Transaction Hash:
Block:
19547865 at Mar-30-2024 04:10:47 PM +UTC
Transaction Fee:
0.006553942531789324 ETH
$16.71
Gas Used:
272,468 Gas / 24.053989943 Gwei
Emitted Events:
208 |
TokenBridge.0xcaf280c8cfeba144da67230d9b009c8f868a75bac9a528fa0474be1ba317c169( 0xcaf280c8cfeba144da67230d9b009c8f868a75bac9a528fa0474be1ba317c169, 0x0000000000000000000000000000000000000000000000000000000000000001, 0xec7372995d5cc8732397fb0ad35c0121e0eaa90d26f828a534cab54391b3a4f5, 0x00000000000000000000000000000000000000000000000000000000000ca69c )
|
209 |
WETH9.Transfer( src=[Receiver] TokenBridge, dst=[Sender] 0x75391bbae0737e516b0a399347015bcf0a7f54f3, wad=111538000000000000 )
|
Account State Difference:
Address | Before | After | State Difference | ||
---|---|---|---|---|---|
0x3ee18B22...47E8fa585 | (Wormhole: Token Bridge) | ||||
0x75391bbA...F0A7F54F3 |
0.101034865265870628 Eth
Nonce: 485
|
0.094480922734081304 Eth
Nonce: 486
| 0.006553942531789324 | ||
0x95222290...5CC4BAfe5
Miner
| (beaverbuild) | 9.314315099365499114 Eth | 9.314323216542244918 Eth | 0.000008117176745804 | |
0xC02aaA39...83C756Cc2 |
Execution Trace
TokenBridge.c6878519( )
BridgeImplementation.completeTransfer( encodedVm=0x01000000030D0162049C20B7397AC517AEB03ADB7BD9AA4DAE807781899F65C6D3A86DD5AA77F21C0E616D6E01BD9A3836C32A1FE80A816B1AF114258BF071510D1F9851D9826C0102E535CAE6BD124F8BEF1D4A6859AAAE3CB50D61826DDA35C4C7294308ED6CADF40A31AE2D16387337702A118E33218F9C945C0CA8BE441BE57A1DBA7B9930BB8500046F95D8829E9A66BE6F43C289D10B2F37CC3C476B137E297BDBD99641ACFB69591145FB1CDA062A4F342C41DF0A820EFEBD7A251F9513F33E6E8C6B0D8AA233A80106CF37AE5C7E636772E98574276A219C71B007A5BC02AE4A2625A60F323D13A7BF663D6F6F2D401B29851766987B87F02D39161B640B4E9AB7BAB3FCFB8BD62DA30107124FFA9FFA7D8111AFC4E5CC0051212F774BDB429096F8AEEB9D8EAD923713797F7CFD7F0DF016BF07111CFF9DABAC802278E62BD137222A6FFA63B837D443FC00088A4B2DE86CB487AFA6CA83A2B1A35D68566578AD52EBE303DEFDA830E417A2D94CA44A778FC57615A5C93A92D9A3FB916E4734E3CF86983C320D7BC4C7B3130E00099DF58E15F5859CE266053FECC89F6B4F64BDCB3FFCBD60A150109223515D92F3191E148DC0234FD874C8338AA7DF63B2B23E572EA38767E9F9C6E6349E6AEA9A000A1A57EFCDEA5DC703B38B14F39ADCF888FBF8C188EFEB207E024604F00525B65A2E8DD8860DE5A5B79CD3C80DB89C9E2DD4AF34228F78146D5FE51AFBFB3533FD010DE61AE6A34C41046CCC3076A85960A9093E60134A68E706ACE66500861912FA450019CF62598EC90A0A0E3E54073E7B51FA82672DC6136C4AF38076F010A56968010FF47D42106E29EB5415E56DFA39A05926C9A2F4FD24CE8A2D140C9C0B566C782C3368E65E6284E054F3B7673F3F5C562D0CE893CF680C4A99B823F903D7CF4E830110687659F385F3411190A7C8E6B7A05CE1E3196781E6A6AA2D1306592462D5B71A1EFE4BCD893ABD5C80548CAF1BFDF597410580FAC0EC2FBC2809AC780F70908000118C3979CD5C316AB32CB90F3F82412D10D47AF6EC218228FC71EF5FC48EEED6874F7603500FA2A83239D63FE4C780D9C0BA4659148BADAA3965ADFB3352E41ED000123D271BF6A0ED15B017CF31316218A9406B65EF05553D038FFBAE325A4F908A2553D85143BD68BA1C491A3AC8C8E4D4FBC08060BF929331100AA6905EC9B30435006608385C0001854E0001EC7372995D5CC8732397FB0AD35C0121E0EAA90D26F828A534CAB54391B3A4F500000000000CA69C20010000000000000000000000000000000000000000000000000000000000AA3188000000000000000000000000C02AAA39B223FE8D0A0E5C4F27EAD9083C756CC2000200000000000000000000000075391BBAE0737E516B0A399347015BCF0A7F54F300020000000000000000000000000000000000000000000000000000000000000000 )
Wormhole.c0fd8bde( )
Implementation.parseAndVerifyVM( encodedVM=0x01000000030D0162049C20B7397AC517AEB03ADB7BD9AA4DAE807781899F65C6D3A86DD5AA77F21C0E616D6E01BD9A3836C32A1FE80A816B1AF114258BF071510D1F9851D9826C0102E535CAE6BD124F8BEF1D4A6859AAAE3CB50D61826DDA35C4C7294308ED6CADF40A31AE2D16387337702A118E33218F9C945C0CA8BE441BE57A1DBA7B9930BB8500046F95D8829E9A66BE6F43C289D10B2F37CC3C476B137E297BDBD99641ACFB69591145FB1CDA062A4F342C41DF0A820EFEBD7A251F9513F33E6E8C6B0D8AA233A80106CF37AE5C7E636772E98574276A219C71B007A5BC02AE4A2625A60F323D13A7BF663D6F6F2D401B29851766987B87F02D39161B640B4E9AB7BAB3FCFB8BD62DA30107124FFA9FFA7D8111AFC4E5CC0051212F774BDB429096F8AEEB9D8EAD923713797F7CFD7F0DF016BF07111CFF9DABAC802278E62BD137222A6FFA63B837D443FC00088A4B2DE86CB487AFA6CA83A2B1A35D68566578AD52EBE303DEFDA830E417A2D94CA44A778FC57615A5C93A92D9A3FB916E4734E3CF86983C320D7BC4C7B3130E00099DF58E15F5859CE266053FECC89F6B4F64BDCB3FFCBD60A150109223515D92F3191E148DC0234FD874C8338AA7DF63B2B23E572EA38767E9F9C6E6349E6AEA9A000A1A57EFCDEA5DC703B38B14F39ADCF888FBF8C188EFEB207E024604F00525B65A2E8DD8860DE5A5B79CD3C80DB89C9E2DD4AF34228F78146D5FE51AFBFB3533FD010DE61AE6A34C41046CCC3076A85960A9093E60134A68E706ACE66500861912FA450019CF62598EC90A0A0E3E54073E7B51FA82672DC6136C4AF38076F010A56968010FF47D42106E29EB5415E56DFA39A05926C9A2F4FD24CE8A2D140C9C0B566C782C3368E65E6284E054F3B7673F3F5C562D0CE893CF680C4A99B823F903D7CF4E830110687659F385F3411190A7C8E6B7A05CE1E3196781E6A6AA2D1306592462D5B71A1EFE4BCD893ABD5C80548CAF1BFDF597410580FAC0EC2FBC2809AC780F70908000118C3979CD5C316AB32CB90F3F82412D10D47AF6EC218228FC71EF5FC48EEED6874F7603500FA2A83239D63FE4C780D9C0BA4659148BADAA3965ADFB3352E41ED000123D271BF6A0ED15B017CF31316218A9406B65EF05553D038FFBAE325A4F908A2553D85143BD68BA1C491A3AC8C8E4D4FBC08060BF929331100AA6905EC9B30435006608385C0001854E0001EC7372995D5CC8732397FB0AD35C0121E0EAA90D26F828A534CAB54391B3A4F500000000000CA69C20010000000000000000000000000000000000000000000000000000000000AA3188000000000000000000000000C02AAA39B223FE8D0A0E5C4F27EAD9083C756CC2000200000000000000000000000075391BBAE0737E516B0A399347015BCF0A7F54F300020000000000000000000000000000000000000000000000000000000000000000 ) => ( vm=[{name:version, type:uint8, order:1, indexed:false, value:1, valueString:1}, {name:timestamp, type:uint32, order:2, indexed:false, value:1711814748, valueString:1711814748}, {name:nonce, type:uint32, order:3, indexed:false, value:99662, valueString:99662}, {name:emitterChainId, type:uint16, order:4, indexed:false, value:1, valueString:1}, {name:emitterAddress, type:bytes32, order:5, indexed:false, value:EC7372995D5CC8732397FB0AD35C0121E0EAA90D26F828A534CAB54391B3A4F5, valueString:EC7372995D5CC8732397FB0AD35C0121E0EAA90D26F828A534CAB54391B3A4F5}, {name:sequence, type:uint64, order:6, indexed:false, value:829084, valueString:829084}, {name:consistencyLevel, type:uint8, order:7, indexed:false, value:32, valueString:32}, {name:payload, type:bytes, order:8, indexed:false, value:0x010000000000000000000000000000000000000000000000000000000000AA3188000000000000000000000000C02AAA39B223FE8D0A0E5C4F27EAD9083C756CC2000200000000000000000000000075391BBAE0737E516B0A399347015BCF0A7F54F300020000000000000000000000000000000000000000000000000000000000000000, valueString:0x010000000000000000000000000000000000000000000000000000000000AA3188000000000000000000000000C02AAA39B223FE8D0A0E5C4F27EAD9083C756CC2000200000000000000000000000075391BBAE0737E516B0A399347015BCF0A7F54F300020000000000000000000000000000000000000000000000000000000000000000}, {name:guardianSetIndex, type:uint32, order:9, indexed:false, value:3, valueString:3}, {name:signatures, type:tuple[], order:10, indexed:false}, {name:hash, type:bytes32, order:11, indexed:false, value:3C027474331664E9CDF06192D0C8C4BD279BD44F4AF62441DF2CE2B2FD961517, valueString:3C027474331664E9CDF06192D0C8C4BD279BD44F4AF62441DF2CE2B2FD961517}], valid=True, reason= )
-
Null: 0x000...001.3c027474( )
-
Null: 0x000...001.3c027474( )
-
Null: 0x000...001.3c027474( )
-
Null: 0x000...001.3c027474( )
-
Null: 0x000...001.3c027474( )
-
Null: 0x000...001.3c027474( )
-
Null: 0x000...001.3c027474( )
-
Null: 0x000...001.3c027474( )
-
Null: 0x000...001.3c027474( )
-
Null: 0x000...001.3c027474( )
-
Null: 0x000...001.3c027474( )
-
Null: 0x000...001.3c027474( )
-
Null: 0x000...001.3c027474( )
-
-
WETH9.STATICCALL( )
-
WETH9.transfer( dst=0x75391bbAE0737e516B0A399347015BcF0A7F54F3, wad=111538000000000000 ) => ( True )
File 1 of 5: TokenBridge
File 2 of 5: WETH9
File 3 of 5: BridgeImplementation
File 4 of 5: Wormhole
File 5 of 5: Implementation
// contracts/Wormhole.sol // SPDX-License-Identifier: Apache 2 pragma solidity ^0.8.0; import "@openzeppelin/contracts/proxy/ERC1967/ERC1967Proxy.sol"; contract TokenBridge is ERC1967Proxy { constructor (address implementation, bytes memory initData) ERC1967Proxy( implementation, initData ) {} }// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import "../Proxy.sol"; import "./ERC1967Upgrade.sol"; /** * @dev This contract implements an upgradeable proxy. It is upgradeable because calls are delegated to an * implementation address that can be changed. This address is stored in storage in the location specified by * https://eips.ethereum.org/EIPS/eip-1967[EIP1967], so that it doesn't conflict with the storage layout of the * implementation behind the proxy. */ contract ERC1967Proxy is Proxy, ERC1967Upgrade { /** * @dev Initializes the upgradeable proxy with an initial implementation specified by `_logic`. * * If `_data` is nonempty, it's used as data in a delegate call to `_logic`. This will typically be an encoded * function call, and allows initializating the storage of the proxy like a Solidity constructor. */ constructor(address _logic, bytes memory _data) payable { assert(_IMPLEMENTATION_SLOT == bytes32(uint256(keccak256("eip1967.proxy.implementation")) - 1)); _upgradeToAndCall(_logic, _data, false); } /** * @dev Returns the current implementation address. */ function _implementation() internal view virtual override returns (address impl) { return ERC1967Upgrade._getImplementation(); } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.2; import "../beacon/IBeacon.sol"; import "../../utils/Address.sol"; import "../../utils/StorageSlot.sol"; /** * @dev This abstract contract provides getters and event emitting update functions for * https://eips.ethereum.org/EIPS/eip-1967[EIP1967] slots. * * _Available since v4.1._ * * @custom:oz-upgrades-unsafe-allow delegatecall */ abstract contract ERC1967Upgrade { // This is the keccak-256 hash of "eip1967.proxy.rollback" subtracted by 1 bytes32 private constant _ROLLBACK_SLOT = 0x4910fdfa16fed3260ed0e7147f7cc6da11a60208b5b9406d12a635614ffd9143; /** * @dev Storage slot with the address of the current implementation. * This is the keccak-256 hash of "eip1967.proxy.implementation" subtracted by 1, and is * validated in the constructor. */ bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc; /** * @dev Emitted when the implementation is upgraded. */ event Upgraded(address indexed implementation); /** * @dev Returns the current implementation address. */ function _getImplementation() internal view returns (address) { return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value; } /** * @dev Stores a new address in the EIP1967 implementation slot. */ function _setImplementation(address newImplementation) private { require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract"); StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation; } /** * @dev Perform implementation upgrade * * Emits an {Upgraded} event. */ function _upgradeTo(address newImplementation) internal { _setImplementation(newImplementation); emit Upgraded(newImplementation); } /** * @dev Perform implementation upgrade with additional setup call. * * Emits an {Upgraded} event. */ function _upgradeToAndCall(address newImplementation, bytes memory data, bool forceCall) internal { _setImplementation(newImplementation); emit Upgraded(newImplementation); if (data.length > 0 || forceCall) { Address.functionDelegateCall(newImplementation, data); } } /** * @dev Perform implementation upgrade with security checks for UUPS proxies, and additional setup call. * * Emits an {Upgraded} event. */ function _upgradeToAndCallSecure(address newImplementation, bytes memory data, bool forceCall) internal { address oldImplementation = _getImplementation(); // Initial upgrade and setup call _setImplementation(newImplementation); if (data.length > 0 || forceCall) { Address.functionDelegateCall(newImplementation, data); } // Perform rollback test if not already in progress StorageSlot.BooleanSlot storage rollbackTesting = StorageSlot.getBooleanSlot(_ROLLBACK_SLOT); if (!rollbackTesting.value) { // Trigger rollback using upgradeTo from the new implementation rollbackTesting.value = true; Address.functionDelegateCall( newImplementation, abi.encodeWithSignature( "upgradeTo(address)", oldImplementation ) ); rollbackTesting.value = false; // Check rollback was effective require(oldImplementation == _getImplementation(), "ERC1967Upgrade: upgrade breaks further upgrades"); // Finally reset to the new implementation and log the upgrade _setImplementation(newImplementation); emit Upgraded(newImplementation); } } /** * @dev Perform beacon upgrade with additional setup call. Note: This upgrades the address of the beacon, it does * not upgrade the implementation contained in the beacon (see {UpgradeableBeacon-_setImplementation} for that). * * Emits a {BeaconUpgraded} event. */ function _upgradeBeaconToAndCall(address newBeacon, bytes memory data, bool forceCall) internal { _setBeacon(newBeacon); emit BeaconUpgraded(newBeacon); if (data.length > 0 || forceCall) { Address.functionDelegateCall(IBeacon(newBeacon).implementation(), data); } } /** * @dev Storage slot with the admin of the contract. * This is the keccak-256 hash of "eip1967.proxy.admin" subtracted by 1, and is * validated in the constructor. */ bytes32 internal constant _ADMIN_SLOT = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103; /** * @dev Emitted when the admin account has changed. */ event AdminChanged(address previousAdmin, address newAdmin); /** * @dev Returns the current admin. */ function _getAdmin() internal view returns (address) { return StorageSlot.getAddressSlot(_ADMIN_SLOT).value; } /** * @dev Stores a new address in the EIP1967 admin slot. */ function _setAdmin(address newAdmin) private { require(newAdmin != address(0), "ERC1967: new admin is the zero address"); StorageSlot.getAddressSlot(_ADMIN_SLOT).value = newAdmin; } /** * @dev Changes the admin of the proxy. * * Emits an {AdminChanged} event. */ function _changeAdmin(address newAdmin) internal { emit AdminChanged(_getAdmin(), newAdmin); _setAdmin(newAdmin); } /** * @dev The storage slot of the UpgradeableBeacon contract which defines the implementation for this proxy. * This is bytes32(uint256(keccak256('eip1967.proxy.beacon')) - 1)) and is validated in the constructor. */ bytes32 internal constant _BEACON_SLOT = 0xa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6cb3582b35133d50; /** * @dev Emitted when the beacon is upgraded. */ event BeaconUpgraded(address indexed beacon); /** * @dev Returns the current beacon. */ function _getBeacon() internal view returns (address) { return StorageSlot.getAddressSlot(_BEACON_SLOT).value; } /** * @dev Stores a new beacon in the EIP1967 beacon slot. */ function _setBeacon(address newBeacon) private { require( Address.isContract(newBeacon), "ERC1967: new beacon is not a contract" ); require( Address.isContract(IBeacon(newBeacon).implementation()), "ERC1967: beacon implementation is not a contract" ); StorageSlot.getAddressSlot(_BEACON_SLOT).value = newBeacon; } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /** * @dev This abstract contract provides a fallback function that delegates all calls to another contract using the EVM * instruction `delegatecall`. We refer to the second contract as the _implementation_ behind the proxy, and it has to * be specified by overriding the virtual {_implementation} function. * * Additionally, delegation to the implementation can be triggered manually through the {_fallback} function, or to a * different contract through the {_delegate} function. * * The success and return data of the delegated call will be returned back to the caller of the proxy. */ abstract contract Proxy { /** * @dev Delegates the current call to `implementation`. * * This function does not return to its internall call site, it will return directly to the external caller. */ function _delegate(address implementation) internal virtual { // solhint-disable-next-line no-inline-assembly assembly { // Copy msg.data. We take full control of memory in this inline assembly // block because it will not return to Solidity code. We overwrite the // Solidity scratch pad at memory position 0. calldatacopy(0, 0, calldatasize()) // Call the implementation. // out and outsize are 0 because we don't know the size yet. let result := delegatecall(gas(), implementation, 0, calldatasize(), 0, 0) // Copy the returned data. returndatacopy(0, 0, returndatasize()) switch result // delegatecall returns 0 on error. case 0 { revert(0, returndatasize()) } default { return(0, returndatasize()) } } } /** * @dev This is a virtual function that should be overriden so it returns the address to which the fallback function * and {_fallback} should delegate. */ function _implementation() internal view virtual returns (address); /** * @dev Delegates the current call to the address returned by `_implementation()`. * * This function does not return to its internall call site, it will return directly to the external caller. */ function _fallback() internal virtual { _beforeFallback(); _delegate(_implementation()); } /** * @dev Fallback function that delegates calls to the address returned by `_implementation()`. Will run if no other * function in the contract matches the call data. */ fallback () external payable virtual { _fallback(); } /** * @dev Fallback function that delegates calls to the address returned by `_implementation()`. Will run if call data * is empty. */ receive () external payable virtual { _fallback(); } /** * @dev Hook that is called before falling back to the implementation. Can happen as part of a manual `_fallback` * call, or as part of the Solidity `fallback` or `receive` functions. * * If overriden should call `super._beforeFallback()`. */ function _beforeFallback() internal virtual { } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /** * @dev This is the interface that {BeaconProxy} expects of its beacon. */ interface IBeacon { /** * @dev Must return an address that can be used as a delegate call target. * * {BeaconProxy} will check that this address is a contract. */ function implementation() external view returns (address); } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize, which returns 0 for contracts in // construction, since the code is only stored at the end of the // constructor execution. uint256 size; // solhint-disable-next-line no-inline-assembly assembly { size := extcodesize(account) } return size > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); // solhint-disable-next-line avoid-low-level-calls, avoid-call-value (bool success, ) = recipient.call{ value: amount }(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain`call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCall(target, data, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); require(isContract(target), "Address: call to non-contract"); // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = target.call{ value: value }(data); return _verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data, string memory errorMessage) internal view returns (bytes memory) { require(isContract(target), "Address: static call to non-contract"); // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = target.staticcall(data); return _verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { return functionDelegateCall(target, data, "Address: low-level delegate call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) { require(isContract(target), "Address: delegate call to non-contract"); // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = target.delegatecall(data); return _verifyCallResult(success, returndata, errorMessage); } function _verifyCallResult(bool success, bytes memory returndata, string memory errorMessage) private pure returns(bytes memory) { if (success) { return returndata; } else { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly // solhint-disable-next-line no-inline-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /** * @dev Library for reading and writing primitive types to specific storage slots. * * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts. * This library helps with reading and writing to such slots without the need for inline assembly. * * The functions in this library return Slot structs that contain a `value` member that can be used to read or write. * * Example usage to set ERC1967 implementation slot: * ``` * contract ERC1967 { * bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc; * * function _getImplementation() internal view returns (address) { * return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value; * } * * function _setImplementation(address newImplementation) internal { * require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract"); * StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation; * } * } * ``` * * _Available since v4.1 for `address`, `bool`, `bytes32`, and `uint256`._ */ library StorageSlot { struct AddressSlot { address value; } struct BooleanSlot { bool value; } struct Bytes32Slot { bytes32 value; } struct Uint256Slot { uint256 value; } /** * @dev Returns an `AddressSlot` with member `value` located at `slot`. */ function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) { assembly { r.slot := slot } } /** * @dev Returns an `BooleanSlot` with member `value` located at `slot`. */ function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) { assembly { r.slot := slot } } /** * @dev Returns an `Bytes32Slot` with member `value` located at `slot`. */ function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) { assembly { r.slot := slot } } /** * @dev Returns an `Uint256Slot` with member `value` located at `slot`. */ function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) { assembly { r.slot := slot } } }
File 2 of 5: WETH9
// Copyright (C) 2015, 2016, 2017 Dapphub // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.4.18; contract WETH9 { string public name = "Wrapped Ether"; string public symbol = "WETH"; uint8 public decimals = 18; event Approval(address indexed src, address indexed guy, uint wad); event Transfer(address indexed src, address indexed dst, uint wad); event Deposit(address indexed dst, uint wad); event Withdrawal(address indexed src, uint wad); mapping (address => uint) public balanceOf; mapping (address => mapping (address => uint)) public allowance; function() public payable { deposit(); } function deposit() public payable { balanceOf[msg.sender] += msg.value; Deposit(msg.sender, msg.value); } function withdraw(uint wad) public { require(balanceOf[msg.sender] >= wad); balanceOf[msg.sender] -= wad; msg.sender.transfer(wad); Withdrawal(msg.sender, wad); } function totalSupply() public view returns (uint) { return this.balance; } function approve(address guy, uint wad) public returns (bool) { allowance[msg.sender][guy] = wad; Approval(msg.sender, guy, wad); return true; } function transfer(address dst, uint wad) public returns (bool) { return transferFrom(msg.sender, dst, wad); } function transferFrom(address src, address dst, uint wad) public returns (bool) { require(balanceOf[src] >= wad); if (src != msg.sender && allowance[src][msg.sender] != uint(-1)) { require(allowance[src][msg.sender] >= wad); allowance[src][msg.sender] -= wad; } balanceOf[src] -= wad; balanceOf[dst] += wad; Transfer(src, dst, wad); return true; } } /* GNU GENERAL PUBLIC LICENSE Version 3, 29 June 2007 Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/> Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed. Preamble The GNU General Public License is a free, copyleft license for software and other kinds of works. The licenses for most software and other practical works are designed to take away your freedom to share and change the works. By contrast, the GNU General Public License is intended to guarantee your freedom to share and change all versions of a program--to make sure it remains free software for all its users. We, the Free Software Foundation, use the GNU General Public License for most of our software; it applies also to any other work released this way by its authors. You can apply it to your programs, too. When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are designed to make sure that you have the freedom to distribute copies of free software (and charge for them if you wish), that you receive source code or can get it if you want it, that you can change the software or use pieces of it in new free programs, and that you know you can do these things. To protect your rights, we need to prevent others from denying you these rights or asking you to surrender the rights. Therefore, you have certain responsibilities if you distribute copies of the software, or if you modify it: responsibilities to respect the freedom of others. For example, if you distribute copies of such a program, whether gratis or for a fee, you must pass on to the recipients the same freedoms that you received. You must make sure that they, too, receive or can get the source code. And you must show them these terms so they know their rights. Developers that use the GNU GPL protect your rights with two steps: (1) assert copyright on the software, and (2) offer you this License giving you legal permission to copy, distribute and/or modify it. For the developers' and authors' protection, the GPL clearly explains that there is no warranty for this free software. For both users' and authors' sake, the GPL requires that modified versions be marked as changed, so that their problems will not be attributed erroneously to authors of previous versions. Some devices are designed to deny users access to install or run modified versions of the software inside them, although the manufacturer can do so. This is fundamentally incompatible with the aim of protecting users' freedom to change the software. The systematic pattern of such abuse occurs in the area of products for individuals to use, which is precisely where it is most unacceptable. Therefore, we have designed this version of the GPL to prohibit the practice for those products. If such problems arise substantially in other domains, we stand ready to extend this provision to those domains in future versions of the GPL, as needed to protect the freedom of users. Finally, every program is threatened constantly by software patents. States should not allow patents to restrict development and use of software on general-purpose computers, but in those that do, we wish to avoid the special danger that patents applied to a free program could make it effectively proprietary. To prevent this, the GPL assures that patents cannot be used to render the program non-free. The precise terms and conditions for copying, distribution and modification follow. TERMS AND CONDITIONS 0. Definitions. "This License" refers to version 3 of the GNU General Public License. "Copyright" also means copyright-like laws that apply to other kinds of works, such as semiconductor masks. "The Program" refers to any copyrightable work licensed under this License. Each licensee is addressed as "you". "Licensees" and "recipients" may be individuals or organizations. To "modify" a work means to copy from or adapt all or part of the work in a fashion requiring copyright permission, other than the making of an exact copy. The resulting work is called a "modified version" of the earlier work or a work "based on" the earlier work. A "covered work" means either the unmodified Program or a work based on the Program. To "propagate" a work means to do anything with it that, without permission, would make you directly or secondarily liable for infringement under applicable copyright law, except executing it on a computer or modifying a private copy. Propagation includes copying, distribution (with or without modification), making available to the public, and in some countries other activities as well. To "convey" a work means any kind of propagation that enables other parties to make or receive copies. Mere interaction with a user through a computer network, with no transfer of a copy, is not conveying. An interactive user interface displays "Appropriate Legal Notices" to the extent that it includes a convenient and prominently visible feature that (1) displays an appropriate copyright notice, and (2) tells the user that there is no warranty for the work (except to the extent that warranties are provided), that licensees may convey the work under this License, and how to view a copy of this License. If the interface presents a list of user commands or options, such as a menu, a prominent item in the list meets this criterion. 