Transaction Hash:
Block:
20417154 at Jul-30-2024 04:59:35 AM +UTC
Transaction Fee:
0.000317288520188736 ETH
$0.76
Gas Used:
197,896 Gas / 1.603309416 Gwei
Emitted Events:
127 |
FiatTokenProxy.0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef( 0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef, 0x00000000000000000000000047835fb86226786c813f103f16f3494fbefe64a0, 0x0000000000000000000000001231deb6f5749ef6ce6943a275a1d3e7486f4eae, 000000000000000000000000000000000000000000000000000000000edd55d4 )
|
128 |
FiatTokenProxy.0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef( 0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef, 0x0000000000000000000000001231deb6f5749ef6ce6943a275a1d3e7486f4eae, 0x0000000000000000000000005f0000d4780a00d2dce0a00004000800cb0e5041, 000000000000000000000000000000000000000000000000000000000edd55d4 )
|
129 |
SolidlyV3Pool.Swap( sender=0x5F0000D4780a00D2DcE0a00004000800cB0e5041, recipient=0x5F0000D4780a00D2DcE0a00004000800cB0e5041, amount0=249386452, amount1=-75287172288577442, sqrtPriceX96=1376739424504846370827229078580445, liquidity=55167024367050706, tick=195267 )
|
130 |
FiatTokenProxy.0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef( 0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef, 0x0000000000000000000000005f0000d4780a00d2dce0a00004000800cb0e5041, 0x000000000000000000000000831bf48183b999fde45294b14b55199072f0801b, 000000000000000000000000000000000000000000000000000000000edd55d4 )
|
131 |
WETH9.Transfer( src=SolidlyV3Pool, dst=0x5F0000D4780a00D2DcE0a00004000800cB0e5041, wad=75287172288577442 )
|
132 |
WETH9.Withdrawal( src=0x5F0000D4780a00D2DcE0a00004000800cB0e5041, wad=75287172288577442 )
|
133 |
LiFiDiamond.0x7bfdfdb5e3a3776976e53cb0607060f54c5312701c8cba1155cc4d5394440b38( 0x7bfdfdb5e3a3776976e53cb0607060f54c5312701c8cba1155cc4d5394440b38, 0d7f59e70ee746dafcdc5f1a11a322574dac239b0f800ed699c5dfd74bd32da0, 0000000000000000000000006a000f20005980200259b80c5102003040001068, 000000000000000000000000a0b86991c6218b36c1d19d4a2e9eb0ce3606eb48, 0000000000000000000000000000000000000000000000000000000000000000, 000000000000000000000000000000000000000000000000000000000edd55d4, 000000000000000000000000000000000000000000000000010b7948c8677fa2, 0000000000000000000000000000000000000000000000000000000066a87337 )
|
134 |
LiFiDiamond.0x38eee76fd911eabac79da7af16053e809be0e12c8637f156e77e1af309b99537( 0x38eee76fd911eabac79da7af16053e809be0e12c8637f156e77e1af309b99537, 0x0d7f59e70ee746dafcdc5f1a11a322574dac239b0f800ed699c5dfd74bd32da0, 00000000000000000000000000000000000000000000000000000000000000e0, 0000000000000000000000000000000000000000000000000000000000000120, 00000000000000000000000047835fb86226786c813f103f16f3494fbefe64a0, 000000000000000000000000a0b86991c6218b36c1d19d4a2e9eb0ce3606eb48, 0000000000000000000000000000000000000000000000000000000000000000, 000000000000000000000000000000000000000000000000000000000edd55d4, 000000000000000000000000000000000000000000000000010b7948c8677fa2, 000000000000000000000000000000000000000000000000000000000000000f, 6a756d7065722e65786368616e67650000000000000000000000000000000000, 000000000000000000000000000000000000000000000000000000000000002a, 3078303030303030303030303030303030303030303030303030303030303030, 3030303030303030303000000000000000000000000000000000000000000000 )
|
Account State Difference:
Address | Before | After | State Difference | ||
---|---|---|---|---|---|
0x47835fb8...fbEfe64a0 |
0.006652086198060617 Eth
Nonce: 134
|
0.081621969966449323 Eth
Nonce: 135
| 0.074969883768388706 | ||
0x690B9A9E...Db4FaC990
Miner
| (builder0x69) | 1.547065041916164546 Eth | 1.547148853847530906 Eth | 0.00008381193136636 | |
0x831BF481...072f0801B | (Solidly V3: USDC) | ||||
0xA0b86991...E3606eB48 | |||||
0xC02aaA39...83C756Cc2 | 2,739,285.718197461767149156 Eth | 2,739,285.642910289478571714 Eth | 0.075287172288577442 |
Execution Trace
LiFiDiamond.733214a3( )
GenericSwapFacetV3.swapTokensSingleV3ERC20ToNative( _transactionId=0D7F59E70EE746DAFCDC5F1A11A322574DAC239B0F800ED699C5DFD74BD32DA0, _integrator=jumper.exchange, _referrer=0x0000000000000000000000000000000000000000, _receiver=0x47835fb86226786c813f103F16f3494fbEfe64a0, _minAmountOut=74910736427134555, _swapData=[{name:callTo, type:address, order:1, indexed:false, value:0x6A000F20005980200259B80c5102003040001068, valueString:0x6A000F20005980200259B80c5102003040001068}, {name:approveTo, type:address, order:2, indexed:false, value:0x6A000F20005980200259B80c5102003040001068, valueString:0x6A000F20005980200259B80c5102003040001068}, {name:sendingAssetId, type:address, order:3, indexed:false, value:0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48, valueString:0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48}, {name:receivingAssetId, type:address, order:4, indexed:false, value:0x0000000000000000000000000000000000000000, valueString:0x0000000000000000000000000000000000000000}, {name:fromAmount, type:uint256, order:5, indexed:false, value:249386452, valueString:249386452}, {name:callData, type:bytes, order:6, indexed:false, value:0xE3EAD59E0000000000000000000000005F0000D4780A00D2DCE0A00004000800CB0E5041000000000000000000000000A0B86991C6218B36C1D19D4A2E9EB0CE3606EB48000000000000000000000000EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE000000000000000000000000000000000000000000000000000000000EDD55D4000000000000000000000000000000000000000000000000010A22EAFA9A2E5B000000000000000000000000000000000000000000000000010B7948C8677FA26D5540C20799475E83EFBBB00054FFA000000000000000000000000001378A7F00000000000000000000000000000000000000000000000000000000000000008C208B7B5625D78DEB49240EF28126CBE273809810000000000000000000000000000000000000000000000000000000000000000000000000000000000001600000000000000000000000000000000000000000000000000000000000000180000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001C0000000000000000000000000000000000000000000000000000000000000002000000000000000000000000000000000000000000000000000000000000001C0831BF48183B999FDE45294B14B55199072F0801B000000C000440084FF00000B00000000000000000000000000000000000000000000000000000000C31B8D7A0000000000000000000000005F0000D4780A00D2DCE0A00004000800CB0E50410000000000000000000000000000000000000000000000000000000000000001000000000000000000000000000000000000000000000000000000000EDD55D400000000000000000000000000000000000000000000000000000001000276A4000000000000000000000000C02AAA39B223FE8D0A0E5C4F27EAD9083C756CC2C02AAA39B223FE8D0A0E5C4F27EAD9083C756CC20000004000040000FF000007000000000000000000000000000000000000000000000000000000002E1A7D4D000000000000000000000000000000000000000000000000010B7948C8677FA26A000F20005980200259B80C51020030400010680000002000000000FF0400090000000000000000000000000000000000000000000000000000000000000000, valueString:0xE3EAD59E0000000000000000000000005F0000D4780A00D2DCE0A00004000800CB0E5041000000000000000000000000A0B86991C6218B36C1D19D4A2E9EB0CE3606EB48000000000000000000000000EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE000000000000000000000000000000000000000000000000000000000EDD55D4000000000000000000000000000000000000000000000000010A22EAFA9A2E5B000000000000000000000000000000000000000000000000010B7948C8677FA26D5540C20799475E83EFBBB00054FFA000000000000000000000000001378A7F00000000000000000000000000000000000000000000000000000000000000008C208B7B5625D78DEB49240EF28126CBE273809810000000000000000000000000000000000000000000000000000000000000000000000000000000000001600000000000000000000000000000000000000000000000000000000000000180000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001C0000000000000000000000000000000000000000000000000000000000000002000000000000000000000000000000000000000000000000000000000000001C0831BF48183B999FDE45294B14B55199072F0801B000000C000440084FF00000B00000000000000000000000000000000000000000000000000000000C31B8D7A0000000000000000000000005F0000D4780A00D2DCE0A00004000800CB0E50410000000000000000000000000000000000000000000000000000000000000001000000000000000000000000000000000000000000000000000000000EDD55D400000000000000000000000000000000000000000000000000000001000276A4000000000000000000000000C02AAA39B223FE8D0A0E5C4F27EAD9083C756CC2C02AAA39B223FE8D0A0E5C4F27EAD9083C756CC20000004000040000FF000007000000000000000000000000000000000000000000000000000000002E1A7D4D000000000000000000000000000000000000000000000000010B7948C8677FA26A000F20005980200259B80C51020030400010680000002000000000FF0400090000000000000000000000000000000000000000000000000000000000000000}, {name:requiresDeposit, type:bool, order:7, indexed:false, value:true, valueString:True}] )
FiatTokenProxy.23b872dd( )
-
FiatTokenV2_2.transferFrom( from=0x47835fb86226786c813f103F16f3494fbEfe64a0, to=0x1231DEB6f5749EF6cE6943a275A1D3E7486F4EaE, value=249386452 ) => ( True )
-
FiatTokenProxy.dd62ed3e( )
-
FiatTokenV2_2.allowance( owner=0x1231DEB6f5749EF6cE6943a275A1D3E7486F4EaE, spender=0x6A000F20005980200259B80c5102003040001068 ) => ( 115792089237316195423570985008687907853269984665640564039457584007094637869888 )
-
AugustusV6.swapExactAmountIn( executor=0x5F0000D4780a00D2DcE0a00004000800cB0e5041, swapData=[{name:srcToken, type:address, order:1, indexed:false, value:0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48, valueString:0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48}, {name:destToken, type:address, order:2, indexed:false, value:0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE, valueString:0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE}, {name:fromAmount, type:uint256, order:3, indexed:false, value:249386452, valueString:249386452}, {name:toAmount, type:uint256, order:4, indexed:false, value:74910736427134555, valueString:74910736427134555}, {name:quotedAmount, type:uint256, order:5, indexed:false, value:75287172288577442, valueString:75287172288577442}, {name:metadata, type:bytes32, order:6, indexed:false, value:6D5540C20799475E83EFBBB00054FFA000000000000000000000000001378A7F, valueString:6D5540C20799475E83EFBBB00054FFA000000000000000000000000001378A7F}, {name:beneficiary, type:address, order:7, indexed:false, value:0x0000000000000000000000000000000000000000, valueString:0x0000000000000000000000000000000000000000}], partnerAndFee=63381300575618271001878384441705309510039191160953959967639132430598416629760, permit=0x, executorData=0x000000000000000000000000000000000000000000000000000000000000002000000000000000000000000000000000000000000000000000000000000001C0831BF48183B999FDE45294B14B55199072F0801B000000C000440084FF00000B00000000000000000000000000000000000000000000000000000000C31B8D7A0000000000000000000000005F0000D4780A00D2DCE0A00004000800CB0E50410000000000000000000000000000000000000000000000000000000000000001000000000000000000000000000000000000000000000000000000000EDD55D400000000000000000000000000000000000000000000000000000001000276A4000000000000000000000000C02AAA39B223FE8D0A0E5C4F27EAD9083C756CC2C02AAA39B223FE8D0A0E5C4F27EAD9083C756CC20000004000040000FF000007000000000000000000000000000000000000000000000000000000002E1A7D4D000000000000000000000000000000000000000000000000010B7948C8677FA26A000F20005980200259B80C51020030400010680000002000000000FF0400090000000000000000000000000000000000000000000000000000000000000000 ) => ( receivedAmount=75287172288577442, paraswapShare=0, partnerShare=0 )
FiatTokenProxy.23b872dd( )
-
FiatTokenV2_2.transferFrom( from=0x1231DEB6f5749EF6cE6943a275A1D3E7486F4EaE, to=0x5F0000D4780a00D2DcE0a00004000800cB0e5041, value=249386452 ) => ( True )
-
0x5f0000d4780a00d2dce0a00004000800cb0e5041.00000000( )
SolidlyV3Pool.swap( recipient=0x5F0000D4780a00D2DcE0a00004000800cB0e5041, zeroForOne=True, amountSpecified=249386452, sqrtPriceLimitX96=4295128740 ) => ( amount0=249386452, amount1=-75287172288577442 )
FiatTokenProxy.23b872dd( )
-
FiatTokenV2_2.transferFrom( from=0x5F0000D4780a00D2DcE0a00004000800cB0e5041, to=0x831BF48183B999fDe45294b14B55199072f0801B, value=249386452 ) => ( True )
-
-
WETH9.transfer( dst=0x5F0000D4780a00D2DcE0a00004000800cB0e5041, wad=75287172288577442 ) => ( True )
-
WETH9.balanceOf( 0x5F0000D4780a00D2DcE0a00004000800cB0e5041 ) => ( 75287172288577443 )
WETH9.withdraw( wad=75287172288577442 )
- ETH 0.075287172288577442
0x5f0000d4780a00d2dce0a00004000800cb0e5041.CALL( )
- ETH 0.075287172288577442
- ETH 0.075287172288577442
AugustusV6.CALL( )
- ETH 0.075287172288577442
LiFiDiamond.CALL( )
FiatTokenProxy.70a08231( )
-
FiatTokenV2_2.balanceOf( account=0x1231DEB6f5749EF6cE6943a275A1D3E7486F4EaE ) => ( 0 )
-
- ETH 0.075287172288577442
0x47835fb86226786c813f103f16f3494fbefe64a0.CALL( )
File 1 of 7: LiFiDiamond
File 2 of 7: FiatTokenProxy
File 3 of 7: SolidlyV3Pool
File 4 of 7: WETH9
File 5 of 7: GenericSwapFacetV3
File 6 of 7: FiatTokenV2_2
File 7 of 7: AugustusV6
// SPDX-License-Identifier: MIT pragma solidity 0.8.17; error TokenAddressIsZero(); error TokenNotSupported(); error CannotBridgeToSameNetwork(); error ZeroPostSwapBalance(); error NoSwapDataProvided(); error NativeValueWithERC(); error ContractCallNotAllowed(); error NullAddrIsNotAValidSpender(); error NullAddrIsNotAnERC20Token(); error NoTransferToNullAddress(); error NativeAssetTransferFailed(); error InvalidBridgeConfigLength(); error InvalidAmount(); error InvalidContract(); error InvalidConfig(); error UnsupportedChainId(uint256 chainId); error InvalidReceiver(); error InvalidDestinationChain(); error InvalidSendingToken(); error InvalidCaller(); error AlreadyInitialized(); error NotInitialized(); error OnlyContractOwner(); error CannotAuthoriseSelf(); error RecoveryAddressCannotBeZero(); error CannotDepositNativeToken(); error InvalidCallData(); error NativeAssetNotSupported(); error UnAuthorized(); error NoSwapFromZeroBalance(); error InvalidFallbackAddress(); error CumulativeSlippageTooHigh(uint256 minAmount, uint256 receivedAmount); error InsufficientBalance(uint256 required, uint256 balance); error ZeroAmount(); error InvalidFee(); error InformationMismatch(); error NotAContract(); error NotEnoughBalance(uint256 requested, uint256 available); // SPDX-License-Identifier: MIT pragma solidity 0.8.17; interface IDiamondCut { enum FacetCutAction { Add, Replace, Remove } // Add=0, Replace=1, Remove=2 struct FacetCut { address facetAddress; FacetCutAction action; bytes4[] functionSelectors; } /// @notice Add/replace/remove any number of functions and optionally execute /// a function with delegatecall /// @param _diamondCut Contains the facet addresses and function selectors /// @param _init The address of the contract or facet to execute _calldata /// @param _calldata A function call, including function selector and arguments /// _calldata is executed with delegatecall on _init function diamondCut( FacetCut[] calldata _diamondCut, address _init, bytes calldata _calldata ) external; event DiamondCut(FacetCut[] _diamondCut, address _init, bytes _calldata); } // SPDX-License-Identifier: MIT pragma solidity 0.8.17; import { LibDiamond } from "./Libraries/LibDiamond.sol"; import { IDiamondCut } from "./Interfaces/IDiamondCut.sol"; import { LibUtil } from "./Libraries/LibUtil.sol"; contract LiFiDiamond { constructor(address _contractOwner, address _diamondCutFacet) payable { LibDiamond.setContractOwner(_contractOwner); // Add the diamondCut external function from the diamondCutFacet IDiamondCut.FacetCut[] memory cut = new IDiamondCut.FacetCut[](1); bytes4[] memory functionSelectors = new bytes4[](1); functionSelectors[0] = IDiamondCut.diamondCut.selector; cut[0] = IDiamondCut.FacetCut({ facetAddress: _diamondCutFacet, action: IDiamondCut.FacetCutAction.Add, functionSelectors: functionSelectors }); LibDiamond.diamondCut(cut, address(0), ""); } // Find facet for function that is called and execute the // function if a facet is found and return any value. // solhint-disable-next-line no-complex-fallback fallback() external payable { LibDiamond.DiamondStorage storage ds; bytes32 position = LibDiamond.DIAMOND_STORAGE_POSITION; // get diamond storage // solhint-disable-next-line no-inline-assembly assembly { ds.slot := position } // get facet from function selector address facet = ds.selectorToFacetAndPosition[msg.sig].facetAddress; if (facet == address(0)) { revert LibDiamond.FunctionDoesNotExist(); } // Execute external function from facet using delegatecall and return any value. // solhint-disable-next-line no-inline-assembly assembly { // copy function selector and any arguments calldatacopy(0, 0, calldatasize()) // execute function call using the facet let result := delegatecall(gas(), facet, 0, calldatasize(), 0, 0) // get any return value returndatacopy(0, 0, returndatasize()) // return any return value or error back to the caller switch result case 0 { revert(0, returndatasize()) } default { return(0, returndatasize()) } } } // Able to receive ether // solhint-disable-next-line no-empty-blocks receive() external payable {} } // SPDX-License-Identifier: MIT pragma solidity 0.8.17; library LibBytes { // solhint-disable no-inline-assembly // LibBytes specific errors error SliceOverflow(); error SliceOutOfBounds(); error AddressOutOfBounds(); error UintOutOfBounds(); // ------------------------- function concat(bytes memory _preBytes, bytes memory _postBytes) internal pure returns (bytes memory) { bytes memory tempBytes; assembly { // Get a location of some free memory and store it in tempBytes as // Solidity does for memory variables. tempBytes := mload(0x40) // Store the length of the first bytes array at the beginning of // the memory for tempBytes. let length := mload(_preBytes) mstore(tempBytes, length) // Maintain a memory counter for the current write location in the // temp bytes array by adding the 32 bytes for the array length to // the starting location. let mc := add(tempBytes, 0x20) // Stop copying when the memory counter reaches the length of the // first bytes array. let end := add(mc, length) for { // Initialize a copy counter to the start of the _preBytes data, // 32 bytes into its memory. let cc := add(_preBytes, 0x20) } lt(mc, end) { // Increase both counters by 32 bytes each iteration. mc := add(mc, 0x20) cc := add(cc, 0x20) } { // Write the _preBytes data into the tempBytes memory 32 bytes // at a time. mstore(mc, mload(cc)) } // Add the length of _postBytes to the current length of tempBytes // and store it as the new length in the first 32 bytes of the // tempBytes memory. length := mload(_postBytes) mstore(tempBytes, add(length, mload(tempBytes))) // Move the memory counter back from a multiple of 0x20 to the // actual end of the _preBytes data. mc := end // Stop copying when the memory counter reaches the new combined // length of the arrays. end := add(mc, length) for { let cc := add(_postBytes, 0x20) } lt(mc, end) { mc := add(mc, 0x20) cc := add(cc, 0x20) } { mstore(mc, mload(cc)) } // Update the free-memory pointer by padding our last write location // to 32 bytes: add 31 bytes to the end of tempBytes to move to the // next 32 byte block, then round down to the nearest multiple of // 32. If the sum of the length of the two arrays is zero then add // one before rounding down to leave a blank 32 bytes (the length block with 0). mstore( 0x40, and( add(add(end, iszero(add(length, mload(_preBytes)))), 31), not(31) // Round down to the nearest 32 bytes. ) ) } return tempBytes; } function concatStorage(bytes storage _preBytes, bytes memory _postBytes) internal { assembly { // Read the first 32 bytes of _preBytes storage, which is the length // of the array. (We don't need to use the offset into the slot // because arrays use the entire slot.) let fslot := sload(_preBytes.slot) // Arrays of 31 bytes or less have an even value in their slot, // while longer arrays have an odd value. The actual length is // the slot divided by two for odd values, and the lowest order // byte divided by two for even values. // If the slot is even, bitwise and the slot with 255 and divide by // two to get the length. If the slot is odd, bitwise and the slot // with -1 and divide by two. let slength := div(and(fslot, sub(mul(0x100, iszero(and(fslot, 1))), 1)), 2) let mlength := mload(_postBytes) let newlength := add(slength, mlength) // slength can contain both the length and contents of the array // if length < 32 bytes so let's prepare for that // v. http://solidity.readthedocs.io/en/latest/miscellaneous.html#layout-of-state-variables-in-storage switch add(lt(slength, 32), lt(newlength, 32)) case 2 { // Since the new array still fits in the slot, we just need to // update the contents of the slot. // uint256(bytes_storage) = uint256(bytes_storage) + uint256(bytes_memory) + new_length sstore( _preBytes.slot, // all the modifications to the slot are inside this // next block add( // we can just add to the slot contents because the // bytes we want to change are the LSBs fslot, add( mul( div( // load the bytes from memory mload(add(_postBytes, 0x20)), // zero all bytes to the right exp(0x100, sub(32, mlength)) ), // and now shift left the number of bytes to // leave space for the length in the slot exp(0x100, sub(32, newlength)) ), // increase length by the double of the memory // bytes length mul(mlength, 2) ) ) ) } case 1 { // The stored value fits in the slot, but the combined value // will exceed it. // get the keccak hash to get the contents of the array mstore(0x0, _preBytes.slot) let sc := add(keccak256(0x0, 0x20), div(slength, 32)) // save new length sstore(_preBytes.slot, add(mul(newlength, 2), 1)) // The contents of the _postBytes array start 32 bytes into // the structure. Our first read should obtain the `submod` // bytes that can fit into the unused space in the last word // of the stored array. To get this, we read 32 bytes starting // from `submod`, so the data we read overlaps with the array // contents by `submod` bytes. Masking the lowest-order // `submod` bytes allows us to add that value directly to the // stored value. let submod := sub(32, slength) let mc := add(_postBytes, submod) let end := add(_postBytes, mlength) let mask := sub(exp(0x100, submod), 1) sstore( sc, add( and(fslot, 0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00), and(mload(mc), mask) ) ) for { mc := add(mc, 0x20) sc := add(sc, 1) } lt(mc, end) { sc := add(sc, 1) mc := add(mc, 0x20) } { sstore(sc, mload(mc)) } mask := exp(0x100, sub(mc, end)) sstore(sc, mul(div(mload(mc), mask), mask)) } default { // get the keccak hash to get the contents of the array mstore(0x0, _preBytes.slot) // Start copying to the last used word of the stored array. let sc := add(keccak256(0x0, 0x20), div(slength, 32)) // save new length sstore(_preBytes.slot, add(mul(newlength, 2), 1)) // Copy over the first `submod` bytes of the new data as in // case 1 above. let slengthmod := mod(slength, 32) let submod := sub(32, slengthmod) let mc := add(_postBytes, submod) let end := add(_postBytes, mlength) let mask := sub(exp(0x100, submod), 1) sstore(sc, add(sload(sc), and(mload(mc), mask))) for { sc := add(sc, 1) mc := add(mc, 0x20) } lt(mc, end) { sc := add(sc, 1) mc := add(mc, 0x20) } { sstore(sc, mload(mc)) } mask := exp(0x100, sub(mc, end)) sstore(sc, mul(div(mload(mc), mask), mask)) } } } function slice( bytes memory _bytes, uint256 _start, uint256 _length ) internal pure returns (bytes memory) { if (_length + 31 < _length) revert SliceOverflow(); if (_bytes.length < _start + _length) revert SliceOutOfBounds(); bytes memory tempBytes; assembly { switch iszero(_length) case 0 { // Get a location of some free memory and store it in tempBytes as // Solidity does for memory variables. tempBytes := mload(0x40) // The first word of the slice result is potentially a partial // word read from the original array. To read it, we calculate // the length of that partial word and start copying that many // bytes into the array. The first word we copy will start with // data we don't care about, but the last `lengthmod` bytes will // land at the beginning of the contents of the new array. When // we're done copying, we overwrite the full first word with // the actual length of the slice. let lengthmod := and(_length, 31) // The multiplication in the next line is necessary // because when slicing multiples of 32 bytes (lengthmod == 0) // the following copy loop was copying the origin's length // and then ending prematurely not copying everything it should. let mc := add(add(tempBytes, lengthmod), mul(0x20, iszero(lengthmod))) let end := add(mc, _length) for { // The multiplication in the next line has the same exact purpose // as the one above. let cc := add(add(add(_bytes, lengthmod), mul(0x20, iszero(lengthmod))), _start) } lt(mc, end) { mc := add(mc, 0x20) cc := add(cc, 0x20) } { mstore(mc, mload(cc)) } mstore(tempBytes, _length) //update free-memory pointer //allocating the array padded to 32 bytes like the compiler does now mstore(0x40, and(add(mc, 31), not(31))) } //if we want a zero-length slice let's just return a zero-length array default { tempBytes := mload(0x40) //zero out the 32 bytes slice we are about to return //we need to do it because Solidity does not garbage collect mstore(tempBytes, 0) mstore(0x40, add(tempBytes, 0x20)) } } return tempBytes; } function toAddress(bytes memory _bytes, uint256 _start) internal pure returns (address) { if (_bytes.length < _start + 20) { revert AddressOutOfBounds(); } address tempAddress; assembly { tempAddress := div(mload(add(add(_bytes, 0x20), _start)), 0x1000000000000000000000000) } return tempAddress; } function toUint8(bytes memory _bytes, uint256 _start) internal pure returns (uint8) { if (_bytes.length < _start + 1) { revert UintOutOfBounds(); } uint8 tempUint; assembly { tempUint := mload(add(add(_bytes, 0x1), _start)) } return tempUint; } function toUint16(bytes memory _bytes, uint256 _start) internal pure returns (uint16) { if (_bytes.length < _start + 2) { revert UintOutOfBounds(); } uint16 tempUint; assembly { tempUint := mload(add(add(_bytes, 0x2), _start)) } return tempUint; } function toUint32(bytes memory _bytes, uint256 _start) internal pure returns (uint32) { if (_bytes.length < _start + 4) { revert UintOutOfBounds(); } uint32 tempUint; assembly { tempUint := mload(add(add(_bytes, 0x4), _start)) } return tempUint; } function toUint64(bytes memory _bytes, uint256 _start) internal pure returns (uint64) { if (_bytes.length < _start + 8) { revert UintOutOfBounds(); } uint64 tempUint; assembly { tempUint := mload(add(add(_bytes, 0x8), _start)) } return tempUint; } function toUint96(bytes memory _bytes, uint256 _start) internal pure returns (uint96) { if (_bytes.length < _start + 12) { revert UintOutOfBounds(); } uint96 tempUint; assembly { tempUint := mload(add(add(_bytes, 0xc), _start)) } return tempUint; } function toUint128(bytes memory _bytes, uint256 _start) internal pure returns (uint128) { if (_bytes.length < _start + 16) { revert UintOutOfBounds(); } uint128 tempUint; assembly { tempUint := mload(add(add(_bytes, 0x10), _start)) } return tempUint; } function toUint256(bytes memory _bytes, uint256 _start) internal pure returns (uint256) { if (_bytes.length < _start + 32) { revert UintOutOfBounds(); } uint256 tempUint; assembly { tempUint := mload(add(add(_bytes, 0x20), _start)) } return tempUint; } function toBytes32(bytes memory _bytes, uint256 _start) internal pure returns (bytes32) { if (_bytes.length < _start + 32) { revert UintOutOfBounds(); } bytes32 tempBytes32; assembly { tempBytes32 := mload(add(add(_bytes, 0x20), _start)) } return tempBytes32; } function equal(bytes memory _preBytes, bytes memory _postBytes) internal pure returns (bool) { bool success = true; assembly { let length := mload(_preBytes) // if lengths don't match the arrays are not equal switch eq(length, mload(_postBytes)) case 1 { // cb is a circuit breaker in the for loop since there's // no said feature for inline assembly loops // cb = 1 - don't breaker // cb = 0 - break let cb := 1 let mc := add(_preBytes, 0x20) let end := add(mc, length) for { let cc := add(_postBytes, 0x20) // the next line is the loop condition: // while(uint256(mc < end) + cb == 2) } eq(add(lt(mc, end), cb), 2) { mc := add(mc, 0x20) cc := add(cc, 0x20) } { // if any of these checks fails then arrays are not equal if iszero(eq(mload(mc), mload(cc))) { // unsuccess: success := 0 cb := 0 } } } default { // unsuccess: success := 0 } } return success; } function equalStorage(bytes storage _preBytes, bytes memory _postBytes) internal view returns (bool) { bool success = true; assembly { // we know _preBytes_offset is 0 let fslot := sload(_preBytes.slot) // Decode the length of the stored array like in concatStorage(). let slength := div(and(fslot, sub(mul(0x100, iszero(and(fslot, 1))), 1)), 2) let mlength := mload(_postBytes) // if lengths don't match the arrays are not equal switch eq(slength, mlength) case 1 { // slength can contain both the length and contents of the array // if length < 32 bytes so let's prepare for that // v. http://solidity.readthedocs.io/en/latest/miscellaneous.html#layout-of-state-variables-in-storage if iszero(iszero(slength)) { switch lt(slength, 32) case 1 { // blank the last byte which is the length fslot := mul(div(fslot, 0x100), 0x100) if iszero(eq(fslot, mload(add(_postBytes, 0x20)))) { // unsuccess: success := 0 } } default { // cb is a circuit breaker in the for loop since there's // no said feature for inline assembly loops // cb = 1 - don't breaker // cb = 0 - break let cb := 1 // get the keccak hash to get the contents of the array mstore(0x0, _preBytes.slot) let sc := keccak256(0x0, 0x20) let mc := add(_postBytes, 0x20) let end := add(mc, mlength) // the next line is the loop condition: // while(uint256(mc < end) + cb == 2) // solhint-disable-next-line no-empty-blocks for { } eq(add(lt(mc, end), cb), 2) { sc := add(sc, 1) mc := add(mc, 0x20) } { if iszero(eq(sload(sc), mload(mc))) { // unsuccess: success := 0 cb := 0 } } } } } default { // unsuccess: success := 0 } } return success; } } // SPDX-License-Identifier: MIT pragma solidity 0.8.17; import { IDiamondCut } from "../Interfaces/IDiamondCut.sol"; import { LibUtil } from "../Libraries/LibUtil.sol"; import { OnlyContractOwner } from "../Errors/GenericErrors.sol"; /// Implementation of EIP-2535 Diamond Standard /// https://eips.ethereum.org/EIPS/eip-2535 library LibDiamond { bytes32 internal constant DIAMOND_STORAGE_POSITION = keccak256("diamond.standard.diamond.storage"); // Diamond specific errors error IncorrectFacetCutAction(); error NoSelectorsInFace(); error FunctionAlreadyExists(); error FacetAddressIsZero(); error FacetAddressIsNotZero(); error FacetContainsNoCode(); error FunctionDoesNotExist(); error FunctionIsImmutable(); error InitZeroButCalldataNotEmpty(); error CalldataEmptyButInitNotZero(); error InitReverted(); // ---------------- struct FacetAddressAndPosition { address facetAddress; uint96 functionSelectorPosition; // position in facetFunctionSelectors.functionSelectors array } struct FacetFunctionSelectors { bytes4[] functionSelectors; uint256 facetAddressPosition; // position of facetAddress in facetAddresses array } struct DiamondStorage { // maps function selector to the facet address and // the position of the selector in the facetFunctionSelectors.selectors array mapping(bytes4 => FacetAddressAndPosition) selectorToFacetAndPosition; // maps facet addresses to function selectors mapping(address => FacetFunctionSelectors) facetFunctionSelectors; // facet addresses address[] facetAddresses; // Used to query if a contract implements an interface. // Used to implement ERC-165. mapping(bytes4 => bool) supportedInterfaces; // owner of the contract address contractOwner; } function diamondStorage() internal pure returns (DiamondStorage storage ds) { bytes32 position = DIAMOND_STORAGE_POSITION; // solhint-disable-next-line no-inline-assembly assembly { ds.slot := position } } event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); function setContractOwner(address _newOwner) internal { DiamondStorage storage ds = diamondStorage(); address previousOwner = ds.contractOwner; ds.contractOwner = _newOwner; emit OwnershipTransferred(previousOwner, _newOwner); } function contractOwner() internal view returns (address contractOwner_) { contractOwner_ = diamondStorage().contractOwner; } function enforceIsContractOwner() internal view { if (msg.sender != diamondStorage().contractOwner) revert OnlyContractOwner(); } event DiamondCut(IDiamondCut.FacetCut[] _diamondCut, address _init, bytes _calldata); // Internal function version of diamondCut function diamondCut( IDiamondCut.FacetCut[] memory _diamondCut, address _init, bytes memory _calldata ) internal { for (uint256 facetIndex; facetIndex < _diamondCut.length; ) { IDiamondCut.FacetCutAction action = _diamondCut[facetIndex].action; if (action == IDiamondCut.FacetCutAction.Add) { addFunctions(_diamondCut[facetIndex].facetAddress, _diamondCut[facetIndex].functionSelectors); } else if (action == IDiamondCut.FacetCutAction.Replace) { replaceFunctions(_diamondCut[facetIndex].facetAddress, _diamondCut[facetIndex].functionSelectors); } else if (action == IDiamondCut.FacetCutAction.Remove) { removeFunctions(_diamondCut[facetIndex].facetAddress, _diamondCut[facetIndex].functionSelectors); } else { revert IncorrectFacetCutAction(); } unchecked { ++facetIndex; } } emit DiamondCut(_diamondCut, _init, _calldata); initializeDiamondCut(_init, _calldata); } function addFunctions(address _facetAddress, bytes4[] memory _functionSelectors) internal { if (_functionSelectors.length == 0) { revert NoSelectorsInFace(); } DiamondStorage storage ds = diamondStorage(); if (LibUtil.isZeroAddress(_facetAddress)) { revert FacetAddressIsZero(); } uint96 selectorPosition = uint96(ds.facetFunctionSelectors[_facetAddress].functionSelectors.length); // add new facet address if it does not exist if (selectorPosition == 0) { addFacet(ds, _facetAddress); } for (uint256 selectorIndex; selectorIndex < _functionSelectors.length; ) { bytes4 selector = _functionSelectors[selectorIndex]; address oldFacetAddress = ds.selectorToFacetAndPosition[selector].facetAddress; if (!LibUtil.isZeroAddress(oldFacetAddress)) { revert FunctionAlreadyExists(); } addFunction(ds, selector, selectorPosition, _facetAddress); unchecked { ++selectorPosition; ++selectorIndex; } } } function replaceFunctions(address _facetAddress, bytes4[] memory _functionSelectors) internal { if (_functionSelectors.length == 0) { revert NoSelectorsInFace(); } DiamondStorage storage ds = diamondStorage(); if (LibUtil.isZeroAddress(_facetAddress)) { revert FacetAddressIsZero(); } uint96 selectorPosition = uint96(ds.facetFunctionSelectors[_facetAddress].functionSelectors.length); // add new facet address if it does not exist if (selectorPosition == 0) { addFacet(ds, _facetAddress); } for (uint256 selectorIndex; selectorIndex < _functionSelectors.length; ) { bytes4 selector = _functionSelectors[selectorIndex]; address oldFacetAddress = ds.selectorToFacetAndPosition[selector].facetAddress; if (oldFacetAddress == _facetAddress) { revert FunctionAlreadyExists(); } removeFunction(ds, oldFacetAddress, selector); addFunction(ds, selector, selectorPosition, _facetAddress); unchecked { ++selectorPosition; ++selectorIndex; } } } function removeFunctions(address _facetAddress, bytes4[] memory _functionSelectors) internal { if (_functionSelectors.length == 0) { revert NoSelectorsInFace(); } DiamondStorage storage ds = diamondStorage(); // if function does not exist then do nothing and return if (!LibUtil.isZeroAddress(_facetAddress)) { revert FacetAddressIsNotZero(); } for (uint256 selectorIndex; selectorIndex < _functionSelectors.length; ) { bytes4 selector = _functionSelectors[selectorIndex]; address oldFacetAddress = ds.selectorToFacetAndPosition[selector].facetAddress; removeFunction(ds, oldFacetAddress, selector); unchecked { ++selectorIndex; } } } function addFacet(DiamondStorage storage ds, address _facetAddress) internal { enforceHasContractCode(_facetAddress); ds.facetFunctionSelectors[_facetAddress].facetAddressPosition = ds.facetAddresses.length; ds.facetAddresses.push(_facetAddress); } function addFunction( DiamondStorage storage ds, bytes4 _selector, uint96 _selectorPosition, address _facetAddress ) internal { ds.selectorToFacetAndPosition[_selector].functionSelectorPosition = _selectorPosition; ds.facetFunctionSelectors[_facetAddress].functionSelectors.push(_selector); ds.selectorToFacetAndPosition[_selector].facetAddress = _facetAddress; } function removeFunction( DiamondStorage storage ds, address _facetAddress, bytes4 _selector ) internal { if (LibUtil.isZeroAddress(_facetAddress)) { revert FunctionDoesNotExist(); } // an immutable function is a function defined directly in a diamond if (_facetAddress == address(this)) { revert FunctionIsImmutable(); } // replace selector with last selector, then delete last selector uint256 selectorPosition = ds.selectorToFacetAndPosition[_selector].functionSelectorPosition; uint256 lastSelectorPosition = ds.facetFunctionSelectors[_facetAddress].functionSelectors.length - 1; // if not the same then replace _selector with lastSelector if (selectorPosition != lastSelectorPosition) { bytes4 lastSelector = ds.facetFunctionSelectors[_facetAddress].functionSelectors[lastSelectorPosition]; ds.facetFunctionSelectors[_facetAddress].functionSelectors[selectorPosition] = lastSelector; ds.selectorToFacetAndPosition[lastSelector].functionSelectorPosition = uint96(selectorPosition); } // delete the last selector ds.facetFunctionSelectors[_facetAddress].functionSelectors.pop(); delete ds.selectorToFacetAndPosition[_selector]; // if no more selectors for facet address then delete the facet address if (lastSelectorPosition == 0) { // replace facet address with last facet address and delete last facet address uint256 lastFacetAddressPosition = ds.facetAddresses.length - 1; uint256 facetAddressPosition = ds.facetFunctionSelectors[_facetAddress].facetAddressPosition; if (facetAddressPosition != lastFacetAddressPosition) { address lastFacetAddress = ds.facetAddresses[lastFacetAddressPosition]; ds.facetAddresses[facetAddressPosition] = lastFacetAddress; ds.facetFunctionSelectors[lastFacetAddress].facetAddressPosition = facetAddressPosition; } ds.facetAddresses.pop(); delete ds.facetFunctionSelectors[_facetAddress].facetAddressPosition; } } function initializeDiamondCut(address _init, bytes memory _calldata) internal { if (LibUtil.isZeroAddress(_init)) { if (_calldata.length != 0) { revert InitZeroButCalldataNotEmpty(); } } else { if (_calldata.length == 0) { revert CalldataEmptyButInitNotZero(); } if (_init != address(this)) { enforceHasContractCode(_init); } // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory error) = _init.delegatecall(_calldata); if (!success) { if (error.length > 0) { // bubble up the error revert(string(error)); } else { revert InitReverted(); } } } } function enforceHasContractCode(address _contract) internal view { uint256 contractSize; // solhint-disable-next-line no-inline-assembly assembly { contractSize := extcodesize(_contract) } if (contractSize == 0) { revert FacetContainsNoCode(); } } } // SPDX-License-Identifier: MIT pragma solidity 0.8.17; import "./LibBytes.sol"; library LibUtil { using LibBytes for bytes; function getRevertMsg(bytes memory _res) internal pure returns (string memory) { // If the _res length is less than 68, then the transaction failed silently (without a revert message) if (_res.length < 68) return "Transaction reverted silently"; bytes memory revertData = _res.slice(4, _res.length - 4); // Remove the selector which is the first 4 bytes return abi.decode(revertData, (string)); // All that remains is the revert string } /// @notice Determines whether the given address is the zero address /// @param addr The address to verify /// @return Boolean indicating if the address is the zero address function isZeroAddress(address addr) internal pure returns (bool) { return addr == address(0); } }
File 2 of 7: FiatTokenProxy
pragma solidity ^0.4.24; // File: zos-lib/contracts/upgradeability/Proxy.sol /** * @title Proxy * @dev Implements delegation of calls to other contracts, with proper * forwarding of return values and bubbling of failures. * It defines a fallback function that delegates all calls to the address * returned by the abstract _implementation() internal function. */ contract Proxy { /** * @dev Fallback function. * Implemented entirely in `_fallback`. */ function () payable external { _fallback(); } /** * @return The Address of the implementation. */ function _implementation() internal view returns (address); /** * @dev Delegates execution to an implementation contract. * This is a low level function that doesn't return to its internal call site. * It will return to the external caller whatever the implementation returns. * @param implementation Address to delegate. */ function _delegate(address implementation) internal { assembly { // Copy msg.data. We take full control of memory in this inline assembly // block because it will not return to Solidity code. We overwrite the // Solidity scratch pad at memory position 0. calldatacopy(0, 0, calldatasize) // Call the implementation. // out and outsize are 0 because we don't know the size yet. let result := delegatecall(gas, implementation, 0, calldatasize, 0, 0) // Copy the returned data. returndatacopy(0, 0, returndatasize) switch result // delegatecall returns 0 on error. case 0 { revert(0, returndatasize) } default { return(0, returndatasize) } } } /** * @dev Function that is run as the first thing in the fallback function. * Can be redefined in derived contracts to add functionality. * Redefinitions must call super._willFallback(). */ function _willFallback() internal { } /** * @dev fallback implementation. * Extracted to enable manual triggering. */ function _fallback() internal { _willFallback(); _delegate(_implementation()); } } // File: openzeppelin-solidity/contracts/AddressUtils.sol /** * Utility library of inline functions on addresses */ library AddressUtils { /** * Returns whether the target address is a contract * @dev This function will return false if invoked during the constructor of a contract, * as the code is not actually created until after the constructor finishes. * @param addr address to check * @return whether the target address is a contract */ function isContract(address addr) internal view returns (bool) { uint256 size; // XXX Currently there is no better way to check if there is a contract in an address // than to check the size of the code at that address. // See https://ethereum.stackexchange.com/a/14016/36603 // for more details about how this works. // TODO Check this again before the Serenity release, because all addresses will be // contracts then. // solium-disable-next-line security/no-inline-assembly assembly { size := extcodesize(addr) } return size > 0; } } // File: zos-lib/contracts/upgradeability/UpgradeabilityProxy.sol /** * @title UpgradeabilityProxy * @dev This contract implements a proxy that allows to change the * implementation address to which it will delegate. * Such a change is called an implementation upgrade. */ contract UpgradeabilityProxy is Proxy { /** * @dev Emitted when the implementation is upgraded. * @param implementation Address of the new implementation. */ event Upgraded(address implementation); /** * @dev Storage slot with the address of the current implementation. * This is the keccak-256 hash of "org.zeppelinos.proxy.implementation", and is * validated in the constructor. */ bytes32 private constant IMPLEMENTATION_SLOT = 0x7050c9e0f4ca769c69bd3a8ef740bc37934f8e2c036e5a723fd8ee048ed3f8c3; /** * @dev Contract constructor. * @param _implementation Address of the initial implementation. */ constructor(address _implementation) public { assert(IMPLEMENTATION_SLOT == keccak256("org.zeppelinos.proxy.implementation")); _setImplementation(_implementation); } /** * @dev Returns the current implementation. * @return Address of the current implementation */ function _implementation() internal view returns (address impl) { bytes32 slot = IMPLEMENTATION_SLOT; assembly { impl := sload(slot) } } /** * @dev Upgrades the proxy to a new implementation. * @param newImplementation Address of the new implementation. */ function _upgradeTo(address newImplementation) internal { _setImplementation(newImplementation); emit Upgraded(newImplementation); } /** * @dev Sets the implementation address of the proxy. * @param newImplementation Address of the new implementation. */ function _setImplementation(address newImplementation) private { require(AddressUtils.isContract(newImplementation), "Cannot set a proxy implementation to a non-contract address"); bytes32 slot = IMPLEMENTATION_SLOT; assembly { sstore(slot, newImplementation) } } } // File: zos-lib/contracts/upgradeability/AdminUpgradeabilityProxy.sol /** * @title AdminUpgradeabilityProxy * @dev This contract combines an upgradeability proxy with an authorization * mechanism for administrative tasks. * All external functions in this contract must be guarded by the * `ifAdmin` modifier. See ethereum/solidity#3864 for a Solidity * feature proposal that would enable this to be done automatically. */ contract AdminUpgradeabilityProxy is UpgradeabilityProxy { /** * @dev Emitted when the administration has been transferred. * @param previousAdmin Address of the previous admin. * @param newAdmin Address of the new admin. */ event AdminChanged(address previousAdmin, address newAdmin); /** * @dev Storage slot with the admin of the contract. * This is the keccak-256 hash of "org.zeppelinos.proxy.admin", and is * validated in the constructor. */ bytes32 private constant ADMIN_SLOT = 0x10d6a54a4754c8869d6886b5f5d7fbfa5b4522237ea5c60d11bc4e7a1ff9390b; /** * @dev Modifier to check whether the `msg.sender` is the admin. * If it is, it will run the function. Otherwise, it will delegate the call * to the implementation. */ modifier ifAdmin() { if (msg.sender == _admin()) { _; } else { _fallback(); } } /** * Contract constructor. * It sets the `msg.sender` as the proxy administrator. * @param _implementation address of the initial implementation. */ constructor(address _implementation) UpgradeabilityProxy(_implementation) public { assert(ADMIN_SLOT == keccak256("org.zeppelinos.proxy.admin")); _setAdmin(msg.sender); } /** * @return The address of the proxy admin. */ function admin() external view ifAdmin returns (address) { return _admin(); } /** * @return The address of the implementation. */ function implementation() external view ifAdmin returns (address) { return _implementation(); } /** * @dev Changes the admin of the proxy. * Only the current admin can call this function. * @param newAdmin Address to transfer proxy administration to. */ function changeAdmin(address newAdmin) external ifAdmin { require(newAdmin != address(0), "Cannot change the admin of a proxy to the zero address"); emit AdminChanged(_admin(), newAdmin); _setAdmin(newAdmin); } /** * @dev Upgrade the backing implementation of the proxy. * Only the admin can call this function. * @param newImplementation Address of the new implementation. */ function upgradeTo(address newImplementation) external ifAdmin { _upgradeTo(newImplementation); } /** * @dev Upgrade the backing implementation of the proxy and call a function * on the new implementation. * This is useful to initialize the proxied contract. * @param newImplementation Address of the new implementation. * @param data Data to send as msg.data in the low level call. * It should include the signature and the parameters of the function to be * called, as described in * https://solidity.readthedocs.io/en/develop/abi-spec.html#function-selector-and-argument-encoding. */ function upgradeToAndCall(address newImplementation, bytes data) payable external ifAdmin { _upgradeTo(newImplementation); require(address(this).call.value(msg.value)(data)); } /** * @return The admin slot. */ function _admin() internal view returns (address adm) { bytes32 slot = ADMIN_SLOT; assembly { adm := sload(slot) } } /** * @dev Sets the address of the proxy admin. * @param newAdmin Address of the new proxy admin. */ function _setAdmin(address newAdmin) internal { bytes32 slot = ADMIN_SLOT; assembly { sstore(slot, newAdmin) } } /** * @dev Only fall back when the sender is not the admin. */ function _willFallback() internal { require(msg.sender != _admin(), "Cannot call fallback function from the proxy admin"); super._willFallback(); } } // File: contracts/FiatTokenProxy.sol /** * Copyright CENTRE SECZ 2018 * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is furnished to * do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ pragma solidity ^0.4.24; /** * @title FiatTokenProxy * @dev This contract proxies FiatToken calls and enables FiatToken upgrades */ contract FiatTokenProxy is AdminUpgradeabilityProxy { constructor(address _implementation) public AdminUpgradeabilityProxy(_implementation) { } }
File 3 of 7: SolidlyV3Pool
// SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; /// @title Callback for ISolidlyV3PoolActions#flash /// @notice Any contract that calls ISolidlyV3PoolActions#flash must implement this interface interface ISolidlyV3FlashCallback { /// @notice Called to `msg.sender` after transferring to the recipient from ISolidlyV3Pool#flash. /// @dev In the implementation you must repay the pool the tokens sent by flash plus the computed fee amounts. /// The caller of this method must be checked to be a SolidlyV3Pool deployed by the canonical SolidlyV3Factory. /// @param fee0 The fee amount in token0 due to the pool by the end of the flash /// @param fee1 The fee amount in token1 due to the pool by the end of the flash /// @param data Any data passed through by the caller via the ISolidlyV3PoolActions#flash call function solidlyV3FlashCallback(uint256 fee0, uint256 fee1, bytes calldata data) external; } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; /// @title Callback for ISolidlyV3PoolActions#mint /// @notice Any contract that calls ISolidlyV3PoolActions#mint must implement this interface interface ISolidlyV3MintCallback { /// @notice Called to `msg.sender` after minting liquidity to a position from ISolidlyV3Pool#mint. /// @dev In the implementation you must pay the pool tokens owed for the minted liquidity. /// The caller of this method must be checked to be a SolidlyV3Pool deployed by the canonical SolidlyV3Factory. /// @param amount0Owed The amount of token0 due to the pool for the minted liquidity /// @param amount1Owed The amount of token1 due to the pool for the minted liquidity /// @param data Any data passed through by the caller via the ISolidlyV3PoolActions#mint call function solidlyV3MintCallback(uint256 amount0Owed, uint256 amount1Owed, bytes calldata data) external; } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; /// @title Callback for ISolidlyV3PoolActions#swap /// @notice Any contract that calls ISolidlyV3PoolActions#swap must implement this interface interface ISolidlyV3SwapCallback { /// @notice Called to `msg.sender` after executing a swap via ISolidlyV3Pool#swap. /// @dev In the implementation you must pay the pool tokens owed for the swap. /// The caller of this method must be checked to be a SolidlyV3Pool deployed by the canonical SolidlyV3Factory. /// amount0Delta and amount1Delta can both be 0 if no tokens were swapped. /// @param amount0Delta The amount of token0 that was sent (negative) or must be received (positive) by the pool by /// the end of the swap. If positive, the callback must send that amount of token0 to the pool. /// @param amount1Delta The amount of token1 that was sent (negative) or must be received (positive) by the pool by /// the end of the swap. If positive, the callback must send that amount of token1 to the pool. /// @param data Any data passed through by the caller via the ISolidlyV3PoolActions#swap call function solidlyV3SwapCallback(int256 amount0Delta, int256 amount1Delta, bytes calldata data) external; } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; /// @title Minimal ERC20 interface for Solidly /// @notice Contains a subset of the full ERC20 interface that is used in Solidly V3 interface IERC20Minimal { /// @notice Returns the balance of a token /// @param account The account for which to look up the number of tokens it has, i.e. its balance /// @return The number of tokens held by the account function balanceOf(address account) external view returns (uint256); /// @notice Transfers the amount of token from the `msg.sender` to the recipient /// @param recipient The account that will receive the amount transferred /// @param amount The number of tokens to send from the sender to the recipient /// @return Returns true for a successful transfer, false for an unsuccessful transfer function transfer(address recipient, uint256 amount) external returns (bool); /// @notice Returns the current allowance given to a spender by an owner /// @param owner The account of the token owner /// @param spender The account of the token spender /// @return The current allowance granted by `owner` to `spender` function allowance(address owner, address spender) external view returns (uint256); /// @notice Sets the allowance of a spender from the `msg.sender` to the value `amount` /// @param spender The account which will be allowed to spend a given amount of the owners tokens /// @param amount The amount of tokens allowed to be used by `spender` /// @return Returns true for a successful approval, false for unsuccessful function approve(address spender, uint256 amount) external returns (bool); /// @notice Transfers `amount` tokens from `sender` to `recipient` up to the allowance given to the `msg.sender` /// @param sender The account from which the transfer will be initiated /// @param recipient The recipient of the transfer /// @param amount The amount of the transfer /// @return Returns true for a successful transfer, false for unsuccessful function transferFrom( address sender, address recipient, uint256 amount ) external returns (bool); /// @notice Event emitted when tokens are transferred from one address to another, either via `#transfer` or `#transferFrom`. /// @param from The account from which the tokens were sent, i.e. the balance decreased /// @param to The account to which the tokens were sent, i.e. the balance increased /// @param value The amount of tokens that were transferred event Transfer(address indexed from, address indexed to, uint256 value); /// @notice Event emitted when the approval amount for the spender of a given owner's tokens changes. /// @param owner The account that approved spending of its tokens /// @param spender The account for which the spending allowance was modified /// @param value The new allowance from the owner to the spender event Approval(address indexed owner, address indexed spender, uint256 value); } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; /// @title The interface for the Solidly V3 Factory /// @notice The Solidly V3 Factory facilitates creation of Solidly V3 pools and control over the protocol fees interface ISolidlyV3Factory { /// @notice Emitted when the owner of the factory is changed /// @param oldOwner The owner before the owner was changed /// @param newOwner The owner after the owner was changed event OwnerChanged(address indexed oldOwner, address indexed newOwner); /// @notice Emitted when the address authorized to collect pool fees is changed /// @param oldFeeCollector The fee collector before the change /// @param newFeeCollector The fee collector after the change event FeeCollectorChanged(address indexed oldFeeCollector, address indexed newFeeCollector); /// @notice Emitted when the fee setting auth status of an address is toggled /// @param addr The address whose fee setting auth status was toggled /// @param newStatus The new fee setting auth status of the address event FeeSetterStatusToggled(address indexed addr, uint256 indexed newStatus); /// @notice Emitted when a pool is created /// @param token0 The first token of the pool by address sort order /// @param token1 The second token of the pool by address sort order /// @param fee The fee collected upon every swap in the pool, denominated in hundredths of a bip /// @param tickSpacing The minimum number of ticks between initialized ticks /// @param pool The address of the created pool event PoolCreated( address indexed token0, address indexed token1, uint24 fee, int24 indexed tickSpacing, address pool ); /// @notice Emitted when a new fee amount (and associated tick spacing) is enabled for pool creation via the factory /// @param fee The enabled fee, denominated in hundredths of a bip /// @param tickSpacing The minimum number of ticks between initialized ticks for pools created with the given fee event FeeAmountEnabled(uint24 indexed fee, int24 indexed tickSpacing); /// @notice Returns the current owner of the factory /// @dev Can be changed by the current owner via setOwner /// @return The address of the factory owner function owner() external view returns (address); /// @notice Returns the current fee collector of the factory /// @dev Can be changed by the current owner via setFeeCollector /// @return The address of the fee collector function feeCollector() external view returns (address); /// @notice Returns the fee setting auth status of an address /// @dev Can be changed by the current owner via toggleFeeSetterStatus /// @return Authorized status as uint (0: authorized to set fees, 1: not authorized to set fees) function isFeeSetter(address addr) external view returns (uint256); /// @notice Returns the set of addresses that are currently authorized to set pool fees /// @dev The underlying set that supports this view is updated every time the isFeeSetter mapping is updated /// It's maintained solely to provide an easy on-chain view of all currently authorized addresses /// @return Authorized status as uint (0: authorized to set fees, 1: not authorized to set fees) function getFeeSetters() external view returns (address[] memory); /// @notice Returns the tick spacing for a given fee amount, if enabled, or 0 if not enabled /// @dev A fee amount can never be removed, so this value should be hard coded or cached in the calling context /// @param fee The enabled fee, denominated in hundredths of a bip. Returns 0 in case of unenabled fee /// @return The tick spacing function feeAmountTickSpacing(uint24 fee) external view returns (int24); /// @notice Returns the pool address for a given pair of tokens and a tick spacing value, or address 0 if it does not exist /// @dev tokenA and tokenB may be passed in either token0/token1 or token1/token0 order /// @param tokenA The contract address of either token0 or token1 /// @param tokenB The contract address of the other token /// @param tickSpacing The tick spacing value for the pool /// @return pool The pool address function getPool(address tokenA, address tokenB, int24 tickSpacing) external view returns (address pool); /// @notice Creates a pool for the given two tokens and fee /// @param tokenA One of the two tokens in the desired pool /// @param tokenB The other of the two tokens in the desired pool /// @param fee The desired fee for the pool /// @dev tokenA and tokenB may be passed in either order: token0/token1 or token1/token0. tickSpacing is retrieved /// from the fee. The call will revert if the pool already exists, the fee is invalid, or the token arguments /// are invalid. /// @dev The pool is uniquely identified by the two tokens and the tick spacing value. The fee is mutable post pool creation. /// @return pool The address of the newly created pool function createPool(address tokenA, address tokenB, uint24 fee) external returns (address pool); /// @notice Updates the owner of the factory /// @dev Must be called by the current owner /// @param _owner The new owner of the factory function setOwner(address _owner) external; /// @notice Updates the address that is authorized to collect pool fees /// @dev Must be called by the current owner /// @param _feeCollector The new fee collector function setFeeCollector(address _feeCollector) external; /// @notice Toggles the fee setting auth status of the address /// @dev Must be called by the current owner /// @param addr The address that will have its fee setting auth status toggled function toggleFeeSetterStatus(address addr) external; /// @notice Enables a fee amount with the given tickSpacing /// @dev Fee amounts may never be removed once enabled /// @param fee The fee amount to enable, denominated in hundredths of a bip (i.e. 1e-6) /// @param tickSpacing The spacing between ticks to be enforced for all pools created with the given fee amount function enableFeeAmount(uint24 fee, int24 tickSpacing) external; } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; import './pool/ISolidlyV3PoolImmutables.sol'; import './pool/ISolidlyV3PoolState.sol'; import './pool/ISolidlyV3PoolQuoter.sol'; import './pool/ISolidlyV3PoolActions.sol'; import './pool/ISolidlyV3PoolOwnerActions.sol'; import './pool/ISolidlyV3PoolEvents.sol'; /// @title The interface for a Solidly V3 Pool /// @notice A Solidly pool facilitates swapping and automated market making between any two assets that strictly conform /// to the ERC20 specification /// @dev The pool interface is broken up into many smaller pieces interface ISolidlyV3Pool is ISolidlyV3PoolImmutables, ISolidlyV3PoolState, ISolidlyV3PoolQuoter, ISolidlyV3PoolActions, ISolidlyV3PoolOwnerActions, ISolidlyV3PoolEvents { } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; /// @title An interface for a contract that is capable of deploying Solidly V3 Pools /// @notice A contract that constructs a pool must implement this to pass arguments to the pool /// @dev This is used to avoid having constructor arguments in the pool contract, which results in the init code hash /// of the pool being constant allowing the CREATE2 address of the pool to be cheaply computed on-chain interface ISolidlyV3PoolDeployer { /// @notice Get the parameters to be used in constructing the pool, set transiently during pool creation. /// @dev Called by the pool constructor to fetch the parameters of the pool /// Returns factory The factory address /// Returns token0 The first token of the pool by address sort order /// Returns token1 The second token of the pool by address sort order /// Returns fee The fee collected upon every swap in the pool, denominated in hundredths of a bip /// Returns tickSpacing The minimum number of ticks between initialized ticks function parameters() external view returns ( address factory, address token0, address token1, uint24 fee, int24 tickSpacing ); } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; /// @title Permissionless pool actions /// @notice Contains pool methods that can be called by anyone interface ISolidlyV3PoolActions { /// @notice Sets the initial price for the pool /// @dev Price is represented as a sqrt(amountToken1/amountToken0) Q64.96 value /// @param sqrtPriceX96 the initial sqrt price of the pool as a Q64.96 function initialize(uint160 sqrtPriceX96) external; /// @notice Adds liquidity for the given recipient/tickLower/tickUpper position /// Minimal (and cheapest) version with no callback or additional slippage/deadline protection /// @param recipient The address for which the liquidity will be created /// @param tickLower The lower tick of the position in which to add liquidity /// @param tickUpper The upper tick of the position in which to add liquidity /// @param amount The amount of liquidity to mint /// @return amount0 The amount of token0 that was paid to mint the given amount of liquidity /// @return amount1 The amount of token1 that was paid to mint the given amount of liquidity function mint( address recipient, int24 tickLower, int24 tickUpper, uint128 amount ) external returns (uint256 amount0, uint256 amount1); /// @notice Adds liquidity for the given recipient/tickLower/tickUpper position /// Uses callback for payments; no additional slippage/deadline protection /// @dev The caller of this method receives a callback in the form of ISolidlyV3MintCallback#solidlyV3MintCallback /// in which they must pay any token0 or token1 owed for the liquidity /// @param recipient The address for which the liquidity will be created /// @param tickLower The lower tick of the position in which to add liquidity /// @param tickUpper The upper tick of the position in which to add liquidity /// @param amount The amount of liquidity to mint /// @param data Any data to be passed through to the callback /// @return amount0 The amount of token0 that was paid to mint the given amount of liquidity. Matches the value in the callback /// @return amount1 The amount of token1 that was paid to mint the given amount of liquidity. Matches the value in the callback function mint( address recipient, int24 tickLower, int24 tickUpper, uint128 amount, bytes calldata data ) external returns (uint256 amount0, uint256 amount1); /// @notice Adds liquidity for the given recipient/tickLower/tickUpper position /// No callback; includes additional slippage/deadline protection /// @param recipient The address for which the liquidity will be created /// @param tickLower The lower tick of the position in which to add liquidity /// @param tickUpper The upper tick of the position in which to add liquidity /// @param amount The amount of liquidity to mint /// @param amount0Min The minimum amount of token0 to spend, which serves as a slippage check /// @param amount1Min The minimum amount of token1 to spend, which serves as a slippage check /// @param deadline A constraint on the time by which the mint transaction must mined /// @return amount0 The amount of token0 that was paid to mint the given amount of liquidity /// @return amount1 The amount of token1 that was paid to mint the given amount of liquidity function mint( address recipient, int24 tickLower, int24 tickUpper, uint128 amount, uint256 amount0Min, uint256 amount1Min, uint256 deadline ) external returns (uint256 amount0, uint256 amount1); /// @notice Adds liquidity for the given recipient/tickLower/tickUpper position /// Uses callback for payments and includes additional slippage/deadline protection /// @dev The caller of this method receives a callback in the form of ISolidlyV3MintCallback#solidlyV3MintCallback /// in which they must pay any token0 or token1 owed for the liquidity /// @param recipient The address for which the liquidity will be created /// @param tickLower The lower tick of the position in which to add liquidity /// @param tickUpper The upper tick of the position in which to add liquidity /// @param amount The amount of liquidity to mint /// @param amount0Min The minimum amount of token0 to spend, which serves as a slippage check /// @param amount1Min The minimum amount of token1 to spend, which serves as a slippage check /// @param deadline A constraint on the time by which the mint transaction must mined /// @param data Any data to be passed through to the callback /// @return amount0 The amount of token0 that was paid to mint the given amount of liquidity. Matches the value in the callback /// @return amount1 The amount of token1 that was paid to mint the given amount of liquidity. Matches the value in the callback function mint( address recipient, int24 tickLower, int24 tickUpper, uint128 amount, uint256 amount0Min, uint256 amount1Min, uint256 deadline, bytes calldata data ) external returns (uint256 amount0, uint256 amount1); /// @notice Convenience method to burn liquidity and then collect owed tokens in one go /// @param recipient The address which should receive the tokens collected /// @param tickLower The lower tick of the position for which to collect tokens /// @param tickUpper The upper tick of the position for which to collect tokens /// @param amountToBurn How much liquidity to burn /// @param amount0ToCollect How much token0 should be withdrawn from the tokens owed /// @param amount1ToCollect How much token1 should be withdrawn from the tokens owed /// @return amount0FromBurn The amount of token0 accrued to the position from the burn /// @return amount1FromBurn The amount of token1 accrued to the position from the burn /// @return amount0Collected The amount of token0 collected from the positions /// @return amount1Collected The amount of token1 collected from the positions function burnAndCollect( address recipient, int24 tickLower, int24 tickUpper, uint128 amountToBurn, uint128 amount0ToCollect, uint128 amount1ToCollect ) external returns (uint256 amount0FromBurn, uint256 amount1FromBurn, uint128 amount0Collected, uint128 amount1Collected); /// @notice Convenience method to burn liquidity and then collect owed tokens in one go /// Includes additional slippage/deadline protection /// @param recipient The address which should receive the tokens collected /// @param tickLower The lower tick of the position for which to collect tokens /// @param tickUpper The upper tick of the position for which to collect tokens /// @param amountToBurn How much liquidity to burn /// @param amount0FromBurnMin The minimum amount of token0 that should be accounted for the burned liquidity /// @param amount1FromBurnMin The minimum amount of token1 that should be accounted for the burned liquidity /// @param amount0ToCollect How much token0 should be withdrawn from the tokens owed /// @param amount1ToCollect How much token1 should be withdrawn from the tokens owed /// @param deadline A constraint on the time by which the burn transaction must mined /// @return amount0FromBurn The amount of token0 accrued to the position from the burn /// @return amount1FromBurn The amount of token1 accrued to the position from the burn /// @return amount0Collected The amount of token0 collected from the positions /// @return amount1Collected The amount of token1 collected from the positions function burnAndCollect( address recipient, int24 tickLower, int24 tickUpper, uint128 amountToBurn, uint256 amount0FromBurnMin, uint256 amount1FromBurnMin, uint128 amount0ToCollect, uint128 amount1ToCollect, uint256 deadline ) external returns (uint256 amount0FromBurn, uint256 amount1FromBurn, uint128 amount0Collected, uint128 amount1Collected); /// @notice Collects tokens owed to a position /// @dev Does not recompute tokens earned, which must be done either via mint or burn of any amount of liquidity. /// Collect must be called by the position owner. To withdraw only token0 or only token1, amount0Requested or /// amount1Requested may be set to zero. To withdraw all tokens owed, caller may pass any value greater than the /// actual tokens owed, e.g. type(uint128).max. Tokens owed are from burned liquidity. /// @param recipient The address which should receive the tokens collected /// @param tickLower The lower tick of the position for which to collect tokens /// @param tickUpper The upper tick of the position for which to collect tokens /// @param amount0Requested How much token0 should be withdrawn from the tokens owed /// @param amount1Requested How much token1 should be withdrawn from the tokens owed /// @return amount0 The amount of tokens collected in token0 /// @return amount1 The amount of tokens collected in token1 function collect( address recipient, int24 tickLower, int24 tickUpper, uint128 amount0Requested, uint128 amount1Requested ) external returns (uint128 amount0, uint128 amount1); /// @notice Burn liquidity from the sender and account tokens owed for the liquidity to the position /// @dev Tokens must be collected separately via a call to #collect /// @param tickLower The lower tick of the position for which to burn liquidity /// @param tickUpper The upper tick of the position for which to burn liquidity /// @param amount How much liquidity to burn /// @return amount0 The amount of token0 sent to the recipient /// @return amount1 The amount of token1 sent to the recipient function burn(int24 tickLower, int24 tickUpper, uint128 amount) external returns (uint256 amount0, uint256 amount1); /// @notice Burn liquidity from the sender and account tokens owed for the liquidity to the position /// Includes additional slippage/deadline protection /// @dev Tokens must be collected separately via a call to #collect /// @param tickLower The lower tick of the position for which to burn liquidity /// @param tickUpper The upper tick of the position for which to burn liquidity /// @param amount How much liquidity to burn /// @param amount0Min The minimum amount of token0 that should be accounted for the burned liquidity /// @param amount1Min The minimum amount of token1 that should be accounted for the burned liquidity /// @param deadline A constraint on the time by which the burn transaction must mined /// @return amount0 The amount of token0 sent to the recipient /// @return amount1 The amount of token1 sent to the recipient function burn( int24 tickLower, int24 tickUpper, uint128 amount, uint256 amount0Min, uint256 amount1Min, uint256 deadline ) external returns (uint256 amount0, uint256 amount1); /// @notice Swap token0 for token1, or token1 for token0 /// Minimal (and cheapest) version with no callback, additional slippage/deadline protection, or referrer tracking /// @param recipient The address to receive the output of the swap /// @param zeroForOne The direction of the swap, true for token0 to token1, false for token1 to token0 /// @param amountSpecified The amount of the swap, which implicitly configures the swap as exact input (positive), or exact output (negative) /// @param sqrtPriceLimitX96 The Q64.96 sqrt price limit. If zero for one, the price cannot be less than this /// value after the swap. If one for zero, the price cannot be greater than this value after the swap /// @return amount0 The delta of the balance of token0 of the pool, exact when negative, minimum when positive /// @return amount1 The delta of the balance of token1 of the pool, exact when negative, minimum when positive function swap( address recipient, bool zeroForOne, int256 amountSpecified, uint160 sqrtPriceLimitX96 ) external returns (int256 amount0, int256 amount1); /// @notice Swap token0 for token1, or token1 for token0 /// Uses a callback for payments; no additional slippage/deadline protection or referrer tracking /// @dev The caller of this method receives a callback in the form of ISolidlyV3MintCallback#solidlyV3SwapCallback /// in which they must pay any token0 or token1 owed for the swap /// @param recipient The address to receive the output of the swap /// @param zeroForOne The direction of the swap, true for token0 to token1, false for token1 to token0 /// @param amountSpecified The amount of the swap, which implicitly configures the swap as exact input (positive), or exact output (negative) /// @param sqrtPriceLimitX96 The Q64.96 sqrt price limit. If zero for one, the price cannot be less than this /// value after the swap. If one for zero, the price cannot be greater than this value after the swap /// @param data Any data to be passed through to the callback /// @return amount0 The delta of the balance of token0 of the pool, exact when negative, minimum when positive /// @return amount1 The delta of the balance of token1 of the pool, exact when negative, minimum when positive function swap( address recipient, bool zeroForOne, int256 amountSpecified, uint160 sqrtPriceLimitX96, bytes calldata data ) external returns (int256 amount0, int256 amount1); /// @notice Swap token0 for token1, or token1 for token0 /// Has additional slippage/deadline protection; no callback or referrer tracking /// @param recipient The address to receive the output of the swap /// @param zeroForOne The direction of the swap, true for token0 to token1, false for token1 to token0 /// @param amountSpecified The amount of the swap, which implicitly configures the swap as exact input (positive), or exact output (negative) /// @param sqrtPriceLimitX96 The Q64.96 sqrt price limit. If zero for one, the price cannot be less than this /// value after the swap. If one for zero, the price cannot be greater than this value after the swap /// @param amountLimit A constraint on the minimum amount out received (for exact input swaps) or maxium amount spent (exact output swaps) /// @param deadline A constraint on the time by which the swap transaction must mined /// @return amount0 The delta of the balance of token0 of the pool, exact when negative, minimum when positive /// @return amount1 The delta of the balance of token1 of the pool, exact when negative, minimum when positive function swap( address recipient, bool zeroForOne, int256 amountSpecified, uint160 sqrtPriceLimitX96, uint256 amountLimit, uint256 deadline ) external returns (int256 amount0, int256 amount1); /// @notice Swap token0 for token1, or token1 for token0 /// Uses a callback for payments and has additional slippage/deadline protection; no referrer tracking /// @dev The caller of this method receives a callback in the form of ISolidlyV3MintCallback#solidlyV3SwapCallback /// in which they must pay any token0 or token1 owed for the swap /// @param recipient The address to receive the output of the swap /// @param zeroForOne The direction of the swap, true for token0 to token1, false for token1 to token0 /// @param amountSpecified The amount of the swap, which implicitly configures the swap as exact input (positive), or exact output (negative) /// @param sqrtPriceLimitX96 The Q64.96 sqrt price limit. If zero for one, the price cannot be less than this /// value after the swap. If one for zero, the price cannot be greater than this value after the swap /// @param amountLimit A constraint on the minimum amount out received (for exact input swaps) or maxium amount spent (exact output swaps) /// @param deadline A constraint on the time by which the swap transaction must mined /// @param data Any data to be passed through to the callback /// @return amount0 The delta of the balance of token0 of the pool, exact when negative, minimum when positive /// @return amount1 The delta of the balance of token1 of the pool, exact when negative, minimum when positive function swap( address recipient, bool zeroForOne, int256 amountSpecified, uint160 sqrtPriceLimitX96, uint256 amountLimit, uint256 deadline, bytes calldata data ) external returns (int256 amount0, int256 amount1); /// @notice Swap token0 for token1, or token1 for token0 /// Tracks referrers for attribution; No callback or additional slippage/deadline protection /// @param recipient The address to receive the output of the swap /// @param zeroForOne The direction of the swap, true for token0 to token1, false for token1 to token0 /// @param amountSpecified The amount of the swap, which implicitly configures the swap as exact input (positive), or exact output (negative) /// @param sqrtPriceLimitX96 The Q64.96 sqrt price limit. If zero for one, the price cannot be less than this /// value after the swap. If one for zero, the price cannot be greater than this value after the swap /// @param trackingCode Tracking code to be used for referrer attribution /// @return amount0 The delta of the balance of token0 of the pool, exact when negative, minimum when positive /// @return amount1 The delta of the balance of token1 of the pool, exact when negative, minimum when positive function swap( address recipient, bool zeroForOne, int256 amountSpecified, uint160 sqrtPriceLimitX96, uint256 trackingCode ) external returns (int256 amount0, int256 amount1); /// @notice Swap token0 for token1, or token1 for token0 /// Tracks referrers for attribution and uses callback for payments; no additional slippage/deadline protection /// @dev The caller of this method receives a callback in the form of ISolidlyV3MintCallback#solidlyV3SwapCallback /// in which they must pay any token0 or token1 owed for the swap /// @param recipient The address to receive the output of the swap /// @param zeroForOne The direction of the swap, true for token0 to token1, false for token1 to token0 /// @param amountSpecified The amount of the swap, which implicitly configures the swap as exact input (positive), or exact output (negative) /// @param sqrtPriceLimitX96 The Q64.96 sqrt price limit. If zero for one, the price cannot be less than this /// value after the swap. If one for zero, the price cannot be greater than this value after the swap /// @param data Any data to be passed through to the callback /// @param trackingCode Tracking code to be used for referrer attribution /// @return amount0 The delta of the balance of token0 of the pool, exact when negative, minimum when positive /// @return amount1 The delta of the balance of token1 of the pool, exact when negative, minimum when positive function swap( address recipient, bool zeroForOne, int256 amountSpecified, uint160 sqrtPriceLimitX96, bytes calldata data, uint256 trackingCode ) external returns (int256 amount0, int256 amount1); /// @notice Swap token0 for token1, or token1 for token0 /// Tracks referrers for attribution and includes additional slippage/deadline protection; no callback /// @param recipient The address to receive the output of the swap /// @param zeroForOne The direction of the swap, true for token0 to token1, false for token1 to token0 /// @param amountSpecified The amount of the swap, which implicitly configures the swap as exact input (positive), or exact output (negative) /// @param sqrtPriceLimitX96 The Q64.96 sqrt price limit. If zero for one, the price cannot be less than this /// value after the swap. If one for zero, the price cannot be greater than this value after the swap /// @param amountLimit A constraint on the minimum amount out received (for exact input swaps) or maxium amount spent (exact output swaps) /// @param deadline A constraint on the time by which the swap transaction must mined /// @param trackingCode Tracking code to be used for referrer attribution /// @return amount0 The delta of the balance of token0 of the pool, exact when negative, minimum when positive /// @return amount1 The delta of the balance of token1 of the pool, exact when negative, minimum when positive function swap( address recipient, bool zeroForOne, int256 amountSpecified, uint160 sqrtPriceLimitX96, uint256 amountLimit, uint256 deadline, uint256 trackingCode ) external returns (int256 amount0, int256 amount1); /// @notice Swap token0 for token1, or token1 for token0 /// Tracks referrers for attribution, includes additional slippage/deadline protection, and uses callback for payments /// @dev The caller of this method receives a callback in the form of ISolidlyV3MintCallback#solidlyV3SwapCallback /// in which they must pay any token0 or token1 owed for the swap /// @param recipient The address to receive the output of the swap /// @param zeroForOne The direction of the swap, true for token0 to token1, false for token1 to token0 /// @param amountSpecified The amount of the swap, which implicitly configures the swap as exact input (positive), or exact output (negative) /// @param sqrtPriceLimitX96 The Q64.96 sqrt price limit. If zero for one, the price cannot be less than this /// value after the swap. If one for zero, the price cannot be greater than this value after the swap /// @param amountLimit A constraint on the minimum amount out received (for exact input swaps) or maxium amount spent (exact output swaps) /// @param deadline A constraint on the time by which the swap transaction must mined /// @param data Any data to be passed through to the callback /// @param trackingCode Tracking code to be used for referrer attribution /// @return amount0 The delta of the balance of token0 of the pool, exact when negative, minimum when positive /// @return amount1 The delta of the balance of token1 of the pool, exact when negative, minimum when positive function swap( address recipient, bool zeroForOne, int256 amountSpecified, uint160 sqrtPriceLimitX96, uint256 amountLimit, uint256 deadline, bytes calldata data, uint256 trackingCode ) external returns (int256 amount0, int256 amount1); /// @notice Receive token0 and/or token1 and pay it back, plus a fee, in the callback /// @dev The caller of this method receives a callback in the form of ISolidlyV3FlashCallback#solidlyV3FlashCallback /// @dev Can be used to donate underlying tokens pro-rata to currently in-range liquidity providers by calling /// with 0 amount{0,1} and sending the donation amount(s) from the callback /// @param recipient The address which will receive the token0 and token1 amounts /// @param amount0 The amount of token0 to send /// @param amount1 The amount of token1 to send /// @param data Any data to be passed through to the callback function flash(address recipient, uint256 amount0, uint256 amount1, bytes calldata data) external; } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; /// @title Events emitted by a pool /// @notice Contains all events emitted by the pool interface ISolidlyV3PoolEvents { /// @notice Emitted exactly once by a pool when #initialize is first called on the pool /// @dev Mint/Burn/Swap cannot be emitted by the pool before Initialize /// @param sqrtPriceX96 The initial sqrt price of the pool, as a Q64.96 /// @param tick The initial tick of the pool, i.e. log base 1.0001 of the starting price of the pool event Initialize(uint160 sqrtPriceX96, int24 tick); /// @notice Emitted when liquidity is minted for a given position /// @param sender The address that minted the liquidity /// @param owner The owner of the position and recipient of any minted liquidity /// @param tickLower The lower tick of the position /// @param tickUpper The upper tick of the position /// @param amount The amount of liquidity minted to the position range /// @param amount0 How much token0 was required for the minted liquidity /// @param amount1 How much token1 was required for the minted liquidity event Mint( address sender, address indexed owner, int24 indexed tickLower, int24 indexed tickUpper, uint128 amount, uint256 amount0, uint256 amount1 ); /// @notice Emitted when fees are collected by the owner of a position /// @dev Collect events may be emitted with zero amount0 and amount1 when the caller chooses not to collect fees /// @param owner The owner of the position for which fees are collected /// @param tickLower The lower tick of the position /// @param tickUpper The upper tick of the position /// @param amount0 The amount of token0 fees collected /// @param amount1 The amount of token1 fees collected event Collect( address indexed owner, address recipient, int24 indexed tickLower, int24 indexed tickUpper, uint128 amount0, uint128 amount1 ); /// @notice Emitted when a position's liquidity is removed /// @dev Does not withdraw any fees earned by the liquidity position, which must be withdrawn via #collect /// @param owner The owner of the position for which liquidity is removed /// @param tickLower The lower tick of the position /// @param tickUpper The upper tick of the position /// @param amount The amount of liquidity to remove /// @param amount0 The amount of token0 withdrawn /// @param amount1 The amount of token1 withdrawn event Burn( address indexed owner, int24 indexed tickLower, int24 indexed tickUpper, uint128 amount, uint256 amount0, uint256 amount1 ); /// @notice Emitted by the pool for any swaps between token0 and token1 /// @param sender The address that initiated the swap call /// @param recipient The address that received the output of the swap /// @param amount0 The delta of the token0 balance of the pool /// @param amount1 The delta of the token1 balance of the pool /// @param sqrtPriceX96 The sqrt(price) of the pool after the swap, as a Q64.96 /// @param liquidity The liquidity of the pool after the swap /// @param tick The log base 1.0001 of price of the pool after the swap event Swap( address indexed sender, address indexed recipient, int256 amount0, int256 amount1, uint160 sqrtPriceX96, uint128 liquidity, int24 tick ); /// @notice Emitted by the pool for any flashes of token0/token1 /// @param sender The address that initiated the swap call, and that received the callback /// @param recipient The address that received the tokens from flash /// @param amount0 The amount of token0 that was flashed /// @param amount1 The amount of token1 that was flashed /// @param paid0 The amount of token0 paid for the flash, which can exceed the amount0 plus the fee /// @param paid1 The amount of token1 paid for the flash, which can exceed the amount1 plus the fee event Flash( address indexed sender, address indexed recipient, uint256 amount0, uint256 amount1, uint256 paid0, uint256 paid1 ); /// @notice Emitted when the fee is changed by the pool /// @param feeOld The previous value of the fee /// @param feeNew The updated value of the fee event SetFee(uint24 feeOld, uint24 feeNew); /// @notice Emitted when the collected protocol fees are withdrawn by the factory owner /// @param sender The address that collects the protocol fees /// @param recipient The address that receives the collected protocol fees /// @param amount0 The amount of token0 protocol fees that is withdrawn /// @param amount0 The amount of token1 protocol fees that is withdrawn event CollectProtocol(address indexed sender, address indexed recipient, uint128 amount0, uint128 amount1); } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; /// @title Pool state that never changes /// @notice These parameters are fixed for a pool forever, i.e., the methods will always return the same values interface ISolidlyV3PoolImmutables { /// @notice The contract that deployed the pool, which must adhere to the ISolidlyV3Factory interface /// @return The contract address function factory() external view returns (address); /// @notice The first of the two tokens of the pool, sorted by address /// @return The token contract address function token0() external view returns (address); /// @notice The second of the two tokens of the pool, sorted by address /// @return The token contract address function token1() external view returns (address); /// @notice The pool tick spacing /// @dev Ticks can only be used at multiples of this value, minimum of 1 and always positive /// e.g.: a tickSpacing of 3 means ticks can be initialized every 3rd tick, i.e., ..., -6, -3, 0, 3, 6, ... /// This value is an int24 to avoid casting even though it is always positive. /// @return The tick spacing function tickSpacing() external view returns (int24); /// @notice The maximum amount of position liquidity that can use any tick in the range /// @dev This parameter is enforced per tick to prevent liquidity from overflowing a uint128 at any point, and /// also prevents out-of-range liquidity from being used to prevent adding in-range liquidity to a pool /// @return The max amount of liquidity per tick function maxLiquidityPerTick() external view returns (uint128); } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; /// @title Permissioned pool actions /// @notice Contains pool methods that may only be called by the factory owner interface ISolidlyV3PoolOwnerActions { /// @notice Set the pool's trading fee (applied to input tokens on all swaps) /// @param fee new trading fee in hundredths of a bip, i.e. 1e-6 function setFee(uint24 fee) external; /// @notice Collect the protocol fee accrued to the pool. All fees are to be collected only by /// the protocol's Reward Distributor, which processes claims for liquidity providers and protocol /// voters after verifying them against a periodically updated merkle root /// @param recipient The address to which collected protocol fees should be sent /// @param amount0Requested The maximum amount of token0 to send, can be 0 to collect fees in only token1 /// @param amount1Requested The maximum amount of token1 to send, can be 0 to collect fees in only token0 /// @return amount0 The protocol fee collected in token0 /// @return amount1 The protocol fee collected in token1 function collectProtocol( address recipient, uint128 amount0Requested, uint128 amount1Requested ) external returns (uint128 amount0, uint128 amount1); } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; /// @title Quoter Interface /// @notice Supports quoting the calculated amounts and resulting pool state from swaps interface ISolidlyV3PoolQuoter { /// @notice Returns the amounts in/out and resulting pool state for a swap without executing the swap /// @param zeroForOne The direction of the swap, true for token0 to token1, false for token1 to token0 /// @param amountSpecified The amount of the swap, which implicitly configures the swap as exact input (positive), or exact output (negative) /// @param sqrtPriceLimitX96 The Q64.96 sqrt price limit. If zero for one, the price cannot be less than this /// value after the swap. If one for zero, the price cannot be greater than this value after the swap /// @return amount0 The delta of the pool's balance of token0 that will result from the swap (exact when negative, minimum when positive) /// @return amount1 The delta of the pool's balance of token1 that will result from the swap (exact when negative, minimum when positive) /// @return sqrtPriceX96After The value the pool's sqrtPriceX96 will have after the swap /// @return tickAfter The value the pool's tick will have after the swap /// @return liquidityAfter The value the pool's liquidity will have after the swap function quoteSwap( bool zeroForOne, int256 amountSpecified, uint160 sqrtPriceLimitX96 ) external view returns (int256 amount0, int256 amount1, uint160 sqrtPriceX96After, int24 tickAfter, uint128 liquidityAfter); } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; /// @title Pool state that can change /// @notice These methods compose the pool's state, and can change with any frequency including multiple times /// per transaction interface ISolidlyV3PoolState { /// @notice The 0th storage slot in the pool stores many values, and is exposed as a single method to save gas /// when accessed externally. /// @return sqrtPriceX96 The current price of the pool as a sqrt(token1/token0) Q64.96 value /// tick The current tick of the pool, i.e. according to the last tick transition that was run. /// This value may not always be equal to SqrtTickMath.getTickAtSqrtRatio(sqrtPriceX96) if the price is on a tick /// boundary. /// fee The pool's current fee in hundredths of a bip, i.e. 1e-6 /// unlocked Whether the pool is currently locked to reentrancy function slot0() external view returns (uint160 sqrtPriceX96, int24 tick, uint24 fee, bool unlocked); /// @notice The amounts of token0 and token1 that have accrued as pool fees /// @dev Pool fees will never exceed uint128 max in either token function poolFees() external view returns (uint128 token0, uint128 token1); /// @notice The currently in range liquidity available to the pool /// @dev This value has no relationship to the total liquidity across all ticks function liquidity() external view returns (uint128); /// @notice Look up information about a specific tick in the pool /// @param tick The tick to look up /// @return liquidityGross the total amount of position liquidity that uses the pool either as tick lower or /// tick upper, /// liquidityNet how much liquidity changes when the pool price crosses the tick, /// initialized Set to true if the tick is initialized, i.e. liquidityGross is greater than 0, otherwise equal to false. /// Outside values can only be used if the tick is initialized, i.e. if liquidityGross is greater than 0. /// In addition, these values are only relative and must be used only in comparison to previous snapshots for /// a specific position. function ticks(int24 tick) external view returns (uint128 liquidityGross, int128 liquidityNet, bool initialized); /// @notice Returns 256 packed tick initialized boolean values. See TickBitmap for more information function tickBitmap(int16 wordPosition) external view returns (uint256); /// @notice Returns the information about a position by the position's key /// @param key The position's key is a hash of a preimage composed by the owner, tickLower and tickUpper /// @return _liquidity The amount of liquidity in the position, /// Returns tokensOwed0 the computed amount of token0 owed to the position as of the last mint/burn/poke, /// Returns tokensOwed1 the computed amount of token1 owed to the position as of the last mint/burn/poke function positions( bytes32 key ) external view returns (uint128 _liquidity, uint128 tokensOwed0, uint128 tokensOwed1); } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; /// @title BitMath /// @dev This library provides functionality for computing bit properties of an unsigned integer library BitMath { /// @notice Returns the index of the most significant bit of the number, /// where the least significant bit is at index 0 and the most significant bit is at index 255 /// @dev The function satisfies the property: /// x >= 2**mostSignificantBit(x) and x < 2**(mostSignificantBit(x)+1) /// @param x the value for which to compute the most significant bit, must be greater than 0 /// @return r the index of the most significant bit function mostSignificantBit(uint256 x) internal pure returns (uint8 r) { require(x > 0); if (x >= 0x100000000000000000000000000000000) { x >>= 128; r += 128; } if (x >= 0x10000000000000000) { x >>= 64; r += 64; } if (x >= 0x100000000) { x >>= 32; r += 32; } if (x >= 0x10000) { x >>= 16; r += 16; } if (x >= 0x100) { x >>= 8; r += 8; } if (x >= 0x10) { x >>= 4; r += 4; } if (x >= 0x4) { x >>= 2; r += 2; } if (x >= 0x2) r += 1; } /// @notice Returns the index of the least significant bit of the number, /// where the least significant bit is at index 0 and the most significant bit is at index 255 /// @dev The function satisfies the property: /// (x & 2**leastSignificantBit(x)) != 0 and (x & (2**(leastSignificantBit(x)) - 1)) == 0) /// @param x the value for which to compute the least significant bit, must be greater than 0 /// @return r the index of the least significant bit function leastSignificantBit(uint256 x) internal pure returns (uint8 r) { require(x > 0); r = 255; if (x & type(uint128).max > 0) { r -= 128; } else { x >>= 128; } if (x & type(uint64).max > 0) { r -= 64; } else { x >>= 64; } if (x & type(uint32).max > 0) { r -= 32; } else { x >>= 32; } if (x & type(uint16).max > 0) { r -= 16; } else { x >>= 16; } if (x & type(uint8).max > 0) { r -= 8; } else { x >>= 8; } if (x & 0xf > 0) { r -= 4; } else { x >>= 4; } if (x & 0x3 > 0) { r -= 2; } else { x >>= 2; } if (x & 0x1 > 0) r -= 1; } } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.4.0; /// @title FixedPoint128 /// @notice A library for handling binary fixed point numbers, see https://en.wikipedia.org/wiki/Q_(number_format) library FixedPoint128 { uint256 internal constant Q128 = 0x100000000000000000000000000000000; } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.4.0; /// @title FixedPoint96 /// @notice A library for handling binary fixed point numbers, see https://en.wikipedia.org/wiki/Q_(number_format) /// @dev Used in SqrtPriceMath.sol library FixedPoint96 { uint8 internal constant RESOLUTION = 96; uint256 internal constant Q96 = 0x1000000000000000000000000; } // SPDX-License-Identifier: MIT pragma solidity >=0.4.0 <0.8.0; /// @title Contains 512-bit math functions /// @notice Facilitates multiplication and division that can have overflow of an intermediate value without any loss of precision /// @dev Handles "phantom overflow" i.e., allows multiplication and division where an intermediate value overflows 256 bits library FullMath { /// @notice Calculates floor(a×b÷denominator) with full precision. Throws if result overflows a uint256 or denominator == 0 /// @param a The multiplicand /// @param b The multiplier /// @param denominator The divisor /// @return result The 256-bit result /// @dev Credit to Remco Bloemen under MIT license https://xn--2-umb.com/21/muldiv function mulDiv( uint256 a, uint256 b, uint256 denominator ) internal pure returns (uint256 result) { // 512-bit multiply [prod1 prod0] = a * b // Compute the product mod 2**256 and mod 2**256 - 1 // then use the Chinese Remainder Theorem to reconstruct // the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2**256 + prod0 uint256 prod0; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(a, b, not(0)) prod0 := mul(a, b) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division if (prod1 == 0) { require(denominator > 0); assembly { result := div(prod0, denominator) } return result; } // Make sure the result is less than 2**256. // Also prevents denominator == 0 require(denominator > prod1); /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0] // Compute remainder using mulmod uint256 remainder; assembly { remainder := mulmod(a, b, denominator) } // Subtract 256 bit number from 512 bit number assembly { prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator // Compute largest power of two divisor of denominator. // Always >= 1. uint256 twos = -denominator & denominator; // Divide denominator by power of two assembly { denominator := div(denominator, twos) } // Divide [prod1 prod0] by the factors of two assembly { prod0 := div(prod0, twos) } // Shift in bits from prod1 into prod0. For this we need // to flip `twos` such that it is 2**256 / twos. // If twos is zero, then it becomes one assembly { twos := add(div(sub(0, twos), twos), 1) } prod0 |= prod1 * twos; // Invert denominator mod 2**256 // Now that denominator is an odd number, it has an inverse // modulo 2**256 such that denominator * inv = 1 mod 2**256. // Compute the inverse by starting with a seed that is correct // correct for four bits. That is, denominator * inv = 1 mod 2**4 uint256 inv = (3 * denominator) ^ 2; // Now use Newton-Raphson iteration to improve the precision. // Thanks to Hensel's lifting lemma, this also works in modular // arithmetic, doubling the correct bits in each step. inv *= 2 - denominator * inv; // inverse mod 2**8 inv *= 2 - denominator * inv; // inverse mod 2**16 inv *= 2 - denominator * inv; // inverse mod 2**32 inv *= 2 - denominator * inv; // inverse mod 2**64 inv *= 2 - denominator * inv; // inverse mod 2**128 inv *= 2 - denominator * inv; // inverse mod 2**256 // Because the division is now exact we can divide by multiplying // with the modular inverse of denominator. This will give us the // correct result modulo 2**256. Since the precoditions guarantee // that the outcome is less than 2**256, this is the final result. // We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inv; return result; } /// @notice Calculates ceil(a×b÷denominator) with full precision. Throws if result overflows a uint256 or denominator == 0 /// @param a The multiplicand /// @param b The multiplier /// @param denominator The divisor /// @return result The 256-bit result function mulDivRoundingUp( uint256 a, uint256 b, uint256 denominator ) internal pure returns (uint256 result) { result = mulDiv(a, b, denominator); if (mulmod(a, b, denominator) > 0) { require(result < type(uint256).max); result++; } } } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; /// @title Math library for liquidity library LiquidityMath { /// @notice Add a signed liquidity delta to liquidity and revert if it overflows or underflows /// @param x The liquidity before change /// @param y The delta by which liquidity should be changed /// @return z The liquidity delta function addDelta(uint128 x, int128 y) internal pure returns (uint128 z) { if (y < 0) { require((z = x - uint128(-y)) < x, 'LS'); } else { require((z = x + uint128(y)) >= x, 'LA'); } } } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.7.0; /// @title Optimized overflow and underflow safe math operations /// @notice Contains methods for doing math operations that revert on overflow or underflow for minimal gas cost library LowGasSafeMath { /// @notice Returns x + y, reverts if sum overflows uint256 /// @param x The augend /// @param y The addend /// @return z The sum of x and y function add(uint256 x, uint256 y) internal pure returns (uint256 z) { require((z = x + y) >= x); } /// @notice Returns x - y, reverts if underflows /// @param x The minuend /// @param y The subtrahend /// @return z The difference of x and y function sub(uint256 x, uint256 y) internal pure returns (uint256 z) { require((z = x - y) <= x); } /// @notice Returns x * y, reverts if overflows /// @param x The multiplicand /// @param y The multiplier /// @return z The product of x and y function mul(uint256 x, uint256 y) internal pure returns (uint256 z) { require(x == 0 || (z = x * y) / x == y); } /// @notice Returns x + y, reverts if overflows or underflows /// @param x The augend /// @param y The addend /// @return z The sum of x and y function add(int256 x, int256 y) internal pure returns (int256 z) { require((z = x + y) >= x == (y >= 0)); } /// @notice Returns x - y, reverts if overflows or underflows /// @param x The minuend /// @param y The subtrahend /// @return z The difference of x and y function sub(int256 x, int256 y) internal pure returns (int256 z) { require((z = x - y) <= x == (y >= 0)); } } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0 <0.8.0; import './FullMath.sol'; import './FixedPoint128.sol'; import './LiquidityMath.sol'; /// @title Position /// @notice Positions represent an owner address' liquidity between a lower and upper tick boundary /// @dev Positions store additional state for tracking tokens owed to the position library Position { // info stored for each user's position struct Info { // the amount of liquidity owned by this position uint128 liquidity; // the tokens owed to the position owner in token0/token1 uint128 tokensOwed0; uint128 tokensOwed1; } /// @notice Returns the Info struct of a position, given an owner and position boundaries /// @param self The mapping containing all user positions /// @param owner The address of the position owner /// @param tickLower The lower tick boundary of the position /// @param tickUpper The upper tick boundary of the position /// @return position The position info struct of the given owners' position function get( mapping(bytes32 => Info) storage self, address owner, int24 tickLower, int24 tickUpper ) internal view returns (Position.Info storage position) { position = self[keccak256(abi.encodePacked(owner, tickLower, tickUpper))]; } /// @notice Updates the liquidity amount associated with a user's position /// @param self The individual position to update /// @param liquidityDelta The change in pool liquidity as a result of the position update function update(Info storage self, int128 liquidityDelta) internal { if (liquidityDelta != 0) { self.liquidity = LiquidityMath.addDelta(self.liquidity, liquidityDelta); } } } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; /// @title Safe casting methods /// @notice Contains methods for safely casting between types library SafeCast { /// @notice Cast a uint256 to a uint160, revert on overflow /// @param y The uint256 to be downcasted /// @return z The downcasted integer, now type uint160 function toUint160(uint256 y) internal pure returns (uint160 z) { require((z = uint160(y)) == y); } /// @notice Cast a int256 to a int128, revert on overflow or underflow /// @param y The int256 to be downcasted /// @return z The downcasted integer, now type int128 function toInt128(int256 y) internal pure returns (int128 z) { require((z = int128(y)) == y); } /// @notice Cast a uint256 to a int256, revert on overflow /// @param y The uint256 to be casted /// @return z The casted integer, now type int256 function toInt256(uint256 y) internal pure returns (int256 z) { require(y < 2**255); z = int256(y); } } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; import './LowGasSafeMath.sol'; import './SafeCast.sol'; import './FullMath.sol'; import './UnsafeMath.sol'; import './FixedPoint96.sol'; /// @title Functions based on Q64.96 sqrt price and liquidity /// @notice Contains the math that uses square root of price as a Q64.96 and liquidity to compute deltas library SqrtPriceMath { using LowGasSafeMath for uint256; using SafeCast for uint256; /// @notice Gets the next sqrt price given a delta of token0 /// @dev Always rounds up, because in the exact output case (increasing price) we need to move the price at least /// far enough to get the desired output amount, and in the exact input case (decreasing price) we need to move the /// price less in order to not send too much output. /// The most precise formula for this is liquidity * sqrtPX96 / (liquidity +- amount * sqrtPX96), /// if this is impossible because of overflow, we calculate liquidity / (liquidity / sqrtPX96 +- amount). /// @param sqrtPX96 The starting price, i.e. before accounting for the token0 delta /// @param liquidity The amount of usable liquidity /// @param amount How much of token0 to add or remove from virtual reserves /// @param add Whether to add or remove the amount of token0 /// @return The price after adding or removing amount, depending on add function getNextSqrtPriceFromAmount0RoundingUp( uint160 sqrtPX96, uint128 liquidity, uint256 amount, bool add ) internal pure returns (uint160) { // we short circuit amount == 0 because the result is otherwise not guaranteed to equal the input price if (amount == 0) return sqrtPX96; uint256 numerator1 = uint256(liquidity) << FixedPoint96.RESOLUTION; if (add) { uint256 product; if ((product = amount * sqrtPX96) / amount == sqrtPX96) { uint256 denominator = numerator1 + product; if (denominator >= numerator1) // always fits in 160 bits return uint160(FullMath.mulDivRoundingUp(numerator1, sqrtPX96, denominator)); } return uint160(UnsafeMath.divRoundingUp(numerator1, (numerator1 / sqrtPX96).add(amount))); } else { uint256 product; // if the product overflows, we know the denominator underflows // in addition, we must check that the denominator does not underflow require((product = amount * sqrtPX96) / amount == sqrtPX96 && numerator1 > product); uint256 denominator = numerator1 - product; return FullMath.mulDivRoundingUp(numerator1, sqrtPX96, denominator).toUint160(); } } /// @notice Gets the next sqrt price given a delta of token1 /// @dev Always rounds down, because in the exact output case (decreasing price) we need to move the price at least /// far enough to get the desired output amount, and in the exact input case (increasing price) we need to move the /// price less in order to not send too much output. /// The formula we compute is within <1 wei of the lossless version: sqrtPX96 +- amount / liquidity /// @param sqrtPX96 The starting price, i.e., before accounting for the token1 delta /// @param liquidity The amount of usable liquidity /// @param amount How much of token1 to add, or remove, from virtual reserves /// @param add Whether to add, or remove, the amount of token1 /// @return The price after adding or removing `amount` function getNextSqrtPriceFromAmount1RoundingDown( uint160 sqrtPX96, uint128 liquidity, uint256 amount, bool add ) internal pure returns (uint160) { // if we're adding (subtracting), rounding down requires rounding the quotient down (up) // in both cases, avoid a mulDiv for most inputs if (add) { uint256 quotient = ( amount <= type(uint160).max ? (amount << FixedPoint96.RESOLUTION) / liquidity : FullMath.mulDiv(amount, FixedPoint96.Q96, liquidity) ); return uint256(sqrtPX96).add(quotient).toUint160(); } else { uint256 quotient = ( amount <= type(uint160).max ? UnsafeMath.divRoundingUp(amount << FixedPoint96.RESOLUTION, liquidity) : FullMath.mulDivRoundingUp(amount, FixedPoint96.Q96, liquidity) ); require(sqrtPX96 > quotient); // always fits 160 bits return uint160(sqrtPX96 - quotient); } } /// @notice Gets the next sqrt price given an input amount of token0 or token1 /// @dev Throws if price or liquidity are 0, or if the next price is out of bounds /// @param sqrtPX96 The starting price, i.e., before accounting for the input amount /// @param liquidity The amount of usable liquidity /// @param amountIn How much of token0, or token1, is being swapped in /// @param zeroForOne Whether the amount in is token0 or token1 /// @return sqrtQX96 The price after adding the input amount to token0 or token1 function getNextSqrtPriceFromInput( uint160 sqrtPX96, uint128 liquidity, uint256 amountIn, bool zeroForOne ) internal pure returns (uint160 sqrtQX96) { require(sqrtPX96 > 0); require(liquidity > 0); // round to make sure that we don't pass the target price return zeroForOne ? getNextSqrtPriceFromAmount0RoundingUp(sqrtPX96, liquidity, amountIn, true) : getNextSqrtPriceFromAmount1RoundingDown(sqrtPX96, liquidity, amountIn, true); } /// @notice Gets the next sqrt price given an output amount of token0 or token1 /// @dev Throws if price or liquidity are 0 or the next price is out of bounds /// @param sqrtPX96 The starting price before accounting for the output amount /// @param liquidity The amount of usable liquidity /// @param amountOut How much of token0, or token1, is being swapped out /// @param zeroForOne Whether the amount out is token0 or token1 /// @return sqrtQX96 The price after removing the output amount of token0 or token1 function getNextSqrtPriceFromOutput( uint160 sqrtPX96, uint128 liquidity, uint256 amountOut, bool zeroForOne ) internal pure returns (uint160 sqrtQX96) { require(sqrtPX96 > 0); require(liquidity > 0); // round to make sure that we pass the target price return zeroForOne ? getNextSqrtPriceFromAmount1RoundingDown(sqrtPX96, liquidity, amountOut, false) : getNextSqrtPriceFromAmount0RoundingUp(sqrtPX96, liquidity, amountOut, false); } /// @notice Gets the amount0 delta between two prices /// @dev Calculates liquidity / sqrt(lower) - liquidity / sqrt(upper), /// i.e. liquidity * (sqrt(upper) - sqrt(lower)) / (sqrt(upper) * sqrt(lower)) /// @param sqrtRatioAX96 A sqrt price /// @param sqrtRatioBX96 Another sqrt price /// @param liquidity The amount of usable liquidity /// @param roundUp Whether to round the amount up or down /// @return amount0 Amount of token0 required to cover a position of size liquidity between the two passed prices function getAmount0Delta( uint160 sqrtRatioAX96, uint160 sqrtRatioBX96, uint128 liquidity, bool roundUp ) internal pure returns (uint256 amount0) { if (sqrtRatioAX96 > sqrtRatioBX96) (sqrtRatioAX96, sqrtRatioBX96) = (sqrtRatioBX96, sqrtRatioAX96); uint256 numerator1 = uint256(liquidity) << FixedPoint96.RESOLUTION; uint256 numerator2 = sqrtRatioBX96 - sqrtRatioAX96; require(sqrtRatioAX96 > 0); return roundUp ? UnsafeMath.divRoundingUp( FullMath.mulDivRoundingUp(numerator1, numerator2, sqrtRatioBX96), sqrtRatioAX96 ) : FullMath.mulDiv(numerator1, numerator2, sqrtRatioBX96) / sqrtRatioAX96; } /// @notice Gets the amount1 delta between two prices /// @dev Calculates liquidity * (sqrt(upper) - sqrt(lower)) /// @param sqrtRatioAX96 A sqrt price /// @param sqrtRatioBX96 Another sqrt price /// @param liquidity The amount of usable liquidity /// @param roundUp Whether to round the amount up, or down /// @return amount1 Amount of token1 required to cover a position of size liquidity between the two passed prices function getAmount1Delta( uint160 sqrtRatioAX96, uint160 sqrtRatioBX96, uint128 liquidity, bool roundUp ) internal pure returns (uint256 amount1) { if (sqrtRatioAX96 > sqrtRatioBX96) (sqrtRatioAX96, sqrtRatioBX96) = (sqrtRatioBX96, sqrtRatioAX96); return roundUp ? FullMath.mulDivRoundingUp(liquidity, sqrtRatioBX96 - sqrtRatioAX96, FixedPoint96.Q96) : FullMath.mulDiv(liquidity, sqrtRatioBX96 - sqrtRatioAX96, FixedPoint96.Q96); } /// @notice Helper that gets signed token0 delta /// @param sqrtRatioAX96 A sqrt price /// @param sqrtRatioBX96 Another sqrt price /// @param liquidity The change in liquidity for which to compute the amount0 delta /// @return amount0 Amount of token0 corresponding to the passed liquidityDelta between the two prices function getAmount0Delta( uint160 sqrtRatioAX96, uint160 sqrtRatioBX96, int128 liquidity ) internal pure returns (int256 amount0) { return liquidity < 0 ? -getAmount0Delta(sqrtRatioAX96, sqrtRatioBX96, uint128(-liquidity), false).toInt256() : getAmount0Delta(sqrtRatioAX96, sqrtRatioBX96, uint128(liquidity), true).toInt256(); } /// @notice Helper that gets signed token1 delta /// @param sqrtRatioAX96 A sqrt price /// @param sqrtRatioBX96 Another sqrt price /// @param liquidity The change in liquidity for which to compute the amount1 delta /// @return amount1 Amount of token1 corresponding to the passed liquidityDelta between the two prices function getAmount1Delta( uint160 sqrtRatioAX96, uint160 sqrtRatioBX96, int128 liquidity ) internal pure returns (int256 amount1) { return liquidity < 0 ? -getAmount1Delta(sqrtRatioAX96, sqrtRatioBX96, uint128(-liquidity), false).toInt256() : getAmount1Delta(sqrtRatioAX96, sqrtRatioBX96, uint128(liquidity), true).toInt256(); } } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; import './FullMath.sol'; import './SqrtPriceMath.sol'; /// @title Computes the result of a swap within ticks /// @notice Contains methods for computing the result of a swap within a single tick price range, i.e., a single tick. library SwapMath { /// @notice Computes the result of swapping some amount in, or amount out, given the parameters of the swap /// @dev The fee, plus the amount in, will never exceed the amount remaining if the swap's `amountSpecified` is positive /// @param sqrtRatioCurrentX96 The current sqrt price of the pool /// @param sqrtRatioTargetX96 The price that cannot be exceeded, from which the direction of the swap is inferred /// @param liquidity The usable liquidity /// @param amountRemaining How much input or output amount is remaining to be swapped in/out /// @param feePips The fee taken from the input amount, expressed in hundredths of a bip /// @return sqrtRatioNextX96 The price after swapping the amount in/out, not to exceed the price target /// @return amountIn The amount to be swapped in, of either token0 or token1, based on the direction of the swap /// @return amountOut The amount to be received, of either token0 or token1, based on the direction of the swap /// @return feeAmount The amount of input that will be taken as a fee function computeSwapStep( uint160 sqrtRatioCurrentX96, uint160 sqrtRatioTargetX96, uint128 liquidity, int256 amountRemaining, uint24 feePips ) internal pure returns ( uint160 sqrtRatioNextX96, uint256 amountIn, uint256 amountOut, uint256 feeAmount ) { bool zeroForOne = sqrtRatioCurrentX96 >= sqrtRatioTargetX96; bool exactIn = amountRemaining >= 0; if (exactIn) { uint256 amountRemainingLessFee = FullMath.mulDiv(uint256(amountRemaining), 1e6 - feePips, 1e6); amountIn = zeroForOne ? SqrtPriceMath.getAmount0Delta(sqrtRatioTargetX96, sqrtRatioCurrentX96, liquidity, true) : SqrtPriceMath.getAmount1Delta(sqrtRatioCurrentX96, sqrtRatioTargetX96, liquidity, true); if (amountRemainingLessFee >= amountIn) sqrtRatioNextX96 = sqrtRatioTargetX96; else sqrtRatioNextX96 = SqrtPriceMath.getNextSqrtPriceFromInput( sqrtRatioCurrentX96, liquidity, amountRemainingLessFee, zeroForOne ); } else { amountOut = zeroForOne ? SqrtPriceMath.getAmount1Delta(sqrtRatioTargetX96, sqrtRatioCurrentX96, liquidity, false) : SqrtPriceMath.getAmount0Delta(sqrtRatioCurrentX96, sqrtRatioTargetX96, liquidity, false); if (uint256(-amountRemaining) >= amountOut) sqrtRatioNextX96 = sqrtRatioTargetX96; else sqrtRatioNextX96 = SqrtPriceMath.getNextSqrtPriceFromOutput( sqrtRatioCurrentX96, liquidity, uint256(-amountRemaining), zeroForOne ); } bool max = sqrtRatioTargetX96 == sqrtRatioNextX96; // get the input/output amounts if (zeroForOne) { amountIn = max && exactIn ? amountIn : SqrtPriceMath.getAmount0Delta(sqrtRatioNextX96, sqrtRatioCurrentX96, liquidity, true); amountOut = max && !exactIn ? amountOut : SqrtPriceMath.getAmount1Delta(sqrtRatioNextX96, sqrtRatioCurrentX96, liquidity, false); } else { amountIn = max && exactIn ? amountIn : SqrtPriceMath.getAmount1Delta(sqrtRatioCurrentX96, sqrtRatioNextX96, liquidity, true); amountOut = max && !exactIn ? amountOut : SqrtPriceMath.getAmount0Delta(sqrtRatioCurrentX96, sqrtRatioNextX96, liquidity, false); } // cap the output amount to not exceed the remaining output amount if (!exactIn && amountOut > uint256(-amountRemaining)) { amountOut = uint256(-amountRemaining); } if (exactIn && sqrtRatioNextX96 != sqrtRatioTargetX96) { // we didn't reach the target, so take the remainder of the maximum input as fee feeAmount = uint256(amountRemaining) - amountIn; } else { feeAmount = FullMath.mulDivRoundingUp(amountIn, feePips, 1e6 - feePips); } } } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0 <0.8.0; import './LowGasSafeMath.sol'; import './SafeCast.sol'; import './TickMath.sol'; import './LiquidityMath.sol'; /// @title Tick /// @notice Contains functions for managing tick processes and relevant calculations library Tick { using LowGasSafeMath for int256; using SafeCast for int256; // info stored for each initialized individual tick struct Info { // the total position liquidity that references this tick uint128 liquidityGross; // amount of net liquidity added (subtracted) when tick is crossed from left to right (right to left), int128 liquidityNet; // true iff the tick is initialized, i.e. the value is exactly equivalent to the expression liquidityGross != 0 // these 8 bits are set to prevent fresh sstores when crossing newly initialized ticks bool initialized; } /// @notice Derives max liquidity per tick from given tick spacing /// @dev Executed within the pool constructor /// @param tickSpacing The amount of required tick separation, realized in multiples of `tickSpacing` /// e.g., a tickSpacing of 3 requires ticks to be initialized every 3rd tick i.e., ..., -6, -3, 0, 3, 6, ... /// @return The max liquidity per tick function tickSpacingToMaxLiquidityPerTick(int24 tickSpacing) internal pure returns (uint128) { int24 minTick = (TickMath.MIN_TICK / tickSpacing) * tickSpacing; int24 maxTick = (TickMath.MAX_TICK / tickSpacing) * tickSpacing; uint24 numTicks = uint24((maxTick - minTick) / tickSpacing) + 1; return type(uint128).max / numTicks; } /// @notice Updates a tick and returns true if the tick was flipped from initialized to uninitialized, or vice versa /// @param self The mapping containing all tick information for initialized ticks /// @param tick The tick that will be updated /// @param liquidityDelta A new amount of liquidity to be added (subtracted) when tick is crossed from left to right (right to left) /// @param upper true for updating a position's upper tick, or false for updating a position's lower tick /// @param maxLiquidity The maximum liquidity allocation for a single tick /// @return flipped Whether the tick was flipped from initialized to uninitialized, or vice versa function update( mapping(int24 => Tick.Info) storage self, int24 tick, int128 liquidityDelta, bool upper, uint128 maxLiquidity ) internal returns (bool flipped) { Tick.Info storage info = self[tick]; uint128 liquidityGrossBefore = info.liquidityGross; uint128 liquidityGrossAfter = LiquidityMath.addDelta(liquidityGrossBefore, liquidityDelta); require(liquidityGrossAfter <= maxLiquidity, 'LO'); flipped = (liquidityGrossAfter == 0) != (liquidityGrossBefore == 0); if (liquidityGrossBefore == 0) info.initialized = true; info.liquidityGross = liquidityGrossAfter; // when the lower (upper) tick is crossed left to right (right to left), liquidity must be added (removed) info.liquidityNet = upper ? int256(info.liquidityNet).sub(liquidityDelta).toInt128() : int256(info.liquidityNet).add(liquidityDelta).toInt128(); } /// @notice Clears tick data /// @param self The mapping containing all initialized tick information for initialized ticks /// @param tick The tick that will be cleared function clear(mapping(int24 => Tick.Info) storage self, int24 tick) internal { delete self[tick]; } /// @notice Transitions to next tick as needed by price movement /// @param self The mapping containing all tick information for initialized ticks /// @param tick The destination tick of the transition /// @return liquidityNet The amount of liquidity added (subtracted) when tick is crossed from left to right (right to left) function cross(mapping(int24 => Tick.Info) storage self, int24 tick) internal view returns (int128 liquidityNet) { liquidityNet = self[tick].liquidityNet; } } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; import './BitMath.sol'; /// @title Packed tick initialized state library /// @notice Stores a packed mapping of tick index to its initialized state /// @dev The mapping uses int16 for keys since ticks are represented as int24 and there are 256 (2^8) values per word. library TickBitmap { /// @notice Computes the position in the mapping where the initialized bit for a tick lives /// @param tick The tick for which to compute the position /// @return wordPos The key in the mapping containing the word in which the bit is stored /// @return bitPos The bit position in the word where the flag is stored function position(int24 tick) private pure returns (int16 wordPos, uint8 bitPos) { wordPos = int16(tick >> 8); bitPos = uint8(tick % 256); } /// @notice Flips the initialized state for a given tick from false to true, or vice versa /// @param self The mapping in which to flip the tick /// @param tick The tick to flip /// @param tickSpacing The spacing between usable ticks function flipTick( mapping(int16 => uint256) storage self, int24 tick, int24 tickSpacing ) internal { require(tick % tickSpacing == 0); // ensure that the tick is spaced (int16 wordPos, uint8 bitPos) = position(tick / tickSpacing); uint256 mask = 1 << bitPos; self[wordPos] ^= mask; } /// @notice Returns the next initialized tick contained in the same word (or adjacent word) as the tick that is either /// to the left (less than or equal to) or right (greater than) of the given tick /// @param self The mapping in which to compute the next initialized tick /// @param tick The starting tick /// @param tickSpacing The spacing between usable ticks /// @param lte Whether to search for the next initialized tick to the left (less than or equal to the starting tick) /// @return next The next initialized or uninitialized tick up to 256 ticks away from the current tick /// @return initialized Whether the next tick is initialized, as the function only searches within up to 256 ticks function nextInitializedTickWithinOneWord( mapping(int16 => uint256) storage self, int24 tick, int24 tickSpacing, bool lte ) internal view returns (int24 next, bool initialized) { int24 compressed = tick / tickSpacing; if (tick < 0 && tick % tickSpacing != 0) compressed--; // round towards negative infinity if (lte) { (int16 wordPos, uint8 bitPos) = position(compressed); // all the 1s at or to the right of the current bitPos uint256 mask = (1 << bitPos) - 1 + (1 << bitPos); uint256 masked = self[wordPos] & mask; // if there are no initialized ticks to the right of or at the current tick, return rightmost in the word initialized = masked != 0; // overflow/underflow is possible, but prevented externally by limiting both tickSpacing and tick next = initialized ? (compressed - int24(bitPos - BitMath.mostSignificantBit(masked))) * tickSpacing : (compressed - int24(bitPos)) * tickSpacing; } else { // start from the word of the next tick, since the current tick state doesn't matter (int16 wordPos, uint8 bitPos) = position(compressed + 1); // all the 1s at or to the left of the bitPos uint256 mask = ~((1 << bitPos) - 1); uint256 masked = self[wordPos] & mask; // if there are no initialized ticks to the left of the current tick, return leftmost in the word initialized = masked != 0; // overflow/underflow is possible, but prevented externally by limiting both tickSpacing and tick next = initialized ? (compressed + 1 + int24(BitMath.leastSignificantBit(masked) - bitPos)) * tickSpacing : (compressed + 1 + int24(type(uint8).max - bitPos)) * tickSpacing; } } } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0 <0.8.0; /// @title Math library for computing sqrt prices from ticks and vice versa /// @notice Computes sqrt price for ticks of size 1.0001, i.e. sqrt(1.0001^tick) as fixed point Q64.96 numbers. Supports /// prices between 2**-128 and 2**128 library TickMath { /// @dev The minimum tick that may be passed to #getSqrtRatioAtTick computed from log base 1.0001 of 2**-128 int24 internal constant MIN_TICK = -887272; /// @dev The maximum tick that may be passed to #getSqrtRatioAtTick computed from log base 1.0001 of 2**128 int24 internal constant MAX_TICK = -MIN_TICK; /// @dev The minimum value that can be returned from #getSqrtRatioAtTick. Equivalent to getSqrtRatioAtTick(MIN_TICK) uint160 internal constant MIN_SQRT_RATIO = 4295128739; /// @dev The maximum value that can be returned from #getSqrtRatioAtTick. Equivalent to getSqrtRatioAtTick(MAX_TICK) uint160 internal constant MAX_SQRT_RATIO = 1461446703485210103287273052203988822378723970342; /// @notice Calculates sqrt(1.0001^tick) * 2^96 /// @dev Throws if |tick| > max tick /// @param tick The input tick for the above formula /// @return sqrtPriceX96 A Fixed point Q64.96 number representing the sqrt of the ratio of the two assets (token1/token0) /// at the given tick function getSqrtRatioAtTick(int24 tick) internal pure returns (uint160 sqrtPriceX96) { uint256 absTick = tick < 0 ? uint256(-int256(tick)) : uint256(int256(tick)); require(absTick <= uint256(MAX_TICK), 'T'); uint256 ratio = absTick & 0x1 != 0 ? 0xfffcb933bd6fad37aa2d162d1a594001 : 0x100000000000000000000000000000000; if (absTick & 0x2 != 0) ratio = (ratio * 0xfff97272373d413259a46990580e213a) >> 128; if (absTick & 0x4 != 0) ratio = (ratio * 0xfff2e50f5f656932ef12357cf3c7fdcc) >> 128; if (absTick & 0x8 != 0) ratio = (ratio * 0xffe5caca7e10e4e61c3624eaa0941cd0) >> 128; if (absTick & 0x10 != 0) ratio = (ratio * 0xffcb9843d60f6159c9db58835c926644) >> 128; if (absTick & 0x20 != 0) ratio = (ratio * 0xff973b41fa98c081472e6896dfb254c0) >> 128; if (absTick & 0x40 != 0) ratio = (ratio * 0xff2ea16466c96a3843ec78b326b52861) >> 128; if (absTick & 0x80 != 0) ratio = (ratio * 0xfe5dee046a99a2a811c461f1969c3053) >> 128; if (absTick & 0x100 != 0) ratio = (ratio * 0xfcbe86c7900a88aedcffc83b479aa3a4) >> 128; if (absTick & 0x200 != 0) ratio = (ratio * 0xf987a7253ac413176f2b074cf7815e54) >> 128; if (absTick & 0x400 != 0) ratio = (ratio * 0xf3392b0822b70005940c7a398e4b70f3) >> 128; if (absTick & 0x800 != 0) ratio = (ratio * 0xe7159475a2c29b7443b29c7fa6e889d9) >> 128; if (absTick & 0x1000 != 0) ratio = (ratio * 0xd097f3bdfd2022b8845ad8f792aa5825) >> 128; if (absTick & 0x2000 != 0) ratio = (ratio * 0xa9f746462d870fdf8a65dc1f90e061e5) >> 128; if (absTick & 0x4000 != 0) ratio = (ratio * 0x70d869a156d2a1b890bb3df62baf32f7) >> 128; if (absTick & 0x8000 != 0) ratio = (ratio * 0x31be135f97d08fd981231505542fcfa6) >> 128; if (absTick & 0x10000 != 0) ratio = (ratio * 0x9aa508b5b7a84e1c677de54f3e99bc9) >> 128; if (absTick & 0x20000 != 0) ratio = (ratio * 0x5d6af8dedb81196699c329225ee604) >> 128; if (absTick & 0x40000 != 0) ratio = (ratio * 0x2216e584f5fa1ea926041bedfe98) >> 128; if (absTick & 0x80000 != 0) ratio = (ratio * 0x48a170391f7dc42444e8fa2) >> 128; if (tick > 0) ratio = type(uint256).max / ratio; // this divides by 1<<32 rounding up to go from a Q128.128 to a Q128.96. // we then downcast because we know the result always fits within 160 bits due to our tick input constraint // we round up in the division so getTickAtSqrtRatio of the output price is always consistent sqrtPriceX96 = uint160((ratio >> 32) + (ratio % (1 << 32) == 0 ? 0 : 1)); } /// @notice Calculates the greatest tick value such that getRatioAtTick(tick) <= ratio /// @dev Throws in case sqrtPriceX96 < MIN_SQRT_RATIO, as MIN_SQRT_RATIO is the lowest value getRatioAtTick may /// ever return. /// @param sqrtPriceX96 The sqrt ratio for which to compute the tick as a Q64.96 /// @return tick The greatest tick for which the ratio is less than or equal to the input ratio function getTickAtSqrtRatio(uint160 sqrtPriceX96) internal pure returns (int24 tick) { // second inequality must be < because the price can never reach the price at the max tick require(sqrtPriceX96 >= MIN_SQRT_RATIO && sqrtPriceX96 < MAX_SQRT_RATIO, 'R'); uint256 ratio = uint256(sqrtPriceX96) << 32; uint256 r = ratio; uint256 msb = 0; assembly { let f := shl(7, gt(r, 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF)) msb := or(msb, f) r := shr(f, r) } assembly { let f := shl(6, gt(r, 0xFFFFFFFFFFFFFFFF)) msb := or(msb, f) r := shr(f, r) } assembly { let f := shl(5, gt(r, 0xFFFFFFFF)) msb := or(msb, f) r := shr(f, r) } assembly { let f := shl(4, gt(r, 0xFFFF)) msb := or(msb, f) r := shr(f, r) } assembly { let f := shl(3, gt(r, 0xFF)) msb := or(msb, f) r := shr(f, r) } assembly { let f := shl(2, gt(r, 0xF)) msb := or(msb, f) r := shr(f, r) } assembly { let f := shl(1, gt(r, 0x3)) msb := or(msb, f) r := shr(f, r) } assembly { let f := gt(r, 0x1) msb := or(msb, f) } if (msb >= 128) r = ratio >> (msb - 127); else r = ratio << (127 - msb); int256 log_2 = (int256(msb) - 128) << 64; assembly { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(63, f)) r := shr(f, r) } assembly { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(62, f)) r := shr(f, r) } assembly { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(61, f)) r := shr(f, r) } assembly { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(60, f)) r := shr(f, r) } assembly { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(59, f)) r := shr(f, r) } assembly { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(58, f)) r := shr(f, r) } assembly { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(57, f)) r := shr(f, r) } assembly { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(56, f)) r := shr(f, r) } assembly { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(55, f)) r := shr(f, r) } assembly { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(54, f)) r := shr(f, r) } assembly { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(53, f)) r := shr(f, r) } assembly { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(52, f)) r := shr(f, r) } assembly { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(51, f)) r := shr(f, r) } assembly { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(50, f)) } int256 log_sqrt10001 = log_2 * 255738958999603826347141; // 128.128 number int24 tickLow = int24((log_sqrt10001 - 3402992956809132418596140100660247210) >> 128); int24 tickHi = int24((log_sqrt10001 + 291339464771989622907027621153398088495) >> 128); tick = tickLow == tickHi ? tickLow : getSqrtRatioAtTick(tickHi) <= sqrtPriceX96 ? tickHi : tickLow; } } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.6.0; import '../interfaces/IERC20Minimal.sol'; /// @title TransferHelper /// @notice Contains helper methods for interacting with ERC20 tokens that do not consistently return true/false library TransferHelper { /// @notice Transfers tokens from the targeted address to the given destination /// @notice Errors with 'TF' if transfer fails /// @param token The contract address of the token to be transferred /// @param from The originating address from which the tokens will be transferred /// @param to The destination address of the transfer /// @param value The amount to be transferred function safeTransferFrom(address token, address from, address to, uint256 value) internal { (bool success, bytes memory data) = token.call( abi.encodeWithSelector(IERC20Minimal.transferFrom.selector, from, to, value) ); require(success && (data.length == 0 || abi.decode(data, (bool))), 'TF'); } /// @notice Transfers tokens from msg.sender to a recipient /// @dev Calls transfer on token contract, errors with TF if transfer fails /// @param token The contract address of the token which will be transferred /// @param to The recipient of the transfer /// @param value The value of the transfer function safeTransfer(address token, address to, uint256 value) internal { (bool success, bytes memory data) = token.call( abi.encodeWithSelector(IERC20Minimal.transfer.selector, to, value) ); require(success && (data.length == 0 || abi.decode(data, (bool))), 'TF'); } } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; /// @title Math functions that do not check inputs or outputs /// @notice Contains methods that perform common math functions but do not do any overflow or underflow checks library UnsafeMath { /// @notice Returns ceil(x / y) /// @dev division by 0 has unspecified behavior, and must be checked externally /// @param x The dividend /// @param y The divisor /// @return z The quotient, ceil(x / y) function divRoundingUp(uint256 x, uint256 y) internal pure returns (uint256 z) { assembly { z := add(div(x, y), gt(mod(x, y), 0)) } } } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0 <0.8.0; abstract contract Validation { modifier checkDeadline(uint256 deadline) { require(block.timestamp <= deadline, 'TO'); _; } } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity =0.7.6; import './interfaces/ISolidlyV3Pool.sol'; import './libraries/LowGasSafeMath.sol'; import './libraries/SafeCast.sol'; import './libraries/Tick.sol'; import './libraries/TickBitmap.sol'; import './libraries/Position.sol'; import './libraries/Validation.sol'; import './libraries/FullMath.sol'; import './libraries/FixedPoint128.sol'; import './libraries/TransferHelper.sol'; import './libraries/TickMath.sol'; import './libraries/LiquidityMath.sol'; import './libraries/SqrtPriceMath.sol'; import './libraries/SwapMath.sol'; import './interfaces/ISolidlyV3PoolDeployer.sol'; import './interfaces/ISolidlyV3Factory.sol'; import './interfaces/IERC20Minimal.sol'; import './interfaces/callback/ISolidlyV3SwapCallback.sol'; import './interfaces/callback/ISolidlyV3MintCallback.sol'; import './interfaces/callback/ISolidlyV3FlashCallback.sol'; contract SolidlyV3Pool is ISolidlyV3Pool, Validation { using LowGasSafeMath for uint256; using LowGasSafeMath for int256; using SafeCast for uint256; using SafeCast for int256; using Tick for mapping(int24 => Tick.Info); using TickBitmap for mapping(int16 => uint256); using Position for mapping(bytes32 => Position.Info); using Position for Position.Info; /// @inheritdoc ISolidlyV3PoolImmutables address public immutable override factory; /// @inheritdoc ISolidlyV3PoolImmutables address public immutable override token0; /// @inheritdoc ISolidlyV3PoolImmutables address public immutable override token1; /// @inheritdoc ISolidlyV3PoolImmutables int24 public immutable override tickSpacing; /// @inheritdoc ISolidlyV3PoolImmutables uint128 public immutable override maxLiquidityPerTick; struct Slot0 { // the current price uint160 sqrtPriceX96; // the current tick int24 tick; // the pool's current fee in hundredths of a bip, i.e. 1e-6 uint24 fee; // whether the pool is locked bool unlocked; } /// @inheritdoc ISolidlyV3PoolState Slot0 public override slot0; // accumulated pool fees in token0/token1 units struct PoolFees { uint128 token0; uint128 token1; } /// @inheritdoc ISolidlyV3PoolState PoolFees public override poolFees; /// @inheritdoc ISolidlyV3PoolState uint128 public override liquidity; /// @inheritdoc ISolidlyV3PoolState mapping(int24 => Tick.Info) public override ticks; /// @inheritdoc ISolidlyV3PoolState mapping(int16 => uint256) public override tickBitmap; /// @inheritdoc ISolidlyV3PoolState mapping(bytes32 => Position.Info) public override positions; /// @dev Mutually exclusive reentrancy protection into the pool to/from a method. This method also prevents entrance /// to a function before the pool is initialized. The reentrancy guard is required throughout the contract because /// we use balance checks to determine the payment status of interactions such as mint, swap and flash. modifier lock() { require(slot0.unlocked, 'LOK'); slot0.unlocked = false; _; slot0.unlocked = true; } constructor() { int24 _tickSpacing; uint24 _fee; (factory, token0, token1, _fee, _tickSpacing) = ISolidlyV3PoolDeployer(msg.sender).parameters(); slot0.fee = _fee; tickSpacing = _tickSpacing; maxLiquidityPerTick = Tick.tickSpacingToMaxLiquidityPerTick(_tickSpacing); } /// @dev Common checks for valid tick inputs. function checkTicks(int24 tickLower, int24 tickUpper) private pure { require(tickLower < tickUpper, 'TLU'); require(tickLower >= TickMath.MIN_TICK, 'TLM'); require(tickUpper <= TickMath.MAX_TICK, 'TUM'); } /// @dev Get the pool's balance of token0 /// @dev This function is gas optimized to avoid a redundant extcodesize check in addition to the returndatasize /// check function balance0() private view returns (uint256) { (bool success, bytes memory data) = token0.staticcall( abi.encodeWithSelector(IERC20Minimal.balanceOf.selector, address(this)) ); require(success && data.length >= 32); return abi.decode(data, (uint256)); } /// @dev Get the pool's balance of token1 /// @dev This function is gas optimized to avoid a redundant extcodesize check in addition to the returndatasize /// check function balance1() private view returns (uint256) { (bool success, bytes memory data) = token1.staticcall( abi.encodeWithSelector(IERC20Minimal.balanceOf.selector, address(this)) ); require(success && data.length >= 32); return abi.decode(data, (uint256)); } /// @inheritdoc ISolidlyV3PoolActions /// @dev not locked because it initializes unlocked function initialize(uint160 sqrtPriceX96) external override { require(slot0.sqrtPriceX96 == 0, 'AI'); int24 tick = TickMath.getTickAtSqrtRatio(sqrtPriceX96); slot0.sqrtPriceX96 = sqrtPriceX96; slot0.tick = tick; slot0.unlocked = true; emit Initialize(sqrtPriceX96, tick); } struct ModifyPositionParams { // the address that owns the position address owner; // the lower and upper tick of the position int24 tickLower; int24 tickUpper; // any change in liquidity int128 liquidityDelta; } /// @dev Effect some changes to a position /// @param params the position details and the change to the position's liquidity to effect /// @return position a storage pointer referencing the position with the given owner and tick range /// @return amount0 the amount of token0 owed to the pool, negative if the pool should pay the recipient /// @return amount1 the amount of token1 owed to the pool, negative if the pool should pay the recipient function _modifyPosition( ModifyPositionParams memory params ) private returns (Position.Info storage position, int256 amount0, int256 amount1) { checkTicks(params.tickLower, params.tickUpper); Slot0 memory _slot0 = slot0; // SLOAD for gas optimization position = _updatePosition(params.owner, params.tickLower, params.tickUpper, params.liquidityDelta); if (params.liquidityDelta != 0) { if (_slot0.tick < params.tickLower) { // current tick is below the passed range; liquidity can only become in range by crossing from left to // right, when we'll need _more_ token0 (it's becoming more valuable) so user must provide it amount0 = SqrtPriceMath.getAmount0Delta( TickMath.getSqrtRatioAtTick(params.tickLower), TickMath.getSqrtRatioAtTick(params.tickUpper), params.liquidityDelta ); } else if (_slot0.tick < params.tickUpper) { // current tick is inside the passed range uint128 liquidityBefore = liquidity; // SLOAD for gas optimization amount0 = SqrtPriceMath.getAmount0Delta( _slot0.sqrtPriceX96, TickMath.getSqrtRatioAtTick(params.tickUpper), params.liquidityDelta ); amount1 = SqrtPriceMath.getAmount1Delta( TickMath.getSqrtRatioAtTick(params.tickLower), _slot0.sqrtPriceX96, params.liquidityDelta ); liquidity = LiquidityMath.addDelta(liquidityBefore, params.liquidityDelta); } else { // current tick is above the passed range; liquidity can only become in range by crossing from right to // left, when we'll need _more_ token1 (it's becoming more valuable) so user must provide it amount1 = SqrtPriceMath.getAmount1Delta( TickMath.getSqrtRatioAtTick(params.tickLower), TickMath.getSqrtRatioAtTick(params.tickUpper), params.liquidityDelta ); } } } /// @dev Gets and updates a position with the given liquidity delta /// @param owner the owner of the position /// @param tickLower the lower tick of the position's tick range /// @param tickUpper the upper tick of the position's tick range function _updatePosition( address owner, int24 tickLower, int24 tickUpper, int128 liquidityDelta ) private returns (Position.Info storage position) { position = positions.get(owner, tickLower, tickUpper); // if we need to update the ticks, do it bool flippedLower; bool flippedUpper; if (liquidityDelta != 0) { flippedLower = ticks.update(tickLower, liquidityDelta, false, maxLiquidityPerTick); flippedUpper = ticks.update(tickUpper, liquidityDelta, true, maxLiquidityPerTick); if (flippedLower) { tickBitmap.flipTick(tickLower, tickSpacing); } if (flippedUpper) { tickBitmap.flipTick(tickUpper, tickSpacing); } } position.update(liquidityDelta); // clear any tick data that is no longer needed if (liquidityDelta < 0) { if (flippedLower) { ticks.clear(tickLower); } if (flippedUpper) { ticks.clear(tickUpper); } } } /// @inheritdoc ISolidlyV3PoolActions function mint( address recipient, int24 tickLower, int24 tickUpper, uint128 amount ) external override returns (uint256 amount0, uint256 amount1) { (amount0, amount1) = _mint(recipient, tickLower, tickUpper, amount); } /// @inheritdoc ISolidlyV3PoolActions function mint( address recipient, int24 tickLower, int24 tickUpper, uint128 amount, bytes calldata data ) external override returns (uint256 amount0, uint256 amount1) { (amount0, amount1) = _mint(recipient, tickLower, tickUpper, amount, data); } /// @inheritdoc ISolidlyV3PoolActions function mint( address recipient, int24 tickLower, int24 tickUpper, uint128 amount, uint256 amount0Min, uint256 amount1Min, uint256 deadline ) external override checkDeadline(deadline) returns (uint256 amount0, uint256 amount1) { (amount0, amount1) = _mint(recipient, tickLower, tickUpper, amount); require(amount0 >= amount0Min && amount1 >= amount1Min, 'AL'); } /// @inheritdoc ISolidlyV3PoolActions function mint( address recipient, int24 tickLower, int24 tickUpper, uint128 amount, uint256 amount0Min, uint256 amount1Min, uint256 deadline, bytes calldata data ) external override checkDeadline(deadline) returns (uint256 amount0, uint256 amount1) { (amount0, amount1) = _mint(recipient, tickLower, tickUpper, amount, data); require(amount0 >= amount0Min && amount1 >= amount1Min, 'AL'); } function _mint( address recipient, int24 tickLower, int24 tickUpper, uint128 amount ) private lock returns (uint256 amount0, uint256 amount1) { require(amount > 0); (, int256 amount0Int, int256 amount1Int) = _modifyPosition( ModifyPositionParams({ owner: recipient, tickLower: tickLower, tickUpper: tickUpper, liquidityDelta: int256(amount).toInt128() }) ); amount0 = uint256(amount0Int); amount1 = uint256(amount1Int); if (amount0 > 0) TransferHelper.safeTransferFrom(token0, msg.sender, address(this), amount0); if (amount1 > 0) TransferHelper.safeTransferFrom(token1, msg.sender, address(this), amount1); emit Mint(msg.sender, recipient, tickLower, tickUpper, amount, amount0, amount1); } function _mint( address recipient, int24 tickLower, int24 tickUpper, uint128 amount, bytes calldata data ) private lock returns (uint256 amount0, uint256 amount1) { require(amount > 0); (, int256 amount0Int, int256 amount1Int) = _modifyPosition( ModifyPositionParams({ owner: recipient, tickLower: tickLower, tickUpper: tickUpper, liquidityDelta: int256(amount).toInt128() }) ); amount0 = uint256(amount0Int); amount1 = uint256(amount1Int); uint256 balance0Before; uint256 balance1Before; if (amount0 > 0) balance0Before = balance0(); if (amount1 > 0) balance1Before = balance1(); ISolidlyV3MintCallback(msg.sender).solidlyV3MintCallback(amount0, amount1, data); if (amount0 > 0) require(balance0Before.add(amount0) <= balance0(), 'M0'); if (amount1 > 0) require(balance1Before.add(amount1) <= balance1(), 'M1'); emit Mint(msg.sender, recipient, tickLower, tickUpper, amount, amount0, amount1); } /// @inheritdoc ISolidlyV3PoolActions function burnAndCollect( address recipient, int24 tickLower, int24 tickUpper, uint128 amountToBurn, uint128 amount0ToCollect, uint128 amount1ToCollect ) external override returns (uint256 amount0FromBurn, uint256 amount1FromBurn, uint128 amount0Collected, uint128 amount1Collected) { (amount0FromBurn, amount1FromBurn) = _burn(tickLower, tickUpper, amountToBurn); (amount0Collected, amount1Collected) = _collect( recipient, tickLower, tickUpper, amount0ToCollect, amount1ToCollect ); } /// @inheritdoc ISolidlyV3PoolActions function burnAndCollect( address recipient, int24 tickLower, int24 tickUpper, uint128 amountToBurn, uint256 amount0FromBurnMin, uint256 amount1FromBurnMin, uint128 amount0ToCollect, uint128 amount1ToCollect, uint256 deadline ) external override checkDeadline(deadline) returns (uint256 amount0FromBurn, uint256 amount1FromBurn, uint128 amount0Collected, uint128 amount1Collected) { (amount0FromBurn, amount1FromBurn) = _burn(tickLower, tickUpper, amountToBurn); require(amount0FromBurn >= amount0FromBurnMin && amount1FromBurn >= amount1FromBurnMin, 'AL'); (amount0Collected, amount1Collected) = _collect( recipient, tickLower, tickUpper, amount0ToCollect, amount1ToCollect ); } /// @inheritdoc ISolidlyV3PoolActions function collect( address recipient, int24 tickLower, int24 tickUpper, uint128 amount0Requested, uint128 amount1Requested ) external override returns (uint128 amount0, uint128 amount1) { (amount0, amount1) = _collect(recipient, tickLower, tickUpper, amount0Requested, amount1Requested); } function _collect( address recipient, int24 tickLower, int24 tickUpper, uint128 amount0Requested, uint128 amount1Requested ) private lock returns (uint128 amount0, uint128 amount1) { // we don't need to checkTicks here, because invalid positions will never have non-zero tokensOwed{0,1} Position.Info storage position = positions.get(msg.sender, tickLower, tickUpper); amount0 = amount0Requested > position.tokensOwed0 ? position.tokensOwed0 : amount0Requested; amount1 = amount1Requested > position.tokensOwed1 ? position.tokensOwed1 : amount1Requested; if (amount0 > 0) { position.tokensOwed0 -= amount0; TransferHelper.safeTransfer(token0, recipient, amount0); } if (amount1 > 0) { position.tokensOwed1 -= amount1; TransferHelper.safeTransfer(token1, recipient, amount1); } emit Collect(msg.sender, recipient, tickLower, tickUpper, amount0, amount1); } /// @inheritdoc ISolidlyV3PoolActions function burn( int24 tickLower, int24 tickUpper, uint128 amount ) external override returns (uint256 amount0, uint256 amount1) { (amount0, amount1) = _burn(tickLower, tickUpper, amount); } /// @inheritdoc ISolidlyV3PoolActions function burn( int24 tickLower, int24 tickUpper, uint128 amount, uint256 amount0Min, uint256 amount1Min, uint256 deadline ) external override checkDeadline(deadline) returns (uint256 amount0, uint256 amount1) { (amount0, amount1) = _burn(tickLower, tickUpper, amount); require(amount0 >= amount0Min && amount1 >= amount1Min, 'AL'); } function _burn( int24 tickLower, int24 tickUpper, uint128 amount ) private lock returns (uint256 amount0, uint256 amount1) { (Position.Info storage position, int256 amount0Int, int256 amount1Int) = _modifyPosition( ModifyPositionParams({ owner: msg.sender, tickLower: tickLower, tickUpper: tickUpper, liquidityDelta: -int256(amount).toInt128() }) ); amount0 = uint256(-amount0Int); amount1 = uint256(-amount1Int); if (amount0 > 0 || amount1 > 0) { (position.tokensOwed0, position.tokensOwed1) = ( position.tokensOwed0 + uint128(amount0), position.tokensOwed1 + uint128(amount1) ); } emit Burn(msg.sender, tickLower, tickUpper, amount, amount0, amount1); } // the top level state of the swap, the results of which are recorded in storage at the end struct SwapState { // the amount remaining to be swapped in/out of the input/output asset int256 amountSpecifiedRemaining; // the amount already swapped out/in of the output/input asset int256 amountCalculated; // current sqrt(price) uint160 sqrtPriceX96; // the tick associated with the current price int24 tick; // the current liquidity in range uint128 liquidity; // the pool fee uint128 poolFee; } struct StepComputations { // the price at the beginning of the step uint160 sqrtPriceStartX96; // the next tick to swap to from the current tick in the swap direction int24 tickNext; // whether tickNext is initialized or not bool initialized; // sqrt(price) for the next tick (1/0) uint160 sqrtPriceNextX96; // how much is being swapped in in this step uint256 amountIn; // how much is being swapped out uint256 amountOut; // how much fee is being paid in uint256 feeAmount; } /// @inheritdoc ISolidlyV3PoolActions function swap( address recipient, bool zeroForOne, int256 amountSpecified, uint160 sqrtPriceLimitX96 ) external override returns (int256 amount0, int256 amount1) { (amount0, amount1) = _swap(recipient, zeroForOne, amountSpecified, sqrtPriceLimitX96); } /// @inheritdoc ISolidlyV3PoolActions function swap( address recipient, bool zeroForOne, int256 amountSpecified, uint160 sqrtPriceLimitX96, bytes calldata data ) external override returns (int256 amount0, int256 amount1) { (amount0, amount1) = _swap(recipient, zeroForOne, amountSpecified, sqrtPriceLimitX96, data); } /// @inheritdoc ISolidlyV3PoolActions function swap( address recipient, bool zeroForOne, int256 amountSpecified, uint160 sqrtPriceLimitX96, uint256 amountLimit, uint256 deadline ) external override checkDeadline(deadline) returns (int256 amount0, int256 amount1) { (amount0, amount1) = _swap(recipient, zeroForOne, amountSpecified, sqrtPriceLimitX96); if (zeroForOne) { require(uint256(-amount1) >= amountLimit, 'AL'); } else { require(uint256(-amount0) >= amountLimit, 'AL'); } } /// @inheritdoc ISolidlyV3PoolActions function swap( address recipient, bool zeroForOne, int256 amountSpecified, uint160 sqrtPriceLimitX96, uint256 amountLimit, uint256 deadline, bytes calldata data ) external override checkDeadline(deadline) returns (int256 amount0, int256 amount1) { (amount0, amount1) = _swap(recipient, zeroForOne, amountSpecified, sqrtPriceLimitX96, data); if (zeroForOne) { require(uint256(-amount1) >= amountLimit, 'AL'); } else { require(uint256(-amount0) >= amountLimit, 'AL'); } } /// @inheritdoc ISolidlyV3PoolActions function swap( address recipient, bool zeroForOne, int256 amountSpecified, uint160 sqrtPriceLimitX96, uint256 trackingCode ) external override returns (int256 amount0, int256 amount1) { (amount0, amount1) = _swap(recipient, zeroForOne, amountSpecified, sqrtPriceLimitX96); } /// @inheritdoc ISolidlyV3PoolActions function swap( address recipient, bool zeroForOne, int256 amountSpecified, uint160 sqrtPriceLimitX96, bytes calldata data, uint256 trackingCode ) external override returns (int256 amount0, int256 amount1) { (amount0, amount1) = _swap(recipient, zeroForOne, amountSpecified, sqrtPriceLimitX96, data); } /// @inheritdoc ISolidlyV3PoolActions function swap( address recipient, bool zeroForOne, int256 amountSpecified, uint160 sqrtPriceLimitX96, uint256 amountLimit, uint256 deadline, uint256 trackingCode ) external override checkDeadline(deadline) returns (int256 amount0, int256 amount1) { (amount0, amount1) = _swap(recipient, zeroForOne, amountSpecified, sqrtPriceLimitX96); if (zeroForOne) { require(uint256(-amount1) >= amountLimit, 'AL'); } else { require(uint256(-amount0) >= amountLimit, 'AL'); } } /// @inheritdoc ISolidlyV3PoolActions function swap( address recipient, bool zeroForOne, int256 amountSpecified, uint160 sqrtPriceLimitX96, uint256 amountLimit, uint256 deadline, bytes calldata data, uint256 trackingCode ) external override checkDeadline(deadline) returns (int256 amount0, int256 amount1) { (amount0, amount1) = _swap(recipient, zeroForOne, amountSpecified, sqrtPriceLimitX96, data); if (zeroForOne) { require(uint256(-amount1) >= amountLimit, 'AL'); } else { require(uint256(-amount0) >= amountLimit, 'AL'); } } function _swap( address recipient, bool zeroForOne, int256 amountSpecified, uint160 sqrtPriceLimitX96 ) private returns (int256 amount0, int256 amount1) { (amount0, amount1) = _swapBase(recipient, zeroForOne, amountSpecified, sqrtPriceLimitX96); // do the transfers and collect payment if (zeroForOne) { if (amount0 > 0) TransferHelper.safeTransferFrom(token0, msg.sender, address(this), uint256(amount0)); if (amount1 < 0) TransferHelper.safeTransfer(token1, recipient, uint256(-amount1)); } else { if (amount1 > 0) TransferHelper.safeTransferFrom(token1, msg.sender, address(this), uint256(amount1)); if (amount0 < 0) TransferHelper.safeTransfer(token0, recipient, uint256(-amount0)); } slot0.unlocked = true; } function _swap( address recipient, bool zeroForOne, int256 amountSpecified, uint160 sqrtPriceLimitX96, bytes calldata data ) private returns (int256 amount0, int256 amount1) { (amount0, amount1) = _swapBase(recipient, zeroForOne, amountSpecified, sqrtPriceLimitX96); // do the transfers and collect payment if (zeroForOne) { if (amount1 < 0) TransferHelper.safeTransfer(token1, recipient, uint256(-amount1)); uint256 balance0Before = balance0(); ISolidlyV3SwapCallback(msg.sender).solidlyV3SwapCallback(amount0, amount1, data); require(balance0Before.add(uint256(amount0)) <= balance0(), 'IIA'); } else { if (amount0 < 0) TransferHelper.safeTransfer(token0, recipient, uint256(-amount0)); uint256 balance1Before = balance1(); ISolidlyV3SwapCallback(msg.sender).solidlyV3SwapCallback(amount0, amount1, data); require(balance1Before.add(uint256(amount1)) <= balance1(), 'IIA'); } slot0.unlocked = true; } function _swapBase( address recipient, bool zeroForOne, int256 amountSpecified, uint160 sqrtPriceLimitX96 ) private returns (int256 amount0, int256 amount1) { require(amountSpecified != 0, 'AS'); Slot0 memory slot0Start = slot0; require(slot0Start.unlocked, 'LOK'); require( zeroForOne ? sqrtPriceLimitX96 < slot0Start.sqrtPriceX96 && sqrtPriceLimitX96 > TickMath.MIN_SQRT_RATIO : sqrtPriceLimitX96 > slot0Start.sqrtPriceX96 && sqrtPriceLimitX96 < TickMath.MAX_SQRT_RATIO, 'SPL' ); slot0.unlocked = false; uint128 liquidityStart = liquidity; bool exactInput = amountSpecified > 0; SwapState memory state = SwapState({ amountSpecifiedRemaining: amountSpecified, amountCalculated: 0, sqrtPriceX96: slot0Start.sqrtPriceX96, tick: slot0Start.tick, liquidity: liquidityStart, poolFee: 0 }); // continue swapping as long as we haven't used the entire input/output and haven't reached the price limit while (state.amountSpecifiedRemaining != 0 && state.sqrtPriceX96 != sqrtPriceLimitX96) { StepComputations memory step; step.sqrtPriceStartX96 = state.sqrtPriceX96; (step.tickNext, step.initialized) = tickBitmap.nextInitializedTickWithinOneWord( state.tick, tickSpacing, zeroForOne ); // ensure that we do not overshoot the min/max tick, as the tick bitmap is not aware of these bounds if (step.tickNext < TickMath.MIN_TICK) { step.tickNext = TickMath.MIN_TICK; } else if (step.tickNext > TickMath.MAX_TICK) { step.tickNext = TickMath.MAX_TICK; } // get the price for the next tick step.sqrtPriceNextX96 = TickMath.getSqrtRatioAtTick(step.tickNext); // compute values to swap to the target tick, price limit, or point where input/output amount is exhausted (state.sqrtPriceX96, step.amountIn, step.amountOut, step.feeAmount) = SwapMath.computeSwapStep( state.sqrtPriceX96, (zeroForOne ? step.sqrtPriceNextX96 < sqrtPriceLimitX96 : step.sqrtPriceNextX96 > sqrtPriceLimitX96) ? sqrtPriceLimitX96 : step.sqrtPriceNextX96, state.liquidity, state.amountSpecifiedRemaining, slot0Start.fee ); if (exactInput) { state.amountSpecifiedRemaining -= (step.amountIn + step.feeAmount).toInt256(); state.amountCalculated = state.amountCalculated.sub(step.amountOut.toInt256()); } else { state.amountSpecifiedRemaining += step.amountOut.toInt256(); state.amountCalculated = state.amountCalculated.add((step.amountIn + step.feeAmount).toInt256()); } // increment poolFees for the current swap step state.poolFee += uint128(step.feeAmount); // shift tick if we reached the next price if (state.sqrtPriceX96 == step.sqrtPriceNextX96) { // if the tick is initialized, run the tick transition if (step.initialized) { int128 liquidityNet = ticks.cross(step.tickNext); // if we're moving leftward, we interpret liquidityNet as the opposite sign // safe because liquidityNet cannot be type(int128).min if (zeroForOne) liquidityNet = -liquidityNet; state.liquidity = LiquidityMath.addDelta(state.liquidity, liquidityNet); } state.tick = zeroForOne ? step.tickNext - 1 : step.tickNext; } else if (state.sqrtPriceX96 != step.sqrtPriceStartX96) { // recompute unless we're on a lower tick boundary (i.e. already transitioned ticks), and haven't moved state.tick = TickMath.getTickAtSqrtRatio(state.sqrtPriceX96); } } // update tick if the tick changed if (state.tick != slot0Start.tick) { (slot0.sqrtPriceX96, slot0.tick) = (state.sqrtPriceX96, state.tick); } else { // otherwise just update the price slot0.sqrtPriceX96 = state.sqrtPriceX96; } // update liquidity if it changed if (liquidityStart != state.liquidity) liquidity = state.liquidity; // update pool fees // overflow is acceptable, fees must be claimed and reset before they hit type(uint128).max if (zeroForOne) { if (state.poolFee > 0) poolFees.token0 += state.poolFee; } else { if (state.poolFee > 0) poolFees.token1 += state.poolFee; } (amount0, amount1) = zeroForOne == exactInput ? (amountSpecified - state.amountSpecifiedRemaining, state.amountCalculated) : (state.amountCalculated, amountSpecified - state.amountSpecifiedRemaining); emit Swap(msg.sender, recipient, amount0, amount1, state.sqrtPriceX96, state.liquidity, state.tick); } function quoteSwap( bool zeroForOne, int256 amountSpecified, uint160 sqrtPriceLimitX96 ) external view override returns (int256 amount0, int256 amount1, uint160 sqrtPriceX96After, int24 tickAfter, uint128 liquidityAfter) { require(amountSpecified != 0, 'AS'); Slot0 memory slot0Start = slot0; require( zeroForOne ? sqrtPriceLimitX96 < slot0Start.sqrtPriceX96 && sqrtPriceLimitX96 > TickMath.MIN_SQRT_RATIO : sqrtPriceLimitX96 > slot0Start.sqrtPriceX96 && sqrtPriceLimitX96 < TickMath.MAX_SQRT_RATIO, 'SPL' ); uint128 liquidityStart = liquidity; bool exactInput = amountSpecified > 0; SwapState memory state = SwapState({ amountSpecifiedRemaining: amountSpecified, amountCalculated: 0, sqrtPriceX96: slot0Start.sqrtPriceX96, tick: slot0Start.tick, liquidity: liquidityStart, poolFee: 0 }); // continue swapping as long as we haven't used the entire input/output and haven't reached the price limit while (state.amountSpecifiedRemaining != 0 && state.sqrtPriceX96 != sqrtPriceLimitX96) { StepComputations memory step; step.sqrtPriceStartX96 = state.sqrtPriceX96; (step.tickNext, step.initialized) = tickBitmap.nextInitializedTickWithinOneWord( state.tick, tickSpacing, zeroForOne ); // ensure that we do not overshoot the min/max tick, as the tick bitmap is not aware of these bounds if (step.tickNext < TickMath.MIN_TICK) { step.tickNext = TickMath.MIN_TICK; } else if (step.tickNext > TickMath.MAX_TICK) { step.tickNext = TickMath.MAX_TICK; } // get the price for the next tick step.sqrtPriceNextX96 = TickMath.getSqrtRatioAtTick(step.tickNext); // compute values to swap to the target tick, price limit, or point where input/output amount is exhausted (state.sqrtPriceX96, step.amountIn, step.amountOut, step.feeAmount) = SwapMath.computeSwapStep( state.sqrtPriceX96, (zeroForOne ? step.sqrtPriceNextX96 < sqrtPriceLimitX96 : step.sqrtPriceNextX96 > sqrtPriceLimitX96) ? sqrtPriceLimitX96 : step.sqrtPriceNextX96, state.liquidity, state.amountSpecifiedRemaining, slot0Start.fee ); if (exactInput) { state.amountSpecifiedRemaining -= (step.amountIn + step.feeAmount).toInt256(); state.amountCalculated = state.amountCalculated.sub(step.amountOut.toInt256()); } else { state.amountSpecifiedRemaining += step.amountOut.toInt256(); state.amountCalculated = state.amountCalculated.add((step.amountIn + step.feeAmount).toInt256()); } // increment poolFees for the current swap step state.poolFee += uint128(step.feeAmount); // shift tick if we reached the next price if (state.sqrtPriceX96 == step.sqrtPriceNextX96) { // if the tick is initialized, run the tick transition if (step.initialized) { int128 liquidityNet = ticks.cross(step.tickNext); // if we're moving leftward, we interpret liquidityNet as the opposite sign // safe because liquidityNet cannot be type(int128).min if (zeroForOne) liquidityNet = -liquidityNet; state.liquidity = LiquidityMath.addDelta(state.liquidity, liquidityNet); } state.tick = zeroForOne ? step.tickNext - 1 : step.tickNext; } else if (state.sqrtPriceX96 != step.sqrtPriceStartX96) { // recompute unless we're on a lower tick boundary (i.e. already transitioned ticks), and haven't moved state.tick = TickMath.getTickAtSqrtRatio(state.sqrtPriceX96); } } (amount0, amount1) = zeroForOne == exactInput ? (amountSpecified - state.amountSpecifiedRemaining, state.amountCalculated) : (state.amountCalculated, amountSpecified - state.amountSpecifiedRemaining); return (amount0, amount1, state.sqrtPriceX96, state.tick, state.liquidity); } /// @inheritdoc ISolidlyV3PoolActions function flash(address recipient, uint256 amount0, uint256 amount1, bytes calldata data) external override lock { uint128 _liquidity = liquidity; require(_liquidity > 0, 'L'); uint256 fee0 = FullMath.mulDivRoundingUp(amount0, slot0.fee, 1e6); uint256 fee1 = FullMath.mulDivRoundingUp(amount1, slot0.fee, 1e6); uint256 balance0Before = balance0(); uint256 balance1Before = balance1(); if (amount0 > 0) TransferHelper.safeTransfer(token0, recipient, amount0); if (amount1 > 0) TransferHelper.safeTransfer(token1, recipient, amount1); ISolidlyV3FlashCallback(msg.sender).solidlyV3FlashCallback(fee0, fee1, data); uint256 balance0After = balance0(); uint256 balance1After = balance1(); require(balance0Before.add(fee0) <= balance0After, 'F0'); require(balance1Before.add(fee1) <= balance1After, 'F1'); // sub is safe because we know balanceAfter is gt balanceBefore by at least fee uint256 paid0 = balance0After - balance0Before; uint256 paid1 = balance1After - balance1Before; if (paid0 > 0) { poolFees.token0 += uint128(paid0); } if (paid1 > 0) { poolFees.token1 += uint128(paid1); } emit Flash(msg.sender, recipient, amount0, amount1, paid0, paid1); } /// @inheritdoc ISolidlyV3PoolOwnerActions function setFee(uint24 fee) external override lock { require(ISolidlyV3Factory(factory).isFeeSetter(msg.sender) == 1, 'UA'); // pool fee capped at 10% require(fee <= 100000); uint24 feeOld = slot0.fee; slot0.fee = fee; emit SetFee(feeOld, fee); } /// @inheritdoc ISolidlyV3PoolOwnerActions function collectProtocol( address recipient, uint128 amount0Requested, uint128 amount1Requested ) external override lock returns (uint128 amount0, uint128 amount1) { require(ISolidlyV3Factory(factory).feeCollector() == msg.sender, 'UA'); amount0 = amount0Requested > poolFees.token0 ? poolFees.token0 : amount0Requested; amount1 = amount1Requested > poolFees.token1 ? poolFees.token1 : amount1Requested; if (amount0 > 0) { if (amount0 == poolFees.token0) amount0--; // ensure that the slot is not cleared, for gas savings poolFees.token0 -= amount0; TransferHelper.safeTransfer(token0, recipient, amount0); } if (amount1 > 0) { if (amount1 == poolFees.token1) amount1--; // ensure that the slot is not cleared, for gas savings poolFees.token1 -= amount1; TransferHelper.safeTransfer(token1, recipient, amount1); } emit CollectProtocol(msg.sender, recipient, amount0, amount1); } }
File 4 of 7: WETH9
// Copyright (C) 2015, 2016, 2017 Dapphub // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.4.18; contract WETH9 { string public name = "Wrapped Ether"; string public symbol = "WETH"; uint8 public decimals = 18; event Approval(address indexed src, address indexed guy, uint wad); event Transfer(address indexed src, address indexed dst, uint wad); event Deposit(address indexed dst, uint wad); event Withdrawal(address indexed src, uint wad); mapping (address => uint) public balanceOf; mapping (address => mapping (address => uint)) public allowance; function() public payable { deposit(); } function deposit() public payable { balanceOf[msg.sender] += msg.value; Deposit(msg.sender, msg.value); } function withdraw(uint wad) public { require(balanceOf[msg.sender] >= wad); balanceOf[msg.sender] -= wad; msg.sender.transfer(wad); Withdrawal(msg.sender, wad); } function totalSupply() public view returns (uint) { return this.balance; } function approve(address guy, uint wad) public returns (bool) { allowance[msg.sender][guy] = wad; Approval(msg.sender, guy, wad); return true; } function transfer(address dst, uint wad) public returns (bool) { return transferFrom(msg.sender, dst, wad); } function transferFrom(address src, address dst, uint wad) public returns (bool) { require(balanceOf[src] >= wad); if (src != msg.sender && allowance[src][msg.sender] != uint(-1)) { require(allowance[src][msg.sender] >= wad); allowance[src][msg.sender] -= wad; } balanceOf[src] -= wad; balanceOf[dst] += wad; Transfer(src, dst, wad); return true; } } /* GNU GENERAL PUBLIC LICENSE Version 3, 29 June 2007 Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/> Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed. Preamble The GNU General Public License is a free, copyleft license for software and other kinds of works. The licenses for most software and other practical works are designed to take away your freedom to share and change the works. By contrast, the GNU General Public License is intended to guarantee your freedom to share and change all versions of a program--to make sure it remains free software for all its users. We, the Free Software Foundation, use the GNU General Public License for most of our software; it applies also to any other work released this way by its authors. You can apply it to your programs, too. When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are designed to make sure that you have the freedom to distribute copies of free software (and charge for them if you wish), that you receive source code or can get it if you want it, that you can change the software or use pieces of it in new free programs, and that you know you can do these things. To protect your rights, we need to prevent others from denying you these rights or asking you to surrender the rights. Therefore, you have certain responsibilities if you distribute copies of the software, or if you modify it: responsibilities to respect the freedom of others. For example, if you distribute copies of such a program, whether gratis or for a fee, you must pass on to the recipients the same freedoms that you received. You must make sure that they, too, receive or can get the source code. And you must show them these terms so they know their rights. Developers that use the GNU GPL protect your rights with two steps: (1) assert copyright on the software, and (2) offer you this License giving you legal permission to copy, distribute and/or modify it. For the developers' and authors' protection, the GPL clearly explains that there is no warranty for this free software. For both users' and authors' sake, the GPL requires that modified versions be marked as changed, so that their problems will not be attributed erroneously to authors of previous versions. Some devices are designed to deny users access to install or run modified versions of the software inside them, although the manufacturer can do so. This is fundamentally incompatible with the aim of protecting users' freedom to change the software. The systematic pattern of such abuse occurs in the area of products for individuals to use, which is precisely where it is most unacceptable. Therefore, we have designed this version of the GPL to prohibit the practice for those products. If such problems arise substantially in other domains, we stand ready to extend this provision to those domains in future versions of the GPL, as needed to protect the freedom of users. Finally, every program is threatened constantly by software patents. States should not allow patents to restrict development and use of software on general-purpose computers, but in those that do, we wish to avoid the special danger that patents applied to a free program could make it effectively proprietary. To prevent this, the GPL assures that patents cannot be used to render the program non-free. The precise terms and conditions for copying, distribution and modification follow. TERMS AND CONDITIONS 0. Definitions. "This License" refers to version 3 of the GNU General Public License. "Copyright" also means copyright-like laws that apply to other kinds of works, such as semiconductor masks. "The Program" refers to any copyrightable work licensed under this License. Each licensee is addressed as "you". "Licensees" and "recipients" may be individuals or organizations. To "modify" a work means to copy from or adapt all or part of the work in a fashion requiring copyright permission, other than the making of an exact copy. The resulting work is called a "modified version" of the earlier work or a work "based on" the earlier work. A "covered work" means either the unmodified Program or a work based on the Program. To "propagate" a work means to do anything with it that, without permission, would make you directly or secondarily liable for infringement under applicable copyright law, except executing it on a computer or modifying a private copy. Propagation includes copying, distribution (with or without modification), making available to the public, and in some countries other activities as well. To "convey" a work means any kind of propagation that enables other parties to make or receive copies. Mere interaction with a user through a computer network, with no transfer of a copy, is not conveying. An interactive user interface displays "Appropriate Legal Notices" to the extent that it includes a convenient and prominently visible feature that (1) displays an appropriate copyright notice, and (2) tells the user that there is no warranty for the work (except to the extent that warranties are provided), that licensees may convey the work under this License, and how to view a copy of this License. If the interface presents a list of user commands or options, such as a menu, a prominent item in the list meets this criterion. 1. Source Code. The "source code" for a work means the preferred form of the work for making modifications to it. "Object code" means any non-source form of a work. A "Standard Interface" means an interface that either is an official standard defined by a recognized standards body, or, in the case of interfaces specified for a particular programming language, one that is widely used among developers working in that language. The "System Libraries" of an executable work include anything, other than the work as a whole, that (a) is included in the normal form of packaging a Major Component, but which is not part of that Major Component, and (b) serves only to enable use of the work with that Major Component, or to implement a Standard Interface for which an implementation is available to the public in source code form. A "Major Component", in this context, means a major essential component (kernel, window system, and so on) of the specific operating system (if any) on which the executable work runs, or a compiler used to produce the work, or an object code interpreter used to run it. The "Corresponding Source" for a work in object code form means all the source code needed to generate, install, and (for an executable work) run the object code and to modify the work, including scripts to control those activities. However, it does not include the work's System Libraries, or general-purpose tools or generally available free programs which are used unmodified in performing those activities but which are not part of the work. For example, Corresponding Source includes interface definition files associated with source files for the work, and the source code for shared libraries and dynamically linked subprograms that the work is specifically designed to require, such as by intimate data communication or control flow between those subprograms and other parts of the work. The Corresponding Source need not include anything that users can regenerate automatically from other parts of the Corresponding Source. The Corresponding Source for a work in source code form is that same work. 2. Basic Permissions. All rights granted under this License are granted for the term of copyright on the Program, and are irrevocable provided the stated conditions are met. This License explicitly affirms your unlimited permission to run the unmodified Program. The output from running a covered work is covered by this License only if the output, given its content, constitutes a covered work. This License acknowledges your rights of fair use or other equivalent, as provided by copyright law. You may make, run and propagate covered works that you do not convey, without conditions so long as your license otherwise remains in force. You may convey covered works to others for the sole purpose of having them make modifications exclusively for you, or provide you with facilities for running those works, provided that you comply with the terms of this License in conveying all material for which you do not control copyright. Those thus making or running the covered works for you must do so exclusively on your behalf, under your direction and control, on terms that prohibit them from making any copies of your copyrighted material outside their relationship with you. Conveying under any other circumstances is permitted solely under the conditions stated below. Sublicensing is not allowed; section 10 makes it unnecessary. 3. Protecting Users' Legal Rights From Anti-Circumvention Law. No covered work shall be deemed part of an effective technological measure under any applicable law fulfilling obligations under article 11 of the WIPO copyright treaty adopted on 20 December 1996, or similar laws prohibiting or restricting circumvention of such measures. When you convey a covered work, you waive any legal power to forbid circumvention of technological measures to the extent such circumvention is effected by exercising rights under this License with respect to the covered work, and you disclaim any intention to limit operation or modification of the work as a means of enforcing, against the work's users, your or third parties' legal rights to forbid circumvention of technological measures. 4. Conveying Verbatim Copies. You may convey verbatim copies of the Program's source code as you receive it, in any medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright notice; keep intact all notices stating that this License and any non-permissive terms added in accord with section 7 apply to the code; keep intact all notices of the absence of any warranty; and give all recipients a copy of this License along with the Program. You may charge any price or no price for each copy that you convey, and you may offer support or warranty protection for a fee. 5. Conveying Modified Source Versions. You may convey a work based on the Program, or the modifications to produce it from the Program, in the form of source code under the terms of section 4, provided that you also meet all of these conditions: a) The work must carry prominent notices stating that you modified it, and giving a relevant date. b) The work must carry prominent notices stating that it is released under this License and any conditions added under section 7. This requirement modifies the requirement in section 4 to "keep intact all notices". c) You must license the entire work, as a whole, under this License to anyone who comes into possession of a copy. This License will therefore apply, along with any applicable section 7 additional terms, to the whole of the work, and all its parts, regardless of how they are packaged. This License gives no permission to license the work in any other way, but it does not invalidate such permission if you have separately received it. d) If the work has interactive user interfaces, each must display Appropriate Legal Notices; however, if the Program has interactive interfaces that do not display Appropriate Legal Notices, your work need not make them do so. A compilation of a covered work with other separate and independent works, which are not by their nature extensions of the covered work, and which are not combined with it such as to form a larger program, in or on a volume of a storage or distribution medium, is called an "aggregate" if the compilation and its resulting copyright are not used to limit the access or legal rights of the compilation's users beyond what the individual works permit. Inclusion of a covered work in an aggregate does not cause this License to apply to the other parts of the aggregate. 6. Conveying Non-Source Forms. You may convey a covered work in object code form under the terms of sections 4 and 5, provided that you also convey the machine-readable Corresponding Source under the terms of this License, in one of these ways: a) Convey the object code in, or embodied in, a physical product (including a physical distribution medium), accompanied by the Corresponding Source fixed on a durable physical medium customarily used for software interchange. b) Convey the object code in, or embodied in, a physical product (including a physical distribution medium), accompanied by a written offer, valid for at least three years and valid for as long as you offer spare parts or customer support for that product model, to give anyone who possesses the object code either (1) a copy of the Corresponding Source for all the software in the product that is covered by this License, on a durable physical medium customarily used for software interchange, for a price no more than your reasonable cost of physically performing this conveying of source, or (2) access to copy the Corresponding Source from a network server at no charge. c) Convey individual copies of the object code with a copy of the written offer to provide the Corresponding Source. This alternative is allowed only occasionally and noncommercially, and only if you received the object code with such an offer, in accord with subsection 6b. d) Convey the object code by offering access from a designated place (gratis or for a charge), and offer equivalent access to the Corresponding Source in the same way through the same place at no further charge. You need not require recipients to copy the Corresponding Source along with the object code. If the place to copy the object code is a network server, the Corresponding Source may be on a different server (operated by you or a third party) that supports equivalent copying facilities, provided you maintain clear directions next to the object code saying where to find the Corresponding Source. Regardless of what server hosts the Corresponding Source, you remain obligated to ensure that it is available for as long as needed to satisfy these requirements. e) Convey the object code using peer-to-peer transmission, provided you inform other peers where the object code and Corresponding Source of the work are being offered to the general public at no charge under subsection 6d. A separable portion of the object code, whose source code is excluded from the Corresponding Source as a System Library, need not be included in conveying the object code work. A "User Product" is either (1) a "consumer product", which means any tangible personal property which is normally used for personal, family, or household purposes, or (2) anything designed or sold for incorporation into a dwelling. In determining whether a product is a consumer product, doubtful cases shall be resolved in favor of coverage. For a particular product received by a particular user, "normally used" refers to a typical or common use of that class of product, regardless of the status of the particular user or of the way in which the particular user actually uses, or expects or is expected to use, the product. A product is a consumer product regardless of whether the product has substantial commercial, industrial or non-consumer uses, unless such uses represent the only significant mode of use of the product. "Installation Information" for a User Product means any methods, procedures, authorization keys, or other information required to install and execute modified versions of a covered work in that User Product from a modified version of its Corresponding Source. The information must suffice to ensure that the continued functioning of the modified object code is in no case prevented or interfered with solely because modification has been made. If you convey an object code work under this section in, or with, or specifically for use in, a User Product, and the conveying occurs as part of a transaction in which the right of possession and use of the User Product is transferred to the recipient in perpetuity or for a fixed term (regardless of how the transaction is characterized), the Corresponding Source conveyed under this section must be accompanied by the Installation Information. But this requirement does not apply if neither you nor any third party retains the ability to install modified object code on the User Product (for example, the work has been installed in ROM). The requirement to provide Installation Information does not include a requirement to continue to provide support service, warranty, or updates for a work that has been modified or installed by the recipient, or for the User Product in which it has been modified or installed. Access to a network may be denied when the modification itself materially and adversely affects the operation of the network or violates the rules and protocols for communication across the network. Corresponding Source conveyed, and Installation Information provided, in accord with this section must be in a format that is publicly documented (and with an implementation available to the public in source code form), and must require no special password or key for unpacking, reading or copying. 7. Additional Terms. "Additional permissions" are terms that supplement the terms of this License by making exceptions from one or more of its conditions. Additional permissions that are applicable to the entire Program shall be treated as though they were included in this License, to the extent that they are valid under applicable law. If additional permissions apply only to part of the Program, that part may be used separately under those permissions, but the entire Program remains governed by this License without regard to the additional permissions. When you convey a copy of a covered work, you may at your option remove any additional permissions from that copy, or from any part of it. (Additional permissions may be written to require their own removal in certain cases when you modify the work.) You may place additional permissions on material, added by you to a covered work, for which you have or can give appropriate copyright permission. Notwithstanding any other provision of this License, for material you add to a covered work, you may (if authorized by the copyright holders of that material) supplement the terms of this License with terms: a) Disclaiming warranty or limiting liability differently from the terms of sections 15 and 16 of this License; or b) Requiring preservation of specified reasonable legal notices or author attributions in that material or in the Appropriate Legal Notices displayed by works containing it; or c) Prohibiting misrepresentation of the origin of that material, or requiring that modified versions of such material be marked in reasonable ways as different from the original version; or d) Limiting the use for publicity purposes of names of licensors or authors of the material; or e) Declining to grant rights under trademark law for use of some trade names, trademarks, or service marks; or f) Requiring indemnification of licensors and authors of that material by anyone who conveys the material (or modified versions of it) with contractual assumptions of liability to the recipient, for any liability that these contractual assumptions directly impose on those licensors and authors. All other non-permissive additional terms are considered "further restrictions" within the meaning of section 10. If the Program as you received it, or any part of it, contains a notice stating that it is governed by this License along with a term that is a further restriction, you may remove that term. If a license document contains a further restriction but permits relicensing or conveying under this License, you may add to a covered work material governed by the terms of that license document, provided that the further restriction does not survive such relicensing or conveying. If you add terms to a covered work in accord with this section, you must place, in the relevant source files, a statement of the additional terms that apply to those files, or a notice indicating where to find the applicable terms. Additional terms, permissive or non-permissive, may be stated in the form of a separately written license, or stated as exceptions; the above requirements apply either way. 8. Termination. You may not propagate or modify a covered work except as expressly provided under this License. Any attempt otherwise to propagate or modify it is void, and will automatically terminate your rights under this License (including any patent licenses granted under the third paragraph of section 11). However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally terminates your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some reasonable means prior to 60 days after the cessation. Moreover, your license from a particular copyright holder is reinstated permanently if the copyright holder notifies you of the violation by some reasonable means, this is the first time you have received notice of violation of this License (for any work) from that copyright holder, and you cure the violation prior to 30 days after your receipt of the notice. Termination of your rights under this section does not terminate the licenses of parties who have received copies or rights from you under this License. If your rights have been terminated and not permanently reinstated, you do not qualify to receive new licenses for the same material under section 10. 9. Acceptance Not Required for Having Copies. You are not required to accept this License in order to receive or run a copy of the Program. Ancillary propagation of a covered work occurring solely as a consequence of using peer-to-peer transmission to receive a copy likewise does not require acceptance. However, nothing other than this License grants you permission to propagate or modify any covered work. These actions infringe copyright if you do not accept this License. Therefore, by modifying or propagating a covered work, you indicate your acceptance of this License to do so. 10. Automatic Licensing of Downstream Recipients. Each time you convey a covered work, the recipient automatically receives a license from the original licensors, to run, modify and propagate that work, subject to this License. You are not responsible for enforcing compliance by third parties with this License. An "entity transaction" is a transaction transferring control of an organization, or substantially all assets of one, or subdividing an organization, or merging organizations. If propagation of a covered work results from an entity transaction, each party to that transaction who receives a copy of the work also receives whatever licenses to the work the party's predecessor in interest had or could give under the previous paragraph, plus a right to possession of the Corresponding Source of the work from the predecessor in interest, if the predecessor has it or can get it with reasonable efforts. You may not impose any further restrictions on the exercise of the rights granted or affirmed under this License. For example, you may not impose a license fee, royalty, or other charge for exercise of rights granted under this License, and you may not initiate litigation (including a cross-claim or counterclaim in a lawsuit) alleging that any patent claim is infringed by making, using, selling, offering for sale, or importing the Program or any portion of it. 11. Patents. A "contributor" is a copyright holder who authorizes use under this License of the Program or a work on which the Program is based. The work thus licensed is called the contributor's "contributor version". A contributor's "essential patent claims" are all patent claims owned or controlled by the contributor, whether already acquired or hereafter acquired, that would be infringed by some manner, permitted by this License, of making, using, or selling its contributor version, but do not include claims that would be infringed only as a consequence of further modification of the contributor version. For purposes of this definition, "control" includes the right to grant patent sublicenses in a manner consistent with the requirements of this License. Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under the contributor's essential patent claims, to make, use, sell, offer for sale, import and otherwise run, modify and propagate the contents of its contributor version. In the following three paragraphs, a "patent license" is any express agreement or commitment, however denominated, not to enforce a patent (such as an express permission to practice a patent or covenant not to sue for patent infringement). To "grant" such a patent license to a party means to make such an agreement or commitment not to enforce a patent against the party. If you convey a covered work, knowingly relying on a patent license, and the Corresponding Source of the work is not available for anyone to copy, free of charge and under the terms of this License, through a publicly available network server or other readily accessible means, then you must either (1) cause the Corresponding Source to be so available, or (2) arrange to deprive yourself of the benefit of the patent license for this particular work, or (3) arrange, in a manner consistent with the requirements of this License, to extend the patent license to downstream recipients. "Knowingly relying" means you have actual knowledge that, but for the patent license, your conveying the covered work in a country, or your recipient's use of the covered work in a country, would infringe one or more identifiable patents in that country that you have reason to believe are valid. If, pursuant to or in connection with a single transaction or arrangement, you convey, or propagate by procuring conveyance of, a covered work, and grant a patent license to some of the parties receiving the covered work authorizing them to use, propagate, modify or convey a specific copy of the covered work, then the patent license you grant is automatically extended to all recipients of the covered work and works based on it. A patent license is "discriminatory" if it does not include within the scope of its coverage, prohibits the exercise of, or is conditioned on the non-exercise of one or more of the rights that are specifically granted under this License. You may not convey a covered work if you are a party to an arrangement with a third party that is in the business of distributing software, under which you make payment to the third party based on the extent of your activity of conveying the work, and under which the third party grants, to any of the parties who would receive the covered work from you, a discriminatory patent license (a) in connection with copies of the covered work conveyed by you (or copies made from those copies), or (b) primarily for and in connection with specific products or compilations that contain the covered work, unless you entered into that arrangement, or that patent license was granted, prior to 28 March 2007. Nothing in this License shall be construed as excluding or limiting any implied license or other defenses to infringement that may otherwise be available to you under applicable patent law. 12. No Surrender of Others' Freedom. If conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the conditions of this License, they do not excuse you from the conditions of this License. If you cannot convey a covered work so as to satisfy simultaneously your obligations under this License and any other pertinent obligations, then as a consequence you may not convey it at all. For example, if you agree to terms that obligate you to collect a royalty for further conveying from those to whom you convey the Program, the only way you could satisfy both those terms and this License would be to refrain entirely from conveying the Program. 13. Use with the GNU Affero General Public License. Notwithstanding any other provision of this License, you have permission to link or combine any covered work with a work licensed under version 3 of the GNU Affero General Public License into a single combined work, and to convey the resulting work. The terms of this License will continue to apply to the part which is the covered work, but the special requirements of the GNU Affero General Public License, section 13, concerning interaction through a network will apply to the combination as such. 14. Revised Versions of this License. The Free Software Foundation may publish revised and/or new versions of the GNU General Public License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. Each version is given a distinguishing version number. If the Program specifies that a certain numbered version of the GNU General Public License "or any later version" applies to it, you have the option of following the terms and conditions either of that numbered version or of any later version published by the Free Software Foundation. If the Program does not specify a version number of the GNU General Public License, you may choose any version ever published by the Free Software Foundation. If the Program specifies that a proxy can decide which future versions of the GNU General Public License can be used, that proxy's public statement of acceptance of a version permanently authorizes you to choose that version for the Program. Later license versions may give you additional or different permissions. However, no additional obligations are imposed on any author or copyright holder as a result of your choosing to follow a later version. 15. Disclaimer of Warranty. THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION. 16. Limitation of Liability. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. 17. Interpretation of Sections 15 and 16. If the disclaimer of warranty and limitation of liability provided above cannot be given local legal effect according to their terms, reviewing courts shall apply local law that most closely approximates an absolute waiver of all civil liability in connection with the Program, unless a warranty or assumption of liability accompanies a copy of the Program in return for a fee. END OF TERMS AND CONDITIONS How to Apply These Terms to Your New Programs If you develop a new program, and you want it to be of the greatest possible use to the public, the best way to achieve this is to make it free software which everyone can redistribute and change under these terms. To do so, attach the following notices to the program. It is safest to attach them to the start of each source file to most effectively state the exclusion of warranty; and each file should have at least the "copyright" line and a pointer to where the full notice is found. <one line to give the program's name and a brief idea of what it does.> Copyright (C) <year> <name of author> This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. Also add information on how to contact you by electronic and paper mail. If the program does terminal interaction, make it output a short notice like this when it starts in an interactive mode: <program> Copyright (C) <year> <name of author> This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'. This is free software, and you are welcome to redistribute it under certain conditions; type `show c' for details. The hypothetical commands `show w' and `show c' should show the appropriate parts of the General Public License. Of course, your program's commands might be different; for a GUI interface, you would use an "about box". You should also get your employer (if you work as a programmer) or school, if any, to sign a "copyright disclaimer" for the program, if necessary. For more information on this, and how to apply and follow the GNU GPL, see <http://www.gnu.org/licenses/>. The GNU General Public License does not permit incorporating your program into proprietary programs. If your program is a subroutine library, you may consider it more useful to permit linking proprietary applications with the library. If this is what you want to do, use the GNU Lesser General Public License instead of this License. But first, please read <http://www.gnu.org/philosophy/why-not-lgpl.html>. */
File 5 of 7: GenericSwapFacetV3
// SPDX-License-Identifier: MIT pragma solidity 0.8.17; import { ILiFi } from "../Interfaces/ILiFi.sol"; import { LibUtil } from "../Libraries/LibUtil.sol"; import { LibSwap } from "../Libraries/LibSwap.sol"; import { LibAllowList } from "../Libraries/LibAllowList.sol"; import { LibAsset } from "../Libraries/LibAsset.sol"; import { ContractCallNotAllowed, CumulativeSlippageTooHigh, NativeAssetTransferFailed } from "../Errors/GenericErrors.sol"; import { ERC20, SafeTransferLib } from "solmate/utils/SafeTransferLib.sol"; import { console2 } from "forge-std/console2.sol"; /// @title GenericSwapFacetV3 /// @author LI.FI (https://li.fi) /// @notice Provides gas-optimized functionality for fee collection and for swapping through any APPROVED DEX /// @dev Can only execute calldata for APPROVED function selectors /// @custom:version 1.0.0 contract GenericSwapFacetV3 is ILiFi { using SafeTransferLib for ERC20; /// External Methods /// // SINGLE SWAPS /// @notice Performs a single swap from an ERC20 token to another ERC20 token /// @param _transactionId the transaction id associated with the operation /// @param _integrator the name of the integrator /// @param _referrer the address of the referrer /// @param _receiver the address to receive the swapped tokens into (also excess tokens) /// @param _minAmountOut the minimum amount of the final asset to receive /// @param _swapData an object containing swap related data to perform swaps before bridging function swapTokensSingleV3ERC20ToERC20( bytes32 _transactionId, string calldata _integrator, string calldata _referrer, address payable _receiver, uint256 _minAmountOut, LibSwap.SwapData calldata _swapData ) external { _depositAndSwapERC20Single(_swapData, _receiver); address receivingAssetId = _swapData.receivingAssetId; address sendingAssetId = _swapData.sendingAssetId; // get contract's balance (which will be sent in full to user) uint256 amountReceived = ERC20(receivingAssetId).balanceOf( address(this) ); // ensure that minAmountOut was received if (amountReceived < _minAmountOut) revert CumulativeSlippageTooHigh(_minAmountOut, amountReceived); // transfer funds to receiver ERC20(receivingAssetId).safeTransfer(_receiver, amountReceived); // emit events (both required for tracking) uint256 fromAmount = _swapData.fromAmount; emit LibSwap.AssetSwapped( _transactionId, _swapData.callTo, sendingAssetId, receivingAssetId, fromAmount, amountReceived, block.timestamp ); emit ILiFi.LiFiGenericSwapCompleted( _transactionId, _integrator, _referrer, _receiver, sendingAssetId, receivingAssetId, fromAmount, amountReceived ); } /// @notice Performs a single swap from an ERC20 token to the network's native token /// @param _transactionId the transaction id associated with the operation /// @param _integrator the name of the integrator /// @param _referrer the address of the referrer /// @param _receiver the address to receive the swapped tokens into (also excess tokens) /// @param _minAmountOut the minimum amount of the final asset to receive /// @param _swapData an object containing swap related data to perform swaps before bridging function swapTokensSingleV3ERC20ToNative( bytes32 _transactionId, string calldata _integrator, string calldata _referrer, address payable _receiver, uint256 _minAmountOut, LibSwap.SwapData calldata _swapData ) external { _depositAndSwapERC20Single(_swapData, _receiver); // get contract's balance (which will be sent in full to user) uint256 amountReceived = address(this).balance; // ensure that minAmountOut was received if (amountReceived < _minAmountOut) revert CumulativeSlippageTooHigh(_minAmountOut, amountReceived); // transfer funds to receiver // solhint-disable-next-line avoid-low-level-calls (bool success, ) = _receiver.call{ value: amountReceived }(""); if (!success) revert NativeAssetTransferFailed(); // emit events (both required for tracking) address sendingAssetId = _swapData.sendingAssetId; uint256 fromAmount = _swapData.fromAmount; emit LibSwap.AssetSwapped( _transactionId, _swapData.callTo, sendingAssetId, address(0), fromAmount, amountReceived, block.timestamp ); emit ILiFi.LiFiGenericSwapCompleted( _transactionId, _integrator, _referrer, _receiver, sendingAssetId, address(0), fromAmount, amountReceived ); } /// @notice Performs a single swap from the network's native token to ERC20 token /// @param _transactionId the transaction id associated with the operation /// @param _integrator the name of the integrator /// @param _referrer the address of the referrer /// @param _receiver the address to receive the swapped tokens into (also excess tokens) /// @param _minAmountOut the minimum amount of the final asset to receive /// @param _swapData an object containing swap related data to perform swaps before bridging function swapTokensSingleV3NativeToERC20( bytes32 _transactionId, string calldata _integrator, string calldata _referrer, address payable _receiver, uint256 _minAmountOut, LibSwap.SwapData calldata _swapData ) external payable { address callTo = _swapData.callTo; // ensure that contract (callTo) and function selector are whitelisted if ( !(LibAllowList.contractIsAllowed(callTo) && LibAllowList.selectorIsAllowed(bytes4(_swapData.callData[:4]))) ) revert ContractCallNotAllowed(); // execute swap // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory res) = callTo.call{ value: msg.value }( _swapData.callData ); if (!success) { LibUtil.revertWith(res); } _returnPositiveSlippageNative(_receiver); // get contract's balance (which will be sent in full to user) address receivingAssetId = _swapData.receivingAssetId; uint256 amountReceived = ERC20(receivingAssetId).balanceOf( address(this) ); // ensure that minAmountOut was received if (amountReceived < _minAmountOut) revert CumulativeSlippageTooHigh(_minAmountOut, amountReceived); // transfer funds to receiver ERC20(receivingAssetId).safeTransfer(_receiver, amountReceived); // emit events (both required for tracking) uint256 fromAmount = _swapData.fromAmount; emit LibSwap.AssetSwapped( _transactionId, callTo, address(0), receivingAssetId, fromAmount, amountReceived, block.timestamp ); emit ILiFi.LiFiGenericSwapCompleted( _transactionId, _integrator, _referrer, _receiver, address(0), receivingAssetId, fromAmount, amountReceived ); } // MULTIPLE SWAPS /// @notice Performs multiple swaps in one transaction, starting with ERC20 and ending with native /// @param _transactionId the transaction id associated with the operation /// @param _integrator the name of the integrator /// @param _referrer the address of the referrer /// @param _receiver the address to receive the swapped tokens into (also excess tokens) /// @param _minAmountOut the minimum amount of the final asset to receive /// @param _swapData an object containing swap related data to perform swaps before bridging function swapTokensMultipleV3ERC20ToNative( bytes32 _transactionId, string calldata _integrator, string calldata _referrer, address payable _receiver, uint256 _minAmountOut, LibSwap.SwapData[] calldata _swapData ) external { _depositMultipleERC20Tokens(_swapData); _executeSwaps(_swapData, _transactionId, _receiver); _transferNativeTokensAndEmitEvent( _transactionId, _integrator, _referrer, _receiver, _minAmountOut, _swapData ); } /// @notice Performs multiple swaps in one transaction, starting with ERC20 and ending with ERC20 /// @param _transactionId the transaction id associated with the operation /// @param _integrator the name of the integrator /// @param _referrer the address of the referrer /// @param _receiver the address to receive the swapped tokens into (also excess tokens) /// @param _minAmountOut the minimum amount of the final asset to receive /// @param _swapData an object containing swap related data to perform swaps before bridging function swapTokensMultipleV3ERC20ToERC20( bytes32 _transactionId, string calldata _integrator, string calldata _referrer, address payable _receiver, uint256 _minAmountOut, LibSwap.SwapData[] calldata _swapData ) external { _depositMultipleERC20Tokens(_swapData); _executeSwaps(_swapData, _transactionId, _receiver); _transferERC20TokensAndEmitEvent( _transactionId, _integrator, _referrer, _receiver, _minAmountOut, _swapData ); } /// @notice Performs multiple swaps in one transaction, starting with native and ending with ERC20 /// @param _transactionId the transaction id associated with the operation /// @param _integrator the name of the integrator /// @param _referrer the address of the referrer /// @param _receiver the address to receive the swapped tokens into (also excess tokens) /// @param _minAmountOut the minimum amount of the final asset to receive /// @param _swapData an object containing swap related data to perform swaps before bridging function swapTokensMultipleV3NativeToERC20( bytes32 _transactionId, string calldata _integrator, string calldata _referrer, address payable _receiver, uint256 _minAmountOut, LibSwap.SwapData[] calldata _swapData ) external payable { _executeSwaps(_swapData, _transactionId, _receiver); _transferERC20TokensAndEmitEvent( _transactionId, _integrator, _referrer, _receiver, _minAmountOut, _swapData ); } /// Private helper methods /// function _depositMultipleERC20Tokens( LibSwap.SwapData[] calldata _swapData ) private { // initialize variables before loop to save gas uint256 numOfSwaps = _swapData.length; LibSwap.SwapData calldata currentSwap; // go through all swaps and deposit tokens, where required for (uint256 i = 0; i < numOfSwaps; ) { currentSwap = _swapData[i]; if (currentSwap.requiresDeposit) { // we will not check msg.value as tx will fail anyway if not enough value available // thus we only deposit ERC20 tokens here ERC20(currentSwap.sendingAssetId).safeTransferFrom( msg.sender, address(this), currentSwap.fromAmount ); } unchecked { ++i; } } } function _depositAndSwapERC20Single( LibSwap.SwapData calldata _swapData, address _receiver ) private { ERC20 sendingAsset = ERC20(_swapData.sendingAssetId); uint256 fromAmount = _swapData.fromAmount; // deposit funds sendingAsset.safeTransferFrom(msg.sender, address(this), fromAmount); // ensure that contract (callTo) and function selector are whitelisted address callTo = _swapData.callTo; address approveTo = _swapData.approveTo; bytes calldata callData = _swapData.callData; if ( !