             *
             * @return ptr The MemoryPointer.
             */
            function toMemoryPointer(
                OrderComponents memory obj
            ) internal pure returns (MemoryPointer ptr) {
                assembly {
                    ptr := obj
                }
            }
            /**
             * @dev Get a CalldataPointer from OrderComponents.
             *
             * @param obj The OrderComponents object.
             *
             * @return ptr The CalldataPointer.
             */
            function toCalldataPointer(
                OrderComponents calldata obj
            ) internal pure returns (CalldataPointer ptr) {
                assembly {
                    ptr := obj
                }
            }
            /**
             * @dev Get a MemoryPointer from OfferItem.
             *
             * @param obj The OfferItem object.
             *
             * @return ptr The MemoryPointer.
             */
            function toMemoryPointer(
                OfferItem memory obj
            ) internal pure returns (MemoryPointer ptr) {
                assembly {
                    ptr := obj
                }
            }
            /**
             * @dev Get a CalldataPointer from OfferItem.
             *
             * @param obj The OfferItem object.
             *
             * @return ptr The CalldataPointer.
             */
            function toCalldataPointer(
                OfferItem calldata obj
            ) internal pure returns (CalldataPointer ptr) {
                assembly {
                    ptr := obj
                }
            }
            /**
             * @dev Get a MemoryPointer from ConsiderationItem.
             *
             * @param obj The ConsiderationItem object.
             *
             * @return ptr The MemoryPointer.
             */
            function toMemoryPointer(
                ConsiderationItem memory obj
            ) internal pure returns (MemoryPointer ptr) {
                assembly {
                    ptr := obj
                }
            }
            /**
             * @dev Get a CalldataPointer from ConsiderationItem.
             *
             * @param obj The ConsiderationItem object.
             *
             * @return ptr The CalldataPointer.
             */
            function toCalldataPointer(
                ConsiderationItem calldata obj
            ) internal pure returns (CalldataPointer ptr) {
                assembly {
                    ptr := obj
                }
            }
            /**
             * @dev Get a MemoryPointer from SpentItem.
             *
             * @param obj The SpentItem object.
             *
             * @return ptr The MemoryPointer.
             */
            function toMemoryPointer(
                SpentItem memory obj
            ) internal pure returns (MemoryPointer ptr) {
                assembly {
                    ptr := obj
                }
            }
            /**
             * @dev Get a CalldataPointer from SpentItem.
             *
             * @param obj The SpentItem object.
             *
             * @return ptr The CalldataPointer.
             */
            function toCalldataPointer(
                SpentItem calldata obj
            ) internal pure returns (CalldataPointer ptr) {
                assembly {
                    ptr := obj
                }
            }
            /**
             * @dev Get a MemoryPointer from ReceivedItem.
             *
             * @param obj The ReceivedItem object.
             *
             * @return ptr The MemoryPointer.
             */
            function toMemoryPointer(
                ReceivedItem memory obj
            ) internal pure returns (MemoryPointer ptr) {
                assembly {
                    ptr := obj
                }
            }
            /**
             * @dev Get a CalldataPointer from ReceivedItem.
             *
             * @param obj The ReceivedItem object.
             *
             * @return ptr The CalldataPointer.
             */
            function toCalldataPointer(
                ReceivedItem calldata obj
            ) internal pure returns (CalldataPointer ptr) {
                assembly {
                    ptr := obj
                }
            }
            /**
             * @dev Get a MemoryPointer from BasicOrderParameters.
             *
             * @param obj The BasicOrderParameters object.
             *
             * @return ptr The MemoryPointer.
             */
            function toMemoryPointer(
                BasicOrderParameters memory obj
            ) internal pure returns (MemoryPointer ptr) {
                assembly {
                    ptr := obj
                }
            }
            /**
             * @dev Get a CalldataPointer from BasicOrderParameters.
             *
             * @param obj The BasicOrderParameters object.
             *
             * @return ptr The CalldataPointer.
             */
            function toCalldataPointer(
                BasicOrderParameters calldata obj
            ) internal pure returns (CalldataPointer ptr) {
                assembly {
                    ptr := obj
                }
            }
            /**
             * @dev Get a MemoryPointer from AdditionalRecipient.
             *
             * @param obj The AdditionalRecipient object.
             *
             * @return ptr The MemoryPointer.
             */
            function toMemoryPointer(
                AdditionalRecipient memory obj
            ) internal pure returns (MemoryPointer ptr) {
                assembly {
                    ptr := obj
                }
            }
            /**
             * @dev Get a CalldataPointer from AdditionalRecipient.
             *
             * @param obj The AdditionalRecipient object.
             *
             * @return ptr The CalldataPointer.
             */
            function toCalldataPointer(
                AdditionalRecipient calldata obj
            ) internal pure returns (CalldataPointer ptr) {
                assembly {
                    ptr := obj
                }
            }
            /**
             * @dev Get a MemoryPointer from OrderParameters.
             *
             * @param obj The OrderParameters object.
             *
             * @return ptr The MemoryPointer.
             */
            function toMemoryPointer(
                OrderParameters memory obj
            ) internal pure returns (MemoryPointer ptr) {
                assembly {
                    ptr := obj
                }
            }
            /**
             * @dev Get a CalldataPointer from OrderParameters.
             *
             * @param obj The OrderParameters object.
             *
             * @return ptr The CalldataPointer.
             */
            function toCalldataPointer(
                OrderParameters calldata obj
            ) internal pure returns (CalldataPointer ptr) {
                assembly {
                    ptr := obj
                }
            }
            /**
             * @dev Get a MemoryPointer from Order.
             *
             * @param obj The Order object.
             *
             * @return ptr The MemoryPointer.
             */
            function toMemoryPointer(
                Order memory obj
            ) internal pure returns (MemoryPointer ptr) {
                assembly {
                    ptr := obj
                }
            }
            /**
             * @dev Get a CalldataPointer from Order.
             *
             * @param obj The Order object.
             *
             * @return ptr The CalldataPointer.
             */
            function toCalldataPointer(
                Order calldata obj
            ) internal pure returns (CalldataPointer ptr) {
                assembly {
                    ptr := obj
                }
            }
            /**
             * @dev Get a MemoryPointer from AdvancedOrder.
             *
             * @param obj The AdvancedOrder object.
             *
             * @return ptr The MemoryPointer.
             */
            function toMemoryPointer(
                AdvancedOrder memory obj
            ) internal pure returns (MemoryPointer ptr) {
                assembly {
                    ptr := obj
                }
            }
            /**
             * @dev Get a CalldataPointer from AdvancedOrder.
             *
             * @param obj The AdvancedOrder object.
             *
             * @return ptr The CalldataPointer.
             */
            function toCalldataPointer(
                AdvancedOrder calldata obj
            ) internal pure returns (CalldataPointer ptr) {
                assembly {
                    ptr := obj
                }
            }
            /**
             * @dev Get a MemoryPointer from OrderStatus.
             *
             * @param obj The OrderStatus object.
             *
             * @return ptr The MemoryPointer.
             */
            function toMemoryPointer(
                OrderStatus memory obj
            ) internal pure returns (MemoryPointer ptr) {
                assembly {
                    ptr := obj
                }
            }
            /**
             * @dev Get a CalldataPointer from OrderStatus.
             *
             * @param obj The OrderStatus object.
             *
             * @return ptr The CalldataPointer.
             */
            function toCalldataPointer(
                OrderStatus calldata obj
            ) internal pure returns (CalldataPointer ptr) {
                assembly {
                    ptr := obj
                }
            }
            /**
             * @dev Get a MemoryPointer from CriteriaResolver.
             *
             * @param obj The CriteriaResolver object.
             *
             * @return ptr The MemoryPointer.
             */
            function toMemoryPointer(
                CriteriaResolver memory obj
            ) internal pure returns (MemoryPointer ptr) {
                assembly {
                    ptr := obj
                }
            }
            /**
             * @dev Get a CalldataPointer from CriteriaResolver.
             *
             * @param obj The CriteriaResolver object.
             *
             * @return ptr The CalldataPointer.
             */
            function toCalldataPointer(
                CriteriaResolver calldata obj
            ) internal pure returns (CalldataPointer ptr) {
                assembly {
                    ptr := obj
                }
            }
            /**
             * @dev Get a MemoryPointer from Fulfillment.
             *
             * @param obj The Fulfillment object.
             *
             * @return ptr The MemoryPointer.
             */
            function toMemoryPointer(
                Fulfillment memory obj
            ) internal pure returns (MemoryPointer ptr) {
                assembly {
                    ptr := obj
                }
            }
            /**
             * @dev Get a CalldataPointer from Fulfillment.
             *
             * @param obj The Fulfillment object.
             *
             * @return ptr The CalldataPointer.
             */
            function toCalldataPointer(
                Fulfillment calldata obj
            ) internal pure returns (CalldataPointer ptr) {
                assembly {
                    ptr := obj
                }
            }
            /**
             * @dev Get a MemoryPointer from FulfillmentComponent.
             *
             * @param obj The FulfillmentComponent object.
             *
             * @return ptr The MemoryPointer.
             */
            function toMemoryPointer(
                FulfillmentComponent memory obj
            ) internal pure returns (MemoryPointer ptr) {
                assembly {
                    ptr := obj
                }
            }
            /**
             * @dev Get a CalldataPointer from FulfillmentComponent.
             *
             * @param obj The FulfillmentComponent object.
             *
             * @return ptr The CalldataPointer.
             */
            function toCalldataPointer(
                FulfillmentComponent calldata obj
            ) internal pure returns (CalldataPointer ptr) {
                assembly {
                    ptr := obj
                }
            }
            /**
             * @dev Get a MemoryPointer from Execution.
             *
             * @param obj The Execution object.
             *
             * @return ptr The MemoryPointer.
             */
            function toMemoryPointer(
                Execution memory obj
            ) internal pure returns (MemoryPointer ptr) {
                assembly {
                    ptr := obj
                }
            }
            /**
             * @dev Get a CalldataPointer from Execution.
             *
             * @param obj The Execution object.
             *
             * @return ptr The CalldataPointer.
             */
            function toCalldataPointer(
                Execution calldata obj
            ) internal pure returns (CalldataPointer ptr) {
                assembly {
                    ptr := obj
                }
            }
            /**
             * @dev Get a MemoryPointer from ZoneParameters.
             *
             * @param obj The ZoneParameters object.
             *
             * @return ptr The MemoryPointer.
             */
            function toMemoryPointer(
                ZoneParameters memory obj
            ) internal pure returns (MemoryPointer ptr) {
                assembly {
                    ptr := obj
                }
            }
            /**
             * @dev Get a CalldataPointer from ZoneParameters.
             *
             * @param obj The ZoneParameters object.
             *
             * @return ptr The CalldataPointer.
             */
            function toCalldataPointer(
                ZoneParameters calldata obj
            ) internal pure returns (CalldataPointer ptr) {
                assembly {
                    ptr := obj
                }
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity 0.8.17;
        import { Side } from "./ConsiderationEnums.sol";
        import {
            BadFraction_error_length,
            BadFraction_error_selector,
            CannotCancelOrder_error_length,
            CannotCancelOrder_error_selector,
            ConsiderationLengthNotEqualToTotalOriginal_error_length,
            ConsiderationLengthNotEqualToTotalOriginal_error_selector,
            ConsiderationNotMet_error_considerationIndex_ptr,
            ConsiderationNotMet_error_length,
            ConsiderationNotMet_error_orderIndex_ptr,
            ConsiderationNotMet_error_selector,
            ConsiderationNotMet_error_shortfallAmount_ptr,
            CriteriaNotEnabledForItem_error_length,
            CriteriaNotEnabledForItem_error_selector,
            Error_selector_offset,
            InsufficientNativeTokensSupplied_error_length,
            InsufficientNativeTokensSupplied_error_selector,
            InvalidBasicOrderParameterEncoding_error_length,
            InvalidBasicOrderParameterEncoding_error_selector,
            InvalidCallToConduit_error_conduit_ptr,
            InvalidCallToConduit_error_length,
            InvalidCallToConduit_error_selector,
            InvalidConduit_error_conduit_ptr,
            InvalidConduit_error_conduitKey_ptr,
            InvalidConduit_error_length,
            InvalidConduit_error_selector,
            InvalidContractOrder_error_length,
            InvalidContractOrder_error_orderHash_ptr,
            InvalidContractOrder_error_selector,
            InvalidERC721TransferAmount_error_amount_ptr,
            InvalidERC721TransferAmount_error_length,
            InvalidERC721TransferAmount_error_selector,
            InvalidMsgValue_error_length,
            InvalidMsgValue_error_selector,
            InvalidMsgValue_error_value_ptr,
            InvalidNativeOfferItem_error_length,
            InvalidNativeOfferItem_error_selector,
            InvalidProof_error_length,
            InvalidProof_error_selector,
            InvalidTime_error_endTime_ptr,
            InvalidTime_error_length,
            InvalidTime_error_selector,
            InvalidTime_error_startTime_ptr,
            MismatchedOfferAndConsiderationComponents_error_idx_ptr,
            MismatchedOfferAndConsiderationComponents_error_length,
            MismatchedOfferAndConsiderationComponents_error_selector,
            MissingFulfillmentComponentOnAggregation_error_length,
            MissingFulfillmentComponentOnAggregation_error_selector,
            MissingFulfillmentComponentOnAggregation_error_side_ptr,
            MissingOriginalConsiderationItems_error_length,
            MissingOriginalConsiderationItems_error_selector,
            NoReentrantCalls_error_length,
            NoReentrantCalls_error_selector,
            NoSpecifiedOrdersAvailable_error_length,
            NoSpecifiedOrdersAvailable_error_selector,
            OfferAndConsiderationRequiredOnFulfillment_error_length,
            OfferAndConsiderationRequiredOnFulfillment_error_selector,
            OrderAlreadyFilled_error_length,
            OrderAlreadyFilled_error_orderHash_ptr,
            OrderAlreadyFilled_error_selector,
            OrderCriteriaResolverOutOfRange_error_length,
            OrderCriteriaResolverOutOfRange_error_selector,
            OrderCriteriaResolverOutOfRange_error_side_ptr,
            OrderIsCancelled_error_length,
            OrderIsCancelled_error_orderHash_ptr,
            OrderIsCancelled_error_selector,
            OrderPartiallyFilled_error_length,
            OrderPartiallyFilled_error_orderHash_ptr,
            OrderPartiallyFilled_error_selector,
            PartialFillsNotEnabledForOrder_error_length,
            PartialFillsNotEnabledForOrder_error_selector,
            UnresolvedConsiderationCriteria_error_considerationIdx_ptr,
            UnresolvedConsiderationCriteria_error_length,
            UnresolvedConsiderationCriteria_error_orderIndex_ptr,
            UnresolvedConsiderationCriteria_error_selector,
            UnresolvedOfferCriteria_error_length,
            UnresolvedOfferCriteria_error_offerIndex_ptr,
            UnresolvedOfferCriteria_error_orderIndex_ptr,
            UnresolvedOfferCriteria_error_selector,
            UnusedItemParameters_error_length,
            UnusedItemParameters_error_selector
        } from "./ConsiderationErrorConstants.sol";
        /**
         * @dev Reverts the current transaction with a "BadFraction" error message.
         */
        function _revertBadFraction() pure {
            assembly {
                // Store left-padded selector with push4 (reduces bytecode),
                // mem[28:32] = selector
                mstore(0, BadFraction_error_selector)
                // revert(abi.encodeWithSignature("BadFraction()"))
                revert(Error_selector_offset, BadFraction_error_length)
            }
        }
        /**
         * @dev Reverts the current transaction with a "ConsiderationNotMet" error
         *      message, including the provided order index, consideration index, and
         *      shortfall amount.
         *
         * @param orderIndex         The index of the order that did not meet the
         *                           consideration criteria.
         * @param considerationIndex The index of the consideration item that did not
         *                           meet its criteria.
         * @param shortfallAmount    The amount by which the consideration criteria were
         *                           not met.
         */
        function _revertConsiderationNotMet(
            uint256 orderIndex,
            uint256 considerationIndex,
            uint256 shortfallAmount
        ) pure {
            assembly {
                // Store left-padded selector with push4 (reduces bytecode),
                // mem[28:32] = selector
                mstore(0, ConsiderationNotMet_error_selector)
                // Store arguments.
                mstore(ConsiderationNotMet_error_orderIndex_ptr, orderIndex)
                mstore(
                    ConsiderationNotMet_error_considerationIndex_ptr,
                    considerationIndex
                )
                mstore(ConsiderationNotMet_error_shortfallAmount_ptr, shortfallAmount)
                // revert(abi.encodeWithSignature(
                //     "ConsiderationNotMet(uint256,uint256,uint256)",
                //     orderIndex,
                //     considerationIndex,
                //     shortfallAmount
                // ))
                revert(Error_selector_offset, ConsiderationNotMet_error_length)
            }
        }
        /**
         * @dev Reverts the current transaction with a "CriteriaNotEnabledForItem" error
         *      message.
         */
        function _revertCriteriaNotEnabledForItem() pure {
            assembly {
                // Store left-padded selector with push4 (reduces bytecode),
                // mem[28:32] = selector
                mstore(0, CriteriaNotEnabledForItem_error_selector)
                // revert(abi.encodeWithSignature("CriteriaNotEnabledForItem()"))
                revert(Error_selector_offset, CriteriaNotEnabledForItem_error_length)
            }
        }
        /**
         * @dev Reverts the current transaction with an
         *      "InsufficientNativeTokensSupplied" error message.
         */
        function _revertInsufficientNativeTokensSupplied() pure {
            assembly {
                // Store left-padded selector with push4 (reduces bytecode),
                // mem[28:32] = selector
                mstore(0, InsufficientNativeTokensSupplied_error_selector)
                // revert(abi.encodeWithSignature("InsufficientNativeTokensSupplied()"))
                revert(
                    Error_selector_offset,
                    InsufficientNativeTokensSupplied_error_length
                )
            }
        }
        /**
         * @dev Reverts the current transaction with an
         *      "InvalidBasicOrderParameterEncoding" error message.
         */
        function _revertInvalidBasicOrderParameterEncoding() pure {
            assembly {
                // Store left-padded selector with push4 (reduces bytecode),
                // mem[28:32] = selector
                mstore(0, InvalidBasicOrderParameterEncoding_error_selector)
                // revert(abi.encodeWithSignature(
                //     "InvalidBasicOrderParameterEncoding()"
                // ))
                revert(
                    Error_selector_offset,
                    InvalidBasicOrderParameterEncoding_error_length
                )
            }
        }
        /**
         * @dev Reverts the current transaction with an "InvalidCallToConduit" error
         *      message, including the provided address of the conduit that was called
         *      improperly.
         *
         * @param conduit The address of the conduit that was called improperly.
         */
        function _revertInvalidCallToConduit(address conduit) pure {
            assembly {
                // Store left-padded selector with push4 (reduces bytecode),
                // mem[28:32] = selector
                mstore(0, InvalidCallToConduit_error_selector)
                // Store argument.
                mstore(InvalidCallToConduit_error_conduit_ptr, conduit)
                // revert(abi.encodeWithSignature(
                //     "InvalidCallToConduit(address)",
                //     conduit
                // ))
                revert(Error_selector_offset, InvalidCallToConduit_error_length)
            }
        }
        /**
         * @dev Reverts the current transaction with an "CannotCancelOrder" error
         *      message.
         */
        function _revertCannotCancelOrder() pure {
            assembly {
                // Store left-padded selector with push4 (reduces bytecode),
                // mem[28:32] = selector
                mstore(0, CannotCancelOrder_error_selector)
                // revert(abi.encodeWithSignature("CannotCancelOrder()"))
                revert(Error_selector_offset, CannotCancelOrder_error_length)
            }
        }
        /**
         * @dev Reverts the current transaction with an "InvalidConduit" error message,
         *      including the provided key and address of the invalid conduit.
         *
         * @param conduitKey    The key of the invalid conduit.
         * @param conduit       The address of the invalid conduit.
         */
        function _revertInvalidConduit(bytes32 conduitKey, address conduit) pure {
            assembly {
                // Store left-padded selector with push4 (reduces bytecode),
                // mem[28:32] = selector
                mstore(0, InvalidConduit_error_selector)
                // Store arguments.
                mstore(InvalidConduit_error_conduitKey_ptr, conduitKey)
                mstore(InvalidConduit_error_conduit_ptr, conduit)
                // revert(abi.encodeWithSignature(
                //     "InvalidConduit(bytes32,address)",
                //     conduitKey,
                //     conduit
                // ))
                revert(Error_selector_offset, InvalidConduit_error_length)
            }
        }
        /**
         * @dev Reverts the current transaction with an "InvalidERC721TransferAmount"
         *      error message.
         *
         * @param amount The invalid amount.
         */
        function _revertInvalidERC721TransferAmount(uint256 amount) pure {
            assembly {
                // Store left-padded selector with push4 (reduces bytecode),
                // mem[28:32] = selector
                mstore(0, InvalidERC721TransferAmount_error_selector)
                // Store argument.
                mstore(InvalidERC721TransferAmount_error_amount_ptr, amount)
                // revert(abi.encodeWithSignature(
                //     "InvalidERC721TransferAmount(uint256)",
                //     amount
                // ))
                revert(Error_selector_offset, InvalidERC721TransferAmount_error_length)
            }
        }
        /**
         * @dev Reverts the current transaction with an "InvalidMsgValue" error message,
         *      including the invalid value that was sent in the transaction's
         *      `msg.value` field.
         *
         * @param value The invalid value that was sent in the transaction's `msg.value`
         *              field.
         */
        function _revertInvalidMsgValue(uint256 value) pure {
            assembly {
                // Store left-padded selector with push4 (reduces bytecode),
                // mem[28:32] = selector
                mstore(0, InvalidMsgValue_error_selector)
                // Store argument.
                mstore(InvalidMsgValue_error_value_ptr, value)
                // revert(abi.encodeWithSignature("InvalidMsgValue(uint256)", value))
                revert(Error_selector_offset, InvalidMsgValue_error_length)
            }
        }
        /**
         * @dev Reverts the current transaction with an "InvalidNativeOfferItem" error
         *      message.
         */
        function _revertInvalidNativeOfferItem() pure {
            assembly {
                // Store left-padded selector with push4 (reduces bytecode),
                // mem[28:32] = selector
                mstore(0, InvalidNativeOfferItem_error_selector)
                // revert(abi.encodeWithSignature("InvalidNativeOfferItem()"))
                revert(Error_selector_offset, InvalidNativeOfferItem_error_length)
            }
        }
        /**
         * @dev Reverts the current transaction with an "InvalidProof" error message.
         */
        function _revertInvalidProof() pure {
            assembly {
                // Store left-padded selector with push4 (reduces bytecode),
                // mem[28:32] = selector
                mstore(0, InvalidProof_error_selector)
                // revert(abi.encodeWithSignature("InvalidProof()"))
                revert(Error_selector_offset, InvalidProof_error_length)
            }
        }
        /**
         * @dev Reverts the current transaction with an "InvalidContractOrder" error
         *      message.
         *
         * @param orderHash The hash of the contract order that caused the error.
         */
        function _revertInvalidContractOrder(bytes32 orderHash) pure {
            assembly {
                // Store left-padded selector with push4 (reduces bytecode),
                // mem[28:32] = selector
                mstore(0, InvalidContractOrder_error_selector)
                // Store arguments.
                mstore(InvalidContractOrder_error_orderHash_ptr, orderHash)
                // revert(abi.encodeWithSignature(
                //     "InvalidContractOrder(bytes32)",
                //     orderHash
                // ))
                revert(Error_selector_offset, InvalidContractOrder_error_length)
            }
        }
        /**
         * @dev Reverts the current transaction with an "InvalidTime" error message.
         *
         * @param startTime       The time at which the order becomes active.
         * @param endTime         The time at which the order becomes inactive.
         */
        function _revertInvalidTime(uint256 startTime, uint256 endTime) pure {
            assembly {
                // Store left-padded selector with push4 (reduces bytecode),
                // mem[28:32] = selector
                mstore(0, InvalidTime_error_selector)
                // Store arguments.
                mstore(InvalidTime_error_startTime_ptr, startTime)
                mstore(InvalidTime_error_endTime_ptr, endTime)
                // revert(abi.encodeWithSignature(
                //     "InvalidTime(uint256,uint256)",
                //     startTime,
                //     endTime
                // ))
                revert(Error_selector_offset, InvalidTime_error_length)
            }
        }
        /**
         * @dev Reverts execution with a
         *      "MismatchedFulfillmentOfferAndConsiderationComponents" error message.
         *
         * @param fulfillmentIndex         The index of the fulfillment that caused the
         *                                 error.
         */
        function _revertMismatchedFulfillmentOfferAndConsiderationComponents(
            uint256 fulfillmentIndex
        ) pure {
            assembly {
                // Store left-padded selector with push4 (reduces bytecode),
                // mem[28:32] = selector
                mstore(0, MismatchedOfferAndConsiderationComponents_error_selector)
                // Store fulfillment index argument.
                mstore(
                    MismatchedOfferAndConsiderationComponents_error_idx_ptr,
                    fulfillmentIndex
                )
                // revert(abi.encodeWithSignature(
                //     "MismatchedFulfillmentOfferAndConsiderationComponents(uint256)",
                //     fulfillmentIndex
                // ))
                revert(
                    Error_selector_offset,
                    MismatchedOfferAndConsiderationComponents_error_length
                )
            }
        }
        /**
         * @dev Reverts execution with a "MissingFulfillmentComponentOnAggregation"
         *       error message.
         *
         * @param side The side of the fulfillment component that is missing (0 for
         *             offer, 1 for consideration).
         *
         */
        function _revertMissingFulfillmentComponentOnAggregation(Side side) pure {
            assembly {
                // Store left-padded selector with push4 (reduces bytecode),
                // mem[28:32] = selector
                mstore(0, MissingFulfillmentComponentOnAggregation_error_selector)
                // Store argument.
                mstore(MissingFulfillmentComponentOnAggregation_error_side_ptr, side)
                // revert(abi.encodeWithSignature(
                //     "MissingFulfillmentComponentOnAggregation(uint8)",
                //     side
                // ))
                revert(
                    Error_selector_offset,
                    MissingFulfillmentComponentOnAggregation_error_length
                )
            }
        }
        /**
         * @dev Reverts execution with a "MissingOriginalConsiderationItems" error
         *      message.
         */
        function _revertMissingOriginalConsiderationItems() pure {
            assembly {
                // Store left-padded selector with push4 (reduces bytecode),
                // mem[28:32] = selector
                mstore(0, MissingOriginalConsiderationItems_error_selector)
                // revert(abi.encodeWithSignature(
                //     "MissingOriginalConsiderationItems()"
                // ))
                revert(
                    Error_selector_offset,
                    MissingOriginalConsiderationItems_error_length
                )
            }
        }
        /**
         * @dev Reverts execution with a "NoReentrantCalls" error message.
         */
        function _revertNoReentrantCalls() pure {
            assembly {
                // Store left-padded selector with push4 (reduces bytecode),
                // mem[28:32] = selector
                mstore(0, NoReentrantCalls_error_selector)
                // revert(abi.encodeWithSignature("NoReentrantCalls()"))
                revert(Error_selector_offset, NoReentrantCalls_error_length)
            }
        }
        /**
         * @dev Reverts execution with a "NoSpecifiedOrdersAvailable" error message.
         */
        function _revertNoSpecifiedOrdersAvailable() pure {
            assembly {
                // Store left-padded selector with push4 (reduces bytecode),
                // mem[28:32] = selector
                mstore(0, NoSpecifiedOrdersAvailable_error_selector)
                // revert(abi.encodeWithSignature("NoSpecifiedOrdersAvailable()"))
                revert(Error_selector_offset, NoSpecifiedOrdersAvailable_error_length)
            }
        }
        /**
         * @dev Reverts execution with a "OfferAndConsiderationRequiredOnFulfillment"
         *      error message.
         */
        function _revertOfferAndConsiderationRequiredOnFulfillment() pure {
            assembly {
                // Store left-padded selector with push4 (reduces bytecode),
                // mem[28:32] = selector
                mstore(0, OfferAndConsiderationRequiredOnFulfillment_error_selector)
                // revert(abi.encodeWithSignature(
                //     "OfferAndConsiderationRequiredOnFulfillment()"
                // ))
                revert(
                    Error_selector_offset,
                    OfferAndConsiderationRequiredOnFulfillment_error_length
                )
            }
        }
        /**
         * @dev Reverts execution with an "OrderAlreadyFilled" error message.
         *
         * @param orderHash The hash of the order that has already been filled.
         */
        function _revertOrderAlreadyFilled(bytes32 orderHash) pure {
            assembly {
                // Store left-padded selector with push4 (reduces bytecode),
                // mem[28:32] = selector
                mstore(0, OrderAlreadyFilled_error_selector)
                // Store argument.
                mstore(OrderAlreadyFilled_error_orderHash_ptr, orderHash)
                // revert(abi.encodeWithSignature(
                //     "OrderAlreadyFilled(bytes32)",
                //     orderHash
                // ))
                revert(Error_selector_offset, OrderAlreadyFilled_error_length)
            }
        }
        /**
         * @dev Reverts execution with an "OrderCriteriaResolverOutOfRange" error
         *      message.
         *
         * @param side The side of the criteria that is missing (0 for offer, 1 for
         *             consideration).
         *
         */
        function _revertOrderCriteriaResolverOutOfRange(Side side) pure {
            assembly {
                // Store left-padded selector with push4 (reduces bytecode),
                // mem[28:32] = selector
                mstore(0, OrderCriteriaResolverOutOfRange_error_selector)
                // Store argument.
                mstore(OrderCriteriaResolverOutOfRange_error_side_ptr, side)
                // revert(abi.encodeWithSignature(
                //     "OrderCriteriaResolverOutOfRange(uint8)",
                //     side
                // ))
                revert(
                    Error_selector_offset,
                    OrderCriteriaResolverOutOfRange_error_length
                )
            }
        }
        /**
         * @dev Reverts execution with an "OrderIsCancelled" error message.
         *
         * @param orderHash The hash of the order that has already been cancelled.
         */
        function _revertOrderIsCancelled(bytes32 orderHash) pure {
            assembly {
                // Store left-padded selector with push4 (reduces bytecode),
                // mem[28:32] = selector
                mstore(0, OrderIsCancelled_error_selector)
                // Store argument.
                mstore(OrderIsCancelled_error_orderHash_ptr, orderHash)
                // revert(abi.encodeWithSignature(
                //     "OrderIsCancelled(bytes32)",
                //     orderHash
                // ))
                revert(Error_selector_offset, OrderIsCancelled_error_length)
            }
        }
        /**
         * @dev Reverts execution with an "OrderPartiallyFilled" error message.
         *
         * @param orderHash The hash of the order that has already been partially
         *                  filled.
         */
        function _revertOrderPartiallyFilled(bytes32 orderHash) pure {
            assembly {
                // Store left-padded selector with push4 (reduces bytecode),
                // mem[28:32] = selector
                mstore(0, OrderPartiallyFilled_error_selector)
                // Store argument.
                mstore(OrderPartiallyFilled_error_orderHash_ptr, orderHash)
                // revert(abi.encodeWithSignature(
                //     "OrderPartiallyFilled(bytes32)",
                //     orderHash
                // ))
                revert(Error_selector_offset, OrderPartiallyFilled_error_length)
            }
        }
        /**
         * @dev Reverts execution with a "PartialFillsNotEnabledForOrder" error message.
         */
        function _revertPartialFillsNotEnabledForOrder() pure {
            assembly {
                // Store left-padded selector with push4 (reduces bytecode),
                // mem[28:32] = selector
                mstore(0, PartialFillsNotEnabledForOrder_error_selector)
                // revert(abi.encodeWithSignature("PartialFillsNotEnabledForOrder()"))
                revert(
                    Error_selector_offset,
                    PartialFillsNotEnabledForOrder_error_length
                )
            }
        }
        /**
         * @dev Reverts execution with an "UnresolvedConsiderationCriteria" error
         *      message.
         */
        function _revertUnresolvedConsiderationCriteria(
            uint256 orderIndex,
            uint256 considerationIndex
        ) pure {
            assembly {
                // Store left-padded selector with push4 (reduces bytecode),
                // mem[28:32] = selector
                mstore(0, UnresolvedConsiderationCriteria_error_selector)
                // Store orderIndex and considerationIndex arguments.
                mstore(UnresolvedConsiderationCriteria_error_orderIndex_ptr, orderIndex)
                mstore(
                    UnresolvedConsiderationCriteria_error_considerationIdx_ptr,
                    considerationIndex
                )
                // revert(abi.encodeWithSignature(
                //     "UnresolvedConsiderationCriteria(uint256, uint256)",
                //     orderIndex,
                //     considerationIndex
                // ))
                revert(
                    Error_selector_offset,
                    UnresolvedConsiderationCriteria_error_length
                )
            }
        }
        /**
         * @dev Reverts execution with an "UnresolvedOfferCriteria" error message.
         */
        function _revertUnresolvedOfferCriteria(
            uint256 orderIndex,
            uint256 offerIndex
        ) pure {
            assembly {
                // Store left-padded selector with push4 (reduces bytecode),
                // mem[28:32] = selector
                mstore(0, UnresolvedOfferCriteria_error_selector)
                // Store arguments.
                mstore(UnresolvedOfferCriteria_error_orderIndex_ptr, orderIndex)
                mstore(UnresolvedOfferCriteria_error_offerIndex_ptr, offerIndex)
                // revert(abi.encodeWithSignature(
                //     "UnresolvedOfferCriteria(uint256, uint256)",
                //     orderIndex,
                //     offerIndex
                // ))
                revert(Error_selector_offset, UnresolvedOfferCriteria_error_length)
            }
        }
        /**
         * @dev Reverts execution with an "UnusedItemParameters" error message.
         */
        function _revertUnusedItemParameters() pure {
            assembly {
                // Store left-padded selector with push4 (reduces bytecode),
                // mem[28:32] = selector
                mstore(0, UnusedItemParameters_error_selector)
                // revert(abi.encodeWithSignature("UnusedItemParameters()"))
                revert(Error_selector_offset, UnusedItemParameters_error_length)
            }
        }
        /**
         * @dev Reverts execution with a "ConsiderationLengthNotEqualToTotalOriginal"
         *      error message.
         */
        function _revertConsiderationLengthNotEqualToTotalOriginal() pure {
            assembly {
                // Store left-padded selector with push4 (reduces bytecode),
                // mem[28:32] = selector
                mstore(0, ConsiderationLengthNotEqualToTotalOriginal_error_selector)
                // revert(abi.encodeWithSignature(
                //     "ConsiderationLengthNotEqualToTotalOriginal()"
                // ))
                revert(
                    Error_selector_offset,
                    ConsiderationLengthNotEqualToTotalOriginal_error_length
                )
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.13;
        enum OrderType {
            // 0: no partial fills, anyone can execute
            FULL_OPEN,
            // 1: partial fills supported, anyone can execute
            PARTIAL_OPEN,
            // 2: no partial fills, only offerer or zone can execute
            FULL_RESTRICTED,
            // 3: partial fills supported, only offerer or zone can execute
            PARTIAL_RESTRICTED,
            // 4: contract order type
            CONTRACT
        }
        enum BasicOrderType {
            // 0: no partial fills, anyone can execute
            ETH_TO_ERC721_FULL_OPEN,
            // 1: partial fills supported, anyone can execute
            ETH_TO_ERC721_PARTIAL_OPEN,
            // 2: no partial fills, only offerer or zone can execute
            ETH_TO_ERC721_FULL_RESTRICTED,
            // 3: partial fills supported, only offerer or zone can execute
            ETH_TO_ERC721_PARTIAL_RESTRICTED,
            // 4: no partial fills, anyone can execute
            ETH_TO_ERC1155_FULL_OPEN,
            // 5: partial fills supported, anyone can execute
            ETH_TO_ERC1155_PARTIAL_OPEN,
            // 6: no partial fills, only offerer or zone can execute
            ETH_TO_ERC1155_FULL_RESTRICTED,
            // 7: partial fills supported, only offerer or zone can execute
            ETH_TO_ERC1155_PARTIAL_RESTRICTED,
            // 8: no partial fills, anyone can execute
            ERC20_TO_ERC721_FULL_OPEN,
            // 9: partial fills supported, anyone can execute
            ERC20_TO_ERC721_PARTIAL_OPEN,
            // 10: no partial fills, only offerer or zone can execute
            ERC20_TO_ERC721_FULL_RESTRICTED,
            // 11: partial fills supported, only offerer or zone can execute
            ERC20_TO_ERC721_PARTIAL_RESTRICTED,
            // 12: no partial fills, anyone can execute
            ERC20_TO_ERC1155_FULL_OPEN,
            // 13: partial fills supported, anyone can execute
            ERC20_TO_ERC1155_PARTIAL_OPEN,
            // 14: no partial fills, only offerer or zone can execute
            ERC20_TO_ERC1155_FULL_RESTRICTED,
            // 15: partial fills supported, only offerer or zone can execute
            ERC20_TO_ERC1155_PARTIAL_RESTRICTED,
            // 16: no partial fills, anyone can execute
            ERC721_TO_ERC20_FULL_OPEN,
            // 17: partial fills supported, anyone can execute
            ERC721_TO_ERC20_PARTIAL_OPEN,
            // 18: no partial fills, only offerer or zone can execute
            ERC721_TO_ERC20_FULL_RESTRICTED,
            // 19: partial fills supported, only offerer or zone can execute
            ERC721_TO_ERC20_PARTIAL_RESTRICTED,
            // 20: no partial fills, anyone can execute
            ERC1155_TO_ERC20_FULL_OPEN,
            // 21: partial fills supported, anyone can execute
            ERC1155_TO_ERC20_PARTIAL_OPEN,
            // 22: no partial fills, only offerer or zone can execute
            ERC1155_TO_ERC20_FULL_RESTRICTED,
            // 23: partial fills supported, only offerer or zone can execute
            ERC1155_TO_ERC20_PARTIAL_RESTRICTED
        }
        enum BasicOrderRouteType {
            // 0: provide Ether (or other native token) to receive offered ERC721 item.
            ETH_TO_ERC721,
            // 1: provide Ether (or other native token) to receive offered ERC1155 item.
            ETH_TO_ERC1155,
            // 2: provide ERC20 item to receive offered ERC721 item.
            ERC20_TO_ERC721,
            // 3: provide ERC20 item to receive offered ERC1155 item.
            ERC20_TO_ERC1155,
            // 4: provide ERC721 item to receive offered ERC20 item.
            ERC721_TO_ERC20,
            // 5: provide ERC1155 item to receive offered ERC20 item.
            ERC1155_TO_ERC20
        }
        enum ItemType {
            // 0: ETH on mainnet, MATIC on polygon, etc.
            NATIVE,
            // 1: ERC20 items (ERC777 and ERC20 analogues could also technically work)
            ERC20,
            // 2: ERC721 items
            ERC721,
            // 3: ERC1155 items
            ERC1155,
            // 4: ERC721 items where a number of tokenIds are supported
            ERC721_WITH_CRITERIA,
            // 5: ERC1155 items where a number of ids are supported
            ERC1155_WITH_CRITERIA
        }
        enum Side {
            // 0: Items that can be spent
            OFFER,
            // 1: Items that must be received
            CONSIDERATION
        }
        // SPDX-License-Identifier: MIT
        pragma solidity 0.8.17;
        import { ItemType, Side } from "./ConsiderationEnums.sol";
        import {
            AdvancedOrder,
            Execution,
            FulfillmentComponent,
            ReceivedItem
        } from "./ConsiderationStructs.sol";
        import {
            _revertMismatchedFulfillmentOfferAndConsiderationComponents,
            _revertMissingFulfillmentComponentOnAggregation,
            _revertOfferAndConsiderationRequiredOnFulfillment
        } from "./ConsiderationErrors.sol";
        import {
            FulfillmentApplicationErrors
        } from "../interfaces/FulfillmentApplicationErrors.sol";
        import {
            AdvancedOrder_numerator_offset,
            Common_amount_offset,
            Common_identifier_offset,
            Common_token_offset,
            Execution_conduit_offset,
            Execution_offerer_offset,
            Fulfillment_itemIndex_offset,
            OneWord,
            OneWordShift,
            OrderParameters_conduit_offset,
            OrderParameters_consideration_head_offset,
            OrderParameters_offer_head_offset,
            ReceivedItem_CommonParams_size,
            ReceivedItem_recipient_offset,
            ReceivedItem_size
        } from "./ConsiderationConstants.sol";
        import {
            Error_selector_offset,
            InvalidFulfillmentComponentData_error_length,
            InvalidFulfillmentComponentData_error_selector,
            MissingItemAmount_error_length,
            MissingItemAmount_error_selector,
            Panic_arithmetic,
            Panic_error_code_ptr,
            Panic_error_length,
            Panic_error_selector
        } from "./ConsiderationErrorConstants.sol";
        /**
         * @title FulfillmentApplier
         * @author 0age
         * @notice FulfillmentApplier contains logic related to applying fulfillments,
         *         both as part of order matching (where offer items are matched to
         *         consideration items) as well as fulfilling available orders (where
         *         order items and consideration items are independently aggregated).
         */
        contract FulfillmentApplier is FulfillmentApplicationErrors {
            /**
             * @dev Internal pure function to match offer items to consideration items
             *      on a group of orders via a supplied fulfillment.
             *
             * @param advancedOrders          The orders to match.
             * @param offerComponents         An array designating offer components to
             *                                match to consideration components.
             * @param considerationComponents An array designating consideration
             *                                components to match to offer components.
             *                                Note that each consideration amount must
             *                                be zero in order for the match operation
             *                                to be valid.
             * @param fulfillmentIndex        The index of the fulfillment being
             *                                applied.
             *
             * @return execution The transfer performed as a result of the fulfillment.
             */
            function _applyFulfillment(
                AdvancedOrder[] memory advancedOrders,
                FulfillmentComponent[] memory offerComponents,
                FulfillmentComponent[] memory considerationComponents,
                uint256 fulfillmentIndex
            ) internal pure returns (Execution memory execution) {
                // Ensure 1+ of both offer and consideration components are supplied.
                if (
                    offerComponents.length == 0 || considerationComponents.length == 0
                ) {
                    _revertOfferAndConsiderationRequiredOnFulfillment();
                }
                // Declare a new Execution struct.
                Execution memory considerationExecution;
                // Validate & aggregate consideration items to new Execution object.
                _aggregateValidFulfillmentConsiderationItems(
                    advancedOrders,
                    considerationComponents,
                    considerationExecution
                );
                // Retrieve the consideration item from the execution struct.
                ReceivedItem memory considerationItem = considerationExecution.item;
                // Skip aggregating offer items if no consideration items are available.
                if (considerationItem.amount == 0) {
                    // Set the offerer and recipient to null address and the item type
                    // to a non-native item type if the execution amount is zero. This
                    // will cause the execution item to be skipped.
                    considerationExecution.offerer = address(0);
                    considerationExecution.item.recipient = payable(0);
                    considerationExecution.item.itemType = ItemType.ERC20;
                    return considerationExecution;
                }
                // Recipient does not need to be specified because it will always be set
                // to that of the consideration.
                // Validate & aggregate offer items to Execution object.
                _aggregateValidFulfillmentOfferItems(
                    advancedOrders,
                    offerComponents,
                    execution
                );
                // Ensure offer & consideration item types, tokens, & identifiers match.
                // (a != b || c != d || e != f) == (((a ^ b) | (c ^ d) | (e ^ f)) != 0),
                // but the second expression requires less gas to evaluate.
                if (
                    ((uint8(execution.item.itemType) ^
                        uint8(considerationItem.itemType)) |
                        (uint160(execution.item.token) ^
                            uint160(considerationItem.token)) |
                        (execution.item.identifier ^ considerationItem.identifier)) != 0
                ) {
                    _revertMismatchedFulfillmentOfferAndConsiderationComponents(
                        fulfillmentIndex
                    );
                }
                // If total consideration amount exceeds the offer amount...
                if (considerationItem.amount > execution.item.amount) {
                    // Retrieve the first consideration component from the fulfillment.
                    FulfillmentComponent memory targetComponent = (
                        considerationComponents[0]
                    );
                    // Skip underflow check as the conditional being true implies that
                    // considerationItem.amount > execution.item.amount.
                    unchecked {
                        // Add excess consideration item amount to original order array.
                        advancedOrders[targetComponent.orderIndex]
                            .parameters
                            .consideration[targetComponent.itemIndex]
                            .startAmount = (considerationItem.amount -
                            execution.item.amount);
                    }
                } else {
                    // Retrieve the first offer component from the fulfillment.
                    FulfillmentComponent memory targetComponent = offerComponents[0];
                    // Skip underflow check as the conditional being false implies that
                    // execution.item.amount >= considerationItem.amount.
                    unchecked {
                        // Add excess offer item amount to the original array of orders.
                        advancedOrders[targetComponent.orderIndex]
                            .parameters
                            .offer[targetComponent.itemIndex]
                            .startAmount = (execution.item.amount -
                            considerationItem.amount);
                    }
                    // Reduce total offer amount to equal the consideration amount.
                    execution.item.amount = considerationItem.amount;
                }
                // Reuse consideration recipient.
                execution.item.recipient = considerationItem.recipient;
                // Return the final execution that will be triggered for relevant items.
                return execution; // Execution(considerationItem, offerer, conduitKey);
            }
            /**
             * @dev Internal view function to aggregate offer or consideration items
             *      from a group of orders into a single execution via a supplied array
             *      of fulfillment components. Items that are not available to aggregate
             *      will not be included in the aggregated execution.
             *
             * @param advancedOrders        The orders to aggregate.
             * @param side                  The side (i.e. offer or consideration).
             * @param fulfillmentComponents An array designating item components to
             *                              aggregate if part of an available order.
             * @param fulfillerConduitKey   A bytes32 value indicating what conduit, if
             *                              any, to source the fulfiller's token
             *                              approvals from. The zero hash signifies that
             *                              no conduit should be used, with approvals
             *                              set directly on this contract.
             * @param recipient             The intended recipient for all received
             *                              items.
             *
             * @return execution The transfer performed as a result of the fulfillment.
             */
            function _aggregateAvailable(
                AdvancedOrder[] memory advancedOrders,
                Side side,
                FulfillmentComponent[] memory fulfillmentComponents,
                bytes32 fulfillerConduitKey,
                address recipient
            ) internal view returns (Execution memory execution) {
                // Skip overflow / underflow checks; conditions checked or unreachable.
                unchecked {
                    // Retrieve fulfillment components array length and place on stack.
                    // Ensure at least one fulfillment component has been supplied.
                    if (fulfillmentComponents.length == 0) {
                        _revertMissingFulfillmentComponentOnAggregation(side);
                    }
                    // Retrieve the received item on the execution being returned.
                    ReceivedItem memory item = execution.item;
                    // If the fulfillment components are offer components...
                    if (side == Side.OFFER) {
                        // Set the supplied recipient on the execution item.
                        item.recipient = payable(recipient);
                        // Return execution for aggregated items provided by offerer.
                        _aggregateValidFulfillmentOfferItems(
                            advancedOrders,
                            fulfillmentComponents,
                            execution
                        );
                    } else {
                        // Otherwise, fulfillment components are consideration
                        // components. Return execution for aggregated items provided by
                        // the fulfiller.
                        _aggregateValidFulfillmentConsiderationItems(
                            advancedOrders,
                            fulfillmentComponents,
                            execution
                        );
                        // Set the caller as the offerer on the execution.
                        execution.offerer = msg.sender;
                        // Set fulfiller conduit key as the conduit key on execution.
                        execution.conduitKey = fulfillerConduitKey;
                    }
                    // Set the offerer and recipient to null address and the item type
                    // to a non-native item type if the execution amount is zero. This
                    // will cause the execution item to be skipped.
                    if (item.amount == 0) {
                        execution.offerer = address(0);
                        item.recipient = payable(0);
                        item.itemType = ItemType.ERC20;
                    }
                }
            }
            /**
             * @dev Internal pure function to aggregate a group of offer items using
             *      supplied directives on which component items are candidates for
             *      aggregation, skipping items on orders that are not available.
             *
             * @param advancedOrders  The orders to aggregate offer items from.
             * @param offerComponents An array of FulfillmentComponent structs
             *                        indicating the order index and item index of each
             *                        candidate offer item for aggregation.
             * @param execution       The execution to apply the aggregation to.
             */
            function _aggregateValidFulfillmentOfferItems(
                AdvancedOrder[] memory advancedOrders,
                FulfillmentComponent[] memory offerComponents,
                Execution memory execution
            ) internal pure {
                assembly {
                    // Declare a variable for the final aggregated item amount.
                    let amount
                    // Declare a variable to track errors encountered with amount.
                    let errorBuffer
                    // Declare a variable for the hash of itemType, token, & identifier.
                    let dataHash
                    // Iterate over each offer component.
                    for {
                        // Create variable to track position in offerComponents head.
                        let fulfillmentHeadPtr := offerComponents
                        // Get position one word past last element in head of array.
                        let endPtr := add(
                            offerComponents,
                            shl(OneWordShift, mload(offerComponents))
                        )
                    } lt(fulfillmentHeadPtr, endPtr) {
                    } {
                        // Increment position in considerationComponents head.
                        fulfillmentHeadPtr := add(fulfillmentHeadPtr, OneWord)
                        // Retrieve the order index using the fulfillment pointer.
                        let orderIndex := mload(mload(fulfillmentHeadPtr))
                        // Ensure that the order index is not out of range.
                        if iszero(lt(orderIndex, mload(advancedOrders))) {
                            throwInvalidFulfillmentComponentData()
                        }
                        // Read advancedOrders[orderIndex] pointer from its array head.
                        let orderPtr := mload(
                            // Calculate head position of advancedOrders[orderIndex].
                            add(
                                add(advancedOrders, OneWord),
                                shl(OneWordShift, orderIndex)
                            )
                        )
                        // Read the pointer to OrderParameters from the AdvancedOrder.
                        let paramsPtr := mload(orderPtr)
                        // Retrieve item index using an offset of fulfillment pointer.
                        let itemIndex := mload(
                            add(mload(fulfillmentHeadPtr), Fulfillment_itemIndex_offset)
                        )
                        let offerItemPtr
                        {
                            // Load the offer array pointer.
                            let offerArrPtr := mload(
                                add(paramsPtr, OrderParameters_offer_head_offset)
                            )
                            // If the offer item index is out of range or the numerator
                            // is zero, skip this item.
                            if or(
                                iszero(lt(itemIndex, mload(offerArrPtr))),
                                iszero(
                                    mload(add(orderPtr, AdvancedOrder_numerator_offset))
                                )
                            ) {
                                continue
                            }
                            // Retrieve offer item pointer using the item index.
                            offerItemPtr := mload(
                                add(
                                    // Get pointer to beginning of receivedItem.
                                    add(offerArrPtr, OneWord),
                                    // Calculate offset to pointer for desired order.
                                    shl(OneWordShift, itemIndex)
                                )
                            )
                        }
                        // Declare a separate scope for the amount update.
                        {
                            // Retrieve amount pointer using consideration item pointer.
                            let amountPtr := add(offerItemPtr, Common_amount_offset)
                            // Add offer item amount to execution amount.
                            let newAmount := add(amount, mload(amountPtr))
                            // Update error buffer:
                            // 1 = zero amount, 2 = overflow, 3 = both.
                            errorBuffer := or(
                                errorBuffer,
                                or(
                                    shl(1, lt(newAmount, amount)),
                                    iszero(mload(amountPtr))
                                )
                            )
                            // Update the amount to the new, summed amount.
                            amount := newAmount
                            // Zero out amount on original item to indicate it is spent.
                            mstore(amountPtr, 0)
                        }
                        // Retrieve ReceivedItem pointer from Execution.
                        let receivedItem := mload(execution)
                        // Check if this is the first valid fulfillment item.
                        switch iszero(dataHash)
                        case 1 {
                            // On first valid item, populate the received item in memory
                            // for later comparison.
                            // Set the item type on the received item.
                            mstore(receivedItem, mload(offerItemPtr))
                            // Set the token on the received item.
                            mstore(
                                add(receivedItem, Common_token_offset),
                                mload(add(offerItemPtr, Common_token_offset))
                            )
                            // Set the identifier on the received item.
                            mstore(
                                add(receivedItem, Common_identifier_offset),
                                mload(add(offerItemPtr, Common_identifier_offset))
                            )
                            // Set offerer on returned execution using order pointer.
                            mstore(
                                add(execution, Execution_offerer_offset),
                                mload(paramsPtr)
                            )
                            // Set execution conduitKey via order pointer offset.
                            mstore(
                                add(execution, Execution_conduit_offset),
                                mload(add(paramsPtr, OrderParameters_conduit_offset))
                            )
                            // Calculate the hash of (itemType, token, identifier).
                            dataHash := keccak256(
                                receivedItem,
                                ReceivedItem_CommonParams_size
                            )
                            // If component index > 0, swap component pointer with
                            // pointer to first component so that any remainder after
                            // fulfillment can be added back to the first item.
                            let firstFulfillmentHeadPtr := add(offerComponents, OneWord)
                            if xor(firstFulfillmentHeadPtr, fulfillmentHeadPtr) {
                                let firstFulfillmentPtr := mload(
                                    firstFulfillmentHeadPtr
                                )
                                let fulfillmentPtr := mload(fulfillmentHeadPtr)
                                mstore(firstFulfillmentHeadPtr, fulfillmentPtr)
                            }
                        }
                        default {
                            // Compare every subsequent item to the first.
                            if or(
                                or(
                                    // The offerer must match on both items.
                                    xor(
                                        mload(paramsPtr),
                                        mload(add(execution, Execution_offerer_offset))
                                    ),
                                    // The conduit key must match on both items.
                                    xor(
                                        mload(
                                            add(
                                                paramsPtr,
                                                OrderParameters_conduit_offset
                                            )
                                        ),
                                        mload(add(execution, Execution_conduit_offset))
                                    )
                                ),
                                // The itemType, token, and identifier must match.
                                xor(
                                    dataHash,
                                    keccak256(
                                        offerItemPtr,
                                        ReceivedItem_CommonParams_size
                                    )
                                )
                            ) {
                                // Throw if any of the requirements are not met.
                                throwInvalidFulfillmentComponentData()
                            }
                        }
                    }
                    // Write final amount to execution.
                    mstore(add(mload(execution), Common_amount_offset), amount)
                    // Determine whether the error buffer contains a nonzero error code.
                    if errorBuffer {
                        // If errorBuffer is 1, an item had an amount of zero.
                        if eq(errorBuffer, 1) {
                            // Store left-padded selector with push4 (reduces bytecode)
                            // mem[28:32] = selector
                            mstore(0, MissingItemAmount_error_selector)
                            // revert(abi.encodeWithSignature("MissingItemAmount()"))
                            revert(
                                Error_selector_offset,
                                MissingItemAmount_error_length
                            )
                        }
                        // If errorBuffer is not 1 or 0, the sum overflowed.
                        // Panic!
                        throwOverflow()
                    }
                    // Declare function for reverts on invalid fulfillment data.
                    function throwInvalidFulfillmentComponentData() {
                        // Store left-padded selector (uses push4 and reduces code size)
                        mstore(0, InvalidFulfillmentComponentData_error_selector)
                        // revert(abi.encodeWithSignature(
                        //     "InvalidFulfillmentComponentData()"
                        // ))
                        revert(
                            Error_selector_offset,
                            InvalidFulfillmentComponentData_error_length
                        )
                    }
                    // Declare function for reverts due to arithmetic overflows.
                    function throwOverflow() {
                        // Store the Panic error signature.
                        mstore(0, Panic_error_selector)
                        // Store the arithmetic (0x11) panic code.
                        mstore(Panic_error_code_ptr, Panic_arithmetic)
                        // revert(abi.encodeWithSignature("Panic(uint256)", 0x11))
                        revert(Error_selector_offset, Panic_error_length)
                    }
                }
            }
            /**
             * @dev Internal pure function to aggregate a group of consideration items
             *      using supplied directives on which component items are candidates
             *      for aggregation, skipping items on orders that are not available.
             *      Note that this function depends on memory layout affected by an
             *      earlier call to _validateOrdersAndPrepareToFulfill.  The memory for
             *      the consideration arrays needs to be updated before calling
             *      _aggregateValidFulfillmentConsiderationItems.
             *      _validateOrdersAndPrepareToFulfill is called in _matchAdvancedOrders
             *      and _fulfillAvailableAdvancedOrders in the current version.
             *
             * @param advancedOrders          The orders to aggregate consideration
             *                                items from.
             * @param considerationComponents An array of FulfillmentComponent structs
             *                                indicating the order index and item index
             *                                of each candidate consideration item for
             *                                aggregation.
             * @param execution               The execution to apply the aggregation to.
             */
            function _aggregateValidFulfillmentConsiderationItems(
                AdvancedOrder[] memory advancedOrders,
                FulfillmentComponent[] memory considerationComponents,
                Execution memory execution
            ) internal pure {
                // Utilize assembly in order to efficiently aggregate the items.
                assembly {
                    // Declare a variable for the final aggregated item amount.
                    let amount
                    // Create variable to track errors encountered with amount.
                    let errorBuffer
                    // Declare variable for hash(itemType, token, identifier, recipient)
                    let dataHash
                    // Iterate over each consideration component.
                    for {
                        // Track position in considerationComponents head.
                        let fulfillmentHeadPtr := considerationComponents
                        // Get position one word past last element in head of array.
                        let endPtr := add(
                            considerationComponents,
                            shl(OneWordShift, mload(considerationComponents))
                        )
                    } lt(fulfillmentHeadPtr, endPtr) {
                    } {
                        // Increment position in considerationComponents head.
                        fulfillmentHeadPtr := add(fulfillmentHeadPtr, OneWord)
                        // Retrieve the order index using the fulfillment pointer.
                        let orderIndex := mload(mload(fulfillmentHeadPtr))
                        // Ensure that the order index is not out of range.
                        if iszero(lt(orderIndex, mload(advancedOrders))) {
                            throwInvalidFulfillmentComponentData()
                        }
                        // Read advancedOrders[orderIndex] pointer from its array head.
                        let orderPtr := mload(
                            // Calculate head position of advancedOrders[orderIndex].
                            add(
                                add(advancedOrders, OneWord),
                                shl(OneWordShift, orderIndex)
                            )
                        )
                        // Retrieve item index using an offset of fulfillment pointer.
                        let itemIndex := mload(
                            add(mload(fulfillmentHeadPtr), Fulfillment_itemIndex_offset)
                        )
                        let considerationItemPtr
                        {
                            // Load consideration array pointer.
                            let considerationArrPtr := mload(
                                add(
                                    // Read OrderParameters pointer from AdvancedOrder.
                                    mload(orderPtr),
                                    OrderParameters_consideration_head_offset
                                )
                            )
                            // If the consideration item index is out of range or the
                            // numerator is zero, skip this item.
                            if or(
                                iszero(lt(itemIndex, mload(considerationArrPtr))),
                                iszero(
                                    mload(add(orderPtr, AdvancedOrder_numerator_offset))
                                )
                            ) {
                                continue
                            }
                            // Retrieve consideration item pointer using the item index.
