Overview
ETH Balance
0 ETH
Eth Value
$0.00More Info
Private Name Tags
ContractCreator
View more zero value Internal Transactions in Advanced View mode
Advanced mode:
Loading...
Loading
Contract Name:
L1ERC721Bridge
Compiler Version
v0.8.15+commit.e14f2714
Optimization Enabled:
Yes with 10000 runs
Other Settings:
london EvmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: MIT pragma solidity 0.8.15; import { IERC721 } from "@openzeppelin/contracts/token/ERC721/IERC721.sol"; import { L2ERC721Bridge } from "../L2/L2ERC721Bridge.sol"; import { ERC721Bridge } from "../universal/ERC721Bridge.sol"; import { Semver } from "../universal/Semver.sol"; /** * @title L1ERC721Bridge * @notice The L1 ERC721 bridge is a contract which works together with the L2 ERC721 bridge to * make it possible to transfer ERC721 tokens from Ethereum to Kroma. This contract * acts as an escrow for ERC721 tokens deposited into L2. */ contract L1ERC721Bridge is ERC721Bridge, Semver { /** * @notice Mapping of L1 token to L2 token to ID to boolean, indicating if the given L1 token * by ID was deposited for a given L2 token. */ mapping(address => mapping(address => mapping(uint256 => bool))) public deposits; /** * @custom:semver 1.0.0 * * @param _messenger Address of the CrossDomainMessenger on this network. * @param _otherBridge Address of the ERC721 bridge on the other network. */ constructor(address _messenger, address _otherBridge) Semver(1, 0, 0) ERC721Bridge(_messenger, _otherBridge) {} /** * @notice Completes an ERC721 bridge from the other domain and sends the ERC721 token to the * recipient on this domain. * * @param _localToken Address of the ERC721 token on this domain. * @param _remoteToken Address of the ERC721 token on the other domain. * @param _from Address that triggered the bridge on the other domain. * @param _to Address to receive the token on this domain. * @param _tokenId ID of the token being deposited. * @param _extraData Optional data to forward to L2. Data supplied here will not be used to * execute any code on L2 and is only emitted as extra data for the * convenience of off-chain tooling. */ function finalizeBridgeERC721( address _localToken, address _remoteToken, address _from, address _to, uint256 _tokenId, bytes calldata _extraData ) external onlyOtherBridge { require(_localToken != address(this), "L1ERC721Bridge: local token cannot be self"); // Checks that the L1/L2 NFT pair has a token ID that is escrowed in the L1 Bridge. require( deposits[_localToken][_remoteToken][_tokenId] == true, "L1ERC721Bridge: Token ID is not escrowed in the L1 Bridge" ); // Mark that the token ID for this L1/L2 token pair is no longer escrowed in the L1 // Bridge. deposits[_localToken][_remoteToken][_tokenId] = false; // When a withdrawal is finalized on L1, the L1 Bridge transfers the NFT to the // withdrawer. IERC721(_localToken).safeTransferFrom(address(this), _to, _tokenId); // slither-disable-next-line reentrancy-events emit ERC721BridgeFinalized(_localToken, _remoteToken, _from, _to, _tokenId, _extraData); } /** * @inheritdoc ERC721Bridge */ function _initiateBridgeERC721( address _localToken, address _remoteToken, address _from, address _to, uint256 _tokenId, uint32 _minGasLimit, bytes calldata _extraData ) internal override { require(_remoteToken != address(0), "L1ERC721Bridge: remote token cannot be address(0)"); // Construct calldata for _l2Token.finalizeBridgeERC721(_to, _tokenId) bytes memory message = abi.encodeWithSelector( L2ERC721Bridge.finalizeBridgeERC721.selector, _remoteToken, _localToken, _from, _to, _tokenId, _extraData ); // Lock token into bridge deposits[_localToken][_remoteToken][_tokenId] = true; IERC721(_localToken).transferFrom(_from, address(this), _tokenId); // Send calldata into L2 MESSENGER.sendMessage(OTHER_BRIDGE, message, _minGasLimit); emit ERC721BridgeInitiated(_localToken, _remoteToken, _from, _to, _tokenId, _extraData); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC721/IERC721.sol) pragma solidity ^0.8.0; import "../../utils/introspection/IERC165.sol"; /** * @dev Required interface of an ERC721 compliant contract. */ interface IERC721 is IERC165 { /** * @dev Emitted when `tokenId` token is transferred from `from` to `to`. */ event Transfer(address indexed from, address indexed