(LibAllowList.contractIsAllowed(callTo) && LibAllowList.selectorIsAllowed(bytes4(callData[:4]))) ) revert ContractCallNotAllowed(); // ensure that approveTo address is also whitelisted if it differs from callTo if (approveTo != callTo && !LibAllowList.contractIsAllowed(approveTo)) revert ContractCallNotAllowed(); // check if the current allowance is sufficient uint256 currentAllowance = sendingAsset.allowance( address(this), approveTo ); // check if existing allowance is sufficient if (currentAllowance < fromAmount) { // check if is non-zero, set to 0 if not if (currentAllowance != 0) sendingAsset.safeApprove(approveTo, 0); // set allowance to uint max to avoid future approvals sendingAsset.safeApprove(approveTo, type(uint256).max); } // execute swap // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory res) = callTo.call(callData); if (!success) { LibUtil.revertWith(res); } _returnPositiveSlippageERC20(sendingAsset, _receiver); } // @dev: this function will not work with swapData that has multiple swaps with the same sendingAssetId // as the _returnPositiveSlippage... functionality will refund all remaining tokens after the first swap // We accept this fact since the use case is not common yet. As an alternative you can always use the // "swapTokensGeneric" function of the original GenericSwapFacet function _executeSwaps( LibSwap.SwapData[] calldata _swapData, bytes32 _transactionId, address _receiver ) private { // initialize variables before loop to save gas uint256 numOfSwaps = _swapData.length; ERC20 sendingAsset; address sendingAssetId; address receivingAssetId; LibSwap.SwapData calldata currentSwap; bool success; bytes memory returnData; uint256 currentAllowance; // go through all swaps for (uint256 i = 0; i < numOfSwaps; ) { currentSwap = _swapData[i]; sendingAssetId = currentSwap.sendingAssetId; sendingAsset = ERC20(currentSwap.sendingAssetId); receivingAssetId = currentSwap.receivingAssetId; // check if callTo address is whitelisted if ( !LibAllowList.contractIsAllowed(currentSwap.callTo) || !LibAllowList.selectorIsAllowed( bytes4(currentSwap.callData[:4]) ) ) { revert ContractCallNotAllowed(); } // if approveTo address is different to callTo, check if it's whitelisted, too if ( currentSwap.approveTo != currentSwap.callTo && !LibAllowList.contractIsAllowed(currentSwap.approveTo) ) { revert ContractCallNotAllowed(); } if (LibAsset.isNativeAsset(sendingAssetId)) { // Native // execute the swap (success, returnData) = currentSwap.callTo.call{ value: currentSwap.fromAmount }(currentSwap.callData); if (!success) { LibUtil.revertWith(returnData); } // return any potential leftover sendingAsset tokens // but only for swaps, not for fee collections (otherwise the whole amount would be returned before the actual swap) if (sendingAssetId != receivingAssetId) _returnPositiveSlippageNative(_receiver); } else { // ERC20 // check if the current allowance is sufficient currentAllowance = sendingAsset.allowance( address(this), currentSwap.approveTo ); if (currentAllowance < currentSwap.fromAmount) { sendingAsset.safeApprove(currentSwap.approveTo, 0); sendingAsset.safeApprove( currentSwap.approveTo, type(uint256).max ); } // execute the swap (success, returnData) = currentSwap.callTo.call( currentSwap.callData ); if (!success) { LibUtil.revertWith(returnData); } // return any potential leftover sendingAsset tokens // but only for swaps, not for fee collections (otherwise the whole amount would be returned before the actual swap) if (sendingAssetId != receivingAssetId) _returnPositiveSlippageERC20(sendingAsset, _receiver); } // emit AssetSwapped event // @dev: this event might in some cases emit inaccurate information. e.g. if a token is swapped and this contract already held a balance of the receivingAsset // then the event will show swapOutputAmount + existingBalance as toAmount. We accept this potential inaccuracy in return for gas savings and may update this // at a later stage when the described use case becomes more common emit LibSwap.AssetSwapped( _transactionId, currentSwap.callTo, sendingAssetId, receivingAssetId, currentSwap.fromAmount, LibAsset.isNativeAsset(receivingAssetId) ? address(this).balance : ERC20(receivingAssetId).balanceOf(address(this)), block.timestamp ); unchecked { ++i; } } } function _transferERC20TokensAndEmitEvent( bytes32 _transactionId, string calldata _integrator, string calldata _referrer, address payable _receiver, uint256 _minAmountOut, LibSwap.SwapData[] calldata _swapData ) private { // determine the end result of the swap address finalAssetId = _swapData[_swapData.length - 1] .receivingAssetId; uint256 amountReceived = ERC20(finalAssetId).balanceOf(address(this)); // make sure minAmountOut was received if (amountReceived < _minAmountOut) revert CumulativeSlippageTooHigh(_minAmountOut, amountReceived); // transfer to receiver ERC20(finalAssetId).safeTransfer(_receiver, amountReceived); // emit event emit ILiFi.LiFiGenericSwapCompleted( _transactionId, _integrator, _referrer, _receiver, _swapData[0].sendingAssetId, finalAssetId, _swapData[0].fromAmount, amountReceived ); } function _transferNativeTokensAndEmitEvent( bytes32 _transactionId, string calldata _integrator, string calldata _referrer, address payable _receiver, uint256 _minAmountOut, LibSwap.SwapData[] calldata _swapData ) private { console2.log("in _transferNativeTokensAndEmitEvent"); uint256 amountReceived = address(this).balance; // make sure minAmountOut was received if (amountReceived < _minAmountOut) revert CumulativeSlippageTooHigh(_minAmountOut, amountReceived); // transfer funds to receiver // solhint-disable-next-line avoid-low-level-calls (bool success, ) = _receiver.call{ value: amountReceived }(""); if (!success) { console2.log("HEYA"); revert NativeAssetTransferFailed(); } // emit event emit ILiFi.LiFiGenericSwapCompleted( _transactionId, _integrator, _referrer, _receiver, _swapData[0].sendingAssetId, address(0), _swapData[0].fromAmount, amountReceived ); } // returns any unused 'sendingAsset' tokens (=> positive slippage) to the receiver address function _returnPositiveSlippageERC20( ERC20 sendingAsset, address receiver ) private { // if a balance exists in sendingAsset, it must be positive slippage if (address(sendingAsset) != address(0)) { uint256 sendingAssetBalance = sendingAsset.balanceOf( address(this) ); if (sendingAssetBalance > 0) { sendingAsset.safeTransfer(receiver, sendingAssetBalance); } } } // returns any unused native tokens (=> positive slippage) to the receiver address function _returnPositiveSlippageNative(address receiver) private { // if a native balance exists in sendingAsset, it must be positive slippage uint256 nativeBalance = address(this).balance; if (nativeBalance > 0) { // solhint-disable-next-line avoid-low-level-calls (bool success, ) = receiver.call{ value: nativeBalance }(""); if (!success) revert NativeAssetTransferFailed(); } } } // SPDX-License-Identifier: MIT pragma solidity 0.8.17; interface ILiFi { /// Structs /// struct BridgeData { bytes32 transactionId; string bridge; string integrator; address referrer; address sendingAssetId; address receiver; uint256 minAmount; uint256 destinationChainId; bool hasSourceSwaps; bool hasDestinationCall; } /// Events /// event LiFiTransferStarted(ILiFi.BridgeData bridgeData); event LiFiTransferCompleted( bytes32 indexed transactionId, address receivingAssetId, address receiver, uint256 amount, uint256 timestamp ); event LiFiTransferRecovered( bytes32 indexed transactionId, address receivingAssetId, address receiver, uint256 amount, uint256 timestamp ); event LiFiGenericSwapCompleted( bytes32 indexed transactionId, string integrator, string referrer, address receiver, address fromAssetId, address toAssetId, uint256 fromAmount, uint256 toAmount ); // Deprecated but kept here to include in ABI to parse historic events event LiFiSwappedGeneric( bytes32 indexed transactionId, string integrator, string referrer, address fromAssetId, address toAssetId, uint256 fromAmount, uint256 toAmount ); } // SPDX-License-Identifier: MIT pragma solidity 0.8.17; import "./LibBytes.sol"; library LibUtil { using LibBytes for bytes; function getRevertMsg( bytes memory _res ) internal pure returns (string memory) { // If the _res length is less than 68, then the transaction failed silently (without a revert message) if (_res.length < 68) return "Transaction reverted silently"; bytes memory revertData = _res.slice(4, _res.length - 4); // Remove the selector which is the first 4 bytes return abi.decode(revertData, (string)); // All that remains is the revert string } /// @notice Determines whether the given address is the zero address /// @param addr The address to verify /// @return Boolean indicating if the address is the zero address function isZeroAddress(address addr) internal pure returns (bool) { return addr == address(0); } function revertWith(bytes memory data) internal pure { assembly { let dataSize := mload(data) // Load the size of the data let dataPtr := add(data, 0x20) // Advance data pointer to the next word revert(dataPtr, dataSize) // Revert with the given data } } } // SPDX-License-Identifier: MIT pragma solidity 0.8.17; import { LibAsset } from "./LibAsset.sol"; import { LibUtil } from "./LibUtil.sol"; import { InvalidContract, NoSwapFromZeroBalance, InsufficientBalance } from "../Errors/GenericErrors.sol"; import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol"; library LibSwap { struct SwapData { address callTo; address approveTo; address sendingAssetId; address receivingAssetId; uint256 fromAmount; bytes callData; bool requiresDeposit; } event AssetSwapped( bytes32 transactionId, address dex, address fromAssetId, address toAssetId, uint256 fromAmount, uint256 toAmount, uint256 timestamp ); function swap(bytes32 transactionId, SwapData calldata _swap) internal { if (!LibAsset.isContract(_swap.callTo)) revert InvalidContract(); uint256 fromAmount = _swap.fromAmount; if (fromAmount == 0) revert NoSwapFromZeroBalance(); uint256 nativeValue = LibAsset.isNativeAsset(_swap.sendingAssetId) ? _swap.fromAmount : 0; uint256 initialSendingAssetBalance = LibAsset.getOwnBalance( _swap.sendingAssetId ); uint256 initialReceivingAssetBalance = LibAsset.getOwnBalance( _swap.receivingAssetId ); if (nativeValue == 0) { LibAsset.maxApproveERC20( IERC20(_swap.sendingAssetId), _swap.approveTo, _swap.fromAmount ); } if (initialSendingAssetBalance < _swap.fromAmount) { revert InsufficientBalance( _swap.fromAmount, initialSendingAssetBalance ); } // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory res) = _swap.callTo.call{ value: nativeValue }(_swap.callData); if (!success) { LibUtil.revertWith(res); } uint256 newBalance = LibAsset.getOwnBalance(_swap.receivingAssetId); emit AssetSwapped( transactionId, _swap.callTo, _swap.sendingAssetId, _swap.receivingAssetId, _swap.fromAmount, newBalance > initialReceivingAssetBalance ? newBalance - initialReceivingAssetBalance : newBalance, block.timestamp ); } } // SPDX-License-Identifier: MIT pragma solidity 0.8.17; import { InvalidContract } from "../Errors/GenericErrors.sol"; /// @title Lib Allow List /// @author LI.FI (https://li.fi) /// @notice Library for managing and accessing the conract address allow list library LibAllowList { /// Storage /// bytes32 internal constant NAMESPACE = keccak256("com.lifi.library.allow.list"); struct AllowListStorage { mapping(address => bool) allowlist; mapping(bytes4 => bool) selectorAllowList; address[] contracts; } /// @dev Adds a contract address to the allow list /// @param _contract the contract address to add function addAllowedContract(address _contract) internal { _checkAddress(_contract); AllowListStorage storage als = _getStorage(); if (als.allowlist[_contract]) return; als.allowlist[_contract] = true; als.contracts.push(_contract); } /// @dev Checks whether a contract address has been added to the allow list /// @param _contract the contract address to check function contractIsAllowed( address _contract ) internal view returns (bool) { return _getStorage().allowlist[_contract]; } /// @dev Remove a contract address from the allow list /// @param _contract the contract address to remove function removeAllowedContract(address _contract) internal { AllowListStorage storage als = _getStorage(); if (!als.allowlist[_contract]) { return; } als.allowlist[_contract] = false; uint256 length = als.contracts.length; // Find the contract in the list for (uint256 i = 0; i < length; i++) { if (als.contracts[i] == _contract) { // Move the last element into the place to delete als.contracts[i] = als.contracts[length - 1]; // Remove the last element als.contracts.pop(); break; } } } /// @dev Fetch contract addresses from the allow list function getAllowedContracts() internal view returns (address[] memory) { return _getStorage().contracts; } /// @dev Add a selector to the allow list /// @param _selector the selector to add function addAllowedSelector(bytes4 _selector) internal { _getStorage().selectorAllowList[_selector] = true; } /// @dev Removes a selector from the allow list /// @param _selector the selector to remove function removeAllowedSelector(bytes4 _selector) internal { _getStorage().selectorAllowList[_selector] = false; } /// @dev Returns if selector has been added to the allow list /// @param _selector the selector to check function selectorIsAllowed(bytes4 _selector) internal view returns (bool) { return _getStorage().selectorAllowList[_selector]; } /// @dev Fetch local storage struct function _getStorage() internal pure returns (AllowListStorage storage als) { bytes32 position = NAMESPACE; // solhint-disable-next-line no-inline-assembly assembly { als.slot := position } } /// @dev Contains business logic for validating a contract address. /// @param _contract address of the dex to check function _checkAddress(address _contract) private view { if (_contract == address(0)) revert InvalidContract(); if (_contract.code.length == 0) revert InvalidContract(); } } // SPDX-License-Identifier: UNLICENSED pragma solidity 0.8.17; import { InsufficientBalance, NullAddrIsNotAnERC20Token, NullAddrIsNotAValidSpender, NoTransferToNullAddress, InvalidAmount, NativeAssetTransferFailed } from "../Errors/GenericErrors.sol"; import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol"; import "@openzeppelin/contracts/token/ERC20/IERC20.sol"; import { LibSwap } from "./LibSwap.sol"; /// @title LibAsset /// @notice This library contains helpers for dealing with onchain transfers /// of assets, including accounting for the native asset `assetId` /// conventions and any noncompliant ERC20 transfers library LibAsset { uint256 private constant MAX_UINT = type(uint256).max; address internal constant NULL_ADDRESS = address(0); /// @dev All native assets use the empty address for their asset id /// by convention address internal constant NATIVE_ASSETID = NULL_ADDRESS; //address(0) /// @notice Gets the balance of the inheriting contract for the given asset /// @param assetId The asset identifier to get the balance of /// @return Balance held by contracts using this library function getOwnBalance(address assetId) internal view returns (uint256) { return isNativeAsset(assetId) ? address(this).balance : IERC20(assetId).balanceOf(address(this)); } /// @notice Transfers ether from the inheriting contract to a given /// recipient /// @param recipient Address to send ether to /// @param amount Amount to send to given recipient function transferNativeAsset( address payable recipient, uint256 amount ) private { if (recipient == NULL_ADDRESS) revert NoTransferToNullAddress(); if (amount > address(this).balance) revert InsufficientBalance(amount, address(this).balance); // solhint-disable-next-line avoid-low-level-calls (bool success, ) = recipient.call{ value: amount }(""); if (!success) revert NativeAssetTransferFailed(); } /// @notice If the current allowance is insufficient, the allowance for a given spender /// is set to MAX_UINT. /// @param assetId Token address to transfer /// @param spender Address to give spend approval to /// @param amount Amount to approve for spending function maxApproveERC20( IERC20 assetId, address spender, uint256 amount ) internal { if (isNativeAsset(address(assetId))) { return; } if (spender == NULL_ADDRESS) { revert NullAddrIsNotAValidSpender(); } if (assetId.allowance(address(this), spender) < amount) { SafeERC20.safeApprove(IERC20(assetId), spender, 0); SafeERC20.safeApprove(IERC20(assetId), spender, MAX_UINT); } } /// @notice Transfers tokens from the inheriting contract to a given /// recipient /// @param assetId Token address to transfer /// @param recipient Address to send token to /// @param amount Amount to send to given recipient function transferERC20( address assetId, address recipient, uint256 amount ) private { if (isNativeAsset(assetId)) { revert NullAddrIsNotAnERC20Token(); } if (recipient == NULL_ADDRESS) { revert NoTransferToNullAddress(); } uint256 assetBalance = IERC20(assetId).balanceOf(address(this)); if (amount > assetBalance) { revert InsufficientBalance(amount, assetBalance); } SafeERC20.safeTransfer(IERC20(assetId), recipient, amount); } /// @notice Transfers tokens from a sender to a given recipient /// @param assetId Token address to transfer /// @param from Address of sender/owner /// @param to Address of recipient/spender /// @param amount Amount to transfer from owner to spender function transferFromERC20( address assetId, address from, address to, uint256 amount ) internal { if (isNativeAsset(assetId)) { revert NullAddrIsNotAnERC20Token(); } if (to == NULL_ADDRESS) { revert NoTransferToNullAddress(); } IERC20 asset = IERC20(assetId); uint256 prevBalance = asset.balanceOf(to); SafeERC20.safeTransferFrom(asset, from, to, amount); if (asset.balanceOf(to) - prevBalance != amount) { revert InvalidAmount(); } } function depositAsset(address assetId, uint256 amount) internal { if (amount == 0) revert InvalidAmount(); if (isNativeAsset(assetId)) { if (msg.value < amount) revert InvalidAmount(); } else { uint256 balance = IERC20(assetId).balanceOf(msg.sender); if (balance < amount) revert InsufficientBalance(amount, balance); transferFromERC20(assetId, msg.sender, address(this), amount); } } function depositAssets(LibSwap.SwapData[] calldata swaps) internal { for (uint256 i = 0; i < swaps.length; ) { LibSwap.SwapData calldata swap = swaps[i]; if (swap.requiresDeposit) { depositAsset(swap.sendingAssetId, swap.fromAmount); } unchecked { i++; } } } /// @notice Determines whether the given assetId is the native asset /// @param assetId The asset identifier to evaluate /// @return Boolean indicating if the asset is the native asset function isNativeAsset(address assetId) internal pure returns (bool) { return assetId == NATIVE_ASSETID; } /// @notice Wrapper function to transfer a given asset (native or erc20) to /// some recipient. Should handle all non-compliant return value /// tokens as well by using the SafeERC20 contract by open zeppelin. /// @param assetId Asset id for transfer (address(0) for native asset, /// token address for erc20s) /// @param recipient Address to send asset to /// @param amount Amount to send to given recipient function transferAsset( address assetId, address payable recipient, uint256 amount ) internal { isNativeAsset(assetId) ? transferNativeAsset(recipient, amount) : transferERC20(assetId, recipient, amount); } /// @dev Checks whether the given address is a contract and contains code function isContract(address _contractAddr) internal view returns (bool) { uint256 size; // solhint-disable-next-line no-inline-assembly assembly { size := extcodesize(_contractAddr) } return size > 0; } } // SPDX-License-Identifier: MIT pragma solidity 0.8.17; error AlreadyInitialized(); error CannotAuthoriseSelf(); error CannotBridgeToSameNetwork(); error ContractCallNotAllowed(); error CumulativeSlippageTooHigh(uint256 minAmount, uint256 receivedAmount); error ExternalCallFailed(); error InformationMismatch(); error InsufficientBalance(uint256 required, uint256 balance); error InvalidAmount(); error InvalidCallData(); error InvalidConfig(); error InvalidContract(); error InvalidDestinationChain(); error InvalidFallbackAddress(); error InvalidReceiver(); error InvalidSendingToken(); error NativeAssetNotSupported(); error NativeAssetTransferFailed(); error NoSwapDataProvided(); error NoSwapFromZeroBalance(); error NotAContract(); error NotInitialized(); error NoTransferToNullAddress(); error NullAddrIsNotAnERC20Token(); error NullAddrIsNotAValidSpender(); error OnlyContractOwner(); error RecoveryAddressCannotBeZero(); error ReentrancyError(); error TokenNotSupported(); error UnAuthorized(); error UnsupportedChainId(uint256 chainId); error WithdrawFailed(); error ZeroAmount(); // SPDX-License-Identifier: AGPL-3.0-only pragma solidity >=0.8.0; import {ERC20} from "../tokens/ERC20.sol"; /// @notice Safe ETH and ERC20 transfer library that gracefully handles missing return values. /// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/SafeTransferLib.sol) /// @dev Use with caution! Some functions in this library knowingly create dirty bits at the destination of the free memory pointer. /// @dev Note that none of the functions in this library check that a token has code at all! That responsibility is delegated to the caller. library SafeTransferLib { /*////////////////////////////////////////////////////////////// ETH OPERATIONS //////////////////////////////////////////////////////////////*/ function safeTransferETH(address to, uint256 amount) internal { bool success; /// @solidity memory-safe-assembly assembly { // Transfer the ETH and store if it succeeded or not. success := call(gas(), to, amount, 0, 0, 0, 0) } require(success, "ETH_TRANSFER_FAILED"); } /*////////////////////////////////////////////////////////////// ERC20 OPERATIONS //////////////////////////////////////////////////////////////*/ function safeTransferFrom( ERC20 token, address from, address to, uint256 amount ) internal { bool success; /// @solidity memory-safe-assembly assembly { // Get a pointer to some free memory. let freeMemoryPointer := mload(0x40) // Write the abi-encoded calldata into memory, beginning with the function selector. mstore(freeMemoryPointer, 0x23b872dd00000000000000000000000000000000000000000000000000000000) mstore(add(freeMemoryPointer, 4), from) // Append the "from" argument. mstore(add(freeMemoryPointer, 36), to) // Append the "to" argument. mstore(add(freeMemoryPointer, 68), amount) // Append the "amount" argument. success := and( // Set success to whether the call reverted, if not we check it either // returned exactly 1 (can't just be non-zero data), or had no return data. or(and(eq(mload(0), 1), gt(returndatasize(), 31)), iszero(returndatasize())), // We use 100 because the length of our calldata totals up like so: 4 + 32 * 3. // We use 0 and 32 to copy up to 32 bytes of return data into the scratch space. // Counterintuitively, this call must be positioned second to the or() call in the // surrounding and() call or else returndatasize() will be zero during the computation. call(gas(), token, 0, freeMemoryPointer, 100, 0, 32) ) } require(success, "TRANSFER_FROM_FAILED"); } function safeTransfer( ERC20 token, address to, uint256 amount ) internal { bool success; /// @solidity memory-safe-assembly assembly { // Get a pointer to some free memory. let freeMemoryPointer := mload(0x40) // Write the abi-encoded calldata into memory, beginning with the function selector. mstore(freeMemoryPointer, 0xa9059cbb00000000000000000000000000000000000000000000000000000000) mstore(add(freeMemoryPointer, 4), to) // Append the "to" argument. mstore(add(freeMemoryPointer, 36), amount) // Append the "amount" argument. success := and( // Set success to whether the call reverted, if not we check it either // returned exactly 1 (can't just be non-zero data), or had no return data. or(and(eq(mload(0), 1), gt(returndatasize(), 31)), iszero(returndatasize())), // We use 68 because the length of our calldata totals up like so: 4 + 32 * 2. // We use 0 and 32 to copy up to 32 bytes of return data into the scratch space. // Counterintuitively, this call must be positioned second to the or() call in the // surrounding and() call or else returndatasize() will be zero during the computation. call(gas(), token, 0, freeMemoryPointer, 68, 0, 32) ) } require(success, "TRANSFER_FAILED"); } function safeApprove( ERC20 token, address to, uint256 amount ) internal { bool success; /// @solidity memory-safe-assembly assembly { // Get a pointer to some free memory. let freeMemoryPointer := mload(0x40) // Write the abi-encoded calldata into memory, beginning with the function selector. mstore(freeMemoryPointer, 0x095ea7b300000000000000000000000000000000000000000000000000000000) mstore(add(freeMemoryPointer, 4), to) // Append the "to" argument. mstore(add(freeMemoryPointer, 36), amount) // Append the "amount" argument. success := and( // Set success to whether the call reverted, if not we check it either // returned exactly 1 (can't just be non-zero data), or had no return data. or(and(eq(mload(0), 1), gt(returndatasize(), 31)), iszero(returndatasize())), // We use 68 because the length of our calldata totals up like so: 4 + 32 * 2. // We use 0 and 32 to copy up to 32 bytes of return data into the scratch space. // Counterintuitively, this call must be positioned second to the or() call in the // surrounding and() call or else returndatasize() will be zero during the computation. call(gas(), token, 0, freeMemoryPointer, 68, 0, 32) ) } require(success, "APPROVE_FAILED"); } } // SPDX-License-Identifier: MIT pragma solidity >=0.4.22 <0.9.0; /// @dev The original console.sol uses `int` and `uint` for computing function selectors, but it should /// use `int256` and `uint256`. This modified version fixes that. This version is recommended /// over `console.sol` if you don't need compatibility with Hardhat as the logs will show up in /// forge stack traces. If you do need compatibility with Hardhat, you must use `console.sol`. /// Reference: https://github.com/NomicFoundation/hardhat/issues/2178 library console2 { address constant CONSOLE_ADDRESS = address(0x000000000000000000636F6e736F6c652e6c6f67); function _castLogPayloadViewToPure( function(bytes memory) internal view fnIn ) internal pure returns (function(bytes memory) internal pure fnOut) { assembly { fnOut := fnIn } } function _sendLogPayload(bytes memory payload) internal pure { _castLogPayloadViewToPure(_sendLogPayloadView)(payload); } function _sendLogPayloadView(bytes memory payload) private view { uint256 payloadLength = payload.length; address consoleAddress = CONSOLE_ADDRESS; /// @solidity memory-safe-assembly assembly { let payloadStart := add(payload, 32) let r := staticcall(gas(), consoleAddress, payloadStart, payloadLength, 0, 0) } } function log() internal pure { _sendLogPayload(abi.encodeWithSignature("log()")); } function logInt(int256 p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(int256)", p0)); } function logUint(uint256 p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256)", p0)); } function logString(string memory p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string)", p0)); } function logBool(bool p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool)", p0)); } function logAddress(address p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address)", p0)); } function logBytes(bytes memory p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bytes)", p0)); } function logBytes1(bytes1 p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bytes1)", p0)); } function logBytes2(bytes2 p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bytes2)", p0)); } function logBytes3(bytes3 p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bytes3)", p0)); } function logBytes4(bytes4 p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bytes4)", p0)); } function logBytes5(bytes5 p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bytes5)", p0)); } function logBytes6(bytes6 p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bytes6)", p0)); } function logBytes7(bytes7 p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bytes7)", p0)); } function logBytes8(bytes8 p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bytes8)", p0)); } function logBytes9(bytes9 p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bytes9)", p0)); } function logBytes10(bytes10 p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bytes10)", p0)); } function logBytes11(bytes11 p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bytes11)", p0)); } function logBytes12(bytes12 p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bytes12)", p0)); } function logBytes13(bytes13 p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bytes13)", p0)); } function logBytes14(bytes14 p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bytes14)", p0)); } function logBytes15(bytes15 p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bytes15)", p0)); } function logBytes16(bytes16 p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bytes16)", p0)); } function logBytes17(bytes17 p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bytes17)", p0)); } function logBytes18(bytes18 p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bytes18)", p0)); } function logBytes19(bytes19 p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bytes19)", p0)); } function logBytes20(bytes20 p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bytes20)", p0)); } function logBytes21(bytes21 p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bytes21)", p0)); } function logBytes22(bytes22 p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bytes22)", p0)); } function logBytes23(bytes23 p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bytes23)", p0)); } function logBytes24(bytes24 p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bytes24)", p0)); } function logBytes25(bytes25 p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bytes25)", p0)); } function logBytes26(bytes26 p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bytes26)", p0)); } function logBytes27(bytes27 p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bytes27)", p0)); } function logBytes28(bytes28 p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bytes28)", p0)); } function logBytes29(bytes29 p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bytes29)", p0)); } function logBytes30(bytes30 p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bytes30)", p0)); } function logBytes31(bytes31 p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bytes31)", p0)); } function logBytes32(bytes32 p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bytes32)", p0)); } function log(uint256 p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256)", p0)); } function log(int256 p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(int256)", p0)); } function log(string memory p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string)", p0)); } function log(bool p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool)", p0)); } function log(address p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address)", p0)); } function log(uint256 p0, uint256 p1) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,uint256)", p0, p1)); } function log(uint256 p0, string memory p1) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,string)", p0, p1)); } function log(uint256 p0, bool p1) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,bool)", p0, p1)); } function log(uint256 p0, address p1) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,address)", p0, p1)); } function log(string memory p0, uint256 p1) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,uint256)", p0, p1)); } function log(string memory p0, int256 p1) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,int256)", p0, p1)); } function log(string memory p0, string memory p1) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,string)", p0, p1)); } function log(string memory p0, bool p1) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,bool)", p0, p1)); } function log(string memory p0, address p1) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,address)", p0, p1)); } function log(bool p0, uint256 p1) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,uint256)", p0, p1)); } function log(bool p0, string memory p1) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,string)", p0, p1)); } function log(bool p0, bool p1) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,bool)", p0, p1)); } function log(bool p0, address p1) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,address)", p0, p1)); } function log(address p0, uint256 p1) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,uint256)", p0, p1)); } function log(address p0, string memory p1) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,string)", p0, p1)); } function log(address p0, bool p1) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,bool)", p0, p1)); } function log(address p0, address p1) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,address)", p0, p1)); } function log(uint256 p0, uint256 p1, uint256 p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,uint256,uint256)", p0, p1, p2)); } function log(uint256 p0, uint256 p1, string memory p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,uint256,string)", p0, p1, p2)); } function log(uint256 p0, uint256 p1, bool p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,uint256,bool)", p0, p1, p2)); } function log(uint256 p0, uint256 p1, address p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,uint256,address)", p0, p1, p2)); } function log(uint256 p0, string memory p1, uint256 p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,string,uint256)", p0, p1, p2)); } function log(uint256 p0, string memory p1, string memory p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,string,string)", p0, p1, p2)); } function log(uint256 p0, string memory p1, bool p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,string,bool)", p0, p1, p2)); } function log(uint256 p0, string memory p1, address p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,string,address)", p0, p1, p2)); } function log(uint256 p0, bool p1, uint256 p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,bool,uint256)", p0, p1, p2)); } function log(uint256 p0, bool p1, string memory p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,bool,string)", p0, p1, p2)); } function log(uint256 p0, bool p1, bool p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,bool,bool)", p0, p1, p2)); } function log(uint256 p0, bool p1, address p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,bool,address)", p0, p1, p2)); } function log(uint256 p0, address p1, uint256 p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,address,uint256)", p0, p1, p2)); } function log(uint256 p0, address p1, string memory p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,address,string)", p0, p1, p2)); } function log(uint256 p0, address p1, bool p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,address,bool)", p0, p1, p2)); } function log(uint256 p0, address p1, address p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,address,address)", p0, p1, p2)); } function log(string memory p0, uint256 p1, uint256 p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,uint256,uint256)", p0, p1, p2)); } function log(string memory p0, uint256 p1, string memory p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,uint256,string)", p0, p1, p2)); } function log(string memory p0, uint256 p1, bool p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,uint256,bool)", p0, p1, p2)); } function log(string memory p0, uint256 p1, address p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,uint256,address)", p0, p1, p2)); } function log(string memory p0, string memory p1, uint256 p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,string,uint256)", p0, p1, p2)); } function log(string memory p0, string memory p1, string memory p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,string,string)", p0, p1, p2)); } function log(string memory p0, string memory p1, bool p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,string,bool)", p0, p1, p2)); } function log(string memory p0, string memory p1, address p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,string,address)", p0, p1, p2)); } function log(string memory p0, bool p1, uint256 p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,bool,uint256)", p0, p1, p2)); } function log(string memory p0, bool p1, string memory p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,bool,string)", p0, p1, p2)); } function log(string memory p0, bool p1, bool p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,bool,bool)", p0, p1, p2)); } function log(string memory p0, bool p1, address p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,bool,address)", p0, p1, p2)); } function log(string memory p0, address p1, uint256 p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,address,uint256)", p0, p1, p2)); } function log(string memory p0, address p1, string memory p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,address,string)", p0, p1, p2)); } function log(string memory p0, address p1, bool p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,address,bool)", p0, p1, p2)); } function log(string memory p0, address p1, address p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,address,address)", p0, p1, p2)); } function log(bool p0, uint256 p1, uint256 p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,uint256,uint256)", p0, p1, p2)); } function log(bool p0, uint256 p1, string memory p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,uint256,string)", p0, p1, p2)); } function log(bool p0, uint256 p1, bool p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,uint256,bool)", p0, p1, p2)); } function log(bool p0, uint256 p1, address p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,uint256,address)", p0, p1, p2)); } function log(bool p0, string memory p1, uint256 p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,string,uint256)", p0, p1, p2)); } function log(bool p0, string memory p1, string memory p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,string,string)", p0, p1, p2)); } function log(bool p0, string memory p1, bool p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,string,bool)", p0, p1, p2)); } function log(bool p0, string memory p1, address p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,string,address)", p0, p1, p2)); } function log(bool p0, bool p1, uint256 p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,uint256)", p0, p1, p2)); } function log(bool p0, bool p1, string memory p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,string)", p0, p1, p2)); } function log(bool p0, bool p1, bool p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,bool)", p0, p1, p2)); } function log(bool p0, bool p1, address p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,address)", p0, p1, p2)); } function log(bool p0, address p1, uint256 p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,address,uint256)", p0, p1, p2)); } function log(bool p0, address p1, string memory p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,address,string)", p0, p1, p2)); } function log(bool p0, address p1, bool p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,address,bool)", p0, p1, p2)); } function log(bool p0, address p1, address p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,address,address)", p0, p1, p2)); } function log(address p0, uint256 p1, uint256 p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,uint256,uint256)", p0, p1, p2)); } function log(address p0, uint256 p1, string memory p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,uint256,string)", p0, p1, p2)); } function log(address p0, uint256 p1, bool p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,uint256,bool)", p0, p1, p2)); } function log(address p0, uint256 p1, address p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,uint256,address)", p0, p1, p2)); } function log(address p0, string memory p1, uint256 p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,string,uint256)", p0, p1, p2)); } function log(address p0, string memory p1, string memory p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,string,string)", p0, p1, p2)); } function log(address p0, string memory p1, bool p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,string,bool)", p0, p1, p2)); } function log(address p0, string memory p1, address p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,string,address)", p0, p1, p2)); } function log(address p0, bool p1, uint256 p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,bool,uint256)", p0, p1, p2)); } function log(address p0, bool p1, string memory p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,bool,string)", p0, p1, p2)); } function log(address p0, bool p1, bool p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,bool,bool)", p0, p1, p2)); } function log(address p0, bool p1, address p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,bool,address)", p0, p1, p2)); } function log(address p0, address p1, uint256 p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,address,uint256)", p0, p1, p2)); } function log(address p0, address p1, string memory p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,address,string)", p0, p1, p2)); } function log(address p0, address p1, bool p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,address,bool)", p0, p1, p2)); } function log(address p0, address p1, address p2) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,address,address)", p0, p1, p2)); } function log(uint256 p0, uint256 p1, uint256 p2, uint256 p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,uint256,uint256,uint256)", p0, p1, p2, p3)); } function log(uint256 p0, uint256 p1, uint256 p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,uint256,uint256,string)", p0, p1, p2, p3)); } function log(uint256 p0, uint256 p1, uint256 p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,uint256,uint256,bool)", p0, p1, p2, p3)); } function log(uint256 p0, uint256 p1, uint256 p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,uint256,uint256,address)", p0, p1, p2, p3)); } function log(uint256 p0, uint256 p1, string memory p2, uint256 p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,uint256,string,uint256)", p0, p1, p2, p3)); } function log(uint256 p0, uint256 p1, string memory p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,uint256,string,string)", p0, p1, p2, p3)); } function log(uint256 p0, uint256 p1, string memory p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,uint256,string,bool)", p0, p1, p2, p3)); } function log(uint256 p0, uint256 p1, string memory p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,uint256,string,address)", p0, p1, p2, p3)); } function log(uint256 p0, uint256 p1, bool p2, uint256 p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,uint256,bool,uint256)", p0, p1, p2, p3)); } function log(uint256 p0, uint256 p1, bool p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,uint256,bool,string)", p0, p1, p2, p3)); } function log(uint256 p0, uint256 p1, bool p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,uint256,bool,bool)", p0, p1, p2, p3)); } function log(uint256 p0, uint256 p1, bool p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,uint256,bool,address)", p0, p1, p2, p3)); } function log(uint256 p0, uint256 p1, address p2, uint256 p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,uint256,address,uint256)", p0, p1, p2, p3)); } function log(uint256 p0, uint256 p1, address p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,uint256,address,string)", p0, p1, p2, p3)); } function log(uint256 p0, uint256 p1, address p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,uint256,address,bool)", p0, p1, p2, p3)); } function log(uint256 p0, uint256 p1, address p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,uint256,address,address)", p0, p1, p2, p3)); } function log(uint256 p0, string memory p1, uint256 p2, uint256 p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,string,uint256,uint256)", p0, p1, p2, p3)); } function log(uint256 p0, string memory p1, uint256 p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,string,uint256,string)", p0, p1, p2, p3)); } function log(uint256 p0, string memory p1, uint256 p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,string,uint256,bool)", p0, p1, p2, p3)); } function log(uint256 p0, string memory p1, uint256 p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,string,uint256,address)", p0, p1, p2, p3)); } function log(uint256 p0, string memory p1, string memory p2, uint256 p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,string,string,uint256)", p0, p1, p2, p3)); } function log(uint256 p0, string memory p1, string memory p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,string,string,string)", p0, p1, p2, p3)); } function log(uint256 p0, string memory p1, string memory p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,string,string,bool)", p0, p1, p2, p3)); } function log(uint256 p0, string memory p1, string memory p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,string,string,address)", p0, p1, p2, p3)); } function log(uint256 p0, string memory p1, bool p2, uint256 p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,string,bool,uint256)", p0, p1, p2, p3)); } function log(uint256 p0, string memory p1, bool p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,string,bool,string)", p0, p1, p2, p3)); } function log(uint256 p0, string memory p1, bool p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,string,bool,bool)", p0, p1, p2, p3)); } function log(uint256 p0, string memory p1, bool p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,string,bool,address)", p0, p1, p2, p3)); } function log(uint256 p0, string memory p1, address p2, uint256 p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,string,address,uint256)", p0, p1, p2, p3)); } function log(uint256 p0, string memory p1, address p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,string,address,string)", p0, p1, p2, p3)); } function log(uint256 p0, string memory p1, address p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,string,address,bool)", p0, p1, p2, p3)); } function log(uint256 p0, string memory p1, address p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,string,address,address)", p0, p1, p2, p3)); } function log(uint256 p0, bool p1, uint256 p2, uint256 p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,bool,uint256,uint256)", p0, p1, p2, p3)); } function log(uint256 p0, bool p1, uint256 p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,bool,uint256,string)", p0, p1, p2, p3)); } function log(uint256 p0, bool p1, uint256 p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,bool,uint256,bool)", p0, p1, p2, p3)); } function log(uint256 p0, bool p1, uint256 p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,bool,uint256,address)", p0, p1, p2, p3)); } function log(uint256 p0, bool p1, string memory p2, uint256 p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,bool,string,uint256)", p0, p1, p2, p3)); } function log(uint256 p0, bool p1, string memory p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,bool,string,string)", p0, p1, p2, p3)); } function log(uint256 p0, bool p1, string memory p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,bool,string,bool)", p0, p1, p2, p3)); } function log(uint256 p0, bool p1, string memory p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,bool,string,address)", p0, p1, p2, p3)); } function log(uint256 p0, bool p1, bool p2, uint256 p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,bool,bool,uint256)", p0, p1, p2, p3)); } function log(uint256 p0, bool p1, bool p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,bool,bool,string)", p0, p1, p2, p3)); } function log(uint256 p0, bool p1, bool p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,bool,bool,bool)", p0, p1, p2, p3)); } function log(uint256 p0, bool p1, bool p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,bool,bool,address)", p0, p1, p2, p3)); } function log(uint256 p0, bool p1, address p2, uint256 p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,bool,address,uint256)", p0, p1, p2, p3)); } function log(uint256 p0, bool p1, address p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,bool,address,string)", p0, p1, p2, p3)); } function log(uint256 p0, bool p1, address p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,bool,address,bool)", p0, p1, p2, p3)); } function log(uint256 p0, bool p1, address p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,bool,address,address)", p0, p1, p2, p3)); } function log(uint256 p0, address p1, uint256 p2, uint256 p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,address,uint256,uint256)", p0, p1, p2, p3)); } function log(uint256 p0, address p1, uint256 p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,address,uint256,string)", p0, p1, p2, p3)); } function log(uint256 p0, address p1, uint256 p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,address,uint256,bool)", p0, p1, p2, p3)); } function log(uint256 p0, address p1, uint256 p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,address,uint256,address)", p0, p1, p2, p3)); } function log(uint256 p0, address p1, string memory p2, uint256 p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,address,string,uint256)", p0, p1, p2, p3)); } function log(uint256 p0, address p1, string memory p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,address,string,string)", p0, p1, p2, p3)); } function log(uint256 p0, address p1, string memory p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,address,string,bool)", p0, p1, p2, p3)); } function log(uint256 p0, address p1, string memory p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,address,string,address)", p0, p1, p2, p3)); } function log(uint256 p0, address p1, bool p2, uint256 p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,address,bool,uint256)", p0, p1, p2, p3)); } function log(uint256 p0, address p1, bool p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,address,bool,string)", p0, p1, p2, p3)); } function log(uint256 p0, address p1, bool p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,address,bool,bool)", p0, p1, p2, p3)); } function log(uint256 p0, address p1, bool p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,address,bool,address)", p0, p1, p2, p3)); } function log(uint256 p0, address p1, address p2, uint256 p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,address,address,uint256)", p0, p1, p2, p3)); } function log(uint256 p0, address p1, address p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,address,address,string)", p0, p1, p2, p3)); } function log(uint256 p0, address p1, address p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,address,address,bool)", p0, p1, p2, p3)); } function log(uint256 p0, address p1, address p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,address,address,address)", p0, p1, p2, p3)); } function log(string memory p0, uint256 p1, uint256 p2, uint256 p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,uint256,uint256,uint256)", p0, p1, p2, p3)); } function log(string memory p0, uint256 p1, uint256 p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,uint256,uint256,string)", p0, p1, p2, p3)); } function log(string memory p0, uint256 p1, uint256 p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,uint256,uint256,bool)", p0, p1, p2, p3)); } function log(string memory p0, uint256 p1, uint256 p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,uint256,uint256,address)", p0, p1, p2, p3)); } function log(string memory p0, uint256 p1, string memory p2, uint256 p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,uint256,string,uint256)", p0, p1, p2, p3)); } function log(string memory p0, uint256 p1, string memory p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,uint256,string,string)", p0, p1, p2, p3)); } function log(string memory p0, uint256 p1, string memory p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,uint256,string,bool)", p0, p1, p2, p3)); } function log(string memory p0, uint256 p1, string memory p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,uint256,string,address)", p0, p1, p2, p3)); } function log(string memory p0, uint256 p1, bool p2, uint256 p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,uint256,bool,uint256)", p0, p1, p2, p3)); } function log(string memory p0, uint256 p1, bool p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,uint256,bool,string)", p0, p1, p2, p3)); } function log(string memory p0, uint256 p1, bool p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,uint256,bool,bool)", p0, p1, p2, p3)); } function log(string memory p0, uint256 p1, bool p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,uint256,bool,address)", p0, p1, p2, p3)); } function log(string memory p0, uint256 p1, address p2, uint256 p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,uint256,address,uint256)", p0, p1, p2, p3)); } function log(string memory p0, uint256 p1, address p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,uint256,address,string)", p0, p1, p2, p3)); } function log(string memory p0, uint256 p1, address p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,uint256,address,bool)", p0, p1, p2, p3)); } function log(string memory p0, uint256 p1, address p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,uint256,address,address)", p0, p1, p2, p3)); } function log(string memory p0, string memory p1, uint256 p2, uint256 p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,string,uint256,uint256)", p0, p1, p2, p3)); } function log(string memory p0, string memory p1, uint256 p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,string,uint256,string)", p0, p1, p2, p3)); } function log(string memory p0, string memory p1, uint256 p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,string,uint256,bool)", p0, p1, p2, p3)); } function log(string memory p0, string memory p1, uint256 p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,string,uint256,address)", p0, p1, p2, p3)); } function log(string memory p0, string memory p1, string memory p2, uint256 p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,string,string,uint256)", p0, p1, p2, p3)); } function log(string memory p0, string memory p1, string memory p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,string,string,string)", p0, p1, p2, p3)); } function log(string memory p0, string memory p1, string memory p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,string,string,bool)", p0, p1, p2, p3)); } function log(string memory p0, string memory p1, string memory p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,string,string,address)", p0, p1, p2, p3)); } function log(string memory p0, string memory p1, bool p2, uint256 p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,string,bool,uint256)", p0, p1, p2, p3)); } function log(string memory p0, string memory p1, bool p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,string,bool,string)", p0, p1, p2, p3)); } function log(string memory p0, string memory p1, bool p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,string,bool,bool)", p0, p1, p2, p3)); } function log(string memory p0, string memory p1, bool p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,string,bool,address)", p0, p1, p2, p3)); } function log(string memory p0, string memory p1, address p2, uint256 p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,string,address,uint256)", p0, p1, p2, p3)); } function log(string memory p0, string memory p1, address p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,string,address,string)", p0, p1, p2, p3)); } function log(string memory p0, string memory p1, address p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,string,address,bool)", p0, p1, p2, p3)); } function log(string memory p0, string memory p1, address p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,string,address,address)", p0, p1, p2, p3)); } function log(string memory p0, bool p1, uint256 p2, uint256 p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,bool,uint256,uint256)", p0, p1, p2, p3)); } function log(string memory p0, bool p1, uint256 p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,bool,uint256,string)", p0, p1, p2, p3)); } function log(string memory p0, bool p1, uint256 p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,bool,uint256,bool)", p0, p1, p2, p3)); } function log(string memory p0, bool p1, uint256 p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,bool,uint256,address)", p0, p1, p2, p3)); } function log(string memory p0, bool p1, string memory p2, uint256 p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,bool,string,uint256)", p0, p1, p2, p3)); } function log(string memory p0, bool p1, string memory p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,bool,string,string)", p0, p1, p2, p3)); } function log(string memory p0, bool p1, string memory p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,bool,string,bool)", p0, p1, p2, p3)); } function log(string memory p0, bool p1, string memory p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,bool,string,address)", p0, p1, p2, p3)); } function log(string memory p0, bool p1, bool p2, uint256 p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,bool,bool,uint256)", p0, p1, p2, p3)); } function log(string memory p0, bool p1, bool p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,bool,bool,string)", p0, p1, p2, p3)); } function log(string memory p0, bool p1, bool p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,bool,bool,bool)", p0, p1, p2, p3)); } function log(string memory p0, bool p1, bool p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,bool,bool,address)", p0, p1, p2, p3)); } function log(string memory p0, bool p1, address p2, uint256 p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,bool,address,uint256)", p0, p1, p2, p3)); } function log(string memory p0, bool p1, address p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,bool,address,string)", p0, p1, p2, p3)); } function log(string memory p0, bool p1, address p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,bool,address,bool)", p0, p1, p2, p3)); } function log(string memory p0, bool p1, address p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,bool,address,address)", p0, p1, p2, p3)); } function log(string memory p0, address p1, uint256 p2, uint256 p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,address,uint256,uint256)", p0, p1, p2, p3)); } function log(string memory p0, address p1, uint256 p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,address,uint256,string)", p0, p1, p2, p3)); } function log(string memory p0, address p1, uint256 p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,address,uint256,bool)", p0, p1, p2, p3)); } function log(string memory p0, address p1, uint256 p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,address,uint256,address)", p0, p1, p2, p3)); } function log(string memory p0, address p1, string memory p2, uint256 p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,address,string,uint256)", p0, p1, p2, p3)); } function log(string memory p0, address p1, string memory p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,address,string,string)", p0, p1, p2, p3)); } function log(string memory p0, address p1, string memory p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,address,string,bool)", p0, p1, p2, p3)); } function log(string memory p0, address p1, string memory p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,address,string,address)", p0, p1, p2, p3)); } function log(string memory p0, address p1, bool p2, uint256 p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,address,bool,uint256)", p0, p1, p2, p3)); } function log(string memory p0, address p1, bool p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,address,bool,string)", p0, p1, p2, p3)); } function log(string memory p0, address p1, bool p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,address,bool,bool)", p0, p1, p2, p3)); } function log(string memory p0, address p1, bool p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,address,bool,address)", p0, p1, p2, p3)); } function log(string memory p0, address p1, address p2, uint256 p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,address,address,uint256)", p0, p1, p2, p3)); } function log(string memory p0, address p1, address p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,address,address,string)", p0, p1, p2, p3)); } function log(string memory p0, address p1, address p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,address,address,bool)", p0, p1, p2, p3)); } function log(string memory p0, address p1, address p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,address,address,address)", p0, p1, p2, p3)); } function log(bool p0, uint256 p1, uint256 p2, uint256 p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,uint256,uint256,uint256)", p0, p1, p2, p3)); } function log(bool p0, uint256 p1, uint256 p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,uint256,uint256,string)", p0, p1, p2, p3)); } function log(bool p0, uint256 p1, uint256 p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,uint256,uint256,bool)", p0, p1, p2, p3)); } function log(bool p0, uint256 p1, uint256 p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,uint256,uint256,address)", p0, p1, p2, p3)); } function log(bool p0, uint256 p1, string memory p2, uint256 p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,uint256,string,uint256)", p0, p1, p2, p3)); } function log(bool p0, uint256 p1, string memory p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,uint256,string,string)", p0, p1, p2, p3)); } function log(bool p0, uint256 p1, string memory p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,uint256,string,bool)", p0, p1, p2, p3)); } function log(bool p0, uint256 p1, string memory p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,uint256,string,address)", p0, p1, p2, p3)); } function log(bool p0, uint256 p1, bool p2, uint256 p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,uint256,bool,uint256)", p0, p1, p2, p3)); } function log(bool p0, uint256 p1, bool p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,uint256,bool,string)", p0, p1, p2, p3)); } function log(bool p0, uint256 p1, bool p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,uint256,bool,bool)", p0, p1, p2, p3)); } function log(bool p0, uint256 p1, bool p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,uint256,bool,address)", p0, p1, p2, p3)); } function log(bool p0, uint256 p1, address p2, uint256 p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,uint256,address,uint256)", p0, p1, p2, p3)); } function log(bool p0, uint256 p1, address p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,uint256,address,string)", p0, p1, p2, p3)); } function log(bool p0, uint256 p1, address p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,uint256,address,bool)", p0, p1, p2, p3)); } function log(bool p0, uint256 p1, address p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,uint256,address,address)", p0, p1, p2, p3)); } function log(bool p0, string memory p1, uint256 p2, uint256 p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,string,uint256,uint256)", p0, p1, p2, p3)); } function log(bool p0, string memory p1, uint256 p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,string,uint256,string)", p0, p1, p2, p3)); } function log(bool p0, string memory p1, uint256 p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,string,uint256,bool)", p0, p1, p2, p3)); } function log(bool p0, string memory p1, uint256 p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,string,uint256,address)", p0, p1, p2, p3)); } function log(bool p0, string memory p1, string memory p2, uint256 p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,string,string,uint256)", p0, p1, p2, p3)); } function log(bool p0, string memory p1, string memory p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,string,string,string)", p0, p1, p2, p3)); } function log(bool p0, string memory p1, string memory p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,string,string,bool)", p0, p1, p2, p3)); } function log(bool p0, string memory p1, string memory p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,string,string,address)", p0, p1, p2, p3)); } function log(bool p0, string memory p1, bool p2, uint256 p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,string,bool,uint256)", p0, p1, p2, p3)); } function log(bool p0, string memory p1, bool p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,string,bool,string)", p0, p1, p2, p3)); } function log(bool p0, string memory p1, bool p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,string,bool,bool)", p0, p1, p2, p3)); } function log(bool p0, string memory p1, bool p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,string,bool,address)", p0, p1, p2, p3)); } function log(bool p0, string memory p1, address p2, uint256 p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,string,address,uint256)", p0, p1, p2, p3)); } function log(bool p0, string memory p1, address p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,string,address,string)", p0, p1, p2, p3)); } function log(bool p0, string memory p1, address p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,string,address,bool)", p0, p1, p2, p3)); } function log(bool p0, string memory p1, address p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,string,address,address)", p0, p1, p2, p3)); } function log(bool p0, bool p1, uint256 p2, uint256 p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,uint256,uint256)", p0, p1, p2, p3)); } function log(bool p0, bool p1, uint256 p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,uint256,string)", p0, p1, p2, p3)); } function log(bool p0, bool p1, uint256 p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,uint256,bool)", p0, p1, p2, p3)); } function log(bool p0, bool p1, uint256 p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,uint256,address)", p0, p1, p2, p3)); } function log(bool p0, bool p1, string memory p2, uint256 p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,string,uint256)", p0, p1, p2, p3)); } function log(bool p0, bool p1, string memory p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,string,string)", p0, p1, p2, p3)); } function log(bool p0, bool p1, string memory p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,string,bool)", p0, p1, p2, p3)); } function log(bool p0, bool p1, string memory p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,string,address)", p0, p1, p2, p3)); } function log(bool p0, bool p1, bool p2, uint256 p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,bool,uint256)", p0, p1, p2, p3)); } function log(bool p0, bool p1, bool p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,bool,string)", p0, p1, p2, p3)); } function log(bool p0, bool p1, bool p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,bool,bool)", p0, p1, p2, p3)); } function log(bool p0, bool p1, bool p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,bool,address)", p0, p1, p2, p3)); } function log(bool p0, bool p1, address p2, uint256 p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,address,uint256)", p0, p1, p2, p3)); } function log(bool p0, bool p1, address p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,address,string)", p0, p1, p2, p3)); } function log(bool p0, bool p1, address p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,address,bool)", p0, p1, p2, p3)); } function log(bool p0, bool p1, address p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,address,address)", p0, p1, p2, p3)); } function log(bool p0, address p1, uint256 p2, uint256 p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,address,uint256,uint256)", p0, p1, p2, p3)); } function log(bool p0, address p1, uint256 p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,address,uint256,string)", p0, p1, p2, p3)); } function log(bool p0, address p1, uint256 p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,address,uint256,bool)", p0, p1, p2, p3)); } function log(bool p0, address p1, uint256 p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,address,uint256,address)", p0, p1, p2, p3)); } function log(bool p0, address p1, string memory p2, uint256 p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,address,string,uint256)", p0, p1, p2, p3)); } function log(bool p0, address p1, string memory p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,address,string,string)", p0, p1, p2, p3)); } function log(bool p0, address p1, string memory p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,address,string,bool)", p0, p1, p2, p3)); } function log(bool p0, address p1, string memory p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,address,string,address)", p0, p1, p2, p3)); } function log(bool p0, address p1, bool p2, uint256 p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,address,bool,uint256)", p0, p1, p2, p3)); } function log(bool p0, address p1, bool p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,address,bool,string)", p0, p1, p2, p3)); } function log(bool p0, address p1, bool p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,address,bool,bool)", p0, p1, p2, p3)); } function log(bool p0, address p1, bool p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,address,bool,address)", p0, p1, p2, p3)); } function log(bool p0, address p1, address p2, uint256 p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,address,address,uint256)", p0, p1, p2, p3)); } function log(bool p0, address p1, address p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,address,address,string)", p0, p1, p2, p3)); } function log(bool p0, address p1, address p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,address,address,bool)", p0, p1, p2, p3)); } function log(bool p0, address p1, address p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,address,address,address)", p0, p1, p2, p3)); } function log(address p0, uint256 p1, uint256 p2, uint256 p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,uint256,uint256,uint256)", p0, p1, p2, p3)); } function log(address p0, uint256 p1, uint256 p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,uint256,uint256,string)", p0, p1, p2, p3)); } function log(address p0, uint256 p1, uint256 p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,uint256,uint256,bool)", p0, p1, p2, p3)); } function log(address p0, uint256 p1, uint256 p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,uint256,uint256,address)", p0, p1, p2, p3)); } function log(address p0, uint256 p1, string memory p2, uint256 p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,uint256,string,uint256)", p0, p1, p2, p3)); } function log(address p0, uint256 p1, string memory p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,uint256,string,string)", p0, p1, p2, p3)); } function log(address p0, uint256 p1, string memory p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,uint256,string,bool)", p0, p1, p2, p3)); } function log(address p0, uint256 p1, string memory p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,uint256,string,address)", p0, p1, p2, p3)); } function log(address p0, uint256 p1, bool p2, uint256 p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,uint256,bool,uint256)", p0, p1, p2, p3)); } function log(address p0, uint256 p1, bool p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,uint256,bool,string)", p0, p1, p2, p3)); } function log(address p0, uint256 p1, bool p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,uint256,bool,bool)", p0, p1, p2, p3)); } function log(address p0, uint256 p1, bool p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,uint256,bool,address)", p0, p1, p2, p3)); } function log(address p0, uint256 p1, address p2, uint256 p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,uint256,address,uint256)", p0, p1, p2, p3)); } function log(address p0, uint256 p1, address p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,uint256,address,string)", p0, p1, p2, p3)); } function log(address p0, uint256 p1, address p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,uint256,address,bool)", p0, p1, p2, p3)); } function log(address p0, uint256 p1, address p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,uint256,address,address)", p0, p1, p2, p3)); } function log(address p0, string memory p1, uint256 p2, uint256 p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,string,uint256,uint256)", p0, p1, p2, p3)); } function log(address p0, string memory p1, uint256 p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,string,uint256,string)", p0, p1, p2, p3)); } function log(address p0, string memory p1, uint256 p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,string,uint256,bool)", p0, p1, p2, p3)); } function log(address p0, string memory p1, uint256 p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,string,uint256,address)", p0, p1, p2, p3)); } function log(address p0, string memory p1, string memory p2, uint256 p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,string,string,uint256)", p0, p1, p2, p3)); } function log(address p0, string memory p1, string memory p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,string,string,string)", p0, p1, p2, p3)); } function log(address p0, string memory p1, string memory p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,string,string,bool)", p0, p1, p2, p3)); } function log(address p0, string memory p1, string memory p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,string,string,address)", p0, p1, p2, p3)); } function log(address p0, string memory p1, bool p2, uint256 p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,string,bool,uint256)", p0, p1, p2, p3)); } function log(address p0, string memory p1, bool p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,string,bool,string)", p0, p1, p2, p3)); } function log(address p0, string memory p1, bool p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,string,bool,bool)", p0, p1, p2, p3)); } function log(address p0, string memory p1, bool p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,string,bool,address)", p0, p1, p2, p3)); } function log(address p0, string memory p1, address p2, uint256 p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,string,address,uint256)", p0, p1, p2, p3)); } function log(address p0, string memory p1, address p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,string,address,string)", p0, p1, p2, p3)); } function log(address p0, string memory p1, address p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,string,address,bool)", p0, p1, p2, p3)); } function log(address p0, string memory p1, address p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,string,address,address)", p0, p1, p2, p3)); } function log(address p0, bool p1, uint256 p2, uint256 p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,bool,uint256,uint256)", p0, p1, p2, p3)); } function log(address p0, bool p1, uint256 p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,bool,uint256,string)", p0, p1, p2, p3)); } function log(address p0, bool p1, uint256 p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,bool,uint256,bool)", p0, p1, p2, p3)); } function log(address p0, bool p1, uint256 p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,bool,uint256,address)", p0, p1, p2, p3)); } function log(address p0, bool p1, string memory p2, uint256 p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,bool,string,uint256)", p0, p1, p2, p3)); } function log(address p0, bool p1, string memory p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,bool,string,string)", p0, p1, p2, p3)); } function log(address p0, bool p1, string memory p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,bool,string,bool)", p0, p1, p2, p3)); } function log(address p0, bool p1, string memory p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,bool,string,address)", p0, p1, p2, p3)); } function log(address p0, bool p1, bool p2, uint256 p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,bool,bool,uint256)", p0, p1, p2, p3)); } function log(address p0, bool p1, bool p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,bool,bool,string)", p0, p1, p2, p3)); } function log(address p0, bool p1, bool p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,bool,bool,bool)", p0, p1, p2, p3)); } function log(address p0, bool p1, bool p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,bool,bool,address)", p0, p1, p2, p3)); } function log(address p0, bool p1, address p2, uint256 p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,bool,address,uint256)", p0, p1, p2, p3)); } function log(address p0, bool p1, address p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,bool,address,string)", p0, p1, p2, p3)); } function log(address p0, bool p1, address p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,bool,address,bool)", p0, p1, p2, p3)); } function log(address p0, bool p1, address p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,bool,address,address)", p0, p1, p2, p3)); } function log(address p0, address p1, uint256 p2, uint256 p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,address,uint256,uint256)", p0, p1, p2, p3)); } function log(address p0, address p1, uint256 p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,address,uint256,string)", p0, p1, p2, p3)); } function log(address p0, address p1, uint256 p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,address,uint256,bool)", p0, p1, p2, p3)); } function log(address p0, address p1, uint256 p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,address,uint256,address)", p0, p1, p2, p3)); } function log(address p0, address p1, string memory p2, uint256 p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,address,string,uint256)", p0, p1, p2, p3)); } function log(address p0, address p1, string memory p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,address,string,string)", p0, p1, p2, p3)); } function log(address p0, address p1, string memory p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,address,string,bool)", p0, p1, p2, p3)); } function log(address p0, address p1, string memory p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,address,string,address)", p0, p1, p2, p3)); } function log(address p0, address p1, bool p2, uint256 p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,address,bool,uint256)", p0, p1, p2, p3)); } function log(address p0, address p1, bool p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,address,bool,string)", p0, p1, p2, p3)); } function log(address p0, address p1, bool p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,address,bool,bool)", p0, p1, p2, p3)); } function log(address p0, address p1, bool p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,address,bool,address)", p0, p1, p2, p3)); } function log(address p0, address p1, address p2, uint256 p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,address,address,uint256)", p0, p1, p2, p3)); } function log(address p0, address p1, address p2, string memory p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,address,address,string)", p0, p1, p2, p3)); } function log(address p0, address p1, address p2, bool p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,address,address,bool)", p0, p1, p2, p3)); } function log(address p0, address p1, address p2, address p3) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,address,address,address)", p0, p1, p2, p3)); } }// SPDX-License-Identifier: MIT pragma solidity 0.8.17; library LibBytes { // solhint-disable no-inline-assembly // LibBytes specific errors error SliceOverflow(); error SliceOutOfBounds(); error AddressOutOfBounds(); bytes16 private constant _SYMBOLS = "0123456789abcdef"; // ------------------------- function slice( bytes memory _bytes, uint256 _start, uint256 _length ) internal pure returns (bytes memory) { if (_length + 31 < _length) revert SliceOverflow(); if (_bytes.length < _start + _length) revert SliceOutOfBounds(); bytes memory tempBytes; assembly { switch iszero(_length) case 0 { // Get a location of some free memory and store it in tempBytes as // Solidity does for memory variables. tempBytes := mload(0x40) // The first word of the slice result is potentially a partial // word read from the original array. To read it, we calculate // the length of that partial word and start copying that many // bytes into the array. The first word we copy will start with // data we don't care about, but the last `lengthmod` bytes will // land at the beginning of the contents of the new array. When // we're done copying, we overwrite the full first word with // the actual length of the slice. let lengthmod := and(_length, 31) // The multiplication in the next line is necessary // because when slicing multiples of 32 bytes (lengthmod == 0) // the following copy loop was copying the origin's length // and then ending prematurely not copying everything it should. let mc := add( add(tempBytes, lengthmod), mul(0x20, iszero(lengthmod)) ) let end := add(mc, _length) for { // The multiplication in the next line has the same exact purpose // as the one above. let cc := add( add( add(_bytes, lengthmod), mul(0x20, iszero(lengthmod)) ), _start ) } lt(mc, end) { mc := add(mc, 0x20) cc := add(cc, 0x20) } { mstore(mc, mload(cc)) } mstore(tempBytes, _length) //update free-memory pointer //allocating the array padded to 32 bytes like the compiler does now mstore(0x40, and(add(mc, 31), not(31))) } //if we want a zero-length slice let's just return a zero-length array default { tempBytes := mload(0x40) //zero out the 32 bytes slice we are about to return //we need to do it because Solidity does not garbage collect mstore(tempBytes, 0) mstore(0x40, add(tempBytes, 0x20)) } } return tempBytes; } function toAddress( bytes memory _bytes, uint256 _start ) internal pure returns (address) { if (_bytes.length < _start + 20) { revert AddressOutOfBounds(); } address tempAddress; assembly { tempAddress := div( mload(add(add(_bytes, 0x20), _start)), 0x1000000000000000000000000 ) } return tempAddress; } /// Copied from OpenZeppelin's `Strings.sol` utility library. /// https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8335676b0e99944eef6a742e16dcd9ff6e68e609/contracts/utils/Strings.sol function toHexString( uint256 value, uint256 length ) internal pure returns (string memory) { bytes memory buffer = new bytes(2 * length + 2); buffer[0] = "0"; buffer[1] = "x"; for (uint256 i = 2 * length + 1; i > 1; --i) { buffer[i] = _SYMBOLS[value & 0xf]; value >>= 4; } require(value == 0, "Strings: hex length insufficient"); return string(buffer); } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `from` to `to` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address from, address to, uint256 amount) external returns (bool); } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/utils/SafeERC20.sol) pragma solidity ^0.8.0; import "../IERC20.sol"; import "../extensions/IERC20Permit.sol"; import "../../../utils/Address.sol"; /** * @title SafeERC20 * @dev Wrappers around ERC20 operations that throw on failure (when the token * contract returns false). Tokens that return no value (and instead revert or * throw on failure) are also supported, non-reverting calls are assumed to be * successful. * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract, * which allows you to call the safe operations as `token.safeTransfer(...)