                            considerationItemPtr := mload(
                                add(
                                    // Get pointer to beginning of receivedItem.
                                    add(considerationArrPtr, OneWord),
                                    // Calculate offset to pointer for desired order.
                                    shl(OneWordShift, itemIndex)
                                )
                            )
                        }
                        // Declare a separate scope for the amount update.
                        {
                            // Retrieve amount pointer using consideration item pointer.
                            let amountPtr := add(
                                considerationItemPtr,
                                Common_amount_offset
                            )
                            // Add consideration item amount to execution amount.
                            let newAmount := add(amount, mload(amountPtr))
                            // Update error buffer:
                            // 1 = zero amount, 2 = overflow, 3 = both.
                            errorBuffer := or(
                                errorBuffer,
                                or(
                                    shl(1, lt(newAmount, amount)),
                                    iszero(mload(amountPtr))
                                )
                            )
                            // Update the amount to the new, summed amount.
                            amount := newAmount
                            // Zero out original item amount to indicate it is credited.
                            mstore(amountPtr, 0)
                        }
                        // Retrieve ReceivedItem pointer from Execution.
                        let receivedItem := mload(execution)
                        switch iszero(dataHash)
                        case 1 {
                            // On first valid item, populate the received item in
                            // memory for later comparison.
                            // Set the item type on the received item.
                            mstore(receivedItem, mload(considerationItemPtr))
                            // Set the token on the received item.
                            mstore(
                                add(receivedItem, Common_token_offset),
                                mload(add(considerationItemPtr, Common_token_offset))
                            )
                            // Set the identifier on the received item.
                            mstore(
                                add(receivedItem, Common_identifier_offset),
                                mload(
                                    add(considerationItemPtr, Common_identifier_offset)
                                )
                            )
                            // Set the recipient on the received item. Note that this
                            // depends on the memory layout established by the
                            // _validateOrdersAndPrepareToFulfill function.
                            mstore(
                                add(receivedItem, ReceivedItem_recipient_offset),
                                mload(
                                    add(
                                        considerationItemPtr,
                                        ReceivedItem_recipient_offset
                                    )
                                )
                            )
                            // Calculate the hash of (itemType, token, identifier,
                            // recipient). This is run after amount is set to zero, so
                            // there will be one blank word after identifier included in
                            // the hash buffer.
                            dataHash := keccak256(
                                considerationItemPtr,
                                ReceivedItem_size
                            )
                            // If component index > 0, swap component pointer with
                            // pointer to first component so that any remainder after
                            // fulfillment can be added back to the first item.
                            let firstFulfillmentHeadPtr := add(
                                considerationComponents,
                                OneWord
                            )
                            if xor(firstFulfillmentHeadPtr, fulfillmentHeadPtr) {
                                let firstFulfillmentPtr := mload(
                                    firstFulfillmentHeadPtr
                                )
                                let fulfillmentPtr := mload(fulfillmentHeadPtr)
                                mstore(firstFulfillmentHeadPtr, fulfillmentPtr)
                            }
                        }
                        default {
                            // Compare every subsequent item to the first; the item
                            // type, token, identifier and recipient must match.
                            if xor(
                                dataHash,
                                // Calculate the hash of (itemType, token, identifier,
                                // recipient). This is run after amount is set to zero,
                                // so there will be one blank word after identifier
                                // included in the hash buffer.
                                keccak256(considerationItemPtr, ReceivedItem_size)
                            ) {
                                // Throw if any of the requirements are not met.
                                throwInvalidFulfillmentComponentData()
                            }
                        }
                    }
                    // Retrieve ReceivedItem pointer from Execution.
                    let receivedItem := mload(execution)
                    // Write final amount to execution.
                    mstore(add(receivedItem, Common_amount_offset), amount)
                    // Determine whether the error buffer contains a nonzero error code.
                    if errorBuffer {
                        // If errorBuffer is 1, an item had an amount of zero.
                        if eq(errorBuffer, 1) {
                            // Store left-padded selector with push4, mem[28:32]
                            mstore(0, MissingItemAmount_error_selector)
                            // revert(abi.encodeWithSignature("MissingItemAmount()"))
                            revert(
                                Error_selector_offset,
                                MissingItemAmount_error_length
                            )
                        }
                        // If errorBuffer is not 1 or 0, `amount` overflowed.
                        // Panic!
                        throwOverflow()
                    }
                    // Declare function for reverts on invalid fulfillment data.
                    function throwInvalidFulfillmentComponentData() {
                        // Store the InvalidFulfillmentComponentData error signature.
                        mstore(0, InvalidFulfillmentComponentData_error_selector)
                        // revert(abi.encodeWithSignature(
                        //     "InvalidFulfillmentComponentData()"
                        // ))
                        revert(
                            Error_selector_offset,
                            InvalidFulfillmentComponentData_error_length
                        )
                    }
                    // Declare function for reverts due to arithmetic overflows.
                    function throwOverflow() {
                        // Store the Panic error signature.
                        mstore(0, Panic_error_selector)
                        // Store the arithmetic (0x11) panic code.
                        mstore(Panic_error_code_ptr, Panic_arithmetic)
                        // revert(abi.encodeWithSignature("Panic(uint256)", 0x11))
                        revert(Error_selector_offset, Panic_error_length)
                    }
                }
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity 0.8.17;
        import { ItemType, OrderType } from "./ConsiderationEnums.sol";
        import {
            AdvancedOrder,
            ConsiderationItem,
            CriteriaResolver,
            OfferItem,
            OrderParameters,
            ReceivedItem,
            SpentItem
        } from "./ConsiderationStructs.sol";
        import { BasicOrderFulfiller } from "./BasicOrderFulfiller.sol";
        import { CriteriaResolution } from "./CriteriaResolution.sol";
        import { AmountDeriver } from "./AmountDeriver.sol";
        import {
            _revertInsufficientNativeTokensSupplied,
            _revertInvalidNativeOfferItem
        } from "./ConsiderationErrors.sol";
        import {
            AccumulatorDisarmed,
            ConsiderationItem_recipient_offset,
            ReceivedItem_amount_offset,
            ReceivedItem_recipient_offset
        } from "./ConsiderationConstants.sol";
        /**
         * @title OrderFulfiller
         * @author 0age
         * @notice OrderFulfiller contains logic related to order fulfillment where a
         *         single order is being fulfilled and where basic order fulfillment is
         *         not available as an option.
         */
        contract OrderFulfiller is
            BasicOrderFulfiller,
            CriteriaResolution,
            AmountDeriver
        {
            /**
             * @dev Derive and set hashes, reference chainId, and associated domain
             *      separator during deployment.
             *
             * @param conduitController A contract that deploys conduits, or proxies
             *                          that may optionally be used to transfer approved
             *                          ERC20/721/1155 tokens.
             */
            constructor(
                address conduitController
            ) BasicOrderFulfiller(conduitController) {}
            /**
             * @dev Internal function to validate an order and update its status, adjust
             *      prices based on current time, apply criteria resolvers, determine
             *      what portion to fill, and transfer relevant tokens.
             *
             * @param advancedOrder       The order to fulfill as well as the fraction
             *                            to fill. Note that all offer and consideration
             *                            components must divide with no remainder for
             *                            the partial fill to be valid.
             * @param criteriaResolvers   An array where each element contains a
             *                            reference to a specific offer or
             *                            consideration, a token identifier, and a proof
             *                            that the supplied token identifier is
             *                            contained in the order's merkle root. Note
             *                            that a criteria of zero indicates that any
             *                            (transferable) token identifier is valid and
             *                            that no proof needs to be supplied.
             * @param fulfillerConduitKey A bytes32 value indicating what conduit, if
             *                            any, to source the fulfiller's token approvals
             *                            from. The zero hash signifies that no conduit
             *                            should be used, with direct approvals set on
             *                            Consideration.
             * @param recipient           The intended recipient for all received items.
             *
             * @return A boolean indicating whether the order has been fulfilled.
             */
            function _validateAndFulfillAdvancedOrder(
                AdvancedOrder memory advancedOrder,
                CriteriaResolver[] memory criteriaResolvers,
                bytes32 fulfillerConduitKey,
                address recipient
            ) internal returns (bool) {
                // Ensure this function cannot be triggered during a reentrant call.
                _setReentrancyGuard(
                    // Native tokens accepted during execution for contract order types.
                    advancedOrder.parameters.orderType == OrderType.CONTRACT
                );
                // Validate order, update status, and determine fraction to fill.
                (
                    bytes32 orderHash,
                    uint256 fillNumerator,
                    uint256 fillDenominator
                ) = _validateOrderAndUpdateStatus(advancedOrder, true);
                // Create an array with length 1 containing the order.
                AdvancedOrder[] memory advancedOrders = new AdvancedOrder[](1);
                // Populate the order as the first and only element of the new array.
                advancedOrders[0] = advancedOrder;
                // Apply criteria resolvers using generated orders and details arrays.
                _applyCriteriaResolvers(advancedOrders, criteriaResolvers);
                // Retrieve the order parameters after applying criteria resolvers.
                OrderParameters memory orderParameters = advancedOrders[0].parameters;
                // Perform each item transfer with the appropriate fractional amount.
                _applyFractionsAndTransferEach(
                    orderParameters,
                    fillNumerator,
                    fillDenominator,
                    fulfillerConduitKey,
                    recipient
                );
                // Declare empty bytes32 array and populate with the order hash.
                bytes32[] memory orderHashes = new bytes32[](1);
                orderHashes[0] = orderHash;
                // Ensure restricted orders have a valid submitter or pass a zone check.
                _assertRestrictedAdvancedOrderValidity(
                    advancedOrders[0],
                    orderHashes,
                    orderHash
                );
                // Emit an event signifying that the order has been fulfilled.
                _emitOrderFulfilledEvent(
                    orderHash,
                    orderParameters.offerer,
                    orderParameters.zone,
                    recipient,
                    orderParameters.offer,
                    orderParameters.consideration
                );
                // Clear the reentrancy guard.
                _clearReentrancyGuard();
                return true;
            }
            /**
             * @dev Internal function to transfer each item contained in a given single
             *      order fulfillment after applying a respective fraction to the amount
             *      being transferred.
             *
             * @param orderParameters     The parameters for the fulfilled order.
             * @param numerator           A value indicating the portion of the order
             *                            that should be filled.
             * @param denominator         A value indicating the total order size.
             * @param fulfillerConduitKey A bytes32 value indicating what conduit, if
             *                            any, to source the fulfiller's token approvals
             *                            from. The zero hash signifies that no conduit
             *                            should be used, with direct approvals set on
             *                            Consideration.
             * @param recipient           The intended recipient for all received items.
             */
            function _applyFractionsAndTransferEach(
                OrderParameters memory orderParameters,
                uint256 numerator,
                uint256 denominator,
                bytes32 fulfillerConduitKey,
                address recipient
            ) internal {
                // Read start time & end time from order parameters and place on stack.
                uint256 startTime = orderParameters.startTime;
                uint256 endTime = orderParameters.endTime;
                // Initialize an accumulator array. From this point forward, no new
                // memory regions can be safely allocated until the accumulator is no
                // longer being utilized, as the accumulator operates in an open-ended
                // fashion from this memory pointer; existing memory may still be
                // accessed and modified, however.
                bytes memory accumulator = new bytes(AccumulatorDisarmed);
                // As of solidity 0.6.0, inline assembly cannot directly access function
                // definitions, but can still access locally scoped function variables.
                // This means that a local variable to reference the internal function
                // definition (using the same type), along with a local variable with
                // the desired type, must first be created. Then, the original function
                // pointer can be recast to the desired type.
                /**
                 * Repurpose existing OfferItem memory regions on the offer array for
                 * the order by overriding the _transfer function pointer to accept a
                 * modified OfferItem argument in place of the usual ReceivedItem:
                 *
                 *   ========= OfferItem ==========   ====== ReceivedItem ======
                 *   ItemType itemType; ------------> ItemType itemType;
                 *   address token; ----------------> address token;
                 *   uint256 identifierOrCriteria; -> uint256 identifier;
                 *   uint256 startAmount; ----------> uint256 amount;
                 *   uint256 endAmount; ------------> address recipient;
                 */
                // Declare a nested scope to minimize stack depth.
                unchecked {
                    // Read offer array length from memory and place on stack.
                    uint256 totalOfferItems = orderParameters.offer.length;
                    // Create a variable to indicate whether the order has any
                    // native offer items
                    uint256 anyNativeItems;
                    // Iterate over each offer on the order.
                    // Skip overflow check as for loop is indexed starting at zero.
                    for (uint256 i = 0; i < totalOfferItems; ++i) {
                        // Retrieve the offer item.
                        OfferItem memory offerItem = orderParameters.offer[i];
                        // Offer items for the native token can not be received outside
                        // of a match order function except as part of a contract order.
                        {
                            ItemType itemType = offerItem.itemType;
                            assembly {
                                anyNativeItems := or(anyNativeItems, iszero(itemType))
                            }
                        }
                        // Declare an additional nested scope to minimize stack depth.
                        {
                            // Apply fill fraction to get offer item amount to transfer.
                            uint256 amount = _applyFraction(
                                offerItem.startAmount,
                                offerItem.endAmount,
                                numerator,
                                denominator,
                                startTime,
                                endTime,
                                false
                            );
                            // Utilize assembly to set overloaded offerItem arguments.
                            assembly {
                                // Write new fractional amount to startAmount as amount.
                                mstore(
                                    add(offerItem, ReceivedItem_amount_offset),
                                    amount
                                )
                                // Write recipient to endAmount.
                                mstore(
                                    add(offerItem, ReceivedItem_recipient_offset),
                                    recipient
                                )
                            }
                        }
                        // Transfer the item from the offerer to the recipient.
                        _toOfferItemInput(_transfer)(
                            offerItem,
                            orderParameters.offerer,
                            orderParameters.conduitKey,
                            accumulator
                        );
                    }
                    // If a non-contract order has native offer items, throw with an
                    // `InvalidNativeOfferItem` custom error.
                    {
                        OrderType orderType = orderParameters.orderType;
                        uint256 invalidNativeOfferItem;
                        assembly {
                            invalidNativeOfferItem := and(
                                // Note that this check requires that there are no order
                                // types beyond the current set (0-4).  It will need to
                                // be modified if more order types are added.
                                lt(orderType, 4),
                                anyNativeItems
                            )
                        }
                        if (invalidNativeOfferItem != 0) {
                            _revertInvalidNativeOfferItem();
                        }
                    }
                }
                // Declare a variable for the available native token balance.
                uint256 nativeTokenBalance;
                /**
                 * Repurpose existing ConsiderationItem memory regions on the
                 * consideration array for the order by overriding the _transfer
                 * function pointer to accept a modified ConsiderationItem argument in
                 * place of the usual ReceivedItem:
                 *
                 *   ====== ConsiderationItem =====   ====== ReceivedItem ======
                 *   ItemType itemType; ------------> ItemType itemType;
                 *   address token; ----------------> address token;
                 *   uint256 identifierOrCriteria;--> uint256 identifier;
                 *   uint256 startAmount; ----------> uint256 amount;
                 *   uint256 endAmount;        /----> address recipient;
                 *   address recipient; ------/
                 */
                // Declare a nested scope to minimize stack depth.
                unchecked {
                    // Read consideration array length from memory and place on stack.
                    uint256 totalConsiderationItems = orderParameters
                        .consideration
                        .length;
                    // Iterate over each consideration item on the order.
                    // Skip overflow check as for loop is indexed starting at zero.
                    for (uint256 i = 0; i < totalConsiderationItems; ++i) {
                        // Retrieve the consideration item.
                        ConsiderationItem memory considerationItem = (
                            orderParameters.consideration[i]
                        );
                        // Apply fraction & derive considerationItem amount to transfer.
                        uint256 amount = _applyFraction(
                            considerationItem.startAmount,
                            considerationItem.endAmount,
                            numerator,
                            denominator,
                            startTime,
                            endTime,
                            true
                        );
                        // Use assembly to set overloaded considerationItem arguments.
                        assembly {
                            // Write derived fractional amount to startAmount as amount.
                            mstore(
                                add(considerationItem, ReceivedItem_amount_offset),
                                amount
                            )
                            // Write original recipient to endAmount as recipient.
                            mstore(
                                add(considerationItem, ReceivedItem_recipient_offset),
                                mload(
                                    add(
                                        considerationItem,
                                        ConsiderationItem_recipient_offset
                                    )
                                )
                            )
                        }
                        if (considerationItem.itemType == ItemType.NATIVE) {
                            // Get the current available balance of native tokens.
                            assembly {
                                nativeTokenBalance := selfbalance()
                            }
                            // Ensure that sufficient native tokens are still available.
                            if (amount > nativeTokenBalance) {
                                _revertInsufficientNativeTokensSupplied();
                            }
                        }
                        // Transfer item from caller to recipient specified by the item.
                        _toConsiderationItemInput(_transfer)(
                            considerationItem,
                            msg.sender,
                            fulfillerConduitKey,
                            accumulator
                        );
                    }
                }
                // Trigger any remaining accumulated transfers via call to the conduit.
                _triggerIfArmed(accumulator);
                // Determine whether any native token balance remains.
                assembly {
                    nativeTokenBalance := selfbalance()
                }
                // Return any remaining native token balance to the caller.
                if (nativeTokenBalance != 0) {
                    _transferNativeTokens(payable(msg.sender), nativeTokenBalance);
                }
            }
            /**
             * @dev Internal function to emit an OrderFulfilled event. OfferItems are
             *      translated into SpentItems and ConsiderationItems are translated
             *      into ReceivedItems.
             *
             * @param orderHash     The order hash.
             * @param offerer       The offerer for the order.
             * @param zone          The zone for the order.
             * @param recipient     The recipient of the order, or the null address if
             *                      the order was fulfilled via order matching.
             * @param offer         The offer items for the order.
             * @param consideration The consideration items for the order.
             */
            function _emitOrderFulfilledEvent(
                bytes32 orderHash,
                address offerer,
                address zone,
                address recipient,
                OfferItem[] memory offer,
                ConsiderationItem[] memory consideration
            ) internal {
                // Cast already-modified offer memory region as spent items.
                SpentItem[] memory spentItems;
                assembly {
                    spentItems := offer
                }
                // Cast already-modified consideration memory region as received items.
                ReceivedItem[] memory receivedItems;
                assembly {
                    receivedItems := consideration
                }
                // Emit an event signifying that the order has been fulfilled.
                emit OrderFulfilled(
                    orderHash,
                    offerer,
                    zone,
                    recipient,
                    spentItems,
                    receivedItems
                );
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.13;
        uint256 constant Error_selector_offset = 0x1c;
        /*
         *  error MissingFulfillmentComponentOnAggregation(uint8 side)
         *    - Defined in FulfillmentApplicationErrors.sol
         *  Memory layout:
         *    - 0x00: Left-padded selector (data begins at 0x1c)
         *    - 0x20: side
         * Revert buffer is memory[0x1c:0x40]
         */
        uint256 constant MissingFulfillmentComponentOnAggregation_error_selector = (
            0x375c24c1
        );
        uint256 constant MissingFulfillmentComponentOnAggregation_error_side_ptr = 0x20;
        uint256 constant MissingFulfillmentComponentOnAggregation_error_length = 0x24;
        /*
         *  error OfferAndConsiderationRequiredOnFulfillment()
         *    - Defined in FulfillmentApplicationErrors.sol
         *  Memory layout:
         *    - 0x00: Left-padded selector (data begins at 0x1c)
         * Revert buffer is memory[0x1c:0x20]
         */
        uint256 constant OfferAndConsiderationRequiredOnFulfillment_error_selector = (
            0x98e9db6e
        );
        uint256 constant OfferAndConsiderationRequiredOnFulfillment_error_length = 0x04;
        /*
         *  error MismatchedFulfillmentOfferAndConsiderationComponents(
         *      uint256 fulfillmentIndex
         *  )
         *    - Defined in FulfillmentApplicationErrors.sol
         *  Memory layout:
         *    - 0x00: Left-padded selector (data begins at 0x1c)
         *    - 0x20: fulfillmentIndex
         * Revert buffer is memory[0x1c:0x40]
         */
        uint256 constant MismatchedOfferAndConsiderationComponents_error_selector = (
            0xbced929d
        );
        uint256 constant MismatchedOfferAndConsiderationComponents_error_idx_ptr = 0x20;
        uint256 constant MismatchedOfferAndConsiderationComponents_error_length = 0x24;
        /*
         *  error InvalidFulfillmentComponentData()
         *    - Defined in FulfillmentApplicationErrors.sol
         *  Memory layout:
         *    - 0x00: Left-padded selector (data begins at 0x1c)
         * Revert buffer is memory[0x1c:0x20]
         */
        uint256 constant InvalidFulfillmentComponentData_error_selector = 0x7fda7279;
        uint256 constant InvalidFulfillmentComponentData_error_length = 0x04;
        /*
         *  error InexactFraction()
         *    - Defined in AmountDerivationErrors.sol
         *  Memory layout:
         *    - 0x00: Left-padded selector (data begins at 0x1c)
         * Revert buffer is memory[0x1c:0x20]
         */
        uint256 constant InexactFraction_error_selector = 0xc63cf089;
        uint256 constant InexactFraction_error_length = 0x04;
        /*
         *  error OrderCriteriaResolverOutOfRange(uint8 side)
         *    - Defined in CriteriaResolutionErrors.sol
         *  Memory layout:
         *    - 0x00: Left-padded selector (data begins at 0x1c)
         *    - 0x20: side
         * Revert buffer is memory[0x1c:0x40]
         */
        uint256 constant OrderCriteriaResolverOutOfRange_error_selector = 0x133c37c6;
        uint256 constant OrderCriteriaResolverOutOfRange_error_side_ptr = 0x20;
        uint256 constant OrderCriteriaResolverOutOfRange_error_length = 0x24;
        /*
         *  error UnresolvedOfferCriteria(uint256 orderIndex, uint256 offerIndex)
         *    - Defined in CriteriaResolutionErrors.sol
         *  Memory layout:
         *    - 0x00: Left-padded selector (data begins at 0x1c)
         *    - 0x20: orderIndex
         *    - 0x40: offerIndex
         * Revert buffer is memory[0x1c:0x60]
         */
        uint256 constant UnresolvedOfferCriteria_error_selector = 0xd6929332;
        uint256 constant UnresolvedOfferCriteria_error_orderIndex_ptr = 0x20;
        uint256 constant UnresolvedOfferCriteria_error_offerIndex_ptr = 0x40;
        uint256 constant UnresolvedOfferCriteria_error_length = 0x44;
        /*
         *  error UnresolvedConsiderationCriteria(
         *      uint256 orderIndex,
         *      uint256 considerationIndex
         *  )
         *    - Defined in CriteriaResolutionErrors.sol
         *  Memory layout:
         *    - 0x00: Left-padded selector (data begins at 0x1c)
         *    - 0x20: orderIndex
         *    - 0x40: considerationIndex
         * Revert buffer is memory[0x1c:0x60]
         */
        uint256 constant UnresolvedConsiderationCriteria_error_selector = 0xa8930e9a;
        uint256 constant UnresolvedConsiderationCriteria_error_orderIndex_ptr = 0x20;
        uint256 constant UnresolvedConsiderationCriteria_error_considerationIdx_ptr = (
            0x40
        );
        uint256 constant UnresolvedConsiderationCriteria_error_length = 0x44;
        /*
         *  error OfferCriteriaResolverOutOfRange()
         *    - Defined in CriteriaResolutionErrors.sol
         *  Memory layout:
         *    - 0x00: Left-padded selector (data begins at 0x1c)
         * Revert buffer is memory[0x1c:0x20]
         */
        uint256 constant OfferCriteriaResolverOutOfRange_error_selector = 0xbfb3f8ce;
        // uint256 constant OfferCriteriaResolverOutOfRange_error_length = 0x04;
        /*
         *  error ConsiderationCriteriaResolverOutOfRange()
         *    - Defined in CriteriaResolutionErrors.sol
         *  Memory layout:
         *    - 0x00: Left-padded selector (data begins at 0x1c)
         * Revert buffer is memory[0x1c:0x20]
         */
        uint256 constant ConsiderationCriteriaResolverOutOfRange_error_selector = (
            0x6088d7de
        );
        uint256 constant ConsiderationCriteriaResolverOutOfRange_err_selector = (
            0x6088d7de
        );
        // uint256 constant ConsiderationCriteriaResolverOutOfRange_error_length = 0x04;
        /*
         *  error CriteriaNotEnabledForItem()
         *    - Defined in CriteriaResolutionErrors.sol
         *  Memory layout:
         *    - 0x00: Left-padded selector (data begins at 0x1c)
         * Revert buffer is memory[0x1c:0x20]
         */
        uint256 constant CriteriaNotEnabledForItem_error_selector = 0x94eb6af6;
        uint256 constant CriteriaNotEnabledForItem_error_length = 0x04;
        /*
         *  error InvalidProof()
         *    - Defined in CriteriaResolutionErrors.sol
         *  Memory layout:
         *    - 0x00: Left-padded selector (data begins at 0x1c)
         * Revert buffer is memory[0x1c:0x20]
         */
        uint256 constant InvalidProof_error_selector = 0x09bde339;
        uint256 constant InvalidProof_error_length = 0x04;
        /*
         *  error InvalidRestrictedOrder(bytes32 orderHash)
         *    - Defined in ZoneInteractionErrors.sol
         *  Memory layout:
         *    - 0x00: Left-padded selector (data begins at 0x1c)
         *    - 0x20: orderHash
         * Revert buffer is memory[0x1c:0x40]
         */
        uint256 constant InvalidRestrictedOrder_error_selector = 0xfb5014fc;
        uint256 constant InvalidRestrictedOrder_error_orderHash_ptr = 0x20;
        uint256 constant InvalidRestrictedOrder_error_length = 0x24;
        /*
         *  error InvalidContractOrder(bytes32 orderHash)
         *    - Defined in ZoneInteractionErrors.sol
         *  Memory layout:
         *    - 0x00: Left-padded selector (data begins at 0x1c)
         *    - 0x20: orderHash
         * Revert buffer is memory[0x1c:0x40]
         */
        uint256 constant InvalidContractOrder_error_selector = 0x93979285;
        uint256 constant InvalidContractOrder_error_orderHash_ptr = 0x20;
        uint256 constant InvalidContractOrder_error_length = 0x24;
        /*
         *  error BadSignatureV(uint8 v)
         *    - Defined in SignatureVerificationErrors.sol
         *  Memory layout:
         *    - 0x00: Left-padded selector (data begins at 0x1c)
         *    - 0x20: v
         * Revert buffer is memory[0x1c:0x40]
         */
        uint256 constant BadSignatureV_error_selector = 0x1f003d0a;
        uint256 constant BadSignatureV_error_v_ptr = 0x20;
        uint256 constant BadSignatureV_error_length = 0x24;
        /*
         *  error InvalidSigner()
         *    - Defined in SignatureVerificationErrors.sol
         *  Memory layout:
         *    - 0x00: Left-padded selector (data begins at 0x1c)
         * Revert buffer is memory[0x1c:0x20]
         */
        uint256 constant InvalidSigner_error_selector = 0x815e1d64;
        uint256 constant InvalidSigner_error_length = 0x04;
        /*
         *  error InvalidSignature()
         *    - Defined in SignatureVerificationErrors.sol
         *  Memory layout:
         *    - 0x00: Left-padded selector (data begins at 0x1c)
         * Revert buffer is memory[0x1c:0x20]
         */
        uint256 constant InvalidSignature_error_selector = 0x8baa579f;
        uint256 constant InvalidSignature_error_length = 0x04;
        /*
         *  error BadContractSignature()
         *    - Defined in SignatureVerificationErrors.sol
         *  Memory layout:
         *    - 0x00: Left-padded selector (data begins at 0x1c)
         * Revert buffer is memory[0x1c:0x20]
         */
        uint256 constant BadContractSignature_error_selector = 0x4f7fb80d;
        uint256 constant BadContractSignature_error_length = 0x04;
        /*
         *  error InvalidERC721TransferAmount(uint256 amount)
         *    - Defined in TokenTransferrerErrors.sol
         *  Memory layout:
         *    - 0x00: Left-padded selector (data begins at 0x1c)
         *    - 0x20: amount
         * Revert buffer is memory[0x1c:0x40]
         */
        uint256 constant InvalidERC721TransferAmount_error_selector = 0x69f95827;
        uint256 constant InvalidERC721TransferAmount_error_amount_ptr = 0x20;
        uint256 constant InvalidERC721TransferAmount_error_length = 0x24;
        /*
         *  error MissingItemAmount()
         *    - Defined in TokenTransferrerErrors.sol
         *  Memory layout:
         *    - 0x00: Left-padded selector (data begins at 0x1c)
         * Revert buffer is memory[0x1c:0x20]
         */
        uint256 constant MissingItemAmount_error_selector = 0x91b3e514;
        uint256 constant MissingItemAmount_error_length = 0x04;
        /*
         *  error UnusedItemParameters()
         *    - Defined in TokenTransferrerErrors.sol
         *  Memory layout:
         *    - 0x00: Left-padded selector (data begins at 0x1c)
         * Revert buffer is memory[0x1c:0x20]
         */
        uint256 constant UnusedItemParameters_error_selector = 0x6ab37ce7;
        uint256 constant UnusedItemParameters_error_length = 0x04;
        /*
         *  error NoReentrantCalls()
         *    - Defined in ReentrancyErrors.sol
         *  Memory layout:
         *    - 0x00: Left-padded selector (data begins at 0x1c)
         * Revert buffer is memory[0x1c:0x20]
         */
        uint256 constant NoReentrantCalls_error_selector = 0x7fa8a987;
        uint256 constant NoReentrantCalls_error_length = 0x04;
        /*
         *  error OrderAlreadyFilled(bytes32 orderHash)
         *    - Defined in ConsiderationEventsAndErrors.sol
         *  Memory layout:
         *    - 0x00: Left-padded selector (data begins at 0x1c)
         *    - 0x20: orderHash
         * Revert buffer is memory[0x1c:0x40]
         */
        uint256 constant OrderAlreadyFilled_error_selector = 0x10fda3e1;
        uint256 constant OrderAlreadyFilled_error_orderHash_ptr = 0x20;
        uint256 constant OrderAlreadyFilled_error_length = 0x24;
        /*
         *  error InvalidTime(uint256 startTime, uint256 endTime)
         *    - Defined in ConsiderationEventsAndErrors.sol
         *  Memory layout:
         *    - 0x00: Left-padded selector (data begins at 0x1c)
         *    - 0x20: startTime
         *    - 0x40: endTime
         * Revert buffer is memory[0x1c:0x60]
         */
        uint256 constant InvalidTime_error_selector = 0x21ccfeb7;
        uint256 constant InvalidTime_error_startTime_ptr = 0x20;
        uint256 constant InvalidTime_error_endTime_ptr = 0x40;
        uint256 constant InvalidTime_error_length = 0x44;
        /*
         *  error InvalidConduit(bytes32 conduitKey, address conduit)
         *    - Defined in ConsiderationEventsAndErrors.sol
         *  Memory layout:
         *    - 0x00: Left-padded selector (data begins at 0x1c)
         *    - 0x20: conduitKey
         *    - 0x40: conduit
         * Revert buffer is memory[0x1c:0x60]
         */
        uint256 constant InvalidConduit_error_selector = 0x1cf99b26;
        uint256 constant InvalidConduit_error_conduitKey_ptr = 0x20;
        uint256 constant InvalidConduit_error_conduit_ptr = 0x40;
        uint256 constant InvalidConduit_error_length = 0x44;
        /*
         *  error MissingOriginalConsiderationItems()
         *    - Defined in ConsiderationEventsAndErrors.sol
         *  Memory layout:
         *    - 0x00: Left-padded selector (data begins at 0x1c)
         * Revert buffer is memory[0x1c:0x20]
         */
        uint256 constant MissingOriginalConsiderationItems_error_selector = 0x466aa616;
        uint256 constant MissingOriginalConsiderationItems_error_length = 0x04;
        /*
         *  error InvalidCallToConduit(address conduit)
         *    - Defined in ConsiderationEventsAndErrors.sol
         *  Memory layout:
         *    - 0x00: Left-padded selector (data begins at 0x1c)
         *    - 0x20: conduit
         * Revert buffer is memory[0x1c:0x40]
         */
        uint256 constant InvalidCallToConduit_error_selector = 0xd13d53d4;
        uint256 constant InvalidCallToConduit_error_conduit_ptr = 0x20;
        uint256 constant InvalidCallToConduit_error_length = 0x24;
        /*
         *  error ConsiderationNotMet(
         *      uint256 orderIndex,
         *      uint256 considerationIndex,
         *      uint256 shortfallAmount
         *  )
         *    - Defined in ConsiderationEventsAndErrors.sol
         *  Memory layout:
         *    - 0x00: Left-padded selector (data begins at 0x1c)
         *    - 0x20: orderIndex
         *    - 0x40: considerationIndex
         *    - 0x60: shortfallAmount
         * Revert buffer is memory[0x1c:0x80]
         */
        uint256 constant ConsiderationNotMet_error_selector = 0xa5f54208;
        uint256 constant ConsiderationNotMet_error_orderIndex_ptr = 0x20;
        uint256 constant ConsiderationNotMet_error_considerationIndex_ptr = 0x40;
        uint256 constant ConsiderationNotMet_error_shortfallAmount_ptr = 0x60;
        uint256 constant ConsiderationNotMet_error_length = 0x64;
        /*
         *  error InsufficientNativeTokensSupplied()
         *    - Defined in ConsiderationEventsAndErrors.sol
         *  Memory layout:
         *    - 0x00: Left-padded selector (data begins at 0x1c)
         * Revert buffer is memory[0x1c:0x20]
         */
        uint256 constant InsufficientNativeTokensSupplied_error_selector = 0x8ffff980;
        uint256 constant InsufficientNativeTokensSupplied_error_length = 0x04;
        /*
         *  error NativeTokenTransferGenericFailure(address account, uint256 amount)
         *    - Defined in ConsiderationEventsAndErrors.sol
         *  Memory layout:
         *    - 0x00: Left-padded selector (data begins at 0x1c)
         *    - 0x20: account
         *    - 0x40: amount
         * Revert buffer is memory[0x1c:0x60]
         */
        uint256 constant NativeTokenTransferGenericFailure_error_selector = 0xbc806b96;
        uint256 constant NativeTokenTransferGenericFailure_error_account_ptr = 0x20;
        uint256 constant NativeTokenTransferGenericFailure_error_amount_ptr = 0x40;
        uint256 constant NativeTokenTransferGenericFailure_error_length = 0x44;
        /*
         *  error PartialFillsNotEnabledForOrder()
         *    - Defined in ConsiderationEventsAndErrors.sol
         *  Memory layout:
         *    - 0x00: Left-padded selector (data begins at 0x1c)
         * Revert buffer is memory[0x1c:0x20]
         */
        uint256 constant PartialFillsNotEnabledForOrder_error_selector = 0xa11b63ff;
        uint256 constant PartialFillsNotEnabledForOrder_error_length = 0x04;
        /*
         *  error OrderIsCancelled(bytes32 orderHash)
         *    - Defined in ConsiderationEventsAndErrors.sol
         *  Memory layout:
         *    - 0x00: Left-padded selector (data begins at 0x1c)
         *    - 0x20: orderHash
         * Revert buffer is memory[0x1c:0x40]
         */
        uint256 constant OrderIsCancelled_error_selector = 0x1a515574;
        uint256 constant OrderIsCancelled_error_orderHash_ptr = 0x20;
        uint256 constant OrderIsCancelled_error_length = 0x24;
        /*
         *  error OrderPartiallyFilled(bytes32 orderHash)
         *    - Defined in ConsiderationEventsAndErrors.sol
         *  Memory layout:
         *    - 0x00: Left-padded selector (data begins at 0x1c)
         *    - 0x20: orderHash
         * Revert buffer is memory[0x1c:0x40]
         */
        uint256 constant OrderPartiallyFilled_error_selector = 0xee9e0e63;
        uint256 constant OrderPartiallyFilled_error_orderHash_ptr = 0x20;
        uint256 constant OrderPartiallyFilled_error_length = 0x24;
        /*
         *  error CannotCancelOrder()
         *    - Defined in ConsiderationEventsAndErrors.sol
         *  Memory layout:
         *    - 0x00: Left-padded selector (data begins at 0x1c)
         * Revert buffer is memory[0x1c:0x20]
         */
        uint256 constant CannotCancelOrder_error_selector = 0xfed398fc;
        uint256 constant CannotCancelOrder_error_length = 0x04;
        /*
         *  error BadFraction()
         *    - Defined in ConsiderationEventsAndErrors.sol
         *  Memory layout:
         *    - 0x00: Left-padded selector (data begins at 0x1c)
         * Revert buffer is memory[0x1c:0x20]
         */
        uint256 constant BadFraction_error_selector = 0x5a052b32;
        uint256 constant BadFraction_error_length = 0x04;
        /*
         *  error InvalidMsgValue(uint256 value)
         *    - Defined in ConsiderationEventsAndErrors.sol
         *  Memory layout:
         *    - 0x00: Left-padded selector (data begins at 0x1c)
         *    - 0x20: value
         * Revert buffer is memory[0x1c:0x40]
         */
        uint256 constant InvalidMsgValue_error_selector = 0xa61be9f0;
        uint256 constant InvalidMsgValue_error_value_ptr = 0x20;
        uint256 constant InvalidMsgValue_error_length = 0x24;
        /*
         *  error InvalidBasicOrderParameterEncoding()
         *    - Defined in ConsiderationEventsAndErrors.sol
         *  Memory layout:
         *    - 0x00: Left-padded selector (data begins at 0x1c)
         * Revert buffer is memory[0x1c:0x20]
         */
        uint256 constant InvalidBasicOrderParameterEncoding_error_selector = 0x39f3e3fd;
        uint256 constant InvalidBasicOrderParameterEncoding_error_length = 0x04;
        /*
         *  error NoSpecifiedOrdersAvailable()
         *    - Defined in ConsiderationEventsAndErrors.sol
         *  Memory layout:
         *    - 0x00: Left-padded selector (data begins at 0x1c)
         * Revert buffer is memory[0x1c:0x20]
         */
        uint256 constant NoSpecifiedOrdersAvailable_error_selector = 0xd5da9a1b;
        uint256 constant NoSpecifiedOrdersAvailable_error_length = 0x04;
        /*
         *  error InvalidNativeOfferItem()
         *    - Defined in ConsiderationEventsAndErrors.sol
         *  Memory layout:
         *    - 0x00: Left-padded selector (data begins at 0x1c)
         * Revert buffer is memory[0x1c:0x20]
         */
        uint256 constant InvalidNativeOfferItem_error_selector = 0x12d3f5a3;
        uint256 constant InvalidNativeOfferItem_error_length = 0x04;
        /*
         *  error ConsiderationLengthNotEqualToTotalOriginal()
         *    - Defined in ConsiderationEventsAndErrors.sol
         *  Memory layout:
         *    - 0x00: Left-padded selector (data begins at 0x1c)
         * Revert buffer is memory[0x1c:0x20]
         */
        uint256 constant ConsiderationLengthNotEqualToTotalOriginal_error_selector = (
            0x2165628a
        );
        uint256 constant ConsiderationLengthNotEqualToTotalOriginal_error_length = 0x04;
        /*
         *  error Panic(uint256 code)
         *    - Built-in Solidity error
         *  Memory layout:
         *    - 0x00: Left-padded selector (data begins at 0x1c)
         *    - 0x20: code
         * Revert buffer is memory[0x1c:0x40]
         */
        uint256 constant Panic_error_selector = 0x4e487b71;
        uint256 constant Panic_error_code_ptr = 0x20;
        uint256 constant Panic_error_length = 0x24;
        uint256 constant Panic_arithmetic = 0x11;
        // uint256 constant Panic_resource = 0x41;
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.13;
        import { Side } from "../lib/ConsiderationEnums.sol";
        /**
         * @title FulfillmentApplicationErrors
         * @author 0age
         * @notice FulfillmentApplicationErrors contains errors related to fulfillment
         *         application and aggregation.
         */
        interface FulfillmentApplicationErrors {
            /**
             * @dev Revert with an error when a fulfillment is provided that does not
             *      declare at least one component as part of a call to fulfill
             *      available orders.
             */
            error MissingFulfillmentComponentOnAggregation(Side side);
            /**
             * @dev Revert with an error when a fulfillment is provided that does not
             *      declare at least one offer component and at least one consideration
             *      component.
             */
            error OfferAndConsiderationRequiredOnFulfillment();
            /**
             * @dev Revert with an error when the initial offer item named by a
             *      fulfillment component does not match the type, token, identifier,
             *      or conduit preference of the initial consideration item.
             *
             * @param fulfillmentIndex The index of the fulfillment component that
             *                         does not match the initial offer item.
             */
            error MismatchedFulfillmentOfferAndConsiderationComponents(
                uint256 fulfillmentIndex
            );
            /**
             * @dev Revert with an error when an order or item index are out of range
             *      or a fulfillment component does not match the type, token,
             *      identifier, or conduit preference of the initial consideration item.
             */
            error InvalidFulfillmentComponentData();
        }
        // SPDX-License-Identifier: MIT
        pragma solidity 0.8.17;
        import { ItemType, Side } from "./ConsiderationEnums.sol";
        import {
            AdvancedOrder,
            CriteriaResolver,
            MemoryPointer,
            OfferItem,
            OrderParameters
        } from "./ConsiderationStructs.sol";
        import {
            _revertCriteriaNotEnabledForItem,
            _revertInvalidProof,
            _revertOrderCriteriaResolverOutOfRange,
            _revertUnresolvedConsiderationCriteria,
            _revertUnresolvedOfferCriteria
        } from "./ConsiderationErrors.sol";
        import {
            CriteriaResolutionErrors
        } from "../interfaces/CriteriaResolutionErrors.sol";
        import {
            OneWord,
            OneWordShift,
            OrderParameters_consideration_head_offset,
            Selector_length,
            TwoWords
        } from "./ConsiderationConstants.sol";
        import {
            ConsiderationCriteriaResolverOutOfRange_err_selector,
            Error_selector_offset,
            OfferCriteriaResolverOutOfRange_error_selector
        } from "./ConsiderationErrorConstants.sol";
        /**
         * @title CriteriaResolution
         * @author 0age
         * @notice CriteriaResolution contains a collection of pure functions related to
         *         resolving criteria-based items.
         */
        contract CriteriaResolution is CriteriaResolutionErrors {
            /**
             * @dev Internal pure function to apply criteria resolvers containing
             *      specific token identifiers and associated proofs to order items.
             *
             * @param advancedOrders     The orders to apply criteria resolvers to.
             * @param criteriaResolvers  An array where each element contains a
             *                           reference to a specific order as well as that
             *                           order's offer or consideration, a token
             *                           identifier, and a proof that the supplied token
             *                           identifier is contained in the order's merkle
             *                           root. Note that a root of zero indicates that
             *                           any transferable token identifier is valid and
             *                           that no proof needs to be supplied.
             */
            function _applyCriteriaResolvers(
                AdvancedOrder[] memory advancedOrders,
                CriteriaResolver[] memory criteriaResolvers
            ) internal pure {
                // Skip overflow checks as all for loops are indexed starting at zero.
                unchecked {
                    // Retrieve length of criteria resolvers array and place on stack.
                    uint256 totalCriteriaResolvers = criteriaResolvers.length;
                    // Retrieve length of orders array and place on stack.
                    uint256 totalAdvancedOrders = advancedOrders.length;
                    // Iterate over each criteria resolver.
                    for (uint256 i = 0; i < totalCriteriaResolvers; ++i) {
                        // Retrieve the criteria resolver.
                        CriteriaResolver memory criteriaResolver = (
                            criteriaResolvers[i]
                        );
                        // Read the order index from memory and place it on the stack.
                        uint256 orderIndex = criteriaResolver.orderIndex;
                        // Ensure that the order index is in range.
                        if (orderIndex >= totalAdvancedOrders) {
                            _revertOrderCriteriaResolverOutOfRange(
                                criteriaResolver.side
                            );
                        }
                        // Retrieve the referenced advanced order.
                        AdvancedOrder memory advancedOrder = advancedOrders[orderIndex];
                        // Skip criteria resolution for order if not fulfilled.
                        if (advancedOrder.numerator == 0) {
                            continue;
                        }
                        // Retrieve the parameters for the order.
                        OrderParameters memory orderParameters = (
                            advancedOrder.parameters
                        );
                        {
                            // Get a pointer to the list of items to give to
                            // _updateCriteriaItem. If the resolver refers to a
                            // consideration item, this array pointer will be replaced
                            // with the consideration array.
                            OfferItem[] memory items = orderParameters.offer;
                            // Read component index from memory and place it on stack.
                            uint256 componentIndex = criteriaResolver.index;
                            // Get error selector for `OfferCriteriaResolverOutOfRange`.
                            uint256 errorSelector = (
                                OfferCriteriaResolverOutOfRange_error_selector
                            );
                            // If the resolver refers to a consideration item...
                            if (criteriaResolver.side != Side.OFFER) {
                                // Get the pointer to `orderParameters.consideration`
                                // Using the array directly has a significant impact on
                                // the optimized compiler output.
                                MemoryPointer considerationPtr = orderParameters
                                    .toMemoryPointer()
                                    .pptr(OrderParameters_consideration_head_offset);
                                // Replace the items pointer with a pointer to the
                                // consideration array.
                                assembly {
                                    items := considerationPtr
                                }
                                // Replace the error selector with the selector for
                                // `ConsiderationCriteriaResolverOutOfRange`.
                                errorSelector = (
                                    ConsiderationCriteriaResolverOutOfRange_err_selector
                                );
                            }
                            // Ensure that the component index is in range.
                            if (componentIndex >= items.length) {
                                assembly {
                                    // Revert with either
                                    // `OfferCriteriaResolverOutOfRange()` or
                                    // `ConsiderationCriteriaResolverOutOfRange()`,
                                    // depending on whether the resolver refers to a
                                    // consideration item.
                                    mstore(0, errorSelector)
                                    // revert(abi.encodeWithSignature(
                                    //    "OfferCriteriaResolverOutOfRange()"
                                    // ))
                                    // or
                                    // revert(abi.encodeWithSignature(
                                    //    "ConsiderationCriteriaResolverOutOfRange()"
                                    // ))
                                    revert(Error_selector_offset, Selector_length)
                                }
                            }
                            // Apply the criteria resolver to the item in question.
                            _updateCriteriaItem(
                                items,
                                componentIndex,
                                criteriaResolver
                            );
                        }
                    }
                    // Iterate over each advanced order.
                    for (uint256 i = 0; i < totalAdvancedOrders; ++i) {
                        // Retrieve the advanced order.
                        AdvancedOrder memory advancedOrder = advancedOrders[i];
                        // Skip criteria resolution for order if not fulfilled.
                        if (advancedOrder.numerator == 0) {
                            continue;
                        }
                        // Retrieve the parameters for the order.
                        OrderParameters memory orderParameters = (
                            advancedOrder.parameters
                        );
                        // Read consideration length from memory and place on stack.
                        uint256 totalItems = orderParameters.consideration.length;
                        // Iterate over each consideration item on the order.
                        for (uint256 j = 0; j < totalItems; ++j) {
                            // Ensure item type no longer indicates criteria usage.
                            if (
                                _isItemWithCriteria(
                                    orderParameters.consideration[j].itemType
                                )
                            ) {
                                _revertUnresolvedConsiderationCriteria(i, j);
                            }
                        }
                        // Read offer length from memory and place on stack.
                        totalItems = orderParameters.offer.length;
                        // Iterate over each offer item on the order.
                        for (uint256 j = 0; j < totalItems; ++j) {
                            // Ensure item type no longer indicates criteria usage.
                            if (
                                _isItemWithCriteria(orderParameters.offer[j].itemType)
                            ) {
                                _revertUnresolvedOfferCriteria(i, j);
                            }
                        }
                    }
                }
            }
            /**
             * @dev Internal pure function to update a criteria item.
             *
             * @param offer             The offer containing the item to update.
             * @param componentIndex    The index of the item to update.
             * @param criteriaResolver  The criteria resolver to use to update the item.
             */
            function _updateCriteriaItem(
                OfferItem[] memory offer,
                uint256 componentIndex,
                CriteriaResolver memory criteriaResolver
            ) internal pure {
                // Retrieve relevant item using the component index.
                OfferItem memory offerItem = offer[componentIndex];
                // Read item type and criteria from memory & place on stack.
                ItemType itemType = offerItem.itemType;
                // Ensure the specified item type indicates criteria usage.
                if (!_isItemWithCriteria(itemType)) {
                    _revertCriteriaNotEnabledForItem();
                }
                uint256 identifierOrCriteria = offerItem.identifierOrCriteria;
                // If criteria is not 0 (i.e. a collection-wide criteria-based item)...
                if (identifierOrCriteria != uint256(0)) {
                    // Verify identifier inclusion in criteria root using proof.
                    _verifyProof(
                        criteriaResolver.identifier,
                        identifierOrCriteria,
                        criteriaResolver.criteriaProof
                    );
                } else if (criteriaResolver.criteriaProof.length != 0) {
                    // Revert if non-empty proof is supplied for a collection-wide item.
                    _revertInvalidProof();
                }
                // Update item type to remove criteria usage.
                // Use assembly to operate on ItemType enum as a number.
                ItemType newItemType;
                assembly {
                    // Item type 4 becomes 2 and item type 5 becomes 3.
                    newItemType := sub(3, eq(itemType, 4))
                }
                offerItem.itemType = newItemType;
                // Update identifier w/ supplied identifier.
                offerItem.identifierOrCriteria = criteriaResolver.identifier;
            }
            /**
             * @dev Internal pure function to check whether a given item type represents
             *      a criteria-based ERC721 or ERC1155 item (e.g. an item that can be
             *      resolved to one of a number of different identifiers at the time of
             *      order fulfillment).
             *
             * @param itemType The item type in question.
             *
             * @return withCriteria A boolean indicating that the item type in question
             *                      represents a criteria-based item.
             */
            function _isItemWithCriteria(
                ItemType itemType
            ) internal pure returns (bool withCriteria) {
                // ERC721WithCriteria is ItemType 4. ERC1155WithCriteria is ItemType 5.
                assembly {
                    withCriteria := gt(itemType, 3)
                }
            }
            /**
             * @dev Internal pure function to ensure that a given element is contained
             *      in a merkle root via a supplied proof.
             *
             * @param leaf  The element for which to prove inclusion.
             * @param root  The merkle root that inclusion will be proved against.
             * @param proof The merkle proof.
             */
            function _verifyProof(
                uint256 leaf,
                uint256 root,
                bytes32[] memory proof
            ) internal pure {
                // Declare a variable that will be used to determine proof validity.
                bool isValid;
                // Utilize assembly to efficiently verify the proof against the root.
                assembly {
                    // Store the leaf at the beginning of scratch space.
                    mstore(0, leaf)
                    // Derive the hash of the leaf to use as the initial proof element.
                    let computedHash := keccak256(0, OneWord)
                    // Get memory start location of the first element in proof array.
                    let data := add(proof, OneWord)
                    // Iterate over each proof element to compute the root hash.
                    for {
                        // Left shift by 5 is equivalent to multiplying by 0x20.
                        let end := add(data, shl(OneWordShift, mload(proof)))
                    } lt(data, end) {
                        // Increment by one word at a time.
                        data := add(data, OneWord)
                    } {
                        // Get the proof element.
                        let loadedData := mload(data)
                        // Sort proof elements and place them in scratch space.
                        // Slot of `computedHash` in scratch space.
                        // If the condition is true: 0x20, otherwise: 0x00.
                        let scratch := shl(OneWordShift, gt(computedHash, loadedData))
                        // Store elements to hash contiguously in scratch space. Scratch
                        // space is 64 bytes (0x00 - 0x3f) & both elements are 32 bytes.
                        mstore(scratch, computedHash)
                        mstore(xor(scratch, OneWord), loadedData)
                        // Derive the updated hash.
                        computedHash := keccak256(0, TwoWords)
                    }
                    // Compare the final hash to the supplied root.
                    isValid := eq(computedHash, root)
                }
                // Revert if computed hash does not equal supplied root.
                if (!isValid) {
                    _revertInvalidProof();
                }
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity 0.8.17;
        import {
            AmountDerivationErrors
        } from "../interfaces/AmountDerivationErrors.sol";
        import {
            Error_selector_offset,
            InexactFraction_error_length,
            InexactFraction_error_selector
        } from "./ConsiderationErrorConstants.sol";
        /**
         * @title AmountDeriver
         * @author 0age
         * @notice AmountDeriver contains view and pure functions related to deriving
         *         item amounts based on partial fill quantity and on linear
         *         interpolation based on current time when the start amount and end
         *         amount differ.
         */
        contract AmountDeriver is AmountDerivationErrors {
            /**
             * @dev Internal view function to derive the current amount of a given item
             *      based on the current price, the starting price, and the ending
             *      price. If the start and end prices differ, the current price will be
             *      interpolated on a linear basis. Note that this function expects that
             *      the startTime parameter of orderParameters is not greater than the
             *      current block timestamp and that the endTime parameter is greater
             *      than the current block timestamp. If this condition is not upheld,
             *      duration / elapsed / remaining variables will underflow.
             *
             * @param startAmount The starting amount of the item.
             * @param endAmount   The ending amount of the item.
             * @param startTime   The starting time of the order.
             * @param endTime     The end time of the order.
             * @param roundUp     A boolean indicating whether the resultant amount
             *                    should be rounded up or down.
             *
             * @return amount The current amount.
             */
            function _locateCurrentAmount(
                uint256 startAmount,
                uint256 endAmount,
                uint256 startTime,
                uint256 endTime,
                bool roundUp
            ) internal view returns (uint256 amount) {
                // Only modify end amount if it doesn't already equal start amount.
                if (startAmount != endAmount) {
                    // Declare variables to derive in the subsequent unchecked scope.
                    uint256 duration;
                    uint256 elapsed;
                    uint256 remaining;
                    // Skip underflow checks as startTime <= block.timestamp < endTime.
                    unchecked {
                        // Derive the duration for the order and place it on the stack.
                        duration = endTime - startTime;
                        // Derive time elapsed since the order started & place on stack.
                        elapsed = block.timestamp - startTime;
                        // Derive time remaining until order expires and place on stack.
                        remaining = duration - elapsed;
                    }
                    // Aggregate new amounts weighted by time with rounding factor.
                    uint256 totalBeforeDivision = ((startAmount * remaining) +
                        (endAmount * elapsed));
                    // Use assembly to combine operations and skip divide-by-zero check.
                    assembly {
                        // Multiply by iszero(iszero(totalBeforeDivision)) to ensure
                        // amount is set to zero if totalBeforeDivision is zero,
                        // as intermediate overflow can occur if it is zero.
                        amount := mul(
                            iszero(iszero(totalBeforeDivision)),
                            // Subtract 1 from the numerator and add 1 to the result if
                            // roundUp is true to get the proper rounding direction.
                            // Division is performed with no zero check as duration
                            // cannot be zero as long as startTime < endTime.
                            add(
                                div(sub(totalBeforeDivision, roundUp), duration),
                                roundUp
                            )
                        )
                    }
                    // Return the current amount.
                    return amount;
                }
                // Return the original amount as startAmount == endAmount.
                return endAmount;
            }
            /**
             * @dev Internal pure function to return a fraction of a given value and to
             *      ensure the resultant value does not have any fractional component.
             *      Note that this function assumes that zero will never be supplied as
             *      the denominator parameter; invalid / undefined behavior will result
             *      should a denominator of zero be provided.
             *
             * @param numerator   A value indicating the portion of the order that
             *                    should be filled.
             * @param denominator A value indicating the total size of the order. Note
             *                    that this value cannot be equal to zero.
             * @param value       The value for which to compute the fraction.
             *
             * @return newValue The value after applying the fraction.
             */
            function _getFraction(
                uint256 numerator,
                uint256 denominator,
                uint256 value
            ) internal pure returns (uint256 newValue) {
                // Return value early in cases where the fraction resolves to 1.
                if (numerator == denominator) {
                    return value;
                }
                // Ensure fraction can be applied to the value with no remainder. Note
                // that the denominator cannot be zero.
                assembly {
                    // Ensure new value contains no remainder via mulmod operator.
                    // Credit to @hrkrshnn + @axic for proposing this optimal solution.
                    if mulmod(value, numerator, denominator) {
                        // Store left-padded selector with push4, mem[28:32] = selector
                        mstore(0, InexactFraction_error_selector)
                        // revert(abi.encodeWithSignature("InexactFraction()"))
                        revert(Error_selector_offset, InexactFraction_error_length)
                    }
                }
                // Multiply the numerator by the value and ensure no overflow occurs.
                uint256 valueTimesNumerator = value * numerator;
                // Divide and check for remainder. Note that denominator cannot be zero.
                assembly {
                    // Perform division without zero check.
                    newValue := div(valueTimesNumerator, denominator)
                }
            }
            /**
             * @dev Internal view function to apply a fraction to a consideration
             * or offer item.
             *
             * @param startAmount     The starting amount of the item.
             * @param endAmount       The ending amount of the item.
             * @param numerator       A value indicating the portion of the order that
             *                        should be filled.
             * @param denominator     A value indicating the total size of the order.
             * @param startTime       The starting time of the order.
             * @param endTime         The end time of the order.
             * @param roundUp         A boolean indicating whether the resultant
             *                        amount should be rounded up or down.
             *
             * @return amount The received item to transfer with the final amount.