to, uint256 indexed tokenId); /** * @dev Emitted when `owner` enables `approved` to manage the `tokenId` token. */ event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId); /** * @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets. */ event ApprovalForAll(address indexed owner, address indexed operator, bool approved); /** * @dev Returns the number of tokens in ``owner``'s account. */ function balanceOf(address owner) external view returns (uint256 balance); /** * @dev Returns the owner of the `tokenId` token. * * Requirements: * * - `tokenId` must exist. */ function ownerOf(uint256 tokenId) external view returns (address owner); /** * @dev Safely transfers `tokenId` token from `from` to `to`. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must exist and be owned by `from`. * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}. * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer. * * Emits a {Transfer} event. */ function safeTransferFrom(address from, address to, uint256 tokenId, bytes calldata data) external; /** * @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients * are aware of the ERC721 protocol to prevent tokens from being forever locked. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must exist and be owned by `from`. * - If the caller is not `from`, it must have been allowed to move this token by either {approve} or {setApprovalForAll}. * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer. * * Emits a {Transfer} event. */ function safeTransferFrom(address from, address to, uint256 tokenId) external; /** * @dev Transfers `tokenId` token from `from` to `to`. * * WARNING: Note that the caller is responsible to confirm that the recipient is capable of receiving ERC721 * or else they may be permanently lost. Usage of {safeTransferFrom} prevents loss, though the caller must * understand this adds an external call which potentially creates a reentrancy vulnerability. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must be owned by `from`. * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}. * * Emits a {Transfer} event. */ function transferFrom(address from, address to, uint256 tokenId) external; /** * @dev Gives permission to `to` to transfer `tokenId` token to another account. * The approval is cleared when the token is transferred. * * Only a single account can be approved at a time, so approving the zero address clears previous approvals. * * Requirements: * * - The caller must own the token or be an approved operator. * - `tokenId` must exist. * * Emits an {Approval} event. */ function approve(address to, uint256 tokenId) external; /** * @dev Approve or remove `operator` as an operator for the caller. * Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller. * * Requirements: * * - The `operator` cannot be the caller. * * Emits an {ApprovalForAll} event. */ function setApprovalForAll(address operator, bool approved) external; /** * @dev Returns the account approved for `tokenId` token. * * Requirements: * * - `tokenId` must exist. */ function getApproved(uint256 tokenId) external view returns (address operator); /** * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`. * * See {setApprovalForAll} */ function isApprovedForAll(address owner, address operator) external view returns (bool); }
// SPDX-License-Identifier: MIT pragma solidity 0.8.15; import { ERC165Checker } from "@openzeppelin/contracts/utils/introspection/ERC165Checker.sol"; import { L1ERC721Bridge } from "../L1/L1ERC721Bridge.sol"; import { ERC721Bridge } from "../universal/ERC721Bridge.sol"; import { IKromaMintableERC721 } from "../universal/IKromaMintableERC721.sol"; import { Semver } from "../universal/Semver.sol"; /** * @title L2ERC721Bridge * @notice The L2 ERC721 bridge is a contract which works together with the L1 ERC721 bridge to * make it possible to transfer ERC721 tokens from Ethereum to Kroma. This contract * acts as a minter for new tokens when it hears about deposits into the L1 ERC721 bridge. * This contract also acts as a burner for tokens being withdrawn. * **WARNING**: Do not bridge an ERC721 that was originally deployed on Kroma. This * bridge ONLY supports ERC721s originally deployed on Ethereum. Users will need to * wait for the one-week challenge period to elapse before