Transaction Hash:
Block:
15523340 at Sep-12-2022 10:08:38 PM +UTC
Transaction Fee:
0.004249201277566325 ETH
$10.72
Gas Used:
78,025 Gas / 54.459484493 Gwei
Emitted Events:
53 |
TransparentUpgradeableProxy.0x1ff60751a354563b8db02f735046d6cecdd1ec33b27b453a7925da806b529adb( 0x1ff60751a354563b8db02f735046d6cecdd1ec33b27b453a7925da806b529adb, 0x000000000000000000000000ce166a51f8bf49fdac0aee39da89f71fcd8eeb14, 0000000000000000000000000000000000000000000000000000000000000002, 0000000000000000000000000000000000000000000000000000000000000001, 00000000000000000000000000000000000000000000000000000000631bcc64 )
|
Account State Difference:
Address | Before | After | State Difference | ||
---|---|---|---|---|---|
0x4B5057B2...fF2FDaCad | 27.409784899482710406 Eth | 27.417259899482710406 Eth | 0.007475 | ||
0xC5622f14...E5EB48568 | (StrongBlock: Node Rewards) | ||||
0xCe166A51...FCd8Eeb14 |
0.015971574899519601 Eth
Nonce: 7
|
0.004247373621953276 Eth
Nonce: 8
| 0.011724201277566325 | ||
0xEA674fdD...16B898ec8
Miner
| (Ethermine) | 1,068.079824415537467594 Eth | 1,068.079941453037467594 Eth | 0.0001170375 |
Execution Trace
ETH 0.007475
TransparentUpgradeableProxy.c290d691( )
ETH 0.007475
MultiNodeV2.pay( _nodeId=1 ) => ( 7475000000000000 )
- ETH 0.007475
0x4b5057b2c87ec9e7c047fb00c0e406dff2fdacad.CALL( )
- ETH 0.007475
pay[MultiNodeV2 (ln:257)]
getNodeId[MultiNodeV2 (ln:258)]
getRecurringFeeInWei[MultiNodeV2 (ln:260)]
canNodeBePaid[MultiNodeV2 (ln:261)]
doesNodeExist[MultiNodeV2 (ln:59)]
getNodeId[MultiNodeV2 (ln:62)]
hasNodeExpired[MultiNodeV2 (ln:59)]
getNodeId[MultiNodeV2 (ln:71)]
getRecurringPaymentCycle[MultiNodeV2 (ln:75)]
getGracePeriod[MultiNodeV2 (ln:75)]
hasMaxPayments[MultiNodeV2 (ln:59)]
getNodeId[MultiNodeV2 (ln:78)]
getRecurringPaymentCycle[MultiNodeV2 (ln:81)]
getPayCyclesLimit[MultiNodeV2 (ln:82)]
getRecurringPaymentCycle[MultiNodeV2 (ln:263)]
Paid[MultiNodeV2 (ln:264)]
sendValue[MultiNodeV2 (ln:265)]
isUserCall[MultiNodeV2 (ln:266)]
sendValue[MultiNodeV2 (ln:266)]
payable[MultiNodeV2 (ln:266)]
File 1 of 2: TransparentUpgradeableProxy
File 2 of 2: MultiNodeV2
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import "@openzeppelin/contracts/proxy/ERC1967/ERC1967Proxy.sol"; import "@openzeppelin/contracts/proxy/transparent/TransparentUpgradeableProxy.sol"; import "@openzeppelin/contracts/proxy/transparent/ProxyAdmin.sol"; // Kept for backwards compatibility with older versions of Hardhat and Truffle plugins. contract AdminUpgradeabilityProxy is TransparentUpgradeableProxy { constructor(address logic, address admin, bytes memory data) payable TransparentUpgradeableProxy(logic, admin, data) {} } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import "../Proxy.sol"; import "./ERC1967Upgrade.sol"; /** * @dev This contract implements an upgradeable proxy. It is upgradeable because calls are delegated to an * implementation address that can be changed. This address is stored in storage in the location specified by * https://eips.ethereum.org/EIPS/eip-1967[EIP1967], so that it doesn't conflict with the storage layout of the * implementation behind the proxy. */ contract ERC1967Proxy is Proxy, ERC1967Upgrade { /** * @dev Initializes the upgradeable proxy with an initial implementation specified by `_logic`. * * If `_data` is nonempty, it's used as data in a delegate call to `_logic`. This will typically be an encoded * function call, and allows initializating the storage of the proxy like a Solidity constructor. */ constructor(address _logic, bytes memory _data) payable { assert(_IMPLEMENTATION_SLOT == bytes32(uint256(keccak256("eip1967.proxy.implementation")) - 1)); _upgradeToAndCall(_logic, _data, false); } /** * @dev Returns the current implementation address. */ function _implementation() internal view virtual override returns (address impl) { return ERC1967Upgrade._getImplementation(); } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import "../ERC1967/ERC1967Proxy.sol"; /** * @dev This contract implements a proxy that is upgradeable by an admin. * * To avoid https://medium.com/nomic-labs-blog/malicious-backdoors-in-ethereum-proxies-62629adf3357[proxy selector * clashing], which can potentially be used in an attack, this contract uses the * https://blog.openzeppelin.com/the-transparent-proxy-pattern/[transparent proxy pattern]. This pattern implies two * things that go hand in hand: * * 1. If any account other than the admin calls the proxy, the call will be forwarded to the implementation, even if * that call matches one of the admin functions exposed by the proxy itself. * 2. If the admin calls the proxy, it can access the admin functions, but its calls will never be forwarded to the * implementation. If the admin tries to call a function on the implementation it will fail with an error that says * "admin cannot fallback to proxy target". * * These properties mean that the admin account can only be used for admin actions like upgrading the proxy or changing * the admin, so it's best if it's a dedicated account that is not used for anything else. This will avoid headaches due * to sudden errors when trying to call a function from the proxy implementation. * * Our recommendation is for the dedicated account to be an instance of the {ProxyAdmin} contract. If set up this way, * you should think of the `ProxyAdmin` instance as the real administrative interface of your proxy. */ contract TransparentUpgradeableProxy is ERC1967Proxy { /** * @dev Initializes an upgradeable proxy managed by `_admin`, backed by the implementation at `_logic`, and * optionally initialized with `_data` as explained in {ERC1967Proxy-constructor}. */ constructor(address _logic, address admin_, bytes memory _data) payable ERC1967Proxy(_logic, _data) { assert(_ADMIN_SLOT == bytes32(uint256(keccak256("eip1967.proxy.admin")) - 1)); _changeAdmin(admin_); } /** * @dev Modifier used internally that will delegate the call to the implementation unless the sender is the admin. */ modifier ifAdmin() { if (msg.sender == _getAdmin()) { _; } else { _fallback(); } } /** * @dev Returns the current admin. * * NOTE: Only the admin can call this function. See {ProxyAdmin-getProxyAdmin}. * * TIP: To get this value clients can read directly from the storage slot shown below (specified by EIP1967) using the * https://eth.wiki/json-rpc/API#eth_getstorageat[`eth_getStorageAt`] RPC call. * `0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103` */ function admin() external ifAdmin returns (address