1. Source Code. The "source code" for a work means the preferred form of the work for making modifications to it. "Object code" means any non-source form of a work. A "Standard Interface" means an interface that either is an official standard defined by a recognized standards body, or, in the case of interfaces specified for a particular programming language, one that is widely used among developers working in that language. The "System Libraries" of an executable work include anything, other than the work as a whole, that (a) is included in the normal form of packaging a Major Component, but which is not part of that Major Component, and (b) serves only to enable use of the work with that Major Component, or to implement a Standard Interface for which an implementation is available to the public in source code form. A "Major Component", in this context, means a major essential component (kernel, window system, and so on) of the specific operating system (if any) on which the executable work runs, or a compiler used to produce the work, or an object code interpreter used to run it. The "Corresponding Source" for a work in object code form means all the source code needed to generate, install, and (for an executable work) run the object code and to modify the work, including scripts to control those activities. However, it does not include the work's System Libraries, or general-purpose tools or generally available free programs which are used unmodified in performing those activities but which are not part of the work. For example, Corresponding Source includes interface definition files associated with source files for the work, and the source code for shared libraries and dynamically linked subprograms that the work is specifically designed to require, such as by intimate data communication or control flow between those subprograms and other parts of the work. The Corresponding Source need not include anything that users can regenerate automatically from other parts of the Corresponding Source. The Corresponding Source for a work in source code form is that same work. 2. Basic Permissions. All rights granted under this License are granted for the term of copyright on the Program, and are irrevocable provided the stated conditions are met. This License explicitly affirms your unlimited permission to run the unmodified Program. The output from running a covered work is covered by this License only if the output, given its content, constitutes a covered work. This License acknowledges your rights of fair use or other equivalent, as provided by copyright law. You may make, run and propagate covered works that you do not convey, without conditions so long as your license otherwise remains in force. You may convey covered works to others for the sole purpose of having them make modifications exclusively for you, or provide you with facilities for running those works, provided that you comply with the terms of this License in conveying all material for which you do not control copyright. Those thus making or running the covered works for you must do so exclusively on your behalf, under your direction and control, on terms that prohibit them from making any copies of your copyrighted material outside their relationship with you. Conveying under any other circumstances is permitted solely under the conditions stated below. Sublicensing is not allowed; section 10 makes it unnecessary. 3. Protecting Users' Legal Rights From Anti-Circumvention Law. No covered work shall be deemed part of an effective technological measure under any applicable law fulfilling obligations under article 11 of the WIPO copyright treaty adopted on 20 December 1996, or similar laws prohibiting or restricting circumvention of such measures. When you convey a covered work, you waive any legal power to forbid circumvention of technological measures to the extent such circumvention is effected by exercising rights under this License with respect to the covered work, and you disclaim any intention to limit operation or modification of the work as a means of enforcing, against the work's users, your or third parties' legal rights to forbid circumvention of technological measures. 4. Conveying Verbatim Copies. You may convey verbatim copies of the Program's source code as you receive it, in any medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright notice; keep intact all notices stating that this License and any non-permissive terms added in accord with section 7 apply to the code; keep intact all notices of the absence of any warranty; and give all recipients a copy of this License along with the Program. You may charge any price or no price for each copy that you convey, and you may offer support or warranty protection for a fee. 5. Conveying Modified Source Versions. You may convey a work based on the Program, or the modifications to produce it from the Program, in the form of source code under the terms of section 4, provided that you also meet all of these conditions: a) The work must carry prominent notices stating that you modified it, and giving a relevant date. b) The work must carry prominent notices stating that it is released under this License and any conditions added under section 7. This requirement modifies the requirement in section 4 to "keep intact all notices". c) You must license the entire work, as a whole, under this License to anyone who comes into possession of a copy. This License will therefore apply, along with any applicable section 7 additional terms, to the whole of the work, and all its parts, regardless of how they are packaged. This License gives no permission to license the work in any other way, but it does not invalidate such permission if you have separately received it. d) If the work has interactive user interfaces, each must display Appropriate Legal Notices; however, if the Program has interactive interfaces that do not display Appropriate Legal Notices, your work need not make them do so. A compilation of a covered work with other separate and independent works, which are not by their nature extensions of the covered work, and which are not combined with it such as to form a larger program, in or on a volume of a storage or distribution medium, is called an "aggregate" if the compilation and its resulting copyright are not used to limit the access or legal rights of the compilation's users beyond what the individual works permit. Inclusion of a covered work in an aggregate does not cause this License to apply to the other parts of the aggregate. 6. Conveying Non-Source Forms. You may convey a covered work in object code form under the terms of sections 4 and 5, provided that you also convey the machine-readable Corresponding Source under the terms of this License, in one of these ways: a) Convey the object code in, or embodied in, a physical product (including a physical distribution medium), accompanied by the Corresponding Source fixed on a durable physical medium customarily used for software interchange. b) Convey the object code in, or embodied in, a physical product (including a physical distribution medium), accompanied by a written offer, valid for at least three years and valid for as long as you offer spare parts or customer support for that product model, to give anyone who possesses the object code either (1) a copy of the Corresponding Source for all the software in the product that is covered by this License, on a durable physical medium customarily used for software interchange, for a price no more than your reasonable cost of physically performing this conveying of source, or (2) access to copy the Corresponding Source from a network server at no charge. c) Convey individual copies of the object code with a copy of the written offer to provide the Corresponding Source. This alternative is allowed only occasionally and noncommercially, and only if you received the object code with such an offer, in accord with subsection 6b. d) Convey the object code by offering access from a designated place (gratis or for a charge), and offer equivalent access to the Corresponding Source in the same way through the same place at no further charge. You need not require recipients to copy the Corresponding Source along with the object code. If the place to copy the object code is a network server, the Corresponding Source may be on a different server (operated by you or a third party) that supports equivalent copying facilities, provided you maintain clear directions next to the object code saying where to find the Corresponding Source. Regardless of what server hosts the Corresponding Source, you remain obligated to ensure that it is available for as long as needed to satisfy these requirements. e) Convey the object code using peer-to-peer transmission, provided you inform other peers where the object code and Corresponding Source of the work are being offered to the general public at no charge under subsection 6d. A separable portion of the object code, whose source code is excluded from the Corresponding Source as a System Library, need not be included in conveying the object code work. A "User Product" is either (1) a "consumer product", which means any tangible personal property which is normally used for personal, family, or household purposes, or (2) anything designed or sold for incorporation into a dwelling. In determining whether a product is a consumer product, doubtful cases shall be resolved in favor of coverage. For a particular product received by a particular user, "normally used" refers to a typical or common use of that class of product, regardless of the status of the particular user or of the way in which the particular user actually uses, or expects or is expected to use, the product. A product is a consumer product regardless of whether the product has substantial commercial, industrial or non-consumer uses, unless such uses represent the only significant mode of use of the product. "Installation Information" for a User Product means any methods, procedures, authorization keys, or other information required to install and execute modified versions of a covered work in that User Product from a modified version of its Corresponding Source. The information must suffice to ensure that the continued functioning of the modified object code is in no case prevented or interfered with solely because modification has been made. If you convey an object code work under this section in, or with, or specifically for use in, a User Product, and the conveying occurs as part of a transaction in which the right of possession and use of the User Product is transferred to the recipient in perpetuity or for a fixed term (regardless of how the transaction is characterized), the Corresponding Source conveyed under this section must be accompanied by the Installation Information. But this requirement does not apply if neither you nor any third party retains the ability to install modified object code on the User Product (for example, the work has been installed in ROM). The requirement to provide Installation Information does not include a requirement to continue to provide support service, warranty, or updates for a work that has been modified or installed by the recipient, or for the User Product in which it has been modified or installed. Access to a network may be denied when the modification itself materially and adversely affects the operation of the network or violates the rules and protocols for communication across the network. Corresponding Source conveyed, and Installation Information provided, in accord with this section must be in a format that is publicly documented (and with an implementation available to the public in source code form), and must require no special password or key for unpacking, reading or copying. 7. Additional Terms. "Additional permissions" are terms that supplement the terms of this License by making exceptions from one or more of its conditions. Additional permissions that are applicable to the entire Program shall be treated as though they were included in this License, to the extent that they are valid under applicable law. If additional permissions apply only to part of the Program, that part may be used separately under those permissions, but the entire Program remains governed by this License without regard to the additional permissions. When you convey a copy of a covered work, you may at your option remove any additional permissions from that copy, or from any part of it. (Additional permissions may be written to require their own removal in certain cases when you modify the work.) You may place additional permissions on material, added by you to a covered work, for which you have or can give appropriate copyright permission. Notwithstanding any other provision of this License, for material you add to a covered work, you may (if authorized by the copyright holders of that material) supplement the terms of this License with terms: a) Disclaiming warranty or limiting liability differently from the terms of sections 15 and 16 of this License; or b) Requiring preservation of specified reasonable legal notices or author attributions in that material or in the Appropriate Legal Notices displayed by works containing it; or c) Prohibiting misrepresentation of the origin of that material, or requiring that modified versions of such material be marked in reasonable ways as different from the original version; or d) Limiting the use for publicity purposes of names of licensors or authors of the material; or e) Declining to grant rights under trademark law for use of some trade names, trademarks, or service marks; or f) Requiring indemnification of licensors and authors of that material by anyone who conveys the material (or modified versions of it) with contractual assumptions of liability to the recipient, for any liability that these contractual assumptions directly impose on those licensors and authors. All other non-permissive additional terms are considered "further restrictions" within the meaning of section 10. If the Program as you received it, or any part of it, contains a notice stating that it is governed by this License along with a term that is a further restriction, you may remove that term. If a license document contains a further restriction but permits relicensing or conveying under this License, you may add to a covered work material governed by the terms of that license document, provided that the further restriction does not survive such relicensing or conveying. If you add terms to a covered work in accord with this section, you must place, in the relevant source files, a statement of the additional terms that apply to those files, or a notice indicating where to find the applicable terms. Additional terms, permissive or non-permissive, may be stated in the form of a separately written license, or stated as exceptions; the above requirements apply either way. 8. Termination. You may not propagate or modify a covered work except as expressly provided under this License. Any attempt otherwise to propagate or modify it is void, and will automatically terminate your rights under this License (including any patent licenses granted under the third paragraph of section 11). However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally terminates your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some reasonable means prior to 60 days after the cessation. Moreover, your license from a particular copyright holder is reinstated permanently if the copyright holder notifies you of the violation by some reasonable means, this is the first time you have received notice of violation of this License (for any work) from that copyright holder, and you cure the violation prior to 30 days after your receipt of the notice. Termination of your rights under this section does not terminate the licenses of parties who have received copies or rights from you under this License. If your rights have been terminated and not permanently reinstated, you do not qualify to receive new licenses for the same material under section 10. 9. Acceptance Not Required for Having Copies. You are not required to accept this License in order to receive or run a copy of the Program. Ancillary propagation of a covered work occurring solely as a consequence of using peer-to-peer transmission to receive a copy likewise does not require acceptance. However, nothing other than this License grants you permission to propagate or modify any covered work. These actions infringe copyright if you do not accept this License. Therefore, by modifying or propagating a covered work, you indicate your acceptance of this License to do so. 10. Automatic Licensing of Downstream Recipients. Each time you convey a covered work, the recipient automatically receives a license from the original licensors, to run, modify and propagate that work, subject to this License. You are not responsible for enforcing compliance by third parties with this License. An "entity transaction" is a transaction transferring control of an organization, or substantially all assets of one, or subdividing an organization, or merging organizations. If propagation of a covered work results from an entity transaction, each party to that transaction who receives a copy of the work also receives whatever licenses to the work the party's predecessor in interest had or could give under the previous paragraph, plus a right to possession of the Corresponding Source of the work from the predecessor in interest, if the predecessor has it or can get it with reasonable efforts. You may not impose any further restrictions on the exercise of the rights granted or affirmed under this License. For example, you may not impose a license fee, royalty, or other charge for exercise of rights granted under this License, and you may not initiate litigation (including a cross-claim or counterclaim in a lawsuit) alleging that any patent claim is infringed by making, using, selling, offering for sale, or importing the Program or any portion of it. 11. Patents. A "contributor" is a copyright holder who authorizes use under this License of the Program or a work on which the Program is based. The work thus licensed is called the contributor's "contributor version". A contributor's "essential patent claims" are all patent claims owned or controlled by the contributor, whether already acquired or hereafter acquired, that would be infringed by some manner, permitted by this License, of making, using, or selling its contributor version, but do not include claims that would be infringed only as a consequence of further modification of the contributor version. For purposes of this definition, "control" includes the right to grant patent sublicenses in a manner consistent with the requirements of this License. Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under the contributor's essential patent claims, to make, use, sell, offer for sale, import and otherwise run, modify and propagate the contents of its contributor version. In the following three paragraphs, a "patent license" is any express agreement or commitment, however denominated, not to enforce a patent (such as an express permission to practice a patent or covenant not to sue for patent infringement). To "grant" such a patent license to a party means to make such an agreement or commitment not to enforce a patent against the party. If you convey a covered work, knowingly relying on a patent license, and the Corresponding Source of the work is not available for anyone to copy, free of charge and under the terms of this License, through a publicly available network server or other readily accessible means, then you must either (1) cause the Corresponding Source to be so available, or (2) arrange to deprive yourself of the benefit of the patent license for this particular work, or (3) arrange, in a manner consistent with the requirements of this License, to extend the patent license to downstream recipients. "Knowingly relying" means you have actual knowledge that, but for the patent license, your conveying the covered work in a country, or your recipient's use of the covered work in a country, would infringe one or more identifiable patents in that country that you have reason to believe are valid. If, pursuant to or in connection with a single transaction or arrangement, you convey, or propagate by procuring conveyance of, a covered work, and grant a patent license to some of the parties receiving the covered work authorizing them to use, propagate, modify or convey a specific copy of the covered work, then the patent license you grant is automatically extended to all recipients of the covered work and works based on it. A patent license is "discriminatory" if it does not include within the scope of its coverage, prohibits the exercise of, or is conditioned on the non-exercise of one or more of the rights that are specifically granted under this License. You may not convey a covered work if you are a party to an arrangement with a third party that is in the business of distributing software, under which you make payment to the third party based on the extent of your activity of conveying the work, and under which the third party grants, to any of the parties who would receive the covered work from you, a discriminatory patent license (a) in connection with copies of the covered work conveyed by you (or copies made from those copies), or (b) primarily for and in connection with specific products or compilations that contain the covered work, unless you entered into that arrangement, or that patent license was granted, prior to 28 March 2007. Nothing in this License shall be construed as excluding or limiting any implied license or other defenses to infringement that may otherwise be available to you under applicable patent law. 12. No Surrender of Others' Freedom. If conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the conditions of this License, they do not excuse you from the conditions of this License. If you cannot convey a covered work so as to satisfy simultaneously your obligations under this License and any other pertinent obligations, then as a consequence you may not convey it at all. For example, if you agree to terms that obligate you to collect a royalty for further conveying from those to whom you convey the Program, the only way you could satisfy both those terms and this License would be to refrain entirely from conveying the Program. 13. Use with the GNU Affero General Public License. Notwithstanding any other provision of this License, you have permission to link or combine any covered work with a work licensed under version 3 of the GNU Affero General Public License into a single combined work, and to convey the resulting work. The terms of this License will continue to apply to the part which is the covered work, but the special requirements of the GNU Affero General Public License, section 13, concerning interaction through a network will apply to the combination as such. 14. Revised Versions of this License. The Free Software Foundation may publish revised and/or new versions of the GNU General Public License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. Each version is given a distinguishing version number. If the Program specifies that a certain numbered version of the GNU General Public License "or any later version" applies to it, you have the option of following the terms and conditions either of that numbered version or of any later version published by the Free Software Foundation. If the Program does not specify a version number of the GNU General Public License, you may choose any version ever published by the Free Software Foundation. If the Program specifies that a proxy can decide which future versions of the GNU General Public License can be used, that proxy's public statement of acceptance of a version permanently authorizes you to choose that version for the Program. Later license versions may give you additional or different permissions. However, no additional obligations are imposed on any author or copyright holder as a result of your choosing to follow a later version. 15. Disclaimer of Warranty. THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION. 16. Limitation of Liability. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. 17. Interpretation of Sections 15 and 16. If the disclaimer of warranty and limitation of liability provided above cannot be given local legal effect according to their terms, reviewing courts shall apply local law that most closely approximates an absolute waiver of all civil liability in connection with the Program, unless a warranty or assumption of liability accompanies a copy of the Program in return for a fee. END OF TERMS AND CONDITIONS How to Apply These Terms to Your New Programs If you develop a new program, and you want it to be of the greatest possible use to the public, the best way to achieve this is to make it free software which everyone can redistribute and change under these terms. To do so, attach the following notices to the program. It is safest to attach them to the start of each source file to most effectively state the exclusion of warranty; and each file should have at least the "copyright" line and a pointer to where the full notice is found. <one line to give the program's name and a brief idea of what it does.> Copyright (C) <year> <name of author> This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. Also add information on how to contact you by electronic and paper mail. If the program does terminal interaction, make it output a short notice like this when it starts in an interactive mode: <program> Copyright (C) <year> <name of author> This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'. This is free software, and you are welcome to redistribute it under certain conditions; type `show c' for details. The hypothetical commands `show w' and `show c' should show the appropriate parts of the General Public License. Of course, your program's commands might be different; for a GUI interface, you would use an "about box". You should also get your employer (if you work as a programmer) or school, if any, to sign a "copyright disclaimer" for the program, if necessary. For more information on this, and how to apply and follow the GNU GPL, see <http://www.gnu.org/licenses/>. The GNU General Public License does not permit incorporating your program into proprietary programs. If your program is a subroutine library, you may consider it more useful to permit linking proprietary applications with the library. If this is what you want to do, use the GNU Lesser General Public License instead of this License. But first, please read <http://www.gnu.org/philosophy/why-not-lgpl.html>. */