             */
            function _applyFraction(
                uint256 startAmount,
                uint256 endAmount,
                uint256 numerator,
                uint256 denominator,
                uint256 startTime,
                uint256 endTime,
                bool roundUp
            ) internal view returns (uint256 amount) {
                // If start amount equals end amount, apply fraction to end amount.
                if (startAmount == endAmount) {
                    // Apply fraction to end amount.
                    amount = _getFraction(numerator, denominator, endAmount);
                } else {
                    // Otherwise, apply fraction to both and interpolated final amount.
                    amount = _locateCurrentAmount(
                        _getFraction(numerator, denominator, startAmount),
                        _getFraction(numerator, denominator, endAmount),
                        startTime,
                        endTime,
                        roundUp
                    );
                }
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity 0.8.17;
        import {
            BasicOrderRouteType,
            ItemType,
            OrderType
        } from "./ConsiderationEnums.sol";
        import { BasicOrderParameters } from "./ConsiderationStructs.sol";
        import { OrderValidator } from "./OrderValidator.sol";
        import {
            _revertInsufficientNativeTokensSupplied,
            _revertInvalidMsgValue,
            _revertInvalidERC721TransferAmount,
            _revertUnusedItemParameters
        } from "./ConsiderationErrors.sol";
        import {
            AccumulatorDisarmed,
            AdditionalRecipient_size_shift,
            AdditionalRecipient_size,
            BasicOrder_additionalRecipients_data_cdPtr,
            BasicOrder_additionalRecipients_length_cdPtr,
            BasicOrder_basicOrderType_cdPtr,
            BasicOrder_common_params_size,
            BasicOrder_considerationAmount_cdPtr,
            BasicOrder_considerationHashesArray_ptr,
            BasicOrder_considerationIdentifier_cdPtr,
            BasicOrder_considerationItem_endAmount_ptr,
            BasicOrder_considerationItem_identifier_ptr,
            BasicOrder_considerationItem_itemType_ptr,
            BasicOrder_considerationItem_startAmount_ptr,
            BasicOrder_considerationItem_token_ptr,
            BasicOrder_considerationItem_typeHash_ptr,
            BasicOrder_considerationToken_cdPtr,
            BasicOrder_endTime_cdPtr,
            BasicOrder_fulfillerConduit_cdPtr,
            BasicOrder_offerAmount_cdPtr,
            BasicOrder_offeredItemByteMap,
            BasicOrder_offerer_cdPtr,
            BasicOrder_offererConduit_cdPtr,
            BasicOrder_offerIdentifier_cdPtr,
            BasicOrder_offerItem_endAmount_ptr,
            BasicOrder_offerItem_itemType_ptr,
            BasicOrder_offerItem_token_ptr,
            BasicOrder_offerItem_typeHash_ptr,
            BasicOrder_offerToken_cdPtr,
            BasicOrder_order_considerationHashes_ptr,
            BasicOrder_order_counter_ptr,
            BasicOrder_order_offerer_ptr,
            BasicOrder_order_offerHashes_ptr,
            BasicOrder_order_orderType_ptr,
            BasicOrder_order_startTime_ptr,
            BasicOrder_order_typeHash_ptr,
            BasicOrder_receivedItemByteMap,
            BasicOrder_startTime_cdPtr,
            BasicOrder_totalOriginalAdditionalRecipients_cdPtr,
            BasicOrder_zone_cdPtr,
            Common_token_offset,
            Conduit_execute_ConduitTransfer_length_ptr,
            Conduit_execute_ConduitTransfer_length,
            Conduit_execute_ConduitTransfer_offset_ptr,
            Conduit_execute_ConduitTransfer_ptr,
            Conduit_execute_signature,
            Conduit_execute_transferAmount_ptr,
            Conduit_execute_transferIdentifier_ptr,
            Conduit_execute_transferFrom_ptr,
            Conduit_execute_transferItemType_ptr,
            Conduit_execute_transferTo_ptr,
            Conduit_execute_transferToken_ptr,
            EIP712_ConsiderationItem_size,
            EIP712_OfferItem_size,
            EIP712_Order_size,
            FiveWords,
            FourWords,
            FreeMemoryPointerSlot,
            MaskOverLastTwentyBytes,
            OneConduitExecute_size,
            OneWord,
            OneWordShift,
            OrderFulfilled_baseOffset,
            OrderFulfilled_baseSize,
            OrderFulfilled_consideration_body_offset,
            OrderFulfilled_consideration_head_offset,
            OrderFulfilled_consideration_length_baseOffset,
            OrderFulfilled_fulfiller_offset,
            OrderFulfilled_offer_body_offset,
            OrderFulfilled_offer_head_offset,
            OrderFulfilled_offer_length_baseOffset,
            OrderFulfilled_selector,
            ReceivedItem_amount_offset,
            ReceivedItem_size,
            receivedItemsHash_ptr,
            ThreeWords,
            TwoWords,
            ZeroSlot
        } from "./ConsiderationConstants.sol";
        import {
            Error_selector_offset,
            InvalidBasicOrderParameterEncoding_error_length,
            InvalidBasicOrderParameterEncoding_error_selector,
            InvalidTime_error_endTime_ptr,
            InvalidTime_error_length,
            InvalidTime_error_selector,
            InvalidTime_error_startTime_ptr,
            MissingOriginalConsiderationItems_error_length,
            MissingOriginalConsiderationItems_error_selector,
            UnusedItemParameters_error_length,
            UnusedItemParameters_error_selector
        } from "./ConsiderationErrorConstants.sol";
        /**
         * @title BasicOrderFulfiller
         * @author 0age
         * @notice BasicOrderFulfiller contains functionality for fulfilling "basic"
         *         orders with minimal overhead. See documentation for details on what
         *         qualifies as a basic order.
         */
        contract BasicOrderFulfiller is OrderValidator {
            /**
             * @dev Derive and set hashes, reference chainId, and associated domain
             *      separator during deployment.
             *
             * @param conduitController A contract that deploys conduits, or proxies
             *                          that may optionally be used to transfer approved
             *                          ERC20/721/1155 tokens.
             */
            constructor(address conduitController) OrderValidator(conduitController) {}
            /**
             * @dev Internal function to fulfill an order offering an ERC20, ERC721, or
             *      ERC1155 item by supplying Ether (or other native tokens), ERC20
             *      tokens, an ERC721 item, or an ERC1155 item as consideration. Six
             *      permutations are supported: Native token to ERC721, Native token to
             *      ERC1155, ERC20 to ERC721, ERC20 to ERC1155, ERC721 to ERC20, and
             *      ERC1155 to ERC20 (with native tokens supplied as msg.value). For an
             *      order to be eligible for fulfillment via this method, it must
             *      contain a single offer item (though that item may have a greater
             *      amount if the item is not an ERC721). An arbitrary number of
             *      "additional recipients" may also be supplied which will each receive
             *      native tokens or ERC20 items from the fulfiller as consideration.
             *      Refer to the documentation for a more comprehensive summary of how
             *      to utilize this method and what orders are compatible with it.
             *
             * @param parameters Additional information on the fulfilled order. Note
             *                   that the offerer and the fulfiller must first approve
             *                   this contract (or their chosen conduit if indicated)
             *                   before any tokens can be transferred. Also note that
             *                   contract recipients of ERC1155 consideration items must
             *                   implement `onERC1155Received` in order to receive those
             *                   items.
             *
             * @return A boolean indicating whether the order has been fulfilled.
             */
            function _validateAndFulfillBasicOrder(
                BasicOrderParameters calldata parameters
            ) internal returns (bool) {
                // Declare enums for order type & route to extract from basicOrderType.
                BasicOrderRouteType route;
                OrderType orderType;
                // Declare additional recipient item type to derive from the route type.
                ItemType additionalRecipientsItemType;
                bytes32 orderHash;
                // Utilize assembly to extract the order type and the basic order route.
                assembly {
                    // Read basicOrderType from calldata.
                    let basicOrderType := calldataload(BasicOrder_basicOrderType_cdPtr)
                    // Mask all but 2 least-significant bits to derive the order type.
                    orderType := and(basicOrderType, 3)
                    // Divide basicOrderType by four to derive the route.
                    route := shr(2, basicOrderType)
                    // If route > 1 additionalRecipient items are ERC20 (1) else native
                    // token (0).
                    additionalRecipientsItemType := gt(route, 1)
                }
                {
                    // Declare temporary variable for enforcing payable status.
                    bool correctPayableStatus;
                    // Utilize assembly to compare the route to the callvalue.
                    assembly {
                        // route 0 and 1 are payable, otherwise route is not payable.
                        correctPayableStatus := eq(
                            additionalRecipientsItemType,
                            iszero(callvalue())
                        )
                    }
                    // Revert if msg.value has not been supplied as part of payable
                    // routes or has been supplied as part of non-payable routes.
                    if (!correctPayableStatus) {
                        _revertInvalidMsgValue(msg.value);
                    }
                }
                // Declare more arguments that will be derived from route and calldata.
                address additionalRecipientsToken;
                ItemType offeredItemType;
                bool offerTypeIsAdditionalRecipientsType;
                // Declare scope for received item type to manage stack pressure.
                {
                    ItemType receivedItemType;
                    // Utilize assembly to retrieve function arguments and cast types.
                    assembly {
                        // Check if offered item type == additional recipient item type.
                        offerTypeIsAdditionalRecipientsType := gt(route, 3)
                        // If route > 3 additionalRecipientsToken is at 0xc4 else 0x24.
                        additionalRecipientsToken := calldataload(
                            add(
                                BasicOrder_considerationToken_cdPtr,
                                mul(
                                    offerTypeIsAdditionalRecipientsType,
                                    BasicOrder_common_params_size
                                )
                            )
                        )
                        // If route > 2, receivedItemType is route - 2. If route is 2,
                        // the receivedItemType is ERC20 (1). Otherwise, it is native
                        // token (0).
                        receivedItemType := byte(route, BasicOrder_receivedItemByteMap)
                        // If route > 3, offeredItemType is ERC20 (1). Route is 2 or 3,
                        // offeredItemType = route. Route is 0 or 1, it is route + 2.
                        offeredItemType := byte(route, BasicOrder_offeredItemByteMap)
                    }
                    // Derive & validate order using parameters and update order status.
                    orderHash = _prepareBasicFulfillmentFromCalldata(
                        parameters,
                        orderType,
                        receivedItemType,
                        additionalRecipientsItemType,
                        additionalRecipientsToken,
                        offeredItemType
                    );
                }
                // Declare conduitKey argument used by transfer functions.
                bytes32 conduitKey;
                // Utilize assembly to derive conduit (if relevant) based on route.
                assembly {
                    // use offerer conduit for routes 0-3, fulfiller conduit otherwise.
                    conduitKey := calldataload(
                        add(
                            BasicOrder_offererConduit_cdPtr,
                            shl(OneWordShift, offerTypeIsAdditionalRecipientsType)
                        )
                    )
                }
                // Transfer tokens based on the route.
                if (additionalRecipientsItemType == ItemType.NATIVE) {
                    // Ensure neither consideration token nor identifier are set. Note
                    // that dirty upper bits in the consideration token will still cause
                    // this error to be thrown.
                    assembly {
                        if or(
                            calldataload(BasicOrder_considerationToken_cdPtr),
                            calldataload(BasicOrder_considerationIdentifier_cdPtr)
                        ) {
                            // Store left-padded selector with push4 (reduces bytecode),
                            // mem[28:32] = selector
                            mstore(0, UnusedItemParameters_error_selector)
                            // revert(abi.encodeWithSignature("UnusedItemParameters()"))
                            revert(
                                Error_selector_offset,
                                UnusedItemParameters_error_length
                            )
                        }
                    }
                    // Transfer the ERC721 or ERC1155 item, bypassing the accumulator.
                    _transferIndividual721Or1155Item(offeredItemType, conduitKey);
                    // Transfer native to recipients, return excess to caller & wrap up.
                    _transferNativeTokensAndFinalize();
                } else {
                    // Initialize an accumulator array. From this point forward, no new
                    // memory regions can be safely allocated until the accumulator is
                    // no longer being utilized, as the accumulator operates in an
                    // open-ended fashion from this memory pointer; existing memory may
                    // still be accessed and modified, however.
                    bytes memory accumulator = new bytes(AccumulatorDisarmed);
                    // Choose transfer method for ERC721 or ERC1155 item based on route.
                    if (route == BasicOrderRouteType.ERC20_TO_ERC721) {
                        // Transfer ERC721 to caller using offerer's conduit preference.
                        _transferERC721(
                            parameters.offerToken,
                            parameters.offerer,
                            msg.sender,
                            parameters.offerIdentifier,
                            parameters.offerAmount,
                            conduitKey,
                            accumulator
                        );
                    } else if (route == BasicOrderRouteType.ERC20_TO_ERC1155) {
                        // Transfer ERC1155 to caller with offerer's conduit preference.
                        _transferERC1155(
                            parameters.offerToken,
                            parameters.offerer,
                            msg.sender,
                            parameters.offerIdentifier,
                            parameters.offerAmount,
                            conduitKey,
                            accumulator
                        );
                    } else if (route == BasicOrderRouteType.ERC721_TO_ERC20) {
                        // Transfer ERC721 to offerer using caller's conduit preference.
                        _transferERC721(
                            parameters.considerationToken,
                            msg.sender,
                            parameters.offerer,
                            parameters.considerationIdentifier,
                            parameters.considerationAmount,
                            conduitKey,
                            accumulator
                        );
                    } else {
                        // route == BasicOrderRouteType.ERC1155_TO_ERC20
                        // Transfer ERC1155 to offerer with caller's conduit preference.
                        _transferERC1155(
                            parameters.considerationToken,
                            msg.sender,
                            parameters.offerer,
                            parameters.considerationIdentifier,
                            parameters.considerationAmount,
                            conduitKey,
                            accumulator
                        );
                    }
                    // Transfer ERC20 tokens to all recipients and wrap up.
                    _transferERC20AndFinalize(
                        offerTypeIsAdditionalRecipientsType,
                        accumulator
                    );
                    // Trigger any remaining accumulated transfers via call to conduit.
                    _triggerIfArmed(accumulator);
                }
                // Determine whether order is restricted and, if so, that it is valid.
                _assertRestrictedBasicOrderValidity(orderHash, orderType, parameters);
                // Clear the reentrancy guard.
                _clearReentrancyGuard();
                return true;
            }
            /**
             * @dev Internal function to prepare fulfillment of a basic order with
             *      manual calldata and memory access. This calculates the order hash,
             *      emits an OrderFulfilled event, and asserts basic order validity.
             *      Note that calldata offsets must be validated as this function
             *      accesses constant calldata pointers for dynamic types that match
             *      default ABI encoding, but valid ABI encoding can use arbitrary
             *      offsets. Checking that the offsets were produced by default encoding
             *      will ensure that other functions using Solidity's calldata accessors
             *      (which calculate pointers from the stored offsets) are reading the
             *      same data as the order hash is derived from. Also note that this
             *      function accesses memory directly.
             *
             * @param parameters                   The parameters of the basic order.
             * @param orderType                    The order type.
             * @param receivedItemType             The item type of the initial
             *                                     consideration item on the order.
             * @param additionalRecipientsItemType The item type of any additional
             *                                     consideration item on the order.
             * @param additionalRecipientsToken    The ERC20 token contract address (if
             *                                     applicable) for any additional
             *                                     consideration item on the order.
             * @param offeredItemType              The item type of the offered item on
             *                                     the order.
             * @return orderHash The calculated order hash.
             */
            function _prepareBasicFulfillmentFromCalldata(
                BasicOrderParameters calldata parameters,
                OrderType orderType,
                ItemType receivedItemType,
                ItemType additionalRecipientsItemType,
                address additionalRecipientsToken,
                ItemType offeredItemType
            ) internal returns (bytes32 orderHash) {
                // Ensure this function cannot be triggered during a reentrant call.
                _setReentrancyGuard(false); // Native tokens rejected during execution.
                // Verify that calldata offsets for all dynamic types were produced by
                // default encoding. This ensures that the constants used for calldata
                // pointers to dynamic types are the same as those calculated by
                // Solidity using their offsets. Also verify that the basic order type
                // is within range.
                _assertValidBasicOrderParameters();
                // Check for invalid time and missing original consideration items.
                // Utilize assembly so that constant calldata pointers can be applied.
                assembly {
                    // Ensure current timestamp is between order start time & end time.
                    if or(
                        gt(calldataload(BasicOrder_startTime_cdPtr), timestamp()),
                        iszero(gt(calldataload(BasicOrder_endTime_cdPtr), timestamp()))
                    ) {
                        // Store left-padded selector with push4 (reduces bytecode),
                        // mem[28:32] = selector
                        mstore(0, InvalidTime_error_selector)
                        // Store arguments.
                        mstore(
                            InvalidTime_error_startTime_ptr,
                            calldataload(BasicOrder_startTime_cdPtr)
                        )
                        mstore(
                            InvalidTime_error_endTime_ptr,
                            calldataload(BasicOrder_endTime_cdPtr)
                        )
                        // revert(abi.encodeWithSignature(
                        //     "InvalidTime(uint256,uint256)",
                        //     startTime,
                        //     endTime
                        // ))
                        revert(Error_selector_offset, InvalidTime_error_length)
                    }
                    // Ensure consideration array length isn't less than total original.
                    if lt(
                        calldataload(BasicOrder_additionalRecipients_length_cdPtr),
                        calldataload(BasicOrder_totalOriginalAdditionalRecipients_cdPtr)
                    ) {
                        // Store left-padded selector with push4 (reduces bytecode),
                        // mem[28:32] = selector
                        mstore(0, MissingOriginalConsiderationItems_error_selector)
                        // revert(abi.encodeWithSignature(
                        //     "MissingOriginalConsiderationItems()"
                        // ))
                        revert(
                            Error_selector_offset,
                            MissingOriginalConsiderationItems_error_length
                        )
                    }
                }
                {
                    /**
                     * First, handle consideration items. Memory Layout:
                     *  0x60: final hash of the array of consideration item hashes
                     *  0x80-0x160: reused space for EIP712 hashing of each item
                     *   - 0x80: ConsiderationItem EIP-712 typehash (constant)
                     *   - 0xa0: itemType
                     *   - 0xc0: token
                     *   - 0xe0: identifier
                     *   - 0x100: startAmount
                     *   - 0x120: endAmount
                     *   - 0x140: recipient
                     *  0x160-END_ARR: array of consideration item hashes
                     *   - 0x160: primary consideration item EIP712 hash
                     *   - 0x180-END_ARR: additional recipient item EIP712 hashes
                     *  END_ARR: beginning of data for OrderFulfilled event
                     *   - END_ARR + 0x120: length of ReceivedItem array
                     *   - END_ARR + 0x140: beginning of data for first ReceivedItem
                     * (Note: END_ARR = 0x180 + RECIPIENTS_LENGTH * 0x20)
                     */
                    // Load consideration item typehash from runtime and place on stack.
                    bytes32 typeHash = _CONSIDERATION_ITEM_TYPEHASH;
                    // Utilize assembly to enable reuse of memory regions and use
                    // constant pointers when possible.
                    assembly {
                        /*
                         * 1. Calculate the EIP712 ConsiderationItem hash for the
                         * primary consideration item of the basic order.
                         */
                        // Write ConsiderationItem type hash and item type to memory.
                        mstore(BasicOrder_considerationItem_typeHash_ptr, typeHash)
                        mstore(
                            BasicOrder_considerationItem_itemType_ptr,
                            receivedItemType
                        )
                        // Copy calldata region with (token, identifier, amount) from
                        // BasicOrderParameters to ConsiderationItem. The
                        // considerationAmount is written to startAmount and endAmount
                        // as basic orders do not have dynamic amounts.
                        calldatacopy(
                            BasicOrder_considerationItem_token_ptr,
                            BasicOrder_considerationToken_cdPtr,
                            ThreeWords
                        )
                        // Copy calldata region with considerationAmount and offerer
                        // from BasicOrderParameters to endAmount and recipient in
                        // ConsiderationItem.
                        calldatacopy(
                            BasicOrder_considerationItem_endAmount_ptr,
                            BasicOrder_considerationAmount_cdPtr,
                            TwoWords
                        )
                        // Calculate EIP712 ConsiderationItem hash and store it in the
                        // array of EIP712 consideration hashes.
                        mstore(
                            BasicOrder_considerationHashesArray_ptr,
                            keccak256(
                                BasicOrder_considerationItem_typeHash_ptr,
                                EIP712_ConsiderationItem_size
                            )
                        )
                        /*
                         * 2. Write a ReceivedItem struct for the primary consideration
                         * item to the consideration array in OrderFulfilled.
                         */
                        // Get the length of the additional recipients array.
                        let totalAdditionalRecipients := calldataload(
                            BasicOrder_additionalRecipients_length_cdPtr
                        )
                        // Calculate pointer to length of OrderFulfilled consideration
                        // array.
                        let eventConsiderationArrPtr := add(
                            OrderFulfilled_consideration_length_baseOffset,
                            shl(OneWordShift, totalAdditionalRecipients)
                        )
                        // Set the length of the consideration array to the number of
                        // additional recipients, plus one for the primary consideration
                        // item.
                        mstore(
                            eventConsiderationArrPtr,
                            add(totalAdditionalRecipients, 1)
                        )
                        // Overwrite the consideration array pointer so it points to the
                        // body of the first element
                        eventConsiderationArrPtr := add(
                            eventConsiderationArrPtr,
                            OneWord
                        )
                        // Set itemType at start of the ReceivedItem memory region.
                        mstore(eventConsiderationArrPtr, receivedItemType)
                        // Copy calldata region (token, identifier, amount & recipient)
                        // from BasicOrderParameters to ReceivedItem memory.
                        calldatacopy(
                            add(eventConsiderationArrPtr, Common_token_offset),
                            BasicOrder_considerationToken_cdPtr,
                            FourWords
                        )
                        /*
                         * 3. Calculate EIP712 ConsiderationItem hashes for original
                         * additional recipients and add a ReceivedItem for each to the
                         * consideration array in the OrderFulfilled event. The original
                         * additional recipients are all the consideration items signed
                         * by the offerer aside from the primary consideration items of
                         * the order. Uses memory region from 0x80-0x160 as a buffer for
                         * calculating EIP712 ConsiderationItem hashes.
                         */
                        // Put pointer to consideration hashes array on the stack.
                        // This will be updated as each additional recipient is hashed
                        let
                            considerationHashesPtr
                        := BasicOrder_considerationHashesArray_ptr
                        // Write item type, token, & identifier for additional recipient
                        // to memory region for hashing EIP712 ConsiderationItem; these
                        // values will be reused for each recipient.
                        mstore(
                            BasicOrder_considerationItem_itemType_ptr,
                            additionalRecipientsItemType
                        )
                        mstore(
                            BasicOrder_considerationItem_token_ptr,
                            additionalRecipientsToken
                        )
                        mstore(BasicOrder_considerationItem_identifier_ptr, 0)
                        // Declare a stack variable where all additional recipients will
                        // be combined to guard against providing dirty upper bits.
                        let combinedAdditionalRecipients
                        // Read length of the additionalRecipients array from calldata
                        // and iterate.
                        totalAdditionalRecipients := calldataload(
                            BasicOrder_totalOriginalAdditionalRecipients_cdPtr
                        )
                        let i := 0
                        for {} lt(i, totalAdditionalRecipients) {
                            i := add(i, 1)
                        } {
                            /*
                             * Calculate EIP712 ConsiderationItem hash for recipient.
                             */
                            // Retrieve calldata pointer for additional recipient.
                            let additionalRecipientCdPtr := add(
                                BasicOrder_additionalRecipients_data_cdPtr,
                                mul(AdditionalRecipient_size, i)
                            )
                            // Copy startAmount from calldata to the ConsiderationItem
                            // struct.
                            calldatacopy(
                                BasicOrder_considerationItem_startAmount_ptr,
                                additionalRecipientCdPtr,
                                OneWord
                            )
                            // Copy endAmount and recipient from calldata to the
                            // ConsiderationItem struct.
                            calldatacopy(
                                BasicOrder_considerationItem_endAmount_ptr,
                                additionalRecipientCdPtr,
                                AdditionalRecipient_size
                            )
                            // Include the recipient as part of combined recipients.
                            combinedAdditionalRecipients := or(
                                combinedAdditionalRecipients,
                                calldataload(add(additionalRecipientCdPtr, OneWord))
                            )
                            // Add 1 word to the pointer as part of each loop to reduce
                            // operations needed to get local offset into the array.
                            considerationHashesPtr := add(
                                considerationHashesPtr,
                                OneWord
                            )
                            // Calculate EIP712 ConsiderationItem hash and store it in
                            // the array of consideration hashes.
                            mstore(
                                considerationHashesPtr,
                                keccak256(
                                    BasicOrder_considerationItem_typeHash_ptr,
                                    EIP712_ConsiderationItem_size
                                )
                            )
                            /*
                             * Write ReceivedItem to OrderFulfilled data.
                             */
                            // At this point, eventConsiderationArrPtr points to the
                            // beginning of the ReceivedItem struct of the previous
                            // element in the array. Increase it by the size of the
                            // struct to arrive at the pointer for the current element.
                            eventConsiderationArrPtr := add(
                                eventConsiderationArrPtr,
                                ReceivedItem_size
                            )
                            // Write itemType to the ReceivedItem struct.
                            mstore(
                                eventConsiderationArrPtr,
                                additionalRecipientsItemType
                            )
                            // Write token to the next word of the ReceivedItem struct.
                            mstore(
                                add(eventConsiderationArrPtr, OneWord),
                                additionalRecipientsToken
                            )
                            // Copy endAmount & recipient words to ReceivedItem struct.
                            calldatacopy(
                                add(
                                    eventConsiderationArrPtr,
                                    ReceivedItem_amount_offset
                                ),
                                additionalRecipientCdPtr,
                                TwoWords
                            )
                        }
                        /*
                         * 4. Hash packed array of ConsiderationItem EIP712 hashes:
                         *   `keccak256(abi.encodePacked(receivedItemHashes))`
                         * Note that it is set at 0x60 — all other memory begins at
                         * 0x80. 0x60 is the "zero slot" and will be restored at the end
                         * of the assembly section and before required by the compiler.
                         */
                        mstore(
                            receivedItemsHash_ptr,
                            keccak256(
                                BasicOrder_considerationHashesArray_ptr,
                                shl(OneWordShift, add(totalAdditionalRecipients, 1))
                            )
                        )
                        /*
                         * 5. Add a ReceivedItem for each tip to the consideration array
                         * in the OrderFulfilled event. The tips are all the
                         * consideration items that were not signed by the offerer and
                         * were provided by the fulfiller.
                         */
                        // Overwrite length to length of the additionalRecipients array.
                        totalAdditionalRecipients := calldataload(
                            BasicOrder_additionalRecipients_length_cdPtr
                        )
                        for {} lt(i, totalAdditionalRecipients) {
                            i := add(i, 1)
                        } {
                            // Retrieve calldata pointer for additional recipient.
                            let additionalRecipientCdPtr := add(
                                BasicOrder_additionalRecipients_data_cdPtr,
                                mul(AdditionalRecipient_size, i)
                            )
                            // At this point, eventConsiderationArrPtr points to the
                            // beginning of the ReceivedItem struct of the previous
                            // element in the array. Increase it by the size of the
                            // struct to arrive at the pointer for the current element.
                            eventConsiderationArrPtr := add(
                                eventConsiderationArrPtr,
                                ReceivedItem_size
                            )
                            // Write itemType to the ReceivedItem struct.
                            mstore(
                                eventConsiderationArrPtr,
                                additionalRecipientsItemType
                            )
                            // Write token to the next word of the ReceivedItem struct.
                            mstore(
                                add(eventConsiderationArrPtr, OneWord),
                                additionalRecipientsToken
                            )
                            // Copy endAmount & recipient words to ReceivedItem struct.
                            calldatacopy(
                                add(
                                    eventConsiderationArrPtr,
                                    ReceivedItem_amount_offset
                                ),
                                additionalRecipientCdPtr,
                                TwoWords
                            )
                            // Include the recipient as part of combined recipients.
                            combinedAdditionalRecipients := or(
                                combinedAdditionalRecipients,
                                calldataload(add(additionalRecipientCdPtr, OneWord))
                            )
                        }
                        // Ensure no dirty upper bits on combined additional recipients.
                        if gt(combinedAdditionalRecipients, MaskOverLastTwentyBytes) {
                            // Store left-padded selector with push4 (reduces bytecode),
                            // mem[28:32] = selector
                            mstore(0, InvalidBasicOrderParameterEncoding_error_selector)
                            // revert(abi.encodeWithSignature(
                            //     "InvalidBasicOrderParameterEncoding()"
                            // ))
                            revert(
                                Error_selector_offset,
                                InvalidBasicOrderParameterEncoding_error_length
                            )
                        }
                    }
                }
                {
                    /**
                     * Next, handle offered items. Memory Layout:
                     *  EIP712 data for OfferItem
                     *   - 0x80:  OfferItem EIP-712 typehash (constant)
                     *   - 0xa0:  itemType
                     *   - 0xc0:  token
                     *   - 0xe0:  identifier (reused for offeredItemsHash)
                     *   - 0x100: startAmount
                     *   - 0x120: endAmount
                     */
                    // Place offer item typehash on the stack.
                    bytes32 typeHash = _OFFER_ITEM_TYPEHASH;
                    // Utilize assembly to enable reuse of memory regions when possible.
                    assembly {
                        /*
                         * 1. Calculate OfferItem EIP712 hash
                         */
                        // Write the OfferItem typeHash to memory.
                        mstore(BasicOrder_offerItem_typeHash_ptr, typeHash)
                        // Write the OfferItem item type to memory.
                        mstore(BasicOrder_offerItem_itemType_ptr, offeredItemType)
                        // Copy calldata region with (offerToken, offerIdentifier,
                        // offerAmount) from OrderParameters to (token, identifier,
                        // startAmount) in OfferItem struct. The offerAmount is written
                        // to startAmount and endAmount as basic orders do not have
                        // dynamic amounts.
                        calldatacopy(
                            BasicOrder_offerItem_token_ptr,
                            BasicOrder_offerToken_cdPtr,
                            ThreeWords
                        )
                        // Copy offerAmount from calldata to endAmount in OfferItem
                        // struct.
                        calldatacopy(
                            BasicOrder_offerItem_endAmount_ptr,
                            BasicOrder_offerAmount_cdPtr,
                            OneWord
                        )
                        // Compute EIP712 OfferItem hash, write result to scratch space:
                        //   `keccak256(abi.encode(offeredItem))`
                        mstore(
                            0,
                            keccak256(
                                BasicOrder_offerItem_typeHash_ptr,
                                EIP712_OfferItem_size
                            )
                        )
                        /*
                         * 2. Calculate hash of array of EIP712 hashes and write the
                         * result to the corresponding OfferItem struct:
                         *   `keccak256(abi.encodePacked(offerItemHashes))`
                         */
                        mstore(BasicOrder_order_offerHashes_ptr, keccak256(0, OneWord))
                        /*
                         * 3. Write SpentItem to offer array in OrderFulfilled event.
                         */
                        let eventConsiderationArrPtr := add(
                            OrderFulfilled_offer_length_baseOffset,
                            shl(
                                OneWordShift,
                                calldataload(
                                    BasicOrder_additionalRecipients_length_cdPtr
                                )
                            )
                        )
                        // Set a length of 1 for the offer array.
                        mstore(eventConsiderationArrPtr, 1)
                        // Write itemType to the SpentItem struct.
                        mstore(add(eventConsiderationArrPtr, OneWord), offeredItemType)
                        // Copy calldata region with (offerToken, offerIdentifier,
                        // offerAmount) from OrderParameters to (token, identifier,
                        // amount) in SpentItem struct.
                        calldatacopy(
                            add(eventConsiderationArrPtr, AdditionalRecipient_size),
                            BasicOrder_offerToken_cdPtr,
                            ThreeWords
                        )
                    }
                }
                {
                    /**
                     * Once consideration items and offer items have been handled,
                     * derive the final order hash. Memory Layout:
                     *  0x80-0x1c0: EIP712 data for order
                     *   - 0x80:   Order EIP-712 typehash (constant)
                     *   - 0xa0:   orderParameters.offerer
                     *   - 0xc0:   orderParameters.zone
                     *   - 0xe0:   keccak256(abi.encodePacked(offerHashes))
                     *   - 0x100:  keccak256(abi.encodePacked(considerationHashes))
                     *   - 0x120:  orderParameters.basicOrderType (% 4 = orderType)
                     *   - 0x140:  orderParameters.startTime
                     *   - 0x160:  orderParameters.endTime
                     *   - 0x180:  orderParameters.zoneHash
                     *   - 0x1a0:  orderParameters.salt
                     *   - 0x1c0:  orderParameters.conduitKey
                     *   - 0x1e0:  _counters[orderParameters.offerer] (from storage)
                     */
                    // Read the offerer from calldata and place on the stack.
                    address offerer;
                    assembly {
                        offerer := calldataload(BasicOrder_offerer_cdPtr)
                    }
                    // Read offerer's current counter from storage and place on stack.
                    uint256 counter = _getCounter(offerer);
                    // Load order typehash from runtime code and place on stack.
                    bytes32 typeHash = _ORDER_TYPEHASH;
                    assembly {
                        // Set the OrderItem typeHash in memory.
                        mstore(BasicOrder_order_typeHash_ptr, typeHash)
                        // Copy offerer and zone from OrderParameters in calldata to the
                        // Order struct.
                        calldatacopy(
                            BasicOrder_order_offerer_ptr,
                            BasicOrder_offerer_cdPtr,
                            TwoWords
                        )
                        // Copy receivedItemsHash from zero slot to the Order struct.
                        mstore(
                            BasicOrder_order_considerationHashes_ptr,
                            mload(receivedItemsHash_ptr)
                        )
                        // Write the supplied orderType to the Order struct.
                        mstore(BasicOrder_order_orderType_ptr, orderType)
                        // Copy startTime, endTime, zoneHash, salt & conduit from
                        // calldata to the Order struct.
                        calldatacopy(
                            BasicOrder_order_startTime_ptr,
                            BasicOrder_startTime_cdPtr,
                            FiveWords
                        )
                        // Write offerer's counter, retrieved from storage, to struct.
                        mstore(BasicOrder_order_counter_ptr, counter)
                        // Compute the EIP712 Order hash.
                        orderHash := keccak256(
                            BasicOrder_order_typeHash_ptr,
                            EIP712_Order_size
                        )
                    }
                }
                assembly {
                    /**
                     * After the order hash has been derived, emit OrderFulfilled event:
                     *   event OrderFulfilled(
                     *     bytes32 orderHash,
                     *     address indexed offerer,
                     *     address indexed zone,
                     *     address fulfiller,
                     *     SpentItem[] offer,
                     *       > (itemType, token, id, amount)
                     *     ReceivedItem[] consideration
                     *       > (itemType, token, id, amount, recipient)
                     *   )
                     * topic0 - OrderFulfilled event signature
                     * topic1 - offerer
                     * topic2 - zone
                     * data:
                     *  - 0x00: orderHash
                     *  - 0x20: fulfiller
                     *  - 0x40: offer arr ptr (0x80)
                     *  - 0x60: consideration arr ptr (0x120)
                     *  - 0x80: offer arr len (1)
                     *  - 0xa0: offer.itemType
                     *  - 0xc0: offer.token
                     *  - 0xe0: offer.identifier
                     *  - 0x100: offer.amount
                     *  - 0x120: 1 + recipients.length
                     *  - 0x140: recipient 0
                     */
                    // Derive pointer to start of OrderFulfilled event data.
                    let eventDataPtr := add(
                        OrderFulfilled_baseOffset,
                        shl(
                            OneWordShift,
                            calldataload(BasicOrder_additionalRecipients_length_cdPtr)
                        )
                    )
                    // Write the order hash to the head of the event's data region.
                    mstore(eventDataPtr, orderHash)
                    // Write the fulfiller (i.e. the caller) next for receiver argument.
                    mstore(add(eventDataPtr, OrderFulfilled_fulfiller_offset), caller())
                    // Write the SpentItem and ReceivedItem array offsets (constants).
                    mstore(
                        // SpentItem array offset
                        add(eventDataPtr, OrderFulfilled_offer_head_offset),
                        OrderFulfilled_offer_body_offset
                    )
                    mstore(
                        // ReceivedItem array offset
                        add(eventDataPtr, OrderFulfilled_consideration_head_offset),
                        OrderFulfilled_consideration_body_offset
                    )
                    // Derive total data size including SpentItem and ReceivedItem data.
                    // SpentItem portion is already included in the baseSize constant,
                    // as there can only be one element in the array.
                    let dataSize := add(
                        OrderFulfilled_baseSize,
                        mul(
                            calldataload(BasicOrder_additionalRecipients_length_cdPtr),
                            ReceivedItem_size
                        )
                    )
                    // Emit OrderFulfilled log with three topics (the event signature
                    // as well as the two indexed arguments, the offerer and the zone).
                    log3(
                        // Supply the pointer for event data in memory.
                        eventDataPtr,
                        // Supply the size of event data in memory.
                        dataSize,
                        // Supply the OrderFulfilled event signature.
                        OrderFulfilled_selector,
                        // Supply the first topic (the offerer).
                        calldataload(BasicOrder_offerer_cdPtr),
                        // Supply the second topic (the zone).
                        calldataload(BasicOrder_zone_cdPtr)
                    )
                    // Restore the zero slot.
                    mstore(ZeroSlot, 0)
                    // Update the free memory pointer so that event data is persisted.
                    mstore(FreeMemoryPointerSlot, add(eventDataPtr, dataSize))
                }
                // Verify and update the status of the derived order.
                _validateBasicOrderAndUpdateStatus(orderHash, parameters.signature);
                // Return the derived order hash.
                return orderHash;
            }
            /**
             * @dev Internal function to transfer an individual ERC721 or ERC1155 item
             *      from a given originator to a given recipient. The accumulator will
             *      be bypassed, meaning that this function should be utilized in cases
             *      where multiple item transfers can be accumulated into a single
             *      conduit call. Sufficient approvals must be set, either on the
             *      respective conduit or on this contract. Note that this function may
             *      only be safely called as part of basic orders, as it assumes a
             *      specific calldata encoding structure that must first be validated.
             *
             * @param itemType   The type of item to transfer, either ERC721 or ERC1155.
             * @param conduitKey A bytes32 value indicating what corresponding conduit,
             *                   if any, to source token approvals from. The zero hash
             *                   signifies that no conduit should be used, with direct
             *                   approvals set on this contract.
             */
            function _transferIndividual721Or1155Item(
                ItemType itemType,
                bytes32 conduitKey
            ) internal {
                // Retrieve token, from, identifier, and amount from calldata using
                // fixed calldata offsets based on strict basic parameter encoding.
                address token;
                address from;
                uint256 identifier;
                uint256 amount;
                assembly {
                    token := calldataload(BasicOrder_offerToken_cdPtr)
                    from := calldataload(BasicOrder_offerer_cdPtr)
                    identifier := calldataload(BasicOrder_offerIdentifier_cdPtr)
                    amount := calldataload(BasicOrder_offerAmount_cdPtr)
                }
                // Determine if the transfer is to be performed via a conduit.
                if (conduitKey != bytes32(0)) {
                    // Use free memory pointer as calldata offset for the conduit call.
                    uint256 callDataOffset;
                    // Utilize assembly to place each argument in free memory.
                    assembly {
                        // Retrieve the free memory pointer and use it as the offset.
                        callDataOffset := mload(FreeMemoryPointerSlot)
                        // Write ConduitInterface.execute.selector to memory.
                        mstore(callDataOffset, Conduit_execute_signature)
                        // Write the offset to the ConduitTransfer array in memory.
                        mstore(
                            add(
                                callDataOffset,
                                Conduit_execute_ConduitTransfer_offset_ptr
                            ),
                            Conduit_execute_ConduitTransfer_ptr
                        )
                        // Write the length of the ConduitTransfer array to memory.
                        mstore(
                            add(
                                callDataOffset,
                                Conduit_execute_ConduitTransfer_length_ptr
                            ),
                            Conduit_execute_ConduitTransfer_length
                        )
                        // Write the item type to memory.
                        mstore(
                            add(callDataOffset, Conduit_execute_transferItemType_ptr),
                            itemType
                        )
                        // Write the token to memory.
                        mstore(
                            add(callDataOffset, Conduit_execute_transferToken_ptr),
                            token
                        )
                        // Write the transfer source to memory.
                        mstore(
                            add(callDataOffset, Conduit_execute_transferFrom_ptr),
                            from
                        )
                        // Write the transfer recipient (the caller) to memory.
                        mstore(
                            add(callDataOffset, Conduit_execute_transferTo_ptr),
                            caller()
                        )
                        // Write the token identifier to memory.
                        mstore(
                            add(callDataOffset, Conduit_execute_transferIdentifier_ptr),
                            identifier
                        )
                        // Write the transfer amount to memory.
                        mstore(
                            add(callDataOffset, Conduit_execute_transferAmount_ptr),
                            amount
                        )
                    }
                    // Perform the call to the conduit.
                    _callConduitUsingOffsets(
                        conduitKey,
                        callDataOffset,
                        OneConduitExecute_size
                    );
                } else {
                    // Otherwise, determine whether it is an ERC721 or ERC1155 item.
                    if (itemType == ItemType.ERC721) {
                        // Ensure that exactly one 721 item is being transferred.
                        if (amount != 1) {
                            _revertInvalidERC721TransferAmount(amount);
                        }
                        // Perform transfer to caller via the token contract directly.
                        _performERC721Transfer(token, from, msg.sender, identifier);
                    } else {
                        // Perform transfer to caller via the token contract directly.
                        _performERC1155Transfer(
                            token,
                            from,
                            msg.sender,
                            identifier,
                            amount
                        );
                    }
                }
            }
            /**
             * @dev Internal function to transfer Ether (or other native tokens) to a
             *      given recipient as part of basic order fulfillment. Note that
             *      conduits are not utilized for native tokens as the transferred
             *      amount must be provided as msg.value. Also note that this function
             *      may only be safely called as part of basic orders, as it assumes a
             *      specific calldata encoding structure that must first be validated.
             */
            function _transferNativeTokensAndFinalize() internal {
                // Put native token value supplied by the caller on the stack.
                uint256 nativeTokensRemaining = msg.value;
                // Retrieve consideration amount, offerer, and total size of additional
                // recipients data from calldata using fixed offsets and place on stack.
                uint256 amount;
                address payable to;
                uint256 totalAdditionalRecipientsDataSize;
                assembly {
                    amount := calldataload(BasicOrder_considerationAmount_cdPtr)
                    to := calldataload(BasicOrder_offerer_cdPtr)
                    totalAdditionalRecipientsDataSize := shl(
                        AdditionalRecipient_size_shift,
                        calldataload(BasicOrder_additionalRecipients_length_cdPtr)
                    )
                }
                uint256 additionalRecipientAmount;
                address payable recipient;
                // Skip overflow check as for loop is indexed starting at zero.
                unchecked {
                    // Iterate over additional recipient data by two-word element.
                    for (
                        uint256 i = 0;
                        i < totalAdditionalRecipientsDataSize;
                        i += AdditionalRecipient_size
                    ) {
                        assembly {
                            // Retrieve calldata pointer for additional recipient.
                            let additionalRecipientCdPtr := add(
                                BasicOrder_additionalRecipients_data_cdPtr,
                                i
                            )
                            additionalRecipientAmount := calldataload(
                                additionalRecipientCdPtr
                            )
                            recipient := calldataload(
                                add(OneWord, additionalRecipientCdPtr)
                            )
                        }
                        // Ensure that sufficient native tokens are available.
                        if (additionalRecipientAmount > nativeTokensRemaining) {
                            _revertInsufficientNativeTokensSupplied();
                        }
                        // Reduce native token value available. Skip underflow check as
                        // subtracted value is confirmed above as less than remaining.
                        nativeTokensRemaining -= additionalRecipientAmount;
                        // Transfer native tokens to the additional recipient.
                        _transferNativeTokens(recipient, additionalRecipientAmount);
                    }
                }
                // Ensure that sufficient native tokens are still available.
                if (amount > nativeTokensRemaining) {
                    _revertInsufficientNativeTokensSupplied();
                }
                // Transfer native tokens to the offerer.
                _transferNativeTokens(to, amount);
                // If any native tokens remain after transfers, return to the caller.
                if (nativeTokensRemaining > amount) {
                    // Skip underflow check as nativeTokensRemaining > amount.
                    unchecked {
                        // Transfer remaining native tokens to the caller.
                        _transferNativeTokens(
                            payable(msg.sender),
                            nativeTokensRemaining - amount
                        );
                    }
                }
            }
            /**
             * @dev Internal function to transfer ERC20 tokens to a given recipient as
             *      part of basic order fulfillment. Note that this function may only be
             *      safely called as part of basic orders, as it assumes a specific
             *      calldata encoding structure that must first be validated. Also note
             *      that basic order parameters are retrieved using fixed offsets, this
             *      requires that strict basic order encoding has already been verified.
             *
             * @param fromOfferer A boolean indicating whether to decrement amount from
             *                    the offered amount.
             * @param accumulator An open-ended array that collects transfers to execute
             *                    against a given conduit in a single call.
             */
            function _transferERC20AndFinalize(
                bool fromOfferer,
                bytes memory accumulator
            ) internal {
                // Declare from and to variables determined by fromOfferer value.
                address from;
                address to;
                // Declare token and amount variables determined by fromOfferer value.
                address token;
                uint256 amount;
                // Declare and check identifier variable within an isolated scope.
                {
                    // Declare identifier variable determined by fromOfferer value.
                    uint256 identifier;
                    // Set ERC20 token transfer variables based on fromOfferer boolean.
                    if (fromOfferer) {
                        // Use offerer as from value, msg.sender as to value, and offer
                        // token, identifier, & amount values if token is from offerer.
                        assembly {
                            from := calldataload(BasicOrder_offerer_cdPtr)
                            to := caller()
                            token := calldataload(BasicOrder_offerToken_cdPtr)
                            identifier := calldataload(BasicOrder_offerIdentifier_cdPtr)
                            amount := calldataload(BasicOrder_offerAmount_cdPtr)
                        }
                    } else {
                        // Otherwise, use msg.sender as from value, offerer as to value,
                        // and consideration token, identifier, and amount values.
                        assembly {
                            from := caller()
                            to := calldataload(BasicOrder_offerer_cdPtr)
                            token := calldataload(BasicOrder_considerationToken_cdPtr)
                            identifier := calldataload(
                                BasicOrder_considerationIdentifier_cdPtr
                            )
                            amount := calldataload(BasicOrder_considerationAmount_cdPtr)
                        }
                    }
                    // Ensure that no identifier is supplied.
                    if (identifier != 0) {
                        _revertUnusedItemParameters();
                    }
                }
                // Determine the appropriate conduit to utilize.
                bytes32 conduitKey;
                // Utilize assembly to derive conduit (if relevant) based on route.
                assembly {
                    // Use offerer conduit if fromOfferer, fulfiller conduit otherwise.
                    conduitKey := calldataload(
                        sub(
                            BasicOrder_fulfillerConduit_cdPtr,
                            shl(OneWordShift, fromOfferer)
                        )
                    )
                }
                // Retrieve total size of additional recipients data and place on stack.
                uint256 totalAdditionalRecipientsDataSize;
                assembly {
                    totalAdditionalRecipientsDataSize := shl(
                        AdditionalRecipient_size_shift,
                        calldataload(BasicOrder_additionalRecipients_length_cdPtr)
                    )
                }
                uint256 additionalRecipientAmount;
                address recipient;
                // Iterate over each additional recipient.
                for (uint256 i = 0; i < totalAdditionalRecipientsDataSize; ) {
                    assembly {
                        // Retrieve calldata pointer for additional recipient.
                        let additionalRecipientCdPtr := add(
                            BasicOrder_additionalRecipients_data_cdPtr,
                            i
                        )
                        additionalRecipientAmount := calldataload(
                            additionalRecipientCdPtr
                        )
                        recipient := calldataload(
                            add(OneWord, additionalRecipientCdPtr)
                        )
                    }
                    // Decrement the amount to transfer to fulfiller if indicated.
                    if (fromOfferer) {
                        amount -= additionalRecipientAmount;
                    }
                    // Transfer ERC20 tokens to additional recipient given approval.
                    _transferERC20(
                        token,
                        from,
                        recipient,
                        additionalRecipientAmount,
                        conduitKey,
                        accumulator
                    );
                    // Skip overflow check as for loop is indexed starting at zero.
                    unchecked {
                        i += AdditionalRecipient_size;
                    }
                }
                // Transfer ERC20 token amount (from account must have proper approval).
                _transferERC20(token, from, to, amount, conduitKey, accumulator);
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.13;
        import { Side } from "../lib/ConsiderationEnums.sol";
        /**
         * @title CriteriaResolutionErrors
         * @author 0age
         * @notice CriteriaResolutionErrors contains all errors related to criteria
         *         resolution.
         */
        interface CriteriaResolutionErrors {
            /**
             * @dev Revert with an error when providing a criteria resolver that refers
             *      to an order that has not been supplied.
             *
             * @param side The side of the order that was not supplied.
             */
            error OrderCriteriaResolverOutOfRange(Side side);
            /**
             * @dev Revert with an error if an offer item still has unresolved criteria
             *      after applying all criteria resolvers.
             *
             * @param orderIndex The index of the order that contains the offer item.
             * @param offerIndex The index of the offer item that still has unresolved
             *                   criteria.
             */
            error UnresolvedOfferCriteria(uint256 orderIndex, uint256 offerIndex);
            /**
             * @dev Revert with an error if a consideration item still has unresolved
             *      criteria after applying all criteria resolvers.
             *
             * @param orderIndex         The index of the order that contains the
             *                           consideration item.
             * @param considerationIndex The index of the consideration item that still
             *                           has unresolved criteria.
             */
            error UnresolvedConsiderationCriteria(
                uint256 orderIndex,
                uint256 considerationIndex
            );
            /**
             * @dev Revert with an error when providing a criteria resolver that refers
             *      to an order with an offer item that has not been supplied.
             */
            error OfferCriteriaResolverOutOfRange();
            /**
             * @dev Revert with an error when providing a criteria resolver that refers
             *      to an order with a consideration item that has not been supplied.
             */
            error ConsiderationCriteriaResolverOutOfRange();
            /**
             * @dev Revert with an error when providing a criteria resolver that refers
             *      to an order with an item that does not expect a criteria to be
             *      resolved.
             */
            error CriteriaNotEnabledForItem();
            /**
             * @dev Revert with an error when providing a criteria resolver that
             *      contains an invalid proof with respect to the given item and
             *      chosen identifier.
             */
            error InvalidProof();
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.13;
        /**
         * @title AmountDerivationErrors
         * @author 0age
         * @notice AmountDerivationErrors contains errors related to amount derivation.
         */
        interface AmountDerivationErrors {
            /**
             * @dev Revert with an error when attempting to apply a fraction as part of
             *      a partial fill that does not divide the target amount cleanly.
             */
            error InexactFraction();
        }
        // SPDX-License-Identifier: MIT
        pragma solidity 0.8.17;
        import { OrderType } from "./ConsiderationEnums.sol";
        import {
            AdvancedOrder,
            ConsiderationItem,
            OfferItem,
            Order,
            OrderComponents,
            OrderParameters,
            OrderStatus
        } from "./ConsiderationStructs.sol";
        import {
            _revertBadFraction,
            _revertCannotCancelOrder,
            _revertConsiderationLengthNotEqualToTotalOriginal,
            _revertInvalidContractOrder,
            _revertPartialFillsNotEnabledForOrder
        } from "./ConsiderationErrors.sol";
        import { Executor } from "./Executor.sol";
        import { ZoneInteraction } from "./ZoneInteraction.sol";
        import { MemoryPointer } from "../helpers/PointerLibraries.sol";
        import {
            AdvancedOrder_denominator_offset,
            AdvancedOrder_numerator_offset,
            BasicOrder_offerer_cdPtr,
            Common_amount_offset,
            Common_endAmount_offset,
            Common_identifier_offset,
            Common_token_offset,
            ConsiderItem_recipient_offset,
            ContractOrder_orderHash_offerer_shift,
            MaxUint120,
            OrderStatus_filledDenominator_offset,
            OrderStatus_filledNumerator_offset,
            OrderStatus_ValidatedAndNotCancelled
        } from "./ConsiderationConstants.sol";
        import {
            Error_selector_offset,
            Panic_arithmetic,
            Panic_error_code_ptr,
            Panic_error_length,
            Panic_error_selector
        } from "./ConsiderationErrorConstants.sol";
        /**
         * @title OrderValidator
         * @author 0age
         * @notice OrderValidator contains functionality related to validating orders
         *         and updating their status.
         */
        contract OrderValidator is Executor, ZoneInteraction {
            // Track status of each order (validated, cancelled, and fraction filled).
            mapping(bytes32 => OrderStatus) private _orderStatus;
            // Track nonces for contract offerers.
            mapping(address => uint256) internal _contractNonces;
            /**
             * @dev Derive and set hashes, reference chainId, and associated domain
             *      separator during deployment.
             *
             * @param conduitController A contract that deploys conduits, or proxies
             *                          that may optionally be used to transfer approved
             *                          ERC20/721/1155 tokens.
             */
            constructor(address conduitController) Executor(conduitController) {}
            /**
             * @dev Internal function to verify and update the status of a basic order.
             *      Note that this function may only be safely called as part of basic
             *      orders, as it assumes a specific calldata encoding structure that
             *      must first be validated.
             *
             * @param orderHash The hash of the order.
             * @param signature A signature from the offerer indicating that the order
             *                  has been approved.
             */
            function _validateBasicOrderAndUpdateStatus(
                bytes32 orderHash,
                bytes calldata signature
            ) internal {
                // Retrieve offerer directly using fixed calldata offset based on strict
                // basic parameter encoding.
                address offerer;
                assembly {
                    offerer := calldataload(BasicOrder_offerer_cdPtr)
                }
                // Retrieve the order status for the given order hash.
                OrderStatus storage orderStatus = _orderStatus[orderHash];
                // Ensure order is fillable and is not cancelled.
                _verifyOrderStatus(
                    orderHash,
                    orderStatus,
                    true, // Only allow unused orders when fulfilling basic orders.
                    true // Signifies to revert if the order is invalid.
                );
                // If the order is not already validated, verify the supplied signature.
                if (!orderStatus.isValidated) {
                    _verifySignature(offerer, orderHash, signature);
                }
                // Update order status as fully filled, packing struct values.
                orderStatus.isValidated = true;
                orderStatus.isCancelled = false;
                orderStatus.numerator = 1;
                orderStatus.denominator = 1;
            }
            /**
             * @dev Internal function to validate an order, determine what portion to
             *      fill, and update its status. The desired fill amount is supplied as
             *      a fraction, as is the returned amount to fill.
             *
             * @param advancedOrder     The order to fulfill as well as the fraction to
             *                          fill. Note that all offer and consideration
             *                          amounts must divide with no remainder in order
             *                          for a partial fill to be valid.
             * @param revertOnInvalid   A boolean indicating whether to revert if the
             *                          order is invalid due to the time or status.
             *
             * @return orderHash      The order hash.
             * @return numerator      A value indicating the portion of the order that
             *                        will be filled.
             * @return denominator    A value indicating the total size of the order.
             */
            function _validateOrderAndUpdateStatus(
                AdvancedOrder memory advancedOrder,
                bool revertOnInvalid
            )
                internal
                returns (bytes32 orderHash, uint256 numerator, uint256 denominator)
            {
                // Retrieve the parameters for the order.
                OrderParameters memory orderParameters = advancedOrder.parameters;
                // Ensure current timestamp falls between order start time and end time.
                if (
                    !_verifyTime(
                        orderParameters.startTime,
                        orderParameters.endTime,
                        revertOnInvalid
                    )
                ) {
                    // Assuming an invalid time and no revert, return zeroed out values.
                    return (bytes32(0), 0, 0);
                }
                // Read numerator and denominator from memory and place on the stack.
                // Note that overflowed values are masked.
                assembly {
                    numerator := and(
                        mload(add(advancedOrder, AdvancedOrder_numerator_offset)),
                        MaxUint120
                    )
                    denominator := and(
                        mload(add(advancedOrder, AdvancedOrder_denominator_offset)),
                        MaxUint120
                    )
                }
                // Declare variable for tracking the validity of the supplied fraction.
                bool invalidFraction;
                // If the order is a contract order, return the generated order.
                if (orderParameters.orderType == OrderType.CONTRACT) {
                    // Ensure that the numerator and denominator are both equal to 1.
                    assembly {
                        // (1 ^ nd =/= 0) => (nd =/= 1) => (n =/= 1) || (d =/= 1)
                        // It's important that the values are 120-bit masked before
                        // multiplication is applied. Otherwise, the last implication
                        // above is not correct (mod 2^256).
                        invalidFraction := xor(mul(numerator, denominator), 1)
                    }
                    // Revert if the supplied numerator and denominator are not valid.
                    if (invalidFraction) {
                        _revertBadFraction();
                    }
                    // Return the generated order based on the order params and the
                    // provided extra data. If revertOnInvalid is true, the function
                    // will revert if the input is invalid.
                    return
                        _getGeneratedOrder(
                            orderParameters,
                            advancedOrder.extraData,
                            revertOnInvalid
                        );
                }
                // Ensure numerator does not exceed denominator and is not zero.
                assembly {
                    invalidFraction := or(gt(numerator, denominator), iszero(numerator))
                }
                // Revert if the supplied numerator and denominator are not valid.
                if (invalidFraction) {
                    _revertBadFraction();
                }
                // If attempting partial fill (n < d) check order type & ensure support.
                if (
                    _doesNotSupportPartialFills(
                        orderParameters.orderType,
                        numerator,
                        denominator
                    )
                ) {
                    // Revert if partial fill was attempted on an unsupported order.
                    _revertPartialFillsNotEnabledForOrder();
                }
                // Retrieve current counter & use it w/ parameters to derive order hash.
                orderHash = _assertConsiderationLengthAndGetOrderHash(orderParameters);
                // Retrieve the order status using the derived order hash.
                OrderStatus storage orderStatus = _orderStatus[orderHash];
                // Ensure order is fillable and is not cancelled.
                if (
                    !_verifyOrderStatus(
                        orderHash,
                        orderStatus,
                        false, // Allow partially used orders to be filled.
                        revertOnInvalid
                    )
                ) {
                    // Assuming an invalid order status and no revert, return zero fill.
                    return (orderHash, 0, 0);
                }
                // If the order is not already validated, verify the supplied signature.
                if (!orderStatus.isValidated) {
                    _verifySignature(
                        orderParameters.offerer,
                        orderHash,
                        advancedOrder.signature
                    );
                }
                // Utilize assembly to determine the fraction to fill and update status.
                assembly {
                    let orderStatusSlot := orderStatus.slot
                    // Read filled amount as numerator and denominator and put on stack.
                    let filledNumerator := sload(orderStatusSlot)
                    let filledDenominator := shr(
                        OrderStatus_filledDenominator_offset,
                        filledNumerator
                    )
                    // "Loop" until the appropriate fill fraction has been determined.
                    for { } 1 { } {
                        // If no portion of the order has been filled yet...
                        if iszero(filledDenominator) {
                            // fill the full supplied fraction.
                            filledNumerator := numerator
                            // Exit the "loop" early.
                            break
                        }
                        // Shift and mask to calculate the current filled numerator.
                        filledNumerator := and(
                            shr(OrderStatus_filledNumerator_offset, filledNumerator),
                            MaxUint120
                        )
                        // If denominator of 1 supplied, fill entire remaining amount.
                        if eq(denominator, 1) {
                            // Set the amount to fill to the remaining amount.
                            numerator := sub(filledDenominator, filledNumerator)
                            // Set the fill size to the current size.
                            denominator := filledDenominator
                            // Set the filled amount to the current size.
                            filledNumerator := filledDenominator
                            // Exit the "loop" early.
                            break
                        }
                        // If supplied denominator is equal to the current one:
                        if eq(denominator, filledDenominator) {
                            // Increment the filled numerator by the new numerator.
                            filledNumerator := add(numerator, filledNumerator)
                            // Once adjusted, if current + supplied numerator exceeds
                            // the denominator:
                            let carry := mul(
                                sub(filledNumerator, denominator),
                                gt(filledNumerator, denominator)
                            )
                            // reduce the amount to fill by the excess.
                            numerator := sub(numerator, carry)
                            // Reduce the filled amount by the excess as well.