admin_) { admin_ = _getAdmin(); } /** * @dev Returns the current implementation. * * NOTE: Only the admin can call this function. See {ProxyAdmin-getProxyImplementation}. * * TIP: To get this value clients can read directly from the storage slot shown below (specified by EIP1967) using the * https://eth.wiki/json-rpc/API#eth_getstorageat[`eth_getStorageAt`] RPC call. * `0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc` */ function implementation() external ifAdmin returns (address implementation_) { implementation_ = _implementation(); } /** * @dev Changes the admin of the proxy. * * Emits an {AdminChanged} event. * * NOTE: Only the admin can call this function. See {ProxyAdmin-changeProxyAdmin}. */ function changeAdmin(address newAdmin) external virtual ifAdmin { _changeAdmin(newAdmin); } /** * @dev Upgrade the implementation of the proxy. * * NOTE: Only the admin can call this function. See {ProxyAdmin-upgrade}. */ function upgradeTo(address newImplementation) external ifAdmin { _upgradeToAndCall(newImplementation, bytes(""), false); } /** * @dev Upgrade the implementation of the proxy, and then call a function from the new implementation as specified * by `data`, which should be an encoded function call. This is useful to initialize new storage variables in the * proxied contract. * * NOTE: Only the admin can call this function. See {ProxyAdmin-upgradeAndCall}. */ function upgradeToAndCall(address newImplementation, bytes calldata data) external payable ifAdmin { _upgradeToAndCall(newImplementation, data, true); } /** * @dev Returns the current admin. */ function _admin() internal view virtual returns (address) { return _getAdmin(); } /** * @dev Makes sure the admin cannot access the fallback function. See {Proxy-_beforeFallback}. */ function _beforeFallback() internal virtual override { require(msg.sender != _getAdmin(), "TransparentUpgradeableProxy: admin cannot fallback to proxy target"); super._beforeFallback(); } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import "./TransparentUpgradeableProxy.sol"; import "../../access/Ownable.sol"; /** * @dev This is an auxiliary contract meant to be assigned as the admin of a {TransparentUpgradeableProxy}. For an * explanation of why you would want to use this see the documentation for {TransparentUpgradeableProxy}. */ contract ProxyAdmin is Ownable { /** * @dev Returns the current implementation of `proxy`. * * Requirements: * * - This contract must be the admin of `proxy`. */ function getProxyImplementation(TransparentUpgradeableProxy proxy) public view virtual returns (address) { // We need to manually run the static call since the getter cannot be flagged as view // bytes4(keccak256("implementation()")) == 0x5c60da1b (bool success, bytes memory returndata) = address(proxy).staticcall(hex"5c60da1b"); require(success); return abi.decode(returndata, (address)); } /** * @dev Returns the current admin of `proxy`. * * Requirements: * * - This contract must be the admin of `proxy`. */ function getProxyAdmin(TransparentUpgradeableProxy proxy) public view virtual returns (address) { // We need to manually run the static call since the getter cannot be flagged as view // bytes4(keccak256("admin()")) == 0xf851a440 (bool success, bytes memory returndata) = address(proxy).staticcall(hex"f851a440"); require(success); return abi.decode(returndata, (address)); } /** * @dev Changes the admin of `proxy` to `newAdmin`. * * Requirements: * * - This contract must be the current admin of `proxy`. */ function changeProxyAdmin(TransparentUpgradeableProxy proxy, address newAdmin) public virtual onlyOwner { proxy.changeAdmin(newAdmin); } /** * @dev Upgrades `proxy` to `implementation`. See {TransparentUpgradeableProxy-upgradeTo}. * * Requirements: * * - This contract must be the admin of `proxy`. */ function upgrade(TransparentUpgradeableProxy proxy, address implementation) public virtual onlyOwner { proxy.upgradeTo(implementation); } /** * @dev Upgrades `proxy` to `implementation` and calls a function on the new implementation. See * {TransparentUpgradeableProxy-upgradeToAndCall}. * * Requirements: * * - This contract must be the admin of `proxy`. */ function upgradeAndCall(TransparentUpgradeableProxy proxy, address implementation, bytes memory data) public payable virtual onlyOwner { proxy.upgradeToAndCall{value: msg.value}(implementation, data); } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /** * @dev This abstract contract provides a fallback function that delegates all calls to another contract using the EVM * instruction `delegatecall`. We refer to the second contract as the _implementation_ behind the proxy, and it has to * be specified by overriding the virtual {_implementation} function. * * Additionally, delegation to the implementation can be triggered manually through the {_fallback} function, or to a * different contract through the {_delegate} function. * * The success and return data of the delegated call will be returned back to the caller of the proxy. */ abstract contract Proxy { /** * @dev Delegates the current call to `implementation`. * * This function does not return to its internall call site, it will return directly to the external caller. */ function _delegate(address implementation) internal virtual { // solhint-disable-next-line no-inline-assembly assembly { // Copy msg.data. We take full control of memory in this inline assembly // block because it will not return to Solidity code. We overwrite the // Solidity scratch pad at memory position 0. calldatacopy(0, 0, calldatasize()) // Call the implementation. // out and outsize are 0 because we don't know the size yet. let result := delegatecall(gas(), implementation, 0, calldatasize(), 0, 0) // Copy the returned data. returndatacopy(0, 0, returndatasize()) switch result // delegatecall returns 0 on error. case 0 { revert(0, returndatasize()) } default { return(0, returndatasize()) } } } /** * @dev This is a virtual function that should be overriden so it returns the address to which the fallback function * and {_fallback} should delegate. */ function _implementation() internal view virtual returns (address); /** * @dev Delegates the current call to the address returned by `_implementation()`. * * This function does not return to its internall call site, it will return directly to the external caller. */ function _fallback() internal virtual { _beforeFallback(); _delegate(_implementation()); } /** * @dev Fallback function that