File 3 of 5: BridgeImplementation
// contracts/Implementation.sol // SPDX-License-Identifier: Apache 2 pragma solidity ^0.8.0; pragma experimental ABIEncoderV2; import "@openzeppelin/contracts/proxy/ERC1967/ERC1967Upgrade.sol"; import "./Bridge.sol"; contract BridgeImplementation is Bridge { // Beacon getter for the token contracts function implementation() public view returns (address) { return tokenImplementation(); } function initialize() initializer public virtual { // this function needs to be exposed for an upgrade to pass } modifier initializer() { address impl = ERC1967Upgrade._getImplementation(); require( !isInitialized(impl), "already initialized" ); setInitialized(impl); _; } } // SPDX-License-Identifier: Unlicense /* * @title Solidity Bytes Arrays Utils * @author Gonçalo Sá <[email protected]> * * @dev Bytes tightly packed arrays utility library for ethereum contracts written in Solidity. * The library lets you concatenate, slice and type cast bytes arrays both in memory and storage. */ pragma solidity >=0.8.0 <0.9.0; library BytesLib { function concat( bytes memory _preBytes, bytes memory _postBytes ) internal pure returns (bytes memory) { bytes memory tempBytes; assembly { // Get a location of some free memory and store it in tempBytes as // Solidity does for memory variables. tempBytes := mload(0x40) // Store the length of the first bytes array at the beginning of // the memory for tempBytes. let length := mload(_preBytes) mstore(tempBytes, length) // Maintain a memory counter for the current write location in the // temp bytes array by adding the 32 bytes for the array length to // the starting location. let mc := add(tempBytes, 0x20) // Stop copying when the memory counter reaches the length of the // first bytes array. let end := add(mc, length) for { // Initialize a copy counter to the start of the _preBytes data, // 32 bytes into its memory. let cc := add(_preBytes, 0x20) } lt(mc, end) { // Increase both counters by 32 bytes each iteration. mc := add(mc, 0x20) cc := add(cc, 0x20) } { // Write the _preBytes data into the tempBytes memory 32 bytes // at a time. mstore(mc, mload(cc)) } // Add the length of _postBytes to the current length of tempBytes // and store it as the new length in the first 32 bytes of the // tempBytes memory. length := mload(_postBytes) mstore(tempBytes, add(length, mload(tempBytes))) // Move the memory counter back from a multiple of 0x20 to the // actual end of the _preBytes data. mc := end // Stop copying when the memory counter reaches the new combined // length of the arrays. end := add(mc, length) for { let cc := add(_postBytes, 0x20) } lt(mc, end) { mc := add(mc, 0x20) cc := add(cc, 0x20) } { mstore(mc, mload(cc)) } // Update the free-memory pointer by padding our last write location // to 32 bytes: add 31 bytes to the end of tempBytes to move to the // next 32 byte block, then round down to the nearest multiple of // 32. If the sum of the length of the two arrays is zero then add // one before rounding down to leave a blank 32 bytes (the length block with 0). mstore(0x40, and( add(add(end, iszero(add(length, mload(_preBytes)))), 31), not(31) // Round down to the nearest 32 bytes. )) } return tempBytes; } function concatStorage(bytes storage _preBytes, bytes memory _postBytes) internal { assembly { // Read the first 32 bytes of _preBytes storage, which is the length // of the array. (We don't need to use the offset into the slot // because arrays use the entire slot.) let fslot := sload(_preBytes.slot) // Arrays of 31 bytes or less have an even value in their slot, // while longer arrays have an odd value. The actual length is // the slot divided by two for odd values, and the lowest order // byte divided by two for even values. // If the slot is even, bitwise and the slot with 255 and divide by // two to get the length. If the slot is odd, bitwise and the slot // with -1 and divide by two. let slength := div(and(fslot, sub(mul(0x100, iszero(and(fslot, 1))), 1)), 2) let mlength := mload(_postBytes) let newlength := add(slength, mlength) // slength can contain both the length and contents of the array // if length < 32 bytes so let's prepare for that // v. http://solidity.readthedocs.io/en/latest/miscellaneous.html#layout-of-state-variables-in-storage switch add(lt(slength, 32), lt(newlength, 32)) case 2 { // Since the new array still fits in the slot, we just need to // update the contents of the slot. // uint256(bytes_storage) = uint256(bytes_storage) + uint256(bytes_memory) + new_length sstore( _preBytes.slot, // all the modifications to the slot are inside this // next block add( // we can just add to the slot contents because the // bytes we want to change are the LSBs fslot, add( mul( div( // load the bytes from memory mload(add(_postBytes, 0x20)), // zero all bytes to the right exp(0x100, sub(32, mlength)) ), // and now shift left the number of bytes to // leave space for the length in the slot exp(0x100, sub(32, newlength)) ), // increase length by the double of the memory // bytes length mul(mlength, 2) ) ) ) } case 1 { // The stored value fits in the slot, but the combined value // will exceed it. // get the keccak hash to get the contents of the array mstore(0x0, _preBytes.slot) let sc := add(keccak256(0x0, 0x20), div(slength, 32)) // save new length sstore(_preBytes.slot, add(mul(newlength, 2), 1)) // The contents of the _postBytes array start 32 bytes into // the structure. Our first read should obtain the `submod` // bytes that can fit into the unused space in the last word // of the stored array. To get this, we read 32 bytes starting // from `submod`, so the data we read overlaps with the array // contents by `submod` bytes. Masking the lowest-order // `submod` bytes allows us to add that value directly to the // stored value. let submod := sub(32, slength) let mc := add(_postBytes, submod) let end := add(_postBytes, mlength) let mask := sub(exp(0x100, submod), 1) sstore( sc, add( and( fslot, 0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00 ), and(mload(mc), mask) ) ) for { mc := add(mc, 0x20) sc := add(sc, 1) } lt(mc, end) { sc := add(sc, 1) mc := add(mc, 0x20) } { sstore(sc, mload(mc)) } mask := exp(0x100, sub(mc, end)) sstore(sc, mul(div(mload(mc), mask), mask)) } default { // get the keccak hash to get the contents of the array mstore(0x0, _preBytes.slot) // Start copying to the last used word of the stored array. let sc := add(keccak256(0x0, 0x20), div(slength, 32)) // save new length sstore(_preBytes.slot, add(mul(newlength, 2), 1)) // Copy over the first `submod` bytes of the new data as in // case 1 above. let slengthmod := mod(slength, 32) let mlengthmod := mod(mlength, 32) let submod := sub(32, slengthmod) let mc := add(_postBytes, submod) let end := add(_postBytes, mlength) let mask := sub(exp(0x100, submod), 1) sstore(sc, add(sload(sc), and(mload(mc), mask))) for { sc := add(sc, 1) mc := add(mc, 0x20) } lt(mc, end) { sc := add(sc, 1) mc := add(mc, 0x20) } { sstore(sc, mload(mc)) } mask := exp(0x100, sub(mc, end)) sstore(sc, mul(div(mload(mc), mask), mask)) } } } function slice( bytes memory _bytes, uint256 _start, uint256 _length ) internal pure returns (bytes memory) { require(_length + 31 >= _length, "slice_overflow"); require(_bytes.length >= _start + _length, "slice_outOfBounds"); bytes memory tempBytes; assembly { switch iszero(_length) case 0 { // Get a location of some free memory and store it in tempBytes as // Solidity does for memory variables. tempBytes := mload(0x40) // The first word of the slice result is potentially a partial // word read from the original array. To read it, we calculate // the length of that partial word and start copying that many // bytes into the array. The first word we copy will start with // data we don't care about, but the last `lengthmod` bytes will // land at the beginning of the contents of the new array. When // we're done copying, we overwrite the full first word with // the actual length of the slice. let lengthmod := and(_length, 31) // The multiplication in the next line is necessary // because when slicing multiples of 32 bytes (lengthmod == 0) // the following copy loop was copying the origin's length // and then ending prematurely not copying everything it should. let mc := add(add(tempBytes, lengthmod), mul(0x20, iszero(lengthmod))) let end := add(mc, _length) for { // The multiplication in the next line has the same exact purpose // as the one above. let cc := add(add(add(_bytes, lengthmod), mul(0x20, iszero(lengthmod))), _start) } lt(mc, end) { mc := add(mc, 0x20) cc := add(cc, 0x20) } { mstore(mc, mload(cc)) } mstore(tempBytes, _length) //update free-memory pointer //allocating the array padded to 32 bytes like the compiler does now mstore(0x40, and(add(mc, 31), not(31))) } //if we want a zero-length slice let's just return a zero-length array default { tempBytes := mload(0x40) //zero out the 32 bytes slice we are about to return //we need to do it because Solidity does not garbage collect mstore(tempBytes, 0) mstore(0x40, add(tempBytes, 0x20)) } } return tempBytes; } function toAddress(bytes memory _bytes, uint256 _start) internal pure returns (address) { require(_bytes.length >= _start + 20, "toAddress_outOfBounds"); address tempAddress; assembly { tempAddress := div(mload(add(add(_bytes, 0x20), _start)), 0x1000000000000000000000000) } return tempAddress; } function toUint8(bytes memory _bytes, uint256 _start) internal pure returns (uint8) { require(_bytes.length >= _start + 1 , "toUint8_outOfBounds"); uint8 tempUint; assembly { tempUint := mload(add(add(_bytes, 0x1), _start)) } return tempUint; } function toUint16(bytes memory _bytes, uint256 _start) internal pure returns (uint16) { require(_bytes.length >= _start + 2, "toUint16_outOfBounds"); uint16 tempUint; assembly { tempUint := mload(add(add(_bytes, 0x2), _start)) } return tempUint; } function toUint32(bytes memory _bytes, uint256 _start) internal pure returns (uint32) { require(_bytes.length >= _start + 4, "toUint32_outOfBounds"); uint32 tempUint; assembly { tempUint := mload(add(add(_bytes, 0x4), _start)) } return tempUint; } function toUint64(bytes memory _bytes, uint256 _start) internal pure returns (uint64) { require(_bytes.length >= _start + 8, "toUint64_outOfBounds"); uint64 tempUint; assembly { tempUint := mload(add(add(_bytes, 0x8), _start)) } return tempUint; } function toUint96(bytes memory _bytes, uint256 _start) internal pure returns (uint96) { require(_bytes.length >= _start + 12, "toUint96_outOfBounds"); uint96 tempUint; assembly { tempUint := mload(add(add(_bytes, 0xc), _start)) } return tempUint; } function toUint128(bytes memory _bytes, uint256 _start) internal pure returns (uint128) { require(_bytes.length >= _start + 16, "toUint128_outOfBounds"); uint128 tempUint; assembly { tempUint := mload(add(add(_bytes, 0x10), _start)) } return tempUint; } function toUint256(bytes memory _bytes, uint256 _start) internal pure returns (uint256) { require(_bytes.length >= _start + 32, "toUint256_outOfBounds"); uint256 tempUint; assembly { tempUint := mload(add(add(_bytes, 0x20), _start)) } return tempUint; } function toBytes32(bytes memory _bytes, uint256 _start) internal pure returns (bytes32) { require(_bytes.length >= _start + 32, "toBytes32_outOfBounds"); bytes32 tempBytes32; assembly { tempBytes32 := mload(add(add(_bytes, 0x20), _start)) } return tempBytes32; } function equal(bytes memory _preBytes, bytes memory _postBytes) internal pure returns (bool) { bool success = true; assembly { let length := mload(_preBytes) // if lengths don't match the arrays are not equal switch eq(length, mload(_postBytes)) case 1 { // cb is a circuit breaker in the for loop since there's // no said feature for inline assembly loops // cb = 1 - don't breaker // cb = 0 - break let cb := 1 let mc := add(_preBytes, 0x20) let end := add(mc, length) for { let cc := add(_postBytes, 0x20) // the next line is the loop condition: // while(uint256(mc < end) + cb == 2) } eq(add(lt(mc, end), cb), 2) { mc := add(mc, 0x20) cc := add(cc, 0x20) } { // if any of these checks fails then arrays are not equal if iszero(eq(mload(mc), mload(cc))) { // unsuccess: success := 0 cb := 0 } } } default { // unsuccess: success := 0 } } return success; } function equalStorage( bytes storage _preBytes, bytes memory _postBytes ) internal view returns (bool) { bool success = true; assembly { // we know _preBytes_offset is 0 let fslot := sload(_preBytes.slot) // Decode the length of the stored array like in concatStorage(). let slength := div(and(fslot, sub(mul(0x100, iszero(and(fslot, 1))), 1)), 2) let mlength := mload(_postBytes) // if lengths don't match the arrays are not equal switch eq(slength, mlength) case 1 { // slength can contain both the length and contents of the array // if length < 32 bytes so let's prepare for that // v. http://solidity.readthedocs.io/en/latest/miscellaneous.html#layout-of-state-variables-in-storage if iszero(iszero(slength)) { switch lt(slength, 32) case 1 { // blank the last byte which is the length fslot := mul(div(fslot, 0x100), 0x100) if iszero(eq(fslot, mload(add(_postBytes, 0x20)))) { // unsuccess: success := 0 } } default { // cb is a circuit breaker in the for loop since there's // no said feature for inline assembly loops // cb = 1 - don't breaker // cb = 0 - break let cb := 1 // get the keccak hash to get the contents of the array mstore(0x0, _preBytes.slot) let sc := keccak256(0x0, 0x20) let mc := add(_postBytes, 0x20) let end := add(mc, mlength) // the next line is the loop condition: // while(uint256(mc < end) + cb == 2) for {} eq(add(lt(mc, end), cb), 2) { sc := add(sc, 1) mc := add(mc, 0x20) } { if iszero(eq(sload(sc), mload(mc))) { // unsuccess: success := 0 cb := 0 } } } } } default { // unsuccess: success := 0 } } return success; } } // contracts/Messages.sol // SPDX-License-Identifier: Apache 2 pragma solidity ^0.8.0; interface IWormhole { struct GuardianSet { address[] keys; uint32 expirationTime; } struct Signature { bytes32 r; bytes32 s; uint8 v; uint8 guardianIndex; } struct VM { uint8 version; uint32 timestamp; uint32 nonce; uint16 emitterChainId; bytes32 emitterAddress; uint64 sequence; uint8 consistencyLevel; bytes payload; uint32 guardianSetIndex; Signature[] signatures; bytes32 hash; } struct ContractUpgrade { bytes32 module; uint8 action; uint16 chain; address newContract; } struct GuardianSetUpgrade { bytes32 module; uint8 action; uint16 chain; GuardianSet newGuardianSet; uint32 newGuardianSetIndex; } struct SetMessageFee { bytes32 module; uint8 action; uint16 chain; uint256 messageFee; } struct TransferFees { bytes32 module; uint8 action; uint16 chain; uint256 amount; bytes32 recipient; } struct RecoverChainId { bytes32 module; uint8 action; uint256 evmChainId; uint16 newChainId; } event LogMessagePublished(address indexed sender, uint64 sequence, uint32 nonce, bytes payload, uint8 consistencyLevel); event ContractUpgraded(address indexed oldContract, address indexed newContract); event GuardianSetAdded(uint32 indexed index); function publishMessage( uint32 nonce, bytes memory payload, uint8 consistencyLevel ) external payable returns (uint64 sequence); function initialize() external; function parseAndVerifyVM(bytes calldata encodedVM) external view returns (VM memory vm, bool valid, string memory reason); function verifyVM(VM memory vm) external view returns (bool valid, string memory reason); function verifySignatures(bytes32 hash, Signature[] memory signatures, GuardianSet memory guardianSet) external pure returns (bool valid, string memory reason); function parseVM(bytes memory encodedVM) external pure returns (VM memory vm); function quorum(uint numGuardians) external pure returns (uint numSignaturesRequiredForQuorum); function getGuardianSet(uint32 index) external view returns (GuardianSet memory); function getCurrentGuardianSetIndex() external view returns (uint32); function getGuardianSetExpiry() external view returns (uint32); function governanceActionIsConsumed(bytes32 hash) external view returns (bool); function isInitialized(address impl) external view returns (bool); function chainId() external view returns (uint16); function isFork() external view returns (bool); function governanceChainId() external view returns (uint16); function governanceContract() external view returns (bytes32); function messageFee() external view returns (uint256); function evmChainId() external view returns (uint256); function nextSequence(address emitter) external view returns (uint64); function parseContractUpgrade(bytes memory encodedUpgrade) external pure returns (ContractUpgrade memory cu); function parseGuardianSetUpgrade(bytes memory encodedUpgrade) external pure returns (GuardianSetUpgrade memory gsu); function parseSetMessageFee(bytes memory encodedSetMessageFee) external pure returns (SetMessageFee memory smf); function parseTransferFees(bytes memory encodedTransferFees) external pure returns (TransferFees memory tf); function parseRecoverChainId(bytes memory encodedRecoverChainId) external pure returns (RecoverChainId memory rci); function submitContractUpgrade(bytes memory _vm) external; function submitSetMessageFee(bytes memory _vm) external; function submitNewGuardianSet(bytes memory _vm) external; function submitTransferFees(bytes memory _vm) external; function submitRecoverChainId(bytes memory _vm) external; } // contracts/State.sol // SPDX-License-Identifier: Apache 2 pragma solidity ^0.8.0; import "@openzeppelin/contracts/utils/Counters.sol"; contract TokenStorage { struct State { string name; string symbol; uint64 metaLastUpdatedSequence; uint256 totalSupply; uint8 decimals; mapping(address => uint256) balances; mapping(address => mapping(address => uint256)) allowances; address owner; bool initialized; uint16 chainId; bytes32 nativeContract; // EIP712 // Cache the domain separator and salt, but also store the chain id that // it corresponds to, in order to invalidate the cached domain separator // if the chain id changes. bytes32 cachedDomainSeparator; uint256 cachedChainId; address cachedThis; bytes32 cachedSalt; bytes32 cachedHashedName; // ERC20Permit draft mapping(address => Counters.Counter) nonces; } } contract TokenState { using Counters for Counters.Counter; TokenStorage.State _state; /** * @dev See {IERC20Permit-nonces}. */ function nonces(address owner_) public view returns (uint256) { return _state.nonces[owner_].current(); } /** * @dev "Consume a nonce": return the current value and increment. */ function _useNonce(address owner_) internal returns (uint256 current) { Counters.Counter storage nonce = _state.nonces[owner_]; current = nonce.current(); nonce.increment(); } }// contracts/TokenImplementation.sol // SPDX-License-Identifier: Apache 2 pragma solidity ^0.8.0; import "./TokenState.sol"; import "@openzeppelin/contracts/access/Ownable.sol"; import "@openzeppelin/contracts/utils/Context.sol"; import "@openzeppelin/contracts/proxy/beacon/BeaconProxy.sol"; import "@openzeppelin/contracts/utils/cryptography/ECDSA.sol"; // Based on the OpenZepplin ERC20 implementation, licensed under MIT contract TokenImplementation is TokenState, Context { event Transfer(address indexed from, address indexed to, uint256 value); event Approval(address indexed owner, address indexed spender, uint256 value); function initialize( string memory name_, string memory symbol_, uint8 decimals_, uint64 sequence_, address owner_, uint16 chainId_, bytes32 nativeContract_ ) initializer public { _initializeNativeToken( name_, symbol_, decimals_, sequence_, owner_, chainId_, nativeContract_ ); // initialize w/ EIP712 state variables for domain separator _initializePermitStateIfNeeded(); } function _initializeNativeToken( string memory name_, string memory symbol_, uint8 decimals_, uint64 sequence_, address owner_, uint16 chainId_, bytes32 nativeContract_ ) internal { _state.name = name_; _state.symbol = symbol_; _state.decimals = decimals_; _state.metaLastUpdatedSequence = sequence_; _state.owner = owner_; _state.chainId = chainId_; _state.nativeContract = nativeContract_; } function _initializePermitStateIfNeeded() internal { // If someone were to change the implementation of name(), we // need to make sure we recache. bytes32 hashedName = _eip712DomainNameHashed(); // If for some reason the salt generation changes with newer // token implementations, we need to make sure the state reflects // the new salt. bytes32 salt = _eip712DomainSalt(); // check cached values if (_state.cachedHashedName != hashedName || _state.cachedSalt != salt) { _state.cachedChainId = block.chainid; _state.cachedThis = address(this); _state.cachedDomainSeparator = _buildDomainSeparator(hashedName, salt); _state.cachedSalt = salt; _state.cachedHashedName = hashedName; } } function name() public view returns (string memory) { return _state.name; } function symbol() public view returns (string memory) { return _state.symbol; } function owner() public view returns (address) { return _state.owner; } function decimals() public view returns (uint8) { return _state.decimals; } function totalSupply() public view returns (uint256) { return _state.totalSupply; } function chainId() public view returns (uint16) { return _state.chainId; } function nativeContract() public view returns (bytes32) { return _state.nativeContract; } function balanceOf(address account_) public view returns (uint256) { return _state.balances[account_]; } function transfer(address recipient_, uint256 amount_) public returns (bool) { _transfer(_msgSender(), recipient_, amount_); return true; } function allowance(address owner_, address spender_) public view returns (uint256) { return _state.allowances[owner_][spender_]; } function approve(address spender_, uint256 amount_) public returns (bool) { _approve(_msgSender(), spender_, amount_); return true; } function transferFrom(address sender_, address recipient_, uint256 amount_) public returns (bool) { _transfer(sender_, recipient_, amount_); uint256 currentAllowance = _state.allowances[sender_][_msgSender()]; require(currentAllowance >= amount_, "ERC20: transfer amount exceeds allowance"); _approve(sender_, _msgSender(), currentAllowance - amount_); return true; } function increaseAllowance(address spender_, uint256 addedValue_) public returns (bool) { _approve(_msgSender(), spender_, _state.allowances[_msgSender()][spender_] + addedValue_); return true; } function decreaseAllowance(address spender_, uint256 subtractedValue_) public returns (bool) { uint256 currentAllowance = _state.allowances[_msgSender()][spender_]; require(currentAllowance >= subtractedValue_, "ERC20: decreased allowance below zero"); _approve(_msgSender(), spender_, currentAllowance - subtractedValue_); return true; } function _transfer(address sender_, address recipient_, uint256 amount_) internal { require(sender_ != address(0), "ERC20: transfer from the zero address"); require(recipient_ != address(0), "ERC20: transfer to the zero address"); uint256 senderBalance = _state.balances[sender_]; require(senderBalance >= amount_, "ERC20: transfer amount exceeds balance"); _state.balances[sender_] = senderBalance - amount_; _state.balances[recipient_] += amount_; emit Transfer(sender_, recipient_, amount_); } function mint(address account_, uint256 amount_) public onlyOwner { _mint(account_, amount_); } function _mint(address account_, uint256 amount_) internal { require(account_ != address(0), "ERC20: mint to the zero address"); _state.totalSupply += amount_; _state.balances[account_] += amount_; emit Transfer(address(0), account_, amount_); } function burn(address account_, uint256 amount_) public onlyOwner { _burn(account_, amount_); } function _burn(address account_, uint256 amount_) internal { require(account_ != address(0), "ERC20: burn from the zero address"); uint256 accountBalance = _state.balances[account_]; require(accountBalance >= amount_, "ERC20: burn amount exceeds balance"); _state.balances[account_] = accountBalance - amount_; _state.totalSupply -= amount_; emit Transfer(account_, address(0), amount_); } function _approve(address owner_, address spender_, uint256 amount_) internal virtual { require(owner_ != address(0), "ERC20: approve from the zero address"); require(spender_ != address(0), "ERC20: approve to the zero address"); _state.allowances[owner_][spender_] = amount_; emit Approval(owner_, spender_, amount_); } function updateDetails(string memory name_, string memory symbol_, uint64 sequence_) public onlyOwner { require(_state.metaLastUpdatedSequence < sequence_, "current metadata is up to date"); _state.name = name_; _state.symbol = symbol_; _state.metaLastUpdatedSequence = sequence_; // Because the name is updated, we need to recache the domain separator. // For old implementations, none of the caches may have been written to yet. _initializePermitStateIfNeeded(); } modifier onlyOwner() { require(owner() == _msgSender(), "caller is not the owner"); _; } modifier initializer() { require( !