                            filledNumerator := sub(filledNumerator, carry)
                            // Exit the "loop" early.
                            break
                        }
                        // Otherwise, if supplied denominator differs from current one:
                        // Scale the filled amount up by the supplied size.
                        filledNumerator := mul(filledNumerator, denominator)
                        // Scale the supplied amount and size up by the current size.
                        numerator := mul(numerator, filledDenominator)
                        denominator := mul(denominator, filledDenominator)
                        // Increment the filled numerator by the new numerator.
                        filledNumerator := add(numerator, filledNumerator)
                        // Once adjusted, if current + supplied numerator exceeds
                        // denominator:
                        let carry := mul(
                            sub(filledNumerator, denominator),
                            gt(filledNumerator, denominator)
                        )
                        // reduce the amount to fill by the excess.
                        numerator := sub(numerator, carry)
                        // Reduce the filled amount by the excess as well.
                        filledNumerator := sub(filledNumerator, carry)
                        // Check filledNumerator and denominator for uint120 overflow.
                        if or(
                            gt(filledNumerator, MaxUint120),
                            gt(denominator, MaxUint120)
                        ) {
                            // Derive greatest common divisor using euclidean algorithm.
                            function gcd(_a, _b) -> out {
                                // "Loop" until only one non-zero value remains.
                                for { } _b { } {
                                    // Assign the second value to a temporary variable.
                                    let _c := _b
                                    // Derive the modulus of the two values.
                                    _b := mod(_a, _c)
                                    // Set the first value to the temporary value.
                                    _a := _c
                                }
                                // Return the remaining non-zero value.
                                out := _a
                            }
                            // Determine the amount to scale down the fill fractions.
                            let scaleDown := gcd(
                                numerator,
                                gcd(filledNumerator, denominator)
                            )
                            // Ensure that the divisor is at least one.
                            let safeScaleDown := add(scaleDown, iszero(scaleDown))
                            // Scale all fractional values down by gcd.
                            numerator := div(numerator, safeScaleDown)
                            filledNumerator := div(filledNumerator, safeScaleDown)
                            denominator := div(denominator, safeScaleDown)
                            // Perform the overflow check a second time.
                            if or(
                                gt(filledNumerator, MaxUint120),
                                gt(denominator, MaxUint120)
                            ) {
                                // Store the Panic error signature.
                                mstore(0, Panic_error_selector)
                                // Store the arithmetic (0x11) panic code.
                                mstore(Panic_error_code_ptr, Panic_arithmetic)
                                // revert(abi.encodeWithSignature(
                                //     "Panic(uint256)", 0x11
                                // ))
                                revert(Error_selector_offset, Panic_error_length)
                            }
                        }
                        // Exit the "loop" now that all evaluation is complete.
                        break
                    }
                    // Update order status and fill amount, packing struct values.
                    // [denominator: 15 bytes] [numerator: 15 bytes]
                    // [isCancelled: 1 byte] [isValidated: 1 byte]
                    sstore(
                        orderStatusSlot,
                        or(
                            OrderStatus_ValidatedAndNotCancelled,
                            or(
                                shl(
                                    OrderStatus_filledNumerator_offset,
                                    filledNumerator
                                ),
                                shl(OrderStatus_filledDenominator_offset, denominator)
                            )
                        )
                    )
                }
            }
            /**
             * @dev Internal pure function to check the compatibility of two offer
             *      or consideration items for contract orders.  Note that the itemType
             *      and identifier are reset in cases where criteria = 0 (collection-
             *      wide offers), which means that a contract offerer has full latitude
             *      to choose any identifier it wants mid-flight, in contrast to the
             *      normal behavior, where the fulfiller can pick which identifier to
             *      receive by providing a CriteriaResolver.
             *
             * @param originalItem The original offer or consideration item.
             * @param newItem      The new offer or consideration item.
             *
             * @return isInvalid Error buffer indicating if items are incompatible.
             */
            function _compareItems(
                MemoryPointer originalItem,
                MemoryPointer newItem
            ) internal pure returns (uint256 isInvalid) {
                assembly {
                    let itemType := mload(originalItem)
                    let identifier := mload(add(originalItem, Common_identifier_offset))
                    // Set returned identifier for criteria-based items w/ criteria = 0.
                    if and(gt(itemType, 3), iszero(identifier)) {
                        // replace item type
                        itemType := sub(3, eq(itemType, 4))
                        identifier := mload(add(newItem, Common_identifier_offset))
                    }
                    let originalAmount := mload(add(originalItem, Common_amount_offset))
                    let newAmount := mload(add(newItem, Common_amount_offset))
                    isInvalid := iszero(
                        and(
                            // originalItem.token == newItem.token &&
                            // originalItem.itemType == newItem.itemType
                            and(
                                eq(
                                    mload(add(originalItem, Common_token_offset)),
                                    mload(add(newItem, Common_token_offset))
                                ),
                                eq(itemType, mload(newItem))
                            ),
                            // originalItem.identifier == newItem.identifier &&
                            // originalItem.startAmount == originalItem.endAmount
                            and(
                                eq(
                                    identifier,
                                    mload(add(newItem, Common_identifier_offset))
                                ),
                                eq(
                                    originalAmount,
                                    mload(add(originalItem, Common_endAmount_offset))
                                )
                            )
                        )
                    )
                }
            }
            /**
             * @dev Internal pure function to check the compatibility of two recipients
             *      on consideration items for contract orders. This check is skipped if
             *      no recipient is originally supplied.
             *
             * @param originalRecipient The original consideration item recipient.
             * @param newRecipient      The new consideration item recipient.
             *
             * @return isInvalid Error buffer indicating if recipients are incompatible.
             */
            function _checkRecipients(
                address originalRecipient,
                address newRecipient
            ) internal pure returns (uint256 isInvalid) {
                assembly {
                    isInvalid := iszero(
                        or(
                            iszero(originalRecipient),
                            eq(newRecipient, originalRecipient)
                        )
                    )
                }
            }
            /**
             * @dev Internal function to generate a contract order. When a
             *      collection-wide criteria-based item (criteria = 0) is provided as an
             *      input to a contract order, the contract offerer has full latitude to
             *      choose any identifier it wants mid-flight, which differs from the
             *      usual behavior.  For regular criteria-based orders with
             *      identifierOrCriteria = 0, the fulfiller can pick which identifier to
             *      receive by providing a CriteriaResolver. For contract offers with
             *      identifierOrCriteria = 0, Seaport does not expect a corresponding
             *      CriteriaResolver, and will revert if one is provided.
             *
             * @param orderParameters The parameters for the order.
             * @param context         The context for generating the order.
             * @param revertOnInvalid Whether to revert on invalid input.
             *
             * @return orderHash   The order hash.
             * @return numerator   The numerator.
             * @return denominator The denominator.
             */
            function _getGeneratedOrder(
                OrderParameters memory orderParameters,
                bytes memory context,
                bool revertOnInvalid
            )
                internal
                returns (bytes32 orderHash, uint256 numerator, uint256 denominator)
            {
                // Ensure that consideration array length is equal to the total original
                // consideration items value.
                if (
                    orderParameters.consideration.length !=
                    orderParameters.totalOriginalConsiderationItems
                ) {
                    _revertConsiderationLengthNotEqualToTotalOriginal();
                }
                {
                    address offerer = orderParameters.offerer;
                    bool success;
                    (MemoryPointer cdPtr, uint256 size) = _encodeGenerateOrder(
                        orderParameters,
                        context
                    );
                    assembly {
                        success := call(gas(), offerer, 0, cdPtr, size, 0, 0)
                    }
                    {
                        // Note: overflow impossible; nonce can't increment that high.
                        uint256 contractNonce;
                        unchecked {
                            // Note: nonce will be incremented even for skipped orders,
                            // and  even if generateOrder's return data does not satisfy
                            // all the constraints. This is the case when errorBuffer
                            // != 0 and revertOnInvalid == false.
                            contractNonce = _contractNonces[offerer]++;
                        }
                        assembly {
                            // Shift offerer address up 96 bytes and combine with nonce.
                            orderHash := xor(
                                contractNonce,
                                shl(ContractOrder_orderHash_offerer_shift, offerer)
                            )
                        }
                    }
                    // Revert or skip if the call to generate the contract order failed.
                    if (!success) {
                        return _revertOrReturnEmpty(revertOnInvalid, orderHash);
                    }
                }
                // From this point onward, do not allow for skipping orders as the
                // contract offerer may have modified state in expectation of any named
                // consideration items being sent to their designated recipients.
                // Decode the returned contract order and/or update the error buffer.
                (
                    uint256 errorBuffer,
                    OfferItem[] memory offer,
                    ConsiderationItem[] memory consideration
                ) = _convertGetGeneratedOrderResult(_decodeGenerateOrderReturndata)();
                // Revert if the returndata could not be decoded correctly.
                if (errorBuffer != 0) {
                    _revertInvalidContractOrder(orderHash);
                }
                {
                    // Designate lengths.
                    uint256 originalOfferLength = orderParameters.offer.length;
                    uint256 newOfferLength = offer.length;
                    // Explicitly specified offer items cannot be removed.
                    if (originalOfferLength > newOfferLength) {
                        _revertInvalidContractOrder(orderHash);
                    }
                    // Iterate over each specified offer (e.g. minimumReceived) item.
                    for (uint256 i = 0; i < originalOfferLength; ) {
                        // Retrieve the pointer to the originally supplied item.
                        MemoryPointer mPtrOriginal = orderParameters
                            .offer[i]
                            .toMemoryPointer();
                        // Retrieve the pointer to the newly returned item.
                        MemoryPointer mPtrNew = offer[i].toMemoryPointer();
                        // Compare the items and update the error buffer accordingly.
                        errorBuffer |=
                            _cast(
                                mPtrOriginal
                                    .offset(Common_amount_offset)
                                    .readUint256() >
                                    mPtrNew.offset(Common_amount_offset).readUint256()
                            ) |
                            _compareItems(mPtrOriginal, mPtrNew);
                        // Increment the array (cannot overflow as index starts at 0).
                        unchecked {
                            ++i;
                        }
                    }
                    // Assign the returned offer item in place of the original item.
                    orderParameters.offer = offer;
                }
                {
                    // Designate lengths & memory locations.
                    ConsiderationItem[] memory originalConsiderationArray = (
                        orderParameters.consideration
                    );
                    uint256 newConsiderationLength = consideration.length;
                    // New consideration items cannot be created.
                    if (newConsiderationLength > originalConsiderationArray.length) {
                        _revertInvalidContractOrder(orderHash);
                    }
                    // Iterate over returned consideration & do not exceed maximumSpent.
                    for (uint256 i = 0; i < newConsiderationLength; ) {
                        // Retrieve the pointer to the originally supplied item.
                        MemoryPointer mPtrOriginal = originalConsiderationArray[i]
                            .toMemoryPointer();
                        // Retrieve the pointer to the newly returned item.
                        MemoryPointer mPtrNew = consideration[i].toMemoryPointer();
                        // Compare the items and update the error buffer accordingly
                        // and ensure that the recipients are equal when provided.
                        errorBuffer |=
                            _cast(
                                mPtrNew.offset(Common_amount_offset).readUint256() >
                                    mPtrOriginal
                                        .offset(Common_amount_offset)
                                        .readUint256()
                            ) |
                            _compareItems(mPtrOriginal, mPtrNew) |
                            _checkRecipients(
                                mPtrOriginal
                                    .offset(ConsiderItem_recipient_offset)
                                    .readAddress(),
                                mPtrNew
                                    .offset(ConsiderItem_recipient_offset)
                                    .readAddress()
                            );
                        // Increment the array (cannot overflow as index starts at 0).
                        unchecked {
                            ++i;
                        }
                    }
                    // Assign returned consideration item in place of the original item.
                    orderParameters.consideration = consideration;
                }
                // Revert if any item comparison failed.
                if (errorBuffer != 0) {
                    _revertInvalidContractOrder(orderHash);
                }
                // Return order hash and full fill amount (numerator & denominator = 1).
                return (orderHash, 1, 1);
            }
            /**
             * @dev Internal function to cancel an arbitrary number of orders. Note that
             *      only the offerer or the zone of a given order may cancel it. Callers
             *      should ensure that the intended order was cancelled by calling
             *      `getOrderStatus` and confirming that `isCancelled` returns `true`.
             *      Also note that contract orders are not cancellable.
             *
             * @param orders The orders to cancel.
             *
             * @return cancelled A boolean indicating whether the supplied orders were
             *                   successfully cancelled.
             */
            function _cancel(
                OrderComponents[] calldata orders
            ) internal returns (bool cancelled) {
                // Ensure that the reentrancy guard is not currently set.
                _assertNonReentrant();
                // Declare variables outside of the loop.
                OrderStatus storage orderStatus;
                // Declare a variable for tracking invariants in the loop.
                bool anyInvalidCallerOrContractOrder;
                // Skip overflow check as for loop is indexed starting at zero.
                unchecked {
                    // Read length of the orders array from memory and place on stack.
                    uint256 totalOrders = orders.length;
                    // Iterate over each order.
                    for (uint256 i = 0; i < totalOrders; ) {
                        // Retrieve the order.
                        OrderComponents calldata order = orders[i];
                        address offerer = order.offerer;
                        address zone = order.zone;
                        OrderType orderType = order.orderType;
                        assembly {
                            // If caller is neither the offerer nor zone, or a contract
                            // order is present, flag anyInvalidCallerOrContractOrder.
                            anyInvalidCallerOrContractOrder := or(
                                anyInvalidCallerOrContractOrder,
                                // orderType == CONTRACT ||
                                // !(caller == offerer || caller == zone)
                                or(
                                    eq(orderType, 4),
                                    iszero(
                                        or(eq(caller(), offerer), eq(caller(), zone))
                                    )
                                )
                            )
                        }
                        bytes32 orderHash = _deriveOrderHash(
                            _toOrderParametersReturnType(
                                _decodeOrderComponentsAsOrderParameters
                            )(order.toCalldataPointer()),
                            order.counter
                        );
                        // Retrieve the order status using the derived order hash.
                        orderStatus = _orderStatus[orderHash];
                        // Update the order status as not valid and cancelled.
                        orderStatus.isValidated = false;
                        orderStatus.isCancelled = true;
                        // Emit an event signifying that the order has been cancelled.
                        emit OrderCancelled(orderHash, offerer, zone);
                        // Increment counter inside body of loop for gas efficiency.
                        ++i;
                    }
                }
                if (anyInvalidCallerOrContractOrder) {
                    _revertCannotCancelOrder();
                }
                // Return a boolean indicating that orders were successfully cancelled.
                cancelled = true;
            }
            /**
             * @dev Internal function to validate an arbitrary number of orders, thereby
             *      registering their signatures as valid and allowing the fulfiller to
             *      skip signature verification on fulfillment. Note that validated
             *      orders may still be unfulfillable due to invalid item amounts or
             *      other factors; callers should determine whether validated orders are
             *      fulfillable by simulating the fulfillment call prior to execution.
             *      Also note that anyone can validate a signed order, but only the
             *      offerer can validate an order without supplying a signature.
             *
             * @param orders The orders to validate.
             *
             * @return validated A boolean indicating whether the supplied orders were
             *                   successfully validated.
             */
            function _validate(
                Order[] memory orders
            ) internal returns (bool validated) {
                // Ensure that the reentrancy guard is not currently set.
                _assertNonReentrant();
                // Declare variables outside of the loop.
                OrderStatus storage orderStatus;
                bytes32 orderHash;
                address offerer;
                // Skip overflow check as for loop is indexed starting at zero.
                unchecked {
                    // Read length of the orders array from memory and place on stack.
                    uint256 totalOrders = orders.length;
                    // Iterate over each order.
                    for (uint256 i = 0; i < totalOrders; ++i) {
                        // Retrieve the order.
                        Order memory order = orders[i];
                        // Retrieve the order parameters.
                        OrderParameters memory orderParameters = order.parameters;
                        // Skip contract orders.
                        if (orderParameters.orderType == OrderType.CONTRACT) {
                            continue;
                        }
                        // Move offerer from memory to the stack.
                        offerer = orderParameters.offerer;
                        // Get current counter & use it w/ params to derive order hash.
                        orderHash = _assertConsiderationLengthAndGetOrderHash(
                            orderParameters
                        );
                        // Retrieve the order status using the derived order hash.
                        orderStatus = _orderStatus[orderHash];
                        // Ensure order is fillable and retrieve the filled amount.
                        _verifyOrderStatus(
                            orderHash,
                            orderStatus,
                            false, // Signifies that partially filled orders are valid.
                            true // Signifies to revert if the order is invalid.
                        );
                        // If the order has not already been validated...
                        if (!orderStatus.isValidated) {
                            // Ensure that consideration array length is equal to the
                            // total original consideration items value.
                            if (
                                orderParameters.consideration.length !=
                                orderParameters.totalOriginalConsiderationItems
                            ) {
                                _revertConsiderationLengthNotEqualToTotalOriginal();
                            }
                            // Verify the supplied signature.
                            _verifySignature(offerer, orderHash, order.signature);
                            // Update order status to mark the order as valid.
                            orderStatus.isValidated = true;
                            // Emit an event signifying the order has been validated.
                            emit OrderValidated(orderHash, orderParameters);
                        }
                    }
                }
                // Return a boolean indicating that orders were successfully validated.
                validated = true;
            }
            /**
             * @dev Internal view function to retrieve the status of a given order by
             *      hash, including whether the order has been cancelled or validated
             *      and the fraction of the order that has been filled.
             *
             * @param orderHash The order hash in question.
             *
             * @return isValidated A boolean indicating whether the order in question
             *                     has been validated (i.e. previously approved or
             *                     partially filled).
             * @return isCancelled A boolean indicating whether the order in question
             *                     has been cancelled.
             * @return totalFilled The total portion of the order that has been filled
             *                     (i.e. the "numerator").
             * @return totalSize   The total size of the order that is either filled or
             *                     unfilled (i.e. the "denominator").
             */
            function _getOrderStatus(
                bytes32 orderHash
            )
                internal
                view
                returns (
                    bool isValidated,
                    bool isCancelled,
                    uint256 totalFilled,
                    uint256 totalSize
                )
            {
                // Retrieve the order status using the order hash.
                OrderStatus storage orderStatus = _orderStatus[orderHash];
                // Return the fields on the order status.
                return (
                    orderStatus.isValidated,
                    orderStatus.isCancelled,
                    orderStatus.numerator,
                    orderStatus.denominator
                );
            }
            /**
             * @dev Internal pure function to either revert or return an empty tuple
             *      depending on the value of `revertOnInvalid`.
             *
             * @param revertOnInvalid   Whether to revert on invalid input.
             * @param contractOrderHash The contract order hash.
             *
             * @return orderHash   The order hash.
             * @return numerator   The numerator.
             * @return denominator The denominator.
             */
            function _revertOrReturnEmpty(
                bool revertOnInvalid,
                bytes32 contractOrderHash
            )
                internal
                pure
                returns (bytes32 orderHash, uint256 numerator, uint256 denominator)
            {
                if (revertOnInvalid) {
                    _revertInvalidContractOrder(contractOrderHash);
                }
                return (contractOrderHash, 0, 0);
            }
            /**
             * @dev Internal pure function to check whether a given order type indicates
             *      that partial fills are not supported (e.g. only "full fills" are
             *      allowed for the order in question).
             *
             * @param orderType   The order type in question.
             * @param numerator   The numerator in question.
             * @param denominator The denominator in question.
             *
             * @return isFullOrder A boolean indicating whether the order type only
             *                     supports full fills.
             */
            function _doesNotSupportPartialFills(
                OrderType orderType,
                uint256 numerator,
                uint256 denominator
            ) internal pure returns (bool isFullOrder) {
                // The "full" order types are even, while "partial" order types are odd.
                // Bitwise and by 1 is equivalent to modulo by 2, but 2 gas cheaper. The
                // check is only necessary if numerator is less than denominator.
                assembly {
                    // Equivalent to `uint256(orderType) & 1 == 0`.
                    isFullOrder := and(
                        lt(numerator, denominator),
                        iszero(and(orderType, 1))
                    )
                }
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity 0.8.17;
        import { ConduitInterface } from "../interfaces/ConduitInterface.sol";
        import { ConduitItemType } from "../conduit/lib/ConduitEnums.sol";
        import { ItemType } from "./ConsiderationEnums.sol";
        import { ReceivedItem } from "./ConsiderationStructs.sol";
        import { Verifiers } from "./Verifiers.sol";
        import { TokenTransferrer } from "./TokenTransferrer.sol";
        import {
            Accumulator_array_length_ptr,
            Accumulator_array_offset_ptr,
            Accumulator_array_offset,
            Accumulator_conduitKey_ptr,
            Accumulator_itemSizeOffsetDifference,
            Accumulator_selector_ptr,
            AccumulatorArmed,
            AccumulatorDisarmed,
            Conduit_transferItem_amount_ptr,
            Conduit_transferItem_from_ptr,
            Conduit_transferItem_identifier_ptr,
            Conduit_transferItem_size,
            Conduit_transferItem_to_ptr,
            Conduit_transferItem_token_ptr,
            FreeMemoryPointerSlot,
            OneWord,
            TwoWords
        } from "./ConsiderationConstants.sol";
        import {
            Error_selector_offset,
            NativeTokenTransferGenericFailure_error_account_ptr,
            NativeTokenTransferGenericFailure_error_amount_ptr,
            NativeTokenTransferGenericFailure_error_length,
            NativeTokenTransferGenericFailure_error_selector
        } from "./ConsiderationErrorConstants.sol";
        import {
            _revertInvalidCallToConduit,
            _revertInvalidConduit,
            _revertInvalidERC721TransferAmount,
            _revertUnusedItemParameters
        } from "./ConsiderationErrors.sol";
        /**
         * @title Executor
         * @author 0age
         * @notice Executor contains functions related to processing executions (i.e.
         *         transferring items, either directly or via conduits).
         */
        contract Executor is Verifiers, TokenTransferrer {
            /**
             * @dev Derive and set hashes, reference chainId, and associated domain
             *      separator during deployment.
             *
             * @param conduitController A contract that deploys conduits, or proxies
             *                          that may optionally be used to transfer approved
             *                          ERC20/721/1155 tokens.
             */
            constructor(address conduitController) Verifiers(conduitController) {}
            /**
             * @dev Internal function to transfer a given item, either directly or via
             *      a corresponding conduit.
             *
             * @param item        The item to transfer, including an amount and a
             *                    recipient.
             * @param from        The account supplying the item.
             * @param conduitKey  A bytes32 value indicating what corresponding conduit,
             *                    if any, to source token approvals from. The zero hash
             *                    signifies that no conduit should be used, with direct
             *                    approvals set on this contract.
             * @param accumulator An open-ended array that collects transfers to execute
             *                    against a given conduit in a single call.
             */
            function _transfer(
                ReceivedItem memory item,
                address from,
                bytes32 conduitKey,
                bytes memory accumulator
            ) internal {
                // If the item type indicates Ether or a native token...
                if (item.itemType == ItemType.NATIVE) {
                    // Ensure neither the token nor the identifier parameters are set.
                    if ((uint160(item.token) | item.identifier) != 0) {
                        _revertUnusedItemParameters();
                    }
                    // transfer the native tokens to the recipient.
                    _transferNativeTokens(item.recipient, item.amount);
                } else if (item.itemType == ItemType.ERC20) {
                    // Ensure that no identifier is supplied.
                    if (item.identifier != 0) {
                        _revertUnusedItemParameters();
                    }
                    // Transfer ERC20 tokens from the source to the recipient.
                    _transferERC20(
                        item.token,
                        from,
                        item.recipient,
                        item.amount,
                        conduitKey,
                        accumulator
                    );
                } else if (item.itemType == ItemType.ERC721) {
                    // Transfer ERC721 token from the source to the recipient.
                    _transferERC721(
                        item.token,
                        from,
                        item.recipient,
                        item.identifier,
                        item.amount,
                        conduitKey,
                        accumulator
                    );
                } else {
                    // Transfer ERC1155 token from the source to the recipient.
                    _transferERC1155(
                        item.token,
                        from,
                        item.recipient,
                        item.identifier,
                        item.amount,
                        conduitKey,
                        accumulator
                    );
                }
            }
            /**
             * @dev Internal function to transfer Ether or other native tokens to a
             *      given recipient.
             *
             * @param to     The recipient of the transfer.
             * @param amount The amount to transfer.
             */
            function _transferNativeTokens(
                address payable to,
                uint256 amount
            ) internal {
                // Ensure that the supplied amount is non-zero.
                _assertNonZeroAmount(amount);
                // Declare a variable indicating whether the call was successful or not.
                bool success;
                assembly {
                    // Transfer the native token and store if it succeeded or not.
                    success := call(gas(), to, amount, 0, 0, 0, 0)
                }
                // If the call fails...
                if (!success) {
                    // Revert and pass the revert reason along if one was returned.
                    _revertWithReasonIfOneIsReturned();
                    // Otherwise, revert with a generic error message.
                    assembly {
                        // Store left-padded selector with push4, mem[28:32] = selector
                        mstore(0, NativeTokenTransferGenericFailure_error_selector)
                        // Write `to` and `amount` arguments.
                        mstore(NativeTokenTransferGenericFailure_error_account_ptr, to)
                        mstore(
                            NativeTokenTransferGenericFailure_error_amount_ptr,
                            amount
                        )
                        // revert(abi.encodeWithSignature(
                        //     "NativeTokenTransferGenericFailure(address,uint256)",
                        //     to,
                        //     amount
                        // ))
                        revert(
                            Error_selector_offset,
                            NativeTokenTransferGenericFailure_error_length
                        )
                    }
                }
            }
            /**
             * @dev Internal function to transfer ERC20 tokens from a given originator
             *      to a given recipient using a given conduit if applicable. Sufficient
             *      approvals must be set on this contract or on a respective conduit.
             *
             * @param token       The ERC20 token to transfer.
             * @param from        The originator of the transfer.
             * @param to          The recipient of the transfer.
             * @param amount      The amount to transfer.
             * @param conduitKey  A bytes32 value indicating what corresponding conduit,
             *                    if any, to source token approvals from. The zero hash
             *                    signifies that no conduit should be used, with direct
             *                    approvals set on this contract.
             * @param accumulator An open-ended array that collects transfers to execute
             *                    against a given conduit in a single call.
             */
            function _transferERC20(
                address token,
                address from,
                address to,
                uint256 amount,
                bytes32 conduitKey,
                bytes memory accumulator
            ) internal {
                // Ensure that the supplied amount is non-zero.
                _assertNonZeroAmount(amount);
                // Trigger accumulated transfers if the conduits differ.
                _triggerIfArmedAndNotAccumulatable(accumulator, conduitKey);
                // If no conduit has been specified...
                if (conduitKey == bytes32(0)) {
                    // Perform the token transfer directly.
                    _performERC20Transfer(token, from, to, amount);
                } else {
                    // Insert the call to the conduit into the accumulator.
                    _insert(
                        conduitKey,
                        accumulator,
                        ConduitItemType.ERC20,
                        token,
                        from,
                        to,
                        uint256(0),
                        amount
                    );
                }
            }
            /**
             * @dev Internal function to transfer a single ERC721 token from a given
             *      originator to a given recipient. Sufficient approvals must be set,
             *      either on the respective conduit or on this contract itself.
             *
             * @param token       The ERC721 token to transfer.
             * @param from        The originator of the transfer.
             * @param to          The recipient of the transfer.
             * @param identifier  The tokenId to transfer.
             * @param amount      The amount to transfer (must be 1 for ERC721).
             * @param conduitKey  A bytes32 value indicating what corresponding conduit,
             *                    if any, to source token approvals from. The zero hash
             *                    signifies that no conduit should be used, with direct
             *                    approvals set on this contract.
             * @param accumulator An open-ended array that collects transfers to execute
             *                    against a given conduit in a single call.
             */
            function _transferERC721(
                address token,
                address from,
                address to,
                uint256 identifier,
                uint256 amount,
                bytes32 conduitKey,
                bytes memory accumulator
            ) internal {
                // Trigger accumulated transfers if the conduits differ.
                _triggerIfArmedAndNotAccumulatable(accumulator, conduitKey);
                // If no conduit has been specified...
                if (conduitKey == bytes32(0)) {
                    // Ensure that exactly one 721 item is being transferred.
                    if (amount != 1) {
                        _revertInvalidERC721TransferAmount(amount);
                    }
                    // Perform transfer via the token contract directly.
                    _performERC721Transfer(token, from, to, identifier);
                } else {
                    // Insert the call to the conduit into the accumulator.
                    _insert(
                        conduitKey,
                        accumulator,
                        ConduitItemType.ERC721,
                        token,
                        from,
                        to,
                        identifier,
                        amount
                    );
                }
            }
            /**
             * @dev Internal function to transfer ERC1155 tokens from a given originator
             *      to a given recipient. Sufficient approvals must be set, either on
             *      the respective conduit or on this contract itself.
             *
             * @param token       The ERC1155 token to transfer.
             * @param from        The originator of the transfer.
             * @param to          The recipient of the transfer.
             * @param identifier  The id to transfer.
             * @param amount      The amount to transfer.
             * @param conduitKey  A bytes32 value indicating what corresponding conduit,
             *                    if any, to source token approvals from. The zero hash
             *                    signifies that no conduit should be used, with direct
             *                    approvals set on this contract.
             * @param accumulator An open-ended array that collects transfers to execute
             *                    against a given conduit in a single call.
             */
            function _transferERC1155(
                address token,
                address from,
                address to,
                uint256 identifier,
                uint256 amount,
                bytes32 conduitKey,
                bytes memory accumulator
            ) internal {
                // Ensure that the supplied amount is non-zero.
                _assertNonZeroAmount(amount);
                // Trigger accumulated transfers if the conduits differ.
                _triggerIfArmedAndNotAccumulatable(accumulator, conduitKey);
                // If no conduit has been specified...
                if (conduitKey == bytes32(0)) {
                    // Perform transfer via the token contract directly.
                    _performERC1155Transfer(token, from, to, identifier, amount);
                } else {
                    // Insert the call to the conduit into the accumulator.
                    _insert(
                        conduitKey,
                        accumulator,
                        ConduitItemType.ERC1155,
                        token,
                        from,
                        to,
                        identifier,
                        amount
                    );
                }
            }
            /**
             * @dev Internal function to trigger a call to the conduit currently held by
             *      the accumulator if the accumulator contains item transfers (i.e. it
             *      is "armed") and the supplied conduit key does not match the key held
             *      by the accumulator.
             *
             * @param accumulator An open-ended array that collects transfers to execute
             *                    against a given conduit in a single call.
             * @param conduitKey  A bytes32 value indicating what corresponding conduit,
             *                    if any, to source token approvals from. The zero hash
             *                    signifies that no conduit should be used, with direct
             *                    approvals set on this contract.
             */
            function _triggerIfArmedAndNotAccumulatable(
                bytes memory accumulator,
                bytes32 conduitKey
            ) internal {
                // Retrieve the current conduit key from the accumulator.
                bytes32 accumulatorConduitKey = _getAccumulatorConduitKey(accumulator);
                // Perform conduit call if the set key does not match the supplied key.
                if (accumulatorConduitKey != conduitKey) {
                    _triggerIfArmed(accumulator);
                }
            }
            /**
             * @dev Internal function to trigger a call to the conduit currently held by
             *      the accumulator if the accumulator contains item transfers (i.e. it
             *      is "armed").
             *
             * @param accumulator An open-ended array that collects transfers to execute
             *                    against a given conduit in a single call.
             */
            function _triggerIfArmed(bytes memory accumulator) internal {
                // Exit if the accumulator is not "armed".
                if (accumulator.length != AccumulatorArmed) {
                    return;
                }
                // Retrieve the current conduit key from the accumulator.
                bytes32 accumulatorConduitKey = _getAccumulatorConduitKey(accumulator);
                // Perform conduit call.
                _trigger(accumulatorConduitKey, accumulator);
            }
            /**
             * @dev Internal function to trigger a call to the conduit corresponding to
             *      a given conduit key, supplying all accumulated item transfers. The
             *      accumulator will be "disarmed" and reset in the process.
             *
             * @param conduitKey  A bytes32 value indicating what corresponding conduit,
             *                    if any, to source token approvals from. The zero hash
             *                    signifies that no conduit should be used, with direct
             *                    approvals set on this contract.
             * @param accumulator An open-ended array that collects transfers to execute
             *                    against a given conduit in a single call.
             */
            function _trigger(bytes32 conduitKey, bytes memory accumulator) internal {
                // Declare variables for offset in memory & size of calldata to conduit.
                uint256 callDataOffset;
                uint256 callDataSize;
                // Call the conduit with all the accumulated transfers.
                assembly {
                    // Call begins at third word; the first is length or "armed" status,
                    // and the second is the current conduit key.
                    callDataOffset := add(accumulator, TwoWords)
                    // 68 + items * 192
                    callDataSize := add(
                        Accumulator_array_offset_ptr,
                        mul(
                            mload(add(accumulator, Accumulator_array_length_ptr)),
                            Conduit_transferItem_size
                        )
                    )
                }
                // Call conduit derived from conduit key & supply accumulated transfers.
                _callConduitUsingOffsets(conduitKey, callDataOffset, callDataSize);
                // Reset accumulator length to signal that it is now "disarmed".
                assembly {
                    mstore(accumulator, AccumulatorDisarmed)
                }
            }
            /**
             * @dev Internal function to perform a call to the conduit corresponding to
             *      a given conduit key based on the offset and size of the calldata in
             *      question in memory.
             *
             * @param conduitKey     A bytes32 value indicating what corresponding
             *                       conduit, if any, to source token approvals from.
             *                       The zero hash signifies that no conduit should be
             *                       used, with direct approvals set on this contract.
             * @param callDataOffset The memory pointer where calldata is contained.
             * @param callDataSize   The size of calldata in memory.
             */
            function _callConduitUsingOffsets(
                bytes32 conduitKey,
                uint256 callDataOffset,
                uint256 callDataSize
            ) internal {
                // Derive the address of the conduit using the conduit key.
                address conduit = _deriveConduit(conduitKey);
                bool success;
                bytes4 result;
                // call the conduit.
                assembly {
                    // Ensure first word of scratch space is empty.
                    mstore(0, 0)
                    // Perform call, placing first word of return data in scratch space.
                    success := call(
                        gas(),
                        conduit,
                        0,
                        callDataOffset,
                        callDataSize,
                        0,
                        OneWord
                    )
                    // Take value from scratch space and place it on the stack.
                    result := mload(0)
                }
                // If the call failed...
                if (!success) {
                    // Pass along whatever revert reason was given by the conduit.
                    _revertWithReasonIfOneIsReturned();
                    // Otherwise, revert with a generic error.
                    _revertInvalidCallToConduit(conduit);
                }
                // Ensure result was extracted and matches EIP-1271 magic value.
                if (result != ConduitInterface.execute.selector) {
                    _revertInvalidConduit(conduitKey, conduit);
                }
            }
            /**
             * @dev Internal pure function to retrieve the current conduit key set for
             *      the accumulator.
             *
             * @param accumulator An open-ended array that collects transfers to execute
             *                    against a given conduit in a single call.
             *
             * @return accumulatorConduitKey The conduit key currently set for the
             *                               accumulator.
             */
            function _getAccumulatorConduitKey(
                bytes memory accumulator
            ) internal pure returns (bytes32 accumulatorConduitKey) {
                // Retrieve the current conduit key from the accumulator.
                assembly {
                    accumulatorConduitKey := mload(
                        add(accumulator, Accumulator_conduitKey_ptr)
                    )
                }
            }
            /**
             * @dev Internal pure function to place an item transfer into an accumulator
             *      that collects a series of transfers to execute against a given
             *      conduit in a single call.
             *
             * @param conduitKey  A bytes32 value indicating what corresponding conduit,
             *                    if any, to source token approvals from. The zero hash
             *                    signifies that no conduit should be used, with direct
             *                    approvals set on this contract.
             * @param accumulator An open-ended array that collects transfers to execute
             *                    against a given conduit in a single call.
             * @param itemType    The type of the item to transfer.
             * @param token       The token to transfer.
             * @param from        The originator of the transfer.
             * @param to          The recipient of the transfer.
             * @param identifier  The tokenId to transfer.
             * @param amount      The amount to transfer.
             */
            function _insert(
                bytes32 conduitKey,
                bytes memory accumulator,
                ConduitItemType itemType,
                address token,
                address from,
                address to,
                uint256 identifier,
                uint256 amount
            ) internal pure {
                uint256 elements;
                // "Arm" and prime accumulator if it's not already armed. The sentinel
                // value is held in the length of the accumulator array.
                if (accumulator.length == AccumulatorDisarmed) {
                    elements = 1;
                    bytes4 selector = ConduitInterface.execute.selector;
                    assembly {
                        mstore(accumulator, AccumulatorArmed) // "arm" the accumulator.
                        mstore(add(accumulator, Accumulator_conduitKey_ptr), conduitKey)
                        mstore(add(accumulator, Accumulator_selector_ptr), selector)
                        mstore(
                            add(accumulator, Accumulator_array_offset_ptr),
                            Accumulator_array_offset
                        )
                        mstore(add(accumulator, Accumulator_array_length_ptr), elements)
                    }
                } else {
                    // Otherwise, increase the number of elements by one.
                    assembly {
                        elements := add(
                            mload(add(accumulator, Accumulator_array_length_ptr)),
                            1
                        )
                        mstore(add(accumulator, Accumulator_array_length_ptr), elements)
                    }
                }
                // Insert the item.
                assembly {
                    let itemPointer := sub(
                        add(accumulator, mul(elements, Conduit_transferItem_size)),
                        Accumulator_itemSizeOffsetDifference
                    )
                    mstore(itemPointer, itemType)
                    mstore(add(itemPointer, Conduit_transferItem_token_ptr), token)
                    mstore(add(itemPointer, Conduit_transferItem_from_ptr), from)
                    mstore(add(itemPointer, Conduit_transferItem_to_ptr), to)
                    mstore(
                        add(itemPointer, Conduit_transferItem_identifier_ptr),
                        identifier
                    )
                    mstore(add(itemPointer, Conduit_transferItem_amount_ptr), amount)
                }
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity 0.8.17;
        import { OrderType } from "./ConsiderationEnums.sol";
        import {
            AdvancedOrder,
            BasicOrderParameters,
            OrderParameters
        } from "./ConsiderationStructs.sol";
        import { ZoneInteractionErrors } from "../interfaces/ZoneInteractionErrors.sol";
        import { LowLevelHelpers } from "./LowLevelHelpers.sol";
        import { ConsiderationEncoder } from "./ConsiderationEncoder.sol";
        import { MemoryPointer } from "../helpers/PointerLibraries.sol";
        import {
            ContractOrder_orderHash_offerer_shift,
            MaskOverFirstFourBytes,
            OneWord,
            OrderParameters_zone_offset
        } from "./ConsiderationConstants.sol";
        import {
            Error_selector_offset,
            InvalidContractOrder_error_selector,
            InvalidRestrictedOrder_error_length,
            InvalidRestrictedOrder_error_orderHash_ptr,
            InvalidRestrictedOrder_error_selector
        } from "./ConsiderationErrorConstants.sol";
        /**
         * @title ZoneInteraction
         * @author 0age
         * @notice ZoneInteraction contains logic related to interacting with zones.
         */
        contract ZoneInteraction is
            ConsiderationEncoder,
            ZoneInteractionErrors,
            LowLevelHelpers
        {
            /**
             * @dev Internal function to determine if an order has a restricted order
             *      type and, if so, to ensure that either the zone is the caller or
             *      that a call to `validateOrder` on the zone returns a magic value
             *      indicating that the order is currently valid. Note that contract
             *      orders are not accessible via the basic fulfillment method.
             *
             * @param orderHash  The hash of the order.
             * @param orderType  The order type.
             * @param parameters The parameters of the basic order.
             */
            function _assertRestrictedBasicOrderValidity(
                bytes32 orderHash,
                OrderType orderType,
                BasicOrderParameters calldata parameters
            ) internal {
                // Order type 2-3 require zone be caller or zone to approve.
                // Note that in cases where fulfiller == zone, the restricted order
                // validation will be skipped.
                if (_isRestrictedAndCallerNotZone(orderType, parameters.zone)) {
                    // Encode the `validateOrder` call in memory.
                    (MemoryPointer callData, uint256 size) = _encodeValidateBasicOrder(
                        orderHash,
                        parameters
                    );
                    // Perform `validateOrder` call and ensure magic value was returned.
                    _callAndCheckStatus(
                        parameters.zone,
                        orderHash,
                        callData,
                        size,
                        InvalidRestrictedOrder_error_selector
                    );
                }
            }
            /**
             * @dev Internal function to determine the post-execution validity of
             *      restricted and contract orders. Restricted orders where the caller
             *      is not the zone must successfully call `validateOrder` with the
             *      correct magic value returned. Contract orders must successfully call
             *      `ratifyOrder` with the correct magic value returned.
             *
             * @param advancedOrder The advanced order in question.
             * @param orderHashes   The order hashes of each order included as part of
             *                      the current fulfillment.
             * @param orderHash     The hash of the order.
             */
            function _assertRestrictedAdvancedOrderValidity(
                AdvancedOrder memory advancedOrder,
                bytes32[] memory orderHashes,
                bytes32 orderHash
            ) internal {
                // Declare variables that will be assigned based on the order type.
                address target;
                uint256 errorSelector;
                MemoryPointer callData;
                uint256 size;
                // Retrieve the parameters of the order in question.
                OrderParameters memory parameters = advancedOrder.parameters;
                // OrderType 2-3 require zone to be caller or approve via validateOrder.
                if (
                    _isRestrictedAndCallerNotZone(parameters.orderType, parameters.zone)
                ) {
                    // Encode the `validateOrder` call in memory.
                    (callData, size) = _encodeValidateOrder(
                        orderHash,
                        parameters,
                        advancedOrder.extraData,
                        orderHashes
                    );
                    // Set the target to the zone.
                    target = (
                        parameters
                            .toMemoryPointer()
                            .offset(OrderParameters_zone_offset)
                            .readAddress()
                    );
                    // Set the restricted-order-specific error selector.
                    errorSelector = InvalidRestrictedOrder_error_selector;
                } else if (parameters.orderType == OrderType.CONTRACT) {
                    // Set the target to the offerer (note the offerer has no offset).
                    target = parameters.toMemoryPointer().readAddress();
                    // Shift the target 96 bits to the left.
                    uint256 shiftedOfferer;
                    assembly {
                        shiftedOfferer := shl(
                            ContractOrder_orderHash_offerer_shift,
                            target
                        )
                    }
                    // Encode the `ratifyOrder` call in memory.
                    (callData, size) = _encodeRatifyOrder(
                        orderHash,
                        parameters,
                        advancedOrder.extraData,
                        orderHashes,
                        shiftedOfferer
                    );
                    // Set the contract-order-specific error selector.
                    errorSelector = InvalidContractOrder_error_selector;
                } else {
                    return;
                }
                // Perform call and ensure a corresponding magic value was returned.
                _callAndCheckStatus(target, orderHash, callData, size, errorSelector);
            }
            /**
             * @dev Determines whether the specified order type is restricted and the
             *      caller is not the specified zone.
             *
             * @param orderType     The type of the order to check.
             * @param zone          The address of the zone to check against.
             *
             * @return mustValidate True if the order type is restricted and the caller
             *                      is not the specified zone, false otherwise.
             */
            function _isRestrictedAndCallerNotZone(
                OrderType orderType,
                address zone
            ) internal view returns (bool mustValidate) {
                assembly {
                    mustValidate := and(
                        // Note that this check requires that there are no order types
                        // beyond the current set (0-4).  It will need to be modified if
                        // more order types are added.
                        and(lt(orderType, 4), gt(orderType, 1)),
                        iszero(eq(caller(), zone))
                    )
                }
            }
            /**
             * @dev Calls the specified target with the given data and checks the status
             *      of the call. Revert reasons will be "bubbled up" if one is returned,
             *      otherwise reverting calls will throw a generic error based on the
             *      supplied error handler.
             *
             * @param target        The address of the contract to call.
             * @param orderHash     The hash of the order associated with the call.
             * @param callData      The data to pass to the contract call.
             * @param size          The size of calldata.
             * @param errorSelector The error handling function to call if the call
             *                      fails or the magic value does not match.
             */
            function _callAndCheckStatus(
                address target,
                bytes32 orderHash,
                MemoryPointer callData,
                uint256 size,
                uint256 errorSelector
            ) internal {
                bool success;
                bool magicMatch;
                assembly {
                    // Get magic value from the selector at start of provided calldata.
                    let magic := and(mload(callData), MaskOverFirstFourBytes)
                    // Clear the start of scratch space.
                    mstore(0, 0)
                    // Perform call, placing result in the first word of scratch space.
                    success := call(gas(), target, 0, callData, size, 0, OneWord)
                    // Determine if returned magic value matches the calldata selector.
                    magicMatch := eq(magic, mload(0))
                }
                // Revert if the call was not successful.
                if (!success) {
                    // Revert and pass reason along if one was returned.
                    _revertWithReasonIfOneIsReturned();
                    // If no reason was returned, revert with supplied error selector.
                    assembly {
                        mstore(0, errorSelector)
                        mstore(InvalidRestrictedOrder_error_orderHash_ptr, orderHash)
                        // revert(abi.encodeWithSelector(
                        //     "InvalidRestrictedOrder(bytes32)",
                        //     orderHash
                        // ))
                        revert(
                            Error_selector_offset,
                            InvalidRestrictedOrder_error_length
                        )
                    }
                }
                // Revert if the correct magic value was not returned.
                if (!magicMatch) {
                    // Revert with a generic error message.
                    assembly {
                        mstore(0, errorSelector)
                        mstore(InvalidRestrictedOrder_error_orderHash_ptr, orderHash)
                        // revert(abi.encodeWithSelector(
                        //     "InvalidRestrictedOrder(bytes32)",
                        //     orderHash
                        // ))
                        revert(
                            Error_selector_offset,
                            InvalidRestrictedOrder_error_length
                        )
                    }
                }
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.13;
        import {
            ConduitBatch1155Transfer,
            ConduitTransfer
        } from "../conduit/lib/ConduitStructs.sol";
        /**
         * @title ConduitInterface
         * @author 0age
         * @notice ConduitInterface contains all external function interfaces, events,
         *         and errors for conduit contracts.
         */
        interface ConduitInterface {
            /**
             * @dev Revert with an error when attempting to execute transfers using a
             *      caller that does not have an open channel.
             */
            error ChannelClosed(address channel);
            /**
             * @dev Revert with an error when attempting to update a channel to the
             *      current status of that channel.
             */
            error ChannelStatusAlreadySet(address channel, bool isOpen);
            /**
             * @dev Revert with an error when attempting to execute a transfer for an
             *      item that does not have an ERC20/721/1155 item type.
             */
            error InvalidItemType();
            /**
             * @dev Revert with an error when attempting to update the status of a
             *      channel from a caller that is not the conduit controller.
             */
            error InvalidController();
            /**
             * @dev Emit an event whenever a channel is opened or closed.
             *
             * @param channel The channel that has been updated.
             * @param open    A boolean indicating whether the conduit is open or not.
             */
            event ChannelUpdated(address indexed channel, bool open);
            /**
             * @notice Execute a sequence of ERC20/721/1155 transfers. Only a caller
             *         with an open channel can call this function.
             *
             * @param transfers The ERC20/721/1155 transfers to perform.
             *
             * @return magicValue A magic value indicating that the transfers were
             *                    performed successfully.
             */
            function execute(
                ConduitTransfer[] calldata transfers
            ) external returns (bytes4 magicValue);
            /**
             * @notice Execute a sequence of batch 1155 transfers. Only a caller with an
             *         open channel can call this function.
             *
             * @param batch1155Transfers The 1155 batch transfers to perform.
             *
             * @return magicValue A magic value indicating that the transfers were
             *                    performed successfully.
             */
            function executeBatch1155(
                ConduitBatch1155Transfer[] calldata batch1155Transfers
            ) external returns (bytes4 magicValue);
            /**
             * @notice Execute a sequence of transfers, both single and batch 1155. Only
             *         a caller with an open channel can call this function.
             *
             * @param standardTransfers  The ERC20/721/1155 transfers to perform.
             * @param batch1155Transfers The 1155 batch transfers to perform.
             *
             * @return magicValue A magic value indicating that the transfers were
             *                    performed successfully.
             */
            function executeWithBatch1155(
                ConduitTransfer[] calldata standardTransfers,
                ConduitBatch1155Transfer[] calldata batch1155Transfers
            ) external returns (bytes4 magicValue);
            /**
             * @notice Open or close a given channel. Only callable by the controller.
             *
             * @param channel The channel to open or close.
             * @param isOpen  The status of the channel (either open or closed).
             */
            function updateChannel(address channel, bool isOpen) external;
        }
        // SPDX-License-Identifier: MIT
        pragma solidity 0.8.17;
        import { OrderStatus } from "./ConsiderationStructs.sol";
        import { Assertions } from "./Assertions.sol";
        import { SignatureVerification } from "./SignatureVerification.sol";
        import {
            _revertInvalidTime,
            _revertOrderAlreadyFilled,
            _revertOrderIsCancelled,
            _revertOrderPartiallyFilled
        } from "./ConsiderationErrors.sol";
        import {
            BulkOrderProof_keyShift,
            BulkOrderProof_keySize,
            BulkOrderProof_lengthAdjustmentBeforeMask,
            BulkOrderProof_lengthRangeAfterMask,
            BulkOrderProof_minSize,
            BulkOrderProof_rangeSize,
            ECDSA_MaxLength,
            OneWord,
            OneWordShift,
            ThirtyOneBytes,
            TwoWords
        } from "./ConsiderationConstants.sol";
        /**
         * @title Verifiers
         * @author 0age
         * @notice Verifiers contains functions for performing verifications.
         */
        contract Verifiers is Assertions, SignatureVerification {
            /**
             * @dev Derive and set hashes, reference chainId, and associated domain
             *      separator during deployment.
             *
             * @param conduitController A contract that deploys conduits, or proxies
             *                          that may optionally be used to transfer approved
             *                          ERC20/721/1155 tokens.
             */
            constructor(address conduitController) Assertions(conduitController) {}
            /**
             * @dev Internal view function to ensure that the current time falls within
             *      an order's valid timespan.
             *
             * @param startTime       The time at which the order becomes active.
             * @param endTime         The time at which the order becomes inactive.
             * @param revertOnInvalid A boolean indicating whether to revert if the
             *                        order is not active.
             *
             * @return valid A boolean indicating whether the order is active.
             */
            function _verifyTime(
                uint256 startTime,
                uint256 endTime,
                bool revertOnInvalid
            ) internal view returns (bool valid) {
                // Mark as valid if order has started and has not already ended.
                assembly {
                    valid := and(
                        iszero(gt(startTime, timestamp())),
                        gt(endTime, timestamp())
                    )
                }
                // Only revert on invalid if revertOnInvalid has been supplied as true.
                if (revertOnInvalid && !valid) {
                    _revertInvalidTime(startTime, endTime);
                }
            }
            /**
             * @dev Internal view function to verify the signature of an order. An
             *      ERC-1271 fallback will be attempted if either the signature length
             *      is not 64 or 65 bytes or if the recovered signer does not match the
             *      supplied offerer. Note that in cases where a 64 or 65 byte signature
             *      is supplied, only standard ECDSA signatures that recover to a
             *      non-zero address are supported.
             *
             * @param offerer   The offerer for the order.
             * @param orderHash The order hash.
             * @param signature A signature from the offerer indicating that the order
             *                  has been approved.
             */
            function _verifySignature(
                address offerer,
                bytes32 orderHash,
                bytes memory signature
            ) internal view {
                // Determine whether the offerer is the caller.
                bool offererIsCaller;
                assembly {
                    offererIsCaller := eq(offerer, caller())
                }
                // Skip signature verification if the offerer is the caller.
                if (offererIsCaller) {
                    return;
                }
                // Derive the EIP-712 domain separator.
                bytes32 domainSeparator = _domainSeparator();
                // Derive original EIP-712 digest using domain separator and order hash.
                bytes32 originalDigest = _deriveEIP712Digest(
                    domainSeparator,
                    orderHash
                );
                // Read the length of the signature from memory and place on the stack.
                uint256 originalSignatureLength = signature.length;
                // Determine effective digest if signature has a valid bulk order size.
                bytes32 digest;
                if (_isValidBulkOrderSize(originalSignatureLength)) {
                    // Rederive order hash and digest using bulk order proof.
                    (orderHash) = _computeBulkOrderProof(signature, orderHash);
                    digest = _deriveEIP712Digest(domainSeparator, orderHash);
                } else {
                    // Supply the original digest as the effective digest.
                    digest = originalDigest;
                }
                // Ensure that the signature for the digest is valid for the offerer.
                _assertValidSignature(
                    offerer,
                    digest,
                    originalDigest,
                    originalSignatureLength,
                    signature
                );
            }
            /**
             * @dev Determines whether the specified bulk order size is valid.
             *
             * @param signatureLength The signature length of the bulk order to check.
             *
             * @return validLength True if bulk order size is valid, false otherwise.
             */
            function _isValidBulkOrderSize(
                uint256 signatureLength
            ) internal pure returns (bool validLength) {
                // Utilize assembly to validate the length; the equivalent logic is
                // (64 + x) + 3 + 32y where (0 <= x <= 1) and (1 <= y <= 24).
                assembly {
                    validLength := and(
                        lt(
                            sub(signatureLength, BulkOrderProof_minSize),
                            BulkOrderProof_rangeSize
                        ),
                        lt(
                            and(
                                add(
                                    signatureLength,
                                    BulkOrderProof_lengthAdjustmentBeforeMask
                                ),
                                ThirtyOneBytes
                            ),
                            BulkOrderProof_lengthRangeAfterMask
                        )
                    )
                }
            }
            /**
             * @dev Computes the bulk order hash for the specified proof and leaf. Note
             *      that if an index that exceeds the number of orders in the bulk order
             *      payload will instead "wrap around" and refer to an earlier index.
             *
             * @param proofAndSignature The proof and signature of the bulk order.
             * @param leaf              The leaf of the bulk order tree.
             *
             * @return bulkOrderHash The bulk order hash.
             */
            function _computeBulkOrderProof(
                bytes memory proofAndSignature,
                bytes32 leaf
            ) internal pure returns (bytes32 bulkOrderHash) {
                // Declare arguments for the root hash and the height of the proof.
                bytes32 root;
                uint256 height;
                // Utilize assembly to efficiently derive the root hash using the proof.
                assembly {
                    // Retrieve the length of the proof, key, and signature combined.
                    let fullLength := mload(proofAndSignature)
                    // If proofAndSignature has odd length, it is a compact signature
                    // with 64 bytes.
                    let signatureLength := sub(ECDSA_MaxLength, and(fullLength, 1))
                    // Derive height (or depth of tree) with signature and proof length.
                    height := shr(OneWordShift, sub(fullLength, signatureLength))
                    // Update the length in memory to only include the signature.
                    mstore(proofAndSignature, signatureLength)
                    // Derive the pointer for the key using the signature length.
                    let keyPtr := add(proofAndSignature, add(OneWord, signatureLength))
                    // Retrieve the three-byte key using the derived pointer.
                    let key := shr(BulkOrderProof_keyShift, mload(keyPtr))
                    /// Retrieve pointer to first proof element by applying a constant
                    // for the key size to the derived key pointer.
                    let proof := add(keyPtr, BulkOrderProof_keySize)
                    // Compute level 1.
                    let scratchPtr1 := shl(OneWordShift, and(key, 1))
                    mstore(scratchPtr1, leaf)
                    mstore(xor(scratchPtr1, OneWord), mload(proof))
                    // Compute remaining proofs.
                    for {
                        let i := 1
                    } lt(i, height) {
                        i := add(i, 1)
                    } {
                        proof := add(proof, OneWord)
                        let scratchPtr := shl(OneWordShift, and(shr(i, key), 1))
                        mstore(scratchPtr, keccak256(0, TwoWords))
                        mstore(xor(scratchPtr, OneWord), mload(proof))
                    }
                    // Compute root hash.
                    root := keccak256(0, TwoWords)
                }
                // Retrieve appropriate typehash constant based on height.
                bytes32 rootTypeHash = _lookupBulkOrderTypehash(height);
                // Use the typehash and the root hash to derive final bulk order hash.
                assembly {
                    mstore(0, rootTypeHash)
                    mstore(OneWord, root)
                    bulkOrderHash := keccak256(0, TwoWords)
                }
            }
            /**
             * @dev Internal view function to validate that a given order is fillable
             *      and not cancelled based on the order status.
             *
             * @param orderHash       The order hash.
             * @param orderStatus     The status of the order, including whether it has
             *                        been cancelled and the fraction filled.
             * @param onlyAllowUnused A boolean flag indicating whether partial fills
             *                        are supported by the calling function.
             * @param revertOnInvalid A boolean indicating whether to revert if the
             *                        order has been cancelled or filled beyond the
             *                        allowable amount.
             *
             * @return valid A boolean indicating whether the order is valid.
             */
            function _verifyOrderStatus(
                bytes32 orderHash,
                OrderStatus storage orderStatus,
                bool onlyAllowUnused,
                bool revertOnInvalid
            ) internal view returns (bool valid) {
                // Ensure that the order has not been cancelled.
                if (orderStatus.isCancelled) {
                    // Only revert if revertOnInvalid has been supplied as true.
                    if (revertOnInvalid) {
                        _revertOrderIsCancelled(orderHash);
                    }
                    // Return false as the order status is invalid.
                    return false;
                }
                // Read order status numerator from storage and place on stack.
                uint256 orderStatusNumerator = orderStatus.numerator;
                // If the order is not entirely unused...
                if (orderStatusNumerator != 0) {
                    // ensure the order has not been partially filled when not allowed.
                    if (onlyAllowUnused) {
                        // Always revert on partial fills when onlyAllowUnused is true.
                        _revertOrderPartiallyFilled(orderHash);
                    }
                    // Otherwise, ensure that order has not been entirely filled.
                    else if (orderStatusNumerator >= orderStatus.denominator) {
                        // Only revert if revertOnInvalid has been supplied as true.
                        if (revertOnInvalid) {
                            _revertOrderAlreadyFilled(orderHash);
                        }
                        // Return false as the order status is invalid.