delegates calls to the address returned by `_implementation()`. Will run if no other * function in the contract matches the call data. */ fallback () external payable virtual { _fallback(); } /** * @dev Fallback function that delegates calls to the address returned by `_implementation()`. Will run if call data * is empty. */ receive () external payable virtual { _fallback(); } /** * @dev Hook that is called before falling back to the implementation. Can happen as part of a manual `_fallback` * call, or as part of the Solidity `fallback` or `receive` functions. * * If overriden should call `super._beforeFallback()`. */ function _beforeFallback() internal virtual { } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.2; import "../beacon/IBeacon.sol"; import "../../utils/Address.sol"; import "../../utils/StorageSlot.sol"; /** * @dev This abstract contract provides getters and event emitting update functions for * https://eips.ethereum.org/EIPS/eip-1967[EIP1967] slots. * * _Available since v4.1._ * * @custom:oz-upgrades-unsafe-allow delegatecall */ abstract contract ERC1967Upgrade { // This is the keccak-256 hash of "eip1967.proxy.rollback" subtracted by 1 bytes32 private constant _ROLLBACK_SLOT = 0x4910fdfa16fed3260ed0e7147f7cc6da11a60208b5b9406d12a635614ffd9143; /** * @dev Storage slot with the address of the current implementation. * This is the keccak-256 hash of "eip1967.proxy.implementation" subtracted by 1, and is * validated in the constructor. */ bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc; /** * @dev Emitted when the implementation is upgraded. */ event Upgraded(address indexed implementation); /** * @dev Returns the current implementation address. */ function _getImplementation() internal view returns (address) { return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value; } /** * @dev Stores a new address in the EIP1967 implementation slot. */ function _setImplementation(address newImplementation) private { require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract"); StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation; } /** * @dev Perform implementation upgrade * * Emits an {Upgraded} event. */ function _upgradeTo(address newImplementation) internal { _setImplementation(newImplementation); emit Upgraded(newImplementation); } /** * @dev Perform implementation upgrade with additional setup call. * * Emits an {Upgraded} event. */ function _upgradeToAndCall(address newImplementation, bytes memory data, bool forceCall) internal { _setImplementation(newImplementation); emit Upgraded(newImplementation); if (data.length > 0 || forceCall) { Address.functionDelegateCall(newImplementation, data); } } /** * @dev Perform implementation upgrade with security checks for UUPS proxies, and additional setup call. * * Emits an {Upgraded} event. */ function _upgradeToAndCallSecure(address newImplementation, bytes memory data, bool forceCall) internal { address oldImplementation = _getImplementation(); // Initial upgrade and setup call _setImplementation(newImplementation); if (data.length > 0 || forceCall) { Address.functionDelegateCall(newImplementation, data); } // Perform rollback test if not already in progress StorageSlot.BooleanSlot storage rollbackTesting = StorageSlot.getBooleanSlot(_ROLLBACK_SLOT); if (!rollbackTesting.value) { // Trigger rollback using upgradeTo from the new implementation rollbackTesting.value = true; Address.functionDelegateCall( newImplementation, abi.encodeWithSignature( "upgradeTo(address)", oldImplementation ) ); rollbackTesting.value = false; // Check rollback was effective require(oldImplementation == _getImplementation(), "ERC1967Upgrade: upgrade breaks further upgrades"); // Finally reset to the new implementation and log the upgrade _setImplementation(newImplementation); emit Upgraded(newImplementation); } } /** * @dev Perform beacon upgrade with additional setup call. Note: This upgrades the address of the beacon, it does * not upgrade the implementation contained in the beacon (see {UpgradeableBeacon-_setImplementation} for that). * * Emits a {BeaconUpgraded} event. */ function _upgradeBeaconToAndCall(address newBeacon, bytes memory data, bool forceCall) internal { _setBeacon(newBeacon); emit BeaconUpgraded(newBeacon); if (data.length > 0 || forceCall) { Address.functionDelegateCall(IBeacon(newBeacon).implementation(), data); } } /** * @dev Storage slot with the admin of the contract. * This is the keccak-256 hash of "eip1967.proxy.admin" subtracted by 1, and is * validated in the constructor. */ bytes32 internal constant _ADMIN_SLOT = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103; /** * @dev Emitted when the admin account has changed. */ event AdminChanged(address previousAdmin, address newAdmin); /** * @dev Returns the current admin. */ function _getAdmin() internal view returns (address) { return StorageSlot.getAddressSlot(_ADMIN_SLOT).value; } /** * @dev Stores a new address in the EIP1967 admin slot. */ function _setAdmin(address newAdmin) private { require(newAdmin != address(0), "ERC1967: new admin is the zero address"); StorageSlot.getAddressSlot(_ADMIN_SLOT).value = newAdmin; } /** * @dev Changes the admin of the proxy. * * Emits an {AdminChanged} event. */ function _changeAdmin(address newAdmin) internal { emit AdminChanged(_getAdmin(), newAdmin); _setAdmin(newAdmin); } /** * @dev The storage slot of the UpgradeableBeacon contract which defines the implementation for this proxy. * This is bytes32(uint256(keccak256('eip1967.proxy.beacon')) - 1)) and is validated in the constructor. */ bytes32 internal constant _BEACON_SLOT = 0xa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6cb3582b35133d50; /** * @dev Emitted when the beacon is upgraded. */ event BeaconUpgraded(address indexed beacon); /** * @dev Returns the current beacon. */ function _getBeacon() internal view returns (address) { return StorageSlot.getAddressSlot(_BEACON_SLOT).value; } /** * @dev Stores a new beacon in the EIP1967 beacon slot. */ function _setBeacon(address newBeacon) private { require( Address.isContract(newBeacon), "ERC1967: new beacon is not a contract" ); require( Address.isContract(IBeacon(newBeacon).implementation()), "ERC1967: beacon implementation is not a contract" ); StorageSlot.getAddressSlot(_BEACON_SLOT).value = newBeacon; } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /** * @dev This is the interface that {BeaconProxy} expects of its beacon. */ interface IBeacon { /** * @dev Must