`, etc. */ library SafeERC20 { using Address for address; /** * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value, * non-reverting calls are assumed to be successful. */ function safeTransfer(IERC20 token, address to, uint256 value) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value)); } /** * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful. */ function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value)); } /** * @dev Deprecated. This function has issues similar to the ones found in * {IERC20-approve}, and its usage is discouraged. * * Whenever possible, use {safeIncreaseAllowance} and * {safeDecreaseAllowance} instead. */ function safeApprove(IERC20 token, address spender, uint256 value) internal { // safeApprove should only be called when setting an initial allowance, // or when resetting it to zero. To increase and decrease it, use // 'safeIncreaseAllowance' and 'safeDecreaseAllowance' require( (value == 0) || (token.allowance(address(this), spender) == 0), "SafeERC20: approve from non-zero to non-zero allowance" ); _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value)); } /** * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value, * non-reverting calls are assumed to be successful. */ function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal { uint256 oldAllowance = token.allowance(address(this), spender); _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance + value)); } /** * @dev Decrease the calling contract's allowance toward `spender` by `value`. If `token` returns no value, * non-reverting calls are assumed to be successful. */ function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal { unchecked { uint256 oldAllowance = token.allowance(address(this), spender); require(oldAllowance >= value, "SafeERC20: decreased allowance below zero"); _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance - value)); } } /** * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value, * non-reverting calls are assumed to be successful. Compatible with tokens that require the approval to be set to * 0 before setting it to a non-zero value. */ function forceApprove(IERC20 token, address spender, uint256 value) internal { bytes memory approvalCall = abi.encodeWithSelector(token.approve.selector, spender, value); if (!_callOptionalReturnBool(token, approvalCall)) { _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, 0)); _callOptionalReturn(token, approvalCall); } } /** * @dev Use a ERC-2612 signature to set the `owner` approval toward `spender` on `token`. * Revert on invalid signature. */ function safePermit( IERC20Permit token, address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) internal { uint256 nonceBefore = token.nonces(owner); token.permit(owner, spender, value, deadline, v, r, s); uint256 nonceAfter = token.nonces(owner); require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed"); } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). */ function _callOptionalReturn(IERC20 token, bytes memory data) private { // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that // the target address contains contract code and also asserts for success in the low-level call. bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed"); require(returndata.length == 0 || abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed"); } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). * * This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead. */ function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) { // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since // we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false // and not revert is the subcall reverts. (bool success, bytes memory returndata) = address(token).call(data); return success && (returndata.length == 0 || abi.decode(returndata, (bool))) && Address.isContract(address(token)); } } // SPDX-License-Identifier: AGPL-3.0-only pragma solidity >=0.8.0; /// @notice Modern and gas efficient ERC20 + EIP-2612 implementation. /// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/tokens/ERC20.sol) /// @author Modified from Uniswap (https://github.com/Uniswap/uniswap-v2-core/blob/master/contracts/UniswapV2ERC20.sol) /// @dev Do not manually set balances without updating totalSupply, as the sum of all user balances must not exceed it. abstract contract ERC20 { /*////////////////////////////////////////////////////////////// EVENTS //////////////////////////////////////////////////////////////*/ event Transfer(address indexed from, address indexed to, uint256 amount); event Approval(address indexed owner, address indexed spender, uint256 amount); /*////////////////////////////////////////////////////////////// METADATA STORAGE //////////////////////////////////////////////////////////////*/ string public name; string public symbol; uint8 public immutable decimals; /*////////////////////////////////////////////////////////////// ERC20 STORAGE //////////////////////////////////////////////////////////////*/ uint256 public totalSupply; mapping(address => uint256) public balanceOf; mapping(address => mapping(address => uint256)) public allowance; /*////////////////////////////////////////////////////////////// EIP-2612 STORAGE //////////////////////////////////////////////////////////////*/ uint256 internal immutable INITIAL_CHAIN_ID; bytes32 internal immutable INITIAL_DOMAIN_SEPARATOR; mapping(address => uint256) public nonces; /*////////////////////////////////////////////////////////////// CONSTRUCTOR //////////////////////////////////////////////////////////////*/ constructor( string memory _name, string memory _symbol, uint8 _decimals ) { name = _name; symbol = _symbol; decimals = _decimals; INITIAL_CHAIN_ID = block.chainid; INITIAL_DOMAIN_SEPARATOR = computeDomainSeparator(); } /*////////////////////////////////////////////////////////////// ERC20 LOGIC //////////////////////////////////////////////////////////////*/ function approve(address spender, uint256 amount) public virtual returns (bool) { allowance[msg.sender][spender] = amount; emit Approval(msg.sender, spender, amount); return true; } function transfer(address to, uint256 amount) public virtual returns (bool) { balanceOf[msg.sender] -= amount; // Cannot overflow because the sum of all user // balances can't exceed the max uint256 value. unchecked { balanceOf[to] += amount; } emit Transfer(msg.sender, to, amount); return true; } function transferFrom( address from, address to, uint256 amount ) public virtual returns (bool) { uint256 allowed = allowance[from][msg.sender]; // Saves gas for limited approvals. if (allowed != type(uint256).max) allowance[from][msg.sender] = allowed - amount; balanceOf[from] -= amount; // Cannot overflow because the sum of all user // balances can't exceed the max uint256 value. unchecked { balanceOf[to] += amount; } emit Transfer(from, to, amount); return true; } /*////////////////////////////////////////////////////////////// EIP-2612 LOGIC //////////////////////////////////////////////////////////////*/ function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) public virtual { require(deadline >= block.timestamp, "PERMIT_DEADLINE_EXPIRED"); // Unchecked because the only math done is incrementing // the owner's nonce which cannot realistically overflow. unchecked { address recoveredAddress = ecrecover( keccak256( abi.encodePacked( "\\x19\\x01", DOMAIN_SEPARATOR(), keccak256( abi.encode( keccak256( "Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)" ), owner, spender, value, nonces[owner]++, deadline ) ) ) ), v, r, s ); require(recoveredAddress != address(0) && recoveredAddress == owner, "INVALID_SIGNER"); allowance[recoveredAddress][spender] = value; } emit Approval(owner, spender, value); } function DOMAIN_SEPARATOR() public view virtual returns (bytes32) { return block.chainid == INITIAL_CHAIN_ID ? INITIAL_DOMAIN_SEPARATOR : computeDomainSeparator(); } function computeDomainSeparator() internal view virtual returns (bytes32) { return keccak256( abi.encode( keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"), keccak256(bytes(name)), keccak256("1"), block.chainid, address(this) ) ); } /*////////////////////////////////////////////////////////////// INTERNAL MINT/BURN LOGIC //////////////////////////////////////////////////////////////*/ function _mint(address to, uint256 amount) internal virtual { totalSupply += amount; // Cannot overflow because the sum of all user // balances can't exceed the max uint256 value. unchecked { balanceOf[to] += amount; } emit Transfer(address(0), to, amount); } function _burn(address from, uint256 amount) internal virtual { balanceOf[from] -= amount; // Cannot underflow because a user's balance // will never be larger than the total supply. unchecked { totalSupply -= amount; } emit Transfer(from, address(0), amount); } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/extensions/IERC20Permit.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612]. * * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't * need to send a transaction, and thus is not required to hold Ether at all. */ interface IERC20Permit { /** * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens, * given ``owner``'s signed approval. * * IMPORTANT: The same issues {IERC20-approve} has related to transaction * ordering also apply here. * * Emits an {Approval} event. * * Requirements: * * - `spender` cannot be the zero address. * - `deadline` must be a timestamp in the future. * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner` * over the EIP712-formatted function arguments. * - the signature must use ``owner``'s current nonce (see {nonces}). * * For more information on the signature format, see the * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP * section]. */ function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) external; /** * @dev Returns the current nonce for `owner`. This value must be * included whenever a signature is generated for {permit}. * * Every successful call to {permit} increases ``owner``'s nonce by one. This * prevents a signature from being used multiple times. */ function nonces(address owner) external view returns (uint256); /** * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}. */ // solhint-disable-next-line func-name-mixedcase function DOMAIN_SEPARATOR() external view returns (bytes32); } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol) pragma solidity ^0.8.1; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * * Furthermore, `isContract` will also return true if the target contract within * the same transaction is already scheduled for destruction by `SELFDESTRUCT`, * which only has an effect at the end of a transaction. * ==== * * [IMPORTANT] * ==== * You shouldn't rely on `isContract` to protect against flash loan attacks! * * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract * constructor. * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize/address.code.length, which returns 0 // for contracts in construction, since the code is only stored at the end // of the constructor execution. return account.code.length > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); (bool success, ) = recipient.call{value: amount}(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall( address target, bytes memory data, string memory errorMessage ) internal view returns (bytes memory) { (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { return functionDelegateCall(target, data, "Address: low-level delegate call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { (bool success, bytes memory returndata) = target.delegatecall(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract. * * _Available since v4.8._ */ function verifyCallResultFromTarget( address target, bool success, bytes memory returndata, string memory errorMessage ) internal view returns (bytes memory) { if (success) { if (returndata.length == 0) { // only check isContract if the call was successful and the return data is empty // otherwise we already know that it was a contract require(isContract(target), "Address: call to non-contract"); } return returndata; } else { _revert(returndata, errorMessage); } } /** * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the * revert reason or using the provided one. * * _Available since v4.3._ */ function verifyCallResult( bool success, bytes memory returndata, string memory errorMessage ) internal pure returns (bytes memory) { if (success) { return returndata; } else { _revert(returndata, errorMessage); } } function _revert(bytes memory returndata, string memory errorMessage) private pure { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly /// @solidity memory-safe-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } }
File 6 of 7: FiatTokenV2_2
/** * SPDX-License-Identifier: Apache-2.0 * * Copyright (c) 2023, Circle Internet Financial, LLC. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ pragma solidity 0.6.12; import { EIP712Domain } from "./EIP712Domain.sol"; // solhint-disable-line no-unused-import import { Blacklistable } from "../v1/Blacklistable.sol"; // solhint-disable-line no-unused-import import { FiatTokenV1 } from "../v1/FiatTokenV1.sol"; // solhint-disable-line no-unused-import import { FiatTokenV2 } from "./FiatTokenV2.sol"; // solhint-disable-line no-unused-import import { FiatTokenV2_1 } from "./FiatTokenV2_1.sol"; import { EIP712 } from "../util/EIP712.sol"; // solhint-disable func-name-mixedcase /** * @title FiatToken V2.2 * @notice ERC20 Token backed by fiat reserves, version 2.2 */ contract FiatTokenV2_2 is FiatTokenV2_1 { /** * @notice Initialize v2.2 * @param accountsToBlacklist A list of accounts to migrate from the old blacklist * @param newSymbol New token symbol * data structure to the new blacklist data structure. */ function initializeV2_2( address[] calldata accountsToBlacklist, string calldata newSymbol ) external { // solhint-disable-next-line reason-string require(_initializedVersion == 2); // Update fiat token symbol symbol = newSymbol; // Add previously blacklisted accounts to the new blacklist data structure // and remove them from the old blacklist data structure. for (uint256 i = 0; i < accountsToBlacklist.length; i++) { require( _deprecatedBlacklisted[accountsToBlacklist[i]], "FiatTokenV2_2: Blacklisting previously unblacklisted account!" ); _blacklist(accountsToBlacklist[i]); delete _deprecatedBlacklisted[accountsToBlacklist[i]]; } _blacklist(address(this)); delete _deprecatedBlacklisted[address(this)]; _initializedVersion = 3; } /** * @dev Internal function to get the current chain id. * @return The current chain id. */ function _chainId() internal virtual view returns (uint256) { uint256 chainId; assembly { chainId := chainid() } return chainId; } /** * @inheritdoc EIP712Domain */ function _domainSeparator() internal override view returns (bytes32) { return EIP712.makeDomainSeparator(name, "2", _chainId()); } /** * @notice Update allowance with a signed permit * @dev EOA wallet signatures should be packed in the order of r, s, v. * @param owner Token owner's address (Authorizer) * @param spender Spender's address * @param value Amount of allowance * @param deadline The time at which the signature expires (unix time), or max uint256 value to signal no expiration * @param signature Signature bytes signed by an EOA wallet or a contract wallet */ function permit( address owner, address spender, uint256 value, uint256 deadline, bytes memory signature ) external whenNotPaused { _permit(owner, spender, value, deadline, signature); } /** * @notice Execute a transfer with a signed authorization * @dev EOA wallet signatures should be packed in the order of r, s, v. * @param from Payer's address (Authorizer) * @param to Payee's address * @param value Amount to be transferred * @param validAfter The time after which this is valid (unix time) * @param validBefore The time before which this is valid (unix time) * @param nonce Unique nonce * @param signature Signature bytes signed by an EOA wallet or a contract wallet */ function transferWithAuthorization( address from, address to, uint256 value, uint256 validAfter, uint256 validBefore, bytes32 nonce, bytes memory signature ) external whenNotPaused notBlacklisted(from) notBlacklisted(to) { _transferWithAuthorization( from, to, value, validAfter, validBefore, nonce, signature ); } /** * @notice Receive a transfer with a signed authorization from the payer * @dev This has an additional check to ensure that the payee's address * matches the caller of this function to prevent front-running attacks. * EOA wallet signatures should be packed in the order of r, s, v. * @param from Payer's address (Authorizer) * @param to Payee's address * @param value Amount to be transferred * @param validAfter The time after which this is valid (unix time) * @param validBefore The time before which this is valid (unix time) * @param nonce Unique nonce * @param signature Signature bytes signed by an EOA wallet or a contract wallet */ function receiveWithAuthorization( address from, address to, uint256 value, uint256 validAfter, uint256 validBefore, bytes32 nonce, bytes memory signature ) external whenNotPaused notBlacklisted(from) notBlacklisted(to) { _receiveWithAuthorization( from, to, value, validAfter, validBefore, nonce, signature ); } /** * @notice Attempt to cancel an authorization * @dev Works only if the authorization is not yet used. * EOA wallet signatures should be packed in the order of r, s, v. * @param authorizer Authorizer's address * @param nonce Nonce of the authorization * @param signature Signature bytes signed by an EOA wallet or a contract wallet */ function cancelAuthorization( address authorizer, bytes32 nonce, bytes memory signature ) external whenNotPaused { _cancelAuthorization(authorizer, nonce, signature); } /** * @dev Helper method that sets the blacklist state of an account on balanceAndBlacklistStates. * If _shouldBlacklist is true, we apply a (1 << 255) bitmask with an OR operation on the * account's balanceAndBlacklistState. This flips the high bit for the account to 1, * indicating that the account is blacklisted. * * If _shouldBlacklist if false, we reset the account's balanceAndBlacklistStates to their * balances. This clears the high bit for the account, indicating that the account is unblacklisted. * @param _account The address of the account. * @param _shouldBlacklist True if the account should be blacklisted, false if the account should be unblacklisted. */ function _setBlacklistState(address _account, bool _shouldBlacklist) internal override { balanceAndBlacklistStates[_account] = _shouldBlacklist ? balanceAndBlacklistStates[_account] | (1 << 255) : _balanceOf(_account); } /** * @dev Helper method that sets the balance of an account on balanceAndBlacklistStates. * Since balances are stored in the last 255 bits of the balanceAndBlacklistStates value, * we need to ensure that the updated balance does not exceed (2^255 - 1). * Since blacklisted accounts' balances cannot be updated, the method will also * revert if the account is blacklisted * @param _account The address of the account. * @param _balance The new fiat token balance of the account (max: (2^255 - 1)). */ function _setBalance(address _account, uint256 _balance) internal override { require( _balance <= ((1 << 255) - 1), "FiatTokenV2_2: Balance exceeds (2^255 - 1)" ); require( !_isBlacklisted(_account), "FiatTokenV2_2: Account is blacklisted" ); balanceAndBlacklistStates[_account] = _balance; } /** * @inheritdoc Blacklistable */ function _isBlacklisted(address _account) internal override view returns (bool) { return balanceAndBlacklistStates[_account] >> 255 == 1; } /** * @dev Helper method to obtain the balance of an account. Since balances * are stored in the last 255 bits of the balanceAndBlacklistStates value, * we apply a ((1 << 255) - 1) bit bitmask with an AND operation on the * balanceAndBlacklistState to obtain the balance. * @param _account The address of the account. * @return The fiat token balance of the account. */ function _balanceOf(address _account) internal override view returns (uint256) { return balanceAndBlacklistStates[_account] & ((1 << 255) - 1); } /** * @inheritdoc FiatTokenV1 */ function approve(address spender, uint256 value) external override whenNotPaused returns (bool) { _approve(msg.sender, spender, value); return true; } /** * @inheritdoc FiatTokenV2 */ function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) external override whenNotPaused { _permit(owner, spender, value, deadline, v, r, s); } /** * @inheritdoc FiatTokenV2 */ function increaseAllowance(address spender, uint256 increment) external override whenNotPaused returns (bool) { _increaseAllowance(msg.sender, spender, increment); return true; } /** * @inheritdoc FiatTokenV2 */ function decreaseAllowance(address spender, uint256 decrement) external override whenNotPaused returns (bool) { _decreaseAllowance(msg.sender, spender, decrement); return true; } } // SPDX-License-Identifier: MIT pragma solidity >=0.6.2 <0.8.0; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize, which returns 0 for contracts in // construction, since the code is only stored at the end of the // constructor execution. uint256 size; // solhint-disable-next-line no-inline-assembly assembly { size := extcodesize(account) } return size > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); // solhint-disable-next-line avoid-low-level-calls, avoid-call-value (bool success, ) = recipient.call{ value: amount }(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain`call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCall(target, data, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); require(isContract(target), "Address: call to non-contract"); // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = target.call{ value: value }(data); return _verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data, string memory errorMessage) internal view returns (bytes memory) { require(isContract(target), "Address: static call to non-contract"); // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = target.staticcall(data); return _verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { return functionDelegateCall(target, data, "Address: low-level delegate call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) { require(isContract(target), "Address: delegate call to non-contract"); // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = target.delegatecall(data); return _verifyCallResult(success, returndata, errorMessage); } function _verifyCallResult(bool success, bytes memory returndata, string memory errorMessage) private pure returns(bytes memory) { if (success) { return returndata; } else { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly // solhint-disable-next-line no-inline-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } } // SPDX-License-Identifier: MIT pragma solidity >=0.6.0 <0.8.0; import "./IERC20.sol"; import "../../math/SafeMath.sol"; import "../../utils/Address.sol"; /** * @title SafeERC20 * @dev Wrappers around ERC20 operations that throw on failure (when the token * contract returns false). Tokens that return no value (and instead revert or * throw on failure) are also supported, non-reverting calls are assumed to be * successful. * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract, * which allows you to call the safe operations as `token.safeTransfer(...)`, etc. */ library SafeERC20 { using SafeMath for uint256; using Address for address; function safeTransfer(IERC20 token, address to, uint256 value) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value)); } function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value)); } /** * @dev Deprecated. This function has issues similar to the ones found in * {IERC20-approve}, and its usage is discouraged. * * Whenever possible, use {safeIncreaseAllowance} and * {safeDecreaseAllowance} instead. */ function safeApprove(IERC20 token, address spender, uint256 value) internal { // safeApprove should only be called when setting an initial allowance, // or when resetting it to zero. To increase and decrease it, use // 'safeIncreaseAllowance' and 'safeDecreaseAllowance' // solhint-disable-next-line max-line-length require((value == 0) || (token.allowance(address(this), spender) == 0), "SafeERC20: approve from non-zero to non-zero allowance" ); _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value)); } function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal { uint256 newAllowance = token.allowance(address(this), spender).add(value); _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance)); } function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal { uint256 newAllowance = token.allowance(address(this), spender).sub(value, "SafeERC20: decreased allowance below zero"); _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance)); } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). */ function _callOptionalReturn(IERC20 token, bytes memory data) private { // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since // we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that // the target address contains contract code and also asserts for success in the low-level call. bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed"); if (returndata.length > 0) { // Return data is optional // solhint-disable-next-line max-line-length require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed"); } } } // SPDX-License-Identifier: MIT pragma solidity >=0.6.0 <0.8.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `recipient`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address recipient, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `sender` to `recipient` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address sender, address recipient, uint256 amount) external returns (bool); /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); } // SPDX-License-Identifier: MIT pragma solidity >=0.6.0 <0.8.0; /** * @dev Wrappers over Solidity's arithmetic operations with added overflow * checks. * * Arithmetic operations in Solidity wrap on overflow. This can easily result * in bugs, because programmers usually assume that an overflow raises an * error, which is the standard behavior in high level programming languages. * `SafeMath` restores this intuition by reverting the transaction when an * operation overflows. * * Using this library instead of the unchecked operations eliminates an entire * class of bugs, so it's recommended to use it always. */ library SafeMath { /** * @dev Returns the addition of two unsigned integers, with an overflow flag. * * _Available since v3.4._ */ function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) { uint256 c = a + b; if (c < a) return (false, 0); return (true, c); } /** * @dev Returns the substraction of two unsigned integers, with an overflow flag. * * _Available since v3.4._ */ function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) { if (b > a) return (false, 0); return (true, a - b); } /** * @dev Returns the multiplication of two unsigned integers, with an overflow flag. * * _Available since v3.4._ */ function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) return (true, 0); uint256 c = a * b; if (c / a != b) return (false, 0); return (true, c); } /** * @dev Returns the division of two unsigned integers, with a division by zero flag. * * _Available since v3.4._ */ function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) { if (b == 0) return (false, 0); return (true, a / b); } /** * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag. * * _Available since v3.4._ */ function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) { if (b == 0) return (false, 0); return (true, a % b); } /** * @dev Returns the addition of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `+` operator. * * Requirements: * * - Addition cannot overflow. */ function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; require(c >= a, "SafeMath: addition overflow"); return c; } /** * @dev Returns the subtraction of two unsigned integers, reverting on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b) internal pure returns (uint256) { require(b <= a, "SafeMath: subtraction overflow"); return a - b; } /** * @dev Returns the multiplication of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `*` operator. * * Requirements: * * - Multiplication cannot overflow. */ function mul(uint256 a, uint256 b) internal pure returns (uint256) { if (a == 0) return 0; uint256 c = a * b; require(c / a == b, "SafeMath: multiplication overflow"); return c; } /** * @dev Returns the integer division of two unsigned integers, reverting on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function div(uint256 a, uint256 b) internal pure returns (uint256) { require(b > 0, "SafeMath: division by zero"); return a / b; } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * reverting when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b) internal pure returns (uint256) { require(b > 0, "SafeMath: modulo by zero"); return a % b; } /** * @dev Returns the subtraction of two unsigned integers, reverting with custom message on * overflow (when the result is negative). * * CAUTION: This function is deprecated because it requires allocating memory for the error * message unnecessarily. For custom revert reasons use {trySub}. * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b <= a, errorMessage); return a - b; } /** * @dev Returns the integer division of two unsigned integers, reverting with custom message on * division by zero. The result is rounded towards zero. * * CAUTION: This function is deprecated because it requires allocating memory for the error * message unnecessarily. For custom revert reasons use {tryDiv}. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b > 0, errorMessage); return a / b; } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * reverting with custom message when dividing by zero. * * CAUTION: This function is deprecated because it requires allocating memory for the error * message unnecessarily. For custom revert reasons use {tryMod}. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b > 0, errorMessage); return a % b; } } /** * SPDX-License-Identifier: Apache-2.0 * * Copyright (c) 2023, Circle Internet Financial, LLC. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ pragma solidity 0.6.12; import { FiatTokenV2 } from "./FiatTokenV2.sol"; // solhint-disable func-name-mixedcase /** * @title FiatToken V2.1 * @notice ERC20 Token backed by fiat reserves, version 2.1 */ contract FiatTokenV2_1 is FiatTokenV2 { /** * @notice Initialize v2.1 * @param lostAndFound The address to which the locked funds are sent */ function initializeV2_1(address lostAndFound) external { // solhint-disable-next-line reason-string require(_initializedVersion == 1); uint256 lockedAmount = _balanceOf(address(this)); if (lockedAmount > 0) { _transfer(address(this), lostAndFound, lockedAmount); } _blacklist(address(this)); _initializedVersion = 2; } /** * @notice Version string for the EIP712 domain separator * @return Version string */ function version() external pure returns (string memory) { return "2"; } } /** * SPDX-License-Identifier: Apache-2.0 * * Copyright (c) 2023, Circle Internet Financial, LLC. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ pragma solidity 0.6.12; import { FiatTokenV1_1 } from "../v1.1/FiatTokenV1_1.sol"; import { EIP712 } from "../util/EIP712.sol"; import { EIP3009 } from "./EIP3009.sol"; import { EIP2612 } from "./EIP2612.sol"; /** * @title FiatToken V2 * @notice ERC20 Token backed by fiat reserves, version 2 */ contract FiatTokenV2 is FiatTokenV1_1, EIP3009, EIP2612 { uint8 internal _initializedVersion; /** * @notice Initialize v2 * @param newName New token name */ function initializeV2(string calldata newName) external { // solhint-disable-next-line reason-string require(initialized && _initializedVersion == 0); name = newName; _DEPRECATED_CACHED_DOMAIN_SEPARATOR = EIP712.makeDomainSeparator( newName, "2" ); _initializedVersion = 1; } /** * @notice Increase the allowance by a given increment * @param spender Spender's address * @param increment Amount of increase in allowance * @return True if successful */ function increaseAllowance(address spender, uint256 increment) external virtual whenNotPaused notBlacklisted(msg.sender) notBlacklisted(spender) returns (bool) { _increaseAllowance(msg.sender, spender, increment); return true; } /** * @notice Decrease the allowance by a given decrement * @param spender Spender's address * @param decrement Amount of decrease in allowance * @return True if successful */ function decreaseAllowance(address spender, uint256 decrement) external virtual whenNotPaused notBlacklisted(msg.sender) notBlacklisted(spender) returns (bool) { _decreaseAllowance(msg.sender, spender, decrement); return true; } /** * @notice Execute a transfer with a signed authorization * @param from Payer's address (Authorizer) * @param to Payee's address * @param value Amount to be transferred * @param validAfter The time after which this is valid (unix time) * @param validBefore The time before which this is valid (unix time) * @param nonce Unique nonce * @param v v of the signature * @param r r of the signature * @param s s of the signature */ function transferWithAuthorization( address from, address to, uint256 value, uint256 validAfter, uint256 validBefore, bytes32 nonce, uint8 v, bytes32 r, bytes32 s ) external whenNotPaused notBlacklisted(from) notBlacklisted(to) { _transferWithAuthorization( from, to, value, validAfter, validBefore, nonce, v, r, s ); } /** * @notice Receive a transfer with a signed authorization from the payer * @dev This has an additional check to ensure that the payee's address * matches the caller of this function to prevent front-running attacks. * @param from Payer's address (Authorizer) * @param to Payee's address * @param value Amount to be transferred * @param validAfter The time after which this is valid (unix time) * @param validBefore The time before which this is valid (unix time) * @param nonce Unique nonce * @param v v of the signature * @param r r of the signature * @param s s of the signature */ function receiveWithAuthorization( address from, address to, uint256 value, uint256 validAfter, uint256 validBefore, bytes32 nonce, uint8 v, bytes32 r, bytes32 s ) external whenNotPaused notBlacklisted(from) notBlacklisted(to) { _receiveWithAuthorization( from, to, value, validAfter, validBefore, nonce, v, r, s ); } /** * @notice Attempt to cancel an authorization * @dev Works only if the authorization is not yet used. * @param authorizer Authorizer's address * @param nonce Nonce of the authorization * @param v v of the signature * @param r r of the signature * @param s s of the signature */ function cancelAuthorization( address authorizer, bytes32 nonce, uint8 v, bytes32 r, bytes32 s ) external whenNotPaused { _cancelAuthorization(authorizer, nonce, v, r, s); } /** * @notice Update allowance with a signed permit * @param owner Token owner's address (Authorizer) * @param spender Spender's address * @param value Amount of allowance * @param deadline The time at which the signature expires (unix time), or max uint256 value to signal no expiration * @param v v of the signature * @param r r of the signature * @param s s of the signature */ function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) external virtual whenNotPaused notBlacklisted(owner) notBlacklisted(spender) { _permit(owner, spender, value, deadline, v, r, s); } /** * @dev Internal function to increase the allowance by a given increment * @param owner Token owner's address * @param spender Spender's address * @param increment Amount of increase */ function _increaseAllowance( address owner, address spender, uint256 increment ) internal override { _approve(owner, spender, allowed[owner][spender].add(increment)); } /** * @dev Internal function to decrease the allowance by a given decrement * @param owner Token owner's address * @param spender Spender's address * @param decrement Amount of decrease */ function _decreaseAllowance( address owner, address spender, uint256 decrement ) internal override { _approve( owner, spender, allowed[owner][spender].sub( decrement, "ERC20: decreased allowance below zero" ) ); } } /** * SPDX-License-Identifier: Apache-2.0 * * Copyright (c) 2023, Circle Internet Financial, LLC. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ pragma solidity 0.6.12; // solhint-disable func-name-mixedcase /** * @title EIP712 Domain */ contract EIP712Domain { // was originally DOMAIN_SEPARATOR // but that has been moved to a method so we can override it in V2_2+ bytes32 internal _DEPRECATED_CACHED_DOMAIN_SEPARATOR; /** * @notice Get the EIP712 Domain Separator. * @return The bytes32 EIP712 domain separator. */ function DOMAIN_SEPARATOR() external view returns (bytes32) { return _domainSeparator(); } /** * @dev Internal method to get the EIP712 Domain Separator. * @return The bytes32 EIP712 domain separator. */ function _domainSeparator() internal virtual view returns (bytes32) { return _DEPRECATED_CACHED_DOMAIN_SEPARATOR; } } /** * SPDX-License-Identifier: Apache-2.0 * * Copyright (c) 2023, Circle Internet Financial, LLC. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ pragma solidity 0.6.12; import { AbstractFiatTokenV2 } from "./AbstractFiatTokenV2.sol"; import { EIP712Domain } from "./EIP712Domain.sol"; import { SignatureChecker } from "../util/SignatureChecker.sol"; import { MessageHashUtils } from "../util/MessageHashUtils.sol"; /** * @title EIP-3009 * @notice Provide internal implementation for gas-abstracted transfers * @dev Contracts that inherit from this must wrap these with publicly * accessible functions, optionally adding modifiers where necessary */ abstract contract EIP3009 is AbstractFiatTokenV2, EIP712Domain { // keccak256("TransferWithAuthorization(address from,address to,uint256 value,uint256 validAfter,uint256 validBefore,bytes32 nonce)") bytes32 public constant TRANSFER_WITH_AUTHORIZATION_TYPEHASH = 0x7c7c6cdb67a18743f49ec6fa9b35f50d52ed05cbed4cc592e13b44501c1a2267; // keccak256("ReceiveWithAuthorization(address from,address to,uint256 value,uint256 validAfter,uint256 validBefore,bytes32 nonce)") bytes32 public constant RECEIVE_WITH_AUTHORIZATION_TYPEHASH = 0xd099cc98ef71107a616c4f0f941f04c322d8e254fe26b3c6668db87aae413de8; // keccak256("CancelAuthorization(address authorizer,bytes32 nonce)") bytes32 public constant CANCEL_AUTHORIZATION_TYPEHASH = 0x158b0a9edf7a828aad02f63cd515c68ef2f50ba807396f6d12842833a1597429; /** * @dev authorizer address => nonce => bool (true if nonce is used) */ mapping(address => mapping(bytes32 => bool)) private _authorizationStates; event AuthorizationUsed(address indexed authorizer, bytes32 indexed nonce); event AuthorizationCanceled( address indexed authorizer, bytes32 indexed nonce ); /** * @notice Returns the state of an authorization * @dev Nonces are randomly generated 32-byte data unique to the * authorizer's address * @param authorizer Authorizer's address * @param nonce Nonce of the authorization * @return True if the nonce is used */ function authorizationState(address authorizer, bytes32 nonce) external view returns (bool) { return _authorizationStates[authorizer][nonce]; } /** * @notice Execute a transfer with a signed authorization * @param from Payer's address (Authorizer) * @param to Payee's address * @param value Amount to be transferred * @param validAfter The time after which this is valid (unix time) * @param validBefore The time before which this is valid (unix time) * @param nonce Unique nonce * @param v v of the signature * @param r r of the signature * @param s s of the signature */ function _transferWithAuthorization( address from, address to, uint256 value, uint256 validAfter, uint256 validBefore, bytes32 nonce, uint8 v, bytes32 r, bytes32 s ) internal { _transferWithAuthorization( from, to, value, validAfter, validBefore, nonce, abi.encodePacked(r, s, v) ); } /** * @notice Execute a transfer with a signed authorization * @dev EOA wallet signatures should be packed in the order of r, s, v. * @param from Payer's address (Authorizer) * @param to Payee's address * @param value Amount to be transferred * @param validAfter The time after which this is valid (unix time) * @param validBefore The time before which this is valid (unix time) * @param nonce Unique nonce * @param signature Signature byte array produced by an EOA wallet or a contract wallet */ function _transferWithAuthorization( address from, address to, uint256 value, uint256 validAfter, uint256 validBefore, bytes32 nonce, bytes memory signature ) internal { _requireValidAuthorization(from, nonce, validAfter, validBefore); _requireValidSignature( from, keccak256( abi.encode( TRANSFER_WITH_AUTHORIZATION_TYPEHASH, from, to, value, validAfter, validBefore, nonce ) ), signature ); _markAuthorizationAsUsed(from, nonce); _transfer(from, to, value); } /** * @notice Receive a transfer with a signed authorization from the payer * @dev This has an additional check to ensure that the payee's address * matches the caller of this function to prevent front-running attacks. * @param from Payer's address (Authorizer) * @param to Payee's address * @param value Amount to be transferred * @param validAfter The time after which this is valid (unix time) * @param validBefore The time before which this is valid (unix time) * @param nonce Unique nonce * @param v v of the signature * @param r r of the signature * @param s s of the signature */ function _receiveWithAuthorization( address from, address to, uint256 value, uint256 validAfter, uint256 validBefore, bytes32 nonce, uint8 v, bytes32 r, bytes32 s ) internal { _receiveWithAuthorization( from, to, value, validAfter, validBefore, nonce, abi.encodePacked(r, s, v) ); } /** * @notice Receive a transfer with a signed authorization from the payer * @dev This has an additional check to ensure that the payee's address * matches the caller of this function to prevent front-running attacks. * EOA wallet signatures should be packed in the order of r, s, v. * @param from Payer's address (Authorizer) * @param to Payee's address * @param value Amount to be transferred * @param validAfter The time after which this is valid (unix time) * @param validBefore The time before which this is valid (unix time) * @param nonce Unique nonce * @param signature Signature byte array produced by an EOA wallet or a contract wallet */ function _receiveWithAuthorization( address from, address to, uint256 value, uint256 validAfter, uint256 validBefore, bytes32 nonce, bytes memory signature ) internal { require(to == msg.sender, "FiatTokenV2: caller must be the payee"); _requireValidAuthorization(from, nonce, validAfter, validBefore); _requireValidSignature( from, keccak256( abi.encode( RECEIVE_WITH_AUTHORIZATION_TYPEHASH, from, to, value, validAfter, validBefore, nonce ) ), signature ); _markAuthorizationAsUsed(from, nonce); _transfer(from, to, value); } /** * @notice Attempt to cancel an authorization * @param authorizer Authorizer's address * @param nonce Nonce of the authorization * @param v v of the signature * @param r r of the signature * @param s s of the signature */ function _cancelAuthorization( address authorizer, bytes32 nonce, uint8 v, bytes32 r, bytes32 s ) internal { _cancelAuthorization(authorizer, nonce, abi.encodePacked(r, s, v)); } /** * @notice Attempt to cancel an authorization * @dev EOA wallet signatures should be packed in the order of r, s, v. * @param authorizer Authorizer's address * @param nonce Nonce of the authorization * @param signature Signature byte array produced by an EOA wallet or a contract wallet */ function _cancelAuthorization( address authorizer, bytes32 nonce, bytes memory signature ) internal { _requireUnusedAuthorization(authorizer, nonce); _requireValidSignature( authorizer, keccak256( abi.encode(CANCEL_AUTHORIZATION_TYPEHASH, authorizer, nonce) ), signature ); _authorizationStates[authorizer][nonce] = true; emit AuthorizationCanceled(authorizer, nonce); } /** * @notice Validates that signature against input data struct * @param signer Signer's address * @param dataHash Hash of encoded data struct * @param signature Signature byte array produced by an EOA wallet or a contract wallet */ function _requireValidSignature( address signer, bytes32 dataHash, bytes memory signature ) private view { require( SignatureChecker.isValidSignatureNow( signer, MessageHashUtils.toTypedDataHash(_domainSeparator(), dataHash), signature ), "FiatTokenV2: invalid signature" ); } /** * @notice Check that an authorization is unused * @param authorizer Authorizer's address * @param nonce Nonce of the authorization */ function _requireUnusedAuthorization(address authorizer, bytes32 nonce) private view { require( !_authorizationStates[authorizer][nonce], "FiatTokenV2: authorization is used or canceled" ); } /** * @notice Check that authorization is valid * @param authorizer Authorizer's address * @param nonce Nonce of the authorization * @param validAfter The time after which this is valid (unix time) * @param validBefore The time before which this is valid (unix time) */ function _requireValidAuthorization( address authorizer, bytes32 nonce, uint256 validAfter, uint256 validBefore ) private view { require( now > validAfter, "FiatTokenV2: authorization is not yet valid" ); require(now < validBefore, "FiatTokenV2: authorization is expired"); _requireUnusedAuthorization(authorizer, nonce); } /** * @notice Mark an authorization as used * @param authorizer Authorizer's address * @param nonce Nonce of the authorization */ function _markAuthorizationAsUsed(address authorizer, bytes32 nonce) private { _authorizationStates[authorizer][nonce] = true; emit AuthorizationUsed(authorizer, nonce); } } /** * SPDX-License-Identifier: Apache-2.0 * * Copyright (c) 2023, Circle Internet Financial, LLC. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ pragma solidity 0.6.12; import { AbstractFiatTokenV2 } from "./AbstractFiatTokenV2.sol"; import { EIP712Domain } from "./EIP712Domain.sol"; import { MessageHashUtils } from "../util/MessageHashUtils.sol"; import { SignatureChecker } from "../util/SignatureChecker.sol"; /** * @title EIP-2612 * @notice Provide internal implementation for gas-abstracted approvals */ abstract contract EIP2612 is AbstractFiatTokenV2, EIP712Domain { // keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)") bytes32 public constant PERMIT_TYPEHASH = 0x6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c9; mapping(address => uint256) private _permitNonces; /** * @notice Nonces for permit * @param owner Token owner's address (Authorizer) * @return Next nonce */ function nonces(address owner) external view returns (uint256) { return _permitNonces[owner]; } /** * @notice Verify a signed approval permit and execute if valid * @param owner Token owner's address (Authorizer) * @param spender Spender's address * @param value Amount of allowance * @param deadline The time at which the signature expires (unix time), or max uint256 value to signal no expiration * @param v v of the signature * @param r r of the signature * @param s s of the signature */ function _permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) internal { _permit(owner, spender, value, deadline, abi.encodePacked(r, s, v)); } /** * @notice Verify a signed approval permit and execute if valid * @dev EOA wallet signatures should be packed in the order of r, s, v. * @param owner Token owner's address (Authorizer) * @param spender Spender's address * @param value Amount of allowance * @param deadline The time at which the signature expires (unix time), or max uint256 value to signal no expiration * @param signature Signature byte array signed by an EOA wallet or a contract wallet */ function _permit( address owner, address spender, uint256 value, uint256 deadline, bytes memory signature ) internal { require( deadline == type(uint256).max || deadline >= now, "FiatTokenV2: permit is expired" ); bytes32 typedDataHash = MessageHashUtils.toTypedDataHash( _domainSeparator(), keccak256( abi.encode( PERMIT_TYPEHASH, owner, spender, value, _permitNonces[owner]++, deadline ) ) ); require( SignatureChecker.isValidSignatureNow( owner, typedDataHash, signature ), "EIP2612: invalid signature" ); _approve(owner, spender, value); } } /** * SPDX-License-Identifier: Apache-2.0 * * Copyright (c) 2023, Circle Internet Financial, LLC. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ pragma solidity 0.6.12; import { AbstractFiatTokenV1 } from "../v1/AbstractFiatTokenV1.sol"; abstract contract AbstractFiatTokenV2 is AbstractFiatTokenV1 { function _increaseAllowance( address owner, address spender, uint256 increment ) internal virtual; function _decreaseAllowance( address owner, address spender, uint256 decrement ) internal virtual; } /** * SPDX-License-Identifier: MIT * * Copyright (c) 2016 Smart Contract Solutions, Inc. * Copyright (c) 2018-2020 CENTRE SECZ * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ pragma solidity 0.6.12; import { Ownable } from "./Ownable.sol"; /** * @notice Base contract which allows children to implement an emergency stop * mechanism * @dev Forked from https://github.com/OpenZeppelin/openzeppelin-contracts/blob/feb665136c0dae9912e08397c1a21c4af3651ef3/contracts/lifecycle/Pausable.sol * Modifications: * 1. Added pauser role, switched pause/unpause to be onlyPauser (6/14/2018) * 2. Removed whenNotPause/whenPaused from pause/unpause (6/14/2018) * 3. Removed whenPaused (6/14/2018) * 4. Switches ownable library to use ZeppelinOS (7/12/18) * 5. Remove constructor (7/13/18) * 6. Reformat, conform to Solidity 0.6 syntax and add error messages (5/13/20) * 7. Make public functions external (5/27/20) */ contract Pausable is Ownable { event Pause(); event Unpause(); event PauserChanged(address indexed newAddress); address public pauser; bool public paused = false; /** * @dev Modifier to make a function callable only when the contract is not paused. */ modifier whenNotPaused() { require(!paused, "Pausable: paused"); _; } /** * @dev throws if called by any account other than the pauser */ modifier onlyPauser() { require(msg.sender == pauser, "Pausable: caller is not the pauser"); _; } /** * @dev called by the owner to pause, triggers stopped state */ function pause() external onlyPauser { paused = true; emit Pause(); } /** * @dev called by the owner to unpause, returns to normal state */ function unpause() external onlyPauser { paused = false; emit Unpause(); } /** * @notice Updates the pauser address. * @param _newPauser The address of the new pauser. */ function updatePauser(address _newPauser) external onlyOwner { require( _newPauser != address(0), "Pausable: new pauser is the zero address" ); pauser = _newPauser; emit PauserChanged(pauser); } } /** * SPDX-License-Identifier: MIT * * Copyright (c) 2018 zOS Global Limited. * Copyright (c) 2018-2020 CENTRE SECZ * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ pragma solidity 0.6.12; /** * @notice The Ownable contract has an owner address, and provides basic * authorization control functions * @dev Forked from https://github.com/OpenZeppelin/openzeppelin-labs/blob/3887ab77b8adafba4a26ace002f3a684c1a3388b/upgradeability_ownership/contracts/ownership/Ownable.sol * Modifications: * 1. Consolidate OwnableStorage into this contract (7/13/18) * 2. Reformat, conform to Solidity 0.6 syntax, and add error messages (5/13/20) * 3. Make public functions external (5/27/20) */ contract Ownable { // Owner of the contract address private _owner; /** * @dev Event to show ownership has been transferred * @param previousOwner representing the address of the previous owner * @param newOwner representing the address of the new owner */ event OwnershipTransferred(address previousOwner, address newOwner); /** * @dev The constructor sets the original owner of the contract to the sender account. */ constructor() public { setOwner(msg.sender); } /** * @dev Tells the address of the owner * @return the address of the owner */ function owner() external view returns (address) { return _owner; } /** * @dev Sets a new owner address */ function setOwner(address newOwner) internal { _owner = newOwner; } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { require(msg.sender == _owner, "Ownable: caller is not the owner"); _; } /** * @dev Allows the current owner to transfer control of the contract to a newOwner. * @param newOwner The address to transfer ownership to. */ function transferOwnership(address newOwner) external onlyOwner { require( newOwner != address(0), "Ownable: new owner is the zero address" ); emit OwnershipTransferred(_owner, newOwner); setOwner(newOwner); } } /** * SPDX-License-Identifier: Apache-2.0 * * Copyright (c) 2023, Circle Internet Financial, LLC. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ pragma solidity 0.6.12; import { SafeMath } from "@openzeppelin/contracts/math/SafeMath.sol"; import { AbstractFiatTokenV1 } from "./AbstractFiatTokenV1.sol"; import { Ownable } from "./Ownable.sol"; import { Pausable } from "./Pausable.sol"; import { Blacklistable } from "./Blacklistable.sol"; /** * @title FiatToken * @dev ERC20 Token backed by fiat reserves */ contract FiatTokenV1 is AbstractFiatTokenV1, Ownable, Pausable, Blacklistable { using SafeMath for uint256; string public name; string public symbol; uint8 public decimals; string public currency; address public masterMinter; bool internal initialized; /// @dev A mapping that stores the balance and blacklist states for a given address. /// The first bit defines whether the address is blacklisted (1 if blacklisted, 0 otherwise). /// The last 255 bits define the balance for the address. mapping(address => uint256) internal balanceAndBlacklistStates; mapping(address => mapping(address => uint256)) internal allowed; uint256 internal totalSupply_ = 0; mapping(address => bool) internal minters; mapping(address => uint256) internal minterAllowed; event Mint(address indexed minter, address indexed to, uint256 amount); event Burn(address indexed burner, uint256 amount); event MinterConfigured(address indexed minter, uint256 minterAllowedAmount); event MinterRemoved(address indexed oldMinter); event MasterMinterChanged(address indexed newMasterMinter); /** * @notice Initializes the fiat token contract. * @param tokenName The name of the fiat token. * @param tokenSymbol The symbol of the fiat token. * @param tokenCurrency The fiat currency that the token represents. * @param tokenDecimals The number of decimals that the token uses. * @param newMasterMinter The masterMinter address for the fiat token. * @param newPauser The pauser address for the fiat token. * @param newBlacklister The blacklister address for the fiat token. * @param newOwner The owner of the fiat token. */ function initialize( string memory tokenName, string memory tokenSymbol, string memory tokenCurrency, uint8 tokenDecimals, address newMasterMinter, address newPauser, address newBlacklister, address newOwner ) public { require(!initialized, "FiatToken: contract is already initialized"); require( newMasterMinter != address(0), "FiatToken: new masterMinter is the zero address" ); require( newPauser != address(0), "FiatToken: new pauser is the zero address" ); require( newBlacklister != address(0), "FiatToken: new blacklister is the zero address" ); require( newOwner != address(0), "FiatToken: new owner is the zero address" ); name = tokenName; symbol = tokenSymbol; currency = tokenCurrency; decimals = tokenDecimals; masterMinter = newMasterMinter; pauser = newPauser; blacklister = newBlacklister; setOwner(newOwner); initialized = true; } /** * @dev Throws if called by any account other than a minter. */ modifier onlyMinters() { require(minters[msg.sender], "FiatToken: caller is not a minter"); _; } /** * @notice Mints fiat tokens to an address. * @param _to The address that will receive the minted tokens. * @param _amount The amount of tokens to mint. Must be less than or equal * to the minterAllowance of the caller. * @return True if the operation was successful. */ function mint(address _to, uint256 _amount) external whenNotPaused onlyMinters notBlacklisted(msg.sender) notBlacklisted(_to) returns (bool) { require(_to != address(0), "FiatToken: mint to the zero address"); require(_amount > 0, "FiatToken: mint amount not greater than 0"); uint256 mintingAllowedAmount = minterAllowed[msg.sender]; require( _amount <= mintingAllowedAmount, "FiatToken: mint amount exceeds minterAllowance" ); totalSupply_ = totalSupply_.add(_amount); _setBalance(_to, _balanceOf(_to).add(_amount)); minterAllowed[msg.sender] = mintingAllowedAmount.sub(_amount); emit Mint(msg.sender, _to, _amount); emit Transfer(address(0), _to, _amount); return true; } /** * @dev Throws if called by any account other than the masterMinter */ modifier onlyMasterMinter() { require( msg.sender == masterMinter, "FiatToken: caller is not the masterMinter" ); _; } /** * @notice Gets the minter allowance for an account. * @param minter The address to check. * @return The remaining minter allowance for the account. */ function minterAllowance(address minter) external view returns (uint256) { return minterAllowed[minter]; } /** * @notice Checks if an account is a minter. * @param account The address to check. * @return True if the account is a minter, false if the account is not a minter. */ function isMinter(address account) external view returns (bool) { return minters[account]; } /** * @notice Gets the remaining amount of fiat tokens a spender is allowed to transfer on * behalf of the token owner. * @param owner The token owner's address. * @param spender The spender's address. * @return The remaining allowance. */ function allowance(address owner, address spender) external override view returns (uint256) { return allowed[owner][spender]; } /** * @notice Gets the totalSupply of the fiat token. * @return The totalSupply of the fiat token. */ function totalSupply() external override view returns (uint256) { return totalSupply_; } /** * @notice Gets the fiat token balance of an account. * @param account The address to check. * @return balance The fiat token balance of the account. */ function balanceOf(address account) external override view returns (uint256) { return _balanceOf(account); } /** * @notice Sets a fiat token allowance for a spender to spend on behalf of the caller. * @param spender The spender's address. * @param value The allowance amount. * @return True if the operation was successful. */ function approve(address spender, uint256 value) external virtual override whenNotPaused notBlacklisted(msg.sender) notBlacklisted(spender) returns (bool) { _approve(msg.sender, spender, value); return true; } /** * @dev Internal function to set allowance. * @param owner Token owner's address. * @param spender Spender's address. * @param value Allowance amount. */ function _approve( address owner, address spender, uint256 value ) internal override { require(owner != address(0), "ERC20: approve from the zero address"); require(spender != address(0), "ERC20: approve to the zero address"); allowed[owner][spender] = value; emit Approval(owner, spender, value); } /** * @notice Transfers tokens from an address to another by spending the caller's allowance. * @dev The caller must have some fiat token allowance on the payer's tokens. * @param from Payer's address. * @param to Payee's address. * @param value Transfer amount. * @return True if the operation was successful. */ function transferFrom( address from, address to, uint256 value ) external override whenNotPaused notBlacklisted(msg.sender) notBlacklisted(from) notBlacklisted(to) returns (bool) { require( value <= allowed[from][msg.sender], "ERC20: transfer amount exceeds allowance" ); _transfer(from, to, value); allowed[from][msg.sender] = allowed[from][msg.sender].sub(value); return true; } /** * @notice Transfers tokens from the caller. * @param to Payee's address. * @param value Transfer amount. * @return True if the operation was successful. */ function transfer(address to, uint256 value) external override whenNotPaused notBlacklisted(msg.sender) notBlacklisted(to) returns (bool) { _transfer(msg.sender, to, value); return true; } /** * @dev Internal function to process transfers. * @param from Payer's address. * @param to Payee's address. * @param value Transfer amount. */ function _transfer( address from, address to, uint256 value ) internal override { require(from != address(0), "ERC20: transfer from the zero address"); require(to != address(0), "ERC20: transfer to the zero address"); require( value <= _balanceOf(from), "ERC20: transfer amount exceeds balance" ); _setBalance(from, _balanceOf(from).sub(value)); _setBalance(to, _balanceOf(to).add(value)); emit Transfer(from, to, value); } /** * @notice Adds or updates a new minter with a mint allowance. * @param minter The address of the minter. * @param minterAllowedAmount The minting amount allowed for the minter. * @return True if the operation was successful. */ function configureMinter(address minter, uint256 minterAllowedAmount) external whenNotPaused onlyMasterMinter returns (bool) { minters[minter] = true; minterAllowed[minter] = minterAllowedAmount; emit MinterConfigured(minter, minterAllowedAmount); return true; } /** * @notice Removes a minter. * @param minter The address of the minter to remove. * @return True if the operation was successful. */ function removeMinter(address minter) external onlyMasterMinter returns (bool) { minters[minter] = false; minterAllowed[minter] = 0; emit MinterRemoved(minter); return true; } /** * @notice Allows a minter to burn some of its own tokens. * @dev The caller must be a minter, must not be blacklisted, and the amount to burn * should be less than or equal to the account's balance. * @param _amount the amount of tokens to be burned. */ function burn(uint256 _amount) external whenNotPaused onlyMinters notBlacklisted(msg.sender) { uint256 balance = _balanceOf(msg.sender); require(_amount > 0, "FiatToken: burn amount not greater than 0"); require(balance >= _amount, "FiatToken: burn amount exceeds balance"); totalSupply_ = totalSupply_.sub(_amount); _setBalance(msg.sender, balance.sub(_amount)); emit Burn(msg.sender, _amount); emit Transfer(msg.sender, address(0), _amount); } /** * @notice Updates the master minter address. * @param _newMasterMinter The address of the new master minter. */ function updateMasterMinter(address _newMasterMinter) external onlyOwner { require( _newMasterMinter != address(0), "FiatToken: new masterMinter is the zero address" ); masterMinter = _newMasterMinter; emit MasterMinterChanged(masterMinter); } /** * @inheritdoc Blacklistable */ function _blacklist(address _account) internal override { _setBlacklistState(_account, true); } /** * @inheritdoc Blacklistable */ function _unBlacklist(address _account) internal override { _setBlacklistState(_account, false); } /** * @dev Helper method that sets the blacklist state of an account. * @param _account The address of the account. * @param _shouldBlacklist True if the account should be blacklisted, false if the account should be unblacklisted. */ function _setBlacklistState(address _account, bool _shouldBlacklist) internal virtual { _deprecatedBlacklisted[_account] = _shouldBlacklist; } /** * @dev Helper method that sets the balance of an account. * @param _account The address of the account. * @param _balance The new fiat token balance of the account. */ function _setBalance(address _account, uint256 _balance) internal virtual { balanceAndBlacklistStates[_account] = _balance; } /** * @inheritdoc Blacklistable */ function _isBlacklisted(address _account) internal virtual override view returns (bool) { return _deprecatedBlacklisted[_account]; } /** * @dev Helper method to obtain the balance of an account. * @param _account The address of the account. * @return The fiat token balance of the account. */ function _balanceOf(address _account) internal virtual view returns (uint256) { return balanceAndBlacklistStates[_account]; } } /** * SPDX-License-Identifier: Apache-2.0 * * Copyright (c) 2023, Circle Internet Financial, LLC. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ pragma solidity 0.6.12; import { Ownable } from "./Ownable.sol"; /** * @title Blacklistable Token * @dev Allows accounts to be blacklisted by a "blacklister" role */ abstract contract Blacklistable is Ownable { address public blacklister; mapping(address => bool) internal _deprecatedBlacklisted; event Blacklisted(address indexed _account); event UnBlacklisted(address indexed _account); event BlacklisterChanged(address indexed newBlacklister); /** * @dev Throws if called by any account other than the blacklister. */ modifier onlyBlacklister() { require( msg.sender == blacklister, "Blacklistable: caller is not the blacklister" ); _; } /** * @dev Throws if argument account is blacklisted. * @param _account The address to check. */ modifier notBlacklisted(address _account) { require( !_isBlacklisted(_account), "Blacklistable: account is blacklisted" ); _; } /** * @notice Checks if account is blacklisted. * @param _account The address to check. * @return True if the account is blacklisted, false if the account is not blacklisted. */ function isBlacklisted(address _account) external view returns (bool) { return _isBlacklisted(_account); } /** * @notice Adds account to blacklist. * @param _account The address to blacklist. */ function blacklist(address _account) external onlyBlacklister { _blacklist(_account); emit Blacklisted(_account); } /** * @notice Removes account from blacklist. * @param _account The address to remove from the blacklist. */ function unBlacklist(address _account) external onlyBlacklister { _unBlacklist(_account); emit UnBlacklisted(_account); } /** * @notice Updates the blacklister address. * @param _newBlacklister The address of the new blacklister. */ function updateBlacklister(address _newBlacklister) external onlyOwner { require( _newBlacklister != address(0), "Blacklistable: new blacklister is the zero address" ); blacklister = _newBlacklister; emit BlacklisterChanged(blacklister); } /** * @dev Checks if account is blacklisted. * @param _account The address to check. * @return true if the account is blacklisted, false otherwise. */ function _isBlacklisted(address _account) internal virtual view returns (bool); /** * @dev Helper method that blacklists an account. * @param _account The address to blacklist. */ function _blacklist(address _account) internal virtual; /** * @dev Helper method that unblacklists an account. * @param _account The address to unblacklist. */ function _unBlacklist(address _account) internal virtual; } /** * SPDX-License-Identifier: Apache-2.0 * * Copyright (c) 2023, Circle Internet Financial, LLC. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ pragma solidity 0.6.12; import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol"; abstract contract AbstractFiatTokenV1 is IERC20 { function _approve( address owner, address spender, uint256 value ) internal virtual; function _transfer( address from, address to, uint256 value ) internal virtual; } /** * SPDX-License-Identifier: Apache-2.0 * * Copyright (c) 2023, Circle Internet Financial, LLC. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ pragma solidity 0.6.12; import { Ownable } from "../v1/Ownable.sol"; import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol"; import { SafeERC20 } from "@openzeppelin/contracts/token/ERC20/SafeERC20.sol"; contract Rescuable is Ownable { using SafeERC20 for IERC20; address private _rescuer; event RescuerChanged(address indexed newRescuer); /** * @notice Returns current rescuer * @return Rescuer's address */ function rescuer() external view returns (address) { return _rescuer; } /** * @notice Revert if called by any account other than the rescuer. */ modifier onlyRescuer() { require(msg.sender == _rescuer, "Rescuable: caller is not the rescuer"); _; } /** * @notice Rescue ERC20 tokens locked up in this contract. * @param tokenContract ERC20 token contract address * @param to Recipient address * @param amount Amount to withdraw */ function rescueERC20( IERC20 tokenContract, address to, uint256 amount ) external onlyRescuer { tokenContract.safeTransfer(to, amount); } /** * @notice Updates the rescuer address. * @param newRescuer The address of the new rescuer. */ function updateRescuer(address newRescuer) external onlyOwner { require( newRescuer != address(0), "Rescuable: new rescuer is the zero address" ); _rescuer = newRescuer; emit RescuerChanged(newRescuer); } } /** * SPDX-License-Identifier: Apache-2.0 * * Copyright (c) 2023, Circle Internet Financial, LLC. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ pragma solidity 0.6.12; import { FiatTokenV1 } from "../v1/FiatTokenV1.sol"; import { Rescuable } from "./Rescuable.sol"; /** * @title FiatTokenV1_1 * @dev ERC20 Token backed by fiat reserves */ contract FiatTokenV1_1 is FiatTokenV1, Rescuable { } /** * SPDX-License-Identifier: Apache-2.0 * * Copyright (c) 2023, Circle Internet Financial, LLC. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ pragma solidity 0.6.12; import { ECRecover } from "./ECRecover.sol"; import { IERC1271 } from "../interface/IERC1271.sol"; /** * @dev Signature verification helper that can be used instead of `ECRecover.recover` to seamlessly support both ECDSA * signatures from externally owned accounts (EOAs) as well as ERC1271 signatures from smart contract wallets. * * Adapted from https://github.com/OpenZeppelin/openzeppelin-contracts/blob/21bb89ef5bfc789b9333eb05e3ba2b7b284ac77c/contracts/utils/cryptography/SignatureChecker.sol */ library SignatureChecker { /** * @dev Checks if a signature is valid for a given signer and data hash. If the signer is a smart contract, the * signature is validated against that smart contract using ERC1271, otherwise it's validated using `ECRecover.recover`. * @param signer Address of the claimed signer * @param digest Keccak-256 hash digest of the signed message * @param signature Signature byte array associated with hash */ function isValidSignatureNow( address signer, bytes32 digest, bytes memory signature ) external view returns (bool) { if (!isContract(signer)) { return ECRecover.recover(digest, signature) == signer; } return isValidERC1271SignatureNow(signer, digest, signature); } /** * @dev Checks if a signature is valid for a given signer and data hash. The signature is validated * against the signer smart contract using ERC1271. * @param signer Address of the claimed signer * @param digest Keccak-256 hash digest of the signed message * @param signature Signature byte array associated with hash * * NOTE: Unlike ECDSA signatures, contract signatures are revocable, and the outcome of this function can thus * change through time. It could return true at block N and false at block N+1 (or the opposite). */ function isValidERC1271SignatureNow( address signer, bytes32 digest, bytes memory signature ) internal view returns (bool) { (bool success, bytes memory result) = signer.staticcall( abi.encodeWithSelector( IERC1271.isValidSignature.selector, digest, signature ) ); return (success && result.length >= 32 && abi.decode(result, (bytes32)) == bytes32(IERC1271.isValidSignature.selector)); } /** * @dev Checks if the input address is a smart contract. */ function isContract(address addr) internal view returns (bool) { uint256 size; assembly { size := extcodesize(addr) } return size > 0; } } /** * SPDX-License-Identifier: Apache-2.0 * * Copyright (c) 2023, Circle Internet Financial, LLC. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ pragma solidity 0.6.12; /** * @dev Signature message hash utilities for producing digests to be consumed by {ECDSA} recovery or signing. * * The library provides methods for generating a hash of a message that conforms to the * https://eips.ethereum.org/EIPS/eip-191[EIP 191] and https://eips.ethereum.org/EIPS/eip-712[EIP 712] * specifications. */ library MessageHashUtils { /** * @dev Returns the keccak256 digest of an EIP-712 typed data (EIP-191 version `0x01`). * Adapted from https://github.com/OpenZeppelin/openzeppelin-contracts/blob/21bb89ef5bfc789b9333eb05e3ba2b7b284ac77c/contracts/utils/cryptography/MessageHashUtils.sol * * The digest is calculated from a `domainSeparator` and a `structHash`, by prefixing them with * `\\x19\\x01` and hashing the result. It corresponds to the hash signed by the * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] JSON-RPC method as part of EIP-712. * * @param domainSeparator Domain separator * @param structHash Hashed EIP-712 data struct * @return digest The keccak256 digest of an EIP-712 typed data */ function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 digest) { assembly { let ptr := mload(0x40) mstore(ptr, "\\x19\\x01") mstore(add(ptr, 0x02), domainSeparator) mstore(add(ptr, 0x22), structHash) digest := keccak256(ptr, 0x42) } } } /** * SPDX-License-Identifier: Apache-2.0 * * Copyright (c) 2023, Circle Internet Financial, LLC. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ pragma solidity 0.6.12; /** * @title EIP712 * @notice A library that provides EIP712 helper functions */ library EIP712 { /** * @notice Make EIP712 domain separator * @param name Contract name * @param version Contract version * @param chainId Blockchain ID * @return Domain separator */ function makeDomainSeparator( string memory name, string memory version, uint256 chainId ) internal view returns (bytes32) { return keccak256( abi.encode( // keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)") 0x8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f, keccak256(bytes(name)), keccak256(bytes(version)), chainId, address(this) ) ); } /** * @notice Make EIP712 domain separator * @param name Contract name * @param version Contract version * @return Domain separator */ function makeDomainSeparator(string memory name, string memory version) internal view returns (bytes32) { uint256 chainId; assembly { chainId := chainid() } return makeDomainSeparator(name, version, chainId); } } /** * SPDX-License-Identifier: Apache-2.0 * * Copyright (c) 2023, Circle Internet Financial, LLC. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ pragma solidity 0.6.12; /** * @title ECRecover * @notice A library that provides a safe ECDSA recovery function */ library ECRecover { /** * @notice Recover signer's address from a signed message * @dev Adapted from: https://github.com/OpenZeppelin/openzeppelin-contracts/blob/65e4ffde586ec89af3b7e9140bdc9235d1254853/contracts/cryptography/ECDSA.sol * Modifications: Accept v, r, and s as separate arguments * @param digest Keccak-256 hash digest of the signed message * @param v v of the signature * @param r r of the signature * @param s s of the signature * @return Signer address */ function recover( bytes32 digest, uint8 v, bytes32 r, bytes32 s ) internal pure returns (address) { // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines // the valid range for s in (281): 0 < s < secp256k1n ÷ 2 + 1, and for v in (282): v ∈ {27, 28}. Most // signatures from current libraries generate a unique signature with an s-value in the lower half order. // // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept // these malleable signatures as well. if ( uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0 ) { revert("ECRecover: invalid signature 's' value"); } if (v != 27 && v != 28) { revert("ECRecover: invalid signature 'v' value"); } // If the signature is valid (and not malleable), return the signer address address signer = ecrecover(digest, v, r, s); require(signer != address(0), "ECRecover: invalid signature"); return signer; } /** * @notice Recover signer's address from a signed message * @dev Adapted from: https://github.com/OpenZeppelin/openzeppelin-contracts/blob/0053ee040a7ff1dbc39691c9e67a69f564930a88/contracts/utils/cryptography/ECDSA.sol * @param digest Keccak-256 hash digest of the signed message * @param signature Signature byte array associated with hash * @return Signer address */ function recover(bytes32 digest, bytes memory signature) internal pure returns (address) { require(signature.length == 65, "ECRecover: invalid signature length"); bytes32 r; bytes32 s; uint8 v; // ecrecover takes the signature parameters, and the only way to get them // currently is to use assembly. /// @solidity memory-safe-assembly assembly { r := mload(add(signature, 0x20)) s := mload(add(signature, 0x40)) v := byte(0, mload(add(signature, 0x60))) } return recover(digest, v, r, s); } } /** * SPDX-License-Identifier: Apache-2.0 * * Copyright (c) 2023, Circle Internet Financial, LLC. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ pragma solidity 0.6.12; /** * @dev Interface of the ERC1271 standard signature validation method for * contracts as defined in https://eips.ethereum.org/EIPS/eip-1271[ERC-1271]. */ interface IERC1271 { /** * @dev Should return whether the signature provided is valid for the provided data * @param hash Hash of the data to be signed * @param signature Signature byte array associated with the provided data hash * @return magicValue bytes4 magic value 0x1626ba7e when function passes */ function isValidSignature(bytes32 hash, bytes memory signature) external view returns (bytes4 magicValue); }