_state.initialized, "Already initialized" ); _state.initialized = true; _; } /** * @dev Returns the domain separator for the current chain. */ function _domainSeparatorV4() internal view returns (bytes32) { if (address(this) == _state.cachedThis && block.chainid == _state.cachedChainId) { return _state.cachedDomainSeparator; } else { return _buildDomainSeparator( _eip712DomainNameHashed(), _eip712DomainSalt() ); } } function _buildDomainSeparator(bytes32 hashedName, bytes32 salt) internal view returns (bytes32) { return keccak256( abi.encode( keccak256( "EIP712Domain(string name,string version,uint256 chainId,address verifyingContract,bytes32 salt)" ), hashedName, keccak256(abi.encodePacked(_eip712DomainVersion())), block.chainid, address(this), salt ) ); } /** * @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this * function returns the hash of the fully encoded EIP712 message for this domain. * * This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example: * * ```solidity * bytes32 digest = _hashTypedDataV4(keccak256(abi.encode( * keccak256("Mail(address to,string contents)"), * mailTo, * keccak256(bytes(mailContents)) * ))); * address signer = ECDSA.recover(digest, signature); * ``` */ function _hashTypedDataV4(bytes32 structHash) internal view returns (bytes32) { return ECDSA.toTypedDataHash(_domainSeparatorV4(), structHash); } /** * @dev See {IERC20Permit-permit}. */ function permit( address owner_, address spender_, uint256 value_, uint256 deadline_, uint8 v_, bytes32 r_, bytes32 s_ ) public { // for those tokens that have been initialized before permit, we need to set // the permit state variables if they have not been set before _initializePermitStateIfNeeded(); // permit is only allowed before the signature's deadline require(block.timestamp <= deadline_, "ERC20Permit: expired deadline"); bytes32 structHash = keccak256( abi.encode( keccak256( "Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)" ), owner_, spender_, value_, _useNonce(owner_), deadline_ ) ); bytes32 message = _hashTypedDataV4(structHash); address signer = ECDSA.recover(message, v_, r_, s_); // if we cannot recover the token owner, signature is invalid require(signer == owner_, "ERC20Permit: invalid signature"); _approve(owner_, spender_, value_); } /** * @dev See {IERC20Permit-DOMAIN_SEPARATOR}. */ // solhint-disable-next-line func-name-mixedcase function DOMAIN_SEPARATOR() public view returns (bytes32) { return _domainSeparatorV4(); } function eip712Domain() public view returns ( bytes1 domainFields, string memory domainName, string memory domainVersion, uint256 domainChainId, address domainVerifyingContract, bytes32 domainSalt, uint256[] memory domainExtensions ) { return ( hex"1F", // 11111 name(), _eip712DomainVersion(), block.chainid, address(this), _eip712DomainSalt(), new uint256[](0) ); } function _eip712DomainVersion() internal pure returns (string memory) { return "1"; } function _eip712DomainNameHashed() internal view returns (bytes32) { return keccak256(abi.encodePacked(name())); } function _eip712DomainSalt() internal view returns (bytes32) { return keccak256(abi.encodePacked(_state.chainId, _state.nativeContract)); } } // contracts/Structs.sol // SPDX-License-Identifier: Apache 2 pragma solidity ^0.8.0; import "@openzeppelin/contracts/proxy/beacon/BeaconProxy.sol"; contract BridgeToken is BeaconProxy { constructor(address beacon, bytes memory data) BeaconProxy(beacon, data) { } }// contracts/Bridge.sol // SPDX-License-Identifier: Apache 2 pragma solidity ^0.8.0; import "@openzeppelin/contracts/token/ERC20/IERC20.sol"; interface IWETH is IERC20 { function deposit() external payable; function withdraw(uint amount) external; }// contracts/Structs.sol // SPDX-License-Identifier: Apache 2 pragma solidity ^0.8.0; contract BridgeStructs { struct Transfer { // PayloadID uint8 = 1 uint8 payloadID; // Amount being transferred (big-endian uint256) uint256 amount; // Address of the token. Left-zero-padded if shorter than 32 bytes bytes32 tokenAddress; // Chain ID of the token uint16 tokenChain; // Address of the recipient. Left-zero-padded if shorter than 32 bytes bytes32 to; // Chain ID of the recipient uint16 toChain; // Amount of tokens (big-endian uint256) that the user is willing to pay as relayer fee. Must be <= Amount. uint256 fee; } struct TransferWithPayload { // PayloadID uint8 = 3 uint8 payloadID; // Amount being transferred (big-endian uint256) uint256 amount; // Address of the token. Left-zero-padded if shorter than 32 bytes bytes32 tokenAddress; // Chain ID of the token uint16 tokenChain; // Address of the recipient. Left-zero-padded if shorter than 32 bytes bytes32 to; // Chain ID of the recipient uint16 toChain; // Address of the message sender. Left-zero-padded if shorter than 32 bytes bytes32 fromAddress; // An arbitrary payload bytes payload; } struct TransferResult { // Chain ID of the token uint16 tokenChain; // Address of the token. Left-zero-padded if shorter than 32 bytes bytes32 tokenAddress; // Amount being transferred (big-endian uint256) uint256 normalizedAmount; // Amount of tokens (big-endian uint256) that the user is willing to pay as relayer fee. Must be <= Amount. uint256 normalizedArbiterFee; // Portion of msg.value to be paid as the core bridge fee uint wormholeFee; } struct AssetMeta { // PayloadID uint8 = 2 uint8 payloadID; // Address of the token. Left-zero-padded if shorter than 32 bytes bytes32 tokenAddress; // Chain ID of the token uint16 tokenChain; // Number of decimals of the token (big-endian uint256) uint8 decimals; // Symbol of the token (UTF-8) bytes32 symbol; // Name of the token (UTF-8) bytes32 name; } struct RegisterChain { // Governance Header // module: "TokenBridge" left-padded bytes32 module; // governance action: 1 uint8 action; // governance paket chain id: this or 0 uint16 chainId; // Chain ID uint16 emitterChainID; // Emitter address. Left-zero-padded if shorter than 32 bytes bytes32 emitterAddress; } struct UpgradeContract { // Governance Header // module: "TokenBridge" left-padded bytes32 module; // governance action: 2 uint8 action; // governance paket chain id uint16 chainId; // Address of the new contract bytes32 newContract; } struct RecoverChainId { // Governance Header // module: "TokenBridge" left-padded bytes32 module; // governance action: 3 uint8 action; // EIP-155 Chain ID uint256 evmChainId; // Chain ID uint16 newChainId; } } // contracts/State.sol // SPDX-License-Identifier: Apache 2 pragma solidity ^0.8.0; import "./BridgeStructs.sol"; contract BridgeStorage { struct Provider { uint16 chainId; uint16 governanceChainId; // Required number of block confirmations to assume finality uint8 finality; bytes32 governanceContract; address WETH; } struct Asset { uint16 chainId; bytes32 assetAddress; } struct State { address payable wormhole; address tokenImplementation; Provider provider; // Mapping of consumed governance actions mapping(bytes32 => bool) consumedGovernanceActions; // Mapping of consumed token transfers mapping(bytes32 => bool) completedTransfers; // Mapping of initialized implementations mapping(address => bool) initializedImplementations; // Mapping of wrapped assets (chainID => nativeAddress => wrappedAddress) mapping(uint16 => mapping(bytes32 => address)) wrappedAssets; // Mapping to safely identify wrapped assets mapping(address => bool) isWrappedAsset; // Mapping of native assets to amount outstanding on other chains mapping(address => uint256) outstandingBridged; // Mapping of bridge contracts on other chains mapping(uint16 => bytes32) bridgeImplementations; // EIP-155 Chain ID uint256 evmChainId; } } contract BridgeState { BridgeStorage.State _state; } // contracts/Setters.sol // SPDX-License-Identifier: Apache 2 pragma solidity ^0.8.0; import "./BridgeState.sol"; contract BridgeSetters is BridgeState { function setInitialized(address implementatiom) internal { _state.initializedImplementations[implementatiom] = true; } function setGovernanceActionConsumed(bytes32 hash) internal { _state.consumedGovernanceActions[hash] = true; } function setTransferCompleted(bytes32 hash) internal { _state.completedTransfers[hash] = true; } function setChainId(uint16 chainId) internal { _state.provider.chainId = chainId; } function setGovernanceChainId(uint16 chainId) internal { _state.provider.governanceChainId = chainId; } function setGovernanceContract(bytes32 governanceContract) internal { _state.provider.governanceContract = governanceContract; } function setBridgeImplementation(uint16 chainId, bytes32 bridgeContract) internal { _state.bridgeImplementations[chainId] = bridgeContract; } function setTokenImplementation(address impl) internal { require(impl != address(0), "invalid implementation address"); _state.tokenImplementation = impl; } function setWETH(address weth) internal { _state.provider.WETH = weth; } function setWormhole(address wh) internal { _state.wormhole = payable(wh); } function setWrappedAsset(uint16 tokenChainId, bytes32 tokenAddress, address wrapper) internal { _state.wrappedAssets[tokenChainId][tokenAddress] = wrapper; _state.isWrappedAsset[wrapper] = true; } function setOutstandingBridged(address token, uint256 outstanding) internal { _state.outstandingBridged[token] = outstanding; } function setFinality(uint8 finality) internal { _state.provider.finality = finality; } function setEvmChainId(uint256 evmChainId) internal { require(evmChainId == block.chainid, "invalid evmChainId"); _state.evmChainId = evmChainId; } } // contracts/Bridge.sol // SPDX-License-Identifier: Apache 2 pragma solidity ^0.8.0; import "@openzeppelin/contracts/token/ERC20/IERC20.sol"; import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol"; import "@openzeppelin/contracts/proxy/ERC1967/ERC1967Upgrade.sol"; import "../libraries/external/BytesLib.sol"; import "./BridgeGetters.sol"; import "./BridgeSetters.sol"; import "./BridgeStructs.sol"; import "./token/Token.sol"; import "./token/TokenImplementation.sol"; import "../interfaces/IWormhole.sol"; contract BridgeGovernance is BridgeGetters, BridgeSetters, ERC1967Upgrade { using BytesLib for bytes; // "TokenBridge" (left padded) bytes32 constant module = 0x000000000000000000000000000000000000000000546f6b656e427269646765; // Execute a RegisterChain governance message function registerChain(bytes memory encodedVM) public { (IWormhole.VM memory vm, bool valid, string memory reason) = verifyGovernanceVM(encodedVM); require(valid, reason); setGovernanceActionConsumed(vm.hash); BridgeStructs.RegisterChain memory chain = parseRegisterChain(vm.payload); require((chain.chainId == chainId() && !isFork()) || chain.chainId == 0, "invalid chain id"); require(bridgeContracts(chain.emitterChainID) == bytes32(0), "chain already registered"); setBridgeImplementation(chain.emitterChainID, chain.emitterAddress); } // Execute a UpgradeContract governance message function upgrade(bytes memory encodedVM) public { require(!isFork(), "invalid fork"); (IWormhole.VM memory vm, bool valid, string memory reason) = verifyGovernanceVM(encodedVM); require(valid, reason); setGovernanceActionConsumed(vm.hash); BridgeStructs.UpgradeContract memory implementation = parseUpgrade(vm.payload); require(implementation.chainId == chainId(), "wrong chain id"); upgradeImplementation(address(uint160(uint256(implementation.newContract)))); } /** * @dev Updates the `chainId` and `evmChainId` on a forked chain via Governance VAA/VM */ function submitRecoverChainId(bytes memory encodedVM) public { require(isFork(), "not a fork"); (IWormhole.VM memory vm, bool valid, string memory reason) = verifyGovernanceVM(encodedVM); require(valid, reason); setGovernanceActionConsumed(vm.hash); BridgeStructs.RecoverChainId memory rci = parseRecoverChainId(vm.payload); // Verify the VAA is for this chain require(rci.evmChainId == block.chainid, "invalid EVM Chain"); // Update the chainIds setEvmChainId(rci.evmChainId); setChainId(rci.newChainId); } function verifyGovernanceVM(bytes memory encodedVM) internal view returns (IWormhole.VM memory parsedVM, bool isValid, string memory invalidReason){ (IWormhole.VM memory vm, bool valid, string memory reason) = wormhole().parseAndVerifyVM(encodedVM); if (!valid) { return (vm, valid, reason); } if (vm.emitterChainId != governanceChainId()) { return (vm, false, "wrong governance chain"); } if (vm.emitterAddress != governanceContract()) { return (vm, false, "wrong governance contract"); } if (governanceActionIsConsumed(vm.hash)) { return (vm, false, "governance action already consumed"); } return (vm, true, ""); } event ContractUpgraded(address indexed oldContract, address indexed newContract); function upgradeImplementation(address newImplementation) internal { address currentImplementation = _getImplementation(); _upgradeTo(newImplementation); // Call initialize function of the new implementation (bool success, bytes memory reason) = newImplementation.delegatecall(abi.encodeWithSignature("initialize()")); require(success, string(reason)); emit ContractUpgraded(currentImplementation, newImplementation); } function parseRegisterChain(bytes memory encoded) public pure returns (BridgeStructs.RegisterChain memory chain) { uint index = 0; // governance header chain.module = encoded.toBytes32(index); index += 32; require(chain.module == module, "wrong module"); chain.action = encoded.toUint8(index); index += 1; require(chain.action == 1, "wrong action"); chain.chainId = encoded.toUint16(index); index += 2; // payload chain.emitterChainID = encoded.toUint16(index); index += 2; chain.emitterAddress = encoded.toBytes32(index); index += 32; require(encoded.length == index, "wrong length"); } function parseUpgrade(bytes memory encoded) public pure returns (BridgeStructs.UpgradeContract memory chain) { uint index = 0; // governance header chain.module = encoded.toBytes32(index); index += 32; require(chain.module == module, "wrong module"); chain.action = encoded.toUint8(index); index += 1; require(chain.action == 2, "wrong action"); chain.chainId = encoded.toUint16(index); index += 2; // payload chain.newContract = encoded.toBytes32(index); index += 32; require(encoded.length == index, "wrong length"); } /// @dev Parse a recoverChainId (action 3) with minimal validation function parseRecoverChainId(bytes memory encodedRecoverChainId) public pure returns (BridgeStructs.RecoverChainId memory rci) { uint index = 0; rci.module = encodedRecoverChainId.toBytes32(index); index += 32; require(rci.module == module, "wrong module"); rci.action = encodedRecoverChainId.toUint8(index); index += 1; require(rci.action == 3, "wrong action"); rci.evmChainId = encodedRecoverChainId.toUint256(index); index += 32; rci.newChainId = encodedRecoverChainId.toUint16(index); index += 2; require(encodedRecoverChainId.length == index, "wrong length"); } } // contracts/Getters.sol // SPDX-License-Identifier: Apache 2 pragma solidity ^0.8.0; import "@openzeppelin/contracts/token/ERC20/IERC20.sol"; import "../interfaces/IWormhole.sol"; import "./interfaces/IWETH.sol"; import "./BridgeState.sol"; contract BridgeGetters is BridgeState { function governanceActionIsConsumed(bytes32 hash) public view returns (bool) { return _state.consumedGovernanceActions[hash]; } function isInitialized(address impl) public view returns (bool) { return _state.initializedImplementations[impl]; } function isTransferCompleted(bytes32 hash) public view returns (bool) { return _state.completedTransfers[hash]; } function wormhole() public view returns (IWormhole) { return IWormhole(_state.wormhole); } function chainId() public view returns (uint16){ return _state.provider.chainId; } function evmChainId() public view returns (uint256) { return _state.evmChainId; } function isFork() public view returns (bool) { return evmChainId() != block.chainid; } function governanceChainId() public view returns (uint16){ return _state.provider.governanceChainId; } function governanceContract() public view returns (bytes32){ return _state.provider.governanceContract; } function wrappedAsset(uint16 tokenChainId, bytes32 tokenAddress) public view returns (address){ return _state.wrappedAssets[tokenChainId][tokenAddress]; } function bridgeContracts(uint16 chainId_) public view returns (bytes32){ return _state.bridgeImplementations[chainId_]; } function tokenImplementation() public view returns (address){ return _state.tokenImplementation; } function WETH() public view returns (IWETH){ return IWETH(_state.provider.WETH); } function outstandingBridged(address token) public view returns (uint256){ return _state.outstandingBridged[token]; } function isWrappedAsset(address token) public view returns (bool){ return _state.isWrappedAsset[token]; } function finality() public view returns (uint8) { return _state.provider.finality; } } // contracts/Bridge.sol // SPDX-License-Identifier: Apache 2 pragma solidity ^0.8.0; import "@openzeppelin/contracts/security/ReentrancyGuard.sol"; import "@openzeppelin/contracts/token/ERC20/IERC20.sol"; import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol"; import "../libraries/external/BytesLib.sol"; import "./BridgeGetters.sol"; import "./BridgeSetters.sol"; import "./BridgeStructs.sol"; import "./BridgeGovernance.sol"; import "./token/Token.sol"; import "./token/TokenImplementation.sol"; contract Bridge is BridgeGovernance, ReentrancyGuard { using BytesLib for bytes; /** * @notice Emitted when a transfer is completed by the token bridge. * @param emitterChainId Wormhole chain ID of emitter on the source chain. * @param emitterAddress Address (bytes32 zero-left-padded) of emitter on the source chain. * @param sequence Sequence of the Wormhole message. */ event TransferRedeemed( uint16 indexed emitterChainId, bytes32 indexed emitterAddress, uint64 indexed sequence ); /* * @dev Produce a AssetMeta message for a given token */ function attestToken(address tokenAddress, uint32 nonce) public payable returns (uint64 sequence) { // decimals, symbol & token are not part of the core ERC20 token standard, so we need to support contracts that dont implement them (,bytes memory queriedDecimals) = tokenAddress.staticcall(abi.encodeWithSignature("decimals()")); (,bytes memory queriedSymbol) = tokenAddress.staticcall(abi.encodeWithSignature("symbol()")); (,bytes memory queriedName) = tokenAddress.staticcall(abi.encodeWithSignature("name()")); uint8 decimals = abi.decode(queriedDecimals, (uint8)); string memory symbolString = abi.decode(queriedSymbol, (string)); string memory nameString = abi.decode(queriedName, (string)); bytes32 symbol; bytes32 name; assembly { // first 32 bytes hold string length symbol := mload(add(symbolString, 32)) name := mload(add(nameString, 32)) } BridgeStructs.AssetMeta memory meta = BridgeStructs.AssetMeta({ payloadID : 2, tokenAddress : bytes32(uint256(uint160(tokenAddress))), // Address of the token. Left-zero-padded if shorter than 32 bytes tokenChain : chainId(), // Chain ID of the token decimals : decimals, // Number of decimals of the token (big-endian uint8) symbol : symbol, // Symbol of the token (UTF-8) name : name // Name of the token (UTF-8) }); bytes memory encoded = encodeAssetMeta(meta); sequence = wormhole().publishMessage{ value : msg.value }(nonce, encoded, finality()); } /* * @notice Send eth through portal by first wrapping it to WETH. */ function wrapAndTransferETH( uint16 recipientChain, bytes32 recipient, uint256 arbiterFee, uint32 nonce ) public payable returns (uint64 sequence) { BridgeStructs.TransferResult memory transferResult = _wrapAndTransferETH(arbiterFee); sequence = logTransfer( transferResult.tokenChain, transferResult.tokenAddress, transferResult.normalizedAmount, recipientChain, recipient, transferResult.normalizedArbiterFee, transferResult.wormholeFee, nonce ); } /* * @notice Send eth through portal by first wrapping it. * * @dev This type of transfer is called a "contract-controlled transfer". * There are three differences from a regular token transfer: * 1) Additional arbitrary payload can be attached to the message * 2) Only the recipient (typically a contract) can redeem the transaction * 3) The sender's address (msg.sender) is also included in the transaction payload * * With these three additional components, xDapps can implement cross-chain * composable interactions. */ function wrapAndTransferETHWithPayload( uint16 recipientChain, bytes32 recipient, uint32 nonce, bytes memory payload ) public payable returns (uint64 sequence) { BridgeStructs.TransferResult memory transferResult = _wrapAndTransferETH(0); sequence = logTransferWithPayload( transferResult.tokenChain, transferResult.tokenAddress, transferResult.normalizedAmount, recipientChain, recipient, transferResult.wormholeFee, nonce, payload ); } function _wrapAndTransferETH(uint256 arbiterFee) internal returns (BridgeStructs.TransferResult memory transferResult) { uint wormholeFee = wormhole().messageFee(); require(wormholeFee < msg.value, "value is smaller than wormhole fee"); uint amount = msg.value - wormholeFee; require(arbiterFee <= amount, "fee is bigger than amount minus wormhole fee"); uint normalizedAmount = normalizeAmount(amount, 18); uint normalizedArbiterFee = normalizeAmount(arbiterFee, 18); // refund dust uint dust = amount - deNormalizeAmount(normalizedAmount, 18); if (dust > 0) { payable(msg.sender).transfer(dust); } // deposit into WETH WETH().deposit{ value : amount - dust }(); // track and check outstanding token amounts bridgeOut(address(WETH()), normalizedAmount); transferResult = BridgeStructs.TransferResult({ tokenChain : chainId(), tokenAddress : bytes32(uint256(uint160(address(WETH())))), normalizedAmount : normalizedAmount, normalizedArbiterFee : normalizedArbiterFee, wormholeFee : wormholeFee }); } /* * @notice Send ERC20 token through portal. */ function transferTokens( address token, uint256 amount, uint16 recipientChain, bytes32 recipient, uint256 arbiterFee, uint32 nonce ) public payable nonReentrant returns (uint64 sequence) { BridgeStructs.TransferResult memory transferResult = _transferTokens( token, amount, arbiterFee ); sequence = logTransfer( transferResult.tokenChain, transferResult.tokenAddress, transferResult.normalizedAmount, recipientChain, recipient, transferResult.normalizedArbiterFee, transferResult.wormholeFee, nonce ); } /* * @notice Send ERC20 token through portal. * * @dev This type of transfer is called a "contract-controlled transfer". * There are three differences from a regular token transfer: * 1) Additional arbitrary payload can be attached to the message * 2) Only the recipient (typically a contract) can redeem the transaction * 3) The sender's address (msg.sender) is also included in the transaction payload * * With these three additional components, xDapps can implement cross-chain * composable interactions. */ function transferTokensWithPayload( address token, uint256 amount, uint16 recipientChain, bytes32 recipient, uint32 nonce, bytes memory payload ) public payable nonReentrant returns (uint64 sequence) { BridgeStructs.TransferResult memory transferResult = _transferTokens( token, amount, 0 ); sequence = logTransferWithPayload( transferResult.tokenChain, transferResult.tokenAddress, transferResult.normalizedAmount, recipientChain, recipient, transferResult.wormholeFee, nonce, payload ); } /* * @notice Initiate a transfer */ function _transferTokens(address token, uint256 amount, uint256 arbiterFee) internal returns (BridgeStructs.TransferResult memory transferResult) { // determine token parameters uint16 tokenChain; bytes32 tokenAddress; if (isWrappedAsset(token)) { tokenChain = TokenImplementation(token).chainId(); tokenAddress = TokenImplementation(token).nativeContract(); } else { tokenChain = chainId(); tokenAddress = bytes32(uint256(uint160(token))); } // query tokens decimals (,bytes memory queriedDecimals) = token.staticcall(abi.encodeWithSignature("decimals()")); uint8 decimals = abi.decode(queriedDecimals, (uint8)); // don't deposit dust that can not be bridged due to the decimal shift amount = deNormalizeAmount(normalizeAmount(amount, decimals), decimals); if (tokenChain == chainId()) { // query own token balance before transfer (,bytes memory queriedBalanceBefore) = token.staticcall(abi.encodeWithSelector(IERC20.balanceOf.selector, address(this))); uint256 balanceBefore = abi.decode(queriedBalanceBefore, (uint256)); // transfer tokens SafeERC20.safeTransferFrom(IERC20(token), msg.sender, address(this), amount); // query own token balance after transfer (,bytes memory queriedBalanceAfter) = token.staticcall(abi.encodeWithSelector(IERC20.balanceOf.selector, address(this))); uint256 balanceAfter = abi.decode(queriedBalanceAfter, (uint256)); // correct amount for potential transfer fees amount = balanceAfter - balanceBefore; } else { SafeERC20.safeTransferFrom(IERC20(token), msg.sender, address(this), amount); TokenImplementation(token).burn(address(this), amount); } // normalize amounts decimals uint256 normalizedAmount = normalizeAmount(amount, decimals); uint256 normalizedArbiterFee = normalizeAmount(arbiterFee, decimals); // track and check outstanding token amounts if (tokenChain == chainId()) { bridgeOut(token, normalizedAmount); } transferResult = BridgeStructs.TransferResult({ tokenChain : tokenChain, tokenAddress : tokenAddress, normalizedAmount : normalizedAmount, normalizedArbiterFee : normalizedArbiterFee, wormholeFee : msg.value }); } function normalizeAmount(uint256 amount, uint8 decimals) internal pure returns(uint256){ if (decimals > 8) { amount /= 10 ** (decimals - 8); } return amount; } function deNormalizeAmount(uint256 amount, uint8 decimals) internal pure returns(uint256){ if (decimals > 8) { amount *= 10 ** (decimals - 8); } return amount; } function logTransfer( uint16 tokenChain, bytes32 tokenAddress, uint256 amount, uint16 recipientChain, bytes32 recipient, uint256 fee, uint256 callValue, uint32 nonce ) internal returns (uint64 sequence) { require(fee <= amount, "fee exceeds amount"); BridgeStructs.Transfer memory transfer = BridgeStructs.Transfer({ payloadID: 1, amount: amount, tokenAddress: tokenAddress, tokenChain: tokenChain, to: recipient, toChain: recipientChain, fee: fee }); sequence = wormhole().publishMessage{value: callValue}( nonce, encodeTransfer(transfer), finality() ); } /* * @dev Publish a token transfer message with payload. * * @return The sequence number of the published message. */ function logTransferWithPayload( uint16 tokenChain, bytes32 tokenAddress, uint256 amount, uint16 recipientChain, bytes32 recipient, uint256 callValue, uint32 nonce, bytes memory payload ) internal returns (uint64 sequence) { BridgeStructs.TransferWithPayload memory transfer = BridgeStructs .TransferWithPayload({ payloadID: 3, amount: amount, tokenAddress: tokenAddress, tokenChain: tokenChain, to: recipient, toChain: recipientChain, fromAddress : bytes32(uint256(uint160(msg.sender))), payload: payload }); sequence = wormhole().publishMessage{value: callValue}( nonce, encodeTransferWithPayload(transfer), finality() ); } function updateWrapped(bytes memory encodedVm) external returns (address token) { (IWormhole.VM memory vm, bool valid, string memory reason) = wormhole().parseAndVerifyVM(encodedVm); require(valid, reason); require(verifyBridgeVM(vm), "invalid emitter"); BridgeStructs.AssetMeta memory meta = parseAssetMeta(vm.payload); return _updateWrapped(meta, vm.sequence); } function _updateWrapped(BridgeStructs.AssetMeta memory meta, uint64 sequence) internal returns (address token) { address wrapped = wrappedAsset(meta.tokenChain, meta.tokenAddress); require(wrapped != address(0), "wrapped asset does not exists"); // Update metadata TokenImplementation(wrapped).updateDetails(bytes32ToString(meta.name), bytes32ToString(meta.symbol), sequence); return wrapped; } function createWrapped(bytes memory encodedVm) external returns (address token) { (IWormhole.VM memory vm, bool valid, string memory reason) = wormhole().parseAndVerifyVM(encodedVm); require(valid, reason); require(verifyBridgeVM(vm), "invalid emitter"); BridgeStructs.AssetMeta memory meta = parseAssetMeta(vm.payload); return _createWrapped(meta, vm.sequence); } // Creates a wrapped asset using AssetMeta function _createWrapped(BridgeStructs.AssetMeta memory meta, uint64 sequence) internal returns (address token) { require(meta.tokenChain != chainId(), "can only wrap tokens from foreign chains"); require(wrappedAsset(meta.tokenChain, meta.tokenAddress) == address(0), "wrapped asset already exists"); // initialize the TokenImplementation bytes memory initialisationArgs = abi.encodeWithSelector( TokenImplementation.initialize.selector, bytes32ToString(meta.name), bytes32ToString(meta.symbol), meta.decimals, sequence, address(this), meta.tokenChain, meta.tokenAddress ); // initialize the BeaconProxy bytes memory constructorArgs = abi.encode(address(this), initialisationArgs); // deployment code bytes memory bytecode = abi.encodePacked(type(BridgeToken).creationCode, constructorArgs); bytes32 salt = keccak256(abi.encodePacked(meta.tokenChain, meta.tokenAddress)); assembly { token := create2(0, add(bytecode, 0x20), mload(bytecode), salt) if iszero(extcodesize(token)) { revert(0, 0) } } setWrappedAsset(meta.tokenChain, meta.tokenAddress, token); } /* * @notice Complete a contract-controlled transfer of an ERC20 token. * * @dev The transaction can only be redeemed by the recipient, typically a * contract. * * @param encodedVm A byte array containing a VAA signed by the guardians. * * @return The byte array representing a BridgeStructs.TransferWithPayload. */ function completeTransferWithPayload(bytes memory encodedVm) public returns (bytes memory) { return _completeTransfer(encodedVm, false); } /* * @notice Complete a contract-controlled transfer of WETH, and unwrap to ETH. * * @dev The transaction can only be redeemed by the recipient, typically a * contract. * * @param encodedVm A byte array containing a VAA signed by the guardians. * * @return The byte array representing a BridgeStructs.TransferWithPayload. */ function completeTransferAndUnwrapETHWithPayload(bytes memory encodedVm) public returns (bytes memory) { return _completeTransfer(encodedVm, true); } /* * @notice Complete a transfer of an ERC20 token. * * @dev The msg.sender gets paid the associated fee. * * @param encodedVm A byte array containing a VAA signed by the guardians. */ function completeTransfer(bytes memory encodedVm) public { _completeTransfer(encodedVm, false); } /* * @notice Complete a transfer of WETH and unwrap to eth. * * @dev The msg.sender gets paid the associated fee. * * @param encodedVm A byte array containing a VAA signed by the guardians. */ function completeTransferAndUnwrapETH(bytes memory encodedVm) public { _completeTransfer(encodedVm, true); } /* * @dev Truncate a 32 byte array to a 20 byte address. * Reverts if the array contains non-0 bytes in the first 12 bytes. * * @param bytes32 bytes The 32 byte array to be converted. */ function _truncateAddress(bytes32 b) internal pure returns (address) { require(bytes12(b) == 0, "invalid EVM address"); return address(uint160(uint256(b))); } // Execute a Transfer message function _completeTransfer(bytes memory encodedVm, bool unwrapWETH) internal returns (bytes memory) { (IWormhole.VM memory vm, bool valid, string memory reason) = wormhole().parseAndVerifyVM(encodedVm); require(valid, reason); require(verifyBridgeVM(vm), "invalid emitter"); BridgeStructs.Transfer memory transfer = _parseTransferCommon(vm.payload); // payload 3 must be redeemed by the designated proxy contract address transferRecipient = _truncateAddress(transfer.to); if (transfer.payloadID == 3) { require(msg.sender == transferRecipient, "invalid sender"); } require(!isTransferCompleted(vm.hash), "transfer already completed"); setTransferCompleted(vm.hash); // emit `TransferRedeemed` event emit TransferRedeemed(vm.emitterChainId, vm.emitterAddress, vm.sequence); require(transfer.toChain == chainId(), "invalid target chain"); IERC20 transferToken; if (transfer.tokenChain == chainId()) { transferToken = IERC20(_truncateAddress(transfer.tokenAddress)); // track outstanding token amounts bridgedIn(address(transferToken), transfer.amount); } else { address wrapped = wrappedAsset(transfer.tokenChain, transfer.tokenAddress); require(wrapped != address(0), "no wrapper for this token created yet"); transferToken = IERC20(wrapped); } require(unwrapWETH == false || address(transferToken) == address(WETH()), "invalid token, can only unwrap WETH"); // query decimals (,bytes memory queriedDecimals) = address(transferToken).staticcall(abi.encodeWithSignature("decimals()")); uint8 decimals = abi.decode(queriedDecimals, (uint8)); // adjust decimals uint256 nativeAmount = deNormalizeAmount(transfer.amount, decimals); uint256 nativeFee = deNormalizeAmount(transfer.fee, decimals); // transfer fee to arbiter if (nativeFee > 0 && transferRecipient != msg.sender) { require(nativeFee <= nativeAmount, "fee higher than transferred amount"); if (unwrapWETH) { WETH().withdraw(nativeFee); payable(msg.sender).transfer(nativeFee); } else { if (transfer.tokenChain != chainId()) { // mint wrapped asset TokenImplementation(address(transferToken)).mint(msg.sender, nativeFee); } else { SafeERC20.safeTransfer(transferToken, msg.sender, nativeFee); } } } else { // set fee to zero in case transferRecipient == feeRecipient nativeFee = 0; } // transfer bridged amount to recipient uint transferAmount = nativeAmount - nativeFee; if (unwrapWETH) { WETH().withdraw(transferAmount); payable(transferRecipient).transfer(transferAmount); } else { if (transfer.tokenChain != chainId()) { // mint wrapped asset TokenImplementation(address(transferToken)).mint(transferRecipient, transferAmount); } else { SafeERC20.safeTransfer(transferToken, transferRecipient, transferAmount); } } return vm.payload; } function bridgeOut(address token, uint normalizedAmount) internal { uint outstanding = outstandingBridged(token); require(outstanding + normalizedAmount <= type(uint64).max, "transfer exceeds max outstanding bridged token amount"); setOutstandingBridged(token, outstanding + normalizedAmount); } function bridgedIn(address token, uint normalizedAmount) internal { setOutstandingBridged(token, outstandingBridged(token) - normalizedAmount); } function verifyBridgeVM(IWormhole.VM memory vm) internal view returns (bool){ require(!isFork(), "invalid fork"); return bridgeContracts(vm.emitterChainId) == vm.emitterAddress; } function encodeAssetMeta(BridgeStructs.AssetMeta memory meta) public pure returns (bytes memory encoded) { encoded = abi.encodePacked( meta.payloadID, meta.tokenAddress, meta.tokenChain, meta.decimals, meta.symbol, meta.name ); } function encodeTransfer(BridgeStructs.Transfer memory transfer) public pure returns (bytes memory encoded) { encoded = abi.encodePacked( transfer.payloadID, transfer.amount, transfer.tokenAddress, transfer.tokenChain, transfer.to, transfer.toChain, transfer.fee ); } function encodeTransferWithPayload(BridgeStructs.TransferWithPayload memory transfer) public pure returns (bytes memory encoded) { encoded = abi.encodePacked( transfer.payloadID, transfer.amount, transfer.tokenAddress, transfer.tokenChain, transfer.to, transfer.toChain, transfer.fromAddress, transfer.payload ); } function parsePayloadID(bytes memory encoded) public pure returns (uint8 payloadID) { payloadID = encoded.toUint8(0); } /* * @dev Parse a token metadata attestation (payload id 2) */ function parseAssetMeta(bytes memory encoded) public pure returns (BridgeStructs.AssetMeta memory meta) { uint index = 0; meta.payloadID = encoded.toUint8(index); index += 1; require(meta.payloadID == 2, "invalid AssetMeta"); meta.tokenAddress = encoded.toBytes32(index); index += 32; meta.tokenChain = encoded.toUint16(index); index += 2; meta.decimals = encoded.toUint8(index); index += 1; meta.symbol = encoded.toBytes32(index); index += 32; meta.name = encoded.toBytes32(index); index += 32; require(encoded.length == index, "invalid AssetMeta"); } /* * @dev Parse a token transfer (payload id 1). * * @params encoded The byte array corresponding to the token transfer (not * the whole VAA, only the payload) */ function parseTransfer(bytes memory encoded) public pure returns (BridgeStructs.Transfer memory transfer) { uint index = 0; transfer.payloadID = encoded.toUint8(index); index += 1; require(transfer.payloadID == 1, "invalid Transfer"); transfer.amount = encoded.toUint256(index); index += 32; transfer.tokenAddress = encoded.toBytes32(index); index += 32; transfer.tokenChain = encoded.toUint16(index); index += 2; transfer.to = encoded.toBytes32(index); index += 32; transfer.toChain = encoded.toUint16(index); index += 2; transfer.fee = encoded.toUint256(index); index += 32; require(encoded.length == index, "invalid Transfer"); } /* * @dev Parse a token transfer with payload (payload id 3). * * @params encoded The byte array corresponding to the token transfer (not * the whole VAA, only the payload) */ function parseTransferWithPayload(bytes memory encoded) public pure returns (BridgeStructs.TransferWithPayload memory transfer) { uint index = 0; transfer.payloadID = encoded.toUint8(index); index += 1; require(transfer.payloadID == 3, "invalid Transfer"); transfer.amount = encoded.toUint256(index); index += 32; transfer.tokenAddress = encoded.toBytes32(index); index += 32; transfer.tokenChain = encoded.toUint16(index); index += 2; transfer.to = encoded.toBytes32(index); index += 32; transfer.toChain = encoded.toUint16(index); index += 2; transfer.fromAddress = encoded.toBytes32(index); index += 32; transfer.payload = encoded.slice(index, encoded.length - index); } /* * @dev Parses either a type 1 transfer or a type 3 transfer ("transfer with * payload") as a Transfer struct. The fee is set to 0 for type 3 * transfers, since they have no fees associated with them. * * The sole purpose of this function is to get around the local * variable count limitation in _completeTransfer. */ function _parseTransferCommon(bytes memory encoded) public pure returns (BridgeStructs.Transfer memory transfer) { uint8 payloadID = parsePayloadID(encoded); if (payloadID == 1) { transfer = parseTransfer(encoded); } else if (payloadID == 3) { BridgeStructs.TransferWithPayload memory t = parseTransferWithPayload(encoded); transfer.payloadID = 3; transfer.amount = t.amount; transfer.tokenAddress = t.tokenAddress; transfer.tokenChain = t.tokenChain; transfer.to = t.to; transfer.toChain = t.toChain; // Type 3 payloads don't have fees. transfer.fee = 0; } else { revert("Invalid payload id"); } } function bytes32ToString(bytes32 input) internal pure returns (string memory) { uint256 i; while (i < 32 && input[i] != 0) { i++; } bytes memory array = new bytes(i); for (uint c = 0; c < i; c++) { array[c] = input[c]; } return string(array); } // we need to accept ETH sends to unwrap WETH receive() external payable {} } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /** * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations. * * These functions can be used to verify that a message was signed by the holder * of the private keys of a given address. */ library ECDSA { enum RecoverError { NoError, InvalidSignature, InvalidSignatureLength, InvalidSignatureS, InvalidSignatureV } function _throwError(RecoverError error) private pure { if (error == RecoverError.NoError) { return; // no error: do nothing } else if (error == RecoverError.InvalidSignature) { revert("ECDSA: invalid signature"); } else if (error == RecoverError.InvalidSignatureLength) { revert("ECDSA: invalid signature length"); } else if (error == RecoverError.InvalidSignatureS) { revert("ECDSA: invalid signature 's' value"); } else if (error == RecoverError.InvalidSignatureV) { revert("ECDSA: invalid signature 'v' value"); } } /** * @dev Returns the address that signed a hashed message (`hash`) with * `signature` or error string. This address can then be used for verification purposes. * * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {toEthSignedMessageHash} on it. * * Documentation for signature generation: * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js] * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers] * * _Available since v4.3._ */ function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError) { // Check the signature length // - case 65: r,s,v signature (standard) // - case 64: r,vs signature (cf https://eips.ethereum.org/EIPS/eip-2098) _Available since v4.1._ if (signature.length == 65) { bytes32 r; bytes32 s; uint8 v; // ecrecover takes the signature parameters, and the only way to get them // currently is to use assembly. assembly { r := mload(add(signature, 0x20)) s := mload(add(signature, 0x40)) v := byte(0, mload(add(signature, 0x60))) } return tryRecover(hash, v, r, s); } else if (signature.length == 64) { bytes32 r; bytes32 vs; // ecrecover takes the signature parameters, and the only way to get them // currently is to use assembly. assembly { r := mload(add(signature, 0x20)) vs := mload(add(signature, 0x40)) } return tryRecover(hash, r, vs); } else { return (address(0), RecoverError.InvalidSignatureLength); } } /** * @dev Returns the address that signed a hashed message (`hash`) with * `signature`. This address can then be used for verification purposes. * * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {toEthSignedMessageHash} on it. */ function recover(bytes32 hash, bytes memory signature) internal pure returns (address) { (address recovered, RecoverError error) = tryRecover(hash, signature); _throwError(error); return recovered; } /** * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately. * * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures] * * _Available since v4.3._ */ function tryRecover( bytes32 hash, bytes32 r, bytes32 vs ) internal pure returns (address, RecoverError) { bytes32 s; uint8 v; assembly { s := and(vs, 0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff) v := add(shr(255, vs), 27) } return tryRecover(hash, v, r, s); } /** * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately. * * _Available since v4.2._ */ function recover( bytes32 hash, bytes32 r, bytes32 vs ) internal pure returns (address) { (address recovered, RecoverError error) = tryRecover(hash, r, vs); _throwError(error); return recovered; } /** * @dev Overload of {ECDSA-tryRecover} that receives the `v`, * `r` and `s` signature fields separately. * * _Available since v4.3._ */ function tryRecover( bytes32 hash, uint8 v, bytes32 r, bytes32 s ) internal pure returns (address, RecoverError) { // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most // signatures from current libraries generate a unique signature with an s-value in the lower half order. // // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept // these malleable signatures as well. if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) { return (address(0), RecoverError.InvalidSignatureS); } if (v != 27 && v != 28) { return (address(0), RecoverError.InvalidSignatureV); } // If the signature is valid (and not malleable), return the signer address address signer = ecrecover(hash, v, r, s); if (signer == address(0)) { return (address(0), RecoverError.InvalidSignature); } return (signer, RecoverError.NoError); } /** * @dev Overload of {ECDSA-recover} that receives the `v`, * `r` and `s` signature fields separately. */ function recover( bytes32 hash, uint8 v, bytes32 r, bytes32 s ) internal pure returns (address) { (address recovered, RecoverError error) = tryRecover(hash, v, r, s); _throwError(error); return recovered; } /** * @dev Returns an Ethereum Signed Message, created from a `hash`. This * produces hash corresponding to the one signed with the * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] * JSON-RPC method as part of EIP-191. * * See {recover}. */ function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32) { // 32 is the length in bytes of hash, // enforced by the type signature above return keccak256(abi.encodePacked("\\x19Ethereum Signed Message:\ 32", hash)); } /** * @dev Returns an Ethereum Signed Typed Data, created from a * `domainSeparator` and a `structHash`. This produces hash corresponding * to the one signed with the * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] * JSON-RPC method as part of EIP-712. * * See {recover}. */ function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32) { return keccak256(abi.encodePacked("\\x19\\x01", domainSeparator, structHash)); } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /** * @dev Library for reading and writing primitive types to specific storage slots. * * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts. * This library helps with reading and writing to such slots without the need for inline assembly. * * The functions in this library return Slot structs that contain a `value` member that can be used to read or write. * * Example usage to set ERC1967 implementation slot: * ``` * contract ERC1967 { * bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc; * * function _getImplementation() internal view returns (address) { * return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value; * } * * function _setImplementation(address newImplementation) internal { * require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract"); * StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation; * } * } * ``` * * _Available since v4.1 for `address`, `bool`, `bytes32`, and `uint256`._ */ library StorageSlot { struct AddressSlot { address value; } struct BooleanSlot { bool value; } struct Bytes32Slot { bytes32 value; } struct Uint256Slot { uint256 value; } /** * @dev Returns an `AddressSlot` with member `value` located at `slot`. */ function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) { assembly { r.slot := slot } } /** * @dev Returns an `BooleanSlot` with member `value` located at `slot`. */ function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) { assembly { r.slot := slot } } /** * @dev Returns an `Bytes32Slot` with member `value` located at `slot`. */ function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) { assembly { r.slot := slot } } /** * @dev Returns an `Uint256Slot` with member `value` located at `slot`. */ function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) { assembly { r.slot := slot } } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /** * @title Counters * @author Matt Condon (@shrugs) * @dev Provides counters that can only be incremented, decremented or reset. This can be used e.g. to track the number * of elements in a mapping, issuing ERC721 ids, or counting request ids. * * Include with `using Counters for Counters.Counter;` */ library Counters { struct Counter { // This variable should never be directly accessed by users of the library: interactions must be restricted to // the library's function. As of Solidity v0.5.2, this cannot be enforced, though there is a proposal to add // this feature: see https://github.com/ethereum/solidity/issues/4637 uint256 _value; // default: 0 } function current(Counter storage counter) internal view returns (uint256) { return counter._value; } function increment(Counter storage counter) internal { unchecked { counter._value += 1; } } function decrement(Counter storage counter) internal { uint256 value = counter._value; require(value > 0, "Counter: decrement overflow"); unchecked { counter._value = value - 1; } } function reset(Counter storage counter) internal { counter._value = 0; } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize, which returns 0 for contracts in // construction, since the code is only stored at the end of the // constructor execution. uint256 size; assembly { size := extcodesize(account) } return size > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); (bool success, ) = recipient.call{value: amount}(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCall(target, data, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value ) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); require(isContract(target), "Address: call to non-contract"); (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall( address target, bytes memory data, string memory errorMessage ) internal view returns (bytes memory) { require(isContract(target), "Address: static call to non-contract"); (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { return functionDelegateCall(target, data, "Address: low-level delegate call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { require(isContract(target), "Address: delegate call to non-contract"); (bool success, bytes memory returndata) = target.delegatecall(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the * revert reason using the provided one. * * _Available since v4.3._ */ function verifyCallResult( bool success, bytes memory returndata, string memory errorMessage ) internal pure returns (bytes memory) { if (success) { return returndata; } else { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import "../IERC20.sol"; import "../../../utils/Address.sol"; /** * @title SafeERC20 * @dev Wrappers around ERC20 operations that throw on failure (when the token * contract returns false). Tokens that return no value (and instead revert or * throw on failure) are also supported, non-reverting calls are assumed to be * successful. * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract, * which allows you to call the safe operations as `token.safeTransfer(...)