return an address that can be used as a delegate call target. * * {BeaconProxy} will check that this address is a contract. */ function implementation() external view returns (address); } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize, which returns 0 for contracts in // construction, since the code is only stored at the end of the // constructor execution. uint256 size; // solhint-disable-next-line no-inline-assembly assembly { size := extcodesize(account) } return size > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); // solhint-disable-next-line avoid-low-level-calls, avoid-call-value (bool success, ) = recipient.call{ value: amount }(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain`call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCall(target, data, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); require(isContract(target), "Address: call to non-contract"); // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = target.call{ value: value }(data); return _verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data, string memory errorMessage) internal view returns (bytes memory) { require(isContract(target), "Address: static call to non-contract"); // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = target.staticcall(data); return _verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { return functionDelegateCall(target, data, "Address: low-level delegate call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) { require(isContract(target), "Address: delegate call to non-contract"); // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = target.delegatecall(data); return _verifyCallResult(success, returndata, errorMessage); } function _verifyCallResult(bool success, bytes memory returndata, string memory errorMessage) private pure returns(bytes memory) { if (success) { return returndata; } else { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly // solhint-disable-next-line no-inline-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /** * @dev Library for reading and writing primitive types to specific storage slots. * * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts. * This library helps with reading and writing to such slots without the need for inline assembly. * * The functions in this library return Slot structs that contain a `value` member that can be used to read or write. * * Example usage to set ERC1967 implementation slot: * ``` * contract ERC1967 { * bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc; * * function _getImplementation() internal view returns (address) { * return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value; * } * * function _setImplementation(address newImplementation) internal { * require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract"); * StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation; * } * } * ``` * * _Available since v4.1 for `address`, `bool`, `bytes32`, and `uint256`._ */ library StorageSlot { struct AddressSlot { address value; } struct BooleanSlot { bool value; } struct Bytes32Slot { bytes32 value; } struct Uint256Slot { uint256 value; } /** * @dev Returns an `AddressSlot` with member `value` located at `slot`. */ function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) { assembly { r.slot := slot } } /** * @dev Returns an `BooleanSlot` with member `value` located at `slot`. */ function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) { assembly { r.slot := slot } } /** * @dev Returns an `Bytes32Slot` with member `value` located at `slot`. */ function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) { assembly { r.slot := slot } } /** * @dev Returns an `Uint256Slot` with member `value` located at `slot`. */ function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) { assembly { r.slot := slot } } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import "../utils/Context.sol"; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * By default, the owner account will be the one that deploys the contract. This * can later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract Ownable is Context { address private _owner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the deployer as the initial owner. */ constructor () { address msgSender = _msgSender(); _owner = msgSender; emit OwnershipTransferred(address(0), msgSender); } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { require(owner() == _msgSender(), "Ownable: caller is not the owner"); _; } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions anymore. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby removing any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { emit OwnershipTransferred(_owner, address(0)); _owner = address(0); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { require(newOwner != address(0), "Ownable: new owner is the zero address"); emit OwnershipTransferred(_owner, newOwner); _owner = newOwner; } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /* * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691 return msg.data; } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import "../ERC1967/ERC1967Upgrade.sol"; /** * @dev Base contract for building openzeppelin-upgrades compatible implementations for the {ERC1967Proxy}. It includes * publicly available upgrade functions that are called by the plugin and by the secure upgrade mechanism to verify * continuation of the upgradability. * * The {_authorizeUpgrade} function MUST be overridden to include access restriction to the upgrade mechanism. * * _Available since v4.1._ */ abstract contract UUPSUpgradeable is ERC1967Upgrade { function upgradeTo(address newImplementation) external virtual { _authorizeUpgrade(newImplementation); _upgradeToAndCallSecure(newImplementation, bytes(""), false); } function upgradeToAndCall(address newImplementation, bytes memory data) external payable virtual { _authorizeUpgrade(newImplementation); _upgradeToAndCallSecure(newImplementation, data, true); } function _authorizeUpgrade(address newImplementation) internal virtual; } // SPDX-License-Identifier: MIT pragma solidity ^0.8.2; import "@openzeppelin/contracts/proxy/utils/UUPSUpgradeable.sol"; abstract contract Proxiable is UUPSUpgradeable { function _authorizeUpgrade(address newImplementation) internal override { _beforeUpgrade(newImplementation); } function _beforeUpgrade(address newImplementation) internal virtual; } contract ChildOfProxiable is Proxiable { function _beforeUpgrade(address newImplementation) internal virtual override {} }