File 7 of 7: AugustusV6
// SPDX-License-Identifier: MIT pragma solidity 0.8.22; // Vendor import { Diamond } from "./vendor/Diamond.sol"; // Routers import { Routers } from "./routers/Routers.sol"; // ______ __ __ __ ____ // /\\ _ \\ /\\ \\__ /\\ \\/\\ \\ /'___\\ // \\ \\ \\L\\ \\ __ __ __ __ __ ____\\ \\ ,_\\ __ __ ____\\ \\ \\ \\ \\/\\ \\__/ // \\ \\ __ \\/\\ \\/\\ \\ /'_ `\\/\\ \\/\\ \\ /',__\\\\ \\ \\/ /\\ \\/\\ \\ /',__\\\\ \\ \\ \\ \\ \\ _``\\ // \\ \\ \\/\\ \\ \\ \\_\\ \\/\\ \\L\\ \\ \\ \\_\\ \\/\\__, `\\\\ \\ \\_\\ \\ \\_\\ \\/\\__, `\\\\ \\ \\_/ \\ \\ \\L\\ \\ // \\ \\_\\ \\_\\ \\____/\\ \\____ \\ \\____/\\/\\____/ \\ \\__\\\\ \\____/\\/\\____/ \\ `\\___/\\ \\____/ // \\/_/\\/_/\\/___/ \\/___L\\ \\/___/ \\/___/ \\/__/ \\/___/ \\/___/ `\\/__/ \\/___/ // /\\____/ // \\_/__/ /// @title AugustusV6 /// @notice The V6 implementation of the ParaSwap onchain aggregation protocol contract AugustusV6 is Diamond, Routers { /*////////////////////////////////////////////////////////////// CONSTRUCTOR //////////////////////////////////////////////////////////////*/ constructor( /// @dev Diamond address _owner, address _diamondCutFacet, /// @dev Direct Routers address _weth, address payable _balancerVault, uint256 _uniV3FactoryAndFF, uint256 _uniswapV3PoolInitCodeHash, uint256 _uniswapV2FactoryAndFF, uint256 _uniswapV2PoolInitCodeHash, address _rfq, /// @dev Fees address payable _feeVault, /// @dev Permit2 address _permit2 ) Diamond(_owner, _diamondCutFacet) Routers( _weth, _uniV3FactoryAndFF, _uniswapV3PoolInitCodeHash, _uniswapV2FactoryAndFF, _uniswapV2PoolInitCodeHash, _balancerVault, _permit2, _rfq, _feeVault ) { } /*////////////////////////////////////////////////////////////// EXTERNAL //////////////////////////////////////////////////////////////*/ /// @notice Reverts if the caller is one of the following: // - an externally-owned account // - a contract in construction // - an address where a contract will be created // - an address where a contract lived, but was destroyed receive() external payable override(Diamond) { address addr = msg.sender; // solhint-disable-next-line no-inline-assembly assembly ("memory-safe") { if iszero(extcodesize(addr)) { revert(0, 0) } } } } // SPDX-License-Identifier: MIT /** * Vendored on October 12, 2023 from: * https://github.com/mudgen/diamond-3-hardhat/blob/main/contracts/Diamond.sol */ pragma solidity ^0.8.0; /** * \\ * Author: Nick Mudge <[email protected]> (https://twitter.com/mudgen) * EIP-2535 Diamonds: https://eips.ethereum.org/EIPS/eip-2535 * * Implementation of a diamond. * /***************************************************************************** */ import { LibDiamond } from "./libraries/LibDiamond.sol"; import { IDiamondCut } from "./interfaces/IDiamondCut.sol"; contract Diamond { error DiamondFunctionDoesNotExist(); constructor(address _contractOwner, address _diamondCutFacet) payable { LibDiamond.setContractOwner(_contractOwner); // Add the diamondCut external function from the diamondCutFacet IDiamondCut.FacetCut[] memory cut = new IDiamondCut.FacetCut[](1); bytes4[] memory functionSelectors = new bytes4[](1); functionSelectors[0] = IDiamondCut.diamondCut.selector; cut[0] = IDiamondCut.FacetCut({ facetAddress: _diamondCutFacet, action: IDiamondCut.FacetCutAction.Add, functionSelectors: functionSelectors }); LibDiamond.diamondCut(cut, address(0), ""); } // Find facet for function that is called and execute the // function if a facet is found and return any value. fallback() external payable { LibDiamond.DiamondStorage storage ds; bytes32 position = LibDiamond.DIAMOND_STORAGE_POSITION; // get diamond storage assembly { ds.slot := position } // get facet from function selector address facet = ds.selectorToFacetAndPosition[msg.sig].facetAddress; // revert if function does not exist if (facet == address(0)) { revert DiamondFunctionDoesNotExist(); } // Execute external function from facet using delegatecall and return any value. assembly { // copy function selector and any arguments calldatacopy(0, 0, calldatasize()) // execute function call using the facet let result := delegatecall(gas(), facet, 0, calldatasize(), 0, 0) // get any return value returndatacopy(0, 0, returndatasize()) // return any return value or error back to the caller switch result case 0 { revert(0, returndatasize()) } default { return(0, returndatasize()) } } } receive() external payable virtual { } } // SPDX-License-Identifier: MIT pragma solidity 0.8.22; // DirectSwapExactAmountIn import { BalancerV2SwapExactAmountIn } from "./swapExactAmountIn/direct/BalancerV2SwapExactAmountIn.sol"; import { CurveV1SwapExactAmountIn } from "./swapExactAmountIn/direct/CurveV1SwapExactAmountIn.sol"; import { CurveV2SwapExactAmountIn } from "./swapExactAmountIn/direct/CurveV2SwapExactAmountIn.sol"; import { UniswapV2SwapExactAmountIn } from "./swapExactAmountIn/direct/UniswapV2SwapExactAmountIn.sol"; import { UniswapV3SwapExactAmountIn } from "./swapExactAmountIn/direct/UniswapV3SwapExactAmountIn.sol"; // DirectSwapExactAmountOut import { BalancerV2SwapExactAmountOut } from "./swapExactAmountOut/direct/BalancerV2SwapExactAmountOut.sol"; import { UniswapV2SwapExactAmountOut } from "./swapExactAmountOut/direct/UniswapV2SwapExactAmountOut.sol"; import { UniswapV3SwapExactAmountOut } from "./swapExactAmountOut/direct/UniswapV3SwapExactAmountOut.sol"; // Fees import { AugustusFees } from "../fees/AugustusFees.sol"; // GenericSwapExactAmountIn import { GenericSwapExactAmountIn } from "./swapExactAmountIn/GenericSwapExactAmountIn.sol"; // GenericSwapExactAmountOut import { GenericSwapExactAmountOut } from "./swapExactAmountOut/GenericSwapExactAmountOut.sol"; // General import { AugustusRFQRouter } from "./general/AugustusRFQRouter.sol"; // Utils import { AugustusRFQUtils } from "../util/AugustusRFQUtils.sol"; import { BalancerV2Utils } from "../util/BalancerV2Utils.sol"; import { UniswapV2Utils } from "../util/UniswapV2Utils.sol"; import { UniswapV3Utils } from "../util/UniswapV3Utils.sol"; import { WETHUtils } from "../util/WETHUtils.sol"; import { Permit2Utils } from "../util/Permit2Utils.sol"; /// @title Routers /// @notice A wrapper for all router contracts contract Routers is AugustusFees, AugustusRFQRouter, BalancerV2SwapExactAmountOut, BalancerV2SwapExactAmountIn, CurveV1SwapExactAmountIn, CurveV2SwapExactAmountIn, GenericSwapExactAmountOut, GenericSwapExactAmountIn, UniswapV2SwapExactAmountOut, UniswapV2SwapExactAmountIn, UniswapV3SwapExactAmountOut, UniswapV3SwapExactAmountIn { /*////////////////////////////////////////////////////////////// CONSTRUCTOR //////////////////////////////////////////////////////////////*/ constructor( address _weth, uint256 _uniswapV3FactoryAndFF, uint256 _uniswapV3PoolInitCodeHash, uint256 _uniswapV2FactoryAndFF, uint256 _uniswapV2PoolInitCodeHash, address payable _balancerVault, address _permit2, address _rfq, address payable _feeVault ) AugustusFees(_feeVault) AugustusRFQUtils(_rfq) BalancerV2Utils(_balancerVault) Permit2Utils(_permit2) UniswapV2Utils(_uniswapV2FactoryAndFF, _uniswapV2PoolInitCodeHash) UniswapV3Utils(_uniswapV3FactoryAndFF, _uniswapV3PoolInitCodeHash) WETHUtils(_weth) { } } // SPDX-License-Identifier: MIT /** * Vendored on October 12, 2023 from: * https://github.com/mudgen/diamond-3-hardhat/blob/main/contracts/libraries/LibDiamond.sol */ pragma solidity ^0.8.0; /** * \\ * Author: Nick Mudge <[email protected]> (https://twitter.com/mudgen) * EIP-2535 Diamonds: https://eips.ethereum.org/EIPS/eip-2535 * /***************************************************************************** */ import { IDiamondCut } from "../interfaces/IDiamondCut.sol"; // Remember to add the loupe functions from DiamondLoupeFacet to the diamond. // The loupe functions are required by the EIP2535 Diamonds standard error InitializationFunctionReverted(address _initializationContractAddress, bytes _calldata); library LibDiamond { bytes32 constant DIAMOND_STORAGE_POSITION = keccak256("diamond.standard.diamond.storage"); struct FacetAddressAndPosition { address facetAddress; uint96 functionSelectorPosition; // position in facetFunctionSelectors.functionSelectors array } struct FacetFunctionSelectors { bytes4[] functionSelectors; uint256 facetAddressPosition; // position of facetAddress in facetAddresses array } struct DiamondStorage { // maps function selector to the facet address and // the position of the selector in the facetFunctionSelectors.selectors array mapping(bytes4 => FacetAddressAndPosition) selectorToFacetAndPosition; // maps facet addresses to function selectors mapping(address => FacetFunctionSelectors) facetFunctionSelectors; // facet addresses address[] facetAddresses; // Used to query if a contract implements an interface. // Used to implement ERC-165. mapping(bytes4 => bool) supportedInterfaces; // owner of the contract address contractOwner; } function diamondStorage() internal pure returns (DiamondStorage storage ds) { bytes32 position = DIAMOND_STORAGE_POSITION; assembly { ds.slot := position } } event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); function setContractOwner(address _newOwner) internal { DiamondStorage storage ds = diamondStorage(); address previousOwner = ds.contractOwner; ds.contractOwner = _newOwner; emit OwnershipTransferred(previousOwner, _newOwner); } function contractOwner() internal view returns (address contractOwner_) { contractOwner_ = diamondStorage().contractOwner; } function enforceIsContractOwner() internal view { require(msg.sender == diamondStorage().contractOwner, "LibDiamond: Must be contract owner"); } event DiamondCut(IDiamondCut.FacetCut[] _diamondCut, address _init, bytes _calldata); // Internal function version of diamondCut function diamondCut(IDiamondCut.FacetCut[] memory _diamondCut, address _init, bytes memory _calldata) internal { for (uint256 facetIndex; facetIndex < _diamondCut.length; facetIndex++) { IDiamondCut.FacetCutAction action = _diamondCut[facetIndex].action; if (action == IDiamondCut.FacetCutAction.Add) { addFunctions(_diamondCut[facetIndex].facetAddress, _diamondCut[facetIndex].functionSelectors); } else if (action == IDiamondCut.FacetCutAction.Replace) { replaceFunctions(_diamondCut[facetIndex].facetAddress, _diamondCut[facetIndex].functionSelectors); } else if (action == IDiamondCut.FacetCutAction.Remove) { removeFunctions(_diamondCut[facetIndex].facetAddress, _diamondCut[facetIndex].functionSelectors); } else { revert("LibDiamondCut: Incorrect FacetCutAction"); } } emit DiamondCut(_diamondCut, _init, _calldata); initializeDiamondCut(_init, _calldata); } function addFunctions(address _facetAddress, bytes4[] memory _functionSelectors) internal { require(_functionSelectors.length > 0, "LibDiamondCut: No selectors in facet to cut"); DiamondStorage storage ds = diamondStorage(); require(_facetAddress != address(0), "LibDiamondCut: Add facet can't be address(0)"); uint96 selectorPosition = uint96(ds.facetFunctionSelectors[_facetAddress].functionSelectors.length); // add new facet address if it does not exist if (selectorPosition == 0) { addFacet(ds, _facetAddress); } for (uint256 selectorIndex; selectorIndex < _functionSelectors.length; selectorIndex++) { bytes4 selector = _functionSelectors[selectorIndex]; address oldFacetAddress = ds.selectorToFacetAndPosition[selector].facetAddress; require(oldFacetAddress == address(0), "LibDiamondCut: Can't add function that already exists"); addFunction(ds, selector, selectorPosition, _facetAddress); selectorPosition++; } } function replaceFunctions(address _facetAddress, bytes4[] memory _functionSelectors) internal { require(_functionSelectors.length > 0, "LibDiamondCut: No selectors in facet to cut"); DiamondStorage storage ds = diamondStorage(); require(_facetAddress != address(0), "LibDiamondCut: Add facet can't be address(0)"); uint96 selectorPosition = uint96(ds.facetFunctionSelectors[_facetAddress].functionSelectors.length); // add new facet address if it does not exist if (selectorPosition == 0) { addFacet(ds, _facetAddress); } for (uint256 selectorIndex; selectorIndex < _functionSelectors.length; selectorIndex++) { bytes4 selector = _functionSelectors[selectorIndex]; address oldFacetAddress = ds.selectorToFacetAndPosition[selector].facetAddress; require(oldFacetAddress != _facetAddress, "LibDiamondCut: Can't replace function with same function"); removeFunction(ds, oldFacetAddress, selector); addFunction(ds, selector, selectorPosition, _facetAddress); selectorPosition++; } } function removeFunctions(address _facetAddress, bytes4[] memory _functionSelectors) internal { require(_functionSelectors.length > 0, "LibDiamondCut: No selectors in facet to cut"); DiamondStorage storage ds = diamondStorage(); // if function does not exist then do nothing and return require(_facetAddress == address(0), "LibDiamondCut: Remove facet address must be address(0)"); for (uint256 selectorIndex; selectorIndex < _functionSelectors.length; selectorIndex++) { bytes4 selector = _functionSelectors[selectorIndex]; address oldFacetAddress = ds.selectorToFacetAndPosition[selector].facetAddress; removeFunction(ds, oldFacetAddress, selector); } } function addFacet(DiamondStorage storage ds, address _facetAddress) internal { enforceHasContractCode(_facetAddress, "LibDiamondCut: New facet has no code"); ds.facetFunctionSelectors[_facetAddress].facetAddressPosition = ds.facetAddresses.length; ds.facetAddresses.push(_facetAddress); } function addFunction( DiamondStorage storage ds, bytes4 _selector, uint96 _selectorPosition, address _facetAddress ) internal { ds.selectorToFacetAndPosition[_selector].functionSelectorPosition = _selectorPosition; ds.facetFunctionSelectors[_facetAddress].functionSelectors.push(_selector); ds.selectorToFacetAndPosition[_selector].facetAddress = _facetAddress; } function removeFunction(DiamondStorage storage ds, address _facetAddress, bytes4 _selector) internal { require(_facetAddress != address(0), "LibDiamondCut: Can't remove function that doesn't exist"); // an immutable function is a function defined directly in a diamond require(_facetAddress != address(this), "LibDiamondCut: Can't remove immutable function"); // replace selector with last selector, then delete last selector uint256 selectorPosition = ds.selectorToFacetAndPosition[_selector].functionSelectorPosition; uint256 lastSelectorPosition = ds.facetFunctionSelectors[_facetAddress].functionSelectors.length - 1; // if not the same then replace _selector with lastSelector if (selectorPosition != lastSelectorPosition) { bytes4 lastSelector = ds.facetFunctionSelectors[_facetAddress].functionSelectors[lastSelectorPosition]; ds.facetFunctionSelectors[_facetAddress].functionSelectors[selectorPosition] = lastSelector; ds.selectorToFacetAndPosition[lastSelector].functionSelectorPosition = uint96(selectorPosition); } // delete the last selector ds.facetFunctionSelectors[_facetAddress].functionSelectors.pop(); delete ds.selectorToFacetAndPosition[_selector]; // if no more selectors for facet address then delete the facet address if (lastSelectorPosition == 0) { // replace facet address with last facet address and delete last facet address uint256 lastFacetAddressPosition = ds.facetAddresses.length - 1; uint256 facetAddressPosition = ds.facetFunctionSelectors[_facetAddress].facetAddressPosition; if (facetAddressPosition != lastFacetAddressPosition) { address lastFacetAddress = ds.facetAddresses[lastFacetAddressPosition]; ds.facetAddresses[facetAddressPosition] = lastFacetAddress; ds.facetFunctionSelectors[lastFacetAddress].facetAddressPosition = facetAddressPosition; } ds.facetAddresses.pop(); delete ds.facetFunctionSelectors[_facetAddress].facetAddressPosition; } } function initializeDiamondCut(address _init, bytes memory _calldata) internal { if (_init == address(0)) { return; } enforceHasContractCode(_init, "LibDiamondCut: _init address has no code"); (bool success, bytes memory error) = _init.delegatecall(_calldata); if (!success) { if (error.length > 0) { // bubble up error /// @solidity memory-safe-assembly assembly { let returndata_size := mload(error) revert(add(32, error), returndata_size) } } else { revert InitializationFunctionReverted(_init, _calldata); } } } function enforceHasContractCode(address _contract, string memory _errorMessage) internal view { uint256 contractSize; assembly { contractSize := extcodesize(_contract) } require(contractSize > 0, _errorMessage); } } // SPDX-License-Identifier: MIT /** * Vendored on October 12, 2023 from: * https://github.com/mudgen/diamond-3-hardhat/blob/main/contracts/interfaces/IDiamondCut.sol */ pragma solidity ^0.8.0; /** * \\ * Author: Nick Mudge (https://twitter.com/mudgen) * EIP-2535 Diamonds: https://eips.ethereum.org/EIPS/eip-2535 * /***************************************************************************** */ interface IDiamondCut { enum FacetCutAction { Add, Replace, Remove } // Add=0, Replace=1, Remove=2 struct FacetCut { address facetAddress; FacetCutAction action; bytes4[] functionSelectors; } /// @notice Add/replace/remove any number of functions and optionally execute /// a function with delegatecall /// @param _diamondCut Contains the facet addresses and function selectors /// @param _init The address of the contract or facet to execute _calldata /// @param _calldata A function call, including function selector and arguments /// _calldata is executed with delegatecall on _init function diamondCut(FacetCut[] calldata _diamondCut, address _init, bytes calldata _calldata) external; event DiamondCut(FacetCut[] _diamondCut, address _init, bytes _calldata); } // SPDX-License-Identifier: MIT pragma solidity 0.8.22; // Interfaces import { IERC20 } from "@openzeppelin/token/ERC20/IERC20.sol"; import { IBalancerV2SwapExactAmountIn } from "../../../interfaces/IBalancerV2SwapExactAmountIn.sol"; // Libraries import { ERC20Utils } from "../../../libraries/ERC20Utils.sol"; // Types import { BalancerV2Data } from "../../../AugustusV6Types.sol"; // Utils import { BalancerV2Utils } from "../../../util/BalancerV2Utils.sol"; /// @title BalancerV2SwapExactAmountIn /// @notice A contract for executing direct swapExactAmountIn on Balancer V2 abstract contract BalancerV2SwapExactAmountIn is IBalancerV2SwapExactAmountIn, BalancerV2Utils { /*////////////////////////////////////////////////////////////// LIBRARIES //////////////////////////////////////////////////////////////*/ using ERC20Utils for IERC20; /*////////////////////////////////////////////////////////////// SWAP EXACT AMOUNT IN //////////////////////////////////////////////////////////////*/ /// @inheritdoc IBalancerV2SwapExactAmountIn function swapExactAmountInOnBalancerV2( BalancerV2Data calldata balancerData, uint256 partnerAndFee, bytes calldata permit, bytes calldata data ) external payable whenNotPaused returns (uint256 receivedAmount, uint256 paraswapShare, uint256 partnerShare) { // Dereference balancerData uint256 quotedAmountOut = balancerData.quotedAmount; uint256 beneficiaryAndApproveFlag = balancerData.beneficiaryAndApproveFlag; uint256 amountIn = balancerData.fromAmount; uint256 minAmountOut = balancerData.toAmount; // Decode params (IERC20 srcToken, IERC20 destToken, address payable beneficiary, bool approve) = _decodeBalancerV2Params(beneficiaryAndApproveFlag, data); // Check if toAmount is valid if (minAmountOut == 0) { revert InvalidToAmount(); } // Check if beneficiary is valid if (beneficiary == address(0)) { beneficiary = payable(msg.sender); } // Check if srcToken is ETH if (srcToken.isETH(amountIn) == 0) { // Check the length of the permit field, // if < 257 and > 0 we should execute regular permit // and if it is >= 257 we execute permit2 if (permit.length < 257) { // Permit if needed if (permit.length > 0) { srcToken.permit(permit); } srcToken.safeTransferFrom(msg.sender, address(this), amountIn); } else { // Otherwise Permit2.permitTransferFrom permit2TransferFrom(permit, address(this), amountIn); } // Check if approve is needed if (approve) { // Approve BALANCER_VAULT to spend srcToken srcToken.approve(BALANCER_VAULT); } } // Execute swap _callBalancerV2(data); // Check balance after swap receivedAmount = destToken.getBalance(address(this)); // Check if swap succeeded if (receivedAmount < minAmountOut) { revert InsufficientReturnAmount(); } // Process fees and transfer destToken to beneficiary return processSwapExactAmountInFeesAndTransfer( beneficiary, destToken, partnerAndFee, receivedAmount, quotedAmountOut ); } } // SPDX-License-Identifier: MIT pragma solidity 0.8.22; // Interfaces import { IERC20 } from "@openzeppelin/token/ERC20/IERC20.sol"; import { ICurveV1SwapExactAmountIn } from "../../../interfaces/ICurveV1SwapExactAmountIn.sol"; // Libraries import { ERC20Utils } from "../../../libraries/ERC20Utils.sol"; // Types import { CurveV1Data } from "../../../AugustusV6Types.sol"; // Utils import { AugustusFees } from "../../../fees/AugustusFees.sol"; import { WETHUtils } from "../../../util/WETHUtils.sol"; import { Permit2Utils } from "../../../util/Permit2Utils.sol"; import { PauseUtils } from "../../../util/PauseUtils.sol"; /// @title CurveV1SwapExactAmountIn /// @notice A contract for executing direct CurveV1 swaps abstract contract CurveV1SwapExactAmountIn is ICurveV1SwapExactAmountIn, AugustusFees, WETHUtils, Permit2Utils, PauseUtils { /*////////////////////////////////////////////////////////////// LIBRARIES //////////////////////////////////////////////////////////////*/ using ERC20Utils for IERC20; /*////////////////////////////////////////////////////////////// SWAP EXACT AMOUNT IN //////////////////////////////////////////////////////////////*/ /// @inheritdoc ICurveV1SwapExactAmountIn function swapExactAmountInOnCurveV1( CurveV1Data calldata curveV1Data, uint256 partnerAndFee, bytes calldata permit ) external payable whenNotPaused returns (uint256 receivedAmount, uint256 paraswapShare, uint256 partnerShare) { // Dereference curveV1Data IERC20 srcToken = curveV1Data.srcToken; IERC20 destToken = curveV1Data.destToken; uint256 amountIn = curveV1Data.fromAmount; uint256 minAmountOut = curveV1Data.toAmount; uint256 quotedAmountOut = curveV1Data.quotedAmount; address payable beneficiary = curveV1Data.beneficiary; uint256 curveAssets = curveV1Data.curveAssets; uint256 curveData = curveV1Data.curveData; // Check if toAmount is valid if (minAmountOut == 0) { revert InvalidToAmount(); } // Check if beneficiary is valid if (beneficiary == address(0)) { beneficiary = payable(msg.sender); } // Decode curveData // 160 bits for curve exchange address // 1 bit for approve flag // 2 bits for wrap flag // 2 bits for swap type flag address exchange; bool approveFlag; uint256 wrapFlag; uint256 swapType; // solhint-disable-next-line no-inline-assembly assembly ("memory-safe") { exchange := and(curveData, 0xffffffffffffffffffffffffffffffffffffffff) approveFlag := and(shr(160, curveData), 1) wrapFlag := and(shr(161, curveData), 3) swapType := and(shr(163, curveData), 3) } // Check if srcToken is ETH // Transfer srcToken to augustus if not ETH if (srcToken.isETH(amountIn) == 0) { // Check the length of the permit field, // if < 257 and > 0 we should execute regular permit // and if it is >= 257 we execute permit2 if (permit.length < 257) { // Permit if needed if (permit.length > 0) { srcToken.permit(permit); } srcToken.safeTransferFrom(msg.sender, address(this), amountIn); } else { // Otherwise Permit2.permitTransferFrom permit2TransferFrom(permit, address(this), amountIn); } // Check if approve flag is set if (approveFlag) { // Approve exchange srcToken.approve(exchange); } } else { // Check if approve flag is set if (approveFlag) { // Approve exchange IERC20(WETH).approve(exchange); } } // Execute swap _executeSwapOnCurveV1(exchange, wrapFlag, swapType, curveAssets, amountIn); // Check balance after swap and unwrap if needed if (wrapFlag == 2) { // Received amount is WETH balance receivedAmount = IERC20(WETH).getBalance(address(this)); // Unwrap WETH WETH.withdraw(receivedAmount - 1); // Set receivedAmount to this contract's balance receivedAmount = address(this).balance; } else { // Received amount is destToken balance receivedAmount = destToken.getBalance(address(this)); } // Check if swap succeeded if (receivedAmount < minAmountOut) { revert InsufficientReturnAmount(); } // Process fees and transfer destToken to beneficiary return processSwapExactAmountInFeesAndTransfer( beneficiary, destToken, partnerAndFee, receivedAmount, quotedAmountOut ); } /*////////////////////////////////////////////////////////////// PRIVATE //////////////////////////////////////////////////////////////*/ function _executeSwapOnCurveV1( address exchange, uint256 wrapFlag, uint256 swapType, uint256 curveAssets, uint256 fromAmount ) private { // Load WETH address address weth = address(WETH); // solhint-disable-next-line no-inline-assembly assembly { // Load free memory pointer let ptr := mload(64) //----------------------------------------------------------------------------------- // Wrap ETH if needed //----------------------------------------------------------------------------------- // Check if wrap src flag is set if eq(wrapFlag, 1) { // Prepare call data for WETH.deposit() // Store function selector and mstore(ptr, 0xd0e30db000000000000000000000000000000000000000000000000000000000) // deposit() // Perform the external call with the prepared calldata // Check the outcome of the call and handle failure if iszero(call(gas(), weth, callvalue(), ptr, 4, 0, 0)) { // The call failed; we retrieve the exact error message and revert with it returndatacopy(0, 0, returndatasize()) // Copy the error message to the start of memory revert(0, returndatasize()) // Revert with the error message } } //----------------------------------------------------------------------------------- // Execute swap //----------------------------------------------------------------------------------- // Prepare call data for external call // Check swap type switch swapType // 0x01 for EXCHANGE_UNDERLYING case 0x01 { // Store function selector for function exchange_underlying(int128,int128,uint256,uint256) mstore(ptr, 0xa6417ed600000000000000000000000000000000000000000000000000000000) // store selector mstore(add(ptr, 4), shr(128, curveAssets)) // store index i mstore(add(ptr, 36), and(curveAssets, 0xffffffffffffffffffffffffffffffff)) // store index j mstore(add(ptr, 68), fromAmount) // store fromAmount mstore(add(ptr, 100), 1) // store 1 // Perform the external call with the prepared calldata // Check the outcome of the call and handle failure if iszero(call(gas(), exchange, 0, ptr, 132, 0, 0)) { // The call failed; we retrieve the exact error message and revert with it returndatacopy(0, 0, returndatasize()) // Copy the error message to the start of memory revert(0, returndatasize()) // Revert with the error message } } // 0x00(default) for EXCHANGE default { // check send eth wrap flag switch eq(wrapFlag, 0x03) // if it is not set, store selector for function exchange(int128,int128,uint256,uint256) case 1 { mstore(ptr, 0x3df0212400000000000000000000000000000000000000000000000000000000) // store selector mstore(add(ptr, 4), shr(128, curveAssets)) // store index i mstore(add(ptr, 36), and(curveAssets, 0xffffffffffffffffffffffffffffffff)) // store index j mstore(add(ptr, 68), fromAmount) // store fromAmount mstore(add(ptr, 100), 1) // store 1 // Perform the external call with the prepared calldata // Check the outcome of the call and handle failure if iszero(call(gas(), exchange, callvalue(), ptr, 132, 0, 0)) { // The call failed; we retrieve the exact error message and revert with it returndatacopy(0, 0, returndatasize()) // Copy the error message to the start of memory revert(0, returndatasize()) // Revert with the error message } } // if it is set, store selector for function exchange(int128,int128,uint256,uint256) default { mstore(ptr, 0x3df0212400000000000000000000000000000000000000000000000000000000) // store selector mstore(add(ptr, 4), shr(128, curveAssets)) // store index i mstore(add(ptr, 36), and(curveAssets, 0xffffffffffffffffffffffffffffffff)) // store index j mstore(add(ptr, 68), fromAmount) // store fromAmount mstore(add(ptr, 100), 1) // store 1 // Perform the external call with the prepared calldata // Check the outcome of the call and handle failure if iszero(call(gas(), exchange, 0, ptr, 132, 0, 0)) { // The call failed; we retrieve the exact error message and revert with it returndatacopy(0, 0, returndatasize()) // Copy the error message to the start of memory revert(0, returndatasize()) // Revert with the error message } } } } } } // SPDX-License-Identifier: MIT pragma solidity 0.8.22; // Interfaces import { IERC20 } from "@openzeppelin/token/ERC20/IERC20.sol"; import { ICurveV2SwapExactAmountIn } from "../../../interfaces/ICurveV2SwapExactAmountIn.sol"; // Libraries import { ERC20Utils } from "../../../libraries/ERC20Utils.sol"; // Types import { CurveV2Data } from "../../../AugustusV6Types.sol"; // Utils import { AugustusFees } from "../../../fees/AugustusFees.sol"; import { WETHUtils } from "../../../util/WETHUtils.sol"; import { Permit2Utils } from "../../../util/Permit2Utils.sol"; import { PauseUtils } from "../../../util/PauseUtils.sol"; /// @title CurveV2SwapExactAmountIn /// @notice A contract for executing direct CurveV2 swaps abstract contract CurveV2SwapExactAmountIn is ICurveV2SwapExactAmountIn, AugustusFees, WETHUtils, Permit2Utils, PauseUtils { /*////////////////////////////////////////////////////////////// LIBRARIES //////////////////////////////////////////////////////////////*/ using ERC20Utils for IERC20; /*////////////////////////////////////////////////////////////// SWAP EXACT AMOUNT IN //////////////////////////////////////////////////////////////*/ /// @inheritdoc ICurveV2SwapExactAmountIn function swapExactAmountInOnCurveV2( CurveV2Data calldata curveV2Data, uint256 partnerAndFee, bytes calldata permit ) external payable whenNotPaused returns (uint256 receivedAmount, uint256 paraswapShare, uint256 partnerShare) { // Dereference curveData IERC20 srcToken = curveV2Data.srcToken; IERC20 destToken = curveV2Data.destToken; uint256 amountIn = curveV2Data.fromAmount; uint256 minAmountOut = curveV2Data.toAmount; uint256 quotedAmountOut = curveV2Data.quotedAmount; address payable beneficiary = curveV2Data.beneficiary; uint256 i = curveV2Data.i; uint256 j = curveV2Data.j; address poolAddress = curveV2Data.poolAddress; uint256 curveData = curveV2Data.curveData; // Check if toAmount is valid if (minAmountOut == 0) { revert InvalidToAmount(); } // Check if beneficiary is valid if (beneficiary == address(0)) { beneficiary = payable(msg.sender); } // Decode curveData // 160 bits for curve exchange address // 1 bit for approve flag // 2 bits for wrap flag // 2 bits for swap type flag address exchange; bool approveFlag; uint256 wrapFlag; uint256 swapType; // solhint-disable-next-line no-inline-assembly assembly { exchange := and(curveData, 0xffffffffffffffffffffffffffffffffffffffff) approveFlag := and(shr(160, curveData), 1) wrapFlag := and(shr(161, curveData), 3) swapType := and(shr(163, curveData), 3) } // Check if srcToken is ETH // Transfer srcToken to augustus if not ETH if (srcToken.isETH(amountIn) == 0) { // Check the length of the permit field, // if < 257 and > 0 we should execute regular permit // and if it is >= 257 we execute permit2 if (permit.length < 257) { // Permit if needed if (permit.length > 0) { srcToken.permit(permit); } srcToken.safeTransferFrom(msg.sender, address(this), amountIn); } else { // Otherwise Permit2.permitTransferFrom permit2TransferFrom(permit, address(this), amountIn); } // Check if approve flag is set if (approveFlag) { // Approve exchange srcToken.approve(exchange); } } else { // Check if approve flag is set if (approveFlag) { // Approve exchange IERC20(WETH).approve(exchange); } } // Execute swap _executeSwapOnCurveV2(exchange, wrapFlag, swapType, i, j, amountIn, poolAddress); // Check balance after swap and unwrap if needed if (wrapFlag == 2) { // Received amount is WETH balance receivedAmount = IERC20(WETH).getBalance(address(this)); // Unwrap WETH WETH.withdraw(receivedAmount - 1); // Set receivedAmount to this contract's balance receivedAmount = address(this).balance; } else { // Received amount is destToken balance receivedAmount = destToken.getBalance(address(this)); } // Check if swap succeeded if (receivedAmount < minAmountOut) { revert InsufficientReturnAmount(); } // Process fees and transfer destToken to beneficiary return processSwapExactAmountInFeesAndTransfer( beneficiary, destToken, partnerAndFee, receivedAmount, quotedAmountOut ); } /*////////////////////////////////////////////////////////////// PRIVATE //////////////////////////////////////////////////////////////*/ function _executeSwapOnCurveV2( address exchange, uint256 wrapFlag, uint256 swapType, uint256 i, uint256 j, uint256 fromAmount, address poolAddress ) private { // Load WETH address address weth = address(WETH); // solhint-disable-next-line no-inline-assembly assembly { // Load free memory pointer let ptr := mload(64) //----------------------------------------------------------------------------------- // Wrap ETH if needed //----------------------------------------------------------------------------------- // Check if wrap src flag is set if eq(wrapFlag, 1) { // Prepare call data for WETH.deposit() // Store function selector and mstore(ptr, 0xd0e30db000000000000000000000000000000000000000000000000000000000) // deposit() // Perform the external call with the prepared calldata // Check the outcome of the call and handle failure if iszero(call(gas(), weth, callvalue(), ptr, 4, 0, 0)) { // The call failed; we retrieve the exact error message and revert with it returndatacopy(0, 0, returndatasize()) // Copy the error message to the start of memory revert(0, returndatasize()) // Revert with the error message } } //----------------------------------------------------------------------------------- // Execute swap //----------------------------------------------------------------------------------- // Prepare call data for external call // Check swap type switch swapType // 0x01 for EXCHANGE_UNDERLYING case 0x01 { // Store function selector for function exchange_underlying(uint256,uint256,uint256,uint256) mstore(ptr, 0x65b2489b00000000000000000000000000000000000000000000000000000000) // store selector mstore(add(ptr, 4), i) // store index i mstore(add(ptr, 36), j) // store index j mstore(add(ptr, 68), fromAmount) // store fromAmount mstore(add(ptr, 100), 1) // store 1 // Perform the external call with the prepared calldata // Check the outcome of the call and handle failure if iszero(call(gas(), exchange, 0, ptr, 132, 0, 0)) { // The call failed; we retrieve the exact error message and revert with it returndatacopy(0, 0, returndatasize()) // Copy the error message to the start of memory revert(0, returndatasize()) // Revert with the error message } } // 0x02 for EXCHANGE_GENERIC_FACTORY_ZAP case 0x02 { // Store function selector for function exchange(address,uint256,uint256,uint256,uint256) mstore(ptr, 0x64a1455800000000000000000000000000000000000000000000000000000000) mstore(add(ptr, 4), poolAddress) // store poolAddress mstore(add(ptr, 36), i) // store index i mstore(add(ptr, 68), j) // store index j mstore(add(ptr, 100), fromAmount) // store fromAmount mstore(add(ptr, 132), 1) // store 1 // Perform the external call with the prepared calldata // Check the outcome of the call and handle failure if iszero(call(gas(), exchange, 0, ptr, 164, 0, 0)) { // The call failed; we retrieve the exact error message and revert with it returndatacopy(0, 0, returndatasize()) // Copy the error message to the start of memory revert(0, returndatasize()) // Revert with the error message } } // 0x00(default) for EXCHANGE default { // check send eth wrap flag switch eq(wrapFlag, 0x03) // if it is not set, store selector for function exchange(uint256,uint256,uint256,uint256,bool) case 1 { mstore(ptr, 0x394747c500000000000000000000000000000000000000000000000000000000) // store selector mstore(add(ptr, 4), i) // store index i mstore(add(ptr, 36), j) // store index j mstore(add(ptr, 68), fromAmount) // store fromAmount mstore(add(ptr, 100), 1) // store 1 mstore(add(ptr, 132), 1) // store true // Perform the external call with the prepared calldata // Check the outcome of the call and handle failure if iszero(call(gas(), exchange, callvalue(), ptr, 164, 0, 0)) { // The call failed; we retrieve the exact error message and revert with it returndatacopy(0, 0, returndatasize()) // Copy the error message to the start of memory revert(0, returndatasize()) // Revert with the error message } } // if it is set, store selector for function exchange(uint256,uint256,uint256,uint256) default { mstore(ptr, 0x5b41b90800000000000000000000000000000000000000000000000000000000) // store selector mstore(add(ptr, 4), i) // store index i mstore(add(ptr, 36), j) // store index j mstore(add(ptr, 68), fromAmount) // store fromAmount mstore(add(ptr, 100), 1) // store 1 // Perform the external call with the prepared calldata // Check the outcome of the call and handle failure if iszero(call(gas(), exchange, 0, ptr, 132, 0, 0)) { // The call failed; we retrieve the exact error message and revert with it returndatacopy(0, 0, returndatasize()) // Copy the error message to the start of memory revert(0, returndatasize()) // Revert with the error message } } } } } } // SPDX-License-Identifier: MIT pragma solidity 0.8.22; // Interfaces import { IERC20 } from "@openzeppelin/token/ERC20/IERC20.sol"; import { IUniswapV2SwapExactAmountIn } from "../../../interfaces/IUniswapV2SwapExactAmountIn.sol"; // Libraries import { ERC20Utils } from "../../../libraries/ERC20Utils.sol"; // Types import { UniswapV2Data } from "../../../AugustusV6Types.sol"; // Utils import { UniswapV2Utils } from "../../../util/UniswapV2Utils.sol"; /// @title UniswapV2SwapExactAmountIn /// @notice A contract for executing direct swapExactAmountIn on UniswapV2 pools abstract contract UniswapV2SwapExactAmountIn is IUniswapV2SwapExactAmountIn, UniswapV2Utils { /*////////////////////////////////////////////////////////////// LIBRARIES //////////////////////////////////////////////////////////////*/ using ERC20Utils for IERC20; /*////////////////////////////////////////////////////////////// SWAP //////////////////////////////////////////////////////////////*/ /// @inheritdoc IUniswapV2SwapExactAmountIn function swapExactAmountInOnUniswapV2( UniswapV2Data calldata uniData, uint256 partnerAndFee, bytes calldata permit ) external payable whenNotPaused returns (uint256 receivedAmount, uint256 paraswapShare, uint256 partnerShare) { // Dereference uniData IERC20 srcToken = uniData.srcToken; IERC20 destToken = uniData.destToken; uint256 amountIn = uniData.fromAmount; uint256 minAmountOut = uniData.toAmount; uint256 quotedAmountOut = uniData.quotedAmount; address payable beneficiary = uniData.beneficiary; bytes calldata pools = uniData.pools; // Initialize payer address payer = msg.sender; // Check if toAmount is valid if (minAmountOut == 0) { revert InvalidToAmount(); } // Check if beneficiary is valid if (beneficiary == address(0)) { beneficiary = payable(msg.sender); } // Check if we need to wrap or permit if (srcToken.isETH(amountIn) == 0) { // Check the length of the permit field, // if < 257 and > 0 we should execute regular permit if (permit.length < 257) { // Permit if needed if (permit.length > 0) { srcToken.permit(permit); } } } else { // If it is ETH. wrap it to WETH WETH.deposit{ value: amountIn }(); // Set srcToken to WETH srcToken = WETH; // Set payer to this contract payer = address(this); } // Execute swap _callUniswapV2PoolsSwapExactIn(amountIn, srcToken, pools, payer, permit); // Check if destToken is ETH and unwrap if (address(destToken) == address(ERC20Utils.ETH)) { // Check balance of WETH receivedAmount = IERC20(WETH).getBalance(address(this)); // Unwrap WETH WETH.withdraw(receivedAmount - 1); // Set receivedAmount to this contract's balance receivedAmount = address(this).balance; } else { // Othwerwise check balance of destToken receivedAmount = destToken.getBalance(address(this)); } // Check if swap succeeded if (receivedAmount < minAmountOut) { revert InsufficientReturnAmount(); } // Process fees and transfer destToken to beneficiary return processSwapExactAmountInFeesAndTransfer( beneficiary, destToken, partnerAndFee, receivedAmount, quotedAmountOut ); } } // SPDX-License-Identifier: MIT pragma solidity 0.8.22; // Interfaces import { IERC20 } from "@openzeppelin/token/ERC20/IERC20.sol"; import { IUniswapV3SwapExactAmountIn } from "../../../interfaces/IUniswapV3SwapExactAmountIn.sol"; // Libraries import { ERC20Utils } from "../../../libraries/ERC20Utils.sol"; import { SafeCastLib } from "@solady/utils/SafeCastLib.sol"; // Types import { UniswapV3Data } from "../../../AugustusV6Types.sol"; // Utils import { UniswapV3Utils } from "../../../util/UniswapV3Utils.sol"; /// @title UniswapV3SwapExactAmountIn /// @notice A contract for executing direct swapExactAmountIn on Uniswap V3 abstract contract UniswapV3SwapExactAmountIn is IUniswapV3SwapExactAmountIn, UniswapV3Utils { /*////////////////////////////////////////////////////////////// LIBRARIES //////////////////////////////////////////////////////////////*/ using ERC20Utils for IERC20; using SafeCastLib for uint256; /*////////////////////////////////////////////////////////////// SWAP //////////////////////////////////////////////////////////////*/ /// @inheritdoc IUniswapV3SwapExactAmountIn function swapExactAmountInOnUniswapV3( UniswapV3Data calldata uniData, uint256 partnerAndFee, bytes calldata permit ) external payable whenNotPaused returns (uint256 receivedAmount, uint256 paraswapShare, uint256 partnerShare) { // Dereference uniData IERC20 srcToken = uniData.srcToken; IERC20 destToken = uniData.destToken; uint256 amountIn = uniData.fromAmount; uint256 minAmountOut = uniData.toAmount; uint256 quotedAmountOut = uniData.quotedAmount; address payable beneficiary = uniData.beneficiary; bytes calldata pools = uniData.pools; // Check if toAmount is valid if (minAmountOut == 0) { revert InvalidToAmount(); } // Check if beneficiary is valid if (beneficiary == address(0)) { beneficiary = payable(msg.sender); } // Address that will pay for the swap address fromAddress = msg.sender; // Check if we need to wrap or permit if (srcToken.isETH(amountIn) == 0) { // Check the length of the permit field, // if < 257 and > 0 we should execute regular permit if (permit.length < 257) { // Permit if needed if (permit.length > 0) { srcToken.permit(permit); } } } else { // If it is ETH. wrap it to WETH WETH.deposit{ value: amountIn }(); // Swap will be paid from this contract fromAddress = address(this); } // Execute swap receivedAmount = _callUniswapV3PoolsSwapExactAmountIn(amountIn.toInt256(), pools, fromAddress, permit); // Check if swap succeeded if (receivedAmount < minAmountOut) { revert InsufficientReturnAmount(); } // Check if destToken is ETH and unwrap if (address(destToken) == address(ERC20Utils.ETH)) { // Unwrap WETH WETH.withdraw(receivedAmount); } // Process fees and transfer destToken to beneficiary return processSwapExactAmountInFeesAndTransferUniV3( beneficiary, destToken, partnerAndFee, receivedAmount, quotedAmountOut ); } } // SPDX-License-Identifier: MIT pragma solidity 0.8.22; // Interfaces import { IERC20 } from "@openzeppelin/token/ERC20/IERC20.sol"; import { IBalancerV2SwapExactAmountOut } from "../../../interfaces/IBalancerV2SwapExactAmountOut.sol"; // Libraries import { ERC20Utils } from "../../../libraries/ERC20Utils.sol"; // Types import { BalancerV2Data } from "../../../AugustusV6Types.sol"; // Utils import { BalancerV2Utils } from "../../../util/BalancerV2Utils.sol"; /// @title BalancerV2SwapExactAmountOut /// @notice A contract for executing direct swapExactAmountOut on BalancerV2 pools abstract contract BalancerV2SwapExactAmountOut is IBalancerV2SwapExactAmountOut, BalancerV2Utils { /*////////////////////////////////////////////////////////////// LIBRARIES //////////////////////////////////////////////////////////////*/ using ERC20Utils for IERC20; /*////////////////////////////////////////////////////////////// SWAP EXACT AMOUNT OUT //////////////////////////////////////////////////////////////*/ /// @inheritdoc IBalancerV2SwapExactAmountOut function swapExactAmountOutOnBalancerV2( BalancerV2Data calldata balancerData, uint256 partnerAndFee, bytes calldata permit, bytes calldata data ) external payable whenNotPaused returns (uint256 spentAmount, uint256 receivedAmount, uint256 paraswapShare, uint256 partnerShare) { // Dereference balancerData uint256 quotedAmountIn = balancerData.quotedAmount; uint256 beneficiaryAndApproveFlag = balancerData.beneficiaryAndApproveFlag; uint256 maxAmountIn = balancerData.fromAmount; uint256 amountOut = balancerData.toAmount; // Decode params (IERC20 srcToken, IERC20 destToken, address payable beneficiary, bool approve) = _decodeBalancerV2Params(beneficiaryAndApproveFlag, data); // Make sure srcToken and destToken are different if (srcToken == destToken) { revert ArbitrageNotSupported(); } // Check if toAmount is valid if (amountOut == 0) { revert InvalidToAmount(); } // Check if beneficiary is valid if (beneficiary == address(0)) { beneficiary = payable(msg.sender); } // Check contract balance uint256 balanceBefore = srcToken.getBalance(address(this)); // Check if srcToken is ETH if (srcToken.isETH(maxAmountIn) == 0) { // Check the length of the permit field, // if < 257 and > 0 we should execute regular permit // and if it is >= 257 we execute permit2 if (permit.length < 257) { // Permit if needed if (permit.length > 0) { srcToken.permit(permit); } srcToken.safeTransferFrom(msg.sender, address(this), maxAmountIn); } else { // Otherwise Permit2.permitTransferFrom permit2TransferFrom(permit, address(this), maxAmountIn); } // Check if approve is needed if (approve) { // Approve BALANCER_VAULT to spend srcToken srcToken.approve(BALANCER_VAULT); } } else { // If srcToken is ETH, we have to deduct msg.value from balanceBefore balanceBefore = balanceBefore - msg.value; } // Execute swap _callBalancerV2(data); // Check balance of destToken receivedAmount = destToken.getBalance(address(this)); // Check balance of srcToken, deducting the balance before the swap if it is greater than 1 uint256 remainingAmount = srcToken.getBalance(address(this)) - (balanceBefore > 1 ? balanceBefore : 0); // Check if swap succeeded if (receivedAmount < amountOut) { revert InsufficientReturnAmount(); } // Process fees and transfer destToken and srcToken to beneficiary return processSwapExactAmountOutFeesAndTransfer( beneficiary, srcToken, destToken, partnerAndFee, maxAmountIn, remainingAmount, receivedAmount, quotedAmountIn ); } } // SPDX-License-Identifier: MIT pragma solidity 0.8.22; // Interfaces import { IERC20 } from "@openzeppelin/token/ERC20/IERC20.sol"; import { IUniswapV2SwapExactAmountOut } from "../../../interfaces/IUniswapV2SwapExactAmountOut.sol"; // Libraries import { ERC20Utils } from "../../../libraries/ERC20Utils.sol"; // Types import { UniswapV2Data } from "../../../AugustusV6Types.sol"; // Utils import { UniswapV2Utils } from "../../../util/UniswapV2Utils.sol"; /// @title UniswapV2SwapExactAmountOut /// @notice A contract for executing direct swapExactAmountOut on UniswapV2 pools abstract contract UniswapV2SwapExactAmountOut is IUniswapV2SwapExactAmountOut, UniswapV2Utils { /*////////////////////////////////////////////////////////////// LIBRARIES //////////////////////////////////////////////////////////////*/ using ERC20Utils for IERC20; /*////////////////////////////////////////////////////////////// SWAP EXACT AMOUNT OUT //////////////////////////////////////////////////////////////*/ /// @inheritdoc IUniswapV2SwapExactAmountOut function swapExactAmountOutOnUniswapV2( UniswapV2Data calldata uniData, uint256 partnerAndFee, bytes calldata permit ) external payable whenNotPaused returns (uint256 spentAmount, uint256 receivedAmount, uint256 paraswapShare, uint256 partnerShare) { // Dereference uniData IERC20 srcToken = uniData.srcToken; IERC20 destToken = uniData.destToken; uint256 maxAmountIn = uniData.fromAmount; uint256 amountOut = uniData.toAmount; uint256 quotedAmountIn = uniData.quotedAmount; address payable beneficiary = uniData.beneficiary; bytes calldata pools = uniData.pools; // Check if toAmount is valid if (amountOut == 0) { revert InvalidToAmount(); } // Check if beneficiary is valid if (beneficiary == address(0)) { beneficiary = payable(msg.sender); } // Init balanceBefore uint256 balanceBefore; // Check if srcToken is ETH bool isFromETH = srcToken.isETH(maxAmountIn) != 0; // Check if we need to wrap or permit if (isFromETH) { // Check WETH balance before balanceBefore = IERC20(WETH).getBalance(address(this)); // If it is ETH. wrap it to WETH WETH.deposit{ value: maxAmountIn }(); // Set srcToken to WETH srcToken = WETH; } else { // Check srcToken balance before balanceBefore = srcToken.getBalance(address(this)); // Check the length of the permit field, // if < 257 and > 0 we should execute regular permit // and if it is >= 257 we execute permit2 if (permit.length < 257) { // Permit if needed if (permit.length > 0) { srcToken.permit(permit); } srcToken.safeTransferFrom(msg.sender, address(this), maxAmountIn); } else { // Otherwise Permit2.permitTransferFrom permit2TransferFrom(permit, address(this), maxAmountIn); } } // Make sure srcToken and destToken are different if (srcToken == destToken) { revert ArbitrageNotSupported(); } // Execute swap _callUniswapV2PoolsSwapExactOut(amountOut, srcToken, pools); // Check if destToken is ETH and unwrap if (address(destToken) == address(ERC20Utils.ETH)) { // Make sure srcToken was not WETH if (srcToken == WETH) { revert ArbitrageNotSupported(); } // Check balance of WETH receivedAmount = IERC20(WETH).getBalance(address(this)); // Leave dust if receivedAmount > amountOut if (receivedAmount > amountOut) { --receivedAmount; } // Unwrap WETH WETH.withdraw(receivedAmount); // Set receivedAmount to this contract's balance receivedAmount = address(this).balance; } else { // Othwerwise check balance of destToken receivedAmount = destToken.getBalance(address(this)); } // Check balance of srcToken uint256 remainingAmount = srcToken.getBalance(address(this)); // Check if swap succeeded if (receivedAmount < amountOut) { revert InsufficientReturnAmount(); } // Check if srcToken is ETH and unwrap if there is remaining amount if (isFromETH) { // Check native balance before uint256 nativeBalanceBefore = address(this).balance; // If balanceBefore is greater than 1, deduct it from remainingAmount remainingAmount = remainingAmount - (balanceBefore > 1 ? balanceBefore : 0); // Withdraw remaining WETH if any if (remainingAmount > 1) { WETH.withdraw(remainingAmount - 1); } srcToken = ERC20Utils.ETH; // If native balance before is greater than 1, deduct it from remainingAmount remainingAmount = address(this).balance - (nativeBalanceBefore > 1 ? nativeBalanceBefore : 0); } else { // Otherwise, if balanceBefore is greater than 1, deduct it from remainingAmount remainingAmount = remainingAmount - (balanceBefore > 1 ? balanceBefore : 0); } // Process fees and transfer destToken and srcToken to beneficiary return processSwapExactAmountOutFeesAndTransfer( beneficiary, srcToken, destToken, partnerAndFee, maxAmountIn, remainingAmount, receivedAmount, quotedAmountIn ); } } // SPDX-License-Identifier: MIT pragma solidity 0.8.22; // Interfaces import { IERC20 } from "@openzeppelin/token/ERC20/IERC20.sol"; import { IUniswapV3SwapExactAmountOut } from "../../../interfaces/IUniswapV3SwapExactAmountOut.sol"; // Libraries import { ERC20Utils } from "../../../libraries/ERC20Utils.sol"; import { SafeCastLib } from "@solady/utils/SafeCastLib.sol"; // Types import { UniswapV3Data } from "../../../AugustusV6Types.sol"; // Utils import { UniswapV3Utils } from "../../../util/UniswapV3Utils.sol"; /// @title UniswapV3SwapExactAmountOut /// @notice A contract for executing direct swapExactAmountOut on UniswapV3 pools abstract contract UniswapV3SwapExactAmountOut is IUniswapV3SwapExactAmountOut, UniswapV3Utils { /*////////////////////////////////////////////////////////////// LIBRARIES //////////////////////////////////////////////////////////////*/ using ERC20Utils for IERC20; using SafeCastLib for uint256; /*////////////////////////////////////////////////////////////// SWAP EXACT AMOUNT OUT //////////////////////////////////////////////////////////////*/ /// @inheritdoc IUniswapV3SwapExactAmountOut function swapExactAmountOutOnUniswapV3( UniswapV3Data calldata uniData, uint256 partnerAndFee, bytes calldata permit ) external payable whenNotPaused returns (uint256 spentAmount, uint256 receivedAmount, uint256 paraswapShare, uint256 partnerShare) { // Dereference uniData IERC20 srcToken = uniData.srcToken; IERC20 destToken = uniData.destToken; uint256 maxAmountIn = uniData.fromAmount; uint256 amountOut = uniData.toAmount; uint256 quotedAmountIn = uniData.quotedAmount; address payable beneficiary = uniData.beneficiary; bytes calldata pools = uniData.pools; // Check if toAmount is valid if (amountOut == 0) { revert InvalidToAmount(); } // Check if beneficiary is valid if (beneficiary == address(0)) { beneficiary = payable(msg.sender); } // Address that will pay for the swap address fromAddress = msg.sender; // Check if srcToken is ETH bool isFromETH = srcToken.isETH(maxAmountIn) != 0; // If pools.length > 96, we are going to do a multi-pool swap bool isMultiplePools = pools.length > 96; // Init balance before variables uint256 senderBalanceBefore; uint256 balanceBefore; // Check if we need to wrap or permit if (isFromETH) { // Check WETH balance before balanceBefore = IERC20(WETH).getBalance(address(this)); // If it is ETH. wrap it to WETH WETH.deposit{ value: maxAmountIn }(); // Swap will be paid from this contract fromAddress = address(this); // Set srcToken to WETH srcToken = WETH; } else { // Check srcToken balance before balanceBefore = srcToken.getBalance(address(this)); // Check the length of the permit field, // if < 257 and > 0 we should execute regular permit // and if it is >= 257 we execute permit2 if (permit.length < 257) { // Permit if needed if (permit.length > 0) { srcToken.permit(permit); } // if we're using multiple pools, we need to store the pre-swap balance of srcToken if (isMultiplePools) { senderBalanceBefore = srcToken.getBalance(msg.sender); } } else { // Otherwise Permit2.permitTransferFrom permit2TransferFrom(permit, address(this), maxAmountIn); // Swap will be paid from this contract fromAddress = address(this); } } // Make sure srcToken and destToken are different if (srcToken == destToken) { revert ArbitrageNotSupported(); } // Execute swap (spentAmount, receivedAmount) = _callUniswapV3PoolsSwapExactAmountOut((-amountOut.toInt256()), pools, fromAddress); // Check if swap succeeded if (receivedAmount < amountOut) { revert InsufficientReturnAmount(); } // Check if destToken is ETH and unwrap if (address(destToken) == address(ERC20Utils.ETH)) { // Make sure srcToken was not WETH if (srcToken == WETH) { revert ArbitrageNotSupported(); } // Unwrap WETH WETH.withdraw(receivedAmount); } // Iniiialize remainingAmount uint256 remainingAmount; // Check if payer is this contract if (fromAddress == address(this)) { // If srcTokenwas ETH, we need to withdraw remaining WETH if any if (isFromETH) { // Check native balance before uint256 nativeBalanceBefore = address(this).balance; // Check balance of WETH, If balanceBefore is greater than 1, deduct it from remainingAmount remainingAmount = IERC20(WETH).getBalance(address(this)) - (balanceBefore > 1 ? balanceBefore : 0); // Withdraw remaining WETH if any if (remainingAmount > 1) { // Unwrap WETH WETH.withdraw(remainingAmount - 1); // If native balance before is greater than 1, deduct it from remainingAmount remainingAmount = address(this).balance - (nativeBalanceBefore > 1 ? nativeBalanceBefore : 0); } // Set srcToken to ETH srcToken = ERC20Utils.ETH; } else { // If we have executed multi-pool swap, we need to fetch the remaining amount from balance if (isMultiplePools) { // Calculate spent amount and remaining amount, If balanceBefore is greater than 1, deduct it from // remainingAmount remainingAmount = srcToken.getBalance(address(this)) - (balanceBefore > 1 ? balanceBefore : 0); } else { // Otherwise, remaining amount is the difference between the spent amount and the remaining balance remainingAmount = maxAmountIn - spentAmount; } } // Process fees using processSwapExactAmountOutFeesAndTransfer return processSwapExactAmountOutFeesAndTransfer( beneficiary, srcToken, destToken, partnerAndFee, maxAmountIn, remainingAmount, receivedAmount, quotedAmountIn ); } else { // If we have executed multi-pool swap, we need to re-calculate the remaining amount and spent amount if (isMultiplePools) { // Calculate spent amount and remaining amount remainingAmount = srcToken.getBalance(msg.sender); spentAmount = senderBalanceBefore - remainingAmount; } // Process fees and transfer destToken and srcToken to feeVault or partner and // feeWallet if needed return processSwapExactAmountOutFeesAndTransferUniV3( beneficiary, srcToken, destToken, partnerAndFee, maxAmountIn, receivedAmount, spentAmount, quotedAmountIn ); } } } // SPDX-License-Identifier: MIT pragma solidity 0.8.22; // Interfaces import { IERC20 } from "@openzeppelin/token/ERC20/IERC20.sol"; import { IAugustusFeeVault } from "../interfaces/IAugustusFeeVault.sol"; import { IAugustusFees } from "../interfaces/IAugustusFees.sol"; // Libraries import { ERC20Utils } from "../libraries/ERC20Utils.sol"; // Storage import { AugustusStorage } from "../storage/AugustusStorage.sol"; /// @title AugustusFees /// @notice Contract for handling fees contract AugustusFees is AugustusStorage, IAugustusFees { /*////////////////////////////////////////////////////////////// LIBRARIES //////////////////////////////////////////////////////////////*/ using ERC20Utils for IERC20; /*////////////////////////////////////////////////////////////// CONSTANTS //////////////////////////////////////////////////////////////*/ /// @dev Fee share constants uint256 public constant PARTNER_SHARE_PERCENT = 8500; uint256 public constant MAX_FEE_PERCENT = 200; uint256 public constant SURPLUS_PERCENT = 100; uint256 public constant PARASWAP_REFERRAL_SHARE = 5000; uint256 public constant PARTNER_REFERRAL_SHARE = 2500; uint256 public constant PARASWAP_SURPLUS_SHARE = 5000; uint256 public constant PARASWAP_SLIPPAGE_SHARE = 10_000; uint256 public constant MINIMUM_SURPLUS_EPSILON_AND_ONE_WEI = 11; /// @dev Masks for unpacking feeData uint256 private constant FEE_PERCENT_IN_BASIS_POINTS_MASK = 0x3FFF; uint256 private constant IS_USER_SURPLUS_MASK = 1 << 90; uint256 private constant IS_DIRECT_TRANSFER_MASK = 1 << 91; uint256 private constant IS_CAP_SURPLUS_MASK = 1 << 92; uint256 private constant IS_SKIP_BLACKLIST_MASK = 1 << 93; uint256 private constant IS_REFERRAL_MASK = 1 << 94; uint256 private constant IS_TAKE_SURPLUS_MASK = 1 << 95; /// @dev A contact that stores fees collected by the protocol IAugustusFeeVault public immutable FEE_VAULT; // solhint-disable-line var-name-mixedcase /*////////////////////////////////////////////////////////////// CONSTRUCTOR //////////////////////////////////////////////////////////////*/ constructor(address _feeVault) { FEE_VAULT = IAugustusFeeVault(_feeVault); } /*////////////////////////////////////////////////////////////// SWAP EXACT AMOUNT IN FEES //////////////////////////////////////////////////////////////*/ /// @notice Process swapExactAmountIn fees and transfer the received amount to the beneficiary /// @param destToken The received token from the swapExactAmountIn /// @param partnerAndFee Packed partner and fee data /// @param receivedAmount The amount of destToken received from the swapExactAmountIn /// @param quotedAmount The quoted expected amount of destToken /// @return returnAmount The amount of destToken transfered to the beneficiary /// @return paraswapFeeShare The share of the fees for Paraswap /// @return partnerFeeShare The share of the fees for the partner function processSwapExactAmountInFeesAndTransfer( address beneficiary, IERC20 destToken, uint256 partnerAndFee, uint256 receivedAmount, uint256 quotedAmount ) internal returns (uint256 returnAmount, uint256 paraswapFeeShare, uint256 partnerFeeShare) { // initialize the surplus uint256 surplus; // parse partner and fee data (address payable partner, uint256 feeData) = parsePartnerAndFeeData(partnerAndFee); // calculate the surplus, we expect there to be 1 wei dust left which we should // not take into account when determining if there is surplus, we only take the // surplus if it is greater than MINIMUM_SURPLUS_EPSILON_AND_ONE_WEI if (receivedAmount > quotedAmount + MINIMUM_SURPLUS_EPSILON_AND_ONE_WEI) { surplus = receivedAmount - quotedAmount; // if the cap surplus flag is passed, we cap the surplus to 1% of the quoted amount if (feeData & IS_CAP_SURPLUS_MASK != 0) { uint256 cappedSurplus = (SURPLUS_PERCENT * quotedAmount) / 10_000; surplus = surplus > cappedSurplus ? cappedSurplus : surplus; } } // calculate remainingAmount uint256 remainingAmount = receivedAmount - surplus; // if partner address is not 0x0 if (partner != address(0x0)) { // Check if skip blacklist flag is true bool skipBlacklist = feeData & IS_SKIP_BLACKLIST_MASK != 0; // Check if token is blacklisted bool isBlacklisted = blacklistedTokens[destToken]; // If the token is blacklisted and the skipBlacklist flag is false, // send the received amount to the beneficiary, we won't process fees if (!skipBlacklist && isBlacklisted) { // transfer the received amount to the beneficiary, keeping 1 wei dust _transferAndLeaveDust(destToken, beneficiary, receivedAmount); return (receivedAmount - 1, 0, 0); } // Check if direct transfer flag is true bool isDirectTransfer = feeData & IS_DIRECT_TRANSFER_MASK != 0; // partner takes fixed fees feePercent is greater than 0 uint256 feePercent = _getAdjustedFeePercent(feeData); if (feePercent > 0) { // fee base = min (receivedAmount, quotedAmount + surplus) uint256 feeBase = receivedAmount > quotedAmount + surplus ? quotedAmount + surplus : receivedAmount; // calculate fixed fees uint256 fee = (feeBase * feePercent) / 10_000; partnerFeeShare = (fee * PARTNER_SHARE_PERCENT) / 10_000; paraswapFeeShare = fee - partnerFeeShare; // distrubite fees from destToken returnAmount = _distributeFees( receivedAmount, destToken, partner, partnerFeeShare, paraswapFeeShare, skipBlacklist, isBlacklisted, isDirectTransfer ); // transfer the return amount to the beneficiary, keeping 1 wei dust _transferAndLeaveDust(destToken, beneficiary, returnAmount); return (returnAmount - 1, paraswapFeeShare, partnerFeeShare); } // if slippage is postive and referral flag is true else if (feeData & IS_REFERRAL_MASK != 0) { if (surplus > 0) { // the split is 50% for paraswap, 25% for the referrer and 25% for the user paraswapFeeShare = (surplus * PARASWAP_REFERRAL_SHARE) / 10_000; partnerFeeShare = (surplus * PARTNER_REFERRAL_SHARE) / 10_000; // distribute fees from destToken returnAmount = _distributeFees( receivedAmount, destToken, partner, partnerFeeShare, paraswapFeeShare, skipBlacklist, isBlacklisted, isDirectTransfer ); // transfer the return amount to the beneficiary, keeping 1 wei dust _transferAndLeaveDust(destToken, beneficiary, returnAmount); return (returnAmount - 1, paraswapFeeShare, partnerFeeShare); } } // if slippage is positive and takeSurplus flag is true else if (feeData & IS_TAKE_SURPLUS_MASK != 0) { if (surplus > 0) { // paraswap takes 50% of the surplus and partner takes the other 50% paraswapFeeShare = (surplus * PARASWAP_SURPLUS_SHARE) / 10_000; partnerFeeShare = surplus - paraswapFeeShare; // If user surplus flag is true, transfer the partner share to the user instead of the partner if (feeData & IS_USER_SURPLUS_MASK != 0) { partnerFeeShare = 0; // Transfer the paraswap share directly to the fee wallet isDirectTransfer = true; } // distrubite fees from destToken, partner takes 50% of the surplus // and paraswap takes the other 50% returnAmount = _distributeFees( receivedAmount, destToken, partner, partnerFeeShare, paraswapFeeShare, skipBlacklist, isBlacklisted, isDirectTransfer ); // transfer the return amount to the beneficiary, keeping 1 wei dust _transferAndLeaveDust(destToken, beneficiary, returnAmount); return (returnAmount - 1, paraswapFeeShare, partnerFeeShare); } } } // if slippage is positive and partner address is 0x0 or fee percent is 0 // paraswap will take the surplus and transfer the rest to the beneficiary // if there is no positive slippage, transfer the received amount to the beneficiary if (surplus > 0) { // If the token is blacklisted, send the received amount to the beneficiary // we won't process fees if (blacklistedTokens[destToken]) { // transfer the received amount to the beneficiary, keeping 1 wei dust _transferAndLeaveDust(destToken, beneficiary, receivedAmount); return (receivedAmount - 1, 0, 0); } // transfer the remaining amount to the beneficiary, keeping 1 wei dust _transferAndLeaveDust(destToken, beneficiary, remainingAmount); // transfer the surplus to the fee wallet destToken.safeTransfer(feeWallet, surplus); return (remainingAmount - 1, surplus, 0); } else { // transfer the received amount to the beneficiary, keeping 1 wei dust _transferAndLeaveDust(destToken, beneficiary, receivedAmount); return (receivedAmount - 1, 0, 0); } } /// @notice Process swapExactAmountIn fees and transfer the received amount to the beneficiary /// @param destToken The received token from the swapExactAmountIn /// @param partnerAndFee Packed partner and fee data /// @param receivedAmount The amount of destToken received from the swapExactAmountIn /// @param quotedAmount The quoted expected amount of destToken /// @return returnAmount The amount of destToken transfered to the beneficiary /// @return paraswapFeeShare The share of the fees for Paraswap /// @return partnerFeeShare The share of the fees for the partner function processSwapExactAmountInFeesAndTransferUniV3( address beneficiary, IERC20 destToken, uint256 partnerAndFee, uint256 receivedAmount, uint256 quotedAmount ) internal returns (uint256 returnAmount, uint256 paraswapFeeShare, uint256 partnerFeeShare) { // initialize the surplus uint256 surplus; // parse partner and fee data (address payable partner, uint256 feeData) = parsePartnerAndFeeData(partnerAndFee); // calculate the surplus, we do not take the surplus into account if it is less than // MINIMUM_SURPLUS_EPSILON_AND_ONE_WEI if (receivedAmount > quotedAmount + MINIMUM_SURPLUS_EPSILON_AND_ONE_WEI) { surplus = receivedAmount - quotedAmount; // if the cap surplus flag is passed, we cap the surplus to 1% of the quoted amount if (feeData & IS_CAP_SURPLUS_MASK != 0) { uint256 cappedSurplus = (SURPLUS_PERCENT * quotedAmount) / 10_000; surplus = surplus > cappedSurplus ? cappedSurplus : surplus; } } // calculate remainingAmount uint256 remainingAmount = receivedAmount - surplus; // if partner address is not 0x0 if (partner != address(0x0)) { // Check if skip blacklist flag is true bool skipBlacklist = feeData & IS_SKIP_BLACKLIST_MASK != 0; // Check if token is blacklisted bool isBlacklisted = blacklistedTokens[destToken]; // If the token is blacklisted and the skipBlacklist flag is false, // send the received amount to the beneficiary, we won't process fees if (!skipBlacklist && isBlacklisted) { // transfer the received amount to the beneficiary destToken.safeTransfer(beneficiary, receivedAmount); return (receivedAmount, 0, 0); } // Check if direct transfer flag is true bool isDirectTransfer = feeData & IS_DIRECT_TRANSFER_MASK != 0; // partner takes fixed fees feePercent is greater than 0 uint256 feePercent = _getAdjustedFeePercent(feeData); if (feePercent > 0) { // fee base = min (receivedAmount, quotedAmount + surplus) uint256 feeBase = receivedAmount > quotedAmount + surplus ? quotedAmount + surplus : receivedAmount; // calculate fixed fees uint256 fee = (feeBase * feePercent) / 10_000; partnerFeeShare = (fee * PARTNER_SHARE_PERCENT) / 10_000; paraswapFeeShare = fee - partnerFeeShare; // distrubite fees from destToken returnAmount = _distributeFees( receivedAmount, destToken, partner, partnerFeeShare, paraswapFeeShare, skipBlacklist, isBlacklisted, isDirectTransfer ); // transfer the return amount to the beneficiary destToken.safeTransfer(beneficiary, returnAmount); return (returnAmount, paraswapFeeShare, partnerFeeShare); } // if slippage is postive and referral flag is true else if (feeData & IS_REFERRAL_MASK != 0) { if (surplus > 0) { // the split is 50% for paraswap, 25% for the referrer and 25% for the user paraswapFeeShare = (surplus * PARASWAP_REFERRAL_SHARE) / 10_000; partnerFeeShare = (surplus * PARTNER_REFERRAL_SHARE) / 10_000; // distribute fees from destToken returnAmount = _distributeFees( receivedAmount, destToken, partner, partnerFeeShare, paraswapFeeShare, skipBlacklist, isBlacklisted, isDirectTransfer ); // transfer the return amount to the beneficiary destToken.safeTransfer(beneficiary, returnAmount); return (returnAmount, paraswapFeeShare, partnerFeeShare); } } // if slippage is positive and takeSurplus flag is true else if (feeData & IS_TAKE_SURPLUS_MASK != 0) { if (surplus > 0) { // paraswap takes 50% of the surplus and partner takes the other 50% paraswapFeeShare = (surplus * PARASWAP_SURPLUS_SHARE) / 10_000; partnerFeeShare = surplus - paraswapFeeShare; // If user surplus flag is true, transfer the partner share to the user instead of the partner if (feeData & IS_USER_SURPLUS_MASK != 0) { partnerFeeShare = 0; // Transfer the paraswap share directly to the fee wallet isDirectTransfer = true; } // distrubite fees from destToken, partner takes 50% of the surplus // and paraswap takes the other 50% returnAmount = _distributeFees( receivedAmount, destToken, partner, partnerFeeShare, paraswapFeeShare, skipBlacklist, isBlacklisted, isDirectTransfer ); // transfer the return amount to the beneficiary, destToken.safeTransfer(beneficiary, returnAmount); return (returnAmount, paraswapFeeShare, partnerFeeShare); } } } // if slippage is positive and partner address is 0x0 or fee percent is 0 // paraswap will take the surplus and transfer the rest to the beneficiary // if there is no positive slippage, transfer the received amount to the beneficiary if (surplus > 0) { // If the token is blacklisted, send the received amount to the beneficiary // we won't process fees if (blacklistedTokens[destToken]) { // transfer the received amount to the beneficiary destToken.safeTransfer(beneficiary, receivedAmount); return (receivedAmount, 0, 0); } // transfer the remaining amount to the beneficiary destToken.safeTransfer(beneficiary, remainingAmount); // transfer the surplus to the fee wallet destToken.safeTransfer(feeWallet, surplus); return (remainingAmount, surplus, 0); } else { // transfer the received amount to the beneficiary destToken.safeTransfer(beneficiary, receivedAmount); return (receivedAmount, 0, 0); } } /*////////////////////////////////////////////////////////////// SWAP EXACT AMOUNT OUT FEES //////////////////////////////////////////////////////////////*/ /// @notice Process swapExactAmountOut fees and transfer the received amount and remaining amount to the /// beneficiary /// @param srcToken The token used to swapExactAmountOut /// @param destToken The token received from the swapExactAmountOut /// @param partnerAndFee Packed partner and fee data /// @param maxAmountIn The amount of srcToken passed to the swapExactAmountOut /// @param receivedAmount The amount of destToken received from the swapExactAmountOut /// @param quotedAmount The quoted expected amount of srcToken to be used to swapExactAmountOut /// @return spentAmount The amount of srcToken used to swapExactAmountOut /// @return outAmount The amount of destToken transfered to the beneficiary /// @return paraswapFeeShare The share of the fees for Paraswap /// @return partnerFeeShare The share of the fees for the partner function processSwapExactAmountOutFeesAndTransfer( address beneficiary, IERC20 srcToken, IERC20 destToken, uint256 partnerAndFee, uint256 maxAmountIn, uint256 remainingAmount, uint256 receivedAmount, uint256 quotedAmount ) internal returns (uint256 spentAmount, uint256 outAmount, uint256 paraswapFeeShare, uint256 partnerFeeShare) { // calculate the amount used to swapExactAmountOut spentAmount = maxAmountIn - (remainingAmount > 0 ? remainingAmount - 1 : remainingAmount); // initialize the surplus uint256 surplus; // initialize the return amount uint256 returnAmount; // parse partner and fee data (address payable partner, uint256 feeData) = parsePartnerAndFeeData(partnerAndFee); // check if the quotedAmount is bigger than the maxAmountIn if (quotedAmount > maxAmountIn) { revert InvalidQuotedAmount(); } // calculate the surplus, we do not take the surplus into account if it is less than // MINIMUM_SURPLUS_EPSILON_AND_ONE_WEI if (quotedAmount > spentAmount + MINIMUM_SURPLUS_EPSILON_AND_ONE_WEI) { surplus = quotedAmount - spentAmount; // if the cap surplus flag is passed, we cap the surplus to 1% of the quoted amount if (feeData & IS_CAP_SURPLUS_MASK != 0) { uint256 cappedSurplus = (SURPLUS_PERCENT * quotedAmount) / 10_000; surplus = surplus > cappedSurplus ? cappedSurplus : surplus; } } // if partner address is not 0x0 if (partner != address(0x0)) { // Check if skip blacklist flag is true bool skipBlacklist = feeData & IS_SKIP_BLACKLIST_MASK != 0; // Check if token is blacklisted bool isBlacklisted = blacklistedTokens[srcToken]; // If the token is blacklisted and the skipBlacklist flag is false, // send the remaining amount to the msg.sender, we won't process fees if (!skipBlacklist && isBlacklisted) { // transfer the remaining amount to msg.sender returnAmount = _transferIfGreaterThanOne(srcToken, msg.sender, remainingAmount); // transfer the received amount of destToken to the beneficiary destToken.safeTransfer(beneficiary, --receivedAmount); return (maxAmountIn - returnAmount, receivedAmount, 0, 0); } // Check if direct transfer flag is true bool isDirectTransfer = feeData & IS_DIRECT_TRANSFER_MASK != 0; // partner takes fixed fees feePercent is greater than 0 uint256 feePercent = _getAdjustedFeePercent(feeData); if (feePercent > 0) { // fee base = min (spentAmount, quotedAmount) uint256 feeBase = spentAmount < quotedAmount ? spentAmount : quotedAmount; // calculate fixed fees uint256 fee = (feeBase * feePercent) / 10_000; partnerFeeShare = (fee * PARTNER_SHARE_PERCENT) / 10_000; paraswapFeeShare = fee - partnerFeeShare; // distrubite fees from srcToken returnAmount = _distributeFees( remainingAmount, srcToken, partner, partnerFeeShare, paraswapFeeShare, skipBlacklist, isBlacklisted, isDirectTransfer ); // transfer the rest to msg.sender returnAmount = _transferIfGreaterThanOne(srcToken, msg.sender, returnAmount); // transfer the received amount of destToken to the beneficiary destToken.safeTransfer(beneficiary, --receivedAmount); return (maxAmountIn - returnAmount, receivedAmount, paraswapFeeShare, partnerFeeShare); } // if slippage is postive and referral flag is true if (feeData & IS_REFERRAL_MASK != 0) { if (surplus > 0) { // the split is 50% for paraswap, 25% for the referrer and 25% for the user paraswapFeeShare = (surplus * PARASWAP_REFERRAL_SHARE) / 10_000; partnerFeeShare = (surplus * PARTNER_REFERRAL_SHARE) / 10_000; // distribute fees from srcToken returnAmount = _distributeFees( remainingAmount, srcToken, partner, partnerFeeShare, paraswapFeeShare, skipBlacklist, isBlacklisted, isDirectTransfer ); // transfer the rest to msg.sender returnAmount = _transferIfGreaterThanOne(srcToken, msg.sender, returnAmount); // transfer the received amount of destToken to the beneficiary destToken.safeTransfer(beneficiary, --receivedAmount); return (maxAmountIn - returnAmount, receivedAmount, paraswapFeeShare, partnerFeeShare); } } // if slippage is positive and takeSurplus flag is true else if (feeData & IS_TAKE_SURPLUS_MASK != 0) { if (surplus > 0) { // paraswap takes 50% of the surplus and partner takes the other 50% paraswapFeeShare = (surplus * PARASWAP_SURPLUS_SHARE) / 10_000; partnerFeeShare = surplus - paraswapFeeShare; // If user surplus flag is true, transfer the partner share to the user instead of the partner if (feeData & IS_USER_SURPLUS_MASK != 0) { partnerFeeShare = 0; // Transfer the paraswap share directly to the fee wallet isDirectTransfer = true; } // distrubite fees from srcToken, partner takes 50% of the surplus // and paraswap takes the other 50% returnAmount = _distributeFees( remainingAmount, srcToken, partner, partnerFeeShare, paraswapFeeShare, skipBlacklist, isBlacklisted, isDirectTransfer ); // transfer the rest to msg.sender returnAmount = _transferIfGreaterThanOne(srcToken, msg.sender, returnAmount); // transfer the received amount of destToken to the beneficiary destToken.safeTransfer(beneficiary, --receivedAmount); return (maxAmountIn - returnAmount, receivedAmount, paraswapFeeShare, partnerFeeShare); } } } // transfer the received amount of destToken to the beneficiary destToken.safeTransfer(beneficiary, --receivedAmount); // if slippage is positive and partner address is 0x0 or fee percent is 0 // paraswap will take the surplus, and transfer the rest to msg.sender // if there is no positive slippage, transfer the remaining amount to msg.sender if (surplus > 0) { // If the token is blacklisted, send the remaining amount to the msg.sender // we won't process fees if (blacklistedTokens[srcToken]) { // transfer the remaining amount to msg.sender returnAmount = _transferIfGreaterThanOne(srcToken, msg.sender, remainingAmount); return (maxAmountIn - returnAmount, receivedAmount, 0, 0); } // transfer the surplus to the fee wallet srcToken.safeTransfer(feeWallet, surplus); // transfer the remaining amount to msg.sender returnAmount = _transferIfGreaterThanOne(srcToken, msg.sender, remainingAmount - surplus); return (maxAmountIn - returnAmount, receivedAmount, surplus, 0); } else { // transfer the remaining amount to msg.sender returnAmount = _transferIfGreaterThanOne(srcToken, msg.sender, remainingAmount); return (maxAmountIn - returnAmount, receivedAmount, 0, 0); } } /// @notice Process swapExactAmountOut fees for UniV3 swapExactAmountOut, doing a transferFrom user to the fee /// vault or partner and feeWallet /// @param beneficiary The user's address /// @param srcToken The token used to swapExactAmountOut /// @param destToken The token received from the swapExactAmountOut /// @param partnerAndFee Packed partner and fee data /// @param maxAmountIn The amount of srcToken passed to the swapExactAmountOut /// @param receivedAmount The amount of destToken received from the swapExactAmountOut /// @param spentAmount The amount of srcToken used to swapExactAmountOut /// @param quotedAmount The quoted expected amount of srcToken to be used to swapExactAmountOut /// @return totalSpentAmount The total amount of srcToken used to swapExactAmountOut /// @return returnAmount The amount of destToken transfered to the beneficiary /// @return paraswapFeeShare The share of the fees for Paraswap /// @return partnerFeeShare The share of the fees for the partner function processSwapExactAmountOutFeesAndTransferUniV3( address beneficiary, IERC20 srcToken, IERC20 destToken, uint256 partnerAndFee, uint256 maxAmountIn, uint256 receivedAmount, uint256 spentAmount, uint256 quotedAmount ) internal returns (uint256 totalSpentAmount, uint256 returnAmount, uint256 paraswapFeeShare, uint256 partnerFeeShare) { // initialize the surplus uint256 surplus; // calculate remaining amount uint256 remainingAmount = maxAmountIn - spentAmount; // parse partner and fee data (address payable partner, uint256 feeData) = parsePartnerAndFeeData(partnerAndFee); // check if the quotedAmount is bigger than the fromAmount if (quotedAmount > maxAmountIn) { revert InvalidQuotedAmount(); } // calculate the surplus, we do not take the surplus into account if it is less than // MINIMUM_SURPLUS_EPSILON_AND_ONE_WEI if (quotedAmount > spentAmount + MINIMUM_SURPLUS_EPSILON_AND_ONE_WEI) { surplus = quotedAmount - spentAmount; // if the cap surplus flag is passed, we cap the surplus to 1% of the quoted amount if (feeData & IS_CAP_SURPLUS_MASK != 0) { uint256 cappedSurplus = (SURPLUS_PERCENT * quotedAmount) / 10_000; surplus = surplus > cappedSurplus ? cappedSurplus : surplus; } } // if partner address is not 0x0 if (partner != address(0x0)) { // Check if skip blacklist flag is true bool skipBlacklist = feeData & IS_SKIP_BLACKLIST_MASK != 0; // Check if token is blacklisted bool isBlacklisted = blacklistedTokens[srcToken]; // If the token is blacklisted and the skipBlacklist flag is false, // we won't process fees if (!skipBlacklist && isBlacklisted) { // transfer the received amount of destToken to the beneficiary destToken.safeTransfer(beneficiary, receivedAmount); return (spentAmount, receivedAmount, 0, 0); } // Check if direct transfer flag is true bool isDirectTransfer = feeData & IS_DIRECT_TRANSFER_MASK != 0; // partner takes fixed fees feePercent is greater than 0 uint256 feePercent = _getAdjustedFeePercent(feeData); if (feePercent > 0) { // fee base = min (spentAmount, quotedAmount) uint256 feeBase = spentAmount < quotedAmount ? spentAmount : quotedAmount; // calculate fixed fees uint256 fee = (feeBase * feePercent) / 10_000; partnerFeeShare = (fee * PARTNER_SHARE_PERCENT) / 10_000; paraswapFeeShare = fee - partnerFeeShare; // distrubite fees from srcToken totalSpentAmount = _distributeFeesUniV3( remainingAmount, msg.sender, srcToken, partner, partnerFeeShare, paraswapFeeShare, skipBlacklist, isBlacklisted, isDirectTransfer ) + spentAmount; // transfer the received amount of destToken to the beneficiary destToken.safeTransfer(beneficiary, receivedAmount); return (totalSpentAmount, receivedAmount, paraswapFeeShare, partnerFeeShare); } // if slippage is postive and referral flag is true else if (feeData & IS_REFERRAL_MASK != 0) { if (surplus > 0) { // the split is 50% for paraswap, 25% for the referrer and 25% for the user paraswapFeeShare = (surplus * PARASWAP_REFERRAL_SHARE) / 10_000; partnerFeeShare = (surplus * PARTNER_REFERRAL_SHARE) / 10_000; // distribute fees from srcToken totalSpentAmount = _distributeFeesUniV3( remainingAmount, msg.sender, srcToken, partner, partnerFeeShare, paraswapFeeShare, skipBlacklist, isBlacklisted, isDirectTransfer ) + spentAmount; // transfer the received amount of destToken to the beneficiary destToken.safeTransfer(beneficiary, receivedAmount); return (totalSpentAmount, receivedAmount, paraswapFeeShare, partnerFeeShare); } } // if slippage is positive and takeSurplus flag is true else if (feeData & IS_TAKE_SURPLUS_MASK != 0) { if (surplus > 0) { // paraswap takes 50% of the surplus and partner takes the other 50% paraswapFeeShare = (surplus * PARASWAP_SURPLUS_SHARE) / 10_000; partnerFeeShare = surplus - paraswapFeeShare; // If user surplus flag is true, transfer the partner share to the user instead of the partner if (feeData & IS_USER_SURPLUS_MASK != 0) { partnerFeeShare = 0; // Transfer the paraswap share directly to the fee wallet isDirectTransfer = true; } // partner takes 50% of the surplus and paraswap takes the other 50% // distrubite fees from srcToken totalSpentAmount = _distributeFeesUniV3( remainingAmount, msg.sender, srcToken, partner, partnerFeeShare, paraswapFeeShare, skipBlacklist, isBlacklisted, isDirectTransfer ) + spentAmount; // transfer the received amount of destToken to the beneficiary destToken.safeTransfer(beneficiary, receivedAmount); return (totalSpentAmount, receivedAmount, paraswapFeeShare, partnerFeeShare); } } } // transfer the received amount of destToken to the beneficiary destToken.safeTransfer(beneficiary, receivedAmount); // if slippage is positive and partner address is 0x0 or fee percent is 0 // paraswap will take the surplus if (surplus > 0) { // If the token is blacklisted, we won't process fees if (blacklistedTokens[srcToken]) { return (spentAmount, receivedAmount, 0, 0); } // transfer the surplus to the fee wallet srcToken.safeTransferFrom(msg.sender, feeWallet, surplus); } return (spentAmount + surplus, receivedAmount, surplus, 0); } /*////////////////////////////////////////////////////////////// PUBLIC //////////////////////////////////////////////////////////////*/ /// @inheritdoc IAugustusFees function parsePartnerAndFeeData(uint256 partnerAndFee) public pure returns (address payable partner, uint256 feeData) { // solhint-disable-next-line no-inline-assembly assembly ("memory-safe") { partner := shr(96, partnerAndFee) feeData := and(partnerAndFee, 0xFFFFFFFFFFFFFFFFFFFFFFFF) } } /*////////////////////////////////////////////////////////////// PRIVATE //////////////////////////////////////////////////////////////*/ /// @notice Distribute fees to the partner and paraswap /// @param currentBalance The current balance of the token before distributing the fees /// @param token The token to distribute the fees for /// @param partner The partner address /// @param partnerShare The partner share /// @param paraswapShare The paraswap share /// @param skipBlacklist Whether to skip the blacklist and transfer the fees directly to the partner /// @param isBlacklisted Whether the token is blacklisted /// @param directTransfer Whether to transfer the fees directly to the partner instead of the fee vault /// @return newBalance The new balance of the token after distributing the fees function _distributeFees( uint256 currentBalance, IERC20 token, address payable partner, uint256 partnerShare, uint256 paraswapShare, bool skipBlacklist, bool isBlacklisted, bool directTransfer ) private returns (uint256 newBalance) { uint256 totalFees = partnerShare + paraswapShare; if (totalFees == 0) { return currentBalance; } else { if (skipBlacklist && isBlacklisted) { // totalFees should be just the partner share, paraswap does not take fees // on blacklisted tokens, the rest of the fees are sent to sender based on // newBalance = currentBalance - totalFees totalFees = partnerShare; // revert if the balance is not enough to pay the fees if (totalFees > currentBalance) { revert InsufficientBalanceToPayFees(); } if (partnerShare > 0) { token.safeTransfer(partner, partnerShare); } } else { // revert if the balance is not enough to pay the fees if (totalFees > currentBalance) { revert InsufficientBalanceToPayFees(); } if (directTransfer) { // transfer the fees directly to the partner and paraswap if (paraswapShare > 0) { token.safeTransfer(feeWallet, paraswapShare); } if (partnerShare > 0) { token.safeTransfer(partner, partnerShare); } } else { // transfer the fees to the fee vault token.safeTransfer(address(FEE_VAULT), totalFees); // Setup fee registration data address[] memory feeAddresses = new address[](2); uint256[] memory feeAmounts = new uint256[](2); feeAddresses[0] = partner; feeAmounts[0] = partnerShare; feeAddresses[1] = feeWalletDelegate; feeAmounts[1] = paraswapShare; IAugustusFeeVault.FeeRegistration memory feeData = IAugustusFeeVault.FeeRegistration({ token: token, addresses: feeAddresses, fees: feeAmounts }); // Register the fees FEE_VAULT.registerFees(feeData); } } } newBalance = currentBalance - totalFees; } /// @notice Distribute fees for UniV3 /// @param currentBalance The current balance of the token before distributing the fees /// @param payer The user's address /// @param token The token to distribute the fees for /// @param partner The partner address /// @param partnerShare The partner share /// @param paraswapShare The paraswap share /// @param skipBlacklist Whether to skip the blacklist and transfer the fees directly to the partner /// @param isBlacklisted Whether the token is blacklisted /// @param directTransfer Whether to transfer the fees directly to the partner instead of the fee vault /// @return totalFees The total fees distributed function _distributeFeesUniV3( uint256 currentBalance, address payer, IERC20 token, address payable partner, uint256 partnerShare, uint256 paraswapShare, bool skipBlacklist, bool isBlacklisted, bool directTransfer ) private returns (uint256 totalFees) { totalFees = partnerShare + paraswapShare; if (totalFees != 0) { if (skipBlacklist && isBlacklisted) { // totalFees should be just the partner share, paraswap does not take fees // on blacklisted tokens, the rest of the fees will remain on the payer's address totalFees = partnerShare; // revert if the balance is not enough to pay the fees if (totalFees > currentBalance) { revert InsufficientBalanceToPayFees(); } // transfer the fees to the partner if (partnerShare > 0) { // transfer the fees to the partner token.safeTransferFrom(payer, partner, partnerShare); } } else { // revert if the balance is not enough to pay the fees if (totalFees > currentBalance) { revert InsufficientBalanceToPayFees(); } if (directTransfer) { // transfer the fees directly to the partner and paraswap if (paraswapShare > 0) { token.safeTransferFrom(payer, feeWallet, paraswapShare); } if (partnerShare > 0) { token.safeTransferFrom(payer, partner, partnerShare); } } else { // transfer the fees to the fee vault token.safeTransferFrom(payer, address(FEE_VAULT), totalFees); // Setup fee registration data address[] memory feeAddresses = new address[](2); uint256[] memory feeAmounts = new uint256[](2); feeAddresses[0] = partner; feeAmounts[0] = partnerShare; feeAddresses[1] = feeWalletDelegate; feeAmounts[1] = paraswapShare; IAugustusFeeVault.FeeRegistration memory feeData = IAugustusFeeVault.FeeRegistration({ token: token, addresses: feeAddresses, fees: feeAmounts }); // Register the fees FEE_VAULT.registerFees(feeData); } } // othwerwise do not transfer the fees } return totalFees; } /// @notice Get the adjusted fee percent by masking feePercent with FEE_PERCENT_IN_BASIS_POINTS_MASK, /// if the fee percent is bigger than MAX_FEE_PERCENT, then set it to MAX_FEE_PERCENT /// @param feePercent The fee percent /// @return adjustedFeePercent The adjusted fee percent function _getAdjustedFeePercent(uint256 feePercent) private pure returns (uint256) { // solhint-disable-next-line no-inline-assembly assembly ("memory-safe") { feePercent := and(feePercent, FEE_PERCENT_IN_BASIS_POINTS_MASK) // if feePercent is bigger than MAX_FEE_PERCENT, then set it to MAX_FEE_PERCENT if gt(feePercent, MAX_FEE_PERCENT) { feePercent := MAX_FEE_PERCENT } } return feePercent; } /// @notice Transfers amount to recipient if the amount is bigger than 1, leaving 1 wei dust on the contract /// @param token The token to transfer /// @param recipient The address to transfer to /// @param amount The amount to transfer function _transferIfGreaterThanOne( IERC20 token, address recipient, uint256 amount ) private returns (uint256 amountOut) { if (amount > 1) { unchecked { --amount; } token.safeTransfer(recipient, amount); return amount; } return 0; } /// @notice Transfer amount to beneficiary, leaving 1 wei dust on the contract /// @param token The token to transfer /// @param beneficiary The address to transfer to /// @param amount The amount to transfer function _transferAndLeaveDust(IERC20 token, address beneficiary, uint256 amount) private { unchecked { --amount; } token.safeTransfer(beneficiary, amount); } } // SPDX-License-Identifier: MIT pragma solidity 0.8.22; // Contracts import { GenericUtils } from "../../util/GenericUtils.sol"; // Interfaces import { IERC20 } from "@openzeppelin/token/ERC20/IERC20.sol"; import { IGenericSwapExactAmountIn } from "../../interfaces/IGenericSwapExactAmountIn.sol"; // Libraries import { ERC20Utils } from "../../libraries/ERC20Utils.sol"; // Types import { GenericData } from "../../AugustusV6Types.sol"; /// @title GenericSwapExactAmountIn /// @notice Router for executing generic swaps with exact amount in through an executor abstract contract GenericSwapExactAmountIn is IGenericSwapExactAmountIn, GenericUtils { /*////////////////////////////////////////////////////////////// LIBRARIES //////////////////////////////////////////////////////////////*/ using ERC20Utils for IERC20; /*////////////////////////////////////////////////////////////// SWAP EXACT AMOUNT IN //////////////////////////////////////////////////////////////*/ /// @inheritdoc IGenericSwapExactAmountIn function swapExactAmountIn( address executor, GenericData calldata swapData, uint256 partnerAndFee, bytes calldata permit, bytes calldata executorData ) external payable whenNotPaused returns (uint256 receivedAmount, uint256 paraswapShare, uint256 partnerShare) { // Dereference swapData IERC20 destToken = swapData.destToken; IERC20 srcToken = swapData.srcToken; uint256 amountIn = swapData.fromAmount; uint256 minAmountOut = swapData.toAmount; uint256 quotedAmountOut = swapData.quotedAmount; address payable beneficiary = swapData.beneficiary; // Check if beneficiary is valid if (beneficiary == address(0)) { beneficiary = payable(msg.sender); } // Check if toAmount is valid if (minAmountOut == 0) { revert InvalidToAmount(); } // Check if srcToken is ETH if (srcToken.isETH(amountIn) == 0) { // Check the length of the permit field, // if < 257 and > 0 we should execute regular permit // and if it is >= 257 we execute permit2 if (permit.length < 257) { // Permit if needed if (permit.length > 0) { srcToken.permit(permit); } srcToken.safeTransferFrom(msg.sender, executor, amountIn); } else { // Otherwise Permit2.permitTransferFrom permit2TransferFrom(permit, executor, amountIn); } } // Execute swap _callSwapExactAmountInExecutor(executor, executorData, amountIn); // Check balance after swap receivedAmount = destToken.getBalance(address(this)); // Check if swap succeeded if (receivedAmount < minAmountOut) { revert InsufficientReturnAmount(); } // Process fees and transfer destToken to beneficiary return processSwapExactAmountInFeesAndTransfer( beneficiary, destToken, partnerAndFee, receivedAmount, quotedAmountOut ); } } // SPDX-License-Identifier: MIT pragma solidity 0.8.22; // Interfaces import { IERC20 } from "@openzeppelin/token/ERC20/IERC20.sol"; import { IGenericSwapExactAmountOut } from "../../interfaces/IGenericSwapExactAmountOut.sol"; // Libraries import { ERC20Utils } from "../../libraries/ERC20Utils.sol"; // Types import { GenericData } from "../../AugustusV6Types.sol"; // Utils import { GenericUtils } from "../../util/GenericUtils.sol"; /// @title GenericSwapExactAmountOut /// @notice Router for executing generic swaps with exact amount out through an executor abstract contract GenericSwapExactAmountOut is IGenericSwapExactAmountOut, GenericUtils { /*////////////////////////////////////////////////////////////// LIBRARIES //////////////////////////////////////////////////////////////*/ using ERC20Utils for IERC20; /*////////////////////////////////////////////////////////////// SWAP EXACT AMOUNT OUT //////////////////////////////////////////////////////////////*/ /// @inheritdoc IGenericSwapExactAmountOut function swapExactAmountOut( address executor, GenericData calldata swapData, uint256 partnerAndFee, bytes calldata permit, bytes calldata executorData ) external payable whenNotPaused returns (uint256 spentAmount, uint256 receivedAmount, uint256 paraswapShare, uint256 partnerShare) { // Dereference swapData IERC20 destToken = swapData.destToken; IERC20 srcToken = swapData.srcToken; uint256 maxAmountIn = swapData.fromAmount; uint256 amountOut = swapData.toAmount; uint256 quotedAmountIn = swapData.quotedAmount; address payable beneficiary = swapData.beneficiary; // Make sure srcToken and destToken are different if (srcToken == destToken) { revert ArbitrageNotSupported(); } // Check if beneficiary is valid if (beneficiary == address(0)) { beneficiary = payable(msg.sender); } // Check if toAmount is valid if (amountOut == 0) { revert InvalidToAmount(); } // Check contract balance uint256 balanceBefore = srcToken.getBalance(address(this)); // Check if srcToken is ETH // Transfer srcToken to executor if not ETH if (srcToken.isETH(maxAmountIn) == 0) { // Check the length of the permit field, // if < 257 and > 0 we should execute regular permit // and if it is >= 257 we execute permit2 if (permit.length < 257) { // Permit if needed if (permit.length > 0) { srcToken.permit(permit); } srcToken.safeTransferFrom(msg.sender, executor, maxAmountIn); } else { // Otherwise Permit2.permitTransferFrom permit2TransferFrom(permit, executor, maxAmountIn); } } else { // If srcToken is ETH, we have to deduct msg.value from balanceBefore balanceBefore = balanceBefore - msg.value; } // Execute swap _callSwapExactAmountOutExecutor(executor, executorData, maxAmountIn, amountOut); // Check balance of destToken receivedAmount = destToken.getBalance(address(this)); // Check balance of srcToken, deducting the balance before the swap if it is greater than 1 uint256 remainingAmount = srcToken.getBalance(address(this)) - (balanceBefore > 1 ? balanceBefore : 0); // Check if swap succeeded if (receivedAmount < amountOut) { revert InsufficientReturnAmount(); } // Process fees and transfer destToken and srcToken to beneficiary return processSwapExactAmountOutFeesAndTransfer( beneficiary, srcToken, destToken, partnerAndFee, maxAmountIn, remainingAmount, receivedAmount, quotedAmountIn ); } } // SPDX-License-Identifier: MIT pragma solidity 0.8.22; // Interfaces import { IERC20 } from "@openzeppelin/token/ERC20/IERC20.sol"; import { IAugustusRFQRouter } from "../../interfaces/IAugustusRFQRouter.sol"; // Libraries import { ERC20Utils } from "../../libraries/ERC20Utils.sol"; // Types import { AugustusRFQData, OrderInfo } from "../../AugustusV6Types.sol"; // Utils import { AugustusRFQUtils } from "../../util/AugustusRFQUtils.sol"; import { WETHUtils } from "../../util/WETHUtils.sol"; import { PauseUtils } from "../../util/PauseUtils.sol"; import { Permit2Utils } from "../../util/Permit2Utils.sol"; import { AugustusFees } from "../../fees/AugustusFees.sol"; /// @title AugustusRFQRouter /// @notice A contract for executing direct AugustusRFQ swaps abstract contract AugustusRFQRouter is IAugustusRFQRouter, AugustusRFQUtils, AugustusFees, WETHUtils, Permit2Utils, PauseUtils { /*////////////////////////////////////////////////////////////// LIBRARIES //////////////////////////////////////////////////////////////*/ using ERC20Utils for IERC20; /*////////////////////////////////////////////////////////////// TRY BATCH FILL //////////////////////////////////////////////////////////////*/ /// @inheritdoc IAugustusRFQRouter // solhint-disable-next-line code-complexity function swapOnAugustusRFQTryBatchFill( AugustusRFQData calldata data, OrderInfo[] calldata orders, bytes calldata permit ) external payable whenNotPaused returns (uint256 spentAmount, uint256 receivedAmount) { // Dereference data address payable beneficiary = data.beneficiary; uint256 ordersLength = orders.length; uint256 fromAmount = data.fromAmount; uint256 toAmount = data.toAmount; uint8 wrapApproveDirection = data.wrapApproveDirection; // Decode wrapApproveDirection // First 2 bits are for wrap // Next 1 bit is for approve // Last 1 bit is for direction uint8 wrap; bool approve; bool direction; // solhint-disable-next-line no-inline-assembly assembly ("memory-safe") { wrap := and(3, wrapApproveDirection) approve := and(shr(2, wrapApproveDirection), 1) direction := and(shr(3, wrapApproveDirection), 1) } // Check if beneficiary is valid if (beneficiary == address(0)) { beneficiary = payable(msg.sender); } // Check if toAmount is valid if (toAmount == 0) { revert InvalidToAmount(); } // Check if ordersLength is valid if (ordersLength == 0) { revert InvalidOrdersLength(); } // Check if msg.sender is authorized to be the taker for all orders for (uint256 i = 0; i < ordersLength; ++i) { _checkAuthorization(orders[i].order.nonceAndMeta); } // Dereference srcToken and destToken IERC20 srcToken = IERC20(orders[0].order.takerAsset); IERC20 destToken = IERC20(orders[0].order.makerAsset); // Check if we need to wrap or permit if (wrap != 1) { // If msg.value is not 0, revert if (msg.value > 0) { revert IncorrectEthAmount(); } // Check the length of the permit field, // if < 257 and > 0 we should execute regular permit // and if it is >= 257 we execute permit2 if (permit.length < 257) { // Permit if needed if (permit.length > 0) { srcToken.permit(permit); } srcToken.safeTransferFrom(msg.sender, address(this), fromAmount); } else { // Otherwise Permit2.permitTransferFrom permit2TransferFrom(permit, address(this), fromAmount); } } else { // Check if msg.value is equal to fromAmount if (fromAmount != msg.value) { revert IncorrectEthAmount(); } // If it is ETH. wrap it to WETH WETH.deposit{ value: fromAmount }(); } if (approve) { // Approve srcToken to AugustusRFQ srcToken.approve(address(AUGUSTUS_RFQ)); } // Check if we need to execute a swapExactAmountIn or a swapExactAmountOut if (!direction) { // swapExactAmountIn // Unwrap WETH if needed if (wrap == 2) { // Execute tryBatchFillOrderTakerAmount AUGUSTUS_RFQ.tryBatchFillOrderTakerAmount(orders, fromAmount, address(this)); // Check received amount receivedAmount = IERC20(WETH).getBalance(address(this)); // Check if swap succeeded if (receivedAmount < toAmount) { revert InsufficientReturnAmount(); } // Unwrap WETH WETH.withdraw(--receivedAmount); // Transfer ETH to beneficiary ERC20Utils.ETH.safeTransfer(beneficiary, receivedAmount); } else { // Check balance of beneficiary before swap uint256 beforeBalance = destToken.getBalance(beneficiary); // Execute tryBatchFillOrderTakerAmount AUGUSTUS_RFQ.tryBatchFillOrderTakerAmount(orders, fromAmount, beneficiary); // set receivedAmount to afterBalance - beforeBalance receivedAmount = destToken.getBalance(beneficiary) - beforeBalance; // Check if swap succeeded if (receivedAmount < toAmount) { revert InsufficientReturnAmount(); } } // Return spentAmount and receivedAmount return (fromAmount, receivedAmount); } else { // swapExactAmountOut // Unwrap WETH if needed if (wrap == 2) { // Execute tryBatchFillOrderMakerAmount AUGUSTUS_RFQ.tryBatchFillOrderMakerAmount(orders, toAmount, address(this)); // Check remaining WETH balance receivedAmount = IERC20(WETH).getBalance(address(this)); // Unwrap WETH WETH.withdraw(--receivedAmount); // Transfer ETH to beneficiary ERC20Utils.ETH.safeTransfer(beneficiary, receivedAmount); // Set toAmount to receivedAmount toAmount = receivedAmount; } else { // Execute tryBatchFillOrderMakerAmount AUGUSTUS_RFQ.tryBatchFillOrderMakerAmount(orders, toAmount, beneficiary); } // Check remaining amount uint256 remainingAmount = srcToken.getBalance(address(this)); // Send remaining srcToken to msg.sender if (remainingAmount > 1) { // If srcToken was ETH if (wrap == 1) { // Unwrap WETH WETH.withdraw(--remainingAmount); // Transfer ETH to msg.sender ERC20Utils.ETH.safeTransfer(msg.sender, remainingAmount); } else { // Transfer remaining srcToken to msg.sender srcToken.safeTransfer(msg.sender, --remainingAmount); } } // Return spentAmount and receivedAmount return (fromAmount - remainingAmount, toAmount); } } } // SPDX-License-Identifier: MIT pragma solidity 0.8.22; // Interfaces import { IAugustusRFQ } from "../interfaces/IAugustusRFQ.sol"; import { IERC20 } from "@openzeppelin/token/ERC20/IERC20.sol"; // Libraries import { ERC20Utils } from "../libraries/ERC20Utils.sol"; /// @title AugustusRFQUtils /// @notice A contract containing common utilities for AugustusRFQ swaps contract AugustusRFQUtils { /*////////////////////////////////////////////////////////////// LIBRARIES //////////////////////////////////////////////////////////////*/ using ERC20Utils for IERC20; /*////////////////////////////////////////////////////////////// ERRORS //////////////////////////////////////////////////////////////*/ /// @dev Emitted when the msg.sender is not authorized to be the taker error UnauthorizedUser(); /// @dev Emitted when the orders length is 0 error InvalidOrdersLength(); /*////////////////////////////////////////////////////////////// CONSTANTS //////////////////////////////////////////////////////////////*/ /// @dev AugustusRFQ address IAugustusRFQ public immutable AUGUSTUS_RFQ; // solhint-disable-line var-name-mixedcase /*////////////////////////////////////////////////////////////// CONSTRUCTOR //////////////////////////////////////////////////////////////*/ constructor(address _augustusRFQ) { AUGUSTUS_RFQ = IAugustusRFQ(_augustusRFQ); } /*////////////////////////////////////////////////////////////// INTERNAL //////////////////////////////////////////////////////////////*/ /// @dev Check if the msg.sender is authorized to be the taker function _checkAuthorization(uint256 nonceAndMeta) internal view { // solhint-disable-next-line no-inline-assembly assembly { // Parse nonceAndMeta if xor(and(nonceAndMeta, 0xffffffffffffffffffffffffffffffffffffffff), 0) { // If the taker is not 0, we check if the msg.sender is authorized if xor(and(nonceAndMeta, 0xffffffffffffffffffffffffffffffffffffffff), caller()) { // The taker does not match the originalSender, revert mstore(0, 0x02a43f8b00000000000000000000000000000000000000000000000000000000) // function // selector for error UnauthorizedUser(); revert(0, 4) } } } } } // SPDX-License-Identifier: MIT pragma solidity 0.8.22; // Contracts import { AugustusFees } from "../fees/AugustusFees.sol"; // Interfaces import { IERC20 } from "@openzeppelin/token/ERC20/IERC20.sol"; // Utils import { Permit2Utils } from "./Permit2Utils.sol"; import { PauseUtils } from "./PauseUtils.sol"; /// @title BalancerV2Utils /// @notice A contract containing common utilities for BalancerV2 swaps abstract contract BalancerV2Utils is AugustusFees, Permit2Utils, PauseUtils { /*////////////////////////////////////////////////////////////// ERRORS //////////////////////////////////////////////////////////////*/ /// @dev Emitted when the passed selector is invalid error InvalidSelector(); /*////////////////////////////////////////////////////////////// CONSTANTS //////////////////////////////////////////////////////////////*/ /// @dev BalancerV2 vault address address payable public immutable BALANCER_VAULT; // solhint-disable-line var-name-mixedcase /*////////////////////////////////////////////////////////////// CONSTRUCTOR //////////////////////////////////////////////////////////////*/ constructor(address payable _balancerVault) { BALANCER_VAULT = _balancerVault; } /*////////////////////////////////////////////////////////////// INTERNAL //////////////////////////////////////////////////////////////*/ /// @dev Decode srcToken, destToken from balancerData, beneficiary and approve flag from beneficiaryAndApproveFlag function _decodeBalancerV2Params( uint256 beneficiaryAndApproveFlag, bytes calldata balancerData ) internal pure returns (IERC20 srcToken, IERC20 destToken, address payable beneficiary, bool approve) { // solhint-disable-next-line no-inline-assembly assembly ("memory-safe") { // Parse beneficiaryAndApproveFlag beneficiary := and(beneficiaryAndApproveFlag, 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF) approve := shr(255, beneficiaryAndApproveFlag) // Load calldata without selector let callDataWithoutSelector := add(4, balancerData.offset) // Check selector switch calldataload(balancerData.offset) // If the selector is for swap(tuple singleSwap,tuple funds,uint256 limit,uint256 deadline) case 0x52bbbe2900000000000000000000000000000000000000000000000000000000 { // Load srcToken from singleSswap.assetIn srcToken := calldataload(add(callDataWithoutSelector, 288)) // Load destToken from singleSswap.assetOut destToken := calldataload(add(callDataWithoutSelector, 320)) } // If the selector is for batchSwap(uint8 kind,tuple[] swaps,address[] assets,tuple funds,int256[] // limits,uint256 deadline) case 0x945bcec900000000000000000000000000000000000000000000000000000000 { // Load assetOffset from balancerData let assetsOffset := calldataload(add(callDataWithoutSelector, 64)) // Load assetCount at assetOffset let assetsCount := calldataload(add(callDataWithoutSelector, assetsOffset)) // Get swapExactAmountIn type from first 32 bytes of balancerData let swapType := calldataload(callDataWithoutSelector) // Set fromAmount, srcToken, toAmount and destToken based on swapType switch eq(swapType, 1) case 1 { // Load srcToken as the last asset in balancerData.assets srcToken := calldataload(add(callDataWithoutSelector, add(assetsOffset, mul(assetsCount, 32)))) // Load destToken as the first asset in balancerData.assets destToken := calldataload(add(callDataWithoutSelector, add(assetsOffset, 32))) } default { // Load srcToken as the first asset in balancerData.assets srcToken := calldataload(add(callDataWithoutSelector, add(assetsOffset, 32))) // Load destToken as the last asset in balancerData.assets destToken := calldataload(add(callDataWithoutSelector, add(assetsOffset, mul(assetsCount, 32)))) } } default { // If the selector is invalid, revert mstore(0, 0x7352d91c00000000000000000000000000000000000000000000000000000000) // store the // selector for error InvalidSelector(); revert(0, 4) } // Balancer users 0x0 as ETH address so we need to convert it if eq(srcToken, 0) { srcToken := 0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE } if eq(destToken, 0) { destToken := 0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE } } return (srcToken, destToken, beneficiary, approve); } /// @dev Call balancerVault with data function _callBalancerV2(bytes calldata balancerData) internal { address payable targetAddress = BALANCER_VAULT; // solhint-disable-next-line no-inline-assembly assembly ("memory-safe") { // Load free memory pointer let ptr := mload(64) // Copy the balancerData to memory calldatacopy(ptr, balancerData.offset, balancerData.length) // Execute the call on balancerVault if iszero(call(gas(), targetAddress, callvalue(), ptr, balancerData.length, 0, 0)) { returndatacopy(ptr, 0, returndatasize()) // copy the revert data to memory revert(ptr, returndatasize()) // revert with the revert data } } } } // SPDX-License-Identifier: MIT pragma solidity 0.8.22; // Contracts import { AugustusFees } from "../fees/AugustusFees.sol"; // Interfaces import { IERC20 } from "@openzeppelin/token/ERC20/IERC20.sol"; // Utils import { WETHUtils } from "./WETHUtils.sol"; import { Permit2Utils } from "./Permit2Utils.sol"; import { PauseUtils } from "./PauseUtils.sol"; /// @title UniswapV2Utils /// @notice A contract containing common utilities for UniswapV2 swaps abstract contract UniswapV2Utils is AugustusFees, WETHUtils, Permit2Utils, PauseUtils { /*////////////////////////////////////////////////////////////// CONSTANTS //////////////////////////////////////////////////////////////*/ /// @dev Used to caluclate pool address uint256 public immutable UNISWAP_V2_POOL_INIT_CODE_HASH; /// @dev Right padded FF + UniswapV2Factory address uint256 public immutable UNISWAP_V2_FACTORY_AND_FF; /*////////////////////////////////////////////////////////////// CONSTRUCTOR //////////////////////////////////////////////////////////////*/ constructor(uint256 _uniswapV2FactoryAndFF, uint256 _uniswapV2PoolInitCodeHash) { UNISWAP_V2_FACTORY_AND_FF = _uniswapV2FactoryAndFF; UNISWAP_V2_POOL_INIT_CODE_HASH = _uniswapV2PoolInitCodeHash; } /*////////////////////////////////////////////////////////////// INTERNAL //////////////////////////////////////////////////////////////*/ /// @dev Loops through UniswapV2 pools in backword direction and swaps exact amount out function _callUniswapV2PoolsSwapExactOut(uint256 amountOut, IERC20 srcToken, bytes calldata pools) internal { uint256 uniswapV2FactoryAndFF = UNISWAP_V2_FACTORY_AND_FF; uint256 uniswapV2PoolInitCodeHash = UNISWAP_V2_POOL_INIT_CODE_HASH; // solhint-disable-next-line no-inline-assembly assembly { function calculatePoolAddress( poolMemoryPtr, poolCalldataPtr, _uniswapV2FactoryAndFF, _uniswapV2PoolInitCodeHash ) { // Calculate the pool address // We can do this by first calling the keccak256 function on the passed pool values and then // calculating keccak256(abi.encodePacked(hex'ff', address(factory_address), // keccak256(abi.encodePacked(token0, token1)), POOL_INIT_CODE_HASH)); // The first 20 bytes of the computed address are the pool address // Store 0xff + factory address (right padded) mstore(poolMemoryPtr, _uniswapV2FactoryAndFF) // Store pools offset + 21 bytes (UNISWAP_V2_FACTORY_AND_FF SIZE) let token0ptr := add(poolMemoryPtr, 21) // Copy pool data (skip last bit) to free memory pointer + 21 bytes (UNISWAP_V2_FACTORY_AND_FF SIZE) calldatacopy(token0ptr, poolCalldataPtr, 40) // Calculate keccak256(abi.encode(address(token0), address(token1)) mstore(token0ptr, keccak256(token0ptr, 40)) // Store POOL_INIT_CODE_HASH mstore(add(token0ptr, 32), _uniswapV2PoolInitCodeHash) // Calculate address(keccak256(abi.encodePacked(hex'ff', address(factory_address), // keccak256(abi.encode(token0, token1), POOL_INIT_CODE_HASH))); mstore(poolMemoryPtr, and(keccak256(poolMemoryPtr, 85), 0xffffffffffffffffffffffffffffffffffffffff)) // 21 // + 32 + 32 } // Calculate pool count let poolCount := div(pools.length, 64) // Initilize memory pointers let amounts := mload(64) // pointer for amounts array let poolAddresses := add(amounts, add(mul(poolCount, 32), 32)) // pointer for pools array let emptyPtr := add(poolAddresses, mul(poolCount, 32)) // pointer for empty memory // Initialize fromAmount let fromAmount := 0 // Set the final amount in the amounts array to amountOut mstore(add(amounts, mul(poolCount, 0x20)), amountOut) //---------------------------------// // Calculate Pool Addresses and Amounts //---------------------------------// // Calculate pool addresses for { let i := 0 } lt(i, poolCount) { i := add(i, 1) } { calculatePoolAddress( add(poolAddresses, mul(i, 32)), add(pools.offset, mul(i, 64)), uniswapV2FactoryAndFF, uniswapV2PoolInitCodeHash ) } // Rerverse loop through pools and calculate amounts for { let i := poolCount } gt(i, 0) { i := sub(i, 1) } { // Use previous pool data to calculate amount in let indexSub1 := sub(i, 1) // Get pool address let poolAddress := mload(add(poolAddresses, mul(indexSub1, 32))) // Get direction let direction := and(1, calldataload(add(add(pools.offset, mul(indexSub1, 64)), 32))) // Get amount let amount := mload(add(amounts, mul(i, 32))) //---------------------------------// // Calculate Amount In //---------------------------------// //---------------------------------// // Get Reserves //---------------------------------// // Store the selector mstore(emptyPtr, 0x0902f1ac00000000000000000000000000000000000000000000000000000000) // 'getReserves()' // selector // Perform the external 'getReserves' call - outputs directly to ptr if iszero(staticcall(gas(), poolAddress, emptyPtr, 4, emptyPtr, 64)) { returndatacopy(0, 0, returndatasize()) // Copy the error message to the start of memory revert(0, returndatasize()) // Revert with the error message } // If direction is true, getReserves returns (reserve0, reserve1) // If direction is false, getReserves returns (reserve1, reserve0) -> swap the values // Load the reserve0 value returned by the 'getReserves' call. let reserve1 := mload(emptyPtr) // Load the reserve1 value returned by the 'getReserves' call. let reserve0 := mload(add(emptyPtr, 32)) // Check if direction is true if direction { // swap reserve0 and reserve1 let temp := reserve0 reserve0 := reserve1 reserve1 := temp } //---------------------------------// // Calculate numerator = reserve0 * amountOut * 10000 let numerator := mul(mul(reserve0, amount), 10000) // Calculate denominator = (reserve1 - amountOut) * 9970 let denominator := mul(sub(reserve1, amount), 9970) // Calculate amountIn = numerator / denominator + 1 fromAmount := add(div(numerator, denominator), 1) // Store amountIn for the previous pool mstore(add(amounts, mul(indexSub1, 32)), fromAmount) } //---------------------------------// // Initialize variables let poolAddress := 0 let nextPoolAddress := 0 //---------------------------------// // Loop Swap Through Pools //---------------------------------// // Loop for each pool for { let i := 0 } lt(i, poolCount) { i := add(i, 1) } { // Check if it is the first pool if iszero(poolAddress) { // If it is the first pool, we need to transfer amount of srcToken to poolAddress // Load first pool address poolAddress := mload(poolAddresses) //---------------------------------// // Transfer amount of srcToken to poolAddress //---------------------------------// // Transfer fromAmount of srcToken to poolAddress mstore(emptyPtr, 0xa9059cbb00000000000000000000000000000000000000000000000000000000) // store the // selector // (function transfer(address recipient, uint256 amount)) mstore(add(emptyPtr, 4), poolAddress) // store the recipient mstore(add(emptyPtr, 36), fromAmount) // store the amount pop(call(gas(), srcToken, 0, emptyPtr, 68, 0, 32)) // call transfer //---------------------------------// } // Adjust toAddress depending on if it is the last pool in the array let toAddress := address() // Check if it is not the last pool if lt(add(i, 1), poolCount) { // Load next pool address nextPoolAddress := mload(add(poolAddresses, mul(add(i, 1), 32))) // Adjust toAddress to next pool address toAddress := nextPoolAddress } // Check direction let direction := and(1, calldataload(add(add(pools.offset, mul(i, 64)), 32))) // if direction is 1, amount0out is 0 and amount1out is amount[i+1] // if direction is 0, amount0out is amount[i+1] and amount1out is 0 // Load amount[i+1] let amount := mload(add(amounts, mul(add(i, 1), 32))) // Initialize amount0Out and amount1Out let amount0Out := amount let amount1Out := 0 // Check if direction is true if direction { // swap amount0Out and amount1Out let temp := amount0Out amount0Out := amount1Out amount1Out := temp } //---------------------------------// // Perform Swap //---------------------------------// // Load the 'swap' selector, amount0Out, amount1Out, toAddress and data("") into memory. mstore(emptyPtr, 0x022c0d9f00000000000000000000000000000000000000000000000000000000) // 'swap()' selector mstore(add(emptyPtr, 4), amount0Out) // amount0Out mstore(add(emptyPtr, 36), amount1Out) // amount1Out mstore(add(emptyPtr, 68), toAddress) // toAddress mstore(add(emptyPtr, 100), 0x80) // data length mstore(add(emptyPtr, 132), 0) // data // Perform the external 'swap' call if iszero(call(gas(), poolAddress, 0, emptyPtr, 164, 0, 64)) { // The call failed; we retrieve the exact error message and revert with it returndatacopy(0, 0, returndatasize()) // Copy the error message to the start of memory revert(0, returndatasize()) // Revert with the error message } //---------------------------------// // Set poolAddress to nextPoolAddress poolAddress := nextPoolAddress } //---------------------------------// } } /// @dev Loops through UniswapV2 pools and swaps exact amount in function _callUniswapV2PoolsSwapExactIn( uint256 fromAmount, IERC20 srcToken, bytes calldata pools, address payer, bytes calldata permit2 ) internal { uint256 uniswapV2FactoryAndFF = UNISWAP_V2_FACTORY_AND_FF; uint256 uniswapV2PoolInitCodeHash = UNISWAP_V2_POOL_INIT_CODE_HASH; address permit2Address = PERMIT2; // solhint-disable-next-line no-inline-assembly assembly { //---------------------------------// // Loop Swap Through Pools //---------------------------------// // Calculate pool count let poolCount := div(pools.length, 64) // Initialize variables let p := 0 let poolAddress := 0 let nextPoolAddress := 0 let direction := 0 // Loop for each pool for { let i := 0 } lt(i, poolCount) { i := add(i, 1) } { // Check if it is the first pool if iszero(p) { //---------------------------------// // Calculate Pool Address //---------------------------------// // Calculate the pool address // We can do this by first calling the keccak256 function on the passed pool values and then // calculating keccak256(abi.encodePacked(hex'ff', address(factory_address), // keccak256(abi.encodePacked(token0,token1)), POOL_INIT_CODE_HASH)); // The first 20 bytes of the computed address are the pool address // Get free memory pointer let ptr := mload(64) // Store 0xff + factory address (right padded) mstore(ptr, uniswapV2FactoryAndFF) // Store pools offset + 21 bytes (UNISWAP_V2_FACTORY_AND_FF SIZE) let token0ptr := add(ptr, 21) // Copy pool data (skip last bit) to free memory pointer + 21 bytes (UNISWAP_V2_FACTORY_AND_FF // SIZE) calldatacopy(token0ptr, pools.offset, 40) // Calculate keccak256(abi.encodePacked(address(token0), address(token1)) mstore(token0ptr, keccak256(token0ptr, 40)) // Store POOL_INIT_CODE_HASH mstore(add(token0ptr, 32), uniswapV2PoolInitCodeHash) // Calculate keccak256(abi.encodePacked(hex'ff', address(factory_address), // keccak256(abi.encode(token0, // token1, fee)), POOL_INIT_CODE_HASH)); mstore(ptr, keccak256(ptr, 85)) // 21 + 32 + 32 // Load pool p := mload(ptr) // Get the first 20 bytes of the computed address poolAddress := and(p, 0xffffffffffffffffffffffffffffffffffffffff) //---------------------------------// //---------------------------------// // Transfer fromAmount of srcToken to poolAddress //---------------------------------// switch eq(payer, address()) // if payer is this contract, transfer fromAmount of srcToken to poolAddress case 1 { // Transfer fromAmount of srcToken to poolAddress mstore(ptr, 0xa9059cbb00000000000000000000000000000000000000000000000000000000) // store the // selector // (function transfer(address recipient, uint256 amount)) mstore(add(ptr, 4), poolAddress) // store the recipient mstore(add(ptr, 36), fromAmount) // store the amount pop(call(gas(), srcToken, 0, ptr, 68, 0, 32)) // call transfer } // othwerwise transferFrom fromAmount of srcToken to poolAddress from payer default { switch gt(permit2.length, 256) case 0 { // Transfer fromAmount of srcToken to poolAddress mstore(ptr, 0x23b872dd00000000000000000000000000000000000000000000000000000000) // store // the selector // (function transferFrom(address sender, address recipient, // uint256 amount)) mstore(add(ptr, 4), payer) // store the sender mstore(add(ptr, 36), poolAddress) // store the recipient mstore(add(ptr, 68), fromAmount) // store the amount pop(call(gas(), srcToken, 0, ptr, 100, 0, 32)) // call transferFrom } default { // Otherwise Permit2.permitTransferFrom // Store function selector mstore(ptr, 0x30f28b7a00000000000000000000000000000000000000000000000000000000) // permitTransferFrom() calldatacopy(add(ptr, 4), permit2.offset, permit2.length) // Copy data to memory mstore(add(ptr, 132), poolAddress) // Store recipient mstore(add(ptr, 164), fromAmount) // Store amount mstore(add(ptr, 196), payer) // Store payer // Call permit2.permitTransferFrom and revert if call failed if iszero(call(gas(), permit2Address, 0, ptr, add(permit2.length, 4), 0, 0)) { mstore(0, 0x6b836e6b00000000000000000000000000000000000000000000000000000000) // Store // error selector // error Permit2Failed() revert(0, 4) } } } //---------------------------------// } // Direction is the first bit of the pool data direction := and(1, calldataload(add(add(pools.offset, mul(i, 64)), 32))) //---------------------------------// // Calculate Amount Out //---------------------------------// //---------------------------------// // Get Reserves //---------------------------------// // Get free memory pointer let ptr := mload(64) // Store the selector mstore(ptr, 0x0902f1ac00000000000000000000000000000000000000000000000000000000) // 'getReserves()' // selector // Perform the external 'getReserves' call - outputs directly to ptr if iszero(staticcall(gas(), poolAddress, ptr, 4, ptr, 64)) { returndatacopy(0, 0, returndatasize()) // Copy the error message to the start of memory revert(0, returndatasize()) // Revert with the error message } // If direction is true, getReserves returns (reserve0, reserve1) // If direction is false, getReserves returns (reserve1, reserve0) -> swap the values // Load the reserve0 value returned by the 'getReserves' call. let reserve1 := mload(ptr) // Load the reserve1 value returned by the 'getReserves' call. let reserve0 := mload(add(ptr, 32)) // Check if direction is true if direction { // swap reserve0 and reserve1 let temp := reserve0 reserve0 := reserve1 reserve1 := temp } //---------------------------------// // Calculate amount based on fee let amountWithFee := mul(fromAmount, 9970) // Calculate numerator = amountWithFee * reserve1 let numerator := mul(amountWithFee, reserve1) // Calculate denominator = reserve0 * 10000 + amountWithFee let denominator := add(mul(reserve0, 10000), amountWithFee) // Calculate amountOut = numerator / denominator let amountOut := div(numerator, denominator) fromAmount := amountOut // if direction is true, amount0Out is 0 and amount1Out is fromAmount, // otherwise amount0Out is fromAmount and amount1Out is 0 let amount0Out := fromAmount let amount1Out := 0 // swap amount0Out and amount1Out if direction is false if direction { amount0Out := 0 amount1Out := fromAmount } //---------------------------------// // Adjust toAddress depending on if it is the last pool in the array let toAddress := address() // Check if it is not the last pool if lt(add(i, 1), poolCount) { //---------------------------------// // Calculate Next Pool Address //---------------------------------// // Store 0xff + factory address (right padded) mstore(ptr, uniswapV2FactoryAndFF) // Store pools offset + 21 bytes (UNISWAP_V2_FACTORY_AND_FF SIZE) let token0ptr := add(ptr, 21) // Copy next pool data to free memory pointer + 21 bytes (UNISWAP_V2_FACTORY_AND_FF SIZE) calldatacopy(token0ptr, add(pools.offset, mul(add(i, 1), 64)), 40) // Calculate keccak256(abi.encodePacked(address(token0), address(token1)) mstore(token0ptr, keccak256(token0ptr, 40)) // Store POOL_INIT_CODE_HASH mstore(add(token0ptr, 32), uniswapV2PoolInitCodeHash) // Calculate keccak256(abi.encodePacked(hex'ff', address(factory_address), // keccak256(abi.encode(token0, // token1), POOL_INIT_CODE_HASH)); mstore(ptr, keccak256(ptr, 85)) // 21 + 32 + 32 // Load pool p := mload(ptr) // Get the first 20 bytes of the computed address nextPoolAddress := and(p, 0xffffffffffffffffffffffffffffffffffffffff) // Adjust toAddress to next pool address toAddress := nextPoolAddress //---------------------------------// } //---------------------------------// // Perform Swap //---------------------------------// // Load the 'swap' selector, amount0Out, amount1Out, toAddress and data("") into memory. mstore(ptr, 0x022c0d9f00000000000000000000000000000000000000000000000000000000) // 'swap()' selector mstore(add(ptr, 4), amount0Out) // amount0Out mstore(add(ptr, 36), amount1Out) // amount1Out mstore(add(ptr, 68), toAddress) // toAddress mstore(add(ptr, 100), 0x80) // data length mstore(add(ptr, 132), 0) // data // Perform the external 'swap' call if iszero(call(gas(), poolAddress, 0, ptr, 164, 0, 64)) { // The call failed; we retrieve the exact error message and revert with it returndatacopy(0, 0, returndatasize()) // Copy the error message to the start of memory revert(0, returndatasize()) // Revert with the error message } //---------------------------------// // Set poolAddress to nextPoolAddress poolAddress := nextPoolAddress } //---------------------------------// } } } // SPDX-License-Identifier: MIT pragma solidity 0.8.22; // Contracts import { AugustusFees } from "../fees/AugustusFees.sol"; // Interfaces import { IUniswapV3SwapCallback } from "../interfaces/IUniswapV3SwapCallback.sol"; // Libraries import { SafeCastLib } from "@solady/utils/SafeCastLib.sol"; // Utils import { WETHUtils } from "./WETHUtils.sol"; import { Permit2Utils } from "./Permit2Utils.sol"; import { PauseUtils } from "./PauseUtils.sol"; /// @title UniswapV3Utils /// @notice A contract containing common utilities for UniswapV3 swaps abstract contract UniswapV3Utils is IUniswapV3SwapCallback, AugustusFees, WETHUtils, Permit2Utils, PauseUtils { /*////////////////////////////////////////////////////////////// LIBRARIES //////////////////////////////////////////////////////////////*/ using SafeCastLib for int256; /*////////////////////////////////////////////////////////////// ERRORS //////////////////////////////////////////////////////////////*/ /// @notice Error emitted if the caller is not a Uniswap V3 pool error InvalidCaller(); /// @notice Error emitted if the transfer of tokens to the pool inside the callback failed error CallbackTransferFailed(); /*////////////////////////////////////////////////////////////// CONSTANTS //////////////////////////////////////////////////////////////*/ /// @dev Used to caluclate pool address uint256 public immutable UNISWAP_V3_POOL_INIT_CODE_HASH; /// @dev Right padded FF + UniswapV3Factory address uint256 public immutable UNISWAP_V3_FACTORY_AND_FF; /*////////////////////////////////////////////////////////////// CONSTANTS //////////////////////////////////////////////////////////////*/ uint256 private constant UNISWAP_V3_MIN_SQRT = 4_295_128_740; uint256 private constant UNISWAP_V3_MAX_SQRT = 1_461_446_703_485_210_103_287_273_052_203_988_822_378_723_970_341; /*////////////////////////////////////////////////////////////// CONSTRUCTOR //////////////////////////////////////////////////////////////*/ constructor(uint256 _uniswapV3FactoryAndFF, uint256 _uniswapV3PoolInitCodeHash) { UNISWAP_V3_FACTORY_AND_FF = _uniswapV3FactoryAndFF; UNISWAP_V3_POOL_INIT_CODE_HASH = _uniswapV3PoolInitCodeHash; } /*////////////////////////////////////////////////////////////// EXTERNAL //////////////////////////////////////////////////////////////*/ // @inheritdoc IUniswapV3SwapCallback function uniswapV3SwapCallback( int256 amount0Delta, int256 amount1Delta, bytes calldata data ) external whenNotPaused { // Initialize variables uint256 uniswapV3FactoryAndFF = UNISWAP_V3_FACTORY_AND_FF; uint256 uniswapV3PoolInitCodeHash = UNISWAP_V3_POOL_INIT_CODE_HASH; address permit2Address = PERMIT2; address poolAddress; // 160 (single pool data) + 352 (permit2 length) bool isPermit2 = data.length == 512; // Check if the caller is a UniswapV3Pool deployed by the canonical UniswapV3Factory //solhint-disable-next-line no-inline-assembly assembly { // Pool address poolAddress := caller() // Get free memory pointer let ptr := mload(64) // We need make sure the caller is a UniswapV3Pool deployed by the canonical UniswapV3Factory // 1. Prepare data for calculating the pool address // Store ff+factory address, Load token0, token1, fee from bytes calldata and store pool init code hash // Store 0xff + factory address (right padded) mstore(ptr, uniswapV3FactoryAndFF) // Store data offset + 21 bytes (UNISWAP_V3_FACTORY_AND_FF SIZE) let token0Offset := add(ptr, 21) // Copy token0, token1, fee to free memory pointer + 21 bytes (UNISWAP_V3_FACTORY_AND_FF SIZE) + 1 byte // (direction) calldatacopy(add(token0Offset, 1), add(data.offset, 65), 95) // 2. Calculate the pool address // We can do this by first calling the keccak256 function on the fetched values and then // calculating keccak256(abi.encodePacked(hex'ff', address(factory_address), // keccak256(abi.encode(token0, // token1, fee)), POOL_INIT_CODE_HASH)); // The first 20 bytes of the computed address are the pool address // Calculate keccak256(abi.encode(address(token0), address(token1), fee)) mstore(token0Offset, keccak256(token0Offset, 96)) // Store POOL_INIT_CODE_HASH mstore(add(token0Offset, 32), uniswapV3PoolInitCodeHash) // Calculate keccak256(abi.encodePacked(hex'ff', address(factory_address), keccak256(abi.encode(token0, // token1, fee)), POOL_INIT_CODE_HASH)); mstore(ptr, keccak256(ptr, 85)) // 21 + 32 + 32 // Get the first 20 bytes of the computed address let computedAddress := and(mload(ptr), 0xffffffffffffffffffffffffffffffffffffffff) // Check if the caller matches the computed address (and revert if not) if xor(poolAddress, computedAddress) { mstore(0, 0x48f5c3ed00000000000000000000000000000000000000000000000000000000) // store the selector // (error InvalidCaller()) revert(0, 4) // revert with error selector } } // Check if data length is greater than 160 bytes (1 pool) // If the data length is greater than 160 bytes, we know that we are executing a multi-hop swapExactAmountOut // by recursively calling swapExactAmountOut on the next pool, until we reach the last pool in the data and // then we will transfer the tokens to the pool if (data.length > 160 && !isPermit2) { // Initialize recursive variables address payer; // solhint-disable-next-line no-inline-assembly assembly { // Copy payer address from calldata payer := calldataload(164) } // Recursive call swapExactAmountOut _callUniswapV3PoolsSwapExactAmountOut(amount0Delta > 0 ? -amount0Delta : -amount1Delta, data, payer); } else { // solhint-disable-next-line no-inline-assembly assembly { // Token to send to the pool let token // Amount to send to the pool let amount // Get free memory pointer let ptr := mload(64) // If the caller is the computed address, then we can safely assume that the caller is a UniswapV3Pool // deployed by the canonical UniswapV3Factory // 3. Transfer amount to the pool // Check if amount0Delta or amount1Delta is positive and which token we need to send to the pool if sgt(amount0Delta, 0) { // If amount0Delta is positive, we need to send amount0Delta token0 to the pool token := and(calldataload(add(data.offset, 64)), 0xffffffffffffffffffffffffffffffffffffffff) amount := amount0Delta } if sgt(amount1Delta, 0) { // If amount1Delta is positive, we need to send amount1Delta token1 to the pool token := calldataload(add(data.offset, 96)) amount := amount1Delta } // Based on the data passed to the callback, we know the fromAddress that will pay for the // swap, if it is this contract, we will execute the transfer() function, // otherwise, we will execute transferFrom() // Check if fromAddress is this contract let fromAddress := calldataload(164) switch eq(fromAddress, address()) // If fromAddress is this contract, execute transfer() case 1 { // Prepare external call data mstore(ptr, 0xa9059cbb00000000000000000000000000000000000000000000000000000000) // store the // selector // (function transfer(address recipient, uint256 amount)) mstore(add(ptr, 4), poolAddress) // store the recipient mstore(add(ptr, 36), amount) // store the amount let success := call(gas(), token, 0, ptr, 68, 0, 32) // call transfer if success { switch returndatasize() // check the return data size case 0 { success := gt(extcodesize(token), 0) } default { success := and(gt(returndatasize(), 31), eq(mload(0), 1)) } } if iszero(success) { mstore(0, 0x1bbb4abe00000000000000000000000000000000000000000000000000000000) // store the // selector // (error CallbackTransferFailed()) revert(0, 4) // revert with error selector } } // If fromAddress is not this contract, execute transferFrom() or permitTransferFrom() default { switch isPermit2 // If permit2 is not present, execute transferFrom() case 0 { mstore(ptr, 0x23b872dd00000000000000000000000000000000000000000000000000000000) // store the // selector // (function transferFrom(address sender, address recipient, // uint256 amount)) mstore(add(ptr, 4), fromAddress) // store the sender mstore(add(ptr, 36), poolAddress) // store the recipient mstore(add(ptr, 68), amount) // store the amount let success := call(gas(), token, 0, ptr, 100, 0, 32) // call transferFrom if success { switch returndatasize() // check the return data size case 0 { success := gt(extcodesize(token), 0) } default { success := and(gt(returndatasize(), 31), eq(mload(0), 1)) } } if iszero(success) { mstore(0, 0x1bbb4abe00000000000000000000000000000000000000000000000000000000) // store the // selector // (error CallbackTransferFailed()) revert(0, 4) // revert with error selector } } // If permit2 is present, execute permitTransferFrom() default { // Otherwise Permit2.permitTransferFrom // Store function selector mstore(ptr, 0x30f28b7a00000000000000000000000000000000000000000000000000000000) // permitTransferFrom() calldatacopy(add(ptr, 4), 292, 352) // Copy data to memory mstore(add(ptr, 132), poolAddress) // Store pool address as recipient mstore(add(ptr, 164), amount) // Store amount as amount mstore(add(ptr, 196), fromAddress) // Store payer // Call permit2.permitTransferFrom and revert if call failed if iszero(call(gas(), permit2Address, 0, ptr, 356, 0, 0)) { mstore(0, 0x6b836e6b00000000000000000000000000000000000000000000000000000000) // Store // error selector // error Permit2Failed() revert(0, 4) } } } } } } /*////////////////////////////////////////////////////////////// INTERNAL //////////////////////////////////////////////////////////////*/ /// @dev Loops through pools and performs swaps function _callUniswapV3PoolsSwapExactAmountIn( int256 fromAmount, bytes calldata pools, address fromAddress, bytes calldata permit2 ) internal returns (uint256 receivedAmount) { uint256 uniswapV3FactoryAndFF = UNISWAP_V3_FACTORY_AND_FF; uint256 uniswapV3PoolInitCodeHash = UNISWAP_V3_POOL_INIT_CODE_HASH; // solhint-disable-next-line no-inline-assembly assembly { //---------------------------------// // Loop Swap Through Pools //---------------------------------// // Calculate pool count let poolCount := div(pools.length, 96) // Initialize variables let p := 0 let poolAddress := 0 let nextPoolAddress := 0 let direction := 0 let isPermit2 := gt(permit2.length, 256) // Get free memory pointer let ptr := mload(64) // Loop through pools for { let i := 0 } lt(i, poolCount) { i := add(i, 1) } { // Check if it is the first pool if iszero(p) { //---------------------------------// // Calculate Pool Address //---------------------------------// // Calculate the pool address // We can do this by first calling the keccak256 function on the passed pool values and then // calculating keccak256(abi.encodePacked(hex'ff', address(factory_address), // keccak256(abi.encode(token0, // token1, fee)), POOL_INIT_CODE_HASH)); // The first 20 bytes of the computed address are the pool address // Store 0xff + factory address (right padded) mstore(ptr, uniswapV3FactoryAndFF) // Store pools offset + 21 bytes (UNISWAP_V3_FACTORY_AND_FF SIZE) let token0ptr := add(ptr, 21) // Copy pool data (skip first byte) to free memory pointer + 21 bytes (UNISWAP_V3_FACTORY_AND_FF // SIZE) calldatacopy(add(token0ptr, 1), add(pools.offset, 1), 95) // Calculate keccak256(abi.encode(address(token0), address(token1), fee)) mstore(token0ptr, keccak256(token0ptr, 96)) // Store POOL_INIT_CODE_HASH mstore(add(token0ptr, 32), uniswapV3PoolInitCodeHash) // Calculate keccak256(abi.encodePacked(hex'ff', address(factory_address), // keccak256(abi.encode(token0, // token1, fee)), POOL_INIT_CODE_HASH)); mstore(ptr, keccak256(ptr, 85)) // 21 + 32 + 32 // Load pool p := mload(ptr) // Get the first 20 bytes of the computed address poolAddress := and(p, 0xffffffffffffffffffffffffffffffffffffffff) //---------------------------------// } // Direction is the first bit of the pool data direction := shr(255, calldataload(add(pools.offset, mul(i, 96)))) // Check if it is not the last pool if lt(add(i, 1), poolCount) { //---------------------------------// // Calculate Next Pool Address //---------------------------------// // Store 0xff + factory address (right padded) mstore(ptr, uniswapV3FactoryAndFF) // Store pools offset + 21 bytes (UNISWAP_V3_FACTORY_AND_FF SIZE) let token0ptr := add(ptr, 21) // Copy next pool data to free memory pointer + 21 bytes (UNISWAP_V3_FACTORY_AND_FF SIZE) calldatacopy(add(token0ptr, 1), add(add(pools.offset, 1), mul(add(i, 1), 96)), 95) // Calculate keccak256(abi.encode(address(token0), address(token1), fee)) mstore(token0ptr, keccak256(token0ptr, 96)) // Store POOL_INIT_CODE_HASH mstore(add(token0ptr, 32), uniswapV3PoolInitCodeHash) // Calculate keccak256(abi.encodePacked(hex'ff', address(factory_address), // keccak256(abi.encode(token0, // token1, fee)), POOL_INIT_CODE_HASH)); mstore(ptr, keccak256(ptr, 85)) // 21 + 32 + 32 // Load pool p := mload(ptr) // Get the first 20 bytes of the computed address nextPoolAddress := and(p, 