                        return false;
                    }
                }
                // Return true as the order status is valid.
                valid = true;
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.13;
        import {
            BadReturnValueFromERC20OnTransfer_error_amount_ptr,
            BadReturnValueFromERC20OnTransfer_error_from_ptr,
            BadReturnValueFromERC20OnTransfer_error_length,
            BadReturnValueFromERC20OnTransfer_error_selector,
            BadReturnValueFromERC20OnTransfer_error_to_ptr,
            BadReturnValueFromERC20OnTransfer_error_token_ptr,
            BatchTransfer1155Params_amounts_head_ptr,
            BatchTransfer1155Params_calldata_baseSize,
            BatchTransfer1155Params_data_head_ptr,
            BatchTransfer1155Params_data_length_basePtr,
            BatchTransfer1155Params_ids_head_ptr,
            BatchTransfer1155Params_ids_length_offset,
            BatchTransfer1155Params_ids_length_ptr,
            BatchTransfer1155Params_ptr,
            ConduitBatch1155Transfer_amounts_length_baseOffset,
            ConduitBatch1155Transfer_from_offset,
            ConduitBatch1155Transfer_ids_head_offset,
            ConduitBatch1155Transfer_ids_length_offset,
            ConduitBatch1155Transfer_usable_head_size,
            ConduitBatchTransfer_amounts_head_offset,
            CostPerWord,
            DefaultFreeMemoryPointer,
            ERC1155_safeBatchTransferFrom_signature,
            ERC1155_safeTransferFrom_amount_ptr,
            ERC1155_safeTransferFrom_data_length_offset,
            ERC1155_safeTransferFrom_data_length_ptr,
            ERC1155_safeTransferFrom_data_offset_ptr,
            ERC1155_safeTransferFrom_from_ptr,
            ERC1155_safeTransferFrom_id_ptr,
            ERC1155_safeTransferFrom_length,
            ERC1155_safeTransferFrom_sig_ptr,
            ERC1155_safeTransferFrom_signature,
            ERC1155_safeTransferFrom_to_ptr,
            ERC1155BatchTransferGenericFailure_error_signature,
            ERC1155BatchTransferGenericFailure_ids_offset,
            ERC1155BatchTransferGenericFailure_token_ptr,
            ERC20_transferFrom_amount_ptr,
            ERC20_transferFrom_from_ptr,
            ERC20_transferFrom_length,
            ERC20_transferFrom_sig_ptr,
            ERC20_transferFrom_signature,
            ERC20_transferFrom_to_ptr,
            ERC721_transferFrom_from_ptr,
            ERC721_transferFrom_id_ptr,
            ERC721_transferFrom_length,
            ERC721_transferFrom_sig_ptr,
            ERC721_transferFrom_signature,
            ERC721_transferFrom_to_ptr,
            ExtraGasBuffer,
            FreeMemoryPointerSlot,
            Generic_error_selector_offset,
            Invalid1155BatchTransferEncoding_length,
            Invalid1155BatchTransferEncoding_ptr,
            Invalid1155BatchTransferEncoding_selector,
            MemoryExpansionCoefficientShift,
            NoContract_error_account_ptr,
            NoContract_error_length,
            NoContract_error_selector,
            OneWord,
            OneWordShift,
            Slot0x80,
            Slot0xA0,
            Slot0xC0,
            ThirtyOneBytes,
            TokenTransferGenericFailure_err_identifier_ptr,
            TokenTransferGenericFailure_error_amount_ptr,
            TokenTransferGenericFailure_error_from_ptr,
            TokenTransferGenericFailure_error_identifier_ptr,
            TokenTransferGenericFailure_error_length,
            TokenTransferGenericFailure_error_selector,
            TokenTransferGenericFailure_error_to_ptr,
            TokenTransferGenericFailure_error_token_ptr,
            TwoWords,
            TwoWordsShift,
            ZeroSlot
        } from "./TokenTransferrerConstants.sol";
        import {
            TokenTransferrerErrors
        } from "../interfaces/TokenTransferrerErrors.sol";
        import { ConduitBatch1155Transfer } from "../conduit/lib/ConduitStructs.sol";
        /**
         * @title TokenTransferrer
         * @author 0age
         * @custom:coauthor d1ll0n
         * @custom:coauthor transmissions11
         * @notice TokenTransferrer is a library for performing optimized ERC20, ERC721,
         *         ERC1155, and batch ERC1155 transfers, used by both Seaport as well as
         *         by conduits deployed by the ConduitController. Use great caution when
         *         considering these functions for use in other codebases, as there are
         *         significant side effects and edge cases that need to be thoroughly
         *         understood and carefully addressed.
         */
        contract TokenTransferrer is TokenTransferrerErrors {
            /**
             * @dev Internal function to transfer ERC20 tokens from a given originator
             *      to a given recipient. Sufficient approvals must be set on the
             *      contract performing the transfer.
             *
             * @param token      The ERC20 token to transfer.
             * @param from       The originator of the transfer.
             * @param to         The recipient of the transfer.
             * @param amount     The amount to transfer.
             */
            function _performERC20Transfer(
                address token,
                address from,
                address to,
                uint256 amount
            ) internal {
                // Utilize assembly to perform an optimized ERC20 token transfer.
                assembly {
                    // The free memory pointer memory slot will be used when populating
                    // call data for the transfer; read the value and restore it later.
                    let memPointer := mload(FreeMemoryPointerSlot)
                    // Write call data into memory, starting with function selector.
                    mstore(ERC20_transferFrom_sig_ptr, ERC20_transferFrom_signature)
                    mstore(ERC20_transferFrom_from_ptr, from)
                    mstore(ERC20_transferFrom_to_ptr, to)
                    mstore(ERC20_transferFrom_amount_ptr, amount)
                    // Make call & copy up to 32 bytes of return data to scratch space.
                    // Scratch space does not need to be cleared ahead of time, as the
                    // subsequent check will ensure that either at least a full word of
                    // return data is received (in which case it will be overwritten) or
                    // that no data is received (in which case scratch space will be
                    // ignored) on a successful call to the given token.
                    let callStatus := call(
                        gas(),
                        token,
                        0,
                        ERC20_transferFrom_sig_ptr,
                        ERC20_transferFrom_length,
                        0,
                        OneWord
                    )
                    // Determine whether transfer was successful using status & result.
                    let success := and(
                        // Set success to whether the call reverted, if not check it
                        // either returned exactly 1 (can't just be non-zero data), or
                        // had no return data.
                        or(
                            and(eq(mload(0), 1), gt(returndatasize(), 31)),
                            iszero(returndatasize())
                        ),
                        callStatus
                    )
                    // Handle cases where either the transfer failed or no data was
                    // returned. Group these, as most transfers will succeed with data.
                    // Equivalent to `or(iszero(success), iszero(returndatasize()))`
                    // but after it's inverted for JUMPI this expression is cheaper.
                    if iszero(and(success, iszero(iszero(returndatasize())))) {
                        // If the token has no code or the transfer failed: Equivalent
                        // to `or(iszero(success), iszero(extcodesize(token)))` but
                        // after it's inverted for JUMPI this expression is cheaper.
                        if iszero(and(iszero(iszero(extcodesize(token))), success)) {
                            // If the transfer failed:
                            if iszero(success) {
                                // If it was due to a revert:
                                if iszero(callStatus) {
                                    // If it returned a message, bubble it up as long as
                                    // sufficient gas remains to do so:
                                    if returndatasize() {
                                        // Ensure that sufficient gas is available to
                                        // copy returndata while expanding memory where
                                        // necessary. Start by computing the word size
                                        // of returndata and allocated memory. Round up
                                        // to the nearest full word.
                                        let returnDataWords := shr(
                                            OneWordShift,
                                            add(returndatasize(), ThirtyOneBytes)
                                        )
                                        // Note: use the free memory pointer in place of
                                        // msize() to work around a Yul warning that
                                        // prevents accessing msize directly when the IR
                                        // pipeline is activated.
                                        let msizeWords := shr(OneWordShift, memPointer)
                                        // Next, compute the cost of the returndatacopy.
                                        let cost := mul(CostPerWord, returnDataWords)
                                        // Then, compute cost of new memory allocation.
                                        if gt(returnDataWords, msizeWords) {
                                            cost := add(
                                                cost,
                                                add(
                                                    mul(
                                                        sub(
                                                            returnDataWords,
                                                            msizeWords
                                                        ),
                                                        CostPerWord
                                                    ),
                                                    shr(
                                                        MemoryExpansionCoefficientShift,
                                                        sub(
                                                            mul(
                                                                returnDataWords,
                                                                returnDataWords
                                                            ),
                                                            mul(msizeWords, msizeWords)
                                                        )
                                                    )
                                                )
                                            )
                                        }
                                        // Finally, add a small constant and compare to
                                        // gas remaining; bubble up the revert data if
                                        // enough gas is still available.
                                        if lt(add(cost, ExtraGasBuffer), gas()) {
                                            // Copy returndata to memory; overwrite
                                            // existing memory.
                                            returndatacopy(0, 0, returndatasize())
                                            // Revert, specifying memory region with
                                            // copied returndata.
                                            revert(0, returndatasize())
                                        }
                                    }
                                    // Store left-padded selector with push4, mem[28:32]
                                    mstore(
                                        0,
                                        TokenTransferGenericFailure_error_selector
                                    )
                                    mstore(
                                        TokenTransferGenericFailure_error_token_ptr,
                                        token
                                    )
                                    mstore(
                                        TokenTransferGenericFailure_error_from_ptr,
                                        from
                                    )
                                    mstore(TokenTransferGenericFailure_error_to_ptr, to)
                                    mstore(
                                        TokenTransferGenericFailure_err_identifier_ptr,
                                        0
                                    )
                                    mstore(
                                        TokenTransferGenericFailure_error_amount_ptr,
                                        amount
                                    )
                                    // revert(abi.encodeWithSignature(
                                    //     "TokenTransferGenericFailure(
                                    //         address,address,address,uint256,uint256
                                    //     )", token, from, to, identifier, amount
                                    // ))
                                    revert(
                                        Generic_error_selector_offset,
                                        TokenTransferGenericFailure_error_length
                                    )
                                }
                                // Otherwise revert with a message about the token
                                // returning false or non-compliant return values.
                                // Store left-padded selector with push4, mem[28:32]
                                mstore(
                                    0,
                                    BadReturnValueFromERC20OnTransfer_error_selector
                                )
                                mstore(
                                    BadReturnValueFromERC20OnTransfer_error_token_ptr,
                                    token
                                )
                                mstore(
                                    BadReturnValueFromERC20OnTransfer_error_from_ptr,
                                    from
                                )
                                mstore(
                                    BadReturnValueFromERC20OnTransfer_error_to_ptr,
                                    to
                                )
                                mstore(
                                    BadReturnValueFromERC20OnTransfer_error_amount_ptr,
                                    amount
                                )
                                // revert(abi.encodeWithSignature(
                                //     "BadReturnValueFromERC20OnTransfer(
                                //         address,address,address,uint256
                                //     )", token, from, to, amount
                                // ))
                                revert(
                                    Generic_error_selector_offset,
                                    BadReturnValueFromERC20OnTransfer_error_length
                                )
                            }
                            // Otherwise, revert with error about token not having code:
                            // Store left-padded selector with push4, mem[28:32]
                            mstore(0, NoContract_error_selector)
                            mstore(NoContract_error_account_ptr, token)
                            // revert(abi.encodeWithSignature(
                            //      "NoContract(address)", account
                            // ))
                            revert(
                                Generic_error_selector_offset,
                                NoContract_error_length
                            )
                        }
                        // Otherwise, the token just returned no data despite the call
                        // having succeeded; no need to optimize for this as it's not
                        // technically ERC20 compliant.
                    }
                    // Restore the original free memory pointer.
                    mstore(FreeMemoryPointerSlot, memPointer)
                    // Restore the zero slot to zero.
                    mstore(ZeroSlot, 0)
                }
            }
            /**
             * @dev Internal function to transfer an ERC721 token from a given
             *      originator to a given recipient. Sufficient approvals must be set on
             *      the contract performing the transfer. Note that this function does
             *      not check whether the receiver can accept the ERC721 token (i.e. it
             *      does not use `safeTransferFrom`).
             *
             * @param token      The ERC721 token to transfer.
             * @param from       The originator of the transfer.
             * @param to         The recipient of the transfer.
             * @param identifier The tokenId to transfer.
             */
            function _performERC721Transfer(
                address token,
                address from,
                address to,
                uint256 identifier
            ) internal {
                // Utilize assembly to perform an optimized ERC721 token transfer.
                assembly {
                    // If the token has no code, revert.
                    if iszero(extcodesize(token)) {
                        // Store left-padded selector with push4, mem[28:32] = selector
                        mstore(0, NoContract_error_selector)
                        mstore(NoContract_error_account_ptr, token)
                        // revert(abi.encodeWithSignature(
                        //     "NoContract(address)", account
                        // ))
                        revert(Generic_error_selector_offset, NoContract_error_length)
                    }
                    // The free memory pointer memory slot will be used when populating
                    // call data for the transfer; read the value and restore it later.
                    let memPointer := mload(FreeMemoryPointerSlot)
                    // Write call data to memory starting with function selector.
                    mstore(ERC721_transferFrom_sig_ptr, ERC721_transferFrom_signature)
                    mstore(ERC721_transferFrom_from_ptr, from)
                    mstore(ERC721_transferFrom_to_ptr, to)
                    mstore(ERC721_transferFrom_id_ptr, identifier)
                    // Perform the call, ignoring return data.
                    let success := call(
                        gas(),
                        token,
                        0,
                        ERC721_transferFrom_sig_ptr,
                        ERC721_transferFrom_length,
                        0,
                        0
                    )
                    // If the transfer reverted:
                    if iszero(success) {
                        // If it returned a message, bubble it up as long as sufficient
                        // gas remains to do so:
                        if returndatasize() {
                            // Ensure that sufficient gas is available to copy
                            // returndata while expanding memory where necessary. Start
                            // by computing word size of returndata & allocated memory.
                            // Round up to the nearest full word.
                            let returnDataWords := shr(
                                OneWordShift,
                                add(returndatasize(), ThirtyOneBytes)
                            )
                            // Note: use the free memory pointer in place of msize() to
                            // work around a Yul warning that prevents accessing msize
                            // directly when the IR pipeline is activated.
                            let msizeWords := shr(OneWordShift, memPointer)
                            // Next, compute the cost of the returndatacopy.
                            let cost := mul(CostPerWord, returnDataWords)
                            // Then, compute cost of new memory allocation.
                            if gt(returnDataWords, msizeWords) {
                                cost := add(
                                    cost,
                                    add(
                                        mul(
                                            sub(returnDataWords, msizeWords),
                                            CostPerWord
                                        ),
                                        shr(
                                            MemoryExpansionCoefficientShift,
                                            sub(
                                                mul(returnDataWords, returnDataWords),
                                                mul(msizeWords, msizeWords)
                                            )
                                        )
                                    )
                                )
                            }
                            // Finally, add a small constant and compare to gas
                            // remaining; bubble up the revert data if enough gas is
                            // still available.
                            if lt(add(cost, ExtraGasBuffer), gas()) {
                                // Copy returndata to memory; overwrite existing memory.
                                returndatacopy(0, 0, returndatasize())
                                // Revert, giving memory region with copied returndata.
                                revert(0, returndatasize())
                            }
                        }
                        // Otherwise revert with a generic error message.
                        // Store left-padded selector with push4, mem[28:32] = selector
                        mstore(0, TokenTransferGenericFailure_error_selector)
                        mstore(TokenTransferGenericFailure_error_token_ptr, token)
                        mstore(TokenTransferGenericFailure_error_from_ptr, from)
                        mstore(TokenTransferGenericFailure_error_to_ptr, to)
                        mstore(
                            TokenTransferGenericFailure_error_identifier_ptr,
                            identifier
                        )
                        mstore(TokenTransferGenericFailure_error_amount_ptr, 1)
                        // revert(abi.encodeWithSignature(
                        //     "TokenTransferGenericFailure(
                        //         address,address,address,uint256,uint256
                        //     )", token, from, to, identifier, amount
                        // ))
                        revert(
                            Generic_error_selector_offset,
                            TokenTransferGenericFailure_error_length
                        )
                    }
                    // Restore the original free memory pointer.
                    mstore(FreeMemoryPointerSlot, memPointer)
                    // Restore the zero slot to zero.
                    mstore(ZeroSlot, 0)
                }
            }
            /**
             * @dev Internal function to transfer ERC1155 tokens from a given
             *      originator to a given recipient. Sufficient approvals must be set on
             *      the contract performing the transfer and contract recipients must
             *      implement the ERC1155TokenReceiver interface to indicate that they
             *      are willing to accept the transfer.
             *
             * @param token      The ERC1155 token to transfer.
             * @param from       The originator of the transfer.
             * @param to         The recipient of the transfer.
             * @param identifier The id to transfer.
             * @param amount     The amount to transfer.
             */
            function _performERC1155Transfer(
                address token,
                address from,
                address to,
                uint256 identifier,
                uint256 amount
            ) internal {
                // Utilize assembly to perform an optimized ERC1155 token transfer.
                assembly {
                    // If the token has no code, revert.
                    if iszero(extcodesize(token)) {
                        // Store left-padded selector with push4, mem[28:32] = selector
                        mstore(0, NoContract_error_selector)
                        mstore(NoContract_error_account_ptr, token)
                        // revert(abi.encodeWithSignature(
                        //     "NoContract(address)", account
                        // ))
                        revert(Generic_error_selector_offset, NoContract_error_length)
                    }
                    // The following memory slots will be used when populating call data
                    // for the transfer; read the values and restore them later.
                    let memPointer := mload(FreeMemoryPointerSlot)
                    let slot0x80 := mload(Slot0x80)
                    let slot0xA0 := mload(Slot0xA0)
                    let slot0xC0 := mload(Slot0xC0)
                    // Write call data into memory, beginning with function selector.
                    mstore(
                        ERC1155_safeTransferFrom_sig_ptr,
                        ERC1155_safeTransferFrom_signature
                    )
                    mstore(ERC1155_safeTransferFrom_from_ptr, from)
                    mstore(ERC1155_safeTransferFrom_to_ptr, to)
                    mstore(ERC1155_safeTransferFrom_id_ptr, identifier)
                    mstore(ERC1155_safeTransferFrom_amount_ptr, amount)
                    mstore(
                        ERC1155_safeTransferFrom_data_offset_ptr,
                        ERC1155_safeTransferFrom_data_length_offset
                    )
                    mstore(ERC1155_safeTransferFrom_data_length_ptr, 0)
                    // Perform the call, ignoring return data.
                    let success := call(
                        gas(),
                        token,
                        0,
                        ERC1155_safeTransferFrom_sig_ptr,
                        ERC1155_safeTransferFrom_length,
                        0,
                        0
                    )
                    // If the transfer reverted:
                    if iszero(success) {
                        // If it returned a message, bubble it up as long as sufficient
                        // gas remains to do so:
                        if returndatasize() {
                            // Ensure that sufficient gas is available to copy
                            // returndata while expanding memory where necessary. Start
                            // by computing word size of returndata & allocated memory.
                            // Round up to the nearest full word.
                            let returnDataWords := shr(
                                OneWordShift,
                                add(returndatasize(), ThirtyOneBytes)
                            )
                            // Note: use the free memory pointer in place of msize() to
                            // work around a Yul warning that prevents accessing msize
                            // directly when the IR pipeline is activated.
                            let msizeWords := shr(OneWordShift, memPointer)
                            // Next, compute the cost of the returndatacopy.
                            let cost := mul(CostPerWord, returnDataWords)
                            // Then, compute cost of new memory allocation.
                            if gt(returnDataWords, msizeWords) {
                                cost := add(
                                    cost,
                                    add(
                                        mul(
                                            sub(returnDataWords, msizeWords),
                                            CostPerWord
                                        ),
                                        shr(
                                            MemoryExpansionCoefficientShift,
                                            sub(
                                                mul(returnDataWords, returnDataWords),
                                                mul(msizeWords, msizeWords)
                                            )
                                        )
                                    )
                                )
                            }
                            // Finally, add a small constant and compare to gas
                            // remaining; bubble up the revert data if enough gas is
                            // still available.
                            if lt(add(cost, ExtraGasBuffer), gas()) {
                                // Copy returndata to memory; overwrite existing memory.
                                returndatacopy(0, 0, returndatasize())
                                // Revert, giving memory region with copied returndata.
                                revert(0, returndatasize())
                            }
                        }
                        // Otherwise revert with a generic error message.
                        // Store left-padded selector with push4, mem[28:32] = selector
                        mstore(0, TokenTransferGenericFailure_error_selector)
                        mstore(TokenTransferGenericFailure_error_token_ptr, token)
                        mstore(TokenTransferGenericFailure_error_from_ptr, from)
                        mstore(TokenTransferGenericFailure_error_to_ptr, to)
                        mstore(
                            TokenTransferGenericFailure_error_identifier_ptr,
                            identifier
                        )
                        mstore(TokenTransferGenericFailure_error_amount_ptr, amount)
                        // revert(abi.encodeWithSignature(
                        //     "TokenTransferGenericFailure(
                        //         address,address,address,uint256,uint256
                        //     )", token, from, to, identifier, amount
                        // ))
                        revert(
                            Generic_error_selector_offset,
                            TokenTransferGenericFailure_error_length
                        )
                    }
                    mstore(Slot0x80, slot0x80) // Restore slot 0x80.
                    mstore(Slot0xA0, slot0xA0) // Restore slot 0xA0.
                    mstore(Slot0xC0, slot0xC0) // Restore slot 0xC0.
                    // Restore the original free memory pointer.
                    mstore(FreeMemoryPointerSlot, memPointer)
                    // Restore the zero slot to zero.
                    mstore(ZeroSlot, 0)
                }
            }
            /**
             * @dev Internal function to transfer ERC1155 tokens from a given
             *      originator to a given recipient. Sufficient approvals must be set on
             *      the contract performing the transfer and contract recipients must
             *      implement the ERC1155TokenReceiver interface to indicate that they
             *      are willing to accept the transfer. NOTE: this function is not
             *      memory-safe; it will overwrite existing memory, restore the free
             *      memory pointer to the default value, and overwrite the zero slot.
             *      This function should only be called once memory is no longer
             *      required and when uninitialized arrays are not utilized, and memory
             *      should be considered fully corrupted (aside from the existence of a
             *      default-value free memory pointer) after calling this function.
             *
             * @param batchTransfers The group of 1155 batch transfers to perform.
             */
            function _performERC1155BatchTransfers(
                ConduitBatch1155Transfer[] calldata batchTransfers
            ) internal {
                // Utilize assembly to perform optimized batch 1155 transfers.
                assembly {
                    let len := batchTransfers.length
                    // Pointer to first head in the array, which is offset to the struct
                    // at each index. This gets incremented after each loop to avoid
                    // multiplying by 32 to get the offset for each element.
                    let nextElementHeadPtr := batchTransfers.offset
                    // Pointer to beginning of the head of the array. This is the
                    // reference position each offset references. It's held static to
                    // let each loop calculate the data position for an element.
                    let arrayHeadPtr := nextElementHeadPtr
                    // Write the function selector, which will be reused for each call:
                    // safeBatchTransferFrom(address,address,uint256[],uint256[],bytes)
                    mstore(
                        ConduitBatch1155Transfer_from_offset,
                        ERC1155_safeBatchTransferFrom_signature
                    )
                    // Iterate over each batch transfer.
                    for {
                        let i := 0
                    } lt(i, len) {
                        i := add(i, 1)
                    } {
                        // Read the offset to the beginning of the element and add
                        // it to pointer to the beginning of the array head to get
                        // the absolute position of the element in calldata.
                        let elementPtr := add(
                            arrayHeadPtr,
                            calldataload(nextElementHeadPtr)
                        )
                        // Retrieve the token from calldata.
                        let token := calldataload(elementPtr)
                        // If the token has no code, revert.
                        if iszero(extcodesize(token)) {
                            // Store left-padded selector with push4, mem[28:32]
                            mstore(0, NoContract_error_selector)
                            mstore(NoContract_error_account_ptr, token)
                            // revert(abi.encodeWithSignature(
                            //     "NoContract(address)", account
                            // ))
                            revert(
                                Generic_error_selector_offset,
                                NoContract_error_length
                            )
                        }
                        // Get the total number of supplied ids.
                        let idsLength := calldataload(
                            add(elementPtr, ConduitBatch1155Transfer_ids_length_offset)
                        )
                        // Determine the expected offset for the amounts array.
                        let expectedAmountsOffset := add(
                            ConduitBatch1155Transfer_amounts_length_baseOffset,
                            shl(OneWordShift, idsLength)
                        )
                        // Validate struct encoding.
                        let invalidEncoding := iszero(
                            and(
                                // ids.length == amounts.length
                                eq(
                                    idsLength,
                                    calldataload(add(elementPtr, expectedAmountsOffset))
                                ),
                                and(
                                    // ids_offset == 0xa0
                                    eq(
                                        calldataload(
                                            add(
                                                elementPtr,
                                                ConduitBatch1155Transfer_ids_head_offset
                                            )
                                        ),
                                        ConduitBatch1155Transfer_ids_length_offset
                                    ),
                                    // amounts_offset == 0xc0 + ids.length*32
                                    eq(
                                        calldataload(
                                            add(
                                                elementPtr,
                                                ConduitBatchTransfer_amounts_head_offset
                                            )
                                        ),
                                        expectedAmountsOffset
                                    )
                                )
                            )
                        )
                        // Revert with an error if the encoding is not valid.
                        if invalidEncoding {
                            // Store left-padded selector with push4, mem[28:32]
                            mstore(
                                Invalid1155BatchTransferEncoding_ptr,
                                Invalid1155BatchTransferEncoding_selector
                            )
                            // revert(abi.encodeWithSignature(
                            //     "Invalid1155BatchTransferEncoding()"
                            // ))
                            revert(
                                Invalid1155BatchTransferEncoding_ptr,
                                Invalid1155BatchTransferEncoding_length
                            )
                        }
                        // Update the offset position for the next loop
                        nextElementHeadPtr := add(nextElementHeadPtr, OneWord)
                        // Copy the first section of calldata (before dynamic values).
                        calldatacopy(
                            BatchTransfer1155Params_ptr,
                            add(elementPtr, ConduitBatch1155Transfer_from_offset),
                            ConduitBatch1155Transfer_usable_head_size
                        )
                        // Determine size of calldata required for ids and amounts. Note
                        // that the size includes both lengths as well as the data.
                        let idsAndAmountsSize := add(
                            TwoWords,
                            shl(TwoWordsShift, idsLength)
                        )
                        // Update the offset for the data array in memory.
                        mstore(
                            BatchTransfer1155Params_data_head_ptr,
                            add(
                                BatchTransfer1155Params_ids_length_offset,
                                idsAndAmountsSize
                            )
                        )
                        // Set the length of the data array in memory to zero.
                        mstore(
                            add(
                                BatchTransfer1155Params_data_length_basePtr,
                                idsAndAmountsSize
                            ),
                            0
                        )
                        // Determine the total calldata size for the call to transfer.
                        let transferDataSize := add(
                            BatchTransfer1155Params_calldata_baseSize,
                            idsAndAmountsSize
                        )
                        // Copy second section of calldata (including dynamic values).
                        calldatacopy(
                            BatchTransfer1155Params_ids_length_ptr,
                            add(elementPtr, ConduitBatch1155Transfer_ids_length_offset),
                            idsAndAmountsSize
                        )
                        // Perform the call to transfer 1155 tokens.
                        let success := call(
                            gas(),
                            token,
                            0,
                            ConduitBatch1155Transfer_from_offset, // Data portion start.
                            transferDataSize, // Location of the length of callData.
                            0,
                            0
                        )
                        // If the transfer reverted:
                        if iszero(success) {
                            // If it returned a message, bubble it up as long as
                            // sufficient gas remains to do so:
                            if returndatasize() {
                                // Ensure that sufficient gas is available to copy
                                // returndata while expanding memory where necessary.
                                // Start by computing word size of returndata and
                                // allocated memory. Round up to the nearest full word.
                                let returnDataWords := shr(
                                    OneWordShift,
                                    add(returndatasize(), ThirtyOneBytes)
                                )
                                // Note: use transferDataSize in place of msize() to
                                // work around a Yul warning that prevents accessing
                                // msize directly when the IR pipeline is activated.
                                // The free memory pointer is not used here because
                                // this function does almost all memory management
                                // manually and does not update it, and transferDataSize
                                // should be the largest memory value used (unless a
                                // previous batch was larger).
                                let msizeWords := shr(OneWordShift, transferDataSize)
                                // Next, compute the cost of the returndatacopy.
                                let cost := mul(CostPerWord, returnDataWords)
                                // Then, compute cost of new memory allocation.
                                if gt(returnDataWords, msizeWords) {
                                    cost := add(
                                        cost,
                                        add(
                                            mul(
                                                sub(returnDataWords, msizeWords),
                                                CostPerWord
                                            ),
                                            shr(
                                                MemoryExpansionCoefficientShift,
                                                sub(
                                                    mul(
                                                        returnDataWords,
                                                        returnDataWords
                                                    ),
                                                    mul(msizeWords, msizeWords)
                                                )
                                            )
                                        )
                                    )
                                }
                                // Finally, add a small constant and compare to gas
                                // remaining; bubble up the revert data if enough gas is
                                // still available.
                                if lt(add(cost, ExtraGasBuffer), gas()) {
                                    // Copy returndata to memory; overwrite existing.
                                    returndatacopy(0, 0, returndatasize())
                                    // Revert with memory region containing returndata.
                                    revert(0, returndatasize())
                                }
                            }
                            // Set the error signature.
                            mstore(
                                0,
                                ERC1155BatchTransferGenericFailure_error_signature
                            )
                            // Write the token.
                            mstore(ERC1155BatchTransferGenericFailure_token_ptr, token)
                            // Increase the offset to ids by 32.
                            mstore(
                                BatchTransfer1155Params_ids_head_ptr,
                                ERC1155BatchTransferGenericFailure_ids_offset
                            )
                            // Increase the offset to amounts by 32.
                            mstore(
                                BatchTransfer1155Params_amounts_head_ptr,
                                add(
                                    OneWord,
                                    mload(BatchTransfer1155Params_amounts_head_ptr)
                                )
                            )
                            // Return modified region. The total size stays the same as
                            // `token` uses the same number of bytes as `data.length`.
                            revert(0, transferDataSize)
                        }
                    }
                    // Reset the free memory pointer to the default value; memory must
                    // be assumed to be dirtied and not reused from this point forward.
                    // Also note that the zero slot is not reset to zero, meaning empty
                    // arrays cannot be safely created or utilized until it is restored.
                    mstore(FreeMemoryPointerSlot, DefaultFreeMemoryPointer)
                }
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.13;
        enum ConduitItemType {
            NATIVE, // unused
            ERC20,
            ERC721,
            ERC1155
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.13;
        import { ConduitItemType } from "./ConduitEnums.sol";
        /**
         * @dev A ConduitTransfer is a struct that contains the information needed for a
         *      conduit to transfer an item from one address to another.
         */
        struct ConduitTransfer {
            ConduitItemType itemType;
            address token;
            address from;
            address to;
            uint256 identifier;
            uint256 amount;
        }
        /**
         * @dev A ConduitBatch1155Transfer is a struct that contains the information
         *      needed for a conduit to transfer a batch of ERC-1155 tokens from one
         *      address to another.
         */
        struct ConduitBatch1155Transfer {
            address token;
            address from;
            address to;
            uint256[] ids;
            uint256[] amounts;
        }
        // SPDX-License-Identifier: MIT
        pragma solidity 0.8.17;
        import { OrderParameters } from "./ConsiderationStructs.sol";
        import { GettersAndDerivers } from "./GettersAndDerivers.sol";
        import {
            TokenTransferrerErrors
        } from "../interfaces/TokenTransferrerErrors.sol";
        import { CounterManager } from "./CounterManager.sol";
        import {
            AdditionalRecipient_size_shift,
            AddressDirtyUpperBitThreshold,
            BasicOrder_additionalRecipients_head_cdPtr,
            BasicOrder_additionalRecipients_head_ptr,
            BasicOrder_additionalRecipients_length_cdPtr,
            BasicOrder_basicOrderType_cdPtr,
            BasicOrder_basicOrderType_range,
            BasicOrder_considerationToken_cdPtr,
            BasicOrder_offerer_cdPtr,
            BasicOrder_offerToken_cdPtr,
            BasicOrder_parameters_cdPtr,
            BasicOrder_parameters_ptr,
            BasicOrder_signature_cdPtr,
            BasicOrder_signature_ptr,
            BasicOrder_zone_cdPtr
        } from "./ConsiderationConstants.sol";
        import {
            Error_selector_offset,
            MissingItemAmount_error_length,
            MissingItemAmount_error_selector
        } from "./ConsiderationErrorConstants.sol";
        import {
            _revertInvalidBasicOrderParameterEncoding,
            _revertMissingOriginalConsiderationItems
        } from "./ConsiderationErrors.sol";
        /**
         * @title Assertions
         * @author 0age
         * @notice Assertions contains logic for making various assertions that do not
         *         fit neatly within a dedicated semantic scope.
         */
        contract Assertions is
            GettersAndDerivers,
            CounterManager,
            TokenTransferrerErrors
        {
            /**
             * @dev Derive and set hashes, reference chainId, and associated domain
             *      separator during deployment.
             *
             * @param conduitController A contract that deploys conduits, or proxies
             *                          that may optionally be used to transfer approved
             *                          ERC20/721/1155 tokens.
             */
            constructor(
                address conduitController
            ) GettersAndDerivers(conduitController) {}
            /**
             * @dev Internal view function to ensure that the supplied consideration
             *      array length on a given set of order parameters is not less than the
             *      original consideration array length for that order and to retrieve
             *      the current counter for a given order's offerer and zone and use it
             *      to derive the order hash.
             *
             * @param orderParameters The parameters of the order to hash.
             *
             * @return The hash.
             */
            function _assertConsiderationLengthAndGetOrderHash(
                OrderParameters memory orderParameters
            ) internal view returns (bytes32) {
                // Ensure supplied consideration array length is not less than original.
                _assertConsiderationLengthIsNotLessThanOriginalConsiderationLength(
                    orderParameters.consideration.length,
                    orderParameters.totalOriginalConsiderationItems
                );
                // Derive and return order hash using current counter for the offerer.
                return
                    _deriveOrderHash(
                        orderParameters,
                        _getCounter(orderParameters.offerer)
                    );
            }
            /**
             * @dev Internal pure function to ensure that the supplied consideration
             *      array length for an order to be fulfilled is not less than the
             *      original consideration array length for that order.
             *
             * @param suppliedConsiderationItemTotal The number of consideration items
             *                                       supplied when fulfilling the order.
             * @param originalConsiderationItemTotal The number of consideration items
             *                                       supplied on initial order creation.
             */
            function _assertConsiderationLengthIsNotLessThanOriginalConsiderationLength(
                uint256 suppliedConsiderationItemTotal,
                uint256 originalConsiderationItemTotal
            ) internal pure {
                // Ensure supplied consideration array length is not less than original.
                if (suppliedConsiderationItemTotal < originalConsiderationItemTotal) {
                    _revertMissingOriginalConsiderationItems();
                }
            }
            /**
             * @dev Internal pure function to ensure that a given item amount is not
             *      zero.
             *
             * @param amount The amount to check.
             */
            function _assertNonZeroAmount(uint256 amount) internal pure {
                assembly {
                    if iszero(amount) {
                        // Store left-padded selector with push4, mem[28:32] = selector
                        mstore(0, MissingItemAmount_error_selector)
                        // revert(abi.encodeWithSignature("MissingItemAmount()"))
                        revert(Error_selector_offset, MissingItemAmount_error_length)
                    }
                }
            }
            /**
             * @dev Internal pure function to validate calldata offsets for dynamic
             *      types in BasicOrderParameters and other parameters. This ensures
             *      that functions using the calldata object normally will be using the
             *      same data as the assembly functions and that values that are bound
             *      to a given range are within that range. Note that no parameters are
             *      supplied as all basic order functions use the same calldata
             *      encoding.
             */
            function _assertValidBasicOrderParameters() internal pure {
                // Declare a boolean designating basic order parameter offset validity.
                bool validOffsets;
                // Utilize assembly in order to read offset data directly from calldata.
                assembly {
                    /*
                     * Checks:
                     * 1. Order parameters struct offset == 0x20
                     * 2. Additional recipients arr offset == 0x240
                     * 3. Signature offset == 0x260 + (recipients.length * 0x40)
                     * 4. BasicOrderType between 0 and 23 (i.e. < 24)
                     * 5. Offerer, zone, offer token, and consideration token have no
                     *    upper dirty bits — each argument is type(uint160).max or less
                     */
                    validOffsets := and(
                        and(
                            and(
                                // Order parameters at cd 0x04 must have offset of 0x20.
                                eq(
                                    calldataload(BasicOrder_parameters_cdPtr),
                                    BasicOrder_parameters_ptr
                                ),
                                // Additional recipients (cd 0x224) arr offset == 0x240.
                                eq(
                                    calldataload(
                                        BasicOrder_additionalRecipients_head_cdPtr
                                    ),
                                    BasicOrder_additionalRecipients_head_ptr
                                )
                            ),
                            // Signature offset == 0x260 + (recipients.length * 0x40).
                            eq(
                                // Load signature offset from calldata 0x244.
                                calldataload(BasicOrder_signature_cdPtr),
                                // Expected offset is start of recipients + len * 64.
                                add(
                                    BasicOrder_signature_ptr,
                                    shl(
                                        // Each additional recipient has length of 0x40.
                                        AdditionalRecipient_size_shift,
                                        // Additional recipients length at cd 0x264.
                                        calldataload(
                                            BasicOrder_additionalRecipients_length_cdPtr
                                        )
                                    )
                                )
                            )
                        ),
                        and(
                            // Ensure BasicOrderType parameter is less than 0x18.
                            lt(
                                // BasicOrderType parameter at calldata offset 0x124.
                                calldataload(BasicOrder_basicOrderType_cdPtr),
                                // Value should be less than 24.
                                BasicOrder_basicOrderType_range
                            ),
                            // Ensure no dirty upper bits are present on offerer, zone,
                            // offer token, or consideration token.
                            lt(
                                or(
                                    or(
                                        // Offerer parameter at calldata offset 0x84.
                                        calldataload(BasicOrder_offerer_cdPtr),
                                        // Zone parameter at calldata offset 0xa4.
                                        calldataload(BasicOrder_zone_cdPtr)
                                    ),
                                    or(
                                        // Offer token parameter at cd offset 0xc4.
                                        calldataload(BasicOrder_offerToken_cdPtr),
                                        // Consideration token parameter at offset 0x24.
                                        calldataload(
                                            BasicOrder_considerationToken_cdPtr
                                        )
                                    )
                                ),
                                AddressDirtyUpperBitThreshold
                            )
                        )
                    )
                }
                // Revert with an error if basic order parameter offsets are invalid.
                if (!validOffsets) {
                    _revertInvalidBasicOrderParameterEncoding();
                }
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity 0.8.17;
        import {
            SignatureVerificationErrors
        } from "../interfaces/SignatureVerificationErrors.sol";
        import { LowLevelHelpers } from "./LowLevelHelpers.sol";
        import {
            ECDSA_MaxLength,
            ECDSA_signature_s_offset,
            ECDSA_signature_v_offset,
            ECDSA_twentySeventhAndTwentyEighthBytesSet,
            Ecrecover_args_size,
            Ecrecover_precompile,
            EIP1271_isValidSignature_calldata_baseLength,
            EIP1271_isValidSignature_digest_negativeOffset,
            EIP1271_isValidSignature_selector_negativeOffset,
            EIP1271_isValidSignature_selector,
            EIP1271_isValidSignature_signature_head_offset,
            EIP2098_allButHighestBitMask,
            MaxUint8,
            OneWord,
            Signature_lower_v
        } from "./ConsiderationConstants.sol";
        import {
            BadContractSignature_error_length,
            BadContractSignature_error_selector,
            BadSignatureV_error_length,
            BadSignatureV_error_selector,
            BadSignatureV_error_v_ptr,
            Error_selector_offset,
            InvalidSignature_error_length,
            InvalidSignature_error_selector,
            InvalidSigner_error_length,
            InvalidSigner_error_selector
        } from "./ConsiderationErrorConstants.sol";
        /**
         * @title SignatureVerification
         * @author 0age
         * @notice SignatureVerification contains logic for verifying signatures.
         */
        contract SignatureVerification is SignatureVerificationErrors, LowLevelHelpers {
            /**
             * @dev Internal view function to verify the signature of an order. An
             *      ERC-1271 fallback will be attempted if either the signature length
             *      is not 64 or 65 bytes or if the recovered signer does not match the
             *      supplied signer.
             *
             * @param signer                  The signer for the order.
             * @param digest                  The digest to verify signature against.
             * @param originalDigest          The original digest to verify signature
             *                                against.
             * @param originalSignatureLength The original signature length.
             * @param signature               A signature from the signer indicating
             *                                that the order has been approved.
             */
            function _assertValidSignature(
                address signer,
                bytes32 digest,
                bytes32 originalDigest,
                uint256 originalSignatureLength,
                bytes memory signature
            ) internal view {
                // Declare value for ecrecover equality or 1271 call success status.
                bool success;
                // Utilize assembly to perform optimized signature verification check.
                assembly {
                    // Ensure that first word of scratch space is empty.
                    mstore(0, 0)
                    // Get the length of the signature.
                    let signatureLength := mload(signature)
                    // Get the pointer to the value preceding the signature length.
                    // This will be used for temporary memory overrides - either the
                    // signature head for isValidSignature or the digest for ecrecover.
                    let wordBeforeSignaturePtr := sub(signature, OneWord)
                    // Cache the current value behind the signature to restore it later.
                    let cachedWordBeforeSignature := mload(wordBeforeSignaturePtr)
                    // Declare lenDiff + recoveredSigner scope to manage stack pressure.
                    {
                        // Take the difference between the max ECDSA signature length
                        // and the actual signature length. Overflow desired for any
                        // values > 65. If the diff is not 0 or 1, it is not a valid
                        // ECDSA signature - move on to EIP1271 check.
                        let lenDiff := sub(ECDSA_MaxLength, signatureLength)
                        // Declare variable for recovered signer.
                        let recoveredSigner
                        // If diff is 0 or 1, it may be an ECDSA signature.
                        // Try to recover signer.
                        if iszero(gt(lenDiff, 1)) {
                            // Read the signature `s` value.
                            let originalSignatureS := mload(
                                add(signature, ECDSA_signature_s_offset)
                            )
                            // Read the first byte of the word after `s`. If the
                            // signature is 65 bytes, this will be the real `v` value.
                            // If not, it will need to be modified - doing it this way
                            // saves an extra condition.
                            let v := byte(
                                0,
                                mload(add(signature, ECDSA_signature_v_offset))
                            )
                            // If lenDiff is 1, parse 64-byte signature as ECDSA.
                            if lenDiff {
                                // Extract yParity from highest bit of vs and add 27 to
                                // get v.
                                v := add(
                                    shr(MaxUint8, originalSignatureS),
                                    Signature_lower_v
                                )
                                // Extract canonical s from vs, all but the highest bit.
                                // Temporarily overwrite the original `s` value in the
                                // signature.
                                mstore(
                                    add(signature, ECDSA_signature_s_offset),
                                    and(
                                        originalSignatureS,
                                        EIP2098_allButHighestBitMask
                                    )
                                )
                            }
                            // Temporarily overwrite the signature length with `v` to
                            // conform to the expected input for ecrecover.
                            mstore(signature, v)
                            // Temporarily overwrite the word before the length with
                            // `digest` to conform to the expected input for ecrecover.
                            mstore(wordBeforeSignaturePtr, digest)
                            // Attempt to recover the signer for the given signature. Do
                            // not check the call status as ecrecover will return a null
                            // address if the signature is invalid.
                            pop(
                                staticcall(
                                    gas(),
                                    Ecrecover_precompile, // Call ecrecover precompile.
                                    wordBeforeSignaturePtr, // Use data memory location.
                                    Ecrecover_args_size, // Size of digest, v, r, and s.
                                    0, // Write result to scratch space.
                                    OneWord // Provide size of returned result.
                                )
                            )
                            // Restore cached word before signature.
                            mstore(wordBeforeSignaturePtr, cachedWordBeforeSignature)
                            // Restore cached signature length.
                            mstore(signature, signatureLength)
                            // Restore cached signature `s` value.
                            mstore(
                                add(signature, ECDSA_signature_s_offset),
                                originalSignatureS
                            )
                            // Read the recovered signer from the buffer given as return
                            // space for ecrecover.
                            recoveredSigner := mload(0)
                        }
                        // Set success to true if the signature provided was a valid
                        // ECDSA signature and the signer is not the null address. Use
                        // gt instead of direct as success is used outside of assembly.
                        success := and(eq(signer, recoveredSigner), gt(signer, 0))
                    }
                    // If the signature was not verified with ecrecover, try EIP1271.
                    if iszero(success) {
                        // Reset the original signature length.
                        mstore(signature, originalSignatureLength)
                        // Temporarily overwrite the word before the signature length
                        // and use it as the head of the signature input to
                        // `isValidSignature`, which has a value of 64.
                        mstore(
                            wordBeforeSignaturePtr,
                            EIP1271_isValidSignature_signature_head_offset
                        )
                        // Get pointer to use for the selector of `isValidSignature`.
                        let selectorPtr := sub(
                            signature,
                            EIP1271_isValidSignature_selector_negativeOffset
                        )
                        // Cache the value currently stored at the selector pointer.
                        let cachedWordOverwrittenBySelector := mload(selectorPtr)
                        // Cache the value currently stored at the digest pointer.
                        let cachedWordOverwrittenByDigest := mload(
                            sub(
                                signature,
                                EIP1271_isValidSignature_digest_negativeOffset
                            )
                        )
                        // Write the selector first, since it overlaps the digest.
                        mstore(selectorPtr, EIP1271_isValidSignature_selector)
                        // Next, write the original digest.
                        mstore(
                            sub(
                                signature,
                                EIP1271_isValidSignature_digest_negativeOffset
                            ),
                            originalDigest
                        )
                        // Call signer with `isValidSignature` to validate signature.
                        success := staticcall(
                            gas(),
                            signer,
                            selectorPtr,
                            add(
                                originalSignatureLength,
                                EIP1271_isValidSignature_calldata_baseLength
                            ),
                            0,
                            OneWord
                        )
                        // Determine if the signature is valid on successful calls.
                        if success {
                            // If first word of scratch space does not contain EIP-1271
                            // signature selector, revert.
                            if iszero(eq(mload(0), EIP1271_isValidSignature_selector)) {
                                // Revert with bad 1271 signature if signer has code.
                                if extcodesize(signer) {
                                    // Bad contract signature.
                                    // Store left-padded selector with push4, mem[28:32]
                                    mstore(0, BadContractSignature_error_selector)
                                    // revert(abi.encodeWithSignature(
                                    //     "BadContractSignature()"
                                    // ))
                                    revert(
                                        Error_selector_offset,
                                        BadContractSignature_error_length
                                    )
                                }
                                // Check if signature length was invalid.
                                if gt(sub(ECDSA_MaxLength, signatureLength), 1) {
                                    // Revert with generic invalid signature error.
                                    // Store left-padded selector with push4, mem[28:32]
                                    mstore(0, InvalidSignature_error_selector)
                                    // revert(abi.encodeWithSignature(
                                    //     "InvalidSignature()"
                                    // ))
                                    revert(
                                        Error_selector_offset,
                                        InvalidSignature_error_length
                                    )
                                }
                                // Check if v was invalid.
                                if and(
                                    eq(signatureLength, ECDSA_MaxLength),
                                    iszero(
                                        byte(
                                            byte(
                                                0,
                                                mload(
                                                    add(
                                                        signature,
                                                        ECDSA_signature_v_offset
                                                    )
                                                )
                                            ),
                                            ECDSA_twentySeventhAndTwentyEighthBytesSet
                                        )
                                    )
                                ) {
                                    // Revert with invalid v value.
                                    // Store left-padded selector with push4, mem[28:32]
                                    mstore(0, BadSignatureV_error_selector)
                                    mstore(
                                        BadSignatureV_error_v_ptr,
                                        byte(
                                            0,
                                            mload(
                                                add(signature, ECDSA_signature_v_offset)
                                            )
                                        )
                                    )
                                    // revert(abi.encodeWithSignature(
                                    //     "BadSignatureV(uint8)", v
                                    // ))
                                    revert(
                                        Error_selector_offset,
                                        BadSignatureV_error_length
                                    )
                                }
                                // Revert with generic invalid signer error message.
                                // Store left-padded selector with push4, mem[28:32]
                                mstore(0, InvalidSigner_error_selector)
                                // revert(abi.encodeWithSignature("InvalidSigner()"))
                                revert(
                                    Error_selector_offset,
                                    InvalidSigner_error_length
                                )
                            }
                        }
                        // Restore the cached values overwritten by selector, digest and
                        // signature head.
                        mstore(wordBeforeSignaturePtr, cachedWordBeforeSignature)
                        mstore(selectorPtr, cachedWordOverwrittenBySelector)
                        mstore(
                            sub(
                                signature,
                                EIP1271_isValidSignature_digest_negativeOffset
                            ),
                            cachedWordOverwrittenByDigest
                        )
                    }
                }
                // If the call failed...
                if (!success) {
                    // Revert and pass reason along if one was returned.
                    _revertWithReasonIfOneIsReturned();
                    // Otherwise, revert with error indicating bad contract signature.
                    assembly {
                        // Store left-padded selector with push4, mem[28:32] = selector
                        mstore(0, BadContractSignature_error_selector)
                        // revert(abi.encodeWithSignature("BadContractSignature()"))
                        revert(Error_selector_offset, BadContractSignature_error_length)
                    }
                }
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity 0.8.17;
        import {
            ConsiderationEventsAndErrors
        } from "../interfaces/ConsiderationEventsAndErrors.sol";
        import { ReentrancyGuard } from "./ReentrancyGuard.sol";
        import {
            Counter_blockhash_shift,
            OneWord,
            TwoWords
        } from "./ConsiderationConstants.sol";
        /**
         * @title CounterManager
         * @author 0age
         * @notice CounterManager contains a storage mapping and related functionality
         *         for retrieving and incrementing a per-offerer counter.
         */
        contract CounterManager is ConsiderationEventsAndErrors, ReentrancyGuard {
            // Only orders signed using an offerer's current counter are fulfillable.
            mapping(address => uint256) private _counters;
            /**
             * @dev Internal function to cancel all orders from a given offerer in bulk
             *      by incrementing a counter by a large, quasi-random interval. Note
             *      that only the offerer may increment the counter. Note that the
             *      counter is incremented by a large, quasi-random interval, which
             *      makes it infeasible to "activate" signed orders by incrementing the
             *      counter.  This activation functionality can be achieved instead with
             *      restricted orders or contract orders.
             *
             * @return newCounter The new counter.
             */
            function _incrementCounter() internal returns (uint256 newCounter) {
                // Ensure that the reentrancy guard is not currently set.
                _assertNonReentrant();
                // Utilize assembly to access counters storage mapping directly. Skip
                // overflow check as counter cannot be incremented that far.
                assembly {
                    // Use second half of previous block hash as a quasi-random number.
                    let quasiRandomNumber := shr(
                        Counter_blockhash_shift,
                        blockhash(sub(number(), 1))
                    )
                    // Write the caller to scratch space.
                    mstore(0, caller())
                    // Write the storage slot for _counters to scratch space.
                    mstore(OneWord, _counters.slot)
                    // Derive the storage pointer for the counter value.
                    let storagePointer := keccak256(0, TwoWords)
                    // Derive new counter value using random number and original value.
                    newCounter := add(quasiRandomNumber, sload(storagePointer))
                    // Store the updated counter value.
                    sstore(storagePointer, newCounter)
                }
                // Emit an event containing the new counter.
                emit CounterIncremented(newCounter, msg.sender);
            }
            /**
             * @dev Internal view function to retrieve the current counter for a given
             *      offerer.
             *
             * @param offerer The offerer in question.
             *
             * @return currentCounter The current counter.
             */
            function _getCounter(
                address offerer
            ) internal view returns (uint256 currentCounter) {
                // Return the counter for the supplied offerer.
                currentCounter = _counters[offerer];
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.13;
        /**
         * @title TokenTransferrerErrors
         */
        interface TokenTransferrerErrors {
            /**
             * @dev Revert with an error when an ERC721 transfer with amount other than
             *      one is attempted.
             *
             * @param amount The amount of the ERC721 tokens to transfer.
             */
            error InvalidERC721TransferAmount(uint256 amount);
            /**
             * @dev Revert with an error when attempting to fulfill an order where an
             *      item has an amount of zero.
             */
            error MissingItemAmount();
            /**
             * @dev Revert with an error when attempting to fulfill an order where an
             *      item has unused parameters. This includes both the token and the
             *      identifier parameters for native transfers as well as the identifier
             *      parameter for ERC20 transfers. Note that the conduit does not
             *      perform this check, leaving it up to the calling channel to enforce
             *      when desired.
             */
            error UnusedItemParameters();
            /**
             * @dev Revert with an error when an ERC20, ERC721, or ERC1155 token
             *      transfer reverts.
             *
             * @param token      The token for which the transfer was attempted.
             * @param from       The source of the attempted transfer.
             * @param to         The recipient of the attempted transfer.
             * @param identifier The identifier for the attempted transfer.
             * @param amount     The amount for the attempted transfer.
             */
            error TokenTransferGenericFailure(
                address token,
                address from,
                address to,
                uint256 identifier,
                uint256 amount
            );
            /**
             * @dev Revert with an error when a batch ERC1155 token transfer reverts.
             *
             * @param token       The token for which the transfer was attempted.
             * @param from        The source of the attempted transfer.
             * @param to          The recipient of the attempted transfer.
             * @param identifiers The identifiers for the attempted transfer.
             * @param amounts     The amounts for the attempted transfer.
             */
            error ERC1155BatchTransferGenericFailure(
                address token,
                address from,
                address to,
                uint256[] identifiers,
                uint256[] amounts
            );
            /**
             * @dev Revert with an error when an ERC20 token transfer returns a falsey
             *      value.
             *
             * @param token      The token for which the ERC20 transfer was attempted.
             * @param from       The source of the attempted ERC20 transfer.
             * @param to         The recipient of the attempted ERC20 transfer.
             * @param amount     The amount for the attempted ERC20 transfer.
             */
            error BadReturnValueFromERC20OnTransfer(
                address token,
                address from,
                address to,
                uint256 amount
            );
            /**
             * @dev Revert with an error when an account being called as an assumed
             *      contract does not have code and returns no data.
             *
             * @param account The account that should contain code.
             */
            error NoContract(address account);
            /**
             * @dev Revert with an error when attempting to execute an 1155 batch
             *      transfer using calldata not produced by default ABI encoding or with
             *      different lengths for ids and amounts arrays.
             */
            error Invalid1155BatchTransferEncoding();
        }
        // SPDX-License-Identifier: MIT
        pragma solidity 0.8.17;
        import { OrderParameters } from "./ConsiderationStructs.sol";
        import { ConsiderationBase } from "./ConsiderationBase.sol";
        import {
            Create2AddressDerivation_length,
            Create2AddressDerivation_ptr,
            EIP_712_PREFIX,
            EIP712_ConsiderationItem_size,
            EIP712_DigestPayload_size,
            EIP712_DomainSeparator_offset,
            EIP712_OfferItem_size,
            EIP712_Order_size,
            EIP712_OrderHash_offset,
            FreeMemoryPointerSlot,
            information_conduitController_offset,
            information_domainSeparator_offset,
            information_length,
            information_version_cd_offset,
            information_version_offset,
            information_versionLengthPtr,
            information_versionWithLength,
            MaskOverByteTwelve,
            MaskOverLastTwentyBytes,
            OneWord,
            OneWordShift,
            OrderParameters_consideration_head_offset,
            OrderParameters_counter_offset,
            OrderParameters_offer_head_offset,
            TwoWords
        } from "./ConsiderationConstants.sol";
        /**
         * @title GettersAndDerivers
         * @author 0age
         * @notice ConsiderationInternal contains pure and internal view functions
         *         related to getting or deriving various values.
         */
        contract GettersAndDerivers is ConsiderationBase {
            /**
             * @dev Derive and set hashes, reference chainId, and associated domain
             *      separator during deployment.
             *
             * @param conduitController A contract that deploys conduits, or proxies
             *                          that may optionally be used to transfer approved
             *                          ERC20/721/1155 tokens.
             */
            constructor(
                address conduitController
            ) ConsiderationBase(conduitController) {}
            /**
             * @dev Internal view function to derive the order hash for a given order.
             *      Note that only the original consideration items are included in the
             *      order hash, as additional consideration items may be supplied by the
             *      caller.
             *
             * @param orderParameters The parameters of the order to hash.
             * @param counter         The counter of the order to hash.
             *
             * @return orderHash The hash.
             */
            function _deriveOrderHash(
                OrderParameters memory orderParameters,
                uint256 counter
            ) internal view returns (bytes32 orderHash) {
                // Get length of original consideration array and place it on the stack.
                uint256 originalConsiderationLength = (
                    orderParameters.totalOriginalConsiderationItems
                );
                /*
                 * Memory layout for an array of structs (dynamic or not) is similar
                 * to ABI encoding of dynamic types, with a head segment followed by
                 * a data segment. The main difference is that the head of an element
                 * is a memory pointer rather than an offset.
                 */
                // Declare a variable for the derived hash of the offer array.
                bytes32 offerHash;
                // Read offer item EIP-712 typehash from runtime code & place on stack.
                bytes32 typeHash = _OFFER_ITEM_TYPEHASH;
                // Utilize assembly so that memory regions can be reused across hashes.
                assembly {
                    // Retrieve the free memory pointer and place on the stack.
                    let hashArrPtr := mload(FreeMemoryPointerSlot)
                    // Get the pointer to the offers array.
                    let offerArrPtr := mload(
                        add(orderParameters, OrderParameters_offer_head_offset)
                    )
                    // Load the length.
                    let offerLength := mload(offerArrPtr)
                    // Set the pointer to the first offer's head.
                    offerArrPtr := add(offerArrPtr, OneWord)
                    // Iterate over the offer items.
                    for { let i := 0 } lt(i, offerLength) {
                        i := add(i, 1)
                    } {
                        // Read the pointer to the offer data and subtract one word
                        // to get typeHash pointer.
                        let ptr := sub(mload(offerArrPtr), OneWord)
                        // Read the current value before the offer data.
                        let value := mload(ptr)
                        // Write the type hash to the previous word.
                        mstore(ptr, typeHash)
                        // Take the EIP712 hash and store it in the hash array.
                        mstore(hashArrPtr, keccak256(ptr, EIP712_OfferItem_size))
                        // Restore the previous word.
                        mstore(ptr, value)
                        // Increment the array pointers by one word.
                        offerArrPtr := add(offerArrPtr, OneWord)
                        hashArrPtr := add(hashArrPtr, OneWord)
                    }
                    // Derive the offer hash using the hashes of each item.
                    offerHash := keccak256(
                        mload(FreeMemoryPointerSlot),
                        shl(OneWordShift, offerLength)
                    )
                }
                // Declare a variable for the derived hash of the consideration array.
                bytes32 considerationHash;
                // Read consideration item typehash from runtime code & place on stack.
                typeHash = _CONSIDERATION_ITEM_TYPEHASH;
                // Utilize assembly so that memory regions can be reused across hashes.
                assembly {
                    // Retrieve the free memory pointer and place on the stack.
                    let hashArrPtr := mload(FreeMemoryPointerSlot)
                    // Get the pointer to the consideration array.
                    let considerationArrPtr := add(
                        mload(
                            add(
                                orderParameters,
                                OrderParameters_consideration_head_offset
                            )
                        ),
                        OneWord
                    )
                    // Iterate over the consideration items (not including tips).
                    for { let i := 0 } lt(i, originalConsiderationLength) {
                        i := add(i, 1)
                    } {
                        // Read the pointer to the consideration data and subtract one
                        // word to get typeHash pointer.