File 2 of 2: MultiNodeV2
// SPDX-License-Identifier: MIT pragma solidity 0.8.9; import "./interfaces/IERC20.sol"; import "./interfaces/IMultiNode.sol"; import "./interfaces/IStrongPool.sol"; import "./interfaces/IStrongNFTBonus.sol"; import "./lib/InternalCalls.sol"; import "./lib/MultiNodeSettings.sol"; import "./lib/SbMath.sol"; contract MultiNodeV2 is IMultiNode, InternalCalls, MultiNodeSettings { uint private constant _SECONDS_IN_ONE_MINUTE = 60; IERC20 public strongToken; IStrongNFTBonus public strongNFTBonus; uint public totalNodes; uint public nodesLimit; uint public takeStrongBips; address payable public feeCollector; mapping(address => bool) private serviceContractEnabled; mapping(address => uint) public entityNodeCount; mapping(address => uint) public entityCreditUsed; mapping(address => mapping(uint => uint)) public entityNodeTypeCount; mapping(bytes => uint) public entityNodeType; mapping(bytes => uint) public entityNodeCreatedAt; mapping(bytes => uint) public entityNodeLastPaidAt; mapping(bytes => uint) public entityNodeLastClaimedAt; // Events event Created(address indexed entity, uint nodeType, uint nodeId, bool usedCredit, uint timestamp); event Paid(address indexed entity, uint nodeType, uint nodeId, uint timestamp); event Claimed(address indexed entity, uint nodeId, uint reward); event MigratedFromService(address indexed service, address indexed entity, uint nodeType, uint nodeId, uint lastPaidAt); event SetFeeCollector(address payable collector); event SetNFTBonusContract(address strongNFTBonus); event SetNodesLimit(uint limit); event SetServiceContractEnabled(address service, bool enabled); event SetTakeStrongBips(uint bips); function init( IERC20 _strongToken, IStrongNFTBonus _strongNFTBonus, address payable _feeCollector ) external onlyRole(adminControl.SUPER_ADMIN()) { require(_feeCollector != address(0), "no address"); strongToken = _strongToken; strongNFTBonus = _strongNFTBonus; feeCollector = _feeCollector; InternalCalls.init(); } // // Getters // ------------------------------------------------------------------------------------------------------------------- function getRewardBalance() external view returns (uint) { return strongToken.balanceOf(address(this)); } function calcDecayedReward(uint _baseRate, uint _decayFactor, uint _minutesPassed) public pure returns (uint) { uint power = SbMath._decPow(_decayFactor, _minutesPassed); uint cumulativeFraction = SbMath.DECIMAL_PRECISION - power; return _baseRate * cumulativeFraction / SbMath.DECIMAL_PRECISION; } function canNodeBePaid(address _entity, uint _nodeId) public view returns (bool) { return doesNodeExist(_entity, _nodeId) && !hasNodeExpired(_entity, _nodeId) && !hasMaxPayments(_entity, _nodeId); } function doesNodeExist(address _entity, uint _nodeId) public view returns (bool) { return entityNodeLastPaidAt[getNodeId(_entity, _nodeId)] > 0; } function isNodePastDue(address _entity, uint _nodeId) public view returns (bool) { bytes memory id = getNodeId(_entity, _nodeId); uint nodeType = entityNodeType[id]; uint lastPaidAt = entityNodeLastPaidAt[id]; return block.timestamp > (lastPaidAt + getRecurringPaymentCycle(nodeType)); } function hasNodeExpired(address _entity, uint _nodeId) public view returns (bool) { bytes memory id = getNodeId(_entity, _nodeId); uint nodeType = entityNodeType[id]; uint lastPaidAt = entityNodeLastPaidAt[id]; if (lastPaidAt == 0) return true; return block.timestamp > (lastPaidAt + getRecurringPaymentCycle(nodeType) + getGracePeriod(nodeType)); } function hasMaxPayments(address _entity, uint _nodeId) public view returns (bool) { bytes memory id = getNodeId(_entity, _nodeId); uint nodeType = entityNodeType[id]; uint lastPaidAt = entityNodeLastPaidAt[id]; uint recurringPaymentCycle = getRecurringPaymentCycle(nodeType); uint limit = block.timestamp + recurringPaymentCycle * getPayCyclesLimit(nodeType); return lastPaidAt + recurringPaymentCycle >= limit; } function getNodeId(address _entity, uint _nodeId) public view returns (bytes memory) { uint id = _nodeId != 0 ? _nodeId : entityNodeCount[_entity] + 1; return abi.encodePacked(_entity, id); } function getNodeType(address _entity, uint _nodeId) public view returns (uint) { return entityNodeType[getNodeId(_entity, _nodeId)]; } function getNodeRecurringFee(address _entity, uint _nodeId) external view returns (uint) { return getRecurringFeeInWei(entityNodeType[getNodeId(_entity, _nodeId)]); } function getNodeClaimingFee(address _entity, uint _nodeId, uint _timestamp) external view returns (uint) { uint nodeType = entityNodeType[getNodeId(_entity, _nodeId)]; uint reward = getRewardAt(_entity, _nodeId, _timestamp); return reward * getClaimingFeeNumerator(nodeType) / getClaimingFeeDenominator(nodeType); } function getNodePaidOn(address _entity, uint _nodeId) external view returns (uint) { return entityNodeLastPaidAt[getNodeId(_entity, _nodeId)]; } function getNodeReward(address _entity, uint _nodeId) external view returns (uint) { return getRewardAt(_entity, _nodeId, block.timestamp); } function getRewardAt(address _entity, uint _nodeId, uint _timestamp) public view returns (uint) { bytes memory id = getNodeId(_entity, _nodeId); uint nodeType = entityNodeType[id]; uint lastClaimedAt = entityNodeLastClaimedAt[id] != 0 ? entityNodeLastClaimedAt[id] : entityNodeCreatedAt[id]; uint registeredAt = entityNodeCreatedAt[id]; if (!doesNodeExist(_entity, _nodeId)) return 0; if (hasNodeExpired(_entity, _nodeId)) return 0; if (_timestamp > block.timestamp) return 0; if (_timestamp <= lastClaimedAt) return 0; uint minutesTotal = (_timestamp - registeredAt) / _SECONDS_IN_ONE_MINUTE; uint reward = calcDecayedReward( getRewardBaseRate(nodeType), getRewardDecayFactor(nodeType), minutesTotal ); if (lastClaimedAt > 0) { uint minutesToLastClaim = (lastClaimedAt - registeredAt) / _SECONDS_IN_ONE_MINUTE; uint rewardAtLastClaim = calcDecayedReward(getRewardBaseRate(nodeType), getRewardDecayFactor(nodeType), minutesToLastClaim); reward = reward - rewardAtLastClaim; } uint bonus = getNftBonusAt(_entity, _nodeId, _timestamp); return reward + bonus; } function getNftBonusAt(address _entity, uint _nodeId, uint _timestamp) public view returns (uint) { if (address(strongNFTBonus) == address(0)) return 0; bytes memory id = getNodeId(_entity, _nodeId); uint nodeType = entityNodeType[id]; uint lastClaimedAt = entityNodeLastClaimedAt[id] != 0 ? entityNodeLastClaimedAt[id] : entityNodeCreatedAt[id]; string memory bonusName = strongNFTBonus.getStakedNftBonusName(_entity, uint128(_nodeId), address(this)); if (keccak256(abi.encode(bonusName)) == keccak256(abi.encode(""))) return 0; uint bonusValue = getNftBonusValue(nodeType, bonusName); return bonusValue > 0 ? strongNFTBonus.getBonusValue(_entity, uint128(_nodeId), lastClaimedAt, _timestamp, bonusValue) : 0; } function getEntityRewards(address _entity, uint _timestamp) public view returns (uint) { uint reward = 0; for (uint nodeId = 1; nodeId <= entityNodeCount[_entity]; nodeId++) { reward = reward + getRewardAt(_entity, nodeId, _timestamp > 0 ? _timestamp : block.timestamp); } return reward; } function getEntityCreditAvailable(address _entity, uint _timestamp) public view returns (uint) { return getEntityRewards(_entity, _timestamp) - entityCreditUsed[_entity]; } function getNodesRecurringFee(address _entity, uint _fromNode, uint _toNode) external view returns (uint) { uint fee = 0; uint fromNode = _fromNode > 0 ? _fromNode : 1; uint toNode = _toNode > 0 ? _toNode : entityNodeCount[_entity]; for (uint nodeId = fromNode; nodeId <= toNode; nodeId++) { if (canNodeBePaid(_entity, nodeId)) fee = fee + getRecurringFeeInWei(getNodeType(_entity, nodeId)); } return fee; } function getNodesClaimingFee(address _entity, uint _timestamp, uint _fromNode, uint _toNode) external view returns (uint) { uint fee = 0; uint fromNode = _fromNode > 0 ? _fromNode : 1; uint toNode = _toNode > 0 ? _toNode : entityNodeCount[_entity]; for (uint nodeId = fromNode; nodeId <= toNode; nodeId++) { uint reward = getRewardAt(_entity, nodeId, _timestamp > 0 ? _timestamp : block.timestamp); if (reward > 0) { uint nodeType = getNodeType(_entity, nodeId); fee = fee + reward * getClaimingFeeNumerator(nodeType) / getClaimingFeeDenominator(nodeType); } } return fee; } // // Actions // ------------------------------------------------------------------------------------------------------------------- function createNode(uint _nodeType, bool _useCredit) external payable { uint fee = getCreatingFeeInWei(_nodeType); uint strongFee = getStrongFeeInWei(_nodeType); uint nodeTypeLimit = getNodesLimit(_nodeType); require(nodeTypeActive[_nodeType], "invalid type"); require(nodesLimit == 0 || entityNodeCount[msg.sender] < nodesLimit, "over limit"); require(nodeTypeLimit == 0 || entityNodeTypeCount[msg.sender][_nodeType] < nodeTypeLimit, "over limit"); require(msg.value >= fee, "invalid fee"); uint nodeId = entityNodeCount[msg.sender] + 1; bytes memory id = getNodeId(msg.sender, nodeId); totalNodes = totalNodes + 1; entityNodeType[id] = _nodeType; entityNodeCreatedAt[id] = block.timestamp; entityNodeLastPaidAt[id] = block.timestamp; entityNodeCount[msg.sender] = entityNodeCount[msg.sender] + 1; entityNodeTypeCount[msg.sender][_nodeType] = entityNodeTypeCount[msg.sender][_nodeType] + 1; emit Created(msg.sender, _nodeType, nodeId, _useCredit, block.timestamp); if (_useCredit) { require(getEntityCreditAvailable(msg.sender, block.timestamp) >= strongFee, "not enough"); entityCreditUsed[msg.sender] = entityCreditUsed[msg.sender] + strongFee; } else { uint takeStrong = strongFee * takeStrongBips / 10000; if (takeStrong > 0) { require(strongToken.transferFrom(msg.sender, feeCollector, takeStrong), "transfer failed"); } if (strongFee > takeStrong) { require(strongToken.transferFrom(msg.sender, address(this), strongFee - takeStrong), "transfer failed"); } } sendValue(feeCollector, fee); if (msg.value > fee) sendValue(payable(msg.sender), msg.value - fee); } function claim(uint _nodeId, uint _timestamp, address _toStrongPool) public payable returns (uint) { address entity = msg.sender == address(strongNFTBonus) ? tx.origin : msg.sender; bytes memory id = getNodeId(entity, _nodeId); uint nodeType = entityNodeType[id]; uint lastClaimedAt = entityNodeLastClaimedAt[id] != 0 ? entityNodeLastClaimedAt[id] : entityNodeCreatedAt[id]; require(doesNodeExist(entity, _nodeId), "doesnt exist"); require(!hasNodeExpired(entity, _nodeId), "node expired"); require(!isNodePastDue(entity, _nodeId), "past due"); require(_timestamp <= block.timestamp, "bad timestamp"); require(lastClaimedAt + 900 < _timestamp, "too soon"); uint reward = getRewardAt(entity, _nodeId, _timestamp); require(reward > 0, "no reward"); require(strongToken.balanceOf(address(this)) >= reward, "over balance"); uint fee = reward * getClaimingFeeNumerator(nodeType) / getClaimingFeeDenominator(nodeType); require(msg.value >= fee, "invalid fee"); entityNodeLastClaimedAt[id] = _timestamp; emit Claimed(entity, _nodeId, reward); if (entityCreditUsed[msg.sender] > 0) { if (entityCreditUsed[msg.sender] > reward) { entityCreditUsed[msg.sender] = entityCreditUsed[msg.sender] - reward; reward = 0; } else { reward = reward - entityCreditUsed[msg.sender]; entityCreditUsed[msg.sender] = 0; } } if (reward > 0) { if (_toStrongPool != address(0)) IStrongPool(_toStrongPool).mineFor(entity, reward); else require(strongToken.transfer(entity, reward), "transfer failed"); } sendValue(feeCollector, fee); if (isUserCall() && msg.value > fee) sendValue(payable(msg.sender), msg.value - fee); return fee; } function claimAll(uint _timestamp, address _toStrongPool, uint _fromNode, uint _toNode) external payable makesInternalCalls { require(entityNodeCount[msg.sender] > 0, "no nodes"); uint valueLeft = msg.value; uint fromNode = _fromNode > 0 ? _fromNode : 1; uint toNode = _toNode > 0 ? _toNode : entityNodeCount[msg.sender]; for (uint nodeId = fromNode; nodeId <= toNode; nodeId++) { uint reward = getRewardAt(msg.sender, nodeId, _timestamp); if (reward > 0) { require(valueLeft > 0, "not enough"); uint paid = claim(nodeId, _timestamp, _toStrongPool); valueLeft = valueLeft - paid; } } if (valueLeft > 0) sendValue(payable(msg.sender), valueLeft); } function pay(uint _nodeId) public payable returns (uint) { bytes memory id = getNodeId(msg.sender, _nodeId); uint nodeType = entityNodeType[id]; uint fee = getRecurringFeeInWei(nodeType); require(canNodeBePaid(msg.sender, _nodeId), "cant pay"); require(msg.value >= fee, "invalid fee"); entityNodeLastPaidAt[id] = entityNodeLastPaidAt[id] + getRecurringPaymentCycle(nodeType); emit Paid(msg.sender, nodeType, _nodeId, entityNodeLastPaidAt[id]); sendValue(feeCollector, fee); if (isUserCall() && msg.value > fee) sendValue(payable(msg.sender), msg.value - fee); return fee; } function payAll(uint _fromNode, uint _toNode) external payable makesInternalCalls { require(entityNodeCount[msg.sender] > 0, "no nodes"); uint valueLeft = msg.value; uint fromNode = _fromNode > 0 ? _fromNode : 1; uint toNode = _toNode > 0 ? _toNode : entityNodeCount[msg.sender]; for (uint nodeId = fromNode; nodeId <= toNode; nodeId++) { if (!canNodeBePaid(msg.sender, nodeId)) continue; require(valueLeft > 0, "not enough"); uint paid = pay(nodeId); valueLeft = valueLeft - paid; } if (valueLeft > 0) sendValue(payable(msg.sender), valueLeft); } function migrateNode(address _entity, uint _nodeType, uint _lastPaidAt) external returns (uint) { require(serviceContractEnabled[msg.sender], "no service"); require(nodeTypeActive[_nodeType], "invalid type"); uint nodeId = entityNodeCount[_entity] + 1; bytes memory id = getNodeId(_entity, nodeId); totalNodes = totalNodes + 1; entityNodeType[id] = _nodeType; entityNodeCreatedAt[id] = _lastPaidAt; entityNodeLastPaidAt[id] = _lastPaidAt; entityNodeCount[_entity] = entityNodeCount[_entity] + 1; entityNodeTypeCount[_entity][_nodeType] = entityNodeTypeCount[_entity][_nodeType] + 1; emit MigratedFromService(msg.sender, _entity, _nodeType, nodeId, _lastPaidAt); return nodeId; } // // Admin // ------------------------------------------------------------------------------------------------------------------- function deposit(uint _amount) external onlyRole(adminControl.SUPER_ADMIN()) { require(_amount > 0); require(strongToken.transferFrom(msg.sender, address(this), _amount), "transfer failed"); } function withdraw(address _destination, uint _amount) external onlyRole(adminControl.SUPER_ADMIN()) { require(_amount > 0); require(strongToken.balanceOf(address(this)) >= _amount, "over balance"); require(strongToken.transfer(_destination, _amount), "transfer failed"); } function approveStrongPool(IStrongPool _strongPool, uint _amount) external onlyRole(adminControl.SUPER_ADMIN()) { require(strongToken.approve(address(_strongPool), _amount), "approve failed"); } function setFeeCollector(address payable _feeCollector) external onlyRole(adminControl.SUPER_ADMIN()) { require(_feeCollector != address(0)); feeCollector = _feeCollector; emit SetFeeCollector(_feeCollector); } function setNFTBonusContract(address _contract) external onlyRole(adminControl.SERVICE_ADMIN()) { strongNFTBonus = IStrongNFTBonus(_contract); emit SetNFTBonusContract(_contract); } function setNodesLimit(uint _limit) external onlyRole(adminControl.SERVICE_ADMIN()) { nodesLimit = _limit; emit SetNodesLimit(_limit); } function setServiceContractEnabled(address _contract, bool _enabled) external onlyRole(adminControl.SERVICE_ADMIN()) { serviceContractEnabled[_contract] = _enabled; emit SetServiceContractEnabled(_contract, _enabled); } function setTakeStrongBips(uint _bips) external onlyRole(adminControl.SUPER_ADMIN()) { require(_bips <= 10000, "invalid value"); takeStrongBips = _bips; emit SetTakeStrongBips(_bips); } function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "insufficient balance"); // solhint-disable-next-line avoid-low-level-calls, avoid-call-value (bool success,) = recipient.call{value : amount}(""); require(success, "send failed"); } function setTokenContract(IERC20 tokenAddress) external onlyRole(adminControl.SUPER_ADMIN()) { strongToken = tokenAddress; } function withdrawToken(IERC20 token, address recipient, uint256 amount) external onlyRole(adminControl.SUPER_ADMIN()) { require(token.transfer(recipient, amount)); } } // SPDX-License-Identifier: MIT pragma solidity >=0.6.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `recipient`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address recipient, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `sender` to `recipient` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address sender, address recipient, uint256 amount) external returns (bool); /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); } // SPDX-License-Identifier: MIT pragma solidity >=0.6.0; interface IMultiNode { function doesNodeExist(address entity, uint nodeId) external view returns (bool); function hasNodeExpired(address entity, uint nodeId) external view returns (bool); function claim(uint nodeId, uint timestamp, address toStrongPool) external payable returns (uint); } // SPDX-License-Identifier: MIT pragma solidity >=0.6.0; interface IStrongPool { function mineFor(address miner, uint256 amount) external; } // SPDX-License-Identifier: MIT pragma solidity >=0.6.0; interface IStrongNFTBonus { function getBonus(address _entity, uint128 _nodeId, uint256 _from, uint256 _to) external view returns (uint256); function getBonusValue(address _entity, uint128 _nodeId, uint256 _from, uint256 _to, uint256 _bonusValue) external view returns (uint256); function getStakedNftBonusName(address _entity, uint128 _nodeId, address _serviceContract) external view returns (string memory); function migrateNFT(address _entity, uint128 _fromNodeId, uint128 _toNodeId, address _toServiceContract) external; } // SPDX-License-Identifier: MIT pragma solidity >=0.6.0; import "./Context.sol"; abstract contract InternalCalls is Context { uint private constant _NOT_MAKING_INTERNAL_CALLS = 1; uint private constant _MAKING_INTERNAL_CALLS = 2; uint private _internal_calls_status; modifier makesInternalCalls() { _internal_calls_status = _MAKING_INTERNAL_CALLS; _; _internal_calls_status = _NOT_MAKING_INTERNAL_CALLS; } function init() internal { _internal_calls_status = _NOT_MAKING_INTERNAL_CALLS; } function isInternalCall() internal view returns (bool) { return _internal_calls_status == _MAKING_INTERNAL_CALLS; } function isContractCall() internal view returns (bool) { return _msgSender() != tx.origin; } function isUserCall() internal view returns (bool) { return !isInternalCall() && !isContractCall(); } } // SPDX-License-Identifier: MIT pragma solidity >=0.6.0; import "./AdminAccess.sol"; contract MultiNodeSettings is AdminAccess { uint constant public NODE_TYPE_REWARD_BASE_RATE = 0; uint constant public NODE_TYPE_REWARD_DECAY_FACTOR = 1; uint constant public NODE_TYPE_FEE_STRONG = 2; uint constant public NODE_TYPE_FEE_CREATE = 3; uint constant public NODE_TYPE_FEE_RECURRING = 4; uint constant public NODE_TYPE_FEE_CLAIMING_NUMERATOR = 5; uint constant public NODE_TYPE_FEE_CLAIMING_DENOMINATOR = 6; uint constant public NODE_TYPE_RECURRING_CYCLE_SECONDS = 7; uint constant public NODE_TYPE_GRACE_PERIOD_SECONDS = 8; uint constant public NODE_TYPE_PAY_CYCLES_LIMIT = 9; uint constant public NODE_TYPE_NODES_LIMIT = 10; mapping(uint => bool) public