their Kroma-native NFT * can be refunded on L2. */ contract L2ERC721Bridge is ERC721Bridge, Semver { /** * @custom:semver 1.0.0 * * @param _messenger Address of the CrossDomainMessenger on this network. * @param _otherBridge Address of the ERC721 bridge on the other network. */ constructor(address _messenger, address _otherBridge) Semver(1, 0, 0) ERC721Bridge(_messenger, _otherBridge) {} /** * @notice Completes an ERC721 bridge from the other domain and sends the ERC721 token to the * recipient on this domain. * * @param _localToken Address of the ERC721 token on this domain. * @param _remoteToken Address of the ERC721 token on the other domain. * @param _from Address that triggered the bridge on the other domain. * @param _to Address to receive the token on this domain. * @param _tokenId ID of the token being deposited. * @param _extraData Optional data to forward to L1. Data supplied here will not be used to * execute any code on L1 and is only emitted as extra data for the * convenience of off-chain tooling. */ function finalizeBridgeERC721( address _localToken, address _remoteToken, address _from, address _to, uint256 _tokenId, bytes calldata _extraData ) external onlyOtherBridge { require(_localToken != address(this), "L2ERC721Bridge: local token cannot be self"); // Note that supportsInterface makes a callback to the _localToken address which is user // provided. require( ERC165Checker.supportsInterface(_localToken, type(IKromaMintableERC721).interfaceId), "L2ERC721Bridge: local token interface is not compliant" ); require( _remoteToken == IKromaMintableERC721(_localToken).REMOTE_TOKEN(), "L2ERC721Bridge: wrong remote token for Kroma Mintable ERC721 local token" ); // When a deposit is finalized, we give the NFT with the same tokenId to the account // on L2. Note that safeMint makes a callback to the _to address which is user provided. IKromaMintableERC721(_localToken).safeMint(_to, _tokenId); // slither-disable-next-line reentrancy-events emit ERC721BridgeFinalized(_localToken, _remoteToken, _from, _to, _tokenId, _extraData); } /** * @inheritdoc ERC721Bridge */ function _initiateBridgeERC721( address _localToken, address _remoteToken, address _from, address _to, uint256 _tokenId, uint32 _minGasLimit, bytes calldata _extraData ) internal override { require(_remoteToken != address(0), "L2ERC721Bridge: remote token cannot be address(0)"); // Check that the withdrawal is being initiated by the NFT owner require( _from == IKromaMintableERC721(_localToken).ownerOf(_tokenId), "L2ERC721Bridge: Withdrawal is not being initiated by NFT owner" ); // Construct calldata for l1ERC721Bridge.finalizeBridgeERC721(_to, _tokenId) // slither-disable-next-line reentrancy-events address remoteToken = IKromaMintableERC721(_localToken).REMOTE_TOKEN(); require( remoteToken == _remoteToken, "L2ERC721Bridge: remote token does not match given value" ); // When a withdrawal is initiated, we burn the withdrawer's NFT to prevent subsequent L2 // usage // slither-disable-next-line reentrancy-events IKromaMintableERC721(_localToken).burn(_from, _tokenId); bytes memory message = abi.encodeWithSelector( L1ERC721Bridge.finalizeBridgeERC721.selector, remoteToken, _localToken, _from, _to, _tokenId, _extraData ); // Send message to L1 bridge // slither-disable-next-line reentrancy-events MESSENGER.sendMessage(OTHER_BRIDGE, message, _minGasLimit); // slither-disable-next-line reentrancy-events emit ERC721BridgeInitiated(_localToken, remoteToken, _from, _to, _tokenId, _extraData); } }
// SPDX-License-Identifier: MIT pragma solidity 0.8.15; import { Address } from "@openzeppelin/contracts/utils/Address.sol"; import { CrossDomainMessenger } from "./CrossDomainMessenger.sol"; /** * @title ERC721Bridge * @notice ERC721Bridge is a base contract for the L1 and L2 ERC721 bridges. */ abstract contract ERC721Bridge { /** * @notice Messenger contract on this domain. */ CrossDomainMessenger public immutable MESSENGER; /** * @notice Address of the bridge on the other network. */ address public immutable OTHER_BRIDGE; /** * @notice Reserve extra slots (to a total of 50) in the storage layout for future upgrades. */ uint256[49] private __gap; /** * @notice Emitted when an ERC721 bridge to the other network is initiated. * * @param localToken Address of