                        let ptr := sub(mload(considerationArrPtr), OneWord)
                        // Read the current value before the consideration data.
                        let value := mload(ptr)
                        // Write the type hash to the previous word.
                        mstore(ptr, typeHash)
                        // Take the EIP712 hash and store it in the hash array.
                        mstore(
                            hashArrPtr,
                            keccak256(ptr, EIP712_ConsiderationItem_size)
                        )
                        // Restore the previous word.
                        mstore(ptr, value)
                        // Increment the array pointers by one word.
                        considerationArrPtr := add(considerationArrPtr, OneWord)
                        hashArrPtr := add(hashArrPtr, OneWord)
                    }
                    // Derive the consideration hash using the hashes of each item.
                    considerationHash := keccak256(
                        mload(FreeMemoryPointerSlot),
                        shl(OneWordShift, originalConsiderationLength)
                    )
                }
                // Read order item EIP-712 typehash from runtime code & place on stack.
                typeHash = _ORDER_TYPEHASH;
                // Utilize assembly to access derived hashes & other arguments directly.
                assembly {
                    // Retrieve pointer to the region located just behind parameters.
                    let typeHashPtr := sub(orderParameters, OneWord)
                    // Store the value at that pointer location to restore later.
                    let previousValue := mload(typeHashPtr)
                    // Store the order item EIP-712 typehash at the typehash location.
                    mstore(typeHashPtr, typeHash)
                    // Retrieve the pointer for the offer array head.
                    let offerHeadPtr := add(
                        orderParameters,
                        OrderParameters_offer_head_offset
                    )
                    // Retrieve the data pointer referenced by the offer head.
                    let offerDataPtr := mload(offerHeadPtr)
                    // Store the offer hash at the retrieved memory location.
                    mstore(offerHeadPtr, offerHash)
                    // Retrieve the pointer for the consideration array head.
                    let considerationHeadPtr := add(
                        orderParameters,
                        OrderParameters_consideration_head_offset
                    )
                    // Retrieve the data pointer referenced by the consideration head.
                    let considerationDataPtr := mload(considerationHeadPtr)
                    // Store the consideration hash at the retrieved memory location.
                    mstore(considerationHeadPtr, considerationHash)
                    // Retrieve the pointer for the counter.
                    let counterPtr := add(
                        orderParameters,
                        OrderParameters_counter_offset
                    )
                    // Store the counter at the retrieved memory location.
                    mstore(counterPtr, counter)
                    // Derive the order hash using the full range of order parameters.
                    orderHash := keccak256(typeHashPtr, EIP712_Order_size)
                    // Restore the value previously held at typehash pointer location.
                    mstore(typeHashPtr, previousValue)
                    // Restore offer data pointer at the offer head pointer location.
                    mstore(offerHeadPtr, offerDataPtr)
                    // Restore consideration data pointer at the consideration head ptr.
                    mstore(considerationHeadPtr, considerationDataPtr)
                    // Restore consideration item length at the counter pointer.
                    mstore(counterPtr, originalConsiderationLength)
                }
            }
            /**
             * @dev Internal view function to derive the address of a given conduit
             *      using a corresponding conduit key.
             *
             * @param conduitKey A bytes32 value indicating what corresponding conduit,
             *                   if any, to source token approvals from. This value is
             *                   the "salt" parameter supplied by the deployer (i.e. the
             *                   conduit controller) when deploying the given conduit.
             *
             * @return conduit The address of the conduit associated with the given
             *                 conduit key.
             */
            function _deriveConduit(
                bytes32 conduitKey
            ) internal view returns (address conduit) {
                // Read conduit controller address from runtime and place on the stack.
                address conduitController = address(_CONDUIT_CONTROLLER);
                // Read conduit creation code hash from runtime and place on the stack.
                bytes32 conduitCreationCodeHash = _CONDUIT_CREATION_CODE_HASH;
                // Leverage scratch space to perform an efficient hash.
                assembly {
                    // Retrieve the free memory pointer; it will be replaced afterwards.
                    let freeMemoryPointer := mload(FreeMemoryPointerSlot)
                    // Place the control character and the conduit controller in scratch
                    // space; note that eleven bytes at the beginning are left unused.
                    mstore(0, or(MaskOverByteTwelve, conduitController))
                    // Place the conduit key in the next region of scratch space.
                    mstore(OneWord, conduitKey)
                    // Place conduit creation code hash in free memory pointer location.
                    mstore(TwoWords, conduitCreationCodeHash)
                    // Derive conduit by hashing and applying a mask over last 20 bytes.
                    conduit := and(
                        // Hash the relevant region.
                        keccak256(
                            // The region starts at memory pointer 11.
                            Create2AddressDerivation_ptr,
                            // The region is 85 bytes long (1 + 20 + 32 + 32).
                            Create2AddressDerivation_length
                        ),
                        // The address equals the last twenty bytes of the hash.
                        MaskOverLastTwentyBytes
                    )
                    // Restore the free memory pointer.
                    mstore(FreeMemoryPointerSlot, freeMemoryPointer)
                }
            }
            /**
             * @dev Internal view function to get the EIP-712 domain separator. If the
             *      chainId matches the chainId set on deployment, the cached domain
             *      separator will be returned; otherwise, it will be derived from
             *      scratch.
             *
             * @return The domain separator.
             */
            function _domainSeparator() internal view returns (bytes32) {
                return block.chainid == _CHAIN_ID
                    ? _DOMAIN_SEPARATOR
                    : _deriveDomainSeparator();
            }
            /**
             * @dev Internal view function to retrieve configuration information for
             *      this contract.
             *
             * @return The contract version.
             * @return The domain separator for this contract.
             * @return The conduit Controller set for this contract.
             */
            function _information()
                internal
                view
                returns (
                    string memory /* version */,
                    bytes32 /* domainSeparator */,
                    address /* conduitController */
                )
            {
                // Derive the domain separator.
                bytes32 domainSeparator = _domainSeparator();
                // Declare variable as immutables cannot be accessed within assembly.
                address conduitController = address(_CONDUIT_CONTROLLER);
                // Return the version, domain separator, and conduit controller.
                assembly {
                    mstore(information_version_offset, information_version_cd_offset)
                    mstore(information_domainSeparator_offset, domainSeparator)
                    mstore(information_conduitController_offset, conduitController)
                    mstore(information_versionLengthPtr, information_versionWithLength)
                    return(information_version_offset, information_length)
                }
            }
            /**
             * @dev Internal pure function to efficiently derive an digest to sign for
             *      an order in accordance with EIP-712.
             *
             * @param domainSeparator The domain separator.
             * @param orderHash       The order hash.
             *
             * @return value The hash.
             */
            function _deriveEIP712Digest(
                bytes32 domainSeparator,
                bytes32 orderHash
            ) internal pure returns (bytes32 value) {
                // Leverage scratch space to perform an efficient hash.
                assembly {
                    // Place the EIP-712 prefix at the start of scratch space.
                    mstore(0, EIP_712_PREFIX)
                    // Place the domain separator in the next region of scratch space.
                    mstore(EIP712_DomainSeparator_offset, domainSeparator)
                    // Place the order hash in scratch space, spilling into the first
                    // two bytes of the free memory pointer — this should never be set
                    // as memory cannot be expanded to that size, and will be zeroed out
                    // after the hash is performed.
                    mstore(EIP712_OrderHash_offset, orderHash)
                    // Hash the relevant region (65 bytes).
                    value := keccak256(0, EIP712_DigestPayload_size)
                    // Clear out the dirtied bits in the memory pointer.
                    mstore(EIP712_OrderHash_offset, 0)
                }
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.13;
        import {
            OrderParameters,
            ReceivedItem,
            SpentItem
        } from "../lib/ConsiderationStructs.sol";
        /**
         * @title ConsiderationEventsAndErrors
         * @author 0age
         * @notice ConsiderationEventsAndErrors contains all events and errors.
         */
        interface ConsiderationEventsAndErrors {
            /**
             * @dev Emit an event whenever an order is successfully fulfilled.
             *
             * @param orderHash     The hash of the fulfilled order.
             * @param offerer       The offerer of the fulfilled order.
             * @param zone          The zone of the fulfilled order.
             * @param recipient     The recipient of each spent item on the fulfilled
             *                      order, or the null address if there is no specific
             *                      fulfiller (i.e. the order is part of a group of
             *                      orders). Defaults to the caller unless explicitly
             *                      specified otherwise by the fulfiller.
             * @param offer         The offer items spent as part of the order.
             * @param consideration The consideration items received as part of the
             *                      order along with the recipients of each item.
             */
            event OrderFulfilled(
                bytes32 orderHash,
                address indexed offerer,
                address indexed zone,
                address recipient,
                SpentItem[] offer,
                ReceivedItem[] consideration
            );
            /**
             * @dev Emit an event whenever an order is successfully cancelled.
             *
             * @param orderHash The hash of the cancelled order.
             * @param offerer   The offerer of the cancelled order.
             * @param zone      The zone of the cancelled order.
             */
            event OrderCancelled(
                bytes32 orderHash,
                address indexed offerer,
                address indexed zone
            );
            /**
             * @dev Emit an event whenever an order is explicitly validated. Note that
             *      this event will not be emitted on partial fills even though they do
             *      validate the order as part of partial fulfillment.
             *
             * @param orderHash        The hash of the validated order.
             * @param orderParameters  The parameters of the validated order.
             */
            event OrderValidated(bytes32 orderHash, OrderParameters orderParameters);
            /**
             * @dev Emit an event whenever one or more orders are matched using either
             *      matchOrders or matchAdvancedOrders.
             *
             * @param orderHashes The order hashes of the matched orders.
             */
            event OrdersMatched(bytes32[] orderHashes);
            /**
             * @dev Emit an event whenever a counter for a given offerer is incremented.
             *
             * @param newCounter The new counter for the offerer.
             * @param offerer    The offerer in question.
             */
            event CounterIncremented(uint256 newCounter, address indexed offerer);
            /**
             * @dev Revert with an error when attempting to fill an order that has
             *      already been fully filled.
             *
             * @param orderHash The order hash on which a fill was attempted.
             */
            error OrderAlreadyFilled(bytes32 orderHash);
            /**
             * @dev Revert with an error when attempting to fill an order outside the
             *      specified start time and end time.
             *
             * @param startTime The time at which the order becomes active.
             * @param endTime   The time at which the order becomes inactive.
             */
            error InvalidTime(uint256 startTime, uint256 endTime);
            /**
             * @dev Revert with an error when attempting to fill an order referencing an
             *      invalid conduit (i.e. one that has not been deployed).
             */
            error InvalidConduit(bytes32 conduitKey, address conduit);
            /**
             * @dev Revert with an error when an order is supplied for fulfillment with
             *      a consideration array that is shorter than the original array.
             */
            error MissingOriginalConsiderationItems();
            /**
             * @dev Revert with an error when an order is validated and the length of
             *      the consideration array is not equal to the supplied total original
             *      consideration items value. This error is also thrown when contract
             *      orders supply a total original consideration items value that does
             *      not match the supplied consideration array length.
             */
            error ConsiderationLengthNotEqualToTotalOriginal();
            /**
             * @dev Revert with an error when a call to a conduit fails with revert data
             *      that is too expensive to return.
             */
            error InvalidCallToConduit(address conduit);
            /**
             * @dev Revert with an error if a consideration amount has not been fully
             *      zeroed out after applying all fulfillments.
             *
             * @param orderIndex         The index of the order with the consideration
             *                           item with a shortfall.
             * @param considerationIndex The index of the consideration item on the
             *                           order.
             * @param shortfallAmount    The unfulfilled consideration amount.
             */
            error ConsiderationNotMet(
                uint256 orderIndex,
                uint256 considerationIndex,
                uint256 shortfallAmount
            );
            /**
             * @dev Revert with an error when insufficient native tokens are supplied as
             *      part of msg.value when fulfilling orders.
             */
            error InsufficientNativeTokensSupplied();
            /**
             * @dev Revert with an error when a native token transfer reverts.
             */
            error NativeTokenTransferGenericFailure(address account, uint256 amount);
            /**
             * @dev Revert with an error when a partial fill is attempted on an order
             *      that does not specify partial fill support in its order type.
             */
            error PartialFillsNotEnabledForOrder();
            /**
             * @dev Revert with an error when attempting to fill an order that has been
             *      cancelled.
             *
             * @param orderHash The hash of the cancelled order.
             */
            error OrderIsCancelled(bytes32 orderHash);
            /**
             * @dev Revert with an error when attempting to fill a basic order that has
             *      been partially filled.
             *
             * @param orderHash The hash of the partially used order.
             */
            error OrderPartiallyFilled(bytes32 orderHash);
            /**
             * @dev Revert with an error when attempting to cancel an order as a caller
             *      other than the indicated offerer or zone or when attempting to
             *      cancel a contract order.
             */
            error CannotCancelOrder();
            /**
             * @dev Revert with an error when supplying a fraction with a value of zero
             *      for the numerator or denominator, or one where the numerator exceeds
             *      the denominator.
             */
            error BadFraction();
            /**
             * @dev Revert with an error when a caller attempts to supply callvalue to a
             *      non-payable basic order route or does not supply any callvalue to a
             *      payable basic order route.
             */
            error InvalidMsgValue(uint256 value);
            /**
             * @dev Revert with an error when attempting to fill a basic order using
             *      calldata not produced by default ABI encoding.
             */
            error InvalidBasicOrderParameterEncoding();
            /**
             * @dev Revert with an error when attempting to fulfill any number of
             *      available orders when none are fulfillable.
             */
            error NoSpecifiedOrdersAvailable();
            /**
             * @dev Revert with an error when attempting to fulfill an order with an
             *      offer for a native token outside of matching orders.
             */
            error InvalidNativeOfferItem();
        }
        // SPDX-License-Identifier: MIT
        pragma solidity 0.8.17;
        import { ReentrancyErrors } from "../interfaces/ReentrancyErrors.sol";
        import { LowLevelHelpers } from "./LowLevelHelpers.sol";
        import {
            _revertInvalidMsgValue,
            _revertNoReentrantCalls
        } from "./ConsiderationErrors.sol";
        import {
            _ENTERED_AND_ACCEPTING_NATIVE_TOKENS,
            _ENTERED,
            _NOT_ENTERED
        } from "./ConsiderationConstants.sol";
        /**
         * @title ReentrancyGuard
         * @author 0age
         * @notice ReentrancyGuard contains a storage variable and related functionality
         *         for protecting against reentrancy.
         */
        contract ReentrancyGuard is ReentrancyErrors, LowLevelHelpers {
            // Prevent reentrant calls on protected functions.
            uint256 private _reentrancyGuard;
            /**
             * @dev Initialize the reentrancy guard during deployment.
             */
            constructor() {
                // Initialize the reentrancy guard in a cleared state.
                _reentrancyGuard = _NOT_ENTERED;
            }
            /**
             * @dev Internal function to ensure that a sentinel value for the reentrancy
             *      guard is not currently set and, if not, to set a sentinel value for
             *      the reentrancy guard based on whether or not native tokens may be
             *      received during execution or not.
             *
             * @param acceptNativeTokens A boolean indicating whether native tokens may
             *                           be received during execution or not.
             */
            function _setReentrancyGuard(bool acceptNativeTokens) internal {
                // Ensure that the reentrancy guard is not already set.
                _assertNonReentrant();
                // Set the reentrancy guard. A value of 2 indicates that native tokens
                // may not be accepted during execution, whereas a value of 3 indicates
                // that they will be accepted (with any remaining native tokens returned
                // to the caller).
                unchecked {
                    _reentrancyGuard = _ENTERED + _cast(acceptNativeTokens);
                }
            }
            /**
             * @dev Internal function to unset the reentrancy guard sentinel value.
             */
            function _clearReentrancyGuard() internal {
                // Clear the reentrancy guard.
                _reentrancyGuard = _NOT_ENTERED;
            }
            /**
             * @dev Internal view function to ensure that a sentinel value for the
                    reentrancy guard is not currently set.
             */
            function _assertNonReentrant() internal view {
                // Ensure that the reentrancy guard is not currently set.
                if (_reentrancyGuard != _NOT_ENTERED) {
                    _revertNoReentrantCalls();
                }
            }
            /**
             * @dev Internal view function to ensure that the sentinel value indicating
             *      native tokens may be received during execution is currently set.
             */
            function _assertAcceptingNativeTokens() internal view {
                // Ensure that the reentrancy guard is not currently set.
                if (_reentrancyGuard != _ENTERED_AND_ACCEPTING_NATIVE_TOKENS) {
                    _revertInvalidMsgValue(msg.value);
                }
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity 0.8.17;
        import {
            CostPerWord,
            ExtraGasBuffer,
            FreeMemoryPointerSlot,
            MemoryExpansionCoefficientShift,
            OneWord,
            OneWordShift,
            ThirtyOneBytes
        } from "./ConsiderationConstants.sol";
        /**
         * @title LowLevelHelpers
         * @author 0age
         * @notice LowLevelHelpers contains logic for performing various low-level
         *         operations.
         */
        contract LowLevelHelpers {
            /**
             * @dev Internal view function to revert and pass along the revert reason if
             *      data was returned by the last call and that the size of that data
             *      does not exceed the currently allocated memory size.
             */
            function _revertWithReasonIfOneIsReturned() internal view {
                assembly {
                    // If it returned a message, bubble it up as long as sufficient gas
                    // remains to do so:
                    if returndatasize() {
                        // Ensure that sufficient gas is available to copy returndata
                        // while expanding memory where necessary. Start by computing
                        // the word size of returndata and allocated memory.
                        let returnDataWords := shr(
                            OneWordShift,
                            add(returndatasize(), ThirtyOneBytes)
                        )
                        // Note: use the free memory pointer in place of msize() to work
                        // around a Yul warning that prevents accessing msize directly
                        // when the IR pipeline is activated.
                        let msizeWords := shr(
                            OneWordShift,
                            mload(FreeMemoryPointerSlot)
                        )
                        // Next, compute the cost of the returndatacopy.
                        let cost := mul(CostPerWord, returnDataWords)
                        // Then, compute cost of new memory allocation.
                        if gt(returnDataWords, msizeWords) {
                            cost := add(
                                cost,
                                add(
                                    mul(sub(returnDataWords, msizeWords), CostPerWord),
                                    shr(
                                        MemoryExpansionCoefficientShift,
                                        sub(
                                            mul(returnDataWords, returnDataWords),
                                            mul(msizeWords, msizeWords)
                                        )
                                    )
                                )
                            )
                        }
                        // Finally, add a small constant and compare to gas remaining;
                        // bubble up the revert data if enough gas is still available.
                        if lt(add(cost, ExtraGasBuffer), gas()) {
                            // Copy returndata to memory; overwrite existing memory.
                            returndatacopy(0, 0, returndatasize())
                            // Revert, specifying memory region with copied returndata.
                            revert(0, returndatasize())
                        }
                    }
                }
            }
            /**
             * @dev Internal view function to branchlessly select either the caller (if
             *      a supplied recipient is equal to zero) or the supplied recipient (if
             *      that recipient is a nonzero value).
             *
             * @param recipient The supplied recipient.
             *
             * @return updatedRecipient The updated recipient.
             */
            function _substituteCallerForEmptyRecipient(
                address recipient
            ) internal view returns (address updatedRecipient) {
                // Utilize assembly to perform a branchless operation on the recipient.
                assembly {
                    // Add caller to recipient if recipient equals 0; otherwise add 0.
                    updatedRecipient := add(recipient, mul(iszero(recipient), caller()))
                }
            }
            /**
             * @dev Internal pure function to cast a `bool` value to a `uint256` value.
             *
             * @param b The `bool` value to cast.
             *
             * @return u The `uint256` value.
             */
            function _cast(bool b) internal pure returns (uint256 u) {
                assembly {
                    u := b
                }
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.13;
        /**
         * @title ReentrancyErrors
         * @author 0age
         * @notice ReentrancyErrors contains errors related to reentrancy.
         */
        interface ReentrancyErrors {
            /**
             * @dev Revert with an error when a caller attempts to reenter a protected
             *      function.
             */
            error NoReentrantCalls();
        }
        // SPDX-License-Identifier: MIT
        pragma solidity 0.8.17;
        import {
            ConduitControllerInterface
        } from "../interfaces/ConduitControllerInterface.sol";
        import {
            ConsiderationEventsAndErrors
        } from "../interfaces/ConsiderationEventsAndErrors.sol";
        import {
            BulkOrder_Typehash_Height_One,
            BulkOrder_Typehash_Height_Two,
            BulkOrder_Typehash_Height_Three,
            BulkOrder_Typehash_Height_Four,
            BulkOrder_Typehash_Height_Five,
            BulkOrder_Typehash_Height_Six,
            BulkOrder_Typehash_Height_Seven,
            BulkOrder_Typehash_Height_Eight,
            BulkOrder_Typehash_Height_Nine,
            BulkOrder_Typehash_Height_Ten,
            BulkOrder_Typehash_Height_Eleven,
            BulkOrder_Typehash_Height_Twelve,
            BulkOrder_Typehash_Height_Thirteen,
            BulkOrder_Typehash_Height_Fourteen,
            BulkOrder_Typehash_Height_Fifteen,
            BulkOrder_Typehash_Height_Sixteen,
            BulkOrder_Typehash_Height_Seventeen,
            BulkOrder_Typehash_Height_Eighteen,
            BulkOrder_Typehash_Height_Nineteen,
            BulkOrder_Typehash_Height_Twenty,
            BulkOrder_Typehash_Height_TwentyOne,
            BulkOrder_Typehash_Height_TwentyTwo,
            BulkOrder_Typehash_Height_TwentyThree,
            BulkOrder_Typehash_Height_TwentyFour,
            EIP712_domainData_chainId_offset,
            EIP712_domainData_nameHash_offset,
            EIP712_domainData_size,
            EIP712_domainData_verifyingContract_offset,
            EIP712_domainData_versionHash_offset,
            FreeMemoryPointerSlot,
            NameLengthPtr,
            NameWithLength,
            OneWord,
            Slot0x80,
            ThreeWords,
            ZeroSlot
        } from "./ConsiderationConstants.sol";
        import { ConsiderationDecoder } from "./ConsiderationDecoder.sol";
        import { ConsiderationEncoder } from "./ConsiderationEncoder.sol";
        /**
         * @title ConsiderationBase
         * @author 0age
         * @notice ConsiderationBase contains immutable constants and constructor logic.
         */
        contract ConsiderationBase is
            ConsiderationDecoder,
            ConsiderationEncoder,
            ConsiderationEventsAndErrors
        {
            // Precompute hashes, original chainId, and domain separator on deployment.
            bytes32 internal immutable _NAME_HASH;
            bytes32 internal immutable _VERSION_HASH;
            bytes32 internal immutable _EIP_712_DOMAIN_TYPEHASH;
            bytes32 internal immutable _OFFER_ITEM_TYPEHASH;
            bytes32 internal immutable _CONSIDERATION_ITEM_TYPEHASH;
            bytes32 internal immutable _ORDER_TYPEHASH;
            uint256 internal immutable _CHAIN_ID;
            bytes32 internal immutable _DOMAIN_SEPARATOR;
            // Allow for interaction with the conduit controller.
            ConduitControllerInterface internal immutable _CONDUIT_CONTROLLER;
            // Cache the conduit creation code hash used by the conduit controller.
            bytes32 internal immutable _CONDUIT_CREATION_CODE_HASH;
            /**
             * @dev Derive and set hashes, reference chainId, and associated domain
             *      separator during deployment.
             *
             * @param conduitController A contract that deploys conduits, or proxies
             *                          that may optionally be used to transfer approved
             *                          ERC20/721/1155 tokens.
             */
            constructor(address conduitController) {
                // Derive name and version hashes alongside required EIP-712 typehashes.
                (
                    _NAME_HASH,
                    _VERSION_HASH,
                    _EIP_712_DOMAIN_TYPEHASH,
                    _OFFER_ITEM_TYPEHASH,
                    _CONSIDERATION_ITEM_TYPEHASH,
                    _ORDER_TYPEHASH
                ) = _deriveTypehashes();
                // Store the current chainId and derive the current domain separator.
                _CHAIN_ID = block.chainid;
                _DOMAIN_SEPARATOR = _deriveDomainSeparator();
                // Set the supplied conduit controller.
                _CONDUIT_CONTROLLER = ConduitControllerInterface(conduitController);
                // Retrieve the conduit creation code hash from the supplied controller.
                (_CONDUIT_CREATION_CODE_HASH, ) = (
                    _CONDUIT_CONTROLLER.getConduitCodeHashes()
                );
            }
            /**
             * @dev Internal view function to derive the EIP-712 domain separator.
             *
             * @return domainSeparator The derived domain separator.
             */
            function _deriveDomainSeparator()
                internal
                view
                returns (bytes32 domainSeparator)
            {
                bytes32 typehash = _EIP_712_DOMAIN_TYPEHASH;
                bytes32 nameHash = _NAME_HASH;
                bytes32 versionHash = _VERSION_HASH;
                // Leverage scratch space and other memory to perform an efficient hash.
                assembly {
                    // Retrieve the free memory pointer; it will be replaced afterwards.
                    let freeMemoryPointer := mload(FreeMemoryPointerSlot)
                    // Retrieve value at 0x80; it will also be replaced afterwards.
                    let slot0x80 := mload(Slot0x80)
                    // Place typehash, name hash, and version hash at start of memory.
                    mstore(0, typehash)
                    mstore(EIP712_domainData_nameHash_offset, nameHash)
                    mstore(EIP712_domainData_versionHash_offset, versionHash)
                    // Place chainId in the next memory location.
                    mstore(EIP712_domainData_chainId_offset, chainid())
                    // Place the address of this contract in the next memory location.
                    mstore(EIP712_domainData_verifyingContract_offset, address())
                    // Hash relevant region of memory to derive the domain separator.
                    domainSeparator := keccak256(0, EIP712_domainData_size)
                    // Restore the free memory pointer.
                    mstore(FreeMemoryPointerSlot, freeMemoryPointer)
                    // Restore the zero slot to zero.
                    mstore(ZeroSlot, 0)
                    // Restore the value at 0x80.
                    mstore(Slot0x80, slot0x80)
                }
            }
            /**
             * @dev Internal pure function to retrieve the default name of this
             *      contract and return.
             *
             * @return The name of this contract.
             */
            function _name() internal pure virtual returns (string memory) {
                // Return the name of the contract.
                assembly {
                    // First element is the offset for the returned string. Offset the
                    // value in memory by one word so that the free memory pointer will
                    // be overwritten by the next write.
                    mstore(OneWord, OneWord)
                    // Name is right padded, so it touches the length which is left
                    // padded. This enables writing both values at once. The free memory
                    // pointer will be overwritten in the process.
                    mstore(NameLengthPtr, NameWithLength)
                    // Standard ABI encoding pads returned data to the nearest word. Use
                    // the already empty zero slot memory region for this purpose and
                    // return the final name string, offset by the original single word.
                    return(OneWord, ThreeWords)
                }
            }
            /**
             * @dev Internal pure function to retrieve the default name of this contract
             *      as a string that can be used internally.
             *
             * @return The name of this contract.
             */
            function _nameString() internal pure virtual returns (string memory) {
                // Return the name of the contract.
                return "Consideration";
            }
            /**
             * @dev Internal pure function to derive required EIP-712 typehashes and
             *      other hashes during contract creation.
             *
             * @return nameHash                  The hash of the name of the contract.
             * @return versionHash               The hash of the version string of the
             *                                   contract.
             * @return eip712DomainTypehash      The primary EIP-712 domain typehash.
             * @return offerItemTypehash         The EIP-712 typehash for OfferItem
             *                                   types.
             * @return considerationItemTypehash The EIP-712 typehash for
             *                                   ConsiderationItem types.
             * @return orderTypehash             The EIP-712 typehash for Order types.
             */
            function _deriveTypehashes()
                internal
                pure
                returns (
                    bytes32 nameHash,
                    bytes32 versionHash,
                    bytes32 eip712DomainTypehash,
                    bytes32 offerItemTypehash,
                    bytes32 considerationItemTypehash,
                    bytes32 orderTypehash
                )
            {
                // Derive hash of the name of the contract.
                nameHash = keccak256(bytes(_nameString()));
                // Derive hash of the version string of the contract.
                versionHash = keccak256(bytes("1.5"));
                // Construct the OfferItem type string.
                bytes memory offerItemTypeString = bytes(
                    "OfferItem("
                    "uint8 itemType,"
                    "address token,"
                    "uint256 identifierOrCriteria,"
                    "uint256 startAmount,"
                    "uint256 endAmount"
                    ")"
                );
                // Construct the ConsiderationItem type string.
                bytes memory considerationItemTypeString = bytes(
                    "ConsiderationItem("
                    "uint8 itemType,"
                    "address token,"
                    "uint256 identifierOrCriteria,"
                    "uint256 startAmount,"
                    "uint256 endAmount,"
                    "address recipient"
                    ")"
                );
                // Construct the OrderComponents type string, not including the above.
                bytes memory orderComponentsPartialTypeString = bytes(
                    "OrderComponents("
                    "address offerer,"
                    "address zone,"
                    "OfferItem[] offer,"
                    "ConsiderationItem[] consideration,"
                    "uint8 orderType,"
                    "uint256 startTime,"
                    "uint256 endTime,"
                    "bytes32 zoneHash,"
                    "uint256 salt,"
                    "bytes32 conduitKey,"
                    "uint256 counter"
                    ")"
                );
                // Construct the primary EIP-712 domain type string.
                eip712DomainTypehash = keccak256(
                    bytes(
                        "EIP712Domain("
                        "string name,"
                        "string version,"
                        "uint256 chainId,"
                        "address verifyingContract"
                        ")"
                    )
                );
                // Derive the OfferItem type hash using the corresponding type string.
                offerItemTypehash = keccak256(offerItemTypeString);
                // Derive ConsiderationItem type hash using corresponding type string.
                considerationItemTypehash = keccak256(considerationItemTypeString);
                bytes memory orderTypeString = bytes.concat(
                    orderComponentsPartialTypeString,
                    considerationItemTypeString,
                    offerItemTypeString
                );
                // Derive OrderItem type hash via combination of relevant type strings.
                orderTypehash = keccak256(orderTypeString);
            }
            /**
             * @dev Internal pure function to look up one of twenty-four potential bulk
             *      order typehash constants based on the height of the bulk order tree.
             *      Note that values between one and twenty-four are supported, which is
             *      enforced by _isValidBulkOrderSize.
             *
             * @param _treeHeight The height of the bulk order tree. The value must be
             *                    between one and twenty-four.
             *
             * @return _typeHash The EIP-712 typehash for the bulk order type with the
             *                   given height.
             */
            function _lookupBulkOrderTypehash(
                uint256 _treeHeight
            ) internal pure returns (bytes32 _typeHash) {
                // Utilize assembly to efficiently retrieve correct bulk order typehash.
                assembly {
                    // Use a Yul function to enable use of the `leave` keyword
                    // to stop searching once the appropriate type hash is found.
                    function lookupTypeHash(treeHeight) -> typeHash {
                        // Handle tree heights one through eight.
                        if lt(treeHeight, 9) {
                            // Handle tree heights one through four.
                            if lt(treeHeight, 5) {
                                // Handle tree heights one and two.
                                if lt(treeHeight, 3) {
                                    // Utilize branchless logic to determine typehash.
                                    typeHash := ternary(
                                        eq(treeHeight, 1),
                                        BulkOrder_Typehash_Height_One,
                                        BulkOrder_Typehash_Height_Two
                                    )
                                    // Exit the function once typehash has been located.
                                    leave
                                }
                                // Handle height three and four via branchless logic.
                                typeHash := ternary(
                                    eq(treeHeight, 3),
                                    BulkOrder_Typehash_Height_Three,
                                    BulkOrder_Typehash_Height_Four
                                )
                                // Exit the function once typehash has been located.
                                leave
                            }
                            // Handle tree height five and six.
                            if lt(treeHeight, 7) {
                                // Utilize branchless logic to determine typehash.
                                typeHash := ternary(
                                    eq(treeHeight, 5),
                                    BulkOrder_Typehash_Height_Five,
                                    BulkOrder_Typehash_Height_Six
                                )
                                // Exit the function once typehash has been located.
                                leave
                            }
                            // Handle height seven and eight via branchless logic.
                            typeHash := ternary(
                                eq(treeHeight, 7),
                                BulkOrder_Typehash_Height_Seven,
                                BulkOrder_Typehash_Height_Eight
                            )
                            // Exit the function once typehash has been located.
                            leave
                        }
                        // Handle tree height nine through sixteen.
                        if lt(treeHeight, 17) {
                            // Handle tree height nine through twelve.
                            if lt(treeHeight, 13) {
                                // Handle tree height nine and ten.
                                if lt(treeHeight, 11) {
                                    // Utilize branchless logic to determine typehash.
                                    typeHash := ternary(
                                        eq(treeHeight, 9),
                                        BulkOrder_Typehash_Height_Nine,
                                        BulkOrder_Typehash_Height_Ten
                                    )
                                    // Exit the function once typehash has been located.
                                    leave
                                }
                                // Handle height eleven and twelve via branchless logic.
                                typeHash := ternary(
                                    eq(treeHeight, 11),
                                    BulkOrder_Typehash_Height_Eleven,
                                    BulkOrder_Typehash_Height_Twelve
                                )
                                // Exit the function once typehash has been located.
                                leave
                            }
                            // Handle tree height thirteen and fourteen.
                            if lt(treeHeight, 15) {
                                // Utilize branchless logic to determine typehash.
                                typeHash := ternary(
                                    eq(treeHeight, 13),
                                    BulkOrder_Typehash_Height_Thirteen,
                                    BulkOrder_Typehash_Height_Fourteen
                                )
                                // Exit the function once typehash has been located.
                                leave
                            }
                            // Handle height fifteen and sixteen via branchless logic.
                            typeHash := ternary(
                                eq(treeHeight, 15),
                                BulkOrder_Typehash_Height_Fifteen,
                                BulkOrder_Typehash_Height_Sixteen
                            )
                            // Exit the function once typehash has been located.
                            leave
                        }
                        // Handle tree height seventeen through twenty.
                        if lt(treeHeight, 21) {
                            // Handle tree height seventeen and eighteen.
                            if lt(treeHeight, 19) {
                                // Utilize branchless logic to determine typehash.
                                typeHash := ternary(
                                    eq(treeHeight, 17),
                                    BulkOrder_Typehash_Height_Seventeen,
                                    BulkOrder_Typehash_Height_Eighteen
                                )
                                // Exit the function once typehash has been located.
                                leave
                            }
                            // Handle height nineteen and twenty via branchless logic.
                            typeHash := ternary(
                                eq(treeHeight, 19),
                                BulkOrder_Typehash_Height_Nineteen,
                                BulkOrder_Typehash_Height_Twenty
                            )
                            // Exit the function once typehash has been located.
                            leave
                        }
                        // Handle tree height twenty-one and twenty-two.
                        if lt(treeHeight, 23) {
                            // Utilize branchless logic to determine typehash.
                            typeHash := ternary(
                                eq(treeHeight, 21),
                                BulkOrder_Typehash_Height_TwentyOne,
                                BulkOrder_Typehash_Height_TwentyTwo
                            )
                            // Exit the function once typehash has been located.
                            leave
                        }
                        // Handle height twenty-three & twenty-four w/ branchless logic.
                        typeHash := ternary(
                            eq(treeHeight, 23),
                            BulkOrder_Typehash_Height_TwentyThree,
                            BulkOrder_Typehash_Height_TwentyFour
                        )
                        // Exit the function once typehash has been located.
                        leave
                    }
                    // Implement ternary conditional using branchless logic.
                    function ternary(cond, ifTrue, ifFalse) -> c {
                        c := xor(ifFalse, mul(cond, xor(ifFalse, ifTrue)))
                    }
                    // Look up the typehash using the supplied tree height.
                    _typeHash := lookupTypeHash(_treeHeight)
                }
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity 0.8.17;
        import {
            BasicOrder_additionalRecipients_length_cdPtr,
            BasicOrder_common_params_size,
            BasicOrder_startTime_cdPtr,
            BasicOrder_startTimeThroughZoneHash_size,
            Common_amount_offset,
            Common_identifier_offset,
            Common_token_offset,
            generateOrder_base_tail_offset,
            generateOrder_context_head_offset,
            generateOrder_head_offset,
            generateOrder_maximumSpent_head_offset,
            generateOrder_minimumReceived_head_offset,
            generateOrder_selector_offset,
            generateOrder_selector,
            OneWord,
            OneWordShift,
            OnlyFullWordMask,
            OrderFulfilled_baseDataSize,
            OrderFulfilled_offer_length_baseOffset,
            OrderParameters_consideration_head_offset,
            OrderParameters_endTime_offset,
            OrderParameters_offer_head_offset,
            OrderParameters_startTime_offset,
            OrderParameters_zoneHash_offset,
            ratifyOrder_base_tail_offset,
            ratifyOrder_consideration_head_offset,
            ratifyOrder_context_head_offset,
            ratifyOrder_contractNonce_offset,
            ratifyOrder_head_offset,
            ratifyOrder_orderHashes_head_offset,
            ratifyOrder_selector_offset,
            ratifyOrder_selector,
            ReceivedItem_size,
            Selector_length,
            SixtyThreeBytes,
            SpentItem_size_shift,
            SpentItem_size,
            validateOrder_head_offset,
            validateOrder_selector_offset,
            validateOrder_selector,
            validateOrder_zoneParameters_offset,
            ZoneParameters_base_tail_offset,
            ZoneParameters_basicOrderFixedElements_length,
            ZoneParameters_consideration_head_offset,
            ZoneParameters_endTime_offset,
            ZoneParameters_extraData_head_offset,
            ZoneParameters_fulfiller_offset,
            ZoneParameters_offer_head_offset,
            ZoneParameters_offerer_offset,
            ZoneParameters_orderHashes_head_offset,
            ZoneParameters_selectorAndPointer_length,
            ZoneParameters_startTime_offset,
            ZoneParameters_zoneHash_offset
        } from "./ConsiderationConstants.sol";
        import {
            BasicOrderParameters,
            OrderParameters
        } from "./ConsiderationStructs.sol";
        import {
            CalldataPointer,
            getFreeMemoryPointer,
            MemoryPointer
        } from "../helpers/PointerLibraries.sol";
        contract ConsiderationEncoder {
            /**
             * @dev Takes a bytes array and casts it to a memory pointer.
             *
             * @param obj A bytes array in memory.
             *
             * @return ptr A memory pointer to the start of the bytes array in memory.
             */
            function toMemoryPointer(
                bytes memory obj
            ) internal pure returns (MemoryPointer ptr) {
                assembly {
                    ptr := obj
                }
            }
            /**
             * @dev Takes an array of bytes32 types and casts it to a memory pointer.
             *
             * @param obj An array of bytes32 types in memory.
             *
             * @return ptr A memory pointer to the start of the array of bytes32 types
             *             in memory.
             */
            function toMemoryPointer(
                bytes32[] memory obj
            ) internal pure returns (MemoryPointer ptr) {
                assembly {
                    ptr := obj
                }
            }
            /**
             * @dev Takes a bytes array in memory and copies it to a new location in
             *      memory.
             *
             * @param src A memory pointer referencing the bytes array to be copied (and
             *            pointing to the length of the bytes array).
             * @param src A memory pointer referencing the location in memory to copy
             *            the bytes array to (and pointing to the length of the copied
             *            bytes array).
             *
             * @return size The size of the bytes array.
             */
            function _encodeBytes(
                MemoryPointer src,
                MemoryPointer dst
            ) internal view returns (uint256 size) {
                unchecked {
                    // Mask the length of the bytes array to protect against overflow
                    // and round up to the nearest word.
                    // Note: `size` also includes the 1 word that stores the length.
                    size = (src.readUint256() + SixtyThreeBytes) & OnlyFullWordMask;
                    // Copy the bytes array to the new memory location.
                    src.copy(dst, size);
                }
            }
            /**
             * @dev Takes an OrderParameters struct and a context bytes array in memory
             *      and encodes it as `generateOrder` calldata.
             *
             * @param orderParameters The OrderParameters struct used to construct the
             *                        encoded `generateOrder` calldata.
             * @param context         The context bytes array used to construct the
             *                        encoded `generateOrder` calldata.
             *
             * @return dst  A memory pointer referencing the encoded `generateOrder`
             *              calldata.
             * @return size The size of the bytes array.
             */
            function _encodeGenerateOrder(
                OrderParameters memory orderParameters,
                bytes memory context
            ) internal view returns (MemoryPointer dst, uint256 size) {
                // Get the memory pointer for the OrderParameters struct.
                MemoryPointer src = orderParameters.toMemoryPointer();
                // Get free memory pointer to write calldata to.
                dst = getFreeMemoryPointer();
                // Write generateOrder selector and get pointer to start of calldata.
                dst.write(generateOrder_selector);
                dst = dst.offset(generateOrder_selector_offset);
                // Get pointer to the beginning of the encoded data.
                MemoryPointer dstHead = dst.offset(generateOrder_head_offset);
                // Write `fulfiller` to calldata.
                dstHead.write(msg.sender);
                // Initialize tail offset, used to populate the minimumReceived array.
                uint256 tailOffset = generateOrder_base_tail_offset;
                // Write offset to minimumReceived.
                dstHead.offset(generateOrder_minimumReceived_head_offset).write(
                    tailOffset
                );
                // Get memory pointer to `orderParameters.offer.length`.
                MemoryPointer srcOfferPointer = src
                    .offset(OrderParameters_offer_head_offset)
                    .readMemoryPointer();
                // Encode the offer array as a `SpentItem[]`.
                uint256 minimumReceivedSize = _encodeSpentItems(
                    srcOfferPointer,
                    dstHead.offset(tailOffset)
                );
                unchecked {
                    // Increment tail offset, now used to populate maximumSpent array.
                    tailOffset += minimumReceivedSize;
                }
                // Write offset to maximumSpent.
                dstHead.offset(generateOrder_maximumSpent_head_offset).write(
                    tailOffset
                );
                // Get memory pointer to `orderParameters.consideration.length`.
                MemoryPointer srcConsiderationPointer = src
                    .offset(OrderParameters_consideration_head_offset)
                    .readMemoryPointer();
                // Encode the consideration array as a `SpentItem[]`.
                uint256 maximumSpentSize = _encodeSpentItems(
                    srcConsiderationPointer,
                    dstHead.offset(tailOffset)
                );
                unchecked {
                    // Increment tail offset, now used to populate context array.
                    tailOffset += maximumSpentSize;
                }
                // Write offset to context.
                dstHead.offset(generateOrder_context_head_offset).write(tailOffset);
                // Get memory pointer to context.
                MemoryPointer srcContext = toMemoryPointer(context);
                // Encode context as a bytes array.
                uint256 contextSize = _encodeBytes(
                    srcContext,
                    dstHead.offset(tailOffset)
                );
                unchecked {
                    // Increment the tail offset, now used to determine final size.
                    tailOffset += contextSize;
                    // Derive the final size by including the selector.
                    size = Selector_length + tailOffset;
                }
            }
            /**
             * @dev Takes an order hash (e.g. offerer shifted 96 bits to the left XOR'd
             *      with the contract nonce in the case of contract orders), an
             *      OrderParameters struct, context bytes array, and an array of order
             *      hashes for each order included as part of the current fulfillment
             *      and encodes it as `ratifyOrder` calldata.
             *
             * @param orderHash       The order hash (e.g. shl(0x60, offerer) ^ nonce).
             * @param orderParameters The OrderParameters struct used to construct the
             *                        encoded `ratifyOrder` calldata.
             * @param context         The context bytes array used to construct the
             *                        encoded `ratifyOrder` calldata.
             * @param orderHashes     An array of bytes32 values representing the order
             *                        hashes of all orders included as part of the
             *                        current fulfillment.
             * @param shiftedOfferer  The offerer for the order, shifted 96 bits to the
             *                        left.
             *
             * @return dst  A memory pointer referencing the encoded `ratifyOrder`
             *              calldata.
             * @return size The size of the bytes array.
             */
            function _encodeRatifyOrder(
                bytes32 orderHash, // e.g. shl(0x60, offerer) ^ contract nonce
                OrderParameters memory orderParameters,
                bytes memory context, // encoded based on the schemaID
                bytes32[] memory orderHashes,
                uint256 shiftedOfferer
            ) internal view returns (MemoryPointer dst, uint256 size) {
                // Get free memory pointer to write calldata to. This isn't allocated as
                // it is only used for a single function call.
                dst = getFreeMemoryPointer();
                // Write ratifyOrder selector and get pointer to start of calldata.
                dst.write(ratifyOrder_selector);
                dst = dst.offset(ratifyOrder_selector_offset);
                // Get pointer to the beginning of the encoded data.
                MemoryPointer dstHead = dst.offset(ratifyOrder_head_offset);
                // Write contractNonce to calldata via xor(orderHash, shiftedOfferer).
                dstHead.offset(ratifyOrder_contractNonce_offset).write(
                    uint256(orderHash) ^ shiftedOfferer
                );
                // Initialize tail offset, used to populate the offer array.
                uint256 tailOffset = ratifyOrder_base_tail_offset;
                MemoryPointer src = orderParameters.toMemoryPointer();
                // Write offset to `offer`.
                dstHead.write(tailOffset);
                // Get memory pointer to `orderParameters.offer.length`.
                MemoryPointer srcOfferPointer = src
                    .offset(OrderParameters_offer_head_offset)
                    .readMemoryPointer();
                // Encode the offer array as a `SpentItem[]`.
                uint256 offerSize = _encodeSpentItems(
                    srcOfferPointer,
                    dstHead.offset(tailOffset)
                );
                unchecked {
                    // Increment tail offset, now used to populate consideration array.
                    tailOffset += offerSize;
                }
                // Write offset to consideration.
                dstHead.offset(ratifyOrder_consideration_head_offset).write(tailOffset);
                // Get pointer to `orderParameters.consideration.length`.
                MemoryPointer srcConsiderationPointer = src
                    .offset(OrderParameters_consideration_head_offset)
                    .readMemoryPointer();
                // Encode the consideration array as a `ReceivedItem[]`.
                uint256 considerationSize = _encodeConsiderationAsReceivedItems(
                    srcConsiderationPointer,
                    dstHead.offset(tailOffset)
                );
                unchecked {
                    // Increment tail offset, now used to populate context array.
                    tailOffset += considerationSize;
                }
                // Write offset to context.
                dstHead.offset(ratifyOrder_context_head_offset).write(tailOffset);
                // Encode context.
                uint256 contextSize = _encodeBytes(
                    toMemoryPointer(context),
                    dstHead.offset(tailOffset)
                );
                unchecked {
                    // Increment tail offset, now used to populate orderHashes array.
                    tailOffset += contextSize;
                }
                // Write offset to orderHashes.
                dstHead.offset(ratifyOrder_orderHashes_head_offset).write(tailOffset);
                // Encode orderHashes.
                uint256 orderHashesSize = _encodeOrderHashes(
                    toMemoryPointer(orderHashes),
                    dstHead.offset(tailOffset)
                );
                unchecked {
                    // Increment the tail offset, now used to determine final size.
                    tailOffset += orderHashesSize;
                    // Derive the final size by including the selector.
                    size = Selector_length + tailOffset;
                }
            }
            /**
             * @dev Takes an order hash, OrderParameters struct, extraData bytes array,
             *      and array of order hashes for each order included as part of the
             *      current fulfillment and encodes it as `validateOrder` calldata.
             *      Note that future, new versions of this contract may end up writing
             *      to a memory region that might have been potentially dirtied by the
             *      accumulator. Since the book-keeping for the accumulator does not
             *      update the free memory pointer, it will be necessary to ensure that
             *      all bytes in the memory in the range [dst, dst+size) are fully
             *      updated/written to in this function.
             *
             * @param orderHash       The order hash.
             * @param orderParameters The OrderParameters struct used to construct the
             *                        encoded `validateOrder` calldata.
             * @param extraData       The extraData bytes array used to construct the
             *                        encoded `validateOrder` calldata.
             * @param orderHashes     An array of bytes32 values representing the order
             *                        hashes of all orders included as part of the
             *                        current fulfillment.
             *
             * @return dst  A memory pointer referencing the encoded `validateOrder`
             *              calldata.
             * @return size The size of the bytes array.
             */
            function _encodeValidateOrder(
                bytes32 orderHash,
                OrderParameters memory orderParameters,
                bytes memory extraData,
                bytes32[] memory orderHashes
            ) internal view returns (MemoryPointer dst, uint256 size) {
                // Get free memory pointer to write calldata to. This isn't allocated as
                // it is only used for a single function call.
                dst = getFreeMemoryPointer();
                // Write validateOrder selector and get pointer to start of calldata.
                dst.write(validateOrder_selector);
                dst = dst.offset(validateOrder_selector_offset);
                // Get pointer to the beginning of the encoded data.
                MemoryPointer dstHead = dst.offset(validateOrder_head_offset);
                // Write offset to zoneParameters to start of calldata.
                dstHead.write(validateOrder_zoneParameters_offset);
                // Reuse `dstHead` as pointer to zoneParameters.
                dstHead = dstHead.offset(validateOrder_zoneParameters_offset);
                // Write orderHash and fulfiller to zoneParameters.
                dstHead.writeBytes32(orderHash);
                dstHead.offset(ZoneParameters_fulfiller_offset).write(msg.sender);
                // Get the memory pointer to the order parameters struct.
                MemoryPointer src = orderParameters.toMemoryPointer();
                // Copy offerer, startTime, endTime and zoneHash to zoneParameters.
                dstHead.offset(ZoneParameters_offerer_offset).write(src.readUint256());
                dstHead.offset(ZoneParameters_startTime_offset).write(
                    src.offset(OrderParameters_startTime_offset).readUint256()
                );
                dstHead.offset(ZoneParameters_endTime_offset).write(
                    src.offset(OrderParameters_endTime_offset).readUint256()
                );
                dstHead.offset(ZoneParameters_zoneHash_offset).write(
                    src.offset(OrderParameters_zoneHash_offset).readUint256()
                );
                // Initialize tail offset, used to populate the offer array.
                uint256 tailOffset = ZoneParameters_base_tail_offset;
                // Write offset to `offer`.
                dstHead.offset(ZoneParameters_offer_head_offset).write(tailOffset);
                // Get pointer to `orderParameters.offer.length`.
                MemoryPointer srcOfferPointer = src
                    .offset(OrderParameters_offer_head_offset)
                    .readMemoryPointer();
                // Encode the offer array as a `SpentItem[]`.
                uint256 offerSize = _encodeSpentItems(
                    srcOfferPointer,
                    dstHead.offset(tailOffset)
                );
                unchecked {
                    // Increment tail offset, now used to populate consideration array.
                    tailOffset += offerSize;
                }
                // Write offset to consideration.
                dstHead.offset(ZoneParameters_consideration_head_offset).write(
                    tailOffset
                );
                // Get pointer to `orderParameters.consideration.length`.
                MemoryPointer srcConsiderationPointer = src
                    .offset(OrderParameters_consideration_head_offset)
                    .readMemoryPointer();
                // Encode the consideration array as a `ReceivedItem[]`.
                uint256 considerationSize = _encodeConsiderationAsReceivedItems(
                    srcConsiderationPointer,
                    dstHead.offset(tailOffset)
                );
                unchecked {
                    // Increment tail offset, now used to populate extraData array.
                    tailOffset += considerationSize;
                }
                // Write offset to extraData.
                dstHead.offset(ZoneParameters_extraData_head_offset).write(tailOffset);
                // Copy extraData.
                uint256 extraDataSize = _encodeBytes(
                    toMemoryPointer(extraData),
                    dstHead.offset(tailOffset)
                );
                unchecked {
                    // Increment tail offset, now used to populate orderHashes array.
                    tailOffset += extraDataSize;
                }
                // Write offset to orderHashes.
                dstHead.offset(ZoneParameters_orderHashes_head_offset).write(
                    tailOffset
                );
                // Encode the order hashes array.
                uint256 orderHashesSize = _encodeOrderHashes(
                    toMemoryPointer(orderHashes),
                    dstHead.offset(tailOffset)
                );
                unchecked {
                    // Increment the tail offset, now used to determine final size.
                    tailOffset += orderHashesSize;
                    // Derive final size including selector and ZoneParameters pointer.
                    size = ZoneParameters_selectorAndPointer_length + tailOffset;
                }
            }
            /**
             * @dev Takes an order hash and BasicOrderParameters struct (from calldata)
             *      and encodes it as `validateOrder` calldata.
             *
             * @param orderHash  The order hash.
             * @param parameters The BasicOrderParameters struct used to construct the
             *                   encoded `validateOrder` calldata.
             *
             * @return dst  A memory pointer referencing the encoded `validateOrder`
             *              calldata.
             * @return size The size of the bytes array.
             */
            function _encodeValidateBasicOrder(
                bytes32 orderHash,
                BasicOrderParameters calldata parameters
            ) internal view returns (MemoryPointer dst, uint256 size) {
                // Get free memory pointer to write calldata to. This isn't allocated as
                // it is only used for a single function call.
                dst = getFreeMemoryPointer();
                // Write validateOrder selector and get pointer to start of calldata.
                dst.write(validateOrder_selector);
                dst = dst.offset(validateOrder_selector_offset);
                // Get pointer to the beginning of the encoded data.
                MemoryPointer dstHead = dst.offset(validateOrder_head_offset);
                // Write offset to zoneParameters to start of calldata.
                dstHead.write(validateOrder_zoneParameters_offset);
                // Reuse `dstHead` as pointer to zoneParameters.
                dstHead = dstHead.offset(validateOrder_zoneParameters_offset);
                // Write offerer, orderHash and fulfiller to zoneParameters.
                dstHead.writeBytes32(orderHash);
                dstHead.offset(ZoneParameters_fulfiller_offset).write(msg.sender);
                dstHead.offset(ZoneParameters_offerer_offset).write(parameters.offerer);
                // Copy startTime, endTime and zoneHash to zoneParameters.
                CalldataPointer.wrap(BasicOrder_startTime_cdPtr).copy(
                    dstHead.offset(ZoneParameters_startTime_offset),
                    BasicOrder_startTimeThroughZoneHash_size
                );
                // Initialize tail offset, used for the offer + consideration arrays.
                uint256 tailOffset = ZoneParameters_base_tail_offset;
                // Write offset to offer from event data into target calldata.
                dstHead.offset(ZoneParameters_offer_head_offset).write(tailOffset);
                unchecked {
                    // Write consideration offset next (located 5 words after offer).
                    dstHead.offset(ZoneParameters_consideration_head_offset).write(
                        tailOffset + BasicOrder_common_params_size
                    );
                    // Retrieve the offset to the length of additional recipients.
                    uint256 additionalRecipientsLength = CalldataPointer
                        .wrap(BasicOrder_additionalRecipients_length_cdPtr)
                        .readUint256();
                    // Derive offset to event data using base offset & total recipients.
                    uint256 offerDataOffset = OrderFulfilled_offer_length_baseOffset +
                        additionalRecipientsLength *
                        OneWord;
                    // Derive size of offer and consideration data.
                    // 2 words (lengths) + 4 (offer data) + 5 (consideration 1) + 5 * ar
                    uint256 offerAndConsiderationSize = OrderFulfilled_baseDataSize +
                        (additionalRecipientsLength * ReceivedItem_size);
                    // Copy offer and consideration data from event data to calldata.
                    MemoryPointer.wrap(offerDataOffset).copy(
                        dstHead.offset(tailOffset),
                        offerAndConsiderationSize
                    );
                    // Increment tail offset, now used to populate extraData array.
                    tailOffset += offerAndConsiderationSize;
                }
                // Write empty bytes for extraData.
                dstHead.offset(ZoneParameters_extraData_head_offset).write(tailOffset);
                dstHead.offset(tailOffset).write(0);
                unchecked {
                    // Increment tail offset, now used to populate orderHashes array.
                    tailOffset += OneWord;
                }
                // Write offset to orderHashes.
                dstHead.offset(ZoneParameters_orderHashes_head_offset).write(
                    tailOffset
                );
                // Write length = 1 to the orderHashes array.
                dstHead.offset(tailOffset).write(1);
                unchecked {
                    // Write the single order hash to the orderHashes array.
                    dstHead.offset(tailOffset + OneWord).writeBytes32(orderHash);
                    // Final size: selector, ZoneParameters pointer, orderHashes & tail.
                    size = ZoneParameters_basicOrderFixedElements_length + tailOffset;
                }
            }
            /**
             * @dev Takes a memory pointer to an array of bytes32 values representing
             *      the order hashes included as part of the fulfillment and a memory
             *      pointer to a location to copy it to, and copies the source data to
             *      the destination in memory.
             *
             * @param srcLength A memory pointer referencing the order hashes array to
             *                  be copied (and pointing to the length of the array).
             * @param dstLength A memory pointer referencing the location in memory to
             *                  copy the orderHashes array to (and pointing to the
             *                  length of the copied array).
             *
             * @return size The size of the order hashes array (including the length).
             */
            function _encodeOrderHashes(
                MemoryPointer srcLength,
                MemoryPointer dstLength
            ) internal view returns (uint256 size) {
                // Read length of the array from source and write to destination.
                uint256 length = srcLength.readUint256();
                dstLength.write(length);
                unchecked {
                    // Determine head & tail size as one word per element in the array.
                    uint256 headAndTailSize = length << OneWordShift;
                    // Copy the tail starting from the next element of the source to the
                    // next element of the destination.
                    srcLength.next().copy(dstLength.next(), headAndTailSize);
                    // Set size to the length of the tail plus one word for length.
                    size = headAndTailSize + OneWord;
                }
            }
            /**
             * @dev Takes a memory pointer to an offer or consideration array and a
             *      memory pointer to a location to copy it to, and copies the source
             *      data to the destination in memory as a SpentItem array.
             *
             * @param srcLength A memory pointer referencing the offer or consideration
             *                  array to be copied as a SpentItem array (and pointing to
             *                  the length of the original array).
             * @param dstLength A memory pointer referencing the location in memory to
             *                  copy the offer array to (and pointing to the length of
             *                  the copied array).
             *
             * @return size The size of the SpentItem array (including the length).