`, etc. */ library SafeERC20 { using Address for address; function safeTransfer( IERC20 token, address to, uint256 value ) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value)); } function safeTransferFrom( IERC20 token, address from, address to, uint256 value ) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value)); } /** * @dev Deprecated. This function has issues similar to the ones found in * {IERC20-approve}, and its usage is discouraged. * * Whenever possible, use {safeIncreaseAllowance} and * {safeDecreaseAllowance} instead. */ function safeApprove( IERC20 token, address spender, uint256 value ) internal { // safeApprove should only be called when setting an initial allowance, // or when resetting it to zero. To increase and decrease it, use // 'safeIncreaseAllowance' and 'safeDecreaseAllowance' require( (value == 0) || (token.allowance(address(this), spender) == 0), "SafeERC20: approve from non-zero to non-zero allowance" ); _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value)); } function safeIncreaseAllowance( IERC20 token, address spender, uint256 value ) internal { uint256 newAllowance = token.allowance(address(this), spender) + value; _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance)); } function safeDecreaseAllowance( IERC20 token, address spender, uint256 value ) internal { unchecked { uint256 oldAllowance = token.allowance(address(this), spender); require(oldAllowance >= value, "SafeERC20: decreased allowance below zero"); uint256 newAllowance = oldAllowance - value; _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance)); } } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). */ function _callOptionalReturn(IERC20 token, bytes memory data) private { // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since // we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that // the target address contains contract code and also asserts for success in the low-level call. bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed"); if (returndata.length > 0) { // Return data is optional require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed"); } } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `recipient`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address recipient, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `sender` to `recipient` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom( address sender, address recipient, uint256 amount ) external returns (bool); /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /** * @dev Contract module that helps prevent reentrant calls to a function. * * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier * available, which can be applied to functions to make sure there are no nested * (reentrant) calls to them. * * Note that because there is a single `nonReentrant` guard, functions marked as * `nonReentrant` may not call one another. This can be worked around by making * those functions `private`, and then adding `external` `nonReentrant` entry * points to them. * * TIP: If you would like to learn more about reentrancy and alternative ways * to protect against it, check out our blog post * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul]. */ abstract contract ReentrancyGuard { // Booleans are more expensive than uint256 or any type that takes up a full // word because each write operation emits an extra SLOAD to first read the // slot's contents, replace the bits taken up by the boolean, and then write // back. This is the compiler's defense against contract upgrades and // pointer aliasing, and it cannot be disabled. // The values being non-zero value makes deployment a bit more expensive, // but in exchange the refund on every call to nonReentrant will be lower in // amount. Since refunds are capped to a percentage of the total // transaction's gas, it is best to keep them low in cases like this one, to // increase the likelihood of the full refund coming into effect. uint256 private constant _NOT_ENTERED = 1; uint256 private constant _ENTERED = 2; uint256 private _status; constructor() { _status = _NOT_ENTERED; } /** * @dev Prevents a contract from calling itself, directly or indirectly. * Calling a `nonReentrant` function from another `nonReentrant` * function is not supported. It is possible to prevent this from happening * by making the `nonReentrant` function external, and make it call a * `private` function that does the actual work. */ modifier nonReentrant() { // On the first call to nonReentrant, _notEntered will be true require(_status != _ENTERED, "ReentrancyGuard: reentrant call"); // Any calls to nonReentrant after this point will fail _status = _ENTERED; _; // By storing the original value once again, a refund is triggered (see // https://eips.ethereum.org/EIPS/eip-2200) _status = _NOT_ENTERED; } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /** * @dev This is the interface that {BeaconProxy} expects of its beacon. */ interface IBeacon { /** * @dev Must return an address that can be used as a delegate call target. * * {BeaconProxy} will check that this address is a contract. */ function implementation() external view returns (address); } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import "./IBeacon.sol"; import "../Proxy.sol"; import "../ERC1967/ERC1967Upgrade.sol"; /** * @dev This contract implements a proxy that gets the implementation address for each call from a {UpgradeableBeacon}. * * The beacon address is stored in storage slot `uint256(keccak256('eip1967.proxy.beacon')) - 1`, so that it doesn't * conflict with the storage layout of the implementation behind the proxy. * * _Available since v3.4._ */ contract BeaconProxy is Proxy, ERC1967Upgrade { /** * @dev Initializes the proxy with `beacon`. * * If `data` is nonempty, it's used as data in a delegate call to the implementation returned by the beacon. This * will typically be an encoded function call, and allows initializating the storage of the proxy like a Solidity * constructor. * * Requirements: * * - `beacon` must be a contract with the interface {IBeacon}. */ constructor(address beacon, bytes memory data) payable { assert(_BEACON_SLOT == bytes32(uint256(keccak256("eip1967.proxy.beacon")) - 1)); _upgradeBeaconToAndCall(beacon, data, false); } /** * @dev Returns the current beacon address. */ function _beacon() internal view virtual returns (address) { return _getBeacon(); } /** * @dev Returns the current implementation address of the associated beacon. */ function _implementation() internal view virtual override returns (address) { return IBeacon(_getBeacon()).implementation(); } /** * @dev Changes the proxy to use a new beacon. Deprecated: see {_upgradeBeaconToAndCall}. * * If `data` is nonempty, it's used as data in a delegate call to the implementation returned by the beacon. * * Requirements: * * - `beacon` must be a contract. * - The implementation returned by `beacon` must be a contract. */ function _setBeacon(address beacon, bytes memory data) internal virtual { _upgradeBeaconToAndCall(beacon, data, false); } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /** * @dev This abstract contract provides a fallback function that delegates all calls to another contract using the EVM * instruction `delegatecall`. We refer to the second contract as the _implementation_ behind the proxy, and it has to * be specified by overriding the virtual {_implementation} function. * * Additionally, delegation to the implementation can be triggered manually through the {_fallback} function, or to a * different contract through the {_delegate} function. * * The success and return data of the delegated call will be returned back to the caller of the proxy. */ abstract contract Proxy { /** * @dev Delegates the current call to `implementation`. * * This function does not return to its internall call site, it will return directly to the external caller. */ function _delegate(address implementation) internal virtual { assembly { // Copy msg.data. We take full control of memory in this inline assembly // block because it will not return to Solidity code. We overwrite the // Solidity scratch pad at memory position 0. calldatacopy(0, 0, calldatasize()) // Call the implementation. // out and outsize are 0 because we don't know the size yet. let result := delegatecall(gas(), implementation, 0, calldatasize(), 0, 0) // Copy the returned data. returndatacopy(0, 0, returndatasize()) switch result // delegatecall returns 0 on error. case 0 { revert(0, returndatasize()) } default { return(0, returndatasize()) } } } /** * @dev This is a virtual function that should be overriden so it returns the address to which the fallback function * and {_fallback} should delegate. */ function _implementation() internal view virtual returns (address); /** * @dev Delegates the current call to the address returned by `_implementation()`. * * This function does not return to its internall call site, it will return directly to the external caller. */ function _fallback() internal virtual { _beforeFallback(); _delegate(_implementation()); } /** * @dev Fallback function that delegates calls to the address returned by `_implementation()`. Will run if no other * function in the contract matches the call data. */ fallback() external payable virtual { _fallback(); } /** * @dev Fallback function that delegates calls to the address returned by `_implementation()`. Will run if call data * is empty. */ receive() external payable virtual { _fallback(); } /** * @dev Hook that is called before falling back to the implementation. Can happen as part of a manual `_fallback` * call, or as part of the Solidity `fallback` or `receive` functions. * * If overriden should call `super._beforeFallback()`. */ function _beforeFallback() internal virtual {} } // SPDX-License-Identifier: MIT pragma solidity ^0.8.2; import "../beacon/IBeacon.sol"; import "../../utils/Address.sol"; import "../../utils/StorageSlot.sol"; /** * @dev This abstract contract provides getters and event emitting update functions for * https://eips.ethereum.org/EIPS/eip-1967[EIP1967] slots. * * _Available since v4.1._ * * @custom:oz-upgrades-unsafe-allow delegatecall */ abstract contract ERC1967Upgrade { // This is the keccak-256 hash of "eip1967.proxy.rollback" subtracted by 1 bytes32 private constant _ROLLBACK_SLOT = 0x4910fdfa16fed3260ed0e7147f7cc6da11a60208b5b9406d12a635614ffd9143; /** * @dev Storage slot with the address of the current implementation. * This is the keccak-256 hash of "eip1967.proxy.implementation" subtracted by 1, and is * validated in the constructor. */ bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc; /** * @dev Emitted when the implementation is upgraded. */ event Upgraded(address indexed implementation); /** * @dev Returns the current implementation address. */ function _getImplementation() internal view returns (address) { return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value; } /** * @dev Stores a new address in the EIP1967 implementation slot. */ function _setImplementation(address newImplementation) private { require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract"); StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation; } /** * @dev Perform implementation upgrade * * Emits an {Upgraded} event. */ function _upgradeTo(address newImplementation) internal { _setImplementation(newImplementation); emit Upgraded(newImplementation); } /** * @dev Perform implementation upgrade with additional setup call. * * Emits an {Upgraded} event. */ function _upgradeToAndCall( address newImplementation, bytes memory data, bool forceCall ) internal { _upgradeTo(newImplementation); if (data.length > 0 || forceCall) { Address.functionDelegateCall(newImplementation, data); } } /** * @dev Perform implementation upgrade with security checks for UUPS proxies, and additional setup call. * * Emits an {Upgraded} event. */ function _upgradeToAndCallSecure( address newImplementation, bytes memory data, bool forceCall ) internal { address oldImplementation = _getImplementation(); // Initial upgrade and setup call _setImplementation(newImplementation); if (data.length > 0 || forceCall) { Address.functionDelegateCall(newImplementation, data); } // Perform rollback test if not already in progress StorageSlot.BooleanSlot storage rollbackTesting = StorageSlot.getBooleanSlot(_ROLLBACK_SLOT); if (!rollbackTesting.value) { // Trigger rollback using upgradeTo from the new implementation rollbackTesting.value = true; Address.functionDelegateCall( newImplementation, abi.encodeWithSignature("upgradeTo(address)", oldImplementation) ); rollbackTesting.value = false; // Check rollback was effective require(oldImplementation == _getImplementation(), "ERC1967Upgrade: upgrade breaks further upgrades"); // Finally reset to the new implementation and log the upgrade _upgradeTo(newImplementation); } } /** * @dev Storage slot with the admin of the contract. * This is the keccak-256 hash of "eip1967.proxy.admin" subtracted by 1, and is * validated in the constructor. */ bytes32 internal constant _ADMIN_SLOT = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103; /** * @dev Emitted when the admin account has changed. */ event AdminChanged(address previousAdmin, address newAdmin); /** * @dev Returns the current admin. */ function _getAdmin() internal view returns (address) { return StorageSlot.getAddressSlot(_ADMIN_SLOT).value; } /** * @dev Stores a new address in the EIP1967 admin slot. */ function _setAdmin(address newAdmin) private { require(newAdmin != address(0), "ERC1967: new admin is the zero address"); StorageSlot.getAddressSlot(_ADMIN_SLOT).value = newAdmin; } /** * @dev Changes the admin of the proxy. * * Emits an {AdminChanged} event. */ function _changeAdmin(address newAdmin) internal { emit AdminChanged(_getAdmin(), newAdmin); _setAdmin(newAdmin); } /** * @dev The storage slot of the UpgradeableBeacon contract which defines the implementation for this proxy. * This is bytes32(uint256(keccak256('eip1967.proxy.beacon')) - 1)) and is validated in the constructor. */ bytes32 internal constant _BEACON_SLOT = 0xa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6cb3582b35133d50; /** * @dev Emitted when the beacon is upgraded. */ event BeaconUpgraded(address indexed beacon); /** * @dev Returns the current beacon. */ function _getBeacon() internal view returns (address) { return StorageSlot.getAddressSlot(_BEACON_SLOT).value; } /** * @dev Stores a new beacon in the EIP1967 beacon slot. */ function _setBeacon(address newBeacon) private { require(Address.isContract(newBeacon), "ERC1967: new beacon is not a contract"); require( Address.isContract(IBeacon(newBeacon).implementation()), "ERC1967: beacon implementation is not a contract" ); StorageSlot.getAddressSlot(_BEACON_SLOT).value = newBeacon; } /** * @dev Perform beacon upgrade with additional setup call. Note: This upgrades the address of the beacon, it does * not upgrade the implementation contained in the beacon (see {UpgradeableBeacon-_setImplementation} for that). * * Emits a {BeaconUpgraded} event. */ function _upgradeBeaconToAndCall( address newBeacon, bytes memory data, bool forceCall ) internal { _setBeacon(newBeacon); emit BeaconUpgraded(newBeacon); if (data.length > 0 || forceCall) { Address.functionDelegateCall(IBeacon(newBeacon).implementation(), data); } } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import "../utils/Context.sol"; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * By default, the owner account will be the one that deploys the contract. This * can later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract Ownable is Context { address private _owner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the deployer as the initial owner. */ constructor() { _setOwner(_msgSender()); } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { require(owner() == _msgSender(), "Ownable: caller is not the owner"); _; } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions anymore. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby removing any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { _setOwner(address(0)); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { require(newOwner != address(0), "Ownable: new owner is the zero address"); _setOwner(newOwner); } function _setOwner(address newOwner) private { address oldOwner = _owner; _owner = newOwner; emit OwnershipTransferred(oldOwner, newOwner); } }
File 4 of 5: Wormhole
// contracts/Wormhole.sol // SPDX-License-Identifier: Apache 2 pragma solidity ^0.8.0; import "@openzeppelin/contracts/proxy/ERC1967/ERC1967Proxy.sol"; contract Wormhole is ERC1967Proxy { constructor (address implementation, bytes memory initData) ERC1967Proxy( implementation, initData ) { } }// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import "../Proxy.sol"; import "./ERC1967Upgrade.sol"; /** * @dev This contract implements an upgradeable proxy. It is upgradeable because calls are delegated to an * implementation address that can be changed. This address is stored in storage in the location specified by * https://eips.ethereum.org/EIPS/eip-1967[EIP1967], so that it doesn't conflict with the storage layout of the * implementation behind the proxy. */ contract ERC1967Proxy is Proxy, ERC1967Upgrade { /** * @dev Initializes the upgradeable proxy with an initial implementation specified by `_logic`. * * If `_data` is nonempty, it's used as data in a delegate call to `_logic`. This will typically be an encoded * function call, and allows initializating the storage of the proxy like a Solidity constructor. */ constructor(address _logic, bytes memory _data) payable { assert(_IMPLEMENTATION_SLOT == bytes32(uint256(keccak256("eip1967.proxy.implementation")) - 1)); _upgradeToAndCall(_logic, _data, false); } /** * @dev Returns the current implementation address. */ function _implementation() internal view virtual override returns (address impl) { return ERC1967Upgrade._getImplementation(); } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.2; import "../beacon/IBeacon.sol"; import "../../utils/Address.sol"; import "../../utils/StorageSlot.sol"; /** * @dev This abstract contract provides getters and event emitting update functions for * https://eips.ethereum.org/EIPS/eip-1967[EIP1967] slots. * * _Available since v4.1._ * * @custom:oz-upgrades-unsafe-allow delegatecall */ abstract contract ERC1967Upgrade { // This is the keccak-256 hash of "eip1967.proxy.rollback" subtracted by 1 bytes32 private constant _ROLLBACK_SLOT = 0x4910fdfa16fed3260ed0e7147f7cc6da11a60208b5b9406d12a635614ffd9143; /** * @dev Storage slot with the address of the current implementation. * This is the keccak-256 hash of "eip1967.proxy.implementation" subtracted by 1, and is * validated in the constructor. */ bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc; /** * @dev Emitted when the implementation is upgraded. */ event Upgraded(address indexed implementation); /** * @dev Returns the current implementation address. */ function _getImplementation() internal view returns (address) { return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value; } /** * @dev Stores a new address in the EIP1967 implementation slot. */ function _setImplementation(address newImplementation) private { require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract"); StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation; } /** * @dev Perform implementation upgrade * * Emits an {Upgraded} event. */ function _upgradeTo(address newImplementation) internal { _setImplementation(newImplementation); emit Upgraded(newImplementation); } /** * @dev Perform implementation upgrade with additional setup call. * * Emits an {Upgraded} event. */ function _upgradeToAndCall(address newImplementation, bytes memory data, bool forceCall) internal { _setImplementation(newImplementation); emit Upgraded(newImplementation); if (data.length > 0 || forceCall) { Address.functionDelegateCall(newImplementation, data); } } /** * @dev Perform implementation upgrade with security checks for UUPS proxies, and additional setup call. * * Emits an {Upgraded} event. */ function _upgradeToAndCallSecure(address newImplementation, bytes memory data, bool forceCall) internal { address oldImplementation = _getImplementation(); // Initial upgrade and setup call _setImplementation(newImplementation); if (data.length > 0 || forceCall) { Address.functionDelegateCall(newImplementation, data); } // Perform rollback test if not already in progress StorageSlot.BooleanSlot storage rollbackTesting = StorageSlot.getBooleanSlot(_ROLLBACK_SLOT); if (!rollbackTesting.value) { // Trigger rollback using upgradeTo from the new implementation rollbackTesting.value = true; Address.functionDelegateCall( newImplementation, abi.encodeWithSignature( "upgradeTo(address)", oldImplementation ) ); rollbackTesting.value = false; // Check rollback was effective require(oldImplementation == _getImplementation(), "ERC1967Upgrade: upgrade breaks further upgrades"); // Finally reset to the new implementation and log the upgrade _setImplementation(newImplementation); emit Upgraded(newImplementation); } } /** * @dev Perform beacon upgrade with additional setup call. Note: This upgrades the address of the beacon, it does * not upgrade the implementation contained in the beacon (see {UpgradeableBeacon-_setImplementation} for that). * * Emits a {BeaconUpgraded} event. */ function _upgradeBeaconToAndCall(address newBeacon, bytes memory data, bool forceCall) internal { _setBeacon(newBeacon); emit BeaconUpgraded(newBeacon); if (data.length > 0 || forceCall) { Address.functionDelegateCall(IBeacon(newBeacon).implementation(), data); } } /** * @dev Storage slot with the admin of the contract. * This is the keccak-256 hash of "eip1967.proxy.admin" subtracted by 1, and is * validated in the constructor. */ bytes32 internal constant _ADMIN_SLOT = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103; /** * @dev Emitted when the admin account has changed. */ event AdminChanged(address previousAdmin, address newAdmin); /** * @dev Returns the current admin. */ function _getAdmin() internal view returns (address) { return StorageSlot.getAddressSlot(_ADMIN_SLOT).value; } /** * @dev Stores a new address in the EIP1967 admin slot. */ function _setAdmin(address newAdmin) private { require(newAdmin != address(0), "ERC1967: new admin is the zero address"); StorageSlot.getAddressSlot(_ADMIN_SLOT).value = newAdmin; } /** * @dev Changes the admin of the proxy. * * Emits an {AdminChanged} event. */ function _changeAdmin(address newAdmin) internal { emit AdminChanged(_getAdmin(), newAdmin); _setAdmin(newAdmin); } /** * @dev The storage slot of the UpgradeableBeacon contract which defines the implementation for this proxy. * This is bytes32(uint256(keccak256('eip1967.proxy.beacon')) - 1)) and is validated in the constructor. */ bytes32 internal constant _BEACON_SLOT = 0xa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6cb3582b35133d50; /** * @dev Emitted when the beacon is upgraded. */ event BeaconUpgraded(address indexed beacon); /** * @dev Returns the current beacon. */ function _getBeacon() internal view returns (address) { return StorageSlot.getAddressSlot(_BEACON_SLOT).value; } /** * @dev Stores a new beacon in the EIP1967 beacon slot. */ function _setBeacon(address newBeacon) private { require( Address.isContract(newBeacon), "ERC1967: new beacon is not a contract" ); require( Address.isContract(IBeacon(newBeacon).implementation()), "ERC1967: beacon implementation is not a contract" ); StorageSlot.getAddressSlot(_BEACON_SLOT).value = newBeacon; } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /** * @dev This abstract contract provides a fallback function that delegates all calls to another contract using the EVM * instruction `delegatecall`. We refer to the second contract as the _implementation_ behind the proxy, and it has to * be specified by overriding the virtual {_implementation} function. * * Additionally, delegation to the implementation can be triggered manually through the {_fallback} function, or to a * different contract through the {_delegate} function. * * The success and return data of the delegated call will be returned back to the caller of the proxy. */ abstract contract Proxy { /** * @dev Delegates the current call to `implementation`. * * This function does not return to its internall call site, it will return directly to the external caller. */ function _delegate(address implementation) internal virtual { // solhint-disable-next-line no-inline-assembly assembly { // Copy msg.data. We take full control of memory in this inline assembly // block because it will not return to Solidity code. We overwrite the // Solidity scratch pad at memory position 0. calldatacopy(0, 0, calldatasize()) // Call the implementation. // out and outsize are 0 because we don't know the size yet. let result := delegatecall(gas(), implementation, 0, calldatasize(), 0, 0) // Copy the returned data. returndatacopy(0, 0, returndatasize()) switch result // delegatecall returns 0 on error. case 0 { revert(0, returndatasize()) } default { return(0, returndatasize()) } } } /** * @dev This is a virtual function that should be overriden so it returns the address to which the fallback function * and {_fallback} should delegate. */ function _implementation() internal view virtual returns (address); /** * @dev Delegates the current call to the address returned by `_implementation()`. * * This function does not return to its internall call site, it will return directly to the