the token on this domain. * @param remoteToken Address of the token on the remote domain. * @param from Address that initiated bridging action. * @param to Address to receive the token. * @param tokenId ID of the specific token deposited. * @param extraData Extra data for use on the client-side. */ event ERC721BridgeInitiated( address indexed localToken, address indexed remoteToken, address indexed from, address to, uint256 tokenId, bytes extraData ); /** * @notice Emitted when an ERC721 bridge from the other network is finalized. * * @param localToken Address of the token on this domain. * @param remoteToken Address of the token on the remote domain. * @param from Address that initiated bridging action. * @param to Address to receive the token. * @param tokenId ID of the specific token deposited. * @param extraData Extra data for use on the client-side. */ event ERC721BridgeFinalized( address indexed localToken, address indexed remoteToken, address indexed from, address to, uint256 tokenId, bytes extraData ); /** * @notice Ensures that the caller is a cross-chain message from the other bridge. */ modifier onlyOtherBridge() { require( msg.sender == address(MESSENGER) && MESSENGER.xDomainMessageSender() == OTHER_BRIDGE, "ERC721Bridge: function can only be called from the other bridge" ); _; } /** * @param _messenger Address of the CrossDomainMessenger on this network. * @param _otherBridge Address of the ERC721 bridge on the other network. */ constructor(address _messenger, address _otherBridge) { require(_messenger != address(0), "ERC721Bridge: messenger cannot be address(0)"); require(_otherBridge != address(0), "ERC721Bridge: other bridge cannot be address(0)"); MESSENGER = CrossDomainMessenger(_messenger); OTHER_BRIDGE = _otherBridge; } /** * @notice Initiates a bridge of an NFT to the caller's account on the other chain. Note that * this function can only be called by EOAs. Smart contract wallets should use the * `bridgeERC721To` function after ensuring that the recipient address on the remote * chain exists. Also note that the current owner of the token on this chain must * approve this contract to operate the NFT before it can be bridged. * **WARNING**: Do not bridge an ERC721 that was originally deployed on Kroma. This * bridge only supports ERC721s originally deployed on Ethereum. Users will need to * wait for the one-week challenge period to elapse before their Kroma-native NFT * can be refunded on L2. * * @param _localToken Address of the ERC721 on this domain. * @param _remoteToken Address of the ERC721 on the remote domain. * @param _tokenId Token ID to bridge. * @param _minGasLimit Minimum gas limit for the bridge message on the other domain. * @param _extraData Optional data to forward to the other chain. Data supplied here will not * be used to execute any code on the other chain and is only emitted as * extra data for the convenience of off-chain tooling. */ function bridgeERC721( address _localToken, address _remoteToken, uint256 _tokenId, uint32 _minGasLimit, bytes calldata _extraData ) external { // Modifier requiring sender to be EOA. This prevents against a user error that would occur // if the sender is a smart contract wallet that has a different address on the remote chain // (or doesn't have an address on the remote chain at all). The user would fail to receive // the NFT if they use this function because it sends the NFT to the same address as the // caller. This check could be bypassed by a malicious contract via initcode, but it takes // care of the user error we want to avoid. require(!Address.isContract(msg.sender), "ERC721Bridge: account is not externally owned"); _initiateBridgeERC721( _localToken, _remoteToken, msg.sender, msg.sender, _tokenId, _minGasLimit, _extraData ); } /** * @notice Initiates a bridge of an NFT to some recipient's account on the other chain. Note * that the current owner of the token on this chain must approve this contract to * operate the NFT before it can be bridged. * **WARNING**: Do not bridge an ERC721 that was originally deployed on Kroma. This * bridge only supports ERC721s originally deployed on Ethereum. Users will need to * wait for the one-week challenge period to elapse before their Kroma-native NFT * can be refunded on L2. * * @param _localToken