0xffffffffffffffffffffffffffffffffffffffff) //---------------------------------// } // Adjust fromAddress and fromAmount if it's not the first pool if gt(i, 0) { fromAddress := address() } //---------------------------------// // Perform Swap //---------------------------------// //---------------------------------// // Return based on direction //---------------------------------// // Initialize data length let dataLength := 0xa0 // Initialize total data length let totalDataLength := 356 // If permit2 is present include permit2 data length in total data length if eq(isPermit2, 1) { totalDataLength := add(totalDataLength, permit2.length) dataLength := add(dataLength, permit2.length) } // Return amount0 or amount1 depending on direction switch direction case 0 { // Prepare external call data // Store swap selector (0x128acb08) mstore(ptr, 0x128acb0800000000000000000000000000000000000000000000000000000000) // Store toAddress mstore(add(ptr, 4), address()) // Store direction mstore(add(ptr, 36), 0) // Store fromAmount mstore(add(ptr, 68), fromAmount) // Store sqrtPriceLimitX96 mstore(add(ptr, 100), UNISWAP_V3_MAX_SQRT) // Store data offset mstore(add(ptr, 132), 0xa0) /// Store data length mstore(add(ptr, 164), dataLength) // Store fromAddress mstore(add(ptr, 228), fromAddress) // Store token0, token1, fee calldatacopy(add(ptr, 260), add(pools.offset, mul(i, 96)), 96) // If permit2 is present, store permit2 data if eq(isPermit2, 1) { // Store permit2 data calldatacopy(add(ptr, 356), permit2.offset, permit2.length) } // Perform the external 'swap' call if iszero(call(gas(), poolAddress, 0, ptr, totalDataLength, ptr, 32)) { // store return value directly to free memory pointer // The call failed; we retrieve the exact error message and revert with it returndatacopy(0, 0, returndatasize()) // Copy the error message to the start of memory revert(0, returndatasize()) // Revert with the error message } // If direction is 0, return amount0 fromAmount := mload(ptr) } default { // Prepare external call data // Store swap selector (0x128acb08) mstore(ptr, 0x128acb0800000000000000000000000000000000000000000000000000000000) // Store toAddress mstore(add(ptr, 4), address()) // Store direction mstore(add(ptr, 36), 1) // Store fromAmount mstore(add(ptr, 68), fromAmount) // Store sqrtPriceLimitX96 mstore(add(ptr, 100), UNISWAP_V3_MIN_SQRT) // Store data offset mstore(add(ptr, 132), 0xa0) /// Store data length mstore(add(ptr, 164), dataLength) // Store fromAddress mstore(add(ptr, 228), fromAddress) // Store token0, token1, fee calldatacopy(add(ptr, 260), add(pools.offset, mul(i, 96)), 96) // If permit2 is present, store permit2 data if eq(isPermit2, 1) { // Store permit2 data calldatacopy(add(ptr, 356), permit2.offset, permit2.length) } // Perform the external 'swap' call if iszero(call(gas(), poolAddress, 0, ptr, totalDataLength, ptr, 64)) { // store return value directly to free memory pointer // The call failed; we retrieve the exact error message and revert with it returndatacopy(0, 0, returndatasize()) // Copy the error message to the start of memory revert(0, returndatasize()) // Revert with the error message } // If direction is 1, return amount1 fromAmount := mload(add(ptr, 32)) } //---------------------------------// //---------------------------------// // The next pool address was already calculated so we can set it as the current pool address for the // next iteration of the loop poolAddress := nextPoolAddress // fromAmount = -fromAmount fromAmount := sub(0, fromAmount) } //---------------------------------// } return fromAmount.toUint256(); } /// @dev Recursively loops through pools and performs swaps function _callUniswapV3PoolsSwapExactAmountOut( int256 fromAmount, bytes calldata pools, address fromAddress ) internal returns (uint256 spentAmount, uint256 receivedAmount) { uint256 uniswapV3FactoryAndFF = UNISWAP_V3_FACTORY_AND_FF; uint256 uniswapV3PoolInitCodeHash = UNISWAP_V3_POOL_INIT_CODE_HASH; // solhint-disable-next-line no-inline-assembly assembly { //---------------------------------// // Adjust data received from recursive call //---------------------------------// // Initialize variables let poolsStartOffset := pools.offset let poolsLength := pools.length let previousPoolAddress := 0 // Check if pools length is not divisible by 96 if gt(mod(pools.length, 96), 0) { // Check if pools length is greater than 128 bytes (1 pool) if gt(pools.length, 160) { // Get the previous pool address from the first 20 bytes of pool data previousPoolAddress := and(calldataload(pools.offset), 0xffffffffffffffffffffffffffffffffffffffff) // Relculate the offset to skip data poolsStartOffset := add(pools.offset, 160) // Recalculate the length to skip data poolsLength := sub(pools.length, 160) } } // Get free memory pointer let ptr := mload(64) //---------------------------------// // Calculate Pool Address //---------------------------------// // Calculate the pool address // We can do this by first calling the keccak256 function on the passed pool values and then // calculating keccak256(abi.encodePacked(hex'ff', address(factory_address), // keccak256(abi.encode(token0, // token1, fee)), POOL_INIT_CODE_HASH)); // The first 20 bytes of the computed address are the pool address // Store 0xff + factory address (right padded) mstore(ptr, uniswapV3FactoryAndFF) // Store pools offset + 21 bytes (UNISWAP_V3_FACTORY_AND_FF SIZE) let token0ptr := add(ptr, 21) // Copy pool data (skip first byte) to free memory pointer + 21 bytes (UNISWAP_V3_FACTORY_AND_FF // SIZE) calldatacopy(add(token0ptr, 1), add(poolsStartOffset, 1), 95) // Calculate keccak256(abi.encode(address(token0), address(token1), fee)) mstore(token0ptr, keccak256(token0ptr, 96)) // Store POOL_INIT_CODE_HASH mstore(add(token0ptr, 32), uniswapV3PoolInitCodeHash) // Calculate keccak256(abi.encodePacked(hex'ff', address(factory_address), // keccak256(abi.encode(token0, // token1, fee)), POOL_INIT_CODE_HASH)); mstore(ptr, keccak256(ptr, 85)) // 21 + 32 + 32 // Load pool let p := mload(ptr) // Get the first 20 bytes of the computed address let poolAddress := and(p, 0xffffffffffffffffffffffffffffffffffffffff) //---------------------------------// //---------------------------------// // Adjust toAddress //---------------------------------// let toAddress := address() // If it's not the first entry to recursion, we use the pool address from the previous pool as // the toAddress if xor(previousPoolAddress, 0) { toAddress := previousPoolAddress } //---------------------------------// // Direction is the first bit of the pool data let direction := shr(255, calldataload(poolsStartOffset)) //---------------------------------// // Perform Swap //---------------------------------// //---------------------------------// // Return based on direction //---------------------------------// // Return amount0 or amount1 depending on direction switch direction case 0 { // Prepare external call data // Store swap selector (0x128acb08) mstore(ptr, 0x128acb0800000000000000000000000000000000000000000000000000000000) // Store toAddress mstore(add(ptr, 4), toAddress) // Store direction mstore(add(ptr, 36), 0) // Store fromAmount mstore(add(ptr, 68), fromAmount) // Store sqrtPriceLimitX96 mstore(add(ptr, 100), UNISWAP_V3_MAX_SQRT) // Store data offset mstore(add(ptr, 132), 0xa0) /// Store data length mstore(add(ptr, 164), add(64, poolsLength)) // Store poolAddress mstore(add(ptr, 196), poolAddress) // Store fromAddress mstore(add(ptr, 228), fromAddress) // Store token0, token1, fee calldatacopy(add(ptr, 260), poolsStartOffset, poolsLength) // Perform the external 'swap' call if iszero(call(gas(), poolAddress, 0, ptr, add(poolsLength, 260), ptr, 64)) { // store return value directly to free memory pointer // The call failed; we retrieve the exact error message and revert with it returndatacopy(0, 0, returndatasize()) // Copy the error message to the start of memory revert(0, returndatasize()) // Revert with the error message } // If direction is 0, return amount0 as fromAmount fromAmount := mload(ptr) // return amount1 as spentAmount spentAmount := mload(add(ptr, 32)) } default { // Prepare external call data // Store swap selector (0x128acb08) mstore(ptr, 0x128acb0800000000000000000000000000000000000000000000000000000000) // Store toAddress mstore(add(ptr, 4), toAddress) // Store direction mstore(add(ptr, 36), 1) // Store fromAmount mstore(add(ptr, 68), fromAmount) // Store sqrtPriceLimitX96 mstore(add(ptr, 100), UNISWAP_V3_MIN_SQRT) // Store data offset mstore(add(ptr, 132), 0xa0) /// Store data length mstore(add(ptr, 164), add(64, poolsLength)) // Store poolAddress mstore(add(ptr, 196), poolAddress) // Store fromAddress mstore(add(ptr, 228), fromAddress) // Store token0, token1, fee calldatacopy(add(ptr, 260), poolsStartOffset, poolsLength) // Perform the external 'swap' call if iszero(call(gas(), poolAddress, 0, ptr, add(poolsLength, 260), ptr, 64)) { // store return value directly to free memory pointer // The call failed; we retrieve the exact error message and revert with it returndatacopy(0, 0, returndatasize()) // Copy the error message to the start of memory revert(0, returndatasize()) // Revert with the error message } // If direction is 1, return amount1 as fromAmount fromAmount := mload(add(ptr, 32)) // return amount0 as spentAmount spentAmount := mload(ptr) } //---------------------------------// //---------------------------------// // fromAmount = -fromAmount fromAmount := sub(0, fromAmount) } return (spentAmount, fromAmount.toUint256()); } } // SPDX-License-Identifier: MIT pragma solidity 0.8.22; // Interfaces import { IWETH } from "../interfaces/IWETH.sol"; /// @title WETHUtils /// @notice A contract containing common utilities for WETH abstract contract WETHUtils { /*////////////////////////////////////////////////////////////// CONSTANTS //////////////////////////////////////////////////////////////*/ /// @dev WETH address IWETH public immutable WETH; /*////////////////////////////////////////////////////////////// CONSTRUCTOR //////////////////////////////////////////////////////////////*/ constructor(address _weth) { WETH = IWETH(_weth); } } // SPDX-License-Identifier: MIT pragma solidity 0.8.22; /// @title Permit2Utils /// @notice A contract containing common utilities for Permit2 abstract contract Permit2Utils { /*////////////////////////////////////////////////////////////// ERRORS //////////////////////////////////////////////////////////////*/ error Permit2Failed(); /*////////////////////////////////////////////////////////////// CONSTANTS //////////////////////////////////////////////////////////////*/ /// @dev Permit2 address address public immutable PERMIT2; // solhint-disable-line var-name-mixedcase /*////////////////////////////////////////////////////////////// CONSTRUCTOR //////////////////////////////////////////////////////////////*/ constructor(address _permit2) { PERMIT2 = _permit2; } /*////////////////////////////////////////////////////////////// INTERNAL //////////////////////////////////////////////////////////////*/ /// @dev Parses data and executes permit2.permitTransferFrom, reverts if it fails function permit2TransferFrom(bytes calldata data, address recipient, uint256 amount) internal { address targetAddress = PERMIT2; // solhint-disable-next-line no-inline-assembly assembly { // Get free memory pointer let ptr := mload(64) // Store function selector mstore(ptr, 0x30f28b7a00000000000000000000000000000000000000000000000000000000) // permitTransferFrom() // Copy data to memory calldatacopy(add(ptr, 4), data.offset, data.length) // Store recipient mstore(add(ptr, 132), recipient) // Store amount mstore(add(ptr, 164), amount) // Store owner mstore(add(ptr, 196), caller()) // Call permit2.permitTransferFrom and revert if call failed if iszero(call(gas(), targetAddress, 0, ptr, add(data.length, 4), 0, 0)) { mstore(0, 0x6b836e6b00000000000000000000000000000000000000000000000000000000) // Store error selector // error Permit2Failed() revert(0, 4) } } } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.20; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the value of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the value of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves a `value` amount of tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 value) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets a `value` amount of tokens as the allowance of `spender` over the * caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 value) external returns (bool); /** * @dev Moves a `value` amount of tokens from `from` to `to` using the * allowance mechanism. `value` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address from, address to, uint256 value) external returns (bool); } // SPDX-License-Identifier: MIT pragma solidity 0.8.22; // Interfaces import { IErrors } from "./IErrors.sol"; // Types import { BalancerV2Data } from "../AugustusV6Types.sol"; /// @title IBalancerV2SwapExactAmountIn /// @notice Interface for executing swapExactAmountIn directly on Balancer V2 pools interface IBalancerV2SwapExactAmountIn is IErrors { /*////////////////////////////////////////////////////////////// SWAP EXACT AMOUNT IN //////////////////////////////////////////////////////////////*/ /// @notice Executes a swapExactAmountIn on Balancer V2 pools /// @param balancerData Struct containing data for the swap /// @param partnerAndFee packed partner address and fee percentage, the first 12 bytes is the feeData and the last /// 20 bytes is the partner address /// @param permit Permit data for the swap /// @param data The calldata to execute /// the first 20 bytes are the beneficiary address and the left most bit is the approve flag /// @return receivedAmount The amount of destToken received after fees /// @return paraswapShare The share of the fees for Paraswap /// @return partnerShare The share of the fees for the partner function swapExactAmountInOnBalancerV2( BalancerV2Data calldata balancerData, uint256 partnerAndFee, bytes calldata permit, bytes calldata data ) external payable returns (uint256 receivedAmount, uint256 paraswapShare, uint256 partnerShare); } // SPDX-License-Identifier: MIT pragma solidity 0.8.22; // Interfaces import { IERC20 } from "@openzeppelin/token/ERC20/IERC20.sol"; /// @title ERC20Utils /// @notice Optimized functions for ERC20 tokens library ERC20Utils { /*////////////////////////////////////////////////////////////// ERRORS //////////////////////////////////////////////////////////////*/ error IncorrectEthAmount(); error PermitFailed(); error TransferFromFailed(); error TransferFailed(); error ApprovalFailed(); /*////////////////////////////////////////////////////////////// CONSTANTS //////////////////////////////////////////////////////////////*/ IERC20 internal constant ETH = IERC20(0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE); /*////////////////////////////////////////////////////////////// APPROVE //////////////////////////////////////////////////////////////*/ /// @dev Vendored from Solady by @vectorized - SafeTransferLib.approveWithRetry /// https://github.com/Vectorized/solady/src/utils/SafeTransferLib.sol#L325 /// Instead of approving a specific amount, this function approves for uint256(-1) (type(uint256).max). function approve(IERC20 token, address to) internal { // solhint-disable-next-line no-inline-assembly assembly ("memory-safe") { mstore(0x14, to) // Store the `to` argument. mstore(0x34, 0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff) // Store the `amount` // argument (type(uint256).max). mstore(0x00, 0x095ea7b3000000000000000000000000) // `approve(address,uint256)`. // Perform the approval, retrying upon failure. if iszero( and( // The arguments of `and` are evaluated from right to left. or(eq(mload(0x00), 1), iszero(returndatasize())), // Returned 1 or nothing. call(gas(), token, 0, 0x10, 0x44, 0x00, 0x20) ) ) { mstore(0x34, 0) // Store 0 for the `amount`. mstore(0x00, 0x095ea7b3000000000000000000000000) // `approve(address,uint256)`. pop(call(gas(), token, 0, 0x10, 0x44, codesize(), 0x00)) // Reset the approval. mstore(0x34, 0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff) // Store // type(uint256).max for the `amount`. // Retry the approval, reverting upon failure. if iszero( and( or(eq(mload(0x00), 1), iszero(returndatasize())), // Returned 1 or nothing. call(gas(), token, 0, 0x10, 0x44, 0x00, 0x20) ) ) { mstore(0, 0x8164f84200000000000000000000000000000000000000000000000000000000) // store the selector (error ApprovalFailed()) revert(0, 4) // revert with error selector } } mstore(0x34, 0) // Restore the part of the free memory pointer that was overwritten. } } /*////////////////////////////////////////////////////////////// PERMIT //////////////////////////////////////////////////////////////*/ /// @dev Executes an ERC20 permit and reverts if invalid length is provided function permit(IERC20 token, bytes calldata data) internal { // solhint-disable-next-line no-inline-assembly assembly ("memory-safe") { // check the permit length switch data.length // 32 * 7 = 224 EIP2612 Permit case 224 { let x := mload(64) // get the free memory pointer mstore(x, 0xd505accf00000000000000000000000000000000000000000000000000000000) // store the selector // function permit(address owner, address spender, uint256 // amount, uint256 deadline, uint8 v, bytes32 r, bytes32 s) calldatacopy(add(x, 4), data.offset, 224) // store the args pop(call(gas(), token, 0, x, 228, 0, 32)) // call ERC20 permit, skip checking return data } // 32 * 8 = 256 DAI-Style Permit case 256 { let x := mload(64) // get the free memory pointer mstore(x, 0x8fcbaf0c00000000000000000000000000000000000000000000000000000000) // store the selector // function permit(address holder, address spender, uint256 // nonce, uint256 expiry, bool allowed, uint8 v, bytes32 r, bytes32 s) calldatacopy(add(x, 4), data.offset, 256) // store the args pop(call(gas(), token, 0, x, 260, 0, 32)) // call ERC20 permit, skip checking return data } default { mstore(0, 0xb78cb0dd00000000000000000000000000000000000000000000000000000000) // store the selector // (error PermitFailed()) revert(0, 4) } } } /*////////////////////////////////////////////////////////////// ETH //////////////////////////////////////////////////////////////*/ /// @dev Returns 1 if the token is ETH, 0 if not ETH function isETH(IERC20 token, uint256 amount) internal view returns (uint256 fromETH) { // solhint-disable-next-line no-inline-assembly assembly ("memory-safe") { // If token is ETH if eq(token, 0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE) { // if msg.value is not equal to fromAmount, then revert if xor(amount, callvalue()) { mstore(0, 0x8b6ebb4d00000000000000000000000000000000000000000000000000000000) // store the selector // (error IncorrectEthAmount()) revert(0, 4) // revert with error selector } // return 1 if ETH fromETH := 1 } // If token is not ETH if xor(token, 0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE) { // if msg.value is not equal to 0, then revert if gt(callvalue(), 0) { mstore(0, 0x8b6ebb4d00000000000000000000000000000000000000000000000000000000) // store the selector // (error IncorrectEthAmount()) revert(0, 4) // revert with error selector } } } // return 0 if not ETH } /*////////////////////////////////////////////////////////////// TRANSFER //////////////////////////////////////////////////////////////*/ /// @dev Executes transfer and reverts if it fails, works for both ETH and ERC20 transfers function safeTransfer(IERC20 token, address recipient, uint256 amount) internal returns (bool success) { // solhint-disable-next-line no-inline-assembly assembly { switch eq(token, 0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE) // ETH case 1 { // transfer ETH // Cap gas at 10000 to avoid reentrancy success := call(10000, recipient, amount, 0, 0, 0, 0) } // ERC20 default { let x := mload(64) // get the free memory pointer mstore(x, 0xa9059cbb00000000000000000000000000000000000000000000000000000000) // store the selector // (function transfer(address recipient, uint256 amount)) mstore(add(x, 4), recipient) // store the recipient mstore(add(x, 36), amount) // store the amount success := call(gas(), token, 0, x, 68, 0, 32) // call transfer if success { switch returndatasize() // check the return data size case 0 { success := gt(extcodesize(token), 0) } default { success := and(gt(returndatasize(), 31), eq(mload(0), 1)) } } } if iszero(success) { mstore(0, 0x90b8ec1800000000000000000000000000000000000000000000000000000000) // store the selector // (error TransferFailed()) revert(0, 4) // revert with error selector } } } /*////////////////////////////////////////////////////////////// TRANSFER FROM //////////////////////////////////////////////////////////////*/ /// @dev Executes transferFrom and reverts if it fails function safeTransferFrom( IERC20 srcToken, address sender, address recipient, uint256 amount ) internal returns (bool success) { // solhint-disable-next-line no-inline-assembly assembly { let x := mload(64) // get the free memory pointer mstore(x, 0x23b872dd00000000000000000000000000000000000000000000000000000000) // store the selector // (function transferFrom(address sender, address recipient, // uint256 amount)) mstore(add(x, 4), sender) // store the sender mstore(add(x, 36), recipient) // store the recipient mstore(add(x, 68), amount) // store the amount success := call(gas(), srcToken, 0, x, 100, 0, 32) // call transferFrom if success { switch returndatasize() // check the return data size case 0 { success := gt(extcodesize(srcToken), 0) } default { success := and(gt(returndatasize(), 31), eq(mload(0), 1)) } } if iszero(success) { mstore(x, 0x7939f42400000000000000000000000000000000000000000000000000000000) // store the selector // (error TransferFromFailed()) revert(x, 4) // revert with error selector } } } /*////////////////////////////////////////////////////////////// BALANCE //////////////////////////////////////////////////////////////*/ /// @dev Returns the balance of an account, works for both ETH and ERC20 tokens function getBalance(IERC20 token, address account) internal view returns (uint256 balanceOf) { // solhint-disable-next-line no-inline-assembly assembly { switch eq(token, 0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE) // ETH case 1 { balanceOf := balance(account) } // ERC20 default { let x := mload(64) // get the free memory pointer mstore(x, 0x70a0823100000000000000000000000000000000000000000000000000000000) // store the selector // (function balanceOf(address account)) mstore(add(x, 4), account) // store the account let success := staticcall(gas(), token, x, 36, x, 32) // call balanceOf if success { balanceOf := mload(x) } // load the balance } } } } // SPDX-License-Identifier: MIT pragma solidity 0.8.22; // Interfaces import { IERC20 } from "@openzeppelin/token/ERC20/IERC20.sol"; /*////////////////////////////////////////////////////////////// GENERIC SWAP DATA //////////////////////////////////////////////////////////////*/ /// @notice Struct containg data for generic swapExactAmountIn/swapExactAmountOut /// @param srcToken The token to swap from /// @param destToken The token to swap to /// @param fromAmount The amount of srcToken to swap /// = amountIn for swapExactAmountIn and maxAmountIn for swapExactAmountOut /// @param toAmount The minimum amount of destToken to receive /// = minAmountOut for swapExactAmountIn and amountOut for swapExactAmountOut /// @param quotedAmount The quoted expected amount of destToken/srcToken /// = quotedAmountOut for swapExactAmountIn and quotedAmountIn for swapExactAmountOut /// @param metadata Packed uuid and additional metadata /// @param beneficiary The address to send the swapped tokens to struct GenericData { IERC20 srcToken; IERC20 destToken; uint256 fromAmount; uint256 toAmount; uint256 quotedAmount; bytes32 metadata; address payable beneficiary; } /*////////////////////////////////////////////////////////////// UNISWAPV2 //////////////////////////////////////////////////////////////*/ /// @notice Struct for UniswapV2 swapExactAmountIn/swapExactAmountOut data /// @param srcToken The token to swap from /// @param destToken The token to swap to /// @param fromAmount The amount of srcToken to swap /// = amountIn for swapExactAmountIn and maxAmountIn for swapExactAmountOut /// @param quotedAmount The quoted expected amount of destToken/srcToken /// = quotedAmountOut for swapExactAmountIn and quotedAmountIn for swapExactAmountOut /// @param toAmount The minimum amount of destToken to receive /// = minAmountOut for swapExactAmountIn and amountOut for swapExactAmountOut /// @param metadata Packed uuid and additional metadata /// @param beneficiary The address to send the swapped tokens to /// @param pools data consisting of concatenated token0 and token1 address for each pool with the direction flag being /// the right most bit of the packed token0-token1 pair bytes used in the path struct UniswapV2Data { IERC20 srcToken; IERC20 destToken; uint256 fromAmount; uint256 toAmount; uint256 quotedAmount; bytes32 metadata; address payable beneficiary; bytes pools; } /*////////////////////////////////////////////////////////////// UNISWAPV3 //////////////////////////////////////////////////////////////*/ /// @notice Struct for UniswapV3 swapExactAmountIn/swapExactAmountOut data /// @param srcToken The token to swap from /// @param destToken The token to swap to /// @param fromAmount The amount of srcToken to swap /// = amountIn for swapExactAmountIn and maxAmountIn for swapExactAmountOut /// @param quotedAmount The quoted expected amount of destToken/srcToken /// = quotedAmountOut for swapExactAmountIn and quotedAmountIn for swapExactAmountOut /// @param toAmount The minimum amount of destToken to receive /// = minAmountOut for swapExactAmountIn and amountOut for swapExactAmountOut /// @param metadata Packed uuid and additional metadata /// @param beneficiary The address to send the swapped tokens to /// @param pools data consisting of concatenated token0- /// token1-fee bytes for each pool used in the path, with the direction flag being the left most bit of token0 in the /// concatenated bytes struct UniswapV3Data { IERC20 srcToken; IERC20 destToken; uint256 fromAmount; uint256 toAmount; uint256 quotedAmount; bytes32 metadata; address payable beneficiary; bytes pools; } /*////////////////////////////////////////////////////////////// CURVE V1 //////////////////////////////////////////////////////////////*/ /// @notice Struct for CurveV1 swapExactAmountIn data /// @param curveData Packed data for the Curve pool, first 160 bits is the target exchange address, /// the 161st bit is the approve flag, bits from (162 - 163) are used for the wrap flag, //// bits from (164 - 165) are used for the swapType flag and the last 91 bits are unused: /// Approve Flag - a) 0 -> do not approve b) 1 -> approve /// Wrap Flag - a) 0 -> do not wrap b) 1 -> wrap native & srcToken == eth /// c) 2 -> unwrap and destToken == eth d) 3 - >srcToken == eth && do not wrap /// Swap Type Flag - a) 0 -> EXCHANGE b) 1 -> EXCHANGE_UNDERLYING /// @param curveAssets Packed uint128 index i and uint128 index j of the pool /// The first 128 bits is the index i and the second 128 bits is the index j /// @param srcToken The token to swap from /// @param destToken The token to swap to /// @param fromAmount The amount of srcToken to swap /// = amountIn for swapExactAmountIn and maxAmountIn for swapExactAmountOut /// @param toAmount The minimum amount that must be recieved /// = minAmountOut for swapExactAmountIn and amountOut for swapExactAmountOut /// @param quotedAmount The expected amount of destToken to be recieved /// = quotedAmountOut for swapExactAmountIn and quotedAmountIn for swapExactAmountOut /// @param metadata Packed uuid and additional metadata /// @param beneficiary The address to send the swapped tokens to struct CurveV1Data { uint256 curveData; uint256 curveAssets; IERC20 srcToken; IERC20 destToken; uint256 fromAmount; uint256 toAmount; uint256 quotedAmount; bytes32 metadata; address payable beneficiary; } /*////////////////////////////////////////////////////////////// CURVE V2 //////////////////////////////////////////////////////////////*/ /// @notice Struct for CurveV2 swapExactAmountIn data /// @param curveData Packed data for the Curve pool, first 160 bits is the target exchange address, /// the 161st bit is the approve flag, bits from (162 - 163) are used for the wrap flag, //// bits from (164 - 165) are used for the swapType flag and the last 91 bits are unused /// Approve Flag - a) 0 -> do not approve b) 1 -> approve /// Approve Flag - a) 0 -> do not approve b) 1 -> approve /// Wrap Flag - a) 0 -> do not wrap b) 1 -> wrap native & srcToken == eth /// c) 2 -> unwrap and destToken == eth d) 3 - >srcToken == eth && do not wrap /// Swap Type Flag - a) 0 -> EXCHANGE b) 1 -> EXCHANGE_UNDERLYING c) 2 -> EXCHANGE_UNDERLYING_FACTORY_ZAP /// @param i The index of the srcToken /// @param j The index of the destToken /// The first 128 bits is the index i and the second 128 bits is the index j /// @param poolAddress The address of the CurveV2 pool (only used for EXCHANGE_UNDERLYING_FACTORY_ZAP) /// @param srcToken The token to swap from /// @param destToken The token to swap to /// @param fromAmount The amount of srcToken to swap /// = amountIn for swapExactAmountIn and maxAmountIn for swapExactAmountOut /// @param toAmount The minimum amount that must be recieved /// = minAmountOut for swapExactAmountIn and amountOut for swapExactAmountOut /// @param quotedAmount The expected amount of destToken to be recieved /// = quotedAmountOut for swapExactAmountIn and quotedAmountIn for swapExactAmountOut /// @param metadata Packed uuid and additional metadata /// @param beneficiary The address to send the swapped tokens to struct CurveV2Data { uint256 curveData; uint256 i; uint256 j; address poolAddress; IERC20 srcToken; IERC20 destToken; uint256 fromAmount; uint256 toAmount; uint256 quotedAmount; bytes32 metadata; address payable beneficiary; } /*////////////////////////////////////////////////////////////// BALANCER V2 //////////////////////////////////////////////////////////////*/ /// @notice Struct for BalancerV2 swapExactAmountIn data /// @param fromAmount The amount of srcToken to swap /// = amountIn for swapExactAmountIn and maxAmountIn for swapExactAmountOut /// @param toAmount The minimum amount of destToken to receive /// = minAmountOut for swapExactAmountIn and amountOut for swapExactAmountOut /// @param quotedAmount The quoted expected amount of destToken/srcToken /// = quotedAmountOut for swapExactAmountIn and quotedAmountIn for swapExactAmountOut /// @param metadata Packed uuid and additional metadata /// @param beneficiaryAndApproveFlag The beneficiary address and approve flag packed into one uint256, /// the first 20 bytes are the beneficiary address and the left most bit is the approve flag struct BalancerV2Data { uint256 fromAmount; uint256 toAmount; uint256 quotedAmount; bytes32 metadata; uint256 beneficiaryAndApproveFlag; } /*////////////////////////////////////////////////////////////// MAKERPSM //////////////////////////////////////////////////////////////*/ /// @notice Struct for Maker PSM swapExactAmountIn data /// @param srcToken The token to swap from /// @param destToken The token to swap to /// @param fromAmount The amount of srcToken to swap /// = amountIn for swapExactAmountIn and maxAmountIn for swapExactAmountOut /// @param toAmount The minimum amount of destToken to receive /// = minAmountOut for swapExactAmountIn and amountOut for swapExactAmountOut /// @param toll Used to calculate gem amount for the swapExactAmountIn /// @param to18ConversionFactor Used to calculate gem amount for the swapExactAmountIn /// @param gemJoinAddress The address of the gemJoin contract /// @param exchange The address of the exchange contract /// @param metadata Packed uuid and additional metadata /// @param beneficiaryDirectionApproveFlag The beneficiary address, swap direction and approve flag packed /// into one uint256, the first 20 bytes are the beneficiary address, the left most bit is the approve flag and the /// second left most bit is the swap direction flag, 0 for swapExactAmountIn and 1 for swapExactAmountOut struct MakerPSMData { IERC20 srcToken; IERC20 destToken; uint256 fromAmount; uint256 toAmount; uint256 toll; uint256 to18ConversionFactor; address exchange; address gemJoinAddress; bytes32 metadata; uint256 beneficiaryDirectionApproveFlag; } /*////////////////////////////////////////////////////////////// AUGUSTUS RFQ //////////////////////////////////////////////////////////////*/ /// @notice Order struct for Augustus RFQ /// @param nonceAndMeta The nonce and meta data packed into one uint256, /// the first 160 bits is the user address and the last 96 bits is the nonce /// @param expiry The expiry of the order /// @param makerAsset The address of the maker asset /// @param takerAsset The address of the taker asset /// @param maker The address of the maker /// @param taker The address of the taker, if the taker is address(0) anyone can take the order /// @param makerAmount The amount of makerAsset /// @param takerAmount The amount of takerAsset struct Order { uint256 nonceAndMeta; uint128 expiry; address makerAsset; address takerAsset; address maker; address taker; uint256 makerAmount; uint256 takerAmount; } /// @notice Struct containing order info for Augustus RFQ /// @param order The order struct /// @param signature The signature for the order /// @param takerTokenFillAmount The amount of takerToken to fill /// @param permitTakerAsset The permit data for the taker asset /// @param permitMakerAsset The permit data for the maker asset struct OrderInfo { Order order; bytes signature; uint256 takerTokenFillAmount; bytes permitTakerAsset; bytes permitMakerAsset; } /// @notice Struct containing common data for executing swaps on Augustus RFQ /// @param fromAmount The amount of srcToken to swap /// = amountIn for swapExactAmountIn and maxAmountIn for swapExactAmountOut /// @param toAmount The minimum amount of destToken to receive /// = minAmountOut for swapExactAmountIn and amountOut for swapExactAmountOut /// @param wrapApproveDirection The wrap, approve and direction flag packed into one uint8, /// the first 2 bits is wrap flag (10 for wrap dest, 01 for wrap src, 00 for no wrap), the next bit is the approve flag /// (1 for approve, 0 for no approve) and the last bit is the direction flag (0 for swapExactAmountIn and 1 for /// swapExactAmountOut) /// @param metadata Packed uuid and additional metadata struct AugustusRFQData { uint256 fromAmount; uint256 toAmount; uint8 wrapApproveDirection; bytes32 metadata; address payable beneficiary; } // SPDX-License-Identifier: MIT pragma solidity 0.8.22; // Interfaces import { IErrors } from "./IErrors.sol"; // Types import { CurveV1Data } from "../AugustusV6Types.sol"; /// @title ICurveV1SwapExactAmountIn /// @notice Interface for direct swaps on Curve V1 interface ICurveV1SwapExactAmountIn is IErrors { /*////////////////////////////////////////////////////////////// SWAP EXACT AMOUNT IN //////////////////////////////////////////////////////////////*/ /// @notice Executes a swapExactAmountIn on Curve V1 pools /// @param curveV1Data Struct containing data for the swap /// @param partnerAndFee packed partner address and fee percentage, the first 12 bytes is the feeData and the last /// 20 bytes is the partner address /// @param permit Permit data for the swap /// @return receivedAmount The amount of destToken received after fees /// @return paraswapShare The share of the fees for Paraswap /// @return partnerShare The share of the fees for the partner function swapExactAmountInOnCurveV1( CurveV1Data calldata curveV1Data, uint256 partnerAndFee, bytes calldata permit ) external payable returns (uint256 receivedAmount, uint256 paraswapShare, uint256 partnerShare); } // SPDX-License-Identifier: MIT pragma solidity 0.8.22; // Storage import { AugustusStorage } from "../storage/AugustusStorage.sol"; /// @title PauseUtils /// @notice Provides a modifier to check if the contract is paused abstract contract PauseUtils is AugustusStorage { /*////////////////////////////////////////////////////////////// ERRORS //////////////////////////////////////////////////////////////*/ /// @notice Error emitted when the contract is paused error ContractPaused(); /*////////////////////////////////////////////////////////////// MODIFIERS //////////////////////////////////////////////////////////////*/ // Check if the contract is paused, if it is, revert modifier whenNotPaused() { if (paused) { revert ContractPaused(); } _; } } // SPDX-License-Identifier: MIT pragma solidity 0.8.22; // Interfaces import { IErrors } from "./IErrors.sol"; // Types import { CurveV2Data } from "../AugustusV6Types.sol"; /// @title ICurveV2SwapExactAmountIn /// @notice Interface for direct swaps on Curve V2 interface ICurveV2SwapExactAmountIn is IErrors { /*////////////////////////////////////////////////////////////// SWAP EXACT AMOUNT IN //////////////////////////////////////////////////////////////*/ /// @notice Executes a swapExactAmountIn on Curve V2 pools /// @param curveV2Data Struct containing data for the swap /// @param partnerAndFee packed partner address and fee percentage, the first 12 bytes is the feeData and the last /// 20 bytes is the partner address /// @param permit Permit data for the swap /// @return receivedAmount The amount of destToken received after fees /// @return paraswapShare The share of the fees for Paraswap /// @return partnerShare The share of the fees for the partner function swapExactAmountInOnCurveV2( CurveV2Data calldata curveV2Data, uint256 partnerAndFee, bytes calldata permit ) external payable returns (uint256 receivedAmount, uint256 paraswapShare, uint256 partnerShare); } // SPDX-License-Identifier: MIT pragma solidity 0.8.22; // Interfaces import { IErrors } from "./IErrors.sol"; // Types import { UniswapV2Data } from "../AugustusV6Types.sol"; /// @title IUniswapV2SwapExactAmountIn /// @notice Interface for direct swaps on Uniswap V2 interface IUniswapV2SwapExactAmountIn is IErrors { /*////////////////////////////////////////////////////////////// SWAP EXACT AMOUNT OUT //////////////////////////////////////////////////////////////*/ /// @notice Executes a swapExactAmountIn on Uniswap V2 pools /// @param uniData struct containing data for the swap /// @param partnerAndFee packed partner address and fee percentage, the first 12 bytes is the feeData and the last /// 20 bytes is the partner address /// @param permit The permit data /// @return receivedAmount The amount of destToken received after fees /// @return paraswapShare The share of the fees for Paraswap /// @return partnerShare The share of the fees for the partner function swapExactAmountInOnUniswapV2( UniswapV2Data calldata uniData, uint256 partnerAndFee, bytes calldata permit ) external payable returns (uint256 receivedAmount, uint256 paraswapShare, uint256 partnerShare); } // SPDX-License-Identifier: MIT pragma solidity 0.8.22; // Interfaces import { IErrors } from "./IErrors.sol"; // Types import { UniswapV3Data } from "../AugustusV6Types.sol"; /// @title IUniswapV3SwapExactAmountIn /// @notice Interface for executing direct swapExactAmountIn on Uniswap V3 interface IUniswapV3SwapExactAmountIn is IErrors { /*////////////////////////////////////////////////////////////// SWAP EXACT AMOUNT IN //////////////////////////////////////////////////////////////*/ /// @notice Executes a swapExactAmountIn on Uniswap V3 pools /// @param uniData struct containing data for the swap /// @param partnerAndFee packed partner address and fee percentage, the first 12 bytes is the feeData and the last /// 20 bytes is the partner address /// @param permit The permit data /// @return receivedAmount The amount of destToken received after fees /// @return paraswapShare The share of the fees for Paraswap /// @return partnerShare The share of the fees for the partner function swapExactAmountInOnUniswapV3( UniswapV3Data calldata uniData, uint256 partnerAndFee, bytes calldata permit ) external payable returns (uint256 receivedAmount, uint256 paraswapShare, uint256 partnerShare); } // SPDX-License-Identifier: MIT pragma solidity ^0.8.4; /// @notice Safe integer casting library that reverts on overflow. /// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/SafeCastLib.sol) /// @author Modified from OpenZeppelin (https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/math/SafeCast.sol) library SafeCastLib { /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* CUSTOM ERRORS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ error Overflow(); /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* UNSIGNED INTEGER SAFE CASTING OPERATIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ function toUint8(uint256 x) internal pure returns (uint8) { if (x >= 1 << 8) _revertOverflow(); return uint8(x); } function toUint16(uint256 x) internal pure returns (uint16) { if (x >= 1 << 16) _revertOverflow(); return uint16(x); } function toUint24(uint256 x) internal pure returns (uint24) { if (x >= 1 << 24) _revertOverflow(); return uint24(x); } function toUint32(uint256 x) internal pure returns (uint32) { if (x >= 1 << 32) _revertOverflow(); return uint32(x); } function toUint40(uint256 x) internal pure returns (uint40) { if (x >= 1 << 40) _revertOverflow(); return uint40(x); } function toUint48(uint256 x) internal pure returns (uint48) { if (x >= 1 << 48) _revertOverflow(); return uint48(x); } function toUint56(uint256 x) internal pure returns (uint56) { if (x >= 1 << 56) _revertOverflow(); return uint56(x); } function toUint64(uint256 x) internal pure returns (uint64) { if (x >= 1 << 64) _revertOverflow(); return uint64(x); } function toUint72(uint256 x) internal pure returns (uint72) { if (x >= 1 << 72) _revertOverflow(); return uint72(x); } function toUint80(uint256 x) internal pure returns (uint80) { if (x >= 1 << 80) _revertOverflow(); return uint80(x); } function toUint88(uint256 x) internal pure returns (uint88) { if (x >= 1 << 88) _revertOverflow(); return uint88(x); } function toUint96(uint256 x) internal pure returns (uint96) { if (x >= 1 << 96) _revertOverflow(); return uint96(x); } function toUint104(uint256 x) internal pure returns (uint104) { if (x >= 1 << 104) _revertOverflow(); return uint104(x); } function toUint112(uint256 x) internal pure returns (uint112) { if (x >= 1 << 112) _revertOverflow(); return uint112(x); } function toUint120(uint256 x) internal pure returns (uint120) { if (x >= 1 << 120) _revertOverflow(); return uint120(x); } function toUint128(uint256 x) internal pure returns (uint128) { if (x >= 1 << 128) _revertOverflow(); return uint128(x); } function toUint136(uint256 x) internal pure returns (uint136) { if (x >= 1 << 136) _revertOverflow(); return uint136(x); } function toUint144(uint256 x) internal pure returns (uint144) { if (x >= 1 << 144) _revertOverflow(); return uint144(x); } function toUint152(uint256 x) internal pure returns (uint152) { if (x >= 1 << 152) _revertOverflow(); return uint152(x); } function toUint160(uint256 x) internal pure returns (uint160) { if (x >= 1 << 160) _revertOverflow(); return uint160(x); } function toUint168(uint256 x) internal pure returns (uint168) { if (x >= 1 << 168) _revertOverflow(); return uint168(x); } function toUint176(uint256 x) internal pure returns (uint176) { if (x >= 1 << 176) _revertOverflow(); return uint176(x); } function toUint184(uint256 x) internal pure returns (uint184) { if (x >= 1 << 184) _revertOverflow(); return uint184(x); } function toUint192(uint256 x) internal pure returns (uint192) { if (x >= 1 << 192) _revertOverflow(); return uint192(x); } function toUint200(uint256 x) internal pure returns (uint200) { if (x >= 1 << 200) _revertOverflow(); return uint200(x); } function toUint208(uint256 x) internal pure returns (uint208) { if (x >= 1 << 208) _revertOverflow(); return uint208(x); } function toUint216(uint256 x) internal pure returns (uint216) { if (x >= 1 << 216) _revertOverflow(); return uint216(x); } function toUint224(uint256 x) internal pure returns (uint224) { if (x >= 1 << 224) _revertOverflow(); return uint224(x); } function toUint232(uint256 x) internal pure returns (uint232) { if (x >= 1 << 232) _revertOverflow(); return uint232(x); } function toUint240(uint256 x) internal pure returns (uint240) { if (x >= 1 << 240) _revertOverflow(); return uint240(x); } function toUint248(uint256 x) internal pure returns (uint248) { if (x >= 1 << 248) _revertOverflow(); return uint248(x); } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* SIGNED INTEGER SAFE CASTING OPERATIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ function toInt8(int256 x) internal pure returns (int8) { int8 y = int8(x); if (x != y) _revertOverflow(); return y; } function toInt16(int256 x) internal pure returns (int16) { int16 y = int16(x); if (x != y) _revertOverflow(); return y; } function toInt24(int256 x) internal pure returns (int24) { int24 y = int24(x); if (x != y) _revertOverflow(); return y; } function toInt32(int256 x) internal pure returns (int32) { int32 y = int32(x); if (x != y) _revertOverflow(); return y; } function toInt40(int256 x) internal pure returns (int40) { int40 y = int40(x); if (x != y) _revertOverflow(); return y; } function toInt48(int256 x) internal pure returns (int48) { int48 y = int48(x); if (x != y) _revertOverflow(); return y; } function toInt56(int256 x) internal pure returns (int56) { int56 y = int56(x); if (x != y) _revertOverflow(); return y; } function toInt64(int256 x) internal pure returns (int64) { int64 y = int64(x); if (x != y) _revertOverflow(); return y; } function toInt72(int256 x) internal pure returns (int72) { int72 y = int72(x); if (x != y) _revertOverflow(); return y; } function toInt80(int256 x) internal pure returns (int80) { int80 y = int80(x); if (x != y) _revertOverflow(); return y; } function toInt88(int256 x) internal pure returns (int88) { int88 y = int88(x); if (x != y) _revertOverflow(); return y; } function toInt96(int256 x) internal pure returns (int96) { int96 y = int96(x); if (x != y) _revertOverflow(); return y; } function toInt104(int256 x) internal pure returns (int104) { int104 y = int104(x); if (x != y) _revertOverflow(); return y; } function toInt112(int256 x) internal pure returns (int112) { int112 y = int112(x); if (x != y) _revertOverflow(); return y; } function toInt120(int256 x) internal pure returns (int120) { int120 y = int120(x); if (x != y) _revertOverflow(); return y; } function toInt128(int256 x) internal pure returns (int128) { int128 y = int128(x); if (x != y) _revertOverflow(); return y; } function toInt136(int256 x) internal pure returns (int136) { int136 y = int136(x); if (x != y) _revertOverflow(); return y; } function toInt144(int256 x) internal pure returns (int144) { int144 y = int144(x); if (x != y) _revertOverflow(); return y; } function toInt152(int256 x) internal pure returns (int152) { int152 y = int152(x); if (x != y) _revertOverflow(); return y; } function toInt160(int256 x) internal pure returns (int160) { int160 y = int160(x); if (x != y) _revertOverflow(); return y; } function toInt168(int256 x) internal pure returns (int168) { int168 y = int168(x); if (x != y) _revertOverflow(); return y; } function toInt176(int256 x) internal pure returns (int176) { int176 y = int176(x); if (x != y) _revertOverflow(); return y; } function toInt184(int256 x) internal pure returns (int184) { int184 y = int184(x); if (x != y) _revertOverflow(); return y; } function toInt192(int256 x) internal pure returns (int192) { int192 y = int192(x); if (x != y) _revertOverflow(); return y; } function toInt200(int256 x) internal pure returns (int200) { int200 y = int200(x); if (x != y) _revertOverflow(); return y; } function toInt208(int256 x) internal pure returns (int208) { int208 y = int208(x); if (x != y) _revertOverflow(); return y; } function toInt216(int256 x) internal pure returns (int216) { int216 y = int216(x); if (x != y) _revertOverflow(); return y; } function toInt224(int256 x) internal pure returns (int224) { int224 y = int224(x); if (x != y) _revertOverflow(); return y; } function toInt232(int256 x) internal pure returns (int232) { int232 y = int232(x); if (x != y) _revertOverflow(); return y; } function toInt240(int256 x) internal pure returns (int240) { int240 y = int240(x); if (x != y) _revertOverflow(); return y; } function toInt248(int256 x) internal pure returns (int248) { int248 y = int248(x); if (x != y) _revertOverflow(); return y; } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* OTHER SAFE CASTING OPERATIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ function toInt256(uint256 x) internal pure returns (int256) { if (x >= 1 << 255) _revertOverflow(); return int256(x); } function toUint256(int256 x) internal pure returns (uint256) { if (x < 0) _revertOverflow(); return uint256(x); } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* PRIVATE HELPERS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ function _revertOverflow() private pure { /// @solidity memory-safe-assembly assembly { // Store the function selector of `Overflow()`. mstore(0x00, 0x35278d12) // Revert with (offset, size). revert(0x1c, 0x04) } } } // SPDX-License-Identifier: MIT pragma solidity 0.8.22; // Interfaces import { IErrors } from "./IErrors.sol"; // Types import { BalancerV2Data } from "../AugustusV6Types.sol"; /// @title IBalancerV2SwapExactAmountOut /// @notice Interface for executing swapExactAmountOut directly on Balancer V2 pools interface IBalancerV2SwapExactAmountOut is IErrors { /*////////////////////////////////////////////////////////////// SWAP EXACT AMOUNT OUT //////////////////////////////////////////////////////////////*/ /// @notice Executes a swapExactAmountOut on Balancer V2 pools /// @param balancerData Struct containing data for the swap /// @param partnerAndFee packed partner address and fee percentage, the first 12 bytes is the feeData and the last /// 20 bytes is the partner address /// @param permit Permit data for the swap /// @param data The calldata to execute /// @return spentAmount The actual amount of tokens used to swap /// @return receivedAmount The amount of tokens received /// @return paraswapShare The share of the fees for Paraswap /// @return partnerShare The share of the fees for the partner function swapExactAmountOutOnBalancerV2( BalancerV2Data calldata balancerData, uint256 partnerAndFee, bytes calldata permit, bytes calldata data ) external payable returns (uint256 spentAmount, uint256 receivedAmount, uint256 paraswapShare, uint256 partnerShare); } // SPDX-License-Identifier: MIT pragma solidity 0.8.22; // Interfaces import { IErrors } from "./IErrors.sol"; // Types import { UniswapV2Data } from "../AugustusV6Types.sol"; /// @title IUniswapV2SwapExactAmountOut /// @notice Interface for direct swapExactAmountOut on Uniswap V2 interface IUniswapV2SwapExactAmountOut is IErrors { /*////////////////////////////////////////////////////////////// SWAP EXACT AMOUNT IN //////////////////////////////////////////////////////////////*/ /// @notice Executes a swapExactAmountOut on Uniswap V2 pools /// @param swapData struct containing data for the swap /// @param partnerAndFee packed partner address and fee percentage, the first 12 bytes is the feeData and the last /// 20 bytes is the partner address /// @param permit The permit data /// @return spentAmount The actual amount of tokens used to swap /// @return receivedAmount The amount of tokens received /// @return paraswapShare The share of the fees for Paraswap /// @return partnerShare The share of the fees for the partner function swapExactAmountOutOnUniswapV2( UniswapV2Data calldata swapData, uint256 partnerAndFee, bytes calldata permit ) external payable returns (uint256 spentAmount, uint256 receivedAmount, uint256 paraswapShare, uint256 partnerShare); } // SPDX-License-Identifier: MIT pragma solidity 0.8.22; // Interfaces import { IErrors } from "./IErrors.sol"; // Types import { UniswapV3Data } from "../AugustusV6Types.sol"; /// @title IUniswapV3SwapExactAmountOut /// @notice Interface for executing direct swapExactAmountOut on Uniswap V3 interface IUniswapV3SwapExactAmountOut is IErrors { /*////////////////////////////////////////////////////////////// SWAP EXACT AMOUNT OUT //////////////////////////////////////////////////////////////*/ /// @notice Executes a swapExactAmountOut on Uniswap V3 pools /// @param swapData struct containing data for the swap /// @param partnerAndFee packed partner address and fee percentage, the first 12 bytes is the feeData and the last /// 20 bytes is the partner address /// @param permit The permit data /// @return spentAmount The actual amount of tokens used to swap /// @return receivedAmount The amount of tokens received /// @return paraswapShare The share of the fees for Paraswap /// @return partnerShare The share of the fees for the partner function swapExactAmountOutOnUniswapV3( UniswapV3Data calldata swapData, uint256 partnerAndFee, bytes calldata permit ) external payable returns (uint256 spentAmount, uint256 receivedAmount, uint256 paraswapShare, uint256 partnerShare); } // SPDX-License-Identifier: MIT pragma solidity 0.8.22; // Interfaces import { IERC20 } from "@openzeppelin/token/ERC20/IERC20.sol"; /// @title IAugustusFeeVault /// @notice Interface for the AugustusFeeVault contract interface IAugustusFeeVault { /*////////////////////////////////////////////////////////////// ERRORS //////////////////////////////////////////////////////////////*/ /// @notice Error emitted when withdraw amount is zero or exceeds the stored amount error InvalidWithdrawAmount(); /// @notice Error emmitted when caller is not an approved augustus contract error UnauthorizedCaller(); /// @notice Error emitted when an invalid parameter length is passed error InvalidParameterLength(); /// @notice Error emitted when batch withdraw fails error BatchCollectFailed(); /*////////////////////////////////////////////////////////////// EVENTS //////////////////////////////////////////////////////////////*/ /// @notice Emitted when an augustus contract approval status is set /// @param augustus The augustus contract address /// @param approved The approval status event AugustusApprovalSet(address indexed augustus, bool approved); /*////////////////////////////////////////////////////////////// STRUCTS //////////////////////////////////////////////////////////////*/ /// @notice Struct to register fees /// @param addresses The addresses to register fees for /// @param token The token to register fees for /// @param fees The fees to register struct FeeRegistration { address[] addresses; IERC20 token; uint256[] fees; } /*////////////////////////////////////////////////////////////// COLLECT //////////////////////////////////////////////////////////////*/ /// @notice Allows partners to withdraw fees allocated to them and stored in the vault /// @param token The token to withdraw fees in /// @param amount The amount of fees to withdraw /// @param recipient The address to send the fees to /// @return success Whether the transfer was successful or not function withdrawSomeERC20(IERC20 token, uint256 amount, address recipient) external returns (bool success); /// @notice Allows partners to withdraw all fees allocated to them and stored in the vault for a given token /// @param token The token to withdraw fees in /// @param recipient The address to send the fees to /// @return success Whether the transfer was successful or not function withdrawAllERC20(IERC20 token, address recipient) external returns (bool success); /// @notice Allows partners to withdraw all fees allocated to them and stored in the vault for multiple tokens /// @param tokens The tokens to withdraw fees i /// @param recipient The address to send the fees to /// @return success Whether the transfer was successful or not function batchWithdrawAllERC20(IERC20[] calldata tokens, address recipient) external returns (bool success); /// @notice Allows partners to withdraw fees allocated to them and stored in the vault /// @param tokens The tokens to withdraw fees in /// @param amounts The amounts of fees to withdraw /// @param recipient The address to send the fees to /// @return success Whether the transfer was successful or not function batchWithdrawSomeERC20( IERC20[] calldata tokens, uint256[] calldata amounts, address recipient ) external returns (bool success); /*////////////////////////////////////////////////////////////// BALANCE GETTERS //////////////////////////////////////////////////////////////*/ /// @notice Get the balance of a given token for a given partner /// @param token The token to get the balance of /// @param partner The partner to get the balance for /// @return feeBalance The balance of the given token for the given partner function getBalance(IERC20 token, address partner) external view returns (uint256 feeBalance); /// @notice Get the balances of a given partner for multiple tokens /// @param tokens The tokens to get the balances of /// @param partner The partner to get the balances for /// @return feeBalances The balances of the given tokens for the given partner function batchGetBalance( IERC20[] calldata tokens, address partner ) external view returns (uint256[] memory feeBalances); /// @notice Returns the unallocated fees for a given token /// @param token The token to get the unallocated fees for /// @return unallocatedFees The unallocated fees for the given token function getUnallocatedFees(IERC20 token) external view returns (uint256 unallocatedFees); /*////////////////////////////////////////////////////////////// OWNER //////////////////////////////////////////////////////////////*/ /// @notice Registers the given feeData to the vault /// @param feeData The fee registration data function registerFees(FeeRegistration memory feeData) external; /// @notice Sets the augustus contract approval status /// @param augustus The augustus contract address /// @param approved The approval status function setAugustusApproval(address augustus, bool approved) external; /// @notice Sets the contract pause state /// @param _isPaused The new pause state function setContractPauseState(bool _isPaused) external; } // SPDX-License-Identifier: MIT pragma solidity 0.8.22; /// @title IAugustusFees /// @notice Interface for the AugustusFees contract, which handles the fees for the Augustus aggregator interface IAugustusFees { /*////////////////////////////////////////////////////////////// ERRORS //////////////////////////////////////////////////////////////*/ /// @notice Error emmited when the balance is not enough to pay the fees error InsufficientBalanceToPayFees(); /// @notice Error emmited when the quotedAmount is bigger than the fromAmount error InvalidQuotedAmount(); /*////////////////////////////////////////////////////////////// PUBLIC //////////////////////////////////////////////////////////////*/ /// @notice Parses the `partnerAndFee` parameter to extract the partner address and fee data. /// @dev `partnerAndFee` is a uint256 value where data is packed in a specific bit layout. /// /// The bit layout for `partnerAndFee` is as follows: /// - The most significant 160 bits (positions 255 to 96) represent the partner address. /// - Bits 95 to 92 are reserved for flags indicating various fee processing conditions: /// - 95th bit: `IS_TAKE_SURPLUS_MASK` - Partner takes surplus /// - 94th bit: `IS_REFERRAL_MASK` - Referral takes surplus /// - 93rd bit: `IS_SKIP_BLACKLIST_MASK` - Bypass token blacklist when processing fees /// - 92nd bit: `IS_CAP_SURPLUS_MASK` - Cap surplus to 1% of quoted amount /// - The least significant 16 bits (positions 15 to 0) encode the fee percentage. /// /// @param partnerAndFee Packed uint256 containing both partner address and fee data. /// @return partner The extracted partner address as a payable address. /// @return feeData The extracted fee data containing the fee percentage and flags. function parsePartnerAndFeeData(uint256 partnerAndFee) external pure returns (address payable partner, uint256 feeData); } // SPDX-License-Identifier: MIT pragma solidity 0.8.22; // Interfaces import { IERC20 } from "@openzeppelin/token/ERC20/IERC20.sol"; // @title AugustusStorage // @notice Inherited storage layout for AugustusV6, // contracts should inherit this contract to access the storage layout contract AugustusStorage { /*////////////////////////////////////////////////////////////// FEES //////////////////////////////////////////////////////////////*/ // @dev Mapping of tokens to boolean indicating if token is blacklisted for fee collection mapping(IERC20 token => bool isBlacklisted) public blacklistedTokens; // @dev Fee wallet to directly transfer paraswap share to address payable public feeWallet; // @dev Fee wallet address to register the paraswap share to in the fee vault address payable public feeWalletDelegate; /*////////////////////////////////////////////////////////////// CONTROL //////////////////////////////////////////////////////////////*/ // @dev Contract paused state bool public paused; } // SPDX-License-Identifier: MIT pragma solidity 0.8.22; // Contracts import { AugustusFees } from "../fees/AugustusFees.sol"; // Utils import { Permit2Utils } from "./Permit2Utils.sol"; import { PauseUtils } from "./PauseUtils.sol"; /// @title GenericUtils /// @notice A contract containing common utilities for Generic swaps abstract contract GenericUtils is AugustusFees, Permit2Utils, PauseUtils { /*////////////////////////////////////////////////////////////// INTERNAL //////////////////////////////////////////////////////////////*/ /// @dev Call executor with executorData and amountIn function _callSwapExactAmountInExecutor( address executor, bytes calldata executorData, uint256 amountIn ) internal { // solhint-disable-next-line no-inline-assembly assembly { // get the length of the executorData // + 4 bytes for the selector // + 32 bytes for fromAmount // + 32 bytes for sender let totalLength := add(executorData.length, 68) calldatacopy(add(0x7c, 4), executorData.offset, executorData.length) // store the executorData mstore(add(0x7c, add(4, executorData.length)), amountIn) // store the amountIn mstore(add(0x7c, add(36, executorData.length)), caller()) // store the sender // call executor and forward call value if iszero(call(gas(), executor, callvalue(), 0x7c, totalLength, 0, 0)) { returndatacopy(0x7c, 0, returndatasize()) // copy the revert data to memory revert(0x7c, returndatasize()) // revert with the revert data } } } /// @dev Call executor with executorData, maxAmountIn, amountOut function _callSwapExactAmountOutExecutor( address executor, bytes calldata executorData, uint256 maxAmountIn, uint256 amountOut ) internal { // solhint-disable-next-line no-inline-assembly assembly { // get the length of the executorData // + 4 bytes for the selector // + 32 bytes for fromAmount // + 32 bytes for toAmount // + 32 bytes for sender let totalLength := add(executorData.length, 100) calldatacopy(add(0x7c, 4), executorData.offset, executorData.length) // store the executorData mstore(add(0x7c, add(4, executorData.length)), maxAmountIn) // store the maxAmountIn mstore(add(0x7c, add(36, executorData.length)), amountOut) // store the amountOut mstore(add(0x7c, add(68, executorData.length)), caller()) // store the sender // call executor and forward call value if iszero(call(gas(), executor, callvalue(), 0x7c, totalLength, 0, 0)) { returndatacopy(0x7c, 0, returndatasize()) // copy the revert data to memory revert(0x7c, returndatasize()) // revert with the revert data } } } } // SPDX-License-Identifier: MIT pragma solidity 0.8.22; // Interfaces import { IErrors } from "./IErrors.sol"; // Types import { GenericData } from "../AugustusV6Types.sol"; /// @title IGenericSwapExactAmountIn /// @notice Interface for executing a generic swapExactAmountIn through an Augustus executor interface IGenericSwapExactAmountIn is IErrors { /*////////////////////////////////////////////////////////////// SWAP EXACT AMOUNT IN //////////////////////////////////////////////////////////////*/ /// @notice Executes a generic swapExactAmountIn using the given executorData on the given executor /// @param executor The address of the executor contract to use /// @param swapData Generic data containing the swap information /// @param partnerAndFee packed partner address and fee percentage, the first 12 bytes is the feeData and the last /// 20 bytes is the partner address /// @param permit The permit data /// @param executorData The data to execute on the executor /// @return receivedAmount The amount of destToken received after fees /// @return paraswapShare The share of the fees for Paraswap /// @return partnerShare The share of the fees for the partner function swapExactAmountIn( address executor, GenericData calldata swapData, uint256 partnerAndFee, bytes calldata permit, bytes calldata executorData ) external payable returns (uint256 receivedAmount, uint256 paraswapShare, uint256 partnerShare); } // SPDX-License-Identifier: MIT pragma solidity 0.8.22; // Interfaces import { IErrors } from "./IErrors.sol"; // Types import { GenericData } from "../AugustusV6Types.sol"; /// @title IGenericSwapExactAmountOut /// @notice Interface for executing a generic swapExactAmountOut through an Augustus executor interface IGenericSwapExactAmountOut is IErrors { /*////////////////////////////////////////////////////////////// SWAP EXACT AMOUNT OUT //////////////////////////////////////////////////////////////*/ /// @notice Executes a generic swapExactAmountOut using the given executorData on the given executor /// @param executor The address of the executor contract to use /// @param swapData Generic data containing the swap information /// @param partnerAndFee packed partner address and fee percentage, the first 12 bytes is the feeData and the last /// 20 bytes is the partner address /// @param permit The permit data /// @param executorData The data to execute on the executor /// @return spentAmount The actual amount of tokens used to swap /// @return receivedAmount The amount of tokens received from the swap /// @return paraswapShare The share of the fees for Paraswap /// @return partnerShare The share of the fees for the partner function swapExactAmountOut( address executor, GenericData calldata swapData, uint256 partnerAndFee, bytes calldata permit, bytes calldata executorData ) external payable returns (uint256 spentAmount, uint256 receivedAmount, uint256 paraswapShare, uint256 partnerShare); } // SPDX-License-Identifier: MIT pragma solidity 0.8.22; // Interfaces import { IErrors } from "./IErrors.sol"; // Types import { AugustusRFQData, OrderInfo } from "../AugustusV6Types.sol"; /// @title IAugustusRFQRouter /// @notice Interface for direct swaps on AugustusRFQ interface IAugustusRFQRouter is IErrors { /*////////////////////////////////////////////////////////////// ERRORS //////////////////////////////////////////////////////////////*/ /// @notice Emitted when the passed msg.value is not equal to the fromAmount error IncorrectEthAmount(); /*////////////////////////////////////////////////////////////// TRY BATCH FILL //////////////////////////////////////////////////////////////*/ /// @notice Executes a tryBatchFillTakerAmount or tryBatchFillMakerAmount call on AugustusRFQ /// the function that is executed is defined by the direction flag in the data param /// @param data Struct containing common data for AugustusRFQ /// @param orders An array containing AugustusRFQ orderInfo data /// @param permit Permit data for the swap /// @return spentAmount The amount of tokens spent /// @return receivedAmount The amount of tokens received function swapOnAugustusRFQTryBatchFill( AugustusRFQData calldata data, OrderInfo[] calldata orders, bytes calldata permit ) external payable returns (uint256 spentAmount, uint256 receivedAmount); } // SPDX-License-Identifier: ISC pragma solidity 0.8.22; pragma abicoder v2; // Types import { Order, OrderInfo } from "../AugustusV6Types.sol"; interface IAugustusRFQ { /// @dev Allows taker to fill an order /// @param order Order quote to fill /// @param signature Signature of the maker corresponding to the order function fillOrder(Order calldata order, bytes calldata signature) external; /// @dev The same as fillOrder but allows sender to specify the target beneficiary address /// @param order Order quote to fill /// @param signature Signature of the maker corresponding to the order /// @param target Address of the receiver function fillOrderWithTarget(Order calldata order, bytes calldata signature, address target) external; /// @dev Allows taker to fill an order partially /// @param order Order quote to fill /// @param signature Signature of the maker corresponding to the order /// @param takerTokenFillAmount Maximum taker token to fill this order with. function partialFillOrder( Order calldata order, bytes calldata signature, uint256 takerTokenFillAmount ) external returns (uint256 makerTokenFilledAmount); /// @dev Same as `partialFillOrder` but it allows to specify the destination address /// @param order Order quote to fill /// @param signature Signature of the maker corresponding to the order /// @param takerTokenFillAmount Maximum taker token to fill this order with. /// @param target Address that will receive swap funds function partialFillOrderWithTarget( Order calldata order, bytes calldata signature, uint256 takerTokenFillAmount, address target ) external returns (uint256 makerTokenFilledAmount); /// @dev Same as `partialFillOrderWithTarget` but it allows to pass permit /// @param order Order quote to fill /// @param signature Signature of the maker corresponding to the order /// @param takerTokenFillAmount Maximum taker token to fill this order with. /// @param target Address that will receive swap funds /// @param permitTakerAsset Permit calldata for taker /// @param permitMakerAsset Permit calldata for maker function partialFillOrderWithTargetPermit( Order calldata order, bytes calldata signature, uint256 takerTokenFillAmount, address target, bytes calldata permitTakerAsset, bytes calldata permitMakerAsset ) external returns (uint256 makerTokenFilledAmount); /// @dev batch fills orders until the takerFillAmount is swapped /// @dev skip the order if it fails /// @param orderInfos OrderInfo to fill /// @param takerFillAmount total taker amount to fill /// @param target Address of receiver function tryBatchFillOrderTakerAmount( OrderInfo[] calldata orderInfos, uint256 takerFillAmount, address target ) external; /// @dev batch fills orders until the makerFillAmount is swapped /// @dev skip the order if it fails /// @param orderInfos OrderInfo to fill /// @param makerFillAmount total maker amount to fill /// @param target Address of receiver function tryBatchFillOrderMakerAmount( OrderInfo[] calldata orderInfos, uint256 makerFillAmount, address target ) external; } // SPDX-License-Identifier: MIT pragma solidity 0.8.22; /// @title Callback for IUniswapV3PoolActions#swap /// @notice Any contract that calls IUniswapV3PoolActions#swap must implement this interface interface IUniswapV3SwapCallback { /// @notice Called to `msg.sender` after executing a swap via IUniswapV3Pool#swap. /// @dev In the implementation you must pay the pool tokens owed for the swap. /// The caller of this method must be checked to be a UniswapV3Pool deployed by the canonical UniswapV3Factory. /// amount0Delta and amount1Delta can both be 0 if no tokens were swapped. /// @param amount0Delta The amount of token0 that was sent (negative) or must be received (positive) by the pool by /// the end of the swap. If positive, the callback must send that amount of token0 to the pool. /// @param amount1Delta The amount of token1 that was sent (negative) or must be received (positive) by the pool by /// the end of the swap. If positive, the callback must send that amount of token1 to the pool. /// @param data Any data passed through by the caller via the IUniswapV3PoolActions#swap call function uniswapV3SwapCallback(int256 amount0Delta, int256 amount1Delta, bytes calldata data) external; } // SPDX-License-Identifier: MIT pragma solidity 0.8.22; import { IERC20 } from "@openzeppelin/token/ERC20/IERC20.sol"; /// @title IWETH /// @notice An interface for WETH IERC20 interface IWETH is IERC20 { function deposit() external payable; function withdraw(uint256 amount) external; } // SPDX-License-Identifier: MIT pragma solidity 0.8.22; /// @title IErrors /// @notice Common interface for errors interface IErrors { /*////////////////////////////////////////////////////////////// ERRORS //////////////////////////////////////////////////////////////*/ /// @notice Emitted when the returned amount is less than the minimum amount error InsufficientReturnAmount(); /// @notice Emitted when the specified toAmount is less than the minimum amount (2) error InvalidToAmount(); /// @notice Emmited when the srcToken and destToken are the same error ArbitrageNotSupported(); }