external caller. */ function _fallback() internal virtual { _beforeFallback(); _delegate(_implementation()); } /** * @dev Fallback function that delegates calls to the address returned by `_implementation()`. Will run if no other * function in the contract matches the call data. */ fallback () external payable virtual { _fallback(); } /** * @dev Fallback function that delegates calls to the address returned by `_implementation()`. Will run if call data * is empty. */ receive () external payable virtual { _fallback(); } /** * @dev Hook that is called before falling back to the implementation. Can happen as part of a manual `_fallback` * call, or as part of the Solidity `fallback` or `receive` functions. * * If overriden should call `super._beforeFallback()`. */ function _beforeFallback() internal virtual { } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /** * @dev This is the interface that {BeaconProxy} expects of its beacon. */ interface IBeacon { /** * @dev Must return an address that can be used as a delegate call target. * * {BeaconProxy} will check that this address is a contract. */ function implementation() external view returns (address); } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize, which returns 0 for contracts in // construction, since the code is only stored at the end of the // constructor execution. uint256 size; // solhint-disable-next-line no-inline-assembly assembly { size := extcodesize(account) } return size > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); // solhint-disable-next-line avoid-low-level-calls, avoid-call-value (bool success, ) = recipient.call{ value: amount }(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain`call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCall(target, data, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); require(isContract(target), "Address: call to non-contract"); // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = target.call{ value: value }(data); return _verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data, string memory errorMessage) internal view returns (bytes memory) { require(isContract(target), "Address: static call to non-contract"); // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = target.staticcall(data); return _verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { return functionDelegateCall(target, data, "Address: low-level delegate call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) { require(isContract(target), "Address: delegate call to non-contract"); // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = target.delegatecall(data); return _verifyCallResult(success, returndata, errorMessage); } function _verifyCallResult(bool success, bytes memory returndata, string memory errorMessage) private pure returns(bytes memory) { if (success) { return returndata; } else { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly // solhint-disable-next-line no-inline-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /** * @dev Library for reading and writing primitive types to specific storage slots. * * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts. * This library helps with reading and writing to such slots without the need for inline assembly. * * The functions in this library return Slot structs that contain a `value` member that can be used to read or write. * * Example usage to set ERC1967 implementation slot: * ``` * contract ERC1967 { * bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc; * * function _getImplementation() internal view returns (address) { * return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value; * } * * function _setImplementation(address newImplementation) internal { * require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract"); * StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation; * } * } * ``` * * _Available since v4.1 for `address`, `bool`, `bytes32`, and `uint256`._ */ library StorageSlot { struct AddressSlot { address value; } struct BooleanSlot { bool value; } struct Bytes32Slot { bytes32 value; } struct Uint256Slot { uint256 value; } /** * @dev Returns an `AddressSlot` with member `value` located at `slot`. */ function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) { assembly { r.slot := slot } } /** * @dev Returns an `BooleanSlot` with member `value` located at `slot`. */ function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) { assembly { r.slot := slot } } /** * @dev Returns an `Bytes32Slot` with member `value` located at `slot`. */ function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) { assembly { r.slot := slot } } /** * @dev Returns an `Uint256Slot` with member `value` located at `slot`. */ function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) { assembly { r.slot := slot } } }
File 5 of 5: Implementation
// SPDX-License-Identifier: MIT pragma solidity ^0.8.2; import "../beacon/IBeacon.sol"; import "../../utils/Address.sol"; import "../../utils/StorageSlot.sol"; /** * @dev This abstract contract provides getters and event emitting update functions for * https://eips.ethereum.org/EIPS/eip-1967[EIP1967] slots. * * _Available since v4.1._ * * @custom:oz-upgrades-unsafe-allow delegatecall */ abstract contract ERC1967Upgrade { // This is the keccak-256 hash of "eip1967.proxy.rollback" subtracted by 1 bytes32 private constant _ROLLBACK_SLOT = 0x4910fdfa16fed3260ed0e7147f7cc6da11a60208b5b9406d12a635614ffd9143; /** * @dev Storage slot with the address of the current implementation. * This is the keccak-256 hash of "eip1967.proxy.implementation" subtracted by 1, and is * validated in the constructor. */ bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc; /** * @dev Emitted when the implementation is upgraded. */ event Upgraded(address indexed implementation); /** * @dev Returns the current implementation address. */ function _getImplementation() internal view returns (address) { return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value; } /** * @dev Stores a new address in the EIP1967 implementation slot. */ function _setImplementation(address newImplementation) private { require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract"); StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation; } /** * @dev Perform implementation upgrade * * Emits an {Upgraded} event. */ function _upgradeTo(address newImplementation) internal { _setImplementation(newImplementation); emit Upgraded(newImplementation); } /** * @dev Perform implementation upgrade with additional setup call. * * Emits an {Upgraded} event. */ function _upgradeToAndCall( address newImplementation, bytes memory data, bool forceCall ) internal { _upgradeTo(newImplementation); if (data.length > 0 || forceCall) { Address.functionDelegateCall(newImplementation, data); } } /** * @dev Perform implementation upgrade with security checks for UUPS proxies, and additional setup call. * * Emits an {Upgraded} event. */ function _upgradeToAndCallSecure( address newImplementation, bytes memory data, bool forceCall ) internal { address oldImplementation = _getImplementation(); // Initial upgrade and setup call _setImplementation(newImplementation); if (data.length > 0 || forceCall) { Address.functionDelegateCall(newImplementation, data); } // Perform rollback test if not already in progress StorageSlot.BooleanSlot storage rollbackTesting = StorageSlot.getBooleanSlot(_ROLLBACK_SLOT); if (!rollbackTesting.value) { // Trigger rollback using upgradeTo from the new implementation rollbackTesting.value = true; Address.functionDelegateCall( newImplementation, abi.encodeWithSignature("upgradeTo(address)", oldImplementation) ); rollbackTesting.value = false; // Check rollback was effective require(oldImplementation == _getImplementation(), "ERC1967Upgrade: upgrade breaks further upgrades"); // Finally reset to the new implementation and log the upgrade _upgradeTo(newImplementation); } } /** * @dev Storage slot with the admin of the contract. * This is the keccak-256 hash of "eip1967.proxy.admin" subtracted by 1, and is * validated in the constructor. */ bytes32 internal constant _ADMIN_SLOT = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103; /** * @dev Emitted when the admin account has changed. */ event AdminChanged(address previousAdmin, address newAdmin); /** * @dev Returns the current admin. */ function _getAdmin() internal view returns (address) { return StorageSlot.getAddressSlot(_ADMIN_SLOT).value; } /** * @dev Stores a new address in the EIP1967 admin slot. */ function _setAdmin(address newAdmin) private { require(newAdmin != address(0), "ERC1967: new admin is the zero address"); StorageSlot.getAddressSlot(_ADMIN_SLOT).value = newAdmin; } /** * @dev Changes the admin of the proxy. * * Emits an {AdminChanged} event. */ function _changeAdmin(address newAdmin) internal { emit AdminChanged(_getAdmin(), newAdmin); _setAdmin(newAdmin); } /** * @dev The storage slot of the UpgradeableBeacon contract which defines the implementation for this proxy. * This is bytes32(uint256(keccak256('eip1967.proxy.beacon')) - 1)) and is validated in the constructor. */ bytes32 internal constant _BEACON_SLOT = 0xa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6cb3582b35133d50; /** * @dev Emitted when the beacon is upgraded. */ event BeaconUpgraded(address indexed beacon); /** * @dev Returns the current beacon. */ function _getBeacon() internal view returns (address) { return StorageSlot.getAddressSlot(_BEACON_SLOT).value; } /** * @dev Stores a new beacon in the EIP1967 beacon slot. */ function _setBeacon(address newBeacon) private { require(Address.isContract(newBeacon), "ERC1967: new beacon is not a contract"); require( Address.isContract(IBeacon(newBeacon).implementation()), "ERC1967: beacon implementation is not a contract" ); StorageSlot.getAddressSlot(_BEACON_SLOT).value = newBeacon; } /** * @dev Perform beacon upgrade with additional setup call. Note: This upgrades the address of the beacon, it does * not upgrade the implementation contained in the beacon (see {UpgradeableBeacon-_setImplementation} for that). * * Emits a {BeaconUpgraded} event. */ function _upgradeBeaconToAndCall( address newBeacon, bytes memory data, bool forceCall ) internal { _setBeacon(newBeacon); emit BeaconUpgraded(newBeacon); if (data.length > 0 || forceCall) { Address.functionDelegateCall(IBeacon(newBeacon).implementation(), data); } } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /** * @dev This is the interface that {BeaconProxy} expects of its beacon. */ interface IBeacon { /** * @dev Must return an address that can be used as a delegate call target. * * {BeaconProxy} will check that this address is a contract. */ function implementation() external view returns (address); } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize, which returns 0 for contracts in // construction, since the code is only stored at the end of the // constructor execution. uint256 size; assembly { size := extcodesize(account) } return size > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); (bool success, ) = recipient.call{value: amount}(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCall(target, data, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value ) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); require(isContract(target), "Address: call to non-contract"); (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall( address target, bytes memory data, string memory errorMessage ) internal view returns (bytes memory) { require(isContract(target), "Address: static call to non-contract"); (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { return functionDelegateCall(target, data, "Address: low-level delegate call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { require(isContract(target), "Address: delegate call to non-contract"); (bool success, bytes memory returndata) = target.delegatecall(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the * revert reason using the provided one. * * _Available since v4.3._ */ function verifyCallResult( bool success, bytes memory returndata, string memory errorMessage ) internal pure returns (bytes memory) { if (success) { return returndata; } else { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /** * @dev Library for reading and writing primitive types to specific storage slots. * * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts. * This library helps with reading and writing to such slots without the need for inline assembly. * * The functions in this library return Slot structs that contain a `value` member that can be used to read or write. * * Example usage to set ERC1967 implementation slot: * ``` * contract ERC1967 { * bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc; * * function _getImplementation() internal view returns (address) { * return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value; * } * * function _setImplementation(address newImplementation) internal { * require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract"); * StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation; * } * } * ``` * * _Available since v4.1 for `address`, `bool`, `bytes32`, and `uint256`._ */ library StorageSlot { struct AddressSlot { address value; } struct BooleanSlot { bool value; } struct Bytes32Slot { bytes32 value; } struct Uint256Slot { uint256 value; } /** * @dev Returns an `AddressSlot` with member `value` located at `slot`. */ function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) { assembly { r.slot := slot } } /** * @dev Returns an `BooleanSlot` with member `value` located at `slot`. */ function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) { assembly { r.slot := slot } } /** * @dev Returns an `Bytes32Slot` with member `value` located at `slot`. */ function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) { assembly { r.slot := slot } } /** * @dev Returns an `Uint256Slot` with member `value` located at `slot`. */ function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) { assembly { r.slot := slot } } } // contracts/Getters.sol // SPDX-License-Identifier: Apache 2 pragma solidity ^0.8.0; import "./State.sol"; contract Getters is State { function getGuardianSet(uint32 index) public view returns (Structs.GuardianSet memory) { return _state.guardianSets[index]; } function getCurrentGuardianSetIndex() public view returns (uint32) { return _state.guardianSetIndex; } function getGuardianSetExpiry() public view returns (uint32) { return _state.guardianSetExpiry; } function governanceActionIsConsumed(bytes32 hash) public view returns (bool) { return _state.consumedGovernanceActions[hash]; } function isInitialized(address impl) public view returns (bool) { return _state.initializedImplementations[impl]; } function chainId() public view returns (uint16) { return _state.provider.chainId; } function evmChainId() public view returns (uint256) { return _state.evmChainId; } function isFork() public view returns (bool) { return evmChainId() != block.chainid; } function governanceChainId() public view returns (uint16){ return _state.provider.governanceChainId; } function governanceContract() public view returns (bytes32){ return _state.provider.governanceContract; } function messageFee() public view returns (uint256) { return _state.messageFee; } function nextSequence(address emitter) public view returns (uint64) { return _state.sequences[emitter]; } }// contracts/Governance.sol // SPDX-License-Identifier: Apache 2 pragma solidity ^0.8.0; import "./Structs.sol"; import "./GovernanceStructs.sol"; import "./Messages.sol"; import "./Setters.sol"; import "@openzeppelin/contracts/proxy/ERC1967/ERC1967Upgrade.sol"; /** * @dev `Governance` defines a means to enacting changes to the core bridge contract, * guardianSets, message fees, and transfer fees */ abstract contract Governance is GovernanceStructs, Messages, Setters, ERC1967Upgrade { event ContractUpgraded(address indexed oldContract, address indexed newContract); event GuardianSetAdded(uint32 indexed index); // "Core" (left padded) bytes32 constant module = 0x00000000000000000000000000000000000000000000000000000000436f7265; /** * @dev Upgrades a contract via Governance VAA/VM */ function submitContractUpgrade(bytes memory _vm) public { require(!isFork(), "invalid fork"); Structs.VM memory vm = parseVM(_vm); // Verify the VAA is valid before processing it (bool isValid, string memory reason) = verifyGovernanceVM(vm); require(isValid, reason); GovernanceStructs.ContractUpgrade memory upgrade = parseContractUpgrade(vm.payload); // Verify the VAA is for this module require(upgrade.module == module, "Invalid Module"); // Verify the VAA is for this chain require(upgrade.chain == chainId(), "Invalid Chain"); // Record the governance action as consumed setGovernanceActionConsumed(vm.hash); // Upgrades the implementation to the new contract upgradeImplementation(upgrade.newContract); } /** * @dev Sets a `messageFee` via Governance VAA/VM */ function submitSetMessageFee(bytes memory _vm) public { Structs.VM memory vm = parseVM(_vm); // Verify the VAA is valid before processing it (bool isValid, string memory reason) = verifyGovernanceVM(vm); require(isValid, reason); GovernanceStructs.SetMessageFee memory upgrade = parseSetMessageFee(vm.payload); // Verify the VAA is for this module require(upgrade.module == module, "Invalid Module"); // Verify the VAA is for this chain require(upgrade.chain == chainId() && !isFork(), "Invalid Chain"); // Record the governance action as consumed to prevent reentry setGovernanceActionConsumed(vm.hash); // Updates the messageFee setMessageFee(upgrade.messageFee); } /** * @dev Deploys a new `guardianSet` via Governance VAA/VM */ function submitNewGuardianSet(bytes memory _vm) public { Structs.VM memory vm = parseVM(_vm); // Verify the VAA is valid before processing it (bool isValid, string memory reason) = verifyGovernanceVM(vm); require(isValid, reason); GovernanceStructs.GuardianSetUpgrade memory upgrade = parseGuardianSetUpgrade(vm.payload); // Verify the VAA is for this module require(upgrade.module == module, "invalid Module"); // Verify the VAA is for this chain require((upgrade.chain == chainId() && !isFork()) || upgrade.chain == 0, "invalid Chain"); // Verify the Guardian Set keys are not empty, this guards // against the accidential upgrade to an empty GuardianSet require(upgrade.newGuardianSet.keys.length > 0, "new guardian set is empty"); // Verify that the index is incrementing via a predictable +1 pattern require(upgrade.newGuardianSetIndex == getCurrentGuardianSetIndex() + 1, "index must increase in steps of 1"); // Record the governance action as consumed to prevent reentry setGovernanceActionConsumed(vm.hash); // Trigger a time-based expiry of current guardianSet expireGuardianSet(getCurrentGuardianSetIndex()); // Add the new guardianSet to guardianSets storeGuardianSet(upgrade.newGuardianSet, upgrade.newGuardianSetIndex); // Makes the new guardianSet effective updateGuardianSetIndex(upgrade.newGuardianSetIndex); } /** * @dev Submits transfer fees to the recipient via Governance VAA/VM */ function submitTransferFees(bytes memory _vm) public { Structs.VM memory vm = parseVM(_vm); // Verify the VAA is valid before processing it (bool isValid, string memory reason) = verifyGovernanceVM(vm); require(isValid, reason); // Obtains the transfer from the VAA payload GovernanceStructs.TransferFees memory transfer = parseTransferFees(vm.payload); // Verify the VAA is for this module require(transfer.module == module, "invalid Module"); // Verify the VAA is for this chain require((transfer.chain == chainId() && !isFork()) || transfer.chain == 0, "invalid Chain"); // Record the governance action as consumed to prevent reentry setGovernanceActionConsumed(vm.hash); // Obtains the recipient address to be paid transfer fees address payable recipient = payable(address(uint160(uint256(transfer.recipient)))); // Transfers transfer fees to the recipient recipient.transfer(transfer.amount); } /** * @dev Updates the `chainId` and `evmChainId` on a forked chain via Governance VAA/VM */ function submitRecoverChainId(bytes memory _vm) public { require(isFork(), "not a fork"); Structs.VM memory vm = parseVM(_vm); // Verify the VAA is valid before processing it (bool isValid, string memory reason) = verifyGovernanceVM(vm); require(isValid, reason); GovernanceStructs.RecoverChainId memory rci = parseRecoverChainId(vm.payload); // Verify the VAA is for this module require(rci.module == module, "invalid Module"); // Verify the VAA is for this chain require(rci.evmChainId == block.chainid, "invalid EVM Chain"); // Record the governance action as consumed to prevent reentry setGovernanceActionConsumed(vm.hash); // Update the chainIds setEvmChainId(rci.evmChainId); setChainId(rci.newChainId); } /** * @dev Upgrades the `currentImplementation` with a `newImplementation` */ function upgradeImplementation(address newImplementation) internal { address currentImplementation = _getImplementation(); _upgradeTo(newImplementation); // Call initialize function of the new implementation (bool success, bytes memory reason) = newImplementation.delegatecall(abi.encodeWithSignature("initialize()")); require(success, string(reason)); emit ContractUpgraded(currentImplementation, newImplementation); } /** * @dev Verifies a Governance VAA/VM is valid */ function verifyGovernanceVM(Structs.VM memory vm) internal view returns (bool, string memory){ // Verify the VAA is valid (bool isValid, string memory reason) = verifyVM(vm); if (!isValid){ return (false, reason); } // only current guardianset can sign governance packets if (vm.guardianSetIndex != getCurrentGuardianSetIndex()) { return (false, "not signed by current guardian set"); } // Verify the VAA is from the governance chain (Solana) if (uint16(vm.emitterChainId) != governanceChainId()) { return (false, "wrong governance chain"); } // Verify the emitter contract is the governance contract (0x4 left padded) if (vm.emitterAddress != governanceContract()) { return (false, "wrong governance contract"); } // Verify this governance action hasn't already been // consumed to prevent reentry and replay if (governanceActionIsConsumed(vm.hash)){ return (false, "governance action already consumed"); } // Confirm the governance VAA/VM is valid return (true, ""); } }// contracts/GovernanceStructs.sol // SPDX-License-Identifier: Apache 2 pragma solidity ^0.8.0; import "./libraries/external/BytesLib.sol"; import "./Structs.sol"; /** * @dev `GovernanceStructs` defines a set of structs and parsing functions * for minimal struct validation */ contract GovernanceStructs { using BytesLib for bytes; enum GovernanceAction { UpgradeContract, UpgradeGuardianset } struct ContractUpgrade { bytes32 module; uint8 action; uint16 chain; address newContract; } struct GuardianSetUpgrade { bytes32 module; uint8 action; uint16 chain; Structs.GuardianSet newGuardianSet; uint32 newGuardianSetIndex; } struct SetMessageFee { bytes32 module; uint8 action; uint16 chain; uint256 messageFee; } struct TransferFees { bytes32 module; uint8 action; uint16 chain; uint256 amount; bytes32 recipient; } struct RecoverChainId { bytes32 module; uint8 action; uint256 evmChainId; uint16 newChainId; } /// @dev Parse a contract upgrade (action 1) with minimal validation function parseContractUpgrade(bytes memory encodedUpgrade) public pure returns (ContractUpgrade memory cu) { uint index = 0; cu.module = encodedUpgrade.toBytes32(index); index += 32; cu.action = encodedUpgrade.toUint8(index); index += 1; require(cu.action == 1, "invalid ContractUpgrade"); cu.chain = encodedUpgrade.toUint16(index); index += 2; cu.newContract = address(uint160(uint256(encodedUpgrade.toBytes32(index)))); index += 32; require(encodedUpgrade.length == index, "invalid ContractUpgrade"); } /// @dev Parse a guardianSet upgrade (action 2) with minimal validation function parseGuardianSetUpgrade(bytes memory encodedUpgrade) public pure returns (GuardianSetUpgrade memory gsu) { uint index = 0; gsu.module = encodedUpgrade.toBytes32(index); index += 32; gsu.action = encodedUpgrade.toUint8(index); index += 1; require(gsu.action == 2, "invalid GuardianSetUpgrade"); gsu.chain = encodedUpgrade.toUint16(index); index += 2; gsu.newGuardianSetIndex = encodedUpgrade.toUint32(index); index += 4; uint8 guardianLength = encodedUpgrade.toUint8(index); index += 1; gsu.newGuardianSet = Structs.GuardianSet({ keys : new address[](guardianLength), expirationTime : 0 }); for(uint i = 0; i < guardianLength; i++) { gsu.newGuardianSet.keys[i] = encodedUpgrade.toAddress(index); index += 20; } require(encodedUpgrade.length == index, "invalid GuardianSetUpgrade"); } /// @dev Parse a setMessageFee (action 3) with minimal validation function parseSetMessageFee(bytes memory encodedSetMessageFee) public pure returns (SetMessageFee memory smf) { uint index = 0; smf.module = encodedSetMessageFee.toBytes32(index); index += 32; smf.action = encodedSetMessageFee.toUint8(index); index += 1; require(smf.action == 3, "invalid SetMessageFee"); smf.chain = encodedSetMessageFee.toUint16(index); index += 2; smf.messageFee = encodedSetMessageFee.toUint256(index); index += 32; require(encodedSetMessageFee.length == index, "invalid SetMessageFee"); } /// @dev Parse a transferFees (action 4) with minimal validation function parseTransferFees(bytes memory encodedTransferFees) public pure returns (TransferFees memory tf) { uint index = 0; tf.module = encodedTransferFees.toBytes32(index); index += 32; tf.action = encodedTransferFees.toUint8(index); index += 1; require(tf.action == 4, "invalid TransferFees"); tf.chain = encodedTransferFees.toUint16(index); index += 2; tf.amount = encodedTransferFees.toUint256(index); index += 32; tf.recipient = encodedTransferFees.toBytes32(index); index += 32; require(encodedTransferFees.length == index, "invalid TransferFees"); } /// @dev