             */
            function _encodeSpentItems(
                MemoryPointer srcLength,
                MemoryPointer dstLength
            ) internal pure returns (uint256 size) {
                assembly {
                    // Read length of the array from source and write to destination.
                    let length := mload(srcLength)
                    mstore(dstLength, length)
                    // Get pointer to first item's head position in the array,
                    // containing the item's pointer in memory. The head pointer will be
                    // incremented until it reaches the tail position (start of the
                    // array data).
                    let mPtrHead := add(srcLength, OneWord)
                    // Position in memory to write next item for calldata. Since
                    // SpentItem has a fixed length, the array elements do not contain
                    // head elements in calldata, they are concatenated together after
                    // the array length.
                    let cdPtrData := add(dstLength, OneWord)
                    // Pointer to end of array head in memory.
                    let mPtrHeadEnd := add(mPtrHead, shl(OneWordShift, length))
                    for {
                    } lt(mPtrHead, mPtrHeadEnd) {
                    } {
                        // Read pointer to data for array element from head position.
                        let mPtrTail := mload(mPtrHead)
                        // Copy itemType, token, identifier, amount to calldata.
                        mstore(cdPtrData, mload(mPtrTail))
                        mstore(
                            add(cdPtrData, Common_token_offset),
                            mload(add(mPtrTail, Common_token_offset))
                        )
                        mstore(
                            add(cdPtrData, Common_identifier_offset),
                            mload(add(mPtrTail, Common_identifier_offset))
                        )
                        mstore(
                            add(cdPtrData, Common_amount_offset),
                            mload(add(mPtrTail, Common_amount_offset))
                        )
                        mPtrHead := add(mPtrHead, OneWord)
                        cdPtrData := add(cdPtrData, SpentItem_size)
                    }
                    size := add(OneWord, shl(SpentItem_size_shift, length))
                }
            }
            /**
             * @dev Takes a memory pointer to an consideration array and a memory
             *      pointer to a location to copy it to, and copies the source data to
             *      the destination in memory as a ReceivedItem array.
             *
             * @param srcLength A memory pointer referencing the consideration array to
             *                  be copied as a ReceivedItem array (and pointing to the
             *                  length of the original array).
             * @param dstLength A memory pointer referencing the location in memory to
             *                  copy the consideration array to as a ReceivedItem array
             *                  (and pointing to the length of the new array).
             *
             * @return size The size of the ReceivedItem array (including the length).
             */
            function _encodeConsiderationAsReceivedItems(
                MemoryPointer srcLength,
                MemoryPointer dstLength
            ) internal view returns (uint256 size) {
                unchecked {
                    // Read length of the array from source and write to destination.
                    uint256 length = srcLength.readUint256();
                    dstLength.write(length);
                    // Get pointer to first item's head position in the array,
                    // containing the item's pointer in memory. The head pointer will be
                    // incremented until it reaches the tail position (start of the
                    // array data).
                    MemoryPointer srcHead = srcLength.next();
                    MemoryPointer srcHeadEnd = srcHead.offset(length << OneWordShift);
                    // Position in memory to write next item for calldata. Since
                    // ReceivedItem has a fixed length, the array elements do not
                    // contain offsets in calldata, they are concatenated together after
                    // the array length.
                    MemoryPointer dstHead = dstLength.next();
                    while (srcHead.lt(srcHeadEnd)) {
                        MemoryPointer srcTail = srcHead.pptr();
                        srcTail.copy(dstHead, ReceivedItem_size);
                        srcHead = srcHead.next();
                        dstHead = dstHead.offset(ReceivedItem_size);
                    }
                    size = OneWord + (length * ReceivedItem_size);
                }
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity 0.8.17;
        import {
            AdvancedOrder,
            ConsiderationItem,
            CriteriaResolver,
            Fulfillment,
            FulfillmentComponent,
            OfferItem,
            Order,
            OrderParameters,
            ReceivedItem
        } from "./ConsiderationStructs.sol";
        import {
            AdvancedOrder_denominator_offset,
            AdvancedOrder_extraData_offset,
            AdvancedOrder_fixed_segment_0,
            AdvancedOrder_head_size,
            AdvancedOrder_numerator_offset,
            AdvancedOrder_signature_offset,
            AdvancedOrderPlusOrderParameters_head_size,
            Common_amount_offset,
            Common_endAmount_offset,
            ConsiderationItem_size_with_length,
            ConsiderationItem_size,
            CriteriaResolver_criteriaProof_offset,
            CriteriaResolver_fixed_segment_0,
            CriteriaResolver_head_size,
            FourWords,
            FreeMemoryPointerSlot,
            Fulfillment_considerationComponents_offset,
            Fulfillment_head_size,
            FulfillmentComponent_mem_tail_size_shift,
            FulfillmentComponent_mem_tail_size,
            generateOrder_maximum_returndatasize,
            OfferItem_size_with_length,
            OfferItem_size,
            OneWord,
            OneWordShift,
            OnlyFullWordMask,
            Order_head_size,
            Order_signature_offset,
            OrderComponents_OrderParameters_common_head_size,
            OrderParameters_consideration_head_offset,
            OrderParameters_head_size,
            OrderParameters_offer_head_offset,
            OrderParameters_totalOriginalConsiderationItems_offset,
            ReceivedItem_recipient_offset,
            ReceivedItem_size,
            ReceivedItem_size_excluding_recipient,
            SpentItem_size_shift,
            SpentItem_size,
            ThirtyOneBytes,
            TwoWords
        } from "./ConsiderationConstants.sol";
        import {
            CalldataPointer,
            malloc,
            MemoryPointer,
            OffsetOrLengthMask
        } from "../helpers/PointerLibraries.sol";
        contract ConsiderationDecoder {
            /**
             * @dev Takes a bytes array from calldata and copies it into memory.
             *
             * @param cdPtrLength A calldata pointer to the start of the bytes array in
             *                    calldata which contains the length of the array.
             *
             * @return mPtrLength A memory pointer to the start of the bytes array in
             *                    memory which contains the length of the array.
             */
            function _decodeBytes(
                CalldataPointer cdPtrLength
            ) internal pure returns (MemoryPointer mPtrLength) {
                assembly {
                    // Get the current free memory pointer.
                    mPtrLength := mload(FreeMemoryPointerSlot)
                    // Derive the size of the bytes array, rounding up to nearest word
                    // and adding a word for the length field. Note: masking
                    // `calldataload(cdPtrLength)` is redundant here.
                    let size := add(
                        and(
                            add(calldataload(cdPtrLength), ThirtyOneBytes),
                            OnlyFullWordMask
                        ),
                        OneWord
                    )
                    // Copy bytes from calldata into memory based on pointers and size.
                    calldatacopy(mPtrLength, cdPtrLength, size)
                    // Store the masked value in memory. Note: the value of `size` is at
                    // least 32, meaning the calldatacopy above will at least write to
                    // `[mPtrLength, mPtrLength + 32)`.
                    mstore(
                        mPtrLength,
                        and(calldataload(cdPtrLength), OffsetOrLengthMask)
                    )
                    // Update free memory pointer based on the size of the bytes array.
                    mstore(FreeMemoryPointerSlot, add(mPtrLength, size))
                }
            }
            /**
             * @dev Takes an offer array from calldata and copies it into memory.
             *
             * @param cdPtrLength A calldata pointer to the start of the offer array
             *                    in calldata which contains the length of the array.
             *
             * @return mPtrLength A memory pointer to the start of the offer array in
             *                    memory which contains the length of the array.
             */
            function _decodeOffer(
                CalldataPointer cdPtrLength
            ) internal pure returns (MemoryPointer mPtrLength) {
                assembly {
                    // Retrieve length of array, masking to prevent potential overflow.
                    let arrLength := and(calldataload(cdPtrLength), OffsetOrLengthMask)
                    // Get the current free memory pointer.
                    mPtrLength := mload(FreeMemoryPointerSlot)
                    // Write the array length to memory.
                    mstore(mPtrLength, arrLength)
                    // Derive the head by adding one word to the length pointer.
                    let mPtrHead := add(mPtrLength, OneWord)
                    // Derive the tail by adding one word per element (note that structs
                    // are written to memory with an offset per struct element).
                    let mPtrTail := add(mPtrHead, shl(OneWordShift, arrLength))
                    // Track the next tail, beginning with the initial tail value.
                    let mPtrTailNext := mPtrTail
                    // Copy all offer array data into memory at the tail pointer.
                    calldatacopy(
                        mPtrTail,
                        add(cdPtrLength, OneWord),
                        mul(arrLength, OfferItem_size)
                    )
                    // Track the next head pointer, starting with initial head value.
                    let mPtrHeadNext := mPtrHead
                    // Iterate over each head pointer until it reaches the tail.
                    for {
                    } lt(mPtrHeadNext, mPtrTail) {
                    } {
                        // Write the next tail pointer to next head pointer in memory.
                        mstore(mPtrHeadNext, mPtrTailNext)
                        // Increment the next head pointer by one word.
                        mPtrHeadNext := add(mPtrHeadNext, OneWord)
                        // Increment the next tail pointer by the size of an offer item.
                        mPtrTailNext := add(mPtrTailNext, OfferItem_size)
                    }
                    // Update free memory pointer to allocate memory up to end of tail.
                    mstore(FreeMemoryPointerSlot, mPtrTailNext)
                }
            }
            /**
             * @dev Takes a consideration array from calldata and copies it into memory.
             *
             * @param cdPtrLength A calldata pointer to the start of the consideration
             *                    array in calldata which contains the length of the
             *                    array.
             *
             * @return mPtrLength A memory pointer to the start of the consideration
             *                    array in memory which contains the length of the
             *                    array.
             */
            function _decodeConsideration(
                CalldataPointer cdPtrLength
            ) internal pure returns (MemoryPointer mPtrLength) {
                assembly {
                    // Retrieve length of array, masking to prevent potential overflow.
                    let arrLength := and(calldataload(cdPtrLength), OffsetOrLengthMask)
                    // Get the current free memory pointer.
                    mPtrLength := mload(FreeMemoryPointerSlot)
                    // Write the array length to memory.
                    mstore(mPtrLength, arrLength)
                    // Derive the head by adding one word to the length pointer.
                    let mPtrHead := add(mPtrLength, OneWord)
                    // Derive the tail by adding one word per element (note that structs
                    // are written to memory with an offset per struct element).
                    let mPtrTail := add(mPtrHead, shl(OneWordShift, arrLength))
                    // Track the next tail, beginning with the initial tail value.
                    let mPtrTailNext := mPtrTail
                    // Copy all consideration array data into memory at tail pointer.
                    calldatacopy(
                        mPtrTail,
                        add(cdPtrLength, OneWord),
                        mul(arrLength, ConsiderationItem_size)
                    )
                    // Track the next head pointer, starting with initial head value.
                    let mPtrHeadNext := mPtrHead
                    // Iterate over each head pointer until it reaches the tail.
                    for {
                    } lt(mPtrHeadNext, mPtrTail) {
                    } {
                        // Write the next tail pointer to next head pointer in memory.
                        mstore(mPtrHeadNext, mPtrTailNext)
                        // Increment the next head pointer by one word.
                        mPtrHeadNext := add(mPtrHeadNext, OneWord)
                        // Increment next tail pointer by size of a consideration item.
                        mPtrTailNext := add(mPtrTailNext, ConsiderationItem_size)
                    }
                    // Update free memory pointer to allocate memory up to end of tail.
                    mstore(FreeMemoryPointerSlot, mPtrTailNext)
                }
            }
            /**
             * @dev Takes a calldata pointer and memory pointer and copies a referenced
             *      OrderParameters struct and associated offer and consideration data
             *      to memory.
             *
             * @param cdPtr A calldata pointer for the OrderParameters struct.
             * @param mPtr A memory pointer to the OrderParameters struct head.
             */
            function _decodeOrderParametersTo(
                CalldataPointer cdPtr,
                MemoryPointer mPtr
            ) internal pure {
                // Copy the full OrderParameters head from calldata to memory.
                cdPtr.copy(mPtr, OrderParameters_head_size);
                // Resolve the offer calldata offset, use that to decode and copy offer
                // from calldata, and write resultant memory offset to head in memory.
                mPtr.offset(OrderParameters_offer_head_offset).write(
                    _decodeOffer(cdPtr.pptr(OrderParameters_offer_head_offset))
                );
                // Resolve consideration calldata offset, use that to copy consideration
                // from calldata, and write resultant memory offset to head in memory.
                mPtr.offset(OrderParameters_consideration_head_offset).write(
                    _decodeConsideration(
                        cdPtr.pptr(OrderParameters_consideration_head_offset)
                    )
                );
            }
            /**
             * @dev Takes a calldata pointer to an OrderParameters struct and copies the
             *      decoded struct to memory.
             *
             * @param cdPtr A calldata pointer for the OrderParameters struct.
             *
             * @return mPtr A memory pointer to the OrderParameters struct head.
             */
            function _decodeOrderParameters(
                CalldataPointer cdPtr
            ) internal pure returns (MemoryPointer mPtr) {
                // Allocate required memory for the OrderParameters head (offer and
                // consideration are allocated independently).
                mPtr = malloc(OrderParameters_head_size);
                // Decode and copy the order parameters to the newly allocated memory.
                _decodeOrderParametersTo(cdPtr, mPtr);
            }
            /**
             * @dev Takes a calldata pointer to an Order struct and copies the decoded
             *      struct to memory.
             *
             * @param cdPtr A calldata pointer for the Order struct.
             *
             * @return mPtr A memory pointer to the Order struct head.
             */
            function _decodeOrder(
                CalldataPointer cdPtr
            ) internal pure returns (MemoryPointer mPtr) {
                // Allocate required memory for the Order head (OrderParameters and
                // signature are allocated independently).
                mPtr = malloc(Order_head_size);
                // Resolve OrderParameters calldata offset, use it to decode and copy
                // from calldata, and write resultant memory offset to head in memory.
                mPtr.write(_decodeOrderParameters(cdPtr.pptr()));
                // Resolve signature calldata offset, use that to decode and copy from
                // calldata, and write resultant memory offset to head in memory.
                mPtr.offset(Order_signature_offset).write(
                    _decodeBytes(cdPtr.pptr(Order_signature_offset))
                );
            }
            /**
             * @dev Takes a calldata pointer to an AdvancedOrder struct and copies the
             *      decoded struct to memory.
             *
             * @param cdPtr A calldata pointer for the AdvancedOrder struct.
             *
             * @return mPtr A memory pointer to the AdvancedOrder struct head.
             */
            function _decodeAdvancedOrder(
                CalldataPointer cdPtr
            ) internal pure returns (MemoryPointer mPtr) {
                // Allocate memory for AdvancedOrder head and OrderParameters head.
                mPtr = malloc(AdvancedOrderPlusOrderParameters_head_size);
                // Use numerator + denominator calldata offset to decode and copy
                // from calldata and write resultant memory offset to head in memory.
                cdPtr.offset(AdvancedOrder_numerator_offset).copy(
                    mPtr.offset(AdvancedOrder_numerator_offset),
                    AdvancedOrder_fixed_segment_0
                );
                // Get pointer to memory immediately after advanced order.
                MemoryPointer mPtrParameters = mPtr.offset(AdvancedOrder_head_size);
                // Write pptr for advanced order parameters to memory.
                mPtr.write(mPtrParameters);
                // Resolve OrderParameters calldata pointer & write to allocated region.
                _decodeOrderParametersTo(cdPtr.pptr(), mPtrParameters);
                // Resolve signature calldata offset, use that to decode and copy from
                // calldata, and write resultant memory offset to head in memory.
                mPtr.offset(AdvancedOrder_signature_offset).write(
                    _decodeBytes(cdPtr.pptr(AdvancedOrder_signature_offset))
                );
                // Resolve extraData calldata offset, use that to decode and copy from
                // calldata, and write resultant memory offset to head in memory.
                mPtr.offset(AdvancedOrder_extraData_offset).write(
                    _decodeBytes(cdPtr.pptr(AdvancedOrder_extraData_offset))
                );
            }
            /**
             * @dev Allocates a single word of empty bytes in memory and returns the
             *      pointer to that memory region.
             *
             * @return mPtr The memory pointer to the new empty word in memory.
             */
            function _getEmptyBytesOrArray()
                internal
                pure
                returns (MemoryPointer mPtr)
            {
                mPtr = malloc(OneWord);
                mPtr.write(0);
            }
            /**
             * @dev Takes a calldata pointer to an Order struct and copies the decoded
             *      struct to memory as an AdvancedOrder.
             *
             * @param cdPtr A calldata pointer for the Order struct.
             *
             * @return mPtr A memory pointer to the AdvancedOrder struct head.
             */
            function _decodeOrderAsAdvancedOrder(
                CalldataPointer cdPtr
            ) internal pure returns (MemoryPointer mPtr) {
                // Allocate memory for AdvancedOrder head and OrderParameters head.
                mPtr = malloc(AdvancedOrderPlusOrderParameters_head_size);
                // Get pointer to memory immediately after advanced order.
                MemoryPointer mPtrParameters = mPtr.offset(AdvancedOrder_head_size);
                // Write pptr for advanced order parameters.
                mPtr.write(mPtrParameters);
                // Resolve OrderParameters calldata pointer & write to allocated region.
                _decodeOrderParametersTo(cdPtr.pptr(), mPtrParameters);
                // Write default Order numerator and denominator values (i.e. 1/1).
                mPtr.offset(AdvancedOrder_numerator_offset).write(1);
                mPtr.offset(AdvancedOrder_denominator_offset).write(1);
                // Resolve signature calldata offset, use that to decode and copy from
                // calldata, and write resultant memory offset to head in memory.
                mPtr.offset(AdvancedOrder_signature_offset).write(
                    _decodeBytes(cdPtr.pptr(Order_signature_offset))
                );
                // Resolve extraData calldata offset, use that to decode and copy from
                // calldata, and write resultant memory offset to head in memory.
                mPtr.offset(AdvancedOrder_extraData_offset).write(
                    _getEmptyBytesOrArray()
                );
            }
            /**
             * @dev Takes a calldata pointer to an array of Order structs and copies the
             *      decoded array to memory as an array of AdvancedOrder structs.
             *
             * @param cdPtrLength A calldata pointer to the start of the orders array in
             *                    calldata which contains the length of the array.
             *
             * @return mPtrLength A memory pointer to the start of the array of advanced
             *                    orders in memory which contains length of the array.
             */
            function _decodeOrdersAsAdvancedOrders(
                CalldataPointer cdPtrLength
            ) internal pure returns (MemoryPointer mPtrLength) {
                // Retrieve length of array, masking to prevent potential overflow.
                uint256 arrLength = cdPtrLength.readMaskedUint256();
                unchecked {
                    // Derive offset to the tail based on one word per array element.
                    uint256 tailOffset = arrLength << OneWordShift;
                    // Add one additional word for the length and allocate memory.
                    mPtrLength = malloc(tailOffset + OneWord);
                    // Write the length of the array to memory.
                    mPtrLength.write(arrLength);
                    // Advance to first memory & calldata pointers (e.g. after length).
                    MemoryPointer mPtrHead = mPtrLength.next();
                    CalldataPointer cdPtrHead = cdPtrLength.next();
                    // Iterate over each pointer, word by word, until tail is reached.
                    for (uint256 offset = 0; offset < tailOffset; offset += OneWord) {
                        // Resolve Order calldata offset, use it to decode and copy from
                        // calldata, and write resultant AdvancedOrder offset to memory.
                        mPtrHead.offset(offset).write(
                            _decodeOrderAsAdvancedOrder(cdPtrHead.pptr(offset))
                        );
                    }
                }
            }
            /**
             * @dev Takes a calldata pointer to a criteria proof, or an array bytes32
             *      types, and copies the decoded proof to memory.
             *
             * @param cdPtrLength A calldata pointer to the start of the criteria proof
             *                    in calldata which contains the length of the array.
             *
             * @return mPtrLength A memory pointer to the start of the criteria proof
             *                    in memory which contains length of the array.
             */
            function _decodeCriteriaProof(
                CalldataPointer cdPtrLength
            ) internal pure returns (MemoryPointer mPtrLength) {
                // Retrieve length of array, masking to prevent potential overflow.
                uint256 arrLength = cdPtrLength.readMaskedUint256();
                unchecked {
                    // Derive array size based on one word per array element and length.
                    uint256 arrSize = (arrLength + 1) << OneWordShift;
                    // Allocate memory equal to the array size.
                    mPtrLength = malloc(arrSize);
                    // Copy the array from calldata into memory.
                    cdPtrLength.copy(mPtrLength, arrSize);
                }
            }
            /**
             * @dev Takes a calldata pointer to a CriteriaResolver struct and copies the
             *      decoded struct to memory.
             *
             * @param cdPtr A calldata pointer for the CriteriaResolver struct.
             *
             * @return mPtr A memory pointer to the CriteriaResolver struct head.
             */
            function _decodeCriteriaResolver(
                CalldataPointer cdPtr
            ) internal pure returns (MemoryPointer mPtr) {
                // Allocate required memory for the CriteriaResolver head (the criteria
                // proof bytes32 array is allocated independently).
                mPtr = malloc(CriteriaResolver_head_size);
                // Decode and copy order index, side, index, and identifier from
                // calldata and write resultant memory offset to head in memory.
                cdPtr.copy(mPtr, CriteriaResolver_fixed_segment_0);
                // Resolve criteria proof calldata offset, use it to decode and copy
                // from calldata, and write resultant memory offset to head in memory.
                mPtr.offset(CriteriaResolver_criteriaProof_offset).write(
                    _decodeCriteriaProof(
                        cdPtr.pptr(CriteriaResolver_criteriaProof_offset)
                    )
                );
            }
            /**
             * @dev Takes an array of criteria resolvers from calldata and copies it
             *      into memory.
             *
             * @param cdPtrLength A calldata pointer to the start of the criteria
             *                    resolver array in calldata which contains the length
             *                    of the array.
             *
             * @return mPtrLength A memory pointer to the start of the criteria resolver
             *                    array in memory which contains the length of the
             *                    array.
             */
            function _decodeCriteriaResolvers(
                CalldataPointer cdPtrLength
            ) internal pure returns (MemoryPointer mPtrLength) {
                // Retrieve length of array, masking to prevent potential overflow.
                uint256 arrLength = cdPtrLength.readMaskedUint256();
                unchecked {
                    // Derive offset to the tail based on one word per array element.
                    uint256 tailOffset = arrLength << OneWordShift;
                    // Add one additional word for the length and allocate memory.
                    mPtrLength = malloc(tailOffset + OneWord);
                    // Write the length of the array to memory.
                    mPtrLength.write(arrLength);
                    // Advance to first memory & calldata pointers (e.g. after length).
                    MemoryPointer mPtrHead = mPtrLength.next();
                    CalldataPointer cdPtrHead = cdPtrLength.next();
                    // Iterate over each pointer, word by word, until tail is reached.
                    for (uint256 offset = 0; offset < tailOffset; offset += OneWord) {
                        // Resolve CriteriaResolver calldata offset, use it to decode
                        // and copy from calldata, and write resultant memory offset.
                        mPtrHead.offset(offset).write(
                            _decodeCriteriaResolver(cdPtrHead.pptr(offset))
                        );
                    }
                }
            }
            /**
             * @dev Takes an array of orders from calldata and copies it into memory.
             *
             * @param cdPtrLength A calldata pointer to the start of the orders array in
             *                    calldata which contains the length of the array.
             *
             * @return mPtrLength A memory pointer to the start of the orders array
             *                    in memory which contains the length of the array.
             */
            function _decodeOrders(
                CalldataPointer cdPtrLength
            ) internal pure returns (MemoryPointer mPtrLength) {
                // Retrieve length of array, masking to prevent potential overflow.
                uint256 arrLength = cdPtrLength.readMaskedUint256();
                unchecked {
                    // Derive offset to the tail based on one word per array element.
                    uint256 tailOffset = arrLength << OneWordShift;
                    // Add one additional word for the length and allocate memory.
                    mPtrLength = malloc(tailOffset + OneWord);
                    // Write the length of the array to memory.
                    mPtrLength.write(arrLength);
                    // Advance to first memory & calldata pointers (e.g. after length).
                    MemoryPointer mPtrHead = mPtrLength.next();
                    CalldataPointer cdPtrHead = cdPtrLength.next();
                    // Iterate over each pointer, word by word, until tail is reached.
                    for (uint256 offset = 0; offset < tailOffset; offset += OneWord) {
                        // Resolve Order calldata offset, use it to decode and copy
                        // from calldata, and write resultant memory offset.
                        mPtrHead.offset(offset).write(
                            _decodeOrder(cdPtrHead.pptr(offset))
                        );
                    }
                }
            }
            /**
             * @dev Takes an array of fulfillment components from calldata and copies it
             *      into memory.
             *
             * @param cdPtrLength A calldata pointer to the start of the fulfillment
             *                    components array in calldata which contains the length
             *                    of the array.
             *
             * @return mPtrLength A memory pointer to the start of the fulfillment
             *                    components array in memory which contains the length
             *                    of the array.
             */
            function _decodeFulfillmentComponents(
                CalldataPointer cdPtrLength
            ) internal pure returns (MemoryPointer mPtrLength) {
                assembly {
                    let arrLength := and(calldataload(cdPtrLength), OffsetOrLengthMask)
                    // Get the current free memory pointer.
                    mPtrLength := mload(FreeMemoryPointerSlot)
                    mstore(mPtrLength, arrLength)
                    let mPtrHead := add(mPtrLength, OneWord)
                    let mPtrTail := add(mPtrHead, shl(OneWordShift, arrLength))
                    let mPtrTailNext := mPtrTail
                    calldatacopy(
                        mPtrTail,
                        add(cdPtrLength, OneWord),
                        shl(FulfillmentComponent_mem_tail_size_shift, arrLength)
                    )
                    let mPtrHeadNext := mPtrHead
                    for {
                    } lt(mPtrHeadNext, mPtrTail) {
                    } {
                        mstore(mPtrHeadNext, mPtrTailNext)
                        mPtrHeadNext := add(mPtrHeadNext, OneWord)
                        mPtrTailNext := add(
                            mPtrTailNext,
                            FulfillmentComponent_mem_tail_size
                        )
                    }
                    // Update the free memory pointer.
                    mstore(FreeMemoryPointerSlot, mPtrTailNext)
                }
            }
            /**
             * @dev Takes a nested array of fulfillment components from calldata and
             *      copies it into memory.
             *
             * @param cdPtrLength A calldata pointer to the start of the nested
             *                    fulfillment components array in calldata which
             *                    contains the length of the array.
             *
             * @return mPtrLength A memory pointer to the start of the nested
             *                    fulfillment components array in memory which
             *                    contains the length of the array.
             */
            function _decodeNestedFulfillmentComponents(
                CalldataPointer cdPtrLength
            ) internal pure returns (MemoryPointer mPtrLength) {
                // Retrieve length of array, masking to prevent potential overflow.
                uint256 arrLength = cdPtrLength.readMaskedUint256();
                unchecked {
                    // Derive offset to the tail based on one word per array element.
                    uint256 tailOffset = arrLength << OneWordShift;
                    // Add one additional word for the length and allocate memory.
                    mPtrLength = malloc(tailOffset + OneWord);
                    // Write the length of the array to memory.
                    mPtrLength.write(arrLength);
                    // Advance to first memory & calldata pointers (e.g. after length).
                    MemoryPointer mPtrHead = mPtrLength.next();
                    CalldataPointer cdPtrHead = cdPtrLength.next();
                    // Iterate over each pointer, word by word, until tail is reached.
                    for (uint256 offset = 0; offset < tailOffset; offset += OneWord) {
                        // Resolve FulfillmentComponents array calldata offset, use it
                        // to decode and copy from calldata, and write memory offset.
                        mPtrHead.offset(offset).write(
                            _decodeFulfillmentComponents(cdPtrHead.pptr(offset))
                        );
                    }
                }
            }
            /**
             * @dev Takes an array of advanced orders from calldata and copies it into
             *      memory.
             *
             * @param cdPtrLength A calldata pointer to the start of the advanced orders
             *                    array in calldata which contains the length of the
             *                    array.
             *
             * @return mPtrLength A memory pointer to the start of the advanced orders
             *                    array in memory which contains the length of the
             *                    array.
             */
            function _decodeAdvancedOrders(
                CalldataPointer cdPtrLength
            ) internal pure returns (MemoryPointer mPtrLength) {
                // Retrieve length of array, masking to prevent potential overflow.
                uint256 arrLength = cdPtrLength.readMaskedUint256();
                unchecked {
                    // Derive offset to the tail based on one word per array element.
                    uint256 tailOffset = arrLength << OneWordShift;
                    // Add one additional word for the length and allocate memory.
                    mPtrLength = malloc(tailOffset + OneWord);
                    // Write the length of the array to memory.
                    mPtrLength.write(arrLength);
                    // Advance to first memory & calldata pointers (e.g. after length).
                    MemoryPointer mPtrHead = mPtrLength.next();
                    CalldataPointer cdPtrHead = cdPtrLength.next();
                    // Iterate over each pointer, word by word, until tail is reached.
                    for (uint256 offset = 0; offset < tailOffset; offset += OneWord) {
                        // Resolve AdvancedOrder calldata offset, use it to decode and
                        // copy from calldata, and write resultant memory offset.
                        mPtrHead.offset(offset).write(
                            _decodeAdvancedOrder(cdPtrHead.pptr(offset))
                        );
                    }
                }
            }
            /**
             * @dev Takes a calldata pointer to a Fulfillment struct and copies the
             *      decoded struct to memory.
             *
             * @param cdPtr A calldata pointer for the Fulfillment struct.
             *
             * @return mPtr A memory pointer to the Fulfillment struct head.
             */
            function _decodeFulfillment(
                CalldataPointer cdPtr
            ) internal pure returns (MemoryPointer mPtr) {
                // Allocate required memory for the Fulfillment head (the fulfillment
                // components arrays are allocated independently).
                mPtr = malloc(Fulfillment_head_size);
                // Resolve offerComponents calldata offset, use it to decode and copy
                // from calldata, and write resultant memory offset to head in memory.
                mPtr.write(_decodeFulfillmentComponents(cdPtr.pptr()));
                // Resolve considerationComponents calldata offset, use it to decode and
                // copy from calldata, and write resultant memory offset to memory head.
                mPtr.offset(Fulfillment_considerationComponents_offset).write(
                    _decodeFulfillmentComponents(
                        cdPtr.pptr(Fulfillment_considerationComponents_offset)
                    )
                );
            }
            /**
             * @dev Takes an array of fulfillments from calldata and copies it into
             *      memory.
             *
             * @param cdPtrLength A calldata pointer to the start of the fulfillments
             *                    array in calldata which contains the length of the
             *                    array.
             *
             * @return mPtrLength A memory pointer to the start of the fulfillments
             *                    array in memory which contains the length of the
             *                    array.
             */
            function _decodeFulfillments(
                CalldataPointer cdPtrLength
            ) internal pure returns (MemoryPointer mPtrLength) {
                // Retrieve length of array, masking to prevent potential overflow.
                uint256 arrLength = cdPtrLength.readMaskedUint256();
                unchecked {
                    // Derive offset to the tail based on one word per array element.
                    uint256 tailOffset = arrLength << OneWordShift;
                    // Add one additional word for the length and allocate memory.
                    mPtrLength = malloc(tailOffset + OneWord);
                    // Write the length of the array to memory.
                    mPtrLength.write(arrLength);
                    // Advance to first memory & calldata pointers (e.g. after length).
                    MemoryPointer mPtrHead = mPtrLength.next();
                    CalldataPointer cdPtrHead = cdPtrLength.next();
                    // Iterate over each pointer, word by word, until tail is reached.
                    for (uint256 offset = 0; offset < tailOffset; offset += OneWord) {
                        // Resolve Fulfillment calldata offset, use it to decode and
                        // copy from calldata, and write resultant memory offset.
                        mPtrHead.offset(offset).write(
                            _decodeFulfillment(cdPtrHead.pptr(offset))
                        );
                    }
                }
            }
            /**
             * @dev Takes a calldata pointer to an OrderComponents struct and copies the
             *      decoded struct to memory as an OrderParameters struct (with the
             *      totalOriginalConsiderationItems value set equal to the length of the
             *      supplied consideration array).
             *
             * @param cdPtr A calldata pointer for the OrderComponents struct.
             *
             * @return mPtr A memory pointer to the OrderParameters struct head.
             */
            function _decodeOrderComponentsAsOrderParameters(
                CalldataPointer cdPtr
            ) internal pure returns (MemoryPointer mPtr) {
                // Allocate memory for the OrderParameters head.
                mPtr = malloc(OrderParameters_head_size);
                // Copy the full OrderComponents head from calldata to memory.
                cdPtr.copy(mPtr, OrderComponents_OrderParameters_common_head_size);
                // Resolve the offer calldata offset, use that to decode and copy offer
                // from calldata, and write resultant memory offset to head in memory.
                mPtr.offset(OrderParameters_offer_head_offset).write(
                    _decodeOffer(cdPtr.pptr(OrderParameters_offer_head_offset))
                );
                // Resolve consideration calldata offset, use that to copy consideration
                // from calldata, and write resultant memory offset to head in memory.
                MemoryPointer consideration = _decodeConsideration(
                    cdPtr.pptr(OrderParameters_consideration_head_offset)
                );
                mPtr.offset(OrderParameters_consideration_head_offset).write(
                    consideration
                );
                // Write masked consideration length to totalOriginalConsiderationItems.
                mPtr
                    .offset(OrderParameters_totalOriginalConsiderationItems_offset)
                    .write(consideration.readUint256());
            }
            /**
             * @dev Decodes the returndata from a call to generateOrder, or returns
             *      empty arrays and a boolean signifying that the returndata does not
             *      adhere to a valid encoding scheme if it cannot be decoded.
             *
             * @return invalidEncoding A boolean signifying whether the returndata has
             *                         an invalid encoding.
             * @return offer           The decoded offer array.
             * @return consideration   The decoded consideration array.
             */
            function _decodeGenerateOrderReturndata()
                internal
                pure
                returns (
                    uint256 invalidEncoding,
                    MemoryPointer offer,
                    MemoryPointer consideration
                )
            {
                assembly {
                    // Check that returndatasize is at least four words: offerOffset,
                    // considerationOffset, offerLength, & considerationLength
                    invalidEncoding := lt(returndatasize(), FourWords)
                    let offsetOffer
                    let offsetConsideration
                    let offerLength
                    let considerationLength
                    // Proceed if enough returndata is present to continue evaluation.
                    if iszero(invalidEncoding) {
                        // Copy first two words of returndata (the offsets to offer and
                        // consideration array lengths) to scratch space.
                        returndatacopy(0, 0, TwoWords)
                        offsetOffer := mload(0)
                        offsetConsideration := mload(OneWord)
                        // If valid length, check that offsets are within returndata.
                        let invalidOfferOffset := gt(offsetOffer, returndatasize())
                        let invalidConsiderationOffset := gt(
                            offsetConsideration,
                            returndatasize()
                        )
                        // Only proceed if length (and thus encoding) is valid so far.
                        invalidEncoding := or(
                            invalidOfferOffset,
                            invalidConsiderationOffset
                        )
                        if iszero(invalidEncoding) {
                            // Copy length of offer array to scratch space.
                            returndatacopy(0, offsetOffer, OneWord)
                            offerLength := mload(0)
                            // Copy length of consideration array to scratch space.
                            returndatacopy(OneWord, offsetConsideration, OneWord)
                            considerationLength := mload(OneWord)
                            {
                                // Calculate total size of offer & consideration arrays.
                                let totalOfferSize := shl(
                                    SpentItem_size_shift,
                                    offerLength
                                )
                                let totalConsiderationSize := mul(
                                    ReceivedItem_size,
                                    considerationLength
                                )
                                // Add 4 words to total size to cover the offset and
                                // length fields of the two arrays.
                                let totalSize := add(
                                    FourWords,
                                    add(totalOfferSize, totalConsiderationSize)
                                )
                                // Don't continue if returndatasize exceeds 65535 bytes
                                // or is greater than the calculated size.
                                invalidEncoding := or(
                                    gt(
                                        or(offerLength, considerationLength),
                                        generateOrder_maximum_returndatasize
                                    ),
                                    gt(totalSize, returndatasize())
                                )
                                // Set first word of scratch space to 0 so length of
                                // offer/consideration are set to 0 on invalid encoding.
                                mstore(0, 0)
                            }
                        }
                    }
                    if iszero(invalidEncoding) {
                        offer := copySpentItemsAsOfferItems(
                            add(offsetOffer, OneWord),
                            offerLength
                        )
                        consideration := copyReceivedItemsAsConsiderationItems(
                            add(offsetConsideration, OneWord),
                            considerationLength
                        )
                    }
                    function copySpentItemsAsOfferItems(rdPtrHead, length)
                        -> mPtrLength
                    {
                        // Retrieve the current free memory pointer.
                        mPtrLength := mload(FreeMemoryPointerSlot)
                        // Allocate memory for the array.
                        mstore(
                            FreeMemoryPointerSlot,
                            add(
                                mPtrLength,
                                add(OneWord, mul(length, OfferItem_size_with_length))
                            )
                        )
                        // Write the length of the array to the start of free memory.
                        mstore(mPtrLength, length)
                        // Use offset from length to minimize stack depth.
                        let headOffsetFromLength := OneWord
                        let headSizeWithLength := shl(OneWordShift, add(1, length))
                        let mPtrTailNext := add(mPtrLength, headSizeWithLength)
                        // Iterate over each element.
                        for {
                        } lt(headOffsetFromLength, headSizeWithLength) {
                        } {
                            // Write the memory pointer to the accompanying head offset.
                            mstore(add(mPtrLength, headOffsetFromLength), mPtrTailNext)
                            // Copy itemType, token, identifier and amount.
                            returndatacopy(mPtrTailNext, rdPtrHead, SpentItem_size)
                            // Copy amount to endAmount.
                            mstore(
                                add(mPtrTailNext, Common_endAmount_offset),
                                mload(add(mPtrTailNext, Common_amount_offset))
                            )
                            // Update read pointer, next tail pointer, and head offset.
                            rdPtrHead := add(rdPtrHead, SpentItem_size)
                            mPtrTailNext := add(mPtrTailNext, OfferItem_size)
                            headOffsetFromLength := add(headOffsetFromLength, OneWord)
                        }
                    }
                    function copyReceivedItemsAsConsiderationItems(rdPtrHead, length)
                        -> mPtrLength
                    {
                        // Retrieve the current free memory pointer.
                        mPtrLength := mload(FreeMemoryPointerSlot)
                        // Allocate memory for the array.
                        mstore(
                            FreeMemoryPointerSlot,
                            add(
                                mPtrLength,
                                add(
                                    OneWord,
                                    mul(length, ConsiderationItem_size_with_length)
                                )
                            )
                        )
                        // Write the length of the array to the start of free memory.
                        mstore(mPtrLength, length)
                        // Use offset from length to minimize stack depth.
                        let headOffsetFromLength := OneWord
                        let headSizeWithLength := shl(OneWordShift, add(1, length))
                        let mPtrTailNext := add(mPtrLength, headSizeWithLength)
                        // Iterate over each element.
                        for {
                        } lt(headOffsetFromLength, headSizeWithLength) {
                        } {
                            // Write the memory pointer to the accompanying head offset.
                            mstore(add(mPtrLength, headOffsetFromLength), mPtrTailNext)
                            // Copy itemType, token, identifier and amount.
                            returndatacopy(
                                mPtrTailNext,
                                rdPtrHead,
                                ReceivedItem_size_excluding_recipient
                            )
                            // Copy amount and recipient.
                            returndatacopy(
                                add(mPtrTailNext, Common_endAmount_offset),
                                add(rdPtrHead, Common_amount_offset),
                                TwoWords
                            )
                            // Update read pointer, next tail pointer, and head offset.
                            rdPtrHead := add(rdPtrHead, ReceivedItem_size)
                            mPtrTailNext := add(mPtrTailNext, ConsiderationItem_size)
                            headOffsetFromLength := add(headOffsetFromLength, OneWord)
                        }
                    }
                }
            }
            /**
             * @dev Converts a function returning _decodeGenerateOrderReturndata types
             *      into a function returning offer and consideration types.
             *
             * @param inFn The input function, taking no arguments and returning an
             *             error buffer, spent item array, and received item array.
             *
             * @return outFn The output function, taking no arguments and returning an
             *               error buffer, offer array, and consideration array.
             */
            function _convertGetGeneratedOrderResult(
                function()
                    internal
                    pure
                    returns (uint256, MemoryPointer, MemoryPointer) inFn
            )
                internal
                pure
                returns (
                    function()
                        internal
                        pure
                        returns (
                            uint256,
                            OfferItem[] memory,
                            ConsiderationItem[] memory
                        ) outFn
                )
            {
                assembly {
                    outFn := inFn
                }
            }
            /**
             * @dev Converts a function taking ReceivedItem, address, bytes32, and bytes
             *      types (e.g. the _transfer function) into a function taking
             *      OfferItem, address, bytes32, and bytes types.
             *
             * @param inFn The input function, taking ReceivedItem, address, bytes32,
             *             and bytes types (e.g. the _transfer function).
             *
             * @return outFn The output function, taking OfferItem, address, bytes32,
             *               and bytes types.
             */
            function _toOfferItemInput(
                function(ReceivedItem memory, address, bytes32, bytes memory)
                    internal inFn
            )
                internal
                pure
                returns (
                    function(OfferItem memory, address, bytes32, bytes memory)
                        internal outFn
                )
            {
                assembly {
                    outFn := inFn
                }
            }
            /**
             * @dev Converts a function taking ReceivedItem, address, bytes32, and bytes
             *      types (e.g. the _transfer function) into a function taking
             *      ConsiderationItem, address, bytes32, and bytes types.
             *
             * @param inFn The input function, taking ReceivedItem, address, bytes32,
             *             and bytes types (e.g. the _transfer function).
             *
             * @return outFn The output function, taking ConsiderationItem, address,
             *               bytes32, and bytes types.
             */
            function _toConsiderationItemInput(
                function(ReceivedItem memory, address, bytes32, bytes memory)
                    internal inFn
            )
                internal
                pure
                returns (
                    function(ConsiderationItem memory, address, bytes32, bytes memory)
                        internal outFn
                )
            {
                assembly {
                    outFn := inFn
                }
            }
            /**
             * @dev Converts a function taking a calldata pointer and returning a memory
             *      pointer into a function taking that calldata pointer and returning
             *      an OrderParameters type.
             *
             * @param inFn The input function, taking an arbitrary calldata pointer and
             *             returning an arbitrary memory pointer.
             *
             * @return outFn The output function, taking an arbitrary calldata pointer
             *               and returning an OrderParameters type.
             */
            function _toOrderParametersReturnType(
                function(CalldataPointer) internal pure returns (MemoryPointer) inFn
            )
                internal
                pure
                returns (
                    function(CalldataPointer)
                        internal
                        pure
                        returns (OrderParameters memory) outFn
                )
            {
                assembly {
                    outFn := inFn
                }
            }
            /**
             * @dev Converts a function taking a calldata pointer and returning a memory
             *      pointer into a function taking that calldata pointer and returning
             *      an AdvancedOrder type.
             *
             * @param inFn The input function, taking an arbitrary calldata pointer and
             *             returning an arbitrary memory pointer.
             *
             * @return outFn The output function, taking an arbitrary calldata pointer
             *               and returning an AdvancedOrder type.
             */
            function _toAdvancedOrderReturnType(
                function(CalldataPointer) internal pure returns (MemoryPointer) inFn
            )
                internal
                pure
                returns (
                    function(CalldataPointer)
                        internal
                        pure
                        returns (AdvancedOrder memory) outFn
                )
            {
                assembly {
                    outFn := inFn
                }
            }
            /**
             * @dev Converts a function taking a calldata pointer and returning a memory
             *      pointer into a function taking that calldata pointer and returning
             *      a dynamic array of CriteriaResolver types.
             *
             * @param inFn The input function, taking an arbitrary calldata pointer and
             *             returning an arbitrary memory pointer.
             *
             * @return outFn The output function, taking an arbitrary calldata pointer
             *               and returning a dynamic array of CriteriaResolver types.
             */
            function _toCriteriaResolversReturnType(
                function(CalldataPointer) internal pure returns (MemoryPointer) inFn
            )
                internal
                pure
                returns (
                    function(CalldataPointer)
                        internal
                        pure
                        returns (CriteriaResolver[] memory) outFn
                )
            {
                assembly {
                    outFn := inFn
                }
            }
            /**
             * @dev Converts a function taking a calldata pointer and returning a memory
             *      pointer into a function taking that calldata pointer and returning
             *      a dynamic array of Order types.
             *
             * @param inFn The input function, taking an arbitrary calldata pointer and
             *             returning an arbitrary memory pointer.
             *
             * @return outFn The output function, taking an arbitrary calldata pointer
             *               and returning a dynamic array of Order types.
             */
            function _toOrdersReturnType(
                function(CalldataPointer) internal pure returns (MemoryPointer) inFn
            )
                internal
                pure
                returns (
                    function(CalldataPointer)
                        internal
                        pure
                        returns (Order[] memory) outFn
                )
            {
                assembly {
                    outFn := inFn
                }
            }
            /**
             * @dev Converts a function taking a calldata pointer and returning a memory
             *      pointer into a function taking that calldata pointer and returning
             *      a nested dynamic array of dynamic arrays of FulfillmentComponent
             *      types.
             *
             * @param inFn The input function, taking an arbitrary calldata pointer and
             *             returning an arbitrary memory pointer.
             *
             * @return outFn The output function, taking an arbitrary calldata pointer
             *               and returning a nested dynamic array of dynamic arrays of
             *               FulfillmentComponent types.
             */
            function _toNestedFulfillmentComponentsReturnType(
                function(CalldataPointer) internal pure returns (MemoryPointer) inFn
            )
                internal
                pure
                returns (
                    function(CalldataPointer)
                        internal
                        pure
                        returns (FulfillmentComponent[][] memory) outFn
                )
            {
                assembly {
                    outFn := inFn
                }
            }
            /**
             * @dev Converts a function taking a calldata pointer and returning a memory
             *      pointer into a function taking that calldata pointer and returning
             *      a dynamic array of AdvancedOrder types.
             *
             * @param inFn The input function, taking an arbitrary calldata pointer and
             *             returning an arbitrary memory pointer.
             *
             * @return outFn The output function, taking an arbitrary calldata pointer
             *               and returning a dynamic array of AdvancedOrder types.
             */
            function _toAdvancedOrdersReturnType(
                function(CalldataPointer) internal pure returns (MemoryPointer) inFn
            )
                internal
                pure
                returns (
                    function(CalldataPointer)
                        internal
                        pure
                        returns (AdvancedOrder[] memory) outFn
                )
            {
                assembly {
                    outFn := inFn
                }
            }
            /**
             * @dev Converts a function taking a calldata pointer and returning a memory
             *      pointer into a function taking that calldata pointer and returning
             *      a dynamic array of Fulfillment types.
             *
             * @param inFn The input function, taking an arbitrary calldata pointer and
             *             returning an arbitrary memory pointer.
             *
             * @return outFn The output function, taking an arbitrary calldata pointer
             *               and returning a dynamic array of Fulfillment types.
             */
            function _toFulfillmentsReturnType(
                function(CalldataPointer) internal pure returns (MemoryPointer) inFn
            )
                internal
                pure
                returns (
                    function(CalldataPointer)
                        internal
                        pure
                        returns (Fulfillment[] memory) outFn
                )
            {
                assembly {
                    outFn := inFn
                }
            }
            /**
             * @dev Caches the endAmount in an offer item and replaces it with
             * a given recipient so that its memory may be reused as a temporary
             * ReceivedItem.
             *
             * @param offerItem The offer item.
             * @param recipient The recipient.
             *
             * @return originalEndAmount The original end amount.
             */
            function _replaceEndAmountWithRecipient(
                OfferItem memory offerItem,
                address recipient
            ) internal pure returns (uint256 originalEndAmount) {
                assembly {
                    // Derive the pointer to the end amount on the offer item.
                    let endAmountPtr := add(offerItem, ReceivedItem_recipient_offset)
                    // Retrieve the value of the end amount on the offer item.
                    originalEndAmount := mload(endAmountPtr)
                    // Write recipient to received item at the offer end amount pointer.
                    mstore(endAmountPtr, recipient)
                }
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.13;
        /**
         * @title ConduitControllerInterface
         * @author 0age
         * @notice ConduitControllerInterface contains all external function interfaces,
         *         structs, events, and errors for the conduit controller.
         */
        interface ConduitControllerInterface {
            /**
             * @dev Track the conduit key, current owner, new potential owner, and open
             *      channels for each deployed conduit.
             */
            struct ConduitProperties {
                bytes32 key;
                address owner;
                address potentialOwner;
                address[] channels;
                mapping(address => uint256) channelIndexesPlusOne;
            }
            /**
             * @dev Emit an event whenever a new conduit is created.
             *
             * @param conduit    The newly created conduit.
             * @param conduitKey The conduit key used to create the new conduit.
             */
            event NewConduit(address conduit, bytes32 conduitKey);
            /**
             * @dev Emit an event whenever conduit ownership is transferred.
             *
             * @param conduit       The conduit for which ownership has been
             *                      transferred.
             * @param previousOwner The previous owner of the conduit.
             * @param newOwner      The new owner of the conduit.
             */
            event OwnershipTransferred(
                address indexed conduit,
                address indexed previousOwner,
                address indexed newOwner
            );
            /**
             * @dev Emit an event whenever a conduit owner registers a new potential
             *      owner for that conduit.
             *
             * @param newPotentialOwner The new potential owner of the conduit.
             */
            event PotentialOwnerUpdated(address indexed newPotentialOwner);
            /**
             * @dev Revert with an error when attempting to create a new conduit using a
             *      conduit key where the first twenty bytes of the key do not match the
             *      address of the caller.
             */
            error InvalidCreator();
            /**
             * @dev Revert with an error when attempting to create a new conduit when no
             *      initial owner address is supplied.
             */
            error InvalidInitialOwner();
            /**
             * @dev Revert with an error when attempting to set a new potential owner
             *      that is already set.
             */
            error NewPotentialOwnerAlreadySet(
                address conduit,
                address newPotentialOwner
            );
            /**
             * @dev Revert with an error when attempting to cancel ownership transfer
             *      when no new potential owner is currently set.
             */
            error NoPotentialOwnerCurrentlySet(address conduit);
            /**
             * @dev Revert with an error when attempting to interact with a conduit that
             *      does not yet exist.
             */
            error NoConduit();
            /**
             * @dev Revert with an error when attempting to create a conduit that
             *      already exists.
             */
            error ConduitAlreadyExists(address conduit);
            /**
             * @dev Revert with an error when attempting to update channels or transfer
             *      ownership of a conduit when the caller is not the owner of the
             *      conduit in question.
             */
            error CallerIsNotOwner(address conduit);
            /**
             * @dev Revert with an error when attempting to register a new potential
             *      owner and supplying the null address.
             */
            error NewPotentialOwnerIsZeroAddress(address conduit);
            /**
             * @dev Revert with an error when attempting to claim ownership of a conduit
             *      with a caller that is not the current potential owner for the
             *      conduit in question.
             */
            error CallerIsNotNewPotentialOwner(address conduit);
            /**
             * @dev Revert with an error when attempting to retrieve a channel using an
             *      index that is out of range.
             */
            error ChannelOutOfRange(address conduit);
            /**
             * @notice Deploy a new conduit using a supplied conduit key and assigning
             *         an initial owner for the deployed conduit. Note that the first
             *         twenty bytes of the supplied conduit key must match the caller
             *         and that a new conduit cannot be created if one has already been
             *         deployed using the same conduit key.
             *
             * @param conduitKey   The conduit key used to deploy the conduit. Note that
             *                     the first twenty bytes of the conduit key must match
             *                     the caller of this contract.
             * @param initialOwner The initial owner to set for the new conduit.
             *
             * @return conduit The address of the newly deployed conduit.
             */
            function createConduit(
                bytes32 conduitKey,
                address initialOwner
            ) external returns (address conduit);
            /**
             * @notice Open or close a channel on a given conduit, thereby allowing the
             *         specified account to execute transfers against that conduit.
             *         Extreme care must be taken when updating channels, as malicious
             *         or vulnerable channels can transfer any ERC20, ERC721 and ERC1155
             *         tokens where the token holder has granted the conduit approval.
             *         Only the owner of the conduit in question may call this function.
             *
             * @param conduit The conduit for which to open or close the channel.
             * @param channel The channel to open or close on the conduit.
             * @param isOpen  A boolean indicating whether to open or close the channel.
             */
            function updateChannel(
                address conduit,
                address channel,
                bool isOpen
            ) external;
            /**
             * @notice Initiate conduit ownership transfer by assigning a new potential
             *         owner for the given conduit. Once set, the new potential owner
             *         may call `acceptOwnership` to claim ownership of the conduit.
             *         Only the owner of the conduit in question may call this function.
             *
             * @param conduit The conduit for which to initiate ownership transfer.
             * @param newPotentialOwner The new potential owner of the conduit.
             */
            function transferOwnership(
                address conduit,
                address newPotentialOwner
            ) external;
            /**
             * @notice Clear the currently set potential owner, if any, from a conduit.
             *         Only the owner of the conduit in question may call this function.
             *
             * @param conduit The conduit for which to cancel ownership transfer.
             */
            function cancelOwnershipTransfer(address conduit) external;
            /**
             * @notice Accept ownership of a supplied conduit. Only accounts that the
             *         current owner has set as the new potential owner may call this
             *         function.
             *
             * @param conduit The conduit for which to accept ownership.
             */
            function acceptOwnership(address conduit) external;
            /**
             * @notice Retrieve the current owner of a deployed conduit.
             *
             * @param conduit The conduit for which to retrieve the associated owner.
             *
             * @return owner The owner of the supplied conduit.
             */
            function ownerOf(address conduit) external view returns (address owner);
            /**
             * @notice Retrieve the conduit key for a deployed conduit via reverse
             *         lookup.
             *
             * @param conduit The conduit for which to retrieve the associated conduit
             *                key.
             *
             * @return conduitKey The conduit key used to deploy the supplied conduit.
             */
            function getKey(address conduit) external view returns (bytes32 conduitKey);
            /**
             * @notice Derive the conduit associated with a given conduit key and
             *         determine whether that conduit exists (i.e. whether it has been
             *         deployed).
             *
             * @param conduitKey The conduit key used to derive the conduit.
             *
             * @return conduit The derived address of the conduit.
             * @return exists  A boolean indicating whether the derived conduit has been
             *                 deployed or not.
             */
            function getConduit(
                bytes32 conduitKey
            ) external view returns (address conduit, bool exists);
            /**
             * @notice Retrieve the potential owner, if any, for a given conduit. The
             *         current owner may set a new potential owner via
             *         `transferOwnership` and that owner may then accept ownership of
             *         the conduit in question via `acceptOwnership`.
             *
             * @param conduit The conduit for which to retrieve the potential owner.
             *
             * @return potentialOwner The potential owner, if any, for the conduit.
             */
            function getPotentialOwner(
                address conduit
            ) external view returns (address potentialOwner);
            /**
             * @notice Retrieve the status (either open or closed) of a given channel on
             *         a conduit.
             *
             * @param conduit The conduit for which to retrieve the channel status.
             * @param channel The channel for which to retrieve the status.
             *
             * @return isOpen The status of the channel on the given conduit.
             */
            function getChannelStatus(
                address conduit,
                address channel
            ) external view returns (bool isOpen);
            /**
             * @notice Retrieve the total number of open channels for a given conduit.
             *
             * @param conduit The conduit for which to retrieve the total channel count.
             *
             * @return totalChannels The total number of open channels for the conduit.
             */
            function getTotalChannels(
                address conduit
            ) external view returns (uint256 totalChannels);
            /**
             * @notice Retrieve an open channel at a specific index for a given conduit.
             *         Note that the index of a channel can change as a result of other
             *         channels being closed on the conduit.
             *
             * @param conduit      The conduit for which to retrieve the open channel.
             * @param channelIndex The index of the channel in question.
             *
             * @return channel The open channel, if any, at the specified channel index.
             */
            function getChannel(
                address conduit,
                uint256 channelIndex
            ) external view returns (address channel);
            /**
             * @notice Retrieve all open channels for a given conduit. Note that calling
             *         this function for a conduit with many channels will revert with
             *         an out-of-gas error.
             *
             * @param conduit The conduit for which to retrieve open channels.
             *
             * @return channels An array of open channels on the given conduit.
             */
            function getChannels(
                address conduit
            ) external view returns (address[] memory channels);
            /**
             * @dev Retrieve the conduit creation code and runtime code hashes.
             */
            function getConduitCodeHashes()
                external
                view
                returns (bytes32 creationCodeHash, bytes32 runtimeCodeHash);
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.13;
        /**
         * @title SignatureVerificationErrors
         * @author 0age
         * @notice SignatureVerificationErrors contains all errors related to signature
         *         verification.
         */
        interface SignatureVerificationErrors {
            /**
             * @dev Revert with an error when a signature that does not contain a v
             *      value of 27 or 28 has been supplied.
             *
             * @param v The invalid v value.
             */
            error BadSignatureV(uint8 v);
            /**
             * @dev Revert with an error when the signer recovered by the supplied
             *      signature does not match the offerer or an allowed EIP-1271 signer
             *      as specified by the offerer in the event they are a contract.
             */
            error InvalidSigner();
            /**
             * @dev Revert with an error when a signer cannot be recovered from the
             *      supplied signature.
             */
            error InvalidSignature();
            /**
             * @dev Revert with an error when an EIP-1271 call to an account fails.
             */
            error BadContractSignature();
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.13;
        /*
         * -------------------------- Disambiguation & Other Notes ---------------------
         *    - The term "head" is used as it is in the documentation for ABI encoding,
         *      but only in reference to dynamic types, i.e. it always refers to the
         *      offset or pointer to the body of a dynamic type. In calldata, the head
         *      is always an offset (relative to the parent object), while in memory,
         *      the head is always the pointer to the body. More information found here:
         *      https://docs.soliditylang.org/en/v0.8.17/abi-spec.html#argument-encoding
         *        - Note that the length of an array is separate from and precedes the
         *          head of the array.
         *
         *    - The term "body" is used in place of the term "head" used in the ABI
         *      documentation. It refers to the start of the data for a dynamic type,
         *      e.g. the first word of a struct or the first word of the first element
         *      in an array.
         *
         *    - The term "pointer" is used to describe the absolute position of a value
         *      and never an offset relative to another value.
         *        - The suffix "_ptr" refers to a memory pointer.
         *        - The suffix "_cdPtr" refers to a calldata pointer.
         *
         *    - The term "offset" is used to describe the position of a value relative
         *      to some parent value. For example, OrderParameters_conduit_offset is the
         *      offset to the "conduit" value in the OrderParameters struct relative to
         *      the start of the body.
         *        - Note: Offsets are used to derive pointers.
         *
         *    - Some structs have pointers defined for all of their fields in this file.
         *      Lines which are commented out are fields that are not used in the
         *      codebase but have been left in for readability.