Address of the ERC721 on this domain. * @param _remoteToken Address of the ERC721 on the remote domain. * @param _to Address to receive the token on the other domain. * @param _tokenId Token ID to bridge. * @param _minGasLimit Minimum gas limit for the bridge message on the other domain. * @param _extraData Optional data to forward to the other chain. Data supplied here will not * be used to execute any code on the other chain and is only emitted as * extra data for the convenience of off-chain tooling. */ function bridgeERC721To( address _localToken, address _remoteToken, address _to, uint256 _tokenId, uint32 _minGasLimit, bytes calldata _extraData ) external { require(_to != address(0), "ERC721Bridge: nft recipient cannot be address(0)"); _initiateBridgeERC721( _localToken, _remoteToken, msg.sender, _to, _tokenId, _minGasLimit, _extraData ); } /** * @notice Internal function for initiating a token bridge to the other domain. * * @param _localToken Address of the ERC721 on this domain. * @param _remoteToken Address of the ERC721 on the remote domain. * @param _from Address of the sender on this domain. * @param _to Address to receive the token on the other domain. * @param _tokenId Token ID to bridge. * @param _minGasLimit Minimum gas limit for the bridge message on the other domain. * @param _extraData Optional data to forward to the other domain. Data supplied here will * not be used to execute any code on the other domain and is only emitted * as extra data for the convenience of off-chain tooling. */ function _initiateBridgeERC721( address _localToken, address _remoteToken, address _from, address _to, uint256 _tokenId, uint32 _minGasLimit, bytes calldata _extraData ) internal virtual; }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.15; import { Strings } from "@openzeppelin/contracts/utils/Strings.sol"; /** * @title Semver * @notice Semver is a simple contract for managing contract versions. */ contract Semver { /** * @notice Contract version number (major). */ uint256 private immutable MAJOR_VERSION; /** * @notice Contract version number (minor). */ uint256 private immutable MINOR_VERSION; /** * @notice Contract version number (patch). */ uint256 private immutable PATCH_VERSION; /** * @param _major Version number (major). * @param _minor Version number (minor). * @param _patch Version number (patch). */ constructor( uint256 _major, uint256 _minor, uint256 _patch ) { MAJOR_VERSION = _major; MINOR_VERSION = _minor; PATCH_VERSION = _patch; } /** * @notice Returns the full semver contract version. * * @return Semver contract version as a string. */ function version() public view virtual returns (string memory) { return string( abi.encodePacked( Strings.toString(MAJOR_VERSION), ".", Strings.toString(MINOR_VERSION), ".", Strings.toString(PATCH_VERSION) ) ); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC165 standard, as defined in the * https://eips.ethereum.org/EIPS/eip-165[EIP]. * * Implementers can declare support of contract interfaces, which can then be * queried by others ({ERC165Checker}). * * For an implementation, see {ERC165}. */ interface IERC165 { /** * @dev Returns true if this contract implements the interface defined by * `interfaceId`. See the corresponding * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section] * to learn more about how these ids are created. * * This function call must use less than 30 000 gas. */ function supportsInterface(bytes4 interfaceId) external view returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/introspection/ERC165Checker.sol) pragma solidity ^0.8.0; import "./IERC165.sol"; /** * @dev Library used to query support of an interface declared via {IERC165}. * * Note that these functions return the actual result of the query: they do not * `revert` if an interface is not supported. It is up to the caller to decide * what to do in these cases. */ library ERC165Checker { // As per the EIP-165 spec, no interface should ever match 0xffffffff bytes4 private constant _INTERFACE_ID_INVALID = 0xffffffff; /** * @dev Returns true if `account` supports the {IERC165} interface. */ function supportsERC165(address account) internal view returns (bool) { // Any contract that implements ERC165 must explicitly indicate support of // InterfaceId_ERC165 