Parse a recoverChainId (action 5) with minimal validation function parseRecoverChainId(bytes memory encodedRecoverChainId) public pure returns (RecoverChainId memory rci) { uint index = 0; rci.module = encodedRecoverChainId.toBytes32(index); index += 32; rci.action = encodedRecoverChainId.toUint8(index); index += 1; require(rci.action == 5, "invalid RecoverChainId"); rci.evmChainId = encodedRecoverChainId.toUint256(index); index += 32; rci.newChainId = encodedRecoverChainId.toUint16(index); index += 2; require(encodedRecoverChainId.length == index, "invalid RecoverChainId"); } }// contracts/Implementation.sol // SPDX-License-Identifier: Apache 2 pragma solidity ^0.8.0; pragma experimental ABIEncoderV2; import "./Governance.sol"; import "@openzeppelin/contracts/proxy/ERC1967/ERC1967Upgrade.sol"; contract Implementation is Governance { event LogMessagePublished(address indexed sender, uint64 sequence, uint32 nonce, bytes payload, uint8 consistencyLevel); // Publish a message to be attested by the Wormhole network function publishMessage( uint32 nonce, bytes memory payload, uint8 consistencyLevel ) public payable returns (uint64 sequence) { // check fee require(msg.value == messageFee(), "invalid fee"); sequence = useSequence(msg.sender); // emit log emit LogMessagePublished(msg.sender, sequence, nonce, payload, consistencyLevel); } function useSequence(address emitter) internal returns (uint64 sequence) { sequence = nextSequence(emitter); setNextSequence(emitter, sequence + 1); } function initialize() initializer public virtual { // this function needs to be exposed for an upgrade to pass uint256 evmChainId; uint16 chain = chainId(); // Wormhole chain ids explicitly enumerated if (chain == 2) { evmChainId = 1; // ethereum } else if (chain == 4) { evmChainId = 56; // bsc } else if (chain == 5) { evmChainId = 137; // polygon } else if (chain == 6) { evmChainId = 43114; // avalanche } else if (chain == 7) { evmChainId = 42262; // oasis } else if (chain == 9) { evmChainId = 1313161554; // aurora } else if (chain == 10) { evmChainId = 250; // fantom } else if (chain == 11) { evmChainId = 686; // karura } else if (chain == 12) { evmChainId = 787; // acala } else if (chain == 13) { evmChainId = 8217; // klaytn } else if (chain == 14) { evmChainId = 42220; // celo } else if (chain == 16) { evmChainId = 1284; // moonbeam } else if (chain == 17) { evmChainId = 245022934; // neon } else if (chain == 23) { evmChainId = 42161; // arbitrum } else if (chain == 24) { evmChainId = 10; // optimism } else if (chain == 25) { evmChainId = 100; // gnosis } else { revert("Unknown chain id."); } setEvmChainId(evmChainId); } modifier initializer() { address implementation = ERC1967Upgrade._getImplementation(); require( !isInitialized(implementation), "already initialized" ); setInitialized(implementation); _; } fallback() external payable {revert("unsupported");} receive() external payable {revert("the Wormhole contract does not accept assets");} } // contracts/Messages.sol // SPDX-License-Identifier: Apache 2 pragma solidity ^0.8.0; pragma experimental ABIEncoderV2; import "./Getters.sol"; import "./Structs.sol"; import "./libraries/external/BytesLib.sol"; contract Messages is Getters { using BytesLib for bytes; /// @dev parseAndVerifyVM serves to parse an encodedVM and wholy validate it for consumption function parseAndVerifyVM(bytes calldata encodedVM) public view returns (Structs.VM memory vm, bool valid, string memory reason) { vm = parseVM(encodedVM); (valid, reason) = verifyVM(vm); } /** * @dev `verifyVM` serves to validate an arbitrary vm against a valid Guardian set * - it aims to make sure the VM is for a known guardianSet * - it aims to ensure the guardianSet is not expired * - it aims to ensure the VM has reached quorum * - it aims to verify the signatures provided against the guardianSet */ function verifyVM(Structs.VM memory vm) public view returns (bool valid, string memory reason) { /// @dev Obtain the current guardianSet for the guardianSetIndex provided Structs.GuardianSet memory guardianSet = getGuardianSet(vm.guardianSetIndex); /** * @dev Checks whether the guardianSet has zero keys * WARNING: This keys check is critical to ensure the guardianSet has keys present AND to ensure * that guardianSet key size doesn't fall to zero and negatively impact quorum assessment. If guardianSet * key length is 0 and vm.signatures length is 0, this could compromise the integrity of both vm and * signature verification. */ if(guardianSet.keys.length == 0){ return (false, "invalid guardian set"); } /// @dev Checks if VM guardian set index matches the current index (unless the current set is expired). if(vm.guardianSetIndex != getCurrentGuardianSetIndex() && guardianSet.expirationTime < block.timestamp){ return (false, "guardian set has expired"); } /** * @dev We're using a fixed point number transformation with 1 decimal to deal with rounding. * WARNING: This quorum check is critical to assessing whether we have enough Guardian signatures to validate a VM * if making any changes to this, obtain additional peer review. If guardianSet key length is 0 and * vm.signatures length is 0, this could compromise the integrity of both vm and signature verification. */ if (vm.signatures.length < quorum(guardianSet.keys.length)){ return (false, "no quorum"); } /// @dev Verify the proposed vm.signatures against the guardianSet (bool signaturesValid, string memory invalidReason) = verifySignatures(vm.hash, vm.signatures, guardianSet); if(!signaturesValid){ return (false, invalidReason); } /// If we are here, we've validated the VM is a valid multi-sig that matches the guardianSet. return (true, ""); } /** * @dev verifySignatures serves to validate arbitrary sigatures against an arbitrary guardianSet * - it intentionally does not solve for expectations within guardianSet (you should use verifyVM if you need these protections) * - it intentioanlly does not solve for quorum (you should use verifyVM if you need these protections) * - it intentionally returns true when signatures is an empty set (you should use verifyVM if you need these protections) */ function verifySignatures(bytes32 hash, Structs.Signature[] memory signatures, Structs.GuardianSet memory guardianSet) public pure returns (bool valid, string memory reason) { uint8 lastIndex = 0; uint256 guardianCount = guardianSet.keys.length; for (uint i = 0; i < signatures.length; i++) { Structs.Signature memory sig = signatures[i]; /// Ensure that provided signature indices are ascending only require(i == 0 || sig.guardianIndex > lastIndex, "signature indices must be ascending"); lastIndex = sig.guardianIndex; /// @dev Ensure that the provided signature index is within the /// bounds of the guardianSet. This is implicitly checked by the array /// index operation below, so this check is technically redundant. /// However, reverting explicitly here ensures that a bug is not /// introduced accidentally later due to the nontrivial storage /// semantics of solidity. require(sig.guardianIndex < guardianCount, "guardian index out of bounds"); /// Check to see if the signer of the signature does not match a specific Guardian key at the provided index if(ecrecover(hash, sig.v, sig.r, sig.s) != guardianSet.keys[sig.guardianIndex]){ return (false, "VM signature invalid"); } } /// If we are here, we've validated that the provided signatures are valid for the provided guardianSet return (true, ""); } /** * @dev parseVM serves to parse an encodedVM into a vm struct * - it intentionally performs no validation functions, it simply parses raw into a struct */ function parseVM(bytes memory encodedVM) public pure virtual returns (Structs.VM memory vm) { uint index = 0; vm.version = encodedVM.toUint8(index); index += 1; // SECURITY: Note that currently the VM.version is not part of the hash // and for reasons described below it cannot be made part of the hash. // This means that this field's integrity is not protected and cannot be trusted. // This is not a problem today since there is only one accepted version, but it // could be a problem if we wanted to allow other versions in the future. require(vm.version == 1, "VM version incompatible"); vm.guardianSetIndex = encodedVM.toUint32(index); index += 4; // Parse Signatures uint256 signersLen = encodedVM.toUint8(index); index += 1; vm.signatures = new Structs.Signature[](signersLen); for (uint i = 0; i < signersLen; i++) { vm.signatures[i].guardianIndex = encodedVM.toUint8(index); index += 1; vm.signatures[i].r = encodedVM.toBytes32(index); index += 32; vm.signatures[i].s = encodedVM.toBytes32(index); index += 32; vm.signatures[i].v = encodedVM.toUint8(index) + 27; index += 1; } /* Hash the body SECURITY: Do not change the way the hash of a VM is computed! Changing it could result into two different hashes for the same observation. But xDapps rely on the hash of an observation for replay protection. */ bytes memory body = encodedVM.slice(index, encodedVM.length - index); vm.hash = keccak256(abi.encodePacked(keccak256(body))); // Parse the body vm.timestamp = encodedVM.toUint32(index); index += 4; vm.nonce = encodedVM.toUint32(index); index += 4; vm.emitterChainId = encodedVM.toUint16(index); index += 2; vm.emitterAddress = encodedVM.toBytes32(index); index += 32; vm.sequence = encodedVM.toUint64(index); index += 8; vm.consistencyLevel = encodedVM.toUint8(index); index += 1; vm.payload = encodedVM.slice(index, encodedVM.length - index); } /** * @dev quorum serves solely to determine the number of signatures required to acheive quorum */ function quorum(uint numGuardians) public pure virtual returns (uint numSignaturesRequiredForQuorum) { // The max number of guardians is 255 require(numGuardians < 256, "too many guardians"); return ((numGuardians * 2) / 3) + 1; } } // contracts/Setters.sol // SPDX-License-Identifier: Apache 2 pragma solidity ^0.8.0; import "./State.sol"; contract Setters is State { function updateGuardianSetIndex(uint32 newIndex) internal { _state.guardianSetIndex = newIndex; } function expireGuardianSet(uint32 index) internal { _state.guardianSets[index].expirationTime = uint32(block.timestamp) + 86400; } function storeGuardianSet(Structs.GuardianSet memory set, uint32 index) internal { _state.guardianSets[index] = set; } function setInitialized(address implementatiom) internal { _state.initializedImplementations[implementatiom] = true; } function setGovernanceActionConsumed(bytes32 hash) internal { _state.consumedGovernanceActions[hash] = true; } function setChainId(uint16 chainId) internal { _state.provider.chainId = chainId; } function setGovernanceChainId(uint16 chainId) internal { _state.provider.governanceChainId = chainId; } function setGovernanceContract(bytes32 governanceContract) internal { _state.provider.governanceContract = governanceContract; } function setMessageFee(uint256 newFee) internal { _state.messageFee = newFee; } function setNextSequence(address emitter, uint64 sequence) internal { _state.sequences[emitter] = sequence; } function setEvmChainId(uint256 evmChainId) internal { require(evmChainId == block.chainid, "invalid evmChainId"); _state.evmChainId = evmChainId; } }// contracts/State.sol // SPDX-License-Identifier: Apache 2 pragma solidity ^0.8.0; import "./Structs.sol"; contract Events { event LogGuardianSetChanged( uint32 oldGuardianIndex, uint32 newGuardianIndex ); event LogMessagePublished( address emitter_address, uint32 nonce, bytes payload ); } contract Storage { struct WormholeState { Structs.Provider provider; // Mapping of guardian_set_index => guardian set mapping(uint32 => Structs.GuardianSet) guardianSets; // Current active guardian set index uint32 guardianSetIndex; // Period for which a guardian set stays active after it has been replaced uint32 guardianSetExpiry; // Sequence numbers per emitter mapping(address => uint64) sequences; // Mapping of consumed governance actions mapping(bytes32 => bool) consumedGovernanceActions; // Mapping of initialized implementations mapping(address => bool) initializedImplementations; uint256 messageFee; // EIP-155 Chain ID uint256 evmChainId; } } contract State { Storage.WormholeState _state; } // contracts/Structs.sol // SPDX-License-Identifier: Apache 2 pragma solidity ^0.8.0; interface Structs { \tstruct Provider { \t\tuint16 chainId; \t\tuint16 governanceChainId; \t\tbytes32 governanceContract; \t} \tstruct GuardianSet { \t\taddress[] keys; \t\tuint32 expirationTime; \t} \tstruct Signature { \t\tbytes32 r; \t\tbytes32 s; \t\tuint8 v; \t\tuint8 guardianIndex; \t} \tstruct VM { \t\tuint8 version; \t\tuint32 timestamp; \t\tuint32 nonce; \t\tuint16 emitterChainId; \t\tbytes32 emitterAddress; \t\tuint64 sequence; \t\tuint8 consistencyLevel; \t\tbytes payload; \t\tuint32 guardianSetIndex; \t\tSignature[] signatures; \t\tbytes32 hash; \t} } // SPDX-License-Identifier: Unlicense /* * @title Solidity Bytes Arrays Utils * @author Gonçalo Sá <[email protected]> * * @dev Bytes tightly packed arrays utility library for ethereum contracts written in Solidity. * The library lets you concatenate, slice and type cast bytes arrays both in memory and storage. */ pragma solidity >=0.8.0 <0.9.0; library BytesLib { function concat( bytes memory _preBytes, bytes memory _postBytes ) internal pure returns (bytes memory) { bytes memory tempBytes; assembly { // Get a location of some free memory and store it in tempBytes as // Solidity does for memory variables. tempBytes := mload(0x40) // Store the length of the first bytes array at the beginning of // the memory for tempBytes. let length := mload(_preBytes) mstore(tempBytes, length) // Maintain a memory counter for the current write location in the // temp bytes array by adding the 32 bytes for the array length to // the starting location. let mc := add(tempBytes, 0x20) // Stop copying when the memory counter reaches the length of the // first bytes array. let end := add(mc, length) for { // Initialize a copy counter to the start of the _preBytes data, // 32 bytes into its memory. let cc := add(_preBytes, 0x20) } lt(mc, end) { // Increase both counters by 32 bytes each iteration. mc := add(mc, 0x20) cc := add(cc, 0x20) } { // Write the _preBytes data into the tempBytes memory 32 bytes // at a time. mstore(mc, mload(cc)) } // Add the length of _postBytes to the current length of tempBytes // and store it as the new length in the first 32 bytes of the // tempBytes memory. length := mload(_postBytes) mstore(tempBytes, add(length, mload(tempBytes))) // Move the memory counter back from a multiple of 0x20 to the // actual end of the _preBytes data. mc := end // Stop copying when the memory counter reaches the new combined // length of the arrays. end := add(mc, length) for { let cc := add(_postBytes, 0x20) } lt(mc, end) { mc := add(mc, 0x20) cc := add(cc, 0x20) } { mstore(mc, mload(cc)) } // Update the free-memory pointer by padding our last write location // to 32 bytes: add 31 bytes to the end of tempBytes to move to the // next 32 byte block, then round down to the nearest multiple of // 32. If the sum of the length of the two arrays is zero then add // one before rounding down to leave a blank 32 bytes (the length block with 0). mstore(0x40, and( add(add(end, iszero(add(length, mload(_preBytes)))), 31), not(31) // Round down to the nearest 32 bytes. )) } return tempBytes; } function concatStorage(bytes storage _preBytes, bytes memory _postBytes) internal { assembly { // Read the first 32 bytes of _preBytes storage, which is the length // of the array. (We don't need to use the offset into the slot // because arrays use the entire slot.) let fslot := sload(_preBytes.slot) // Arrays of 31 bytes or less have an even value in their slot, // while longer arrays have an odd value. The actual length is // the slot divided by two for odd values, and the lowest order // byte divided by two for even values. // If the slot is even, bitwise and the slot with 255 and divide by // two to get the length. If the slot is odd, bitwise and the slot // with -1 and divide by two. let slength := div(and(fslot, sub(mul(0x100, iszero(and(fslot, 1))), 1)), 2) let mlength := mload(_postBytes) let newlength := add(slength, mlength) // slength can contain both the length and contents of the array // if length < 32 bytes so let's prepare for that // v. http://solidity.readthedocs.io/en/latest/miscellaneous.html#layout-of-state-variables-in-storage switch add(lt(slength, 32), lt(newlength, 32)) case 2 { // Since the new array still fits in the slot, we just need to // update the contents of the slot. // uint256(bytes_storage) = uint256(bytes_storage) + uint256(bytes_memory) + new_length sstore( _preBytes.slot, // all the modifications to the slot are inside this // next block add( // we can just add to the slot contents because the // bytes we want to change are the LSBs fslot, add( mul( div( // load the bytes from memory mload(add(_postBytes, 0x20)), // zero all bytes to the right exp(0x100, sub(32, mlength)) ), // and now shift left the number of bytes to // leave space for the length in the slot exp(0x100, sub(32, newlength)) ), // increase length by the double of the memory // bytes length mul(mlength, 2) ) ) ) } case 1 { // The stored value fits in the slot, but the combined value // will exceed it. // get the keccak hash to get the contents of the array mstore(0x0, _preBytes.slot) let sc := add(keccak256(0x0, 0x20), div(slength, 32)) // save new length sstore(_preBytes.slot, add(mul(newlength, 2), 1)) // The contents of the _postBytes array start 32 bytes into // the structure. Our first read should obtain the `submod` // bytes that can fit into the unused space in the last word // of the stored array. To get this, we read 32 bytes starting // from `submod`, so the data we read overlaps with the array // contents by `submod` bytes. Masking the lowest-order // `submod` bytes allows us to add that value directly to the // stored value. let submod := sub(32, slength) let mc := add(_postBytes, submod) let end := add(_postBytes, mlength) let mask := sub(exp(0x100, submod), 1) sstore( sc, add( and( fslot, 0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00 ), and(mload(mc), mask) ) ) for { mc := add(mc, 0x20) sc := add(sc, 1) } lt(mc, end) { sc := add(sc, 1) mc := add(mc, 0x20) } { sstore(sc, mload(mc)) } mask := exp(0x100, sub(mc, end)) sstore(sc, mul(div(mload(mc), mask), mask)) } default { // get the keccak hash to get the contents of the array mstore(0x0, _preBytes.slot) // Start copying to the last used word of the stored array. let sc := add(keccak256(0x0, 0x20), div(slength, 32)) // save new length sstore(_preBytes.slot, add(mul(newlength, 2), 1)) // Copy over the first `submod` bytes of the new data as in // case 1 above. let slengthmod := mod(slength, 32) let mlengthmod := mod(mlength, 32) let submod := sub(32, slengthmod) let mc := add(_postBytes, submod) let end := add(_postBytes, mlength) let mask := sub(exp(0x100, submod), 1) sstore(sc, add(sload(sc), and(mload(mc), mask))) for { sc := add(sc, 1) mc := add(mc, 0x20) } lt(mc, end) { sc := add(sc, 1) mc := add(mc, 0x20) } { sstore(sc, mload(mc)) } mask := exp(0x100, sub(mc, end)) sstore(sc, mul(div(mload(mc), mask), mask)) } } } function slice( bytes memory _bytes, uint256 _start, uint256 _length ) internal pure returns (bytes memory) { require(_length + 31 >= _length, "slice_overflow"); require(_bytes.length >= _start + _length, "slice_outOfBounds"); bytes memory tempBytes; assembly { switch iszero(_length) case 0 { // Get a location of some free memory and store it in tempBytes as // Solidity does for memory variables. tempBytes := mload(0x40) // The first word of the slice result is potentially a partial // word read from the original array. To read it, we calculate // the length of that partial word and start copying that many // bytes into the array. The first word we copy will start with // data we don't care about, but the last `lengthmod` bytes will // land at the beginning of the contents of the new array. When // we're done copying, we overwrite the full first word with // the actual length of the slice. let lengthmod := and(_length, 31) // The multiplication in the next line is necessary // because when slicing multiples of 32 bytes (lengthmod == 0) // the following copy loop was copying the origin's length // and then ending prematurely not copying everything it should. let mc := add(add(tempBytes, lengthmod), mul(0x20, iszero(lengthmod))) let end := add(mc, _length) for { // The multiplication in the next line has the same exact purpose // as the one above. let cc := add(add(add(_bytes, lengthmod), mul(0x20, iszero(lengthmod))), _start) } lt(mc, end) { mc := add(mc, 0x20) cc := add(cc, 0x20) } { mstore(mc, mload(cc)) } mstore(tempBytes, _length) //update free-memory pointer //allocating the array padded to 32 bytes like the compiler does now mstore(0x40, and(add(mc, 31), not(31))) } //if we want a zero-length slice let's just return a zero-length array default { tempBytes := mload(0x40) //zero out the 32 bytes slice we are about to return //we need to do it because Solidity does not garbage collect mstore(tempBytes, 0) mstore(0x40, add(tempBytes, 0x20)) } } return tempBytes; } function toAddress(bytes memory _bytes, uint256 _start) internal pure returns (address) { require(_bytes.length >= _start + 20, "toAddress_outOfBounds"); address tempAddress; assembly { tempAddress := div(mload(add(add(_bytes, 0x20), _start)), 0x1000000000000000000000000) } return tempAddress; } function toUint8(bytes memory _bytes, uint256 _start) internal pure returns (uint8) { require(_bytes.length >= _start + 1 , "toUint8_outOfBounds"); uint8 tempUint; assembly { tempUint := mload(add(add(_bytes, 0x1), _start)) } return tempUint; } function toUint16(bytes memory _bytes, uint256 _start) internal pure returns (uint16) { require(_bytes.length >= _start + 2, "toUint16_outOfBounds"); uint16 tempUint; assembly { tempUint := mload(add(add(_bytes, 0x2), _start)) } return tempUint; } function toUint32(bytes memory _bytes, uint256 _start) internal pure returns (uint32) { require(_bytes.length >= _start + 4, "toUint32_outOfBounds"); uint32 tempUint; assembly { tempUint := mload(add(add(_bytes, 0x4), _start)) } return tempUint; } function toUint64(bytes memory _bytes, uint256 _start) internal pure returns (uint64) { require(_bytes.length >= _start + 8, "toUint64_outOfBounds"); uint64 tempUint; assembly { tempUint := mload(add(add(_bytes, 0x8), _start)) } return tempUint; } function toUint96(bytes memory _bytes, uint256 _start) internal pure returns (uint96) { require(_bytes.length >= _start + 12, "toUint96_outOfBounds"); uint96 tempUint; assembly { tempUint := mload(add(add(_bytes, 0xc), _start)) } return tempUint; } function toUint128(bytes memory _bytes, uint256 _start) internal pure returns (uint128) { require(_bytes.length >= _start + 16, "toUint128_outOfBounds"); uint128 tempUint; assembly { tempUint := mload(add(add(_bytes, 0x10), _start)) } return tempUint; } function toUint256(bytes memory _bytes, uint256 _start) internal pure returns (uint256) { require(_bytes.length >= _start + 32, "toUint256_outOfBounds"); uint256 tempUint; assembly { tempUint := mload(add(add(_bytes, 0x20), _start)) } return tempUint; } function toBytes32(bytes memory _bytes, uint256 _start) internal pure returns (bytes32) { require(_bytes.length >= _start + 32, "toBytes32_outOfBounds"); bytes32 tempBytes32; assembly { tempBytes32 := mload(add(add(_bytes, 0x20), _start)) } return tempBytes32; } function equal(bytes memory _preBytes, bytes memory _postBytes) internal pure returns (bool) { bool success = true; assembly { let length := mload(_preBytes) // if lengths don't match the arrays are not equal switch eq(length, mload(_postBytes)) case 1 { // cb is a circuit breaker in the for loop since there's // no said feature for inline assembly loops // cb = 1 - don't breaker // cb = 0 - break let cb := 1 let mc := add(_preBytes, 0x20) let end := add(mc, length) for { let cc := add(_postBytes, 0x20) // the next line is the loop condition: // while(uint256(mc < end) + cb == 2) } eq(add(lt(mc, end), cb), 2) { mc := add(mc, 0x20) cc := add(cc, 0x20) } { // if any of these checks fails then arrays are not equal if iszero(eq(mload(mc), mload(cc))) { // unsuccess: success := 0 cb := 0 } } } default { // unsuccess: success := 0 } } return success; } function equalStorage( bytes storage _preBytes, bytes memory _postBytes ) internal view returns (bool) { bool success = true; assembly { // we know _preBytes_offset is 0 let fslot := sload(_preBytes.slot) // Decode the length of the stored array like in concatStorage(). let slength := div(and(fslot, sub(mul(0x100, iszero(and(fslot, 1))), 1)), 2) let mlength := mload(_postBytes) // if lengths don't match the arrays are not equal switch eq(slength, mlength) case 1 { // slength can contain both the length and contents of the array // if length < 32 bytes so let's prepare for that // v. http://solidity.readthedocs.io/en/latest/miscellaneous.html#layout-of-state-variables-in-storage if iszero(iszero(slength)) { switch lt(slength, 32) case 1 { // blank the last byte which is the length fslot := mul(div(fslot, 0x100), 0x100) if iszero(eq(fslot, mload(add(_postBytes, 0x20)))) { // unsuccess: success := 0 } } default { // cb is a circuit breaker in the for loop since there's // no said feature for inline assembly loops // cb = 1 - don't breaker // cb = 0 - break let cb := 1 // get the keccak hash to get the contents of the array mstore(0x0, _preBytes.slot) let sc := keccak256(0x0, 0x20) let mc := add(_postBytes, 0x20) let end := add(mc, mlength) // the next line is the loop condition: // while(uint256(mc < end) + cb == 2) for {} eq(add(lt(mc, end), cb), 2) { sc := add(sc, 1) mc := add(mc, 0x20) } { if iszero(eq(sload(sc), mload(mc))) { // unsuccess: success := 0 cb := 0 } } } } } default { // unsuccess: success := 0 } } return success; } }