         */
        uint256 constant ThirtyOneBytes = 0x1f;
        uint256 constant OneWord = 0x20;
        uint256 constant TwoWords = 0x40;
        uint256 constant ThreeWords = 0x60;
        uint256 constant OneWordShift = 0x5;
        uint256 constant TwoWordsShift = 0x6;
        uint256 constant FreeMemoryPointerSlot = 0x40;
        uint256 constant ZeroSlot = 0x60;
        uint256 constant DefaultFreeMemoryPointer = 0x80;
        uint256 constant Slot0x80 = 0x80;
        uint256 constant Slot0xA0 = 0xa0;
        uint256 constant Slot0xC0 = 0xc0;
        uint256 constant Generic_error_selector_offset = 0x1c;
        // abi.encodeWithSignature("transferFrom(address,address,uint256)")
        uint256 constant ERC20_transferFrom_signature = (
            0x23b872dd00000000000000000000000000000000000000000000000000000000
        );
        uint256 constant ERC20_transferFrom_sig_ptr = 0x0;
        uint256 constant ERC20_transferFrom_from_ptr = 0x04;
        uint256 constant ERC20_transferFrom_to_ptr = 0x24;
        uint256 constant ERC20_transferFrom_amount_ptr = 0x44;
        uint256 constant ERC20_transferFrom_length = 0x64; // 4 + 32 * 3 == 100
        // abi.encodeWithSignature(
        //     "safeTransferFrom(address,address,uint256,uint256,bytes)"
        // )
        uint256 constant ERC1155_safeTransferFrom_signature = (
            0xf242432a00000000000000000000000000000000000000000000000000000000
        );
        uint256 constant ERC1155_safeTransferFrom_sig_ptr = 0x0;
        uint256 constant ERC1155_safeTransferFrom_from_ptr = 0x04;
        uint256 constant ERC1155_safeTransferFrom_to_ptr = 0x24;
        uint256 constant ERC1155_safeTransferFrom_id_ptr = 0x44;
        uint256 constant ERC1155_safeTransferFrom_amount_ptr = 0x64;
        uint256 constant ERC1155_safeTransferFrom_data_offset_ptr = 0x84;
        uint256 constant ERC1155_safeTransferFrom_data_length_ptr = 0xa4;
        uint256 constant ERC1155_safeTransferFrom_length = 0xc4; // 4 + 32 * 6 == 196
        uint256 constant ERC1155_safeTransferFrom_data_length_offset = 0xa0;
        // abi.encodeWithSignature(
        //     "safeBatchTransferFrom(address,address,uint256[],uint256[],bytes)"
        // )
        uint256 constant ERC1155_safeBatchTransferFrom_signature = (
            0x2eb2c2d600000000000000000000000000000000000000000000000000000000
        );
        // bytes4 constant ERC1155_safeBatchTransferFrom_selector = bytes4(
        //     bytes32(ERC1155_safeBatchTransferFrom_signature)
        // );
        uint256 constant ERC721_transferFrom_signature = (
            0x23b872dd00000000000000000000000000000000000000000000000000000000
        );
        uint256 constant ERC721_transferFrom_sig_ptr = 0x0;
        uint256 constant ERC721_transferFrom_from_ptr = 0x04;
        uint256 constant ERC721_transferFrom_to_ptr = 0x24;
        uint256 constant ERC721_transferFrom_id_ptr = 0x44;
        uint256 constant ERC721_transferFrom_length = 0x64; // 4 + 32 * 3 == 100
        /*
         *  error NoContract(address account)
         *    - Defined in TokenTransferrerErrors.sol
         *  Memory layout:
         *    - 0x00: Left-padded selector (data begins at 0x1c)
         *    - 0x00: account
         * Revert buffer is memory[0x1c:0x40]
         */
        uint256 constant NoContract_error_selector = 0x5f15d672;
        uint256 constant NoContract_error_account_ptr = 0x20;
        uint256 constant NoContract_error_length = 0x24;
        /*
         *  error TokenTransferGenericFailure(
         *      address token,
         *      address from,
         *      address to,
         *      uint256 identifier,
         *      uint256 amount
         *  )
         *    - Defined in TokenTransferrerErrors.sol
         *  Memory layout:
         *    - 0x00: Left-padded selector (data begins at 0x1c)
         *    - 0x20: token
         *    - 0x40: from
         *    - 0x60: to
         *    - 0x80: identifier
         *    - 0xa0: amount
         * Revert buffer is memory[0x1c:0xc0]
         */
        uint256 constant TokenTransferGenericFailure_error_selector = 0xf486bc87;
        uint256 constant TokenTransferGenericFailure_error_token_ptr = 0x20;
        uint256 constant TokenTransferGenericFailure_error_from_ptr = 0x40;
        uint256 constant TokenTransferGenericFailure_error_to_ptr = 0x60;
        uint256 constant TokenTransferGenericFailure_error_identifier_ptr = 0x80;
        uint256 constant TokenTransferGenericFailure_err_identifier_ptr = 0x80;
        uint256 constant TokenTransferGenericFailure_error_amount_ptr = 0xa0;
        uint256 constant TokenTransferGenericFailure_error_length = 0xa4;
        uint256 constant ExtraGasBuffer = 0x20;
        uint256 constant CostPerWord = 0x3;
        uint256 constant MemoryExpansionCoefficientShift = 0x9;
        // Values are offset by 32 bytes in order to write the token to the beginning
        // in the event of a revert
        uint256 constant BatchTransfer1155Params_ptr = 0x24;
        uint256 constant BatchTransfer1155Params_ids_head_ptr = 0x64;
        uint256 constant BatchTransfer1155Params_amounts_head_ptr = 0x84;
        uint256 constant BatchTransfer1155Params_data_head_ptr = 0xa4;
        uint256 constant BatchTransfer1155Params_data_length_basePtr = 0xc4;
        uint256 constant BatchTransfer1155Params_calldata_baseSize = 0xc4;
        uint256 constant BatchTransfer1155Params_ids_length_ptr = 0xc4;
        uint256 constant BatchTransfer1155Params_ids_length_offset = 0xa0;
        // uint256 constant BatchTransfer1155Params_amounts_length_baseOffset = 0xc0;
        // uint256 constant BatchTransfer1155Params_data_length_baseOffset = 0xe0;
        uint256 constant ConduitBatch1155Transfer_usable_head_size = 0x80;
        uint256 constant ConduitBatch1155Transfer_from_offset = 0x20;
        uint256 constant ConduitBatch1155Transfer_ids_head_offset = 0x60;
        // uint256 constant ConduitBatch1155Transfer_amounts_head_offset = 0x80;
        uint256 constant ConduitBatch1155Transfer_ids_length_offset = 0xa0;
        uint256 constant ConduitBatch1155Transfer_amounts_length_baseOffset = 0xc0;
        // uint256 constant ConduitBatch1155Transfer_calldata_baseSize = 0xc0;
        // Note: abbreviated version of above constant to adhere to line length limit.
        uint256 constant ConduitBatchTransfer_amounts_head_offset = 0x80;
        uint256 constant Invalid1155BatchTransferEncoding_ptr = 0x00;
        uint256 constant Invalid1155BatchTransferEncoding_length = 0x04;
        uint256 constant Invalid1155BatchTransferEncoding_selector = (
            0xeba2084c00000000000000000000000000000000000000000000000000000000
        );
        uint256 constant ERC1155BatchTransferGenericFailure_error_signature = (
            0xafc445e200000000000000000000000000000000000000000000000000000000
        );
        uint256 constant ERC1155BatchTransferGenericFailure_token_ptr = 0x04;
        uint256 constant ERC1155BatchTransferGenericFailure_ids_offset = 0xc0;
        /*
         *  error BadReturnValueFromERC20OnTransfer(
         *      address token, address from, address to, uint256 amount
         *  )
         *    - Defined in TokenTransferrerErrors.sol
         *  Memory layout:
         *    - 0x00: Left-padded selector (data begins at 0x1c)
         *    - 0x00: token
         *    - 0x20: from
         *    - 0x40: to
         *    - 0x60: amount
         * Revert buffer is memory[0x1c:0xa0]
         */
        uint256 constant BadReturnValueFromERC20OnTransfer_error_selector = 0x98891923;
        uint256 constant BadReturnValueFromERC20OnTransfer_error_token_ptr = 0x20;
        uint256 constant BadReturnValueFromERC20OnTransfer_error_from_ptr = 0x40;
        uint256 constant BadReturnValueFromERC20OnTransfer_error_to_ptr = 0x60;
        uint256 constant BadReturnValueFromERC20OnTransfer_error_amount_ptr = 0x80;
        uint256 constant BadReturnValueFromERC20OnTransfer_error_length = 0x84;
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.13;
        /**
         * @title ZoneInteractionErrors
         * @author 0age
         * @notice ZoneInteractionErrors contains errors related to zone interaction.
         */
        interface ZoneInteractionErrors {
            /**
             * @dev Revert with an error when attempting to fill an order that specifies
             *      a restricted submitter as its order type when not submitted by
             *      either the offerer or the order's zone or approved as valid by the
             *      zone in question via a call to `isValidOrder`.
             *
             * @param orderHash The order hash for the invalid restricted order.
             */
            error InvalidRestrictedOrder(bytes32 orderHash);
            /**
             * @dev Revert with an error when attempting to fill a contract order that
             *      fails to generate an order successfully, that does not adhere to the
             *      requirements for minimum spent or maximum received supplied by the
             *      fulfiller, or that fails the post-execution `ratifyOrder` check..
             *
             * @param orderHash The order hash for the invalid contract order.
             */
            error InvalidContractOrder(bytes32 orderHash);
        }
        

        File 4 of 4: Conduit
        // SPDX-License-Identifier: MIT
        pragma solidity >=0.8.7;
        import { ConduitInterface } from "../interfaces/ConduitInterface.sol";
        import { ConduitItemType } from "./lib/ConduitEnums.sol";
        import { TokenTransferrer } from "../lib/TokenTransferrer.sol";
        // prettier-ignore
        import {
            ConduitTransfer,
            ConduitBatch1155Transfer
        } from "./lib/ConduitStructs.sol";
        import "./lib/ConduitConstants.sol";
        /**
         * @title Conduit
         * @author 0age
         * @notice This contract serves as an originator for "proxied" transfers. Each
         *         conduit is deployed and controlled by a "conduit controller" that can
         *         add and remove "channels" or contracts that can instruct the conduit
         *         to transfer approved ERC20/721/1155 tokens. *IMPORTANT NOTE: each
         *         conduit has an owner that can arbitrarily add or remove channels, and
         *         a malicious or negligent owner can add a channel that allows for any
         *         approved ERC20/721/1155 tokens to be taken immediately — be extremely
         *         cautious with what conduits you give token approvals to!*
         */
        contract Conduit is ConduitInterface, TokenTransferrer {
            // Set deployer as an immutable controller that can update channel statuses.
            address private immutable _controller;
            // Track the status of each channel.
            mapping(address => bool) private _channels;
            /**
             * @notice Ensure that the caller is currently registered as an open channel
             *         on the conduit.
             */
            modifier onlyOpenChannel() {
                // Utilize assembly to access channel storage mapping directly.
                assembly {
                    // Write the caller to scratch space.
                    mstore(ChannelKey_channel_ptr, caller())
                    // Write the storage slot for _channels to scratch space.
                    mstore(ChannelKey_slot_ptr, _channels.slot)
                    // Derive the position in storage of _channels[msg.sender]
                    // and check if the stored value is zero.
                    if iszero(
                        sload(keccak256(ChannelKey_channel_ptr, ChannelKey_length))
                    ) {
                        // The caller is not an open channel; revert with
                        // ChannelClosed(caller). First, set error signature in memory.
                        mstore(ChannelClosed_error_ptr, ChannelClosed_error_signature)
                        // Next, set the caller as the argument.
                        mstore(ChannelClosed_channel_ptr, caller())
                        // Finally, revert, returning full custom error with argument.
                        revert(ChannelClosed_error_ptr, ChannelClosed_error_length)
                    }
                }
                // Continue with function execution.
                _;
            }
            /**
             * @notice In the constructor, set the deployer as the controller.
             */
            constructor() {
                // Set the deployer as the controller.
                _controller = msg.sender;
            }
            /**
             * @notice Execute a sequence of ERC20/721/1155 transfers. Only a caller
             *         with an open channel can call this function. Note that channels
             *         are expected to implement reentrancy protection if desired, and
             *         that cross-channel reentrancy may be possible if the conduit has
             *         multiple open channels at once. Also note that channels are
             *         expected to implement checks against transferring any zero-amount
             *         items if that constraint is desired.
             *
             * @param transfers The ERC20/721/1155 transfers to perform.
             *
             * @return magicValue A magic value indicating that the transfers were
             *                    performed successfully.
             */
            function execute(ConduitTransfer[] calldata transfers)
                external
                override
                onlyOpenChannel
                returns (bytes4 magicValue)
            {
                // Retrieve the total number of transfers and place on the stack.
                uint256 totalStandardTransfers = transfers.length;
                // Iterate over each transfer.
                for (uint256 i = 0; i < totalStandardTransfers; ) {
                    // Retrieve the transfer in question and perform the transfer.
                    _transfer(transfers[i]);
                    // Skip overflow check as for loop is indexed starting at zero.
                    unchecked {
                        ++i;
                    }
                }
                // Return a magic value indicating that the transfers were performed.
                magicValue = this.execute.selector;
            }
            /**
             * @notice Execute a sequence of batch 1155 item transfers. Only a caller
             *         with an open channel can call this function. Note that channels
             *         are expected to implement reentrancy protection if desired, and
             *         that cross-channel reentrancy may be possible if the conduit has
             *         multiple open channels at once. Also note that channels are
             *         expected to implement checks against transferring any zero-amount
             *         items if that constraint is desired.
             *
             * @param batchTransfers The 1155 batch item transfers to perform.
             *
             * @return magicValue A magic value indicating that the item transfers were
             *                    performed successfully.
             */
            function executeBatch1155(
                ConduitBatch1155Transfer[] calldata batchTransfers
            ) external override onlyOpenChannel returns (bytes4 magicValue) {
                // Perform 1155 batch transfers. Note that memory should be considered
                // entirely corrupted from this point forward.
                _performERC1155BatchTransfers(batchTransfers);
                // Return a magic value indicating that the transfers were performed.
                magicValue = this.executeBatch1155.selector;
            }
            /**
             * @notice Execute a sequence of transfers, both single ERC20/721/1155 item
             *         transfers as well as batch 1155 item transfers. Only a caller
             *         with an open channel can call this function. Note that channels
             *         are expected to implement reentrancy protection if desired, and
             *         that cross-channel reentrancy may be possible if the conduit has
             *         multiple open channels at once. Also note that channels are
             *         expected to implement checks against transferring any zero-amount
             *         items if that constraint is desired.
             *
             * @param standardTransfers The ERC20/721/1155 item transfers to perform.
             * @param batchTransfers    The 1155 batch item transfers to perform.
             *
             * @return magicValue A magic value indicating that the item transfers were
             *                    performed successfully.
             */
            function executeWithBatch1155(
                ConduitTransfer[] calldata standardTransfers,
                ConduitBatch1155Transfer[] calldata batchTransfers
            ) external override onlyOpenChannel returns (bytes4 magicValue) {
                // Retrieve the total number of transfers and place on the stack.
                uint256 totalStandardTransfers = standardTransfers.length;
                // Iterate over each standard transfer.
                for (uint256 i = 0; i < totalStandardTransfers; ) {
                    // Retrieve the transfer in question and perform the transfer.
                    _transfer(standardTransfers[i]);
                    // Skip overflow check as for loop is indexed starting at zero.
                    unchecked {
                        ++i;
                    }
                }
                // Perform 1155 batch transfers. Note that memory should be considered
                // entirely corrupted from this point forward aside from the free memory
                // pointer having the default value.
                _performERC1155BatchTransfers(batchTransfers);
                // Return a magic value indicating that the transfers were performed.
                magicValue = this.executeWithBatch1155.selector;
            }
            /**
             * @notice Open or close a given channel. Only callable by the controller.
             *
             * @param channel The channel to open or close.
             * @param isOpen  The status of the channel (either open or closed).
             */
            function updateChannel(address channel, bool isOpen) external override {
                // Ensure that the caller is the controller of this contract.
                if (msg.sender != _controller) {
                    revert InvalidController();
                }
                // Ensure that the channel does not already have the indicated status.
                if (_channels[channel] == isOpen) {
                    revert ChannelStatusAlreadySet(channel, isOpen);
                }
                // Update the status of the channel.
                _channels[channel] = isOpen;
                // Emit a corresponding event.
                emit ChannelUpdated(channel, isOpen);
            }
            /**
             * @dev Internal function to transfer a given ERC20/721/1155 item. Note that
             *      channels are expected to implement checks against transferring any
             *      zero-amount items if that constraint is desired.
             *
             * @param item The ERC20/721/1155 item to transfer.
             */
            function _transfer(ConduitTransfer calldata item) internal {
                // Determine the transfer method based on the respective item type.
                if (item.itemType == ConduitItemType.ERC20) {
                    // Transfer ERC20 token. Note that item.identifier is ignored and
                    // therefore ERC20 transfer items are potentially malleable — this
                    // check should be performed by the calling channel if a constraint
                    // on item malleability is desired.
                    _performERC20Transfer(item.token, item.from, item.to, item.amount);
                } else if (item.itemType == ConduitItemType.ERC721) {
                    // Ensure that exactly one 721 item is being transferred.
                    if (item.amount != 1) {
                        revert InvalidERC721TransferAmount();
                    }
                    // Transfer ERC721 token.
                    _performERC721Transfer(
                        item.token,
                        item.from,
                        item.to,
                        item.identifier
                    );
                } else if (item.itemType == ConduitItemType.ERC1155) {
                    // Transfer ERC1155 token.
                    _performERC1155Transfer(
                        item.token,
                        item.from,
                        item.to,
                        item.identifier,
                        item.amount
                    );
                } else {
                    // Throw with an error.
                    revert InvalidItemType();
                }
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity >=0.8.7;
        // prettier-ignore
        import {
            ConduitTransfer,
            ConduitBatch1155Transfer
        } from "../conduit/lib/ConduitStructs.sol";
        /**
         * @title ConduitInterface
         * @author 0age
         * @notice ConduitInterface contains all external function interfaces, events,
         *         and errors for conduit contracts.
         */
        interface ConduitInterface {
            /**
             * @dev Revert with an error when attempting to execute transfers using a
             *      caller that does not have an open channel.
             */
            error ChannelClosed(address channel);
            /**
             * @dev Revert with an error when attempting to update a channel to the
             *      current status of that channel.
             */
            error ChannelStatusAlreadySet(address channel, bool isOpen);
            /**
             * @dev Revert with an error when attempting to execute a transfer for an
             *      item that does not have an ERC20/721/1155 item type.
             */
            error InvalidItemType();
            /**
             * @dev Revert with an error when attempting to update the status of a
             *      channel from a caller that is not the conduit controller.
             */
            error InvalidController();
            /**
             * @dev Emit an event whenever a channel is opened or closed.
             *
             * @param channel The channel that has been updated.
             * @param open    A boolean indicating whether the conduit is open or not.
             */
            event ChannelUpdated(address indexed channel, bool open);
            /**
             * @notice Execute a sequence of ERC20/721/1155 transfers. Only a caller
             *         with an open channel can call this function.
             *
             * @param transfers The ERC20/721/1155 transfers to perform.
             *
             * @return magicValue A magic value indicating that the transfers were
             *                    performed successfully.
             */
            function execute(ConduitTransfer[] calldata transfers)
                external
                returns (bytes4 magicValue);
            /**
             * @notice Execute a sequence of batch 1155 transfers. Only a caller with an
             *         open channel can call this function.
             *
             * @param batch1155Transfers The 1155 batch transfers to perform.
             *
             * @return magicValue A magic value indicating that the transfers were
             *                    performed successfully.
             */
            function executeBatch1155(
                ConduitBatch1155Transfer[] calldata batch1155Transfers
            ) external returns (bytes4 magicValue);
            /**
             * @notice Execute a sequence of transfers, both single and batch 1155. Only
             *         a caller with an open channel can call this function.
             *
             * @param standardTransfers  The ERC20/721/1155 transfers to perform.
             * @param batch1155Transfers The 1155 batch transfers to perform.
             *
             * @return magicValue A magic value indicating that the transfers were
             *                    performed successfully.
             */
            function executeWithBatch1155(
                ConduitTransfer[] calldata standardTransfers,
                ConduitBatch1155Transfer[] calldata batch1155Transfers
            ) external returns (bytes4 magicValue);
            /**
             * @notice Open or close a given channel. Only callable by the controller.
             *
             * @param channel The channel to open or close.
             * @param isOpen  The status of the channel (either open or closed).
             */
            function updateChannel(address channel, bool isOpen) external;
        }
        // SPDX-License-Identifier: MIT
        pragma solidity >=0.8.7;
        enum ConduitItemType {
            NATIVE, // unused
            ERC20,
            ERC721,
            ERC1155
        }
        // SPDX-License-Identifier: MIT
        pragma solidity >=0.8.7;
        import "./TokenTransferrerConstants.sol";
        // prettier-ignore
        import {
            TokenTransferrerErrors
        } from "../interfaces/TokenTransferrerErrors.sol";
        import { ConduitBatch1155Transfer } from "../conduit/lib/ConduitStructs.sol";
        /**
         * @title TokenTransferrer
         * @author 0age
         * @custom:coauthor d1ll0n
         * @custom:coauthor transmissions11
         * @notice TokenTransferrer is a library for performing optimized ERC20, ERC721,
         *         ERC1155, and batch ERC1155 transfers, used by both Seaport as well as
         *         by conduits deployed by the ConduitController. Use great caution when
         *         considering these functions for use in other codebases, as there are
         *         significant side effects and edge cases that need to be thoroughly
         *         understood and carefully addressed.
         */
        contract TokenTransferrer is TokenTransferrerErrors {
            /**
             * @dev Internal function to transfer ERC20 tokens from a given originator
             *      to a given recipient. Sufficient approvals must be set on the
             *      contract performing the transfer.
             *
             * @param token      The ERC20 token to transfer.
             * @param from       The originator of the transfer.
             * @param to         The recipient of the transfer.
             * @param amount     The amount to transfer.
             */
            function _performERC20Transfer(
                address token,
                address from,
                address to,
                uint256 amount
            ) internal {
                // Utilize assembly to perform an optimized ERC20 token transfer.
                assembly {
                    // The free memory pointer memory slot will be used when populating
                    // call data for the transfer; read the value and restore it later.
                    let memPointer := mload(FreeMemoryPointerSlot)
                    // Write call data into memory, starting with function selector.
                    mstore(ERC20_transferFrom_sig_ptr, ERC20_transferFrom_signature)
                    mstore(ERC20_transferFrom_from_ptr, from)
                    mstore(ERC20_transferFrom_to_ptr, to)
                    mstore(ERC20_transferFrom_amount_ptr, amount)
                    // Make call & copy up to 32 bytes of return data to scratch space.
                    // Scratch space does not need to be cleared ahead of time, as the
                    // subsequent check will ensure that either at least a full word of
                    // return data is received (in which case it will be overwritten) or
                    // that no data is received (in which case scratch space will be
                    // ignored) on a successful call to the given token.
                    let callStatus := call(
                        gas(),
                        token,
                        0,
                        ERC20_transferFrom_sig_ptr,
                        ERC20_transferFrom_length,
                        0,
                        OneWord
                    )
                    // Determine whether transfer was successful using status & result.
                    let success := and(
                        // Set success to whether the call reverted, if not check it
                        // either returned exactly 1 (can't just be non-zero data), or
                        // had no return data.
                        or(
                            and(eq(mload(0), 1), gt(returndatasize(), 31)),
                            iszero(returndatasize())
                        ),
                        callStatus
                    )
                    // Handle cases where either the transfer failed or no data was
                    // returned. Group these, as most transfers will succeed with data.
                    // Equivalent to `or(iszero(success), iszero(returndatasize()))`
                    // but after it's inverted for JUMPI this expression is cheaper.
                    if iszero(and(success, iszero(iszero(returndatasize())))) {
                        // If the token has no code or the transfer failed: Equivalent
                        // to `or(iszero(success), iszero(extcodesize(token)))` but
                        // after it's inverted for JUMPI this expression is cheaper.
                        if iszero(and(iszero(iszero(extcodesize(token))), success)) {
                            // If the transfer failed:
                            if iszero(success) {
                                // If it was due to a revert:
                                if iszero(callStatus) {
                                    // If it returned a message, bubble it up as long as
                                    // sufficient gas remains to do so:
                                    if returndatasize() {
                                        // Ensure that sufficient gas is available to
                                        // copy returndata while expanding memory where
                                        // necessary. Start by computing the word size
                                        // of returndata and allocated memory. Round up
                                        // to the nearest full word.
                                        let returnDataWords := div(
                                            add(returndatasize(), AlmostOneWord),
                                            OneWord
                                        )
                                        // Note: use the free memory pointer in place of
                                        // msize() to work around a Yul warning that
                                        // prevents accessing msize directly when the IR
                                        // pipeline is activated.
                                        let msizeWords := div(memPointer, OneWord)
                                        // Next, compute the cost of the returndatacopy.
                                        let cost := mul(CostPerWord, returnDataWords)
                                        // Then, compute cost of new memory allocation.
                                        if gt(returnDataWords, msizeWords) {
                                            cost := add(
                                                cost,
                                                add(
                                                    mul(
                                                        sub(
                                                            returnDataWords,
                                                            msizeWords
                                                        ),
                                                        CostPerWord
                                                    ),
                                                    div(
                                                        sub(
                                                            mul(
                                                                returnDataWords,
                                                                returnDataWords
                                                            ),
                                                            mul(msizeWords, msizeWords)
                                                        ),
                                                        MemoryExpansionCoefficient
                                                    )
                                                )
                                            )
                                        }
                                        // Finally, add a small constant and compare to
                                        // gas remaining; bubble up the revert data if
                                        // enough gas is still available.
                                        if lt(add(cost, ExtraGasBuffer), gas()) {
                                            // Copy returndata to memory; overwrite
                                            // existing memory.
                                            returndatacopy(0, 0, returndatasize())
                                            // Revert, specifying memory region with
                                            // copied returndata.
                                            revert(0, returndatasize())
                                        }
                                    }
                                    // Otherwise revert with a generic error message.
                                    mstore(
                                        TokenTransferGenericFailure_error_sig_ptr,
                                        TokenTransferGenericFailure_error_signature
                                    )
                                    mstore(
                                        TokenTransferGenericFailure_error_token_ptr,
                                        token
                                    )
                                    mstore(
                                        TokenTransferGenericFailure_error_from_ptr,
                                        from
                                    )
                                    mstore(TokenTransferGenericFailure_error_to_ptr, to)
                                    mstore(TokenTransferGenericFailure_error_id_ptr, 0)
                                    mstore(
                                        TokenTransferGenericFailure_error_amount_ptr,
                                        amount
                                    )
                                    revert(
                                        TokenTransferGenericFailure_error_sig_ptr,
                                        TokenTransferGenericFailure_error_length
                                    )
                                }
                                // Otherwise revert with a message about the token
                                // returning false or non-compliant return values.
                                mstore(
                                    BadReturnValueFromERC20OnTransfer_error_sig_ptr,
                                    BadReturnValueFromERC20OnTransfer_error_signature
                                )
                                mstore(
                                    BadReturnValueFromERC20OnTransfer_error_token_ptr,
                                    token
                                )
                                mstore(
                                    BadReturnValueFromERC20OnTransfer_error_from_ptr,
                                    from
                                )
                                mstore(
                                    BadReturnValueFromERC20OnTransfer_error_to_ptr,
                                    to
                                )
                                mstore(
                                    BadReturnValueFromERC20OnTransfer_error_amount_ptr,
                                    amount
                                )
                                revert(
                                    BadReturnValueFromERC20OnTransfer_error_sig_ptr,
                                    BadReturnValueFromERC20OnTransfer_error_length
                                )
                            }
                            // Otherwise, revert with error about token not having code:
                            mstore(NoContract_error_sig_ptr, NoContract_error_signature)
                            mstore(NoContract_error_token_ptr, token)
                            revert(NoContract_error_sig_ptr, NoContract_error_length)
                        }
                        // Otherwise, the token just returned no data despite the call
                        // having succeeded; no need to optimize for this as it's not
                        // technically ERC20 compliant.
                    }
                    // Restore the original free memory pointer.
                    mstore(FreeMemoryPointerSlot, memPointer)
                    // Restore the zero slot to zero.
                    mstore(ZeroSlot, 0)
                }
            }
            /**
             * @dev Internal function to transfer an ERC721 token from a given
             *      originator to a given recipient. Sufficient approvals must be set on
             *      the contract performing the transfer. Note that this function does
             *      not check whether the receiver can accept the ERC721 token (i.e. it
             *      does not use `safeTransferFrom`).
             *
             * @param token      The ERC721 token to transfer.
             * @param from       The originator of the transfer.
             * @param to         The recipient of the transfer.
             * @param identifier The tokenId to transfer.
             */
            function _performERC721Transfer(
                address token,
                address from,
                address to,
                uint256 identifier
            ) internal {
                // Utilize assembly to perform an optimized ERC721 token transfer.
                assembly {
                    // If the token has no code, revert.
                    if iszero(extcodesize(token)) {
                        mstore(NoContract_error_sig_ptr, NoContract_error_signature)
                        mstore(NoContract_error_token_ptr, token)
                        revert(NoContract_error_sig_ptr, NoContract_error_length)
                    }
                    // The free memory pointer memory slot will be used when populating
                    // call data for the transfer; read the value and restore it later.
                    let memPointer := mload(FreeMemoryPointerSlot)
                    // Write call data to memory starting with function selector.
                    mstore(ERC721_transferFrom_sig_ptr, ERC721_transferFrom_signature)
                    mstore(ERC721_transferFrom_from_ptr, from)
                    mstore(ERC721_transferFrom_to_ptr, to)
                    mstore(ERC721_transferFrom_id_ptr, identifier)
                    // Perform the call, ignoring return data.
                    let success := call(
                        gas(),
                        token,
                        0,
                        ERC721_transferFrom_sig_ptr,
                        ERC721_transferFrom_length,
                        0,
                        0
                    )
                    // If the transfer reverted:
                    if iszero(success) {
                        // If it returned a message, bubble it up as long as sufficient
                        // gas remains to do so:
                        if returndatasize() {
                            // Ensure that sufficient gas is available to copy
                            // returndata while expanding memory where necessary. Start
                            // by computing word size of returndata & allocated memory.
                            // Round up to the nearest full word.
                            let returnDataWords := div(
                                add(returndatasize(), AlmostOneWord),
                                OneWord
                            )
                            // Note: use the free memory pointer in place of msize() to
                            // work around a Yul warning that prevents accessing msize
                            // directly when the IR pipeline is activated.
                            let msizeWords := div(memPointer, OneWord)
                            // Next, compute the cost of the returndatacopy.
                            let cost := mul(CostPerWord, returnDataWords)
                            // Then, compute cost of new memory allocation.
                            if gt(returnDataWords, msizeWords) {
                                cost := add(
                                    cost,
                                    add(
                                        mul(
                                            sub(returnDataWords, msizeWords),
                                            CostPerWord
                                        ),
                                        div(
                                            sub(
                                                mul(returnDataWords, returnDataWords),
                                                mul(msizeWords, msizeWords)
                                            ),
                                            MemoryExpansionCoefficient
                                        )
                                    )
                                )
                            }
                            // Finally, add a small constant and compare to gas
                            // remaining; bubble up the revert data if enough gas is
                            // still available.
                            if lt(add(cost, ExtraGasBuffer), gas()) {
                                // Copy returndata to memory; overwrite existing memory.
                                returndatacopy(0, 0, returndatasize())
                                // Revert, giving memory region with copied returndata.
                                revert(0, returndatasize())
                            }
                        }
                        // Otherwise revert with a generic error message.
                        mstore(
                            TokenTransferGenericFailure_error_sig_ptr,
                            TokenTransferGenericFailure_error_signature
                        )
                        mstore(TokenTransferGenericFailure_error_token_ptr, token)
                        mstore(TokenTransferGenericFailure_error_from_ptr, from)
                        mstore(TokenTransferGenericFailure_error_to_ptr, to)
                        mstore(TokenTransferGenericFailure_error_id_ptr, identifier)
                        mstore(TokenTransferGenericFailure_error_amount_ptr, 1)
                        revert(
                            TokenTransferGenericFailure_error_sig_ptr,
                            TokenTransferGenericFailure_error_length
                        )
                    }
                    // Restore the original free memory pointer.
                    mstore(FreeMemoryPointerSlot, memPointer)
                    // Restore the zero slot to zero.
                    mstore(ZeroSlot, 0)
                }
            }
            /**
             * @dev Internal function to transfer ERC1155 tokens from a given
             *      originator to a given recipient. Sufficient approvals must be set on
             *      the contract performing the transfer and contract recipients must
             *      implement the ERC1155TokenReceiver interface to indicate that they
             *      are willing to accept the transfer.
             *
             * @param token      The ERC1155 token to transfer.
             * @param from       The originator of the transfer.
             * @param to         The recipient of the transfer.
             * @param identifier The id to transfer.
             * @param amount     The amount to transfer.
             */
            function _performERC1155Transfer(
                address token,
                address from,
                address to,
                uint256 identifier,
                uint256 amount
            ) internal {
                // Utilize assembly to perform an optimized ERC1155 token transfer.
                assembly {
                    // If the token has no code, revert.
                    if iszero(extcodesize(token)) {
                        mstore(NoContract_error_sig_ptr, NoContract_error_signature)
                        mstore(NoContract_error_token_ptr, token)
                        revert(NoContract_error_sig_ptr, NoContract_error_length)
                    }
                    // The following memory slots will be used when populating call data
                    // for the transfer; read the values and restore them later.
                    let memPointer := mload(FreeMemoryPointerSlot)
                    let slot0x80 := mload(Slot0x80)
                    let slot0xA0 := mload(Slot0xA0)
                    let slot0xC0 := mload(Slot0xC0)
                    // Write call data into memory, beginning with function selector.
                    mstore(
                        ERC1155_safeTransferFrom_sig_ptr,
                        ERC1155_safeTransferFrom_signature
                    )
                    mstore(ERC1155_safeTransferFrom_from_ptr, from)
                    mstore(ERC1155_safeTransferFrom_to_ptr, to)
                    mstore(ERC1155_safeTransferFrom_id_ptr, identifier)
                    mstore(ERC1155_safeTransferFrom_amount_ptr, amount)
                    mstore(
                        ERC1155_safeTransferFrom_data_offset_ptr,
                        ERC1155_safeTransferFrom_data_length_offset
                    )
                    mstore(ERC1155_safeTransferFrom_data_length_ptr, 0)
                    // Perform the call, ignoring return data.
                    let success := call(
                        gas(),
                        token,
                        0,
                        ERC1155_safeTransferFrom_sig_ptr,
                        ERC1155_safeTransferFrom_length,
                        0,
                        0
                    )
                    // If the transfer reverted:
                    if iszero(success) {
                        // If it returned a message, bubble it up as long as sufficient
                        // gas remains to do so:
                        if returndatasize() {
                            // Ensure that sufficient gas is available to copy
                            // returndata while expanding memory where necessary. Start
                            // by computing word size of returndata & allocated memory.
                            // Round up to the nearest full word.
                            let returnDataWords := div(
                                add(returndatasize(), AlmostOneWord),
                                OneWord
                            )
                            // Note: use the free memory pointer in place of msize() to
                            // work around a Yul warning that prevents accessing msize
                            // directly when the IR pipeline is activated.
                            let msizeWords := div(memPointer, OneWord)
                            // Next, compute the cost of the returndatacopy.
                            let cost := mul(CostPerWord, returnDataWords)
                            // Then, compute cost of new memory allocation.
                            if gt(returnDataWords, msizeWords) {
                                cost := add(
                                    cost,
                                    add(
                                        mul(
                                            sub(returnDataWords, msizeWords),
                                            CostPerWord
                                        ),
                                        div(
                                            sub(
                                                mul(returnDataWords, returnDataWords),
                                                mul(msizeWords, msizeWords)
                                            ),
                                            MemoryExpansionCoefficient
                                        )
                                    )
                                )
                            }
                            // Finally, add a small constant and compare to gas
                            // remaining; bubble up the revert data if enough gas is
                            // still available.
                            if lt(add(cost, ExtraGasBuffer), gas()) {
                                // Copy returndata to memory; overwrite existing memory.
                                returndatacopy(0, 0, returndatasize())
                                // Revert, giving memory region with copied returndata.
                                revert(0, returndatasize())
                            }
                        }
                        // Otherwise revert with a generic error message.
                        mstore(
                            TokenTransferGenericFailure_error_sig_ptr,
                            TokenTransferGenericFailure_error_signature
                        )
                        mstore(TokenTransferGenericFailure_error_token_ptr, token)
                        mstore(TokenTransferGenericFailure_error_from_ptr, from)
                        mstore(TokenTransferGenericFailure_error_to_ptr, to)
                        mstore(TokenTransferGenericFailure_error_id_ptr, identifier)
                        mstore(TokenTransferGenericFailure_error_amount_ptr, amount)
                        revert(
                            TokenTransferGenericFailure_error_sig_ptr,
                            TokenTransferGenericFailure_error_length
                        )
                    }
                    mstore(Slot0x80, slot0x80) // Restore slot 0x80.
                    mstore(Slot0xA0, slot0xA0) // Restore slot 0xA0.
                    mstore(Slot0xC0, slot0xC0) // Restore slot 0xC0.
                    // Restore the original free memory pointer.
                    mstore(FreeMemoryPointerSlot, memPointer)
                    // Restore the zero slot to zero.
                    mstore(ZeroSlot, 0)
                }
            }
            /**
             * @dev Internal function to transfer ERC1155 tokens from a given
             *      originator to a given recipient. Sufficient approvals must be set on
             *      the contract performing the transfer and contract recipients must
             *      implement the ERC1155TokenReceiver interface to indicate that they
             *      are willing to accept the transfer. NOTE: this function is not
             *      memory-safe; it will overwrite existing memory, restore the free
             *      memory pointer to the default value, and overwrite the zero slot.
             *      This function should only be called once memory is no longer
             *      required and when uninitialized arrays are not utilized, and memory
             *      should be considered fully corrupted (aside from the existence of a
             *      default-value free memory pointer) after calling this function.
             *
             * @param batchTransfers The group of 1155 batch transfers to perform.
             */
            function _performERC1155BatchTransfers(
                ConduitBatch1155Transfer[] calldata batchTransfers
            ) internal {
                // Utilize assembly to perform optimized batch 1155 transfers.
                assembly {
                    let len := batchTransfers.length
                    // Pointer to first head in the array, which is offset to the struct
                    // at each index. This gets incremented after each loop to avoid
                    // multiplying by 32 to get the offset for each element.
                    let nextElementHeadPtr := batchTransfers.offset
                    // Pointer to beginning of the head of the array. This is the
                    // reference position each offset references. It's held static to
                    // let each loop calculate the data position for an element.
                    let arrayHeadPtr := nextElementHeadPtr
                    // Write the function selector, which will be reused for each call:
                    // safeBatchTransferFrom(address,address,uint256[],uint256[],bytes)
                    mstore(
                        ConduitBatch1155Transfer_from_offset,
                        ERC1155_safeBatchTransferFrom_signature
                    )
                    // Iterate over each batch transfer.
                    for {
                        let i := 0
                    } lt(i, len) {
                        i := add(i, 1)
                    } {
                        // Read the offset to the beginning of the element and add
                        // it to pointer to the beginning of the array head to get
                        // the absolute position of the element in calldata.
                        let elementPtr := add(
                            arrayHeadPtr,
                            calldataload(nextElementHeadPtr)
                        )
                        // Retrieve the token from calldata.
                        let token := calldataload(elementPtr)
                        // If the token has no code, revert.
                        if iszero(extcodesize(token)) {
                            mstore(NoContract_error_sig_ptr, NoContract_error_signature)
                            mstore(NoContract_error_token_ptr, token)
                            revert(NoContract_error_sig_ptr, NoContract_error_length)
                        }
                        // Get the total number of supplied ids.
                        let idsLength := calldataload(
                            add(elementPtr, ConduitBatch1155Transfer_ids_length_offset)
                        )
                        // Determine the expected offset for the amounts array.
                        let expectedAmountsOffset := add(
                            ConduitBatch1155Transfer_amounts_length_baseOffset,
                            mul(idsLength, OneWord)
                        )
                        // Validate struct encoding.
                        let invalidEncoding := iszero(
                            and(
                                // ids.length == amounts.length
                                eq(
                                    idsLength,
                                    calldataload(add(elementPtr, expectedAmountsOffset))
                                ),
                                and(
                                    // ids_offset == 0xa0
                                    eq(
                                        calldataload(
                                            add(
                                                elementPtr,
                                                ConduitBatch1155Transfer_ids_head_offset
                                            )
                                        ),
                                        ConduitBatch1155Transfer_ids_length_offset
                                    ),
                                    // amounts_offset == 0xc0 + ids.length*32
                                    eq(
                                        calldataload(
                                            add(
                                                elementPtr,
                                                ConduitBatchTransfer_amounts_head_offset
                                            )
                                        ),
                                        expectedAmountsOffset
                                    )
                                )
                            )
                        )
                        // Revert with an error if the encoding is not valid.
                        if invalidEncoding {
                            mstore(
                                Invalid1155BatchTransferEncoding_ptr,
                                Invalid1155BatchTransferEncoding_selector
                            )
                            revert(
                                Invalid1155BatchTransferEncoding_ptr,
                                Invalid1155BatchTransferEncoding_length
                            )
                        }
                        // Update the offset position for the next loop
                        nextElementHeadPtr := add(nextElementHeadPtr, OneWord)
                        // Copy the first section of calldata (before dynamic values).
                        calldatacopy(
                            BatchTransfer1155Params_ptr,
                            add(elementPtr, ConduitBatch1155Transfer_from_offset),
                            ConduitBatch1155Transfer_usable_head_size
                        )
                        // Determine size of calldata required for ids and amounts. Note
                        // that the size includes both lengths as well as the data.
                        let idsAndAmountsSize := add(TwoWords, mul(idsLength, TwoWords))
                        // Update the offset for the data array in memory.
                        mstore(
                            BatchTransfer1155Params_data_head_ptr,
                            add(
                                BatchTransfer1155Params_ids_length_offset,
                                idsAndAmountsSize
                            )
                        )
                        // Set the length of the data array in memory to zero.
                        mstore(
                            add(
                                BatchTransfer1155Params_data_length_basePtr,
                                idsAndAmountsSize
                            ),
                            0
                        )
                        // Determine the total calldata size for the call to transfer.
                        let transferDataSize := add(
                            BatchTransfer1155Params_calldata_baseSize,
                            idsAndAmountsSize
                        )
                        // Copy second section of calldata (including dynamic values).
                        calldatacopy(
                            BatchTransfer1155Params_ids_length_ptr,
                            add(elementPtr, ConduitBatch1155Transfer_ids_length_offset),
                            idsAndAmountsSize
                        )
                        // Perform the call to transfer 1155 tokens.
                        let success := call(
                            gas(),
                            token,
                            0,
                            ConduitBatch1155Transfer_from_offset, // Data portion start.
                            transferDataSize, // Location of the length of callData.
                            0,
                            0
                        )
                        // If the transfer reverted:
                        if iszero(success) {
                            // If it returned a message, bubble it up as long as
                            // sufficient gas remains to do so:
                            if returndatasize() {
                                // Ensure that sufficient gas is available to copy
                                // returndata while expanding memory where necessary.
                                // Start by computing word size of returndata and
                                // allocated memory. Round up to the nearest full word.
                                let returnDataWords := div(
                                    add(returndatasize(), AlmostOneWord),
                                    OneWord
                                )
                                // Note: use transferDataSize in place of msize() to
                                // work around a Yul warning that prevents accessing
                                // msize directly when the IR pipeline is activated.
                                // The free memory pointer is not used here because
                                // this function does almost all memory management
                                // manually and does not update it, and transferDataSize
                                // should be the largest memory value used (unless a
                                // previous batch was larger).
                                let msizeWords := div(transferDataSize, OneWord)
                                // Next, compute the cost of the returndatacopy.
                                let cost := mul(CostPerWord, returnDataWords)
                                // Then, compute cost of new memory allocation.
                                if gt(returnDataWords, msizeWords) {
                                    cost := add(
                                        cost,
                                        add(
                                            mul(
                                                sub(returnDataWords, msizeWords),
                                                CostPerWord
                                            ),
                                            div(
                                                sub(
                                                    mul(
                                                        returnDataWords,
                                                        returnDataWords
                                                    ),
                                                    mul(msizeWords, msizeWords)
                                                ),
                                                MemoryExpansionCoefficient
                                            )
                                        )
                                    )
                                }
                                // Finally, add a small constant and compare to gas
                                // remaining; bubble up the revert data if enough gas is
                                // still available.
                                if lt(add(cost, ExtraGasBuffer), gas()) {
                                    // Copy returndata to memory; overwrite existing.
                                    returndatacopy(0, 0, returndatasize())
                                    // Revert with memory region containing returndata.
                                    revert(0, returndatasize())
                                }
                            }
                            // Set the error signature.
                            mstore(
                                0,
                                ERC1155BatchTransferGenericFailure_error_signature
                            )
                            // Write the token.
                            mstore(ERC1155BatchTransferGenericFailure_token_ptr, token)
                            // Increase the offset to ids by 32.
                            mstore(
                                BatchTransfer1155Params_ids_head_ptr,
                                ERC1155BatchTransferGenericFailure_ids_offset
                            )
                            // Increase the offset to amounts by 32.
                            mstore(
                                BatchTransfer1155Params_amounts_head_ptr,
                                add(
                                    OneWord,
                                    mload(BatchTransfer1155Params_amounts_head_ptr)
                                )
                            )
                            // Return modified region. The total size stays the same as
                            // `token` uses the same number of bytes as `data.length`.
                            revert(0, transferDataSize)
                        }
                    }
                    // Reset the free memory pointer to the default value; memory must
                    // be assumed to be dirtied and not reused from this point forward.
                    // Also note that the zero slot is not reset to zero, meaning empty
                    // arrays cannot be safely created or utilized until it is restored.
                    mstore(FreeMemoryPointerSlot, DefaultFreeMemoryPointer)
                }
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity >=0.8.7;
        import { ConduitItemType } from "./ConduitEnums.sol";
        struct ConduitTransfer {
            ConduitItemType itemType;
            address token;
            address from;
            address to;
            uint256 identifier;
            uint256 amount;
        }
        struct ConduitBatch1155Transfer {
            address token;
            address from;
            address to;
            uint256[] ids;
            uint256[] amounts;
        }
        // SPDX-License-Identifier: MIT
        pragma solidity >=0.8.7;
        // error ChannelClosed(address channel)
        uint256 constant ChannelClosed_error_signature = (
            0x93daadf200000000000000000000000000000000000000000000000000000000
        );
        uint256 constant ChannelClosed_error_ptr = 0x00;
        uint256 constant ChannelClosed_channel_ptr = 0x4;
        uint256 constant ChannelClosed_error_length = 0x24;
        // For the mapping:
        // mapping(address => bool) channels
        // The position in storage for a particular account is:
        // keccak256(abi.encode(account, channels.slot))
        uint256 constant ChannelKey_channel_ptr = 0x00;
        uint256 constant ChannelKey_slot_ptr = 0x20;
        uint256 constant ChannelKey_length = 0x40;
        // SPDX-License-Identifier: MIT
        pragma solidity >=0.8.7;
        /*
         * -------------------------- Disambiguation & Other Notes ---------------------
         *    - The term "head" is used as it is in the documentation for ABI encoding,
         *      but only in reference to dynamic types, i.e. it always refers to the
         *      offset or pointer to the body of a dynamic type. In calldata, the head
         *      is always an offset (relative to the parent object), while in memory,
         *      the head is always the pointer to the body. More information found here:
         *      https://docs.soliditylang.org/en/v0.8.14/abi-spec.html#argument-encoding
         *        - Note that the length of an array is separate from and precedes the
         *          head of the array.
         *
         *    - The term "body" is used in place of the term "head" used in the ABI
         *      documentation. It refers to the start of the data for a dynamic type,
         *      e.g. the first word of a struct or the first word of the first element
         *      in an array.
         *
         *    - The term "pointer" is used to describe the absolute position of a value
         *      and never an offset relative to another value.
         *        - The suffix "_ptr" refers to a memory pointer.
         *        - The suffix "_cdPtr" refers to a calldata pointer.
         *
         *    - The term "offset" is used to describe the position of a value relative
         *      to some parent value. For example, OrderParameters_conduit_offset is the
         *      offset to the "conduit" value in the OrderParameters struct relative to
         *      the start of the body.
         *        - Note: Offsets are used to derive pointers.
         *
         *    - Some structs have pointers defined for all of their fields in this file.
         *      Lines which are commented out are fields that are not used in the
         *      codebase but have been left in for readability.
         */
        uint256 constant AlmostOneWord = 0x1f;
        uint256 constant OneWord = 0x20;
        uint256 constant TwoWords = 0x40;
        uint256 constant ThreeWords = 0x60;
        uint256 constant FreeMemoryPointerSlot = 0x40;
        uint256 constant ZeroSlot = 0x60;
        uint256 constant DefaultFreeMemoryPointer = 0x80;
        uint256 constant Slot0x80 = 0x80;
        uint256 constant Slot0xA0 = 0xa0;
        uint256 constant Slot0xC0 = 0xc0;
        // abi.encodeWithSignature("transferFrom(address,address,uint256)")
        uint256 constant ERC20_transferFrom_signature = (
            0x23b872dd00000000000000000000000000000000000000000000000000000000
        );
        uint256 constant ERC20_transferFrom_sig_ptr = 0x0;
        uint256 constant ERC20_transferFrom_from_ptr = 0x04;
        uint256 constant ERC20_transferFrom_to_ptr = 0x24;
        uint256 constant ERC20_transferFrom_amount_ptr = 0x44;
        uint256 constant ERC20_transferFrom_length = 0x64; // 4 + 32 * 3 == 100
        // abi.encodeWithSignature(
        //     "safeTransferFrom(address,address,uint256,uint256,bytes)"
        // )
        uint256 constant ERC1155_safeTransferFrom_signature = (
            0xf242432a00000000000000000000000000000000000000000000000000000000
        );
        uint256 constant ERC1155_safeTransferFrom_sig_ptr = 0x0;
        uint256 constant ERC1155_safeTransferFrom_from_ptr = 0x04;
        uint256 constant ERC1155_safeTransferFrom_to_ptr = 0x24;
        uint256 constant ERC1155_safeTransferFrom_id_ptr = 0x44;
        uint256 constant ERC1155_safeTransferFrom_amount_ptr = 0x64;
        uint256 constant ERC1155_safeTransferFrom_data_offset_ptr = 0x84;
        uint256 constant ERC1155_safeTransferFrom_data_length_ptr = 0xa4;
        uint256 constant ERC1155_safeTransferFrom_length = 0xc4; // 4 + 32 * 6 == 196
        uint256 constant ERC1155_safeTransferFrom_data_length_offset = 0xa0;
        // abi.encodeWithSignature(
        //     "safeBatchTransferFrom(address,address,uint256[],uint256[],bytes)"
        // )
        uint256 constant ERC1155_safeBatchTransferFrom_signature = (
            0x2eb2c2d600000000000000000000000000000000000000000000000000000000
        );
        bytes4 constant ERC1155_safeBatchTransferFrom_selector = bytes4(
            bytes32(ERC1155_safeBatchTransferFrom_signature)
        );
        uint256 constant ERC721_transferFrom_signature = ERC20_transferFrom_signature;
        uint256 constant ERC721_transferFrom_sig_ptr = 0x0;
        uint256 constant ERC721_transferFrom_from_ptr = 0x04;
        uint256 constant ERC721_transferFrom_to_ptr = 0x24;
        uint256 constant ERC721_transferFrom_id_ptr = 0x44;
        uint256 constant ERC721_transferFrom_length = 0x64; // 4 + 32 * 3 == 100
        // abi.encodeWithSignature("NoContract(address)")
        uint256 constant NoContract_error_signature = (
            0x5f15d67200000000000000000000000000000000000000000000000000000000
        );
        uint256 constant NoContract_error_sig_ptr = 0x0;
        uint256 constant NoContract_error_token_ptr = 0x4;
        uint256 constant NoContract_error_length = 0x24; // 4 + 32 == 36
        // abi.encodeWithSignature(
        //     "TokenTransferGenericFailure(address,address,address,uint256,uint256)"
        // )
        uint256 constant TokenTransferGenericFailure_error_signature = (
            0xf486bc8700000000000000000000000000000000000000000000000000000000
        );
        uint256 constant TokenTransferGenericFailure_error_sig_ptr = 0x0;
        uint256 constant TokenTransferGenericFailure_error_token_ptr = 0x4;
        uint256 constant TokenTransferGenericFailure_error_from_ptr = 0x24;
        uint256 constant TokenTransferGenericFailure_error_to_ptr = 0x44;
        uint256 constant TokenTransferGenericFailure_error_id_ptr = 0x64;
        uint256 constant TokenTransferGenericFailure_error_amount_ptr = 0x84;
        // 4 + 32 * 5 == 164
        uint256 constant TokenTransferGenericFailure_error_length = 0xa4;
        // abi.encodeWithSignature(
        //     "BadReturnValueFromERC20OnTransfer(address,address,address,uint256)"
        // )
        uint256 constant BadReturnValueFromERC20OnTransfer_error_signature = (
            0x9889192300000000000000000000000000000000000000000000000000000000
        );
        uint256 constant BadReturnValueFromERC20OnTransfer_error_sig_ptr = 0x0;
        uint256 constant BadReturnValueFromERC20OnTransfer_error_token_ptr = 0x4;
        uint256 constant BadReturnValueFromERC20OnTransfer_error_from_ptr = 0x24;
        uint256 constant BadReturnValueFromERC20OnTransfer_error_to_ptr = 0x44;
        uint256 constant BadReturnValueFromERC20OnTransfer_error_amount_ptr = 0x64;
        // 4 + 32 * 4 == 132
        uint256 constant BadReturnValueFromERC20OnTransfer_error_length = 0x84;
        uint256 constant ExtraGasBuffer = 0x20;
        uint256 constant CostPerWord = 3;
        uint256 constant MemoryExpansionCoefficient = 0x200;
        // Values are offset by 32 bytes in order to write the token to the beginning
        // in the event of a revert
        uint256 constant BatchTransfer1155Params_ptr = 0x24;
        uint256 constant BatchTransfer1155Params_ids_head_ptr = 0x64;
        uint256 constant BatchTransfer1155Params_amounts_head_ptr = 0x84;
        uint256 constant BatchTransfer1155Params_data_head_ptr = 0xa4;
        uint256 constant BatchTransfer1155Params_data_length_basePtr = 0xc4;
        uint256 constant BatchTransfer1155Params_calldata_baseSize = 0xc4;
        uint256 constant BatchTransfer1155Params_ids_length_ptr = 0xc4;
        uint256 constant BatchTransfer1155Params_ids_length_offset = 0xa0;
        uint256 constant BatchTransfer1155Params_amounts_length_baseOffset = 0xc0;
        uint256 constant BatchTransfer1155Params_data_length_baseOffset = 0xe0;
        uint256 constant ConduitBatch1155Transfer_usable_head_size = 0x80;
        uint256 constant ConduitBatch1155Transfer_from_offset = 0x20;
        uint256 constant ConduitBatch1155Transfer_ids_head_offset = 0x60;
        uint256 constant ConduitBatch1155Transfer_amounts_head_offset = 0x80;
        uint256 constant ConduitBatch1155Transfer_ids_length_offset = 0xa0;
        uint256 constant ConduitBatch1155Transfer_amounts_length_baseOffset = 0xc0;
        uint256 constant ConduitBatch1155Transfer_calldata_baseSize = 0xc0;
        // Note: abbreviated version of above constant to adhere to line length limit.
        uint256 constant ConduitBatchTransfer_amounts_head_offset = 0x80;
        uint256 constant Invalid1155BatchTransferEncoding_ptr = 0x00;
        uint256 constant Invalid1155BatchTransferEncoding_length = 0x04;
        uint256 constant Invalid1155BatchTransferEncoding_selector = (
            0xeba2084c00000000000000000000000000000000000000000000000000000000
        );
        uint256 constant ERC1155BatchTransferGenericFailure_error_signature = (
            0xafc445e200000000000000000000000000000000000000000000000000000000
        );
        uint256 constant ERC1155BatchTransferGenericFailure_token_ptr = 0x04;
        uint256 constant ERC1155BatchTransferGenericFailure_ids_offset = 0xc0;
        // SPDX-License-Identifier: MIT
        pragma solidity >=0.8.7;
        /**
         * @title TokenTransferrerErrors
         */
        interface TokenTransferrerErrors {
            /**
             * @dev Revert with an error when an ERC721 transfer with amount other than
             *      one is attempted.
             */
            error InvalidERC721TransferAmount();
            /**
             * @dev Revert with an error when attempting to fulfill an order where an
             *      item has an amount of zero.
             */
            error MissingItemAmount();
            /**
             * @dev Revert with an error when attempting to fulfill an order where an
             *      item has unused parameters. This includes both the token and the
             *      identifier parameters for native transfers as well as the identifier
             *      parameter for ERC20 transfers. Note that the conduit does not
             *      perform this check, leaving it up to the calling channel to enforce
             *      when desired.
             */
            error UnusedItemParameters();
            /**
             * @dev Revert with an error when an ERC20, ERC721, or ERC1155 token
             *      transfer reverts.
             *
             * @param token      The token for which the transfer was attempted.
             * @param from       The source of the attempted transfer.
             * @param to         The recipient of the attempted transfer.
             * @param identifier The identifier for the attempted transfer.
             * @param amount     The amount for the attempted transfer.
             */
            error TokenTransferGenericFailure(
                address token,
                address from,
                address to,
                uint256 identifier,
                uint256 amount
            );
            /**
             * @dev Revert with an error when a batch ERC1155 token transfer reverts.
             *
             * @param token       The token for which the transfer was attempted.
             * @param from        The source of the attempted transfer.
             * @param to          The recipient of the attempted transfer.
             * @param identifiers The identifiers for the attempted transfer.
             * @param amounts     The amounts for the attempted transfer.
             */
            error ERC1155BatchTransferGenericFailure(
                address token,
                address from,
                address to,
                uint256[] identifiers,
                uint256[] amounts
            );
            /**
             * @dev Revert with an error when an ERC20 token transfer returns a falsey
             *      value.
             *
             * @param token      The token for which the ERC20 transfer was attempted.
             * @param from       The source of the attempted ERC20 transfer.
             * @param to         The recipient of the attempted ERC20 transfer.
             * @param amount     The amount for the attempted ERC20 transfer.
             */
            error BadReturnValueFromERC20OnTransfer(
                address token,
                address from,
                address to,
                uint256 amount
            );
            /**
             * @dev Revert with an error when an account being called as an assumed
             *      contract does not have code and returns no data.
             *
             * @param account The account that should contain code.
             */
            error NoContract(address account);
            /**
             * @dev Revert with an error when attempting to execute an 1155 batch
             *      transfer using calldata not produced by default ABI encoding or with
             *      different lengths for ids and amounts arrays.
             */
            error Invalid1155BatchTransferEncoding();
        }