nodeTypeActive; mapping(uint => bool) public nodeTypeHasSettings; mapping(uint => mapping(uint => uint)) public nodeTypeSettings; mapping(uint => mapping(string => uint)) public nodeTypeNFTBonus; // Events event SetNodeTypeActive(uint nodeType, bool active); event SetNodeTypeSetting(uint nodeType, uint settingId, uint value); event SetNodeTypeHasSettings(uint nodeType, bool hasSettings); event SetNodeTypeNFTBonus(uint nodeType, string bonusName, uint value); // // Getters // ------------------------------------------------------------------------------------------------------------------- function getRewardBaseRate(uint _nodeType) public view returns (uint) { return getCustomSettingOrDefaultIfZero(_nodeType, NODE_TYPE_REWARD_BASE_RATE); } function getRewardDecayFactor(uint _nodeType) public view returns (uint) { return getCustomSettingOrDefaultIfZero(_nodeType, NODE_TYPE_REWARD_DECAY_FACTOR); } function getClaimingFeeNumerator(uint _nodeType) public view returns (uint) { return getCustomSettingOrDefaultIfZero(_nodeType, NODE_TYPE_FEE_CLAIMING_NUMERATOR); } function getClaimingFeeDenominator(uint _nodeType) public view returns (uint) { return getCustomSettingOrDefaultIfZero(_nodeType, NODE_TYPE_FEE_CLAIMING_DENOMINATOR); } function getCreatingFeeInWei(uint _nodeType) public view returns (uint) { return getCustomSettingOrDefaultIfZero(_nodeType, NODE_TYPE_FEE_CREATE); } function getRecurringFeeInWei(uint _nodeType) public view returns (uint) { return getCustomSettingOrDefaultIfZero(_nodeType, NODE_TYPE_FEE_RECURRING); } function getStrongFeeInWei(uint _nodeType) public view returns (uint) { return getCustomSettingOrDefaultIfZero(_nodeType, NODE_TYPE_FEE_STRONG); } function getRecurringPaymentCycle(uint _nodeType) public view returns (uint) { return getCustomSettingOrDefaultIfZero(_nodeType, NODE_TYPE_RECURRING_CYCLE_SECONDS); } function getGracePeriod(uint _nodeType) public view returns (uint) { return getCustomSettingOrDefaultIfZero(_nodeType, NODE_TYPE_GRACE_PERIOD_SECONDS); } function getPayCyclesLimit(uint _nodeType) public view returns (uint) { return getCustomSettingOrDefaultIfZero(_nodeType, NODE_TYPE_PAY_CYCLES_LIMIT); } function getNodesLimit(uint _nodeType) public view returns (uint) { return getCustomSettingOrDefaultIfZero(_nodeType, NODE_TYPE_NODES_LIMIT); } function getNftBonusValue(uint _nodeType, string memory _bonusName) public view returns (uint) { return nodeTypeNFTBonus[_nodeType][_bonusName] > 0 ? nodeTypeNFTBonus[_nodeType][_bonusName] : nodeTypeNFTBonus[0][_bonusName]; } // // Setters // ------------------------------------------------------------------------------------------------------------------- function setNodeTypeActive(uint _nodeType, bool _active) external onlyRole(adminControl.SERVICE_ADMIN()) { // Node type 0 is being used as a placeholder for the default settings for node types that don't have custom ones, // So it shouldn't be activated and used to create nodes require(_nodeType > 0, "invalid type"); nodeTypeActive[_nodeType] = _active; emit SetNodeTypeActive(_nodeType, _active); } function setNodeTypeHasSettings(uint _nodeType, bool _hasSettings) external onlyRole(adminControl.SERVICE_ADMIN()) { nodeTypeHasSettings[_nodeType] = _hasSettings; emit SetNodeTypeHasSettings(_nodeType, _hasSettings); } function setNodeTypeSetting(uint _nodeType, uint _settingId, uint _value) external onlyRole(adminControl.SERVICE_ADMIN()) { nodeTypeHasSettings[_nodeType] = true; nodeTypeSettings[_nodeType][_settingId] = _value; emit SetNodeTypeSetting(_nodeType, _settingId, _value); } function setNodeTypeNFTBonus(uint _nodeType, string memory _bonusName, uint _value) external onlyRole(adminControl.SERVICE_ADMIN()) { nodeTypeNFTBonus[_nodeType][_bonusName] = _value; emit SetNodeTypeNFTBonus(_nodeType, _bonusName, _value); } // ------------------------------------------------------------------------------------------------------------------- function getCustomSettingOrDefaultIfZero(uint _nodeType, uint _setting) internal view returns (uint) { return nodeTypeHasSettings[_nodeType] && nodeTypeSettings[_nodeType][_setting] > 0 ? nodeTypeSettings[_nodeType][_setting] : nodeTypeSettings[0][_setting]; } } // SPDX-License-Identifier: MIT pragma solidity >=0.8.0; library SbMath { uint internal constant DECIMAL_PRECISION = 1e18; /* * Multiply two decimal numbers and use normal rounding rules: * -round product up if 19'th mantissa digit >= 5 * -round product down if 19'th mantissa digit < 5 * * Used only inside the exponentiation, _decPow(). */ function decMul(uint x, uint y) internal pure returns (uint decProd) { uint prod_xy = x * y; decProd = (prod_xy + (DECIMAL_PRECISION / 2)) / DECIMAL_PRECISION; } /* * _decPow: Exponentiation function for 18-digit decimal base, and integer exponent n. * * Uses the efficient "exponentiation by squaring" algorithm. O(log(n)) complexity. * * The exponent is capped to avoid reverting due to overflow. The cap 525600000 equals * "minutes in 1000 years": 60 * 24 * 365 * 1000 */ function _decPow(uint _base, uint _minutes) internal pure returns (uint) { if (_minutes > 525_600_000) _minutes = 525_600_000; // cap to avoid overflow if (_minutes == 0) return DECIMAL_PRECISION; uint y = DECIMAL_PRECISION; uint x = _base; uint n = _minutes; // Exponentiation-by-squaring while (n > 1) { if (n % 2 == 0) { x = decMul(x, x); n = n / 2; } else { // if (n % 2 != 0) y = decMul(x, y); x = decMul(x, x); n = (n - 1) / 2; } } return decMul(x, y); } } // SPDX-License-Identifier: MIT pragma solidity >=0.6.0; /* * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with GSN meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes memory) { this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691 return msg.data; } } // SPDX-License-Identifier: MIT pragma solidity >=0.6.0; import "../interfaces/IAdminControl.sol"; abstract contract AdminAccess { IAdminControl public adminControl; modifier onlyRole(uint8 _role) { require(address(adminControl) == address(0) || adminControl.hasRole(_role, msg.sender), "no access"); _; } function addAdminControlContract(IAdminControl _contract) external onlyRole(0) { adminControl = _contract; } } // SPDX-License-Identifier: MIT pragma solidity >=0.6.0; interface IAdminControl { function hasRole(uint8 _role, address _account) external view returns (bool); function SUPER_ADMIN() external view returns (uint8); function ADMIN() external view returns (uint8); function SERVICE_ADMIN() external view returns (uint8); }