and explicitly indicate non-support of InterfaceId_Invalid return supportsERC165InterfaceUnchecked(account, type(IERC165).interfaceId) && !supportsERC165InterfaceUnchecked(account, _INTERFACE_ID_INVALID); } /** * @dev Returns true if `account` supports the interface defined by * `interfaceId`. Support for {IERC165} itself is queried automatically. * * See {IERC165-supportsInterface}. */ function supportsInterface(address account, bytes4 interfaceId) internal view returns (bool) { // query support of both ERC165 as per the spec and support of _interfaceId return supportsERC165(account) && supportsERC165InterfaceUnchecked(account, interfaceId); } /** * @dev Returns a boolean array where each value corresponds to the * interfaces passed in and whether they're supported or not. This allows * you to batch check interfaces for a contract where your expectation * is that some interfaces may not be supported. * * See {IERC165-supportsInterface}. * * _Available since v3.4._ */ function getSupportedInterfaces( address account, bytes4[] memory interfaceIds ) internal view returns (bool[] memory) { // an array of booleans corresponding to interfaceIds and whether they're supported or not bool[] memory interfaceIdsSupported = new bool[](interfaceIds.length); // query support of ERC165 itself if (supportsERC165(account)) { // query support of each interface in interfaceIds for (uint256 i = 0; i < interfaceIds.length; i++) { interfaceIdsSupported[i] = supportsERC165InterfaceUnchecked(account, interfaceIds[i]); } } return interfaceIdsSupported; } /** * @dev Returns true if `account` supports all the interfaces defined in * `interfaceIds`. Support for {IERC165} itself is queried automatically. * * Batch-querying can lead to gas savings by skipping repeated checks for * {IERC165} support. * * See {IERC165-supportsInterface}. */ function supportsAllInterfaces(address account, bytes4[] memory interfaceIds) internal view returns (bool) { // query support of ERC165 itself if (!supportsERC165(account)) { return false; } // query support of each interface in interfaceIds for (uint256 i = 0; i < interfaceIds.length; i++) { if (!supportsERC165InterfaceUnchecked(account, interfaceIds[i])) { return false; } } // all interfaces supported return true; } /** * @notice Query if a contract implements an interface, does not check ERC165 support * @param account The address of the contract to query for support of an interface * @param interfaceId The interface identifier, as specified in ERC-165 * @return true if the contract at account indicates support of the interface with * identifier interfaceId, false otherwise * @dev Assumes that account contains a contract that supports ERC165, otherwise * the behavior of this method is undefined. This precondition can be checked * with {supportsERC165}. * * Some precompiled contracts will falsely indicate support for a given interface, so caution * should be exercised when using this function. * * Interface identification is specified in ERC-165. */ function supportsERC165InterfaceUnchecked(address account, bytes4 interfaceId) internal view returns (bool) { // prepare call bytes memory encodedParams = abi.encodeWithSelector(IERC165.supportsInterface.selector, interfaceId); // perform static call bool success; uint256 returnSize; uint256 returnValue; assembly { success := staticcall(30000, account, add(encodedParams, 0x20), mload(encodedParams), 0x00, 0x20) returnSize := returndatasize() returnValue := mload(0x00) } return success && returnSize >= 0x20 && returnValue > 0; } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import { IERC721Enumerable } from "@openzeppelin/contracts/token/ERC721/extensions/IERC721Enumerable.sol"; /** * @title IKromaMintableERC721 * @notice Interface for contracts that are compatible with the KromaMintableERC721 standard. * Tokens that follow this standard can be easily transferred across the ERC721 bridge. */ interface IKromaMintableERC721 is IERC721Enumerable { /** * @notice Emitted when a token is minted. * * @param account Address of the account the token was minted to. * @param tokenId Token ID of the minted token. */ event Mint(address indexed account, uint256 tokenId); /** * @notice Emitted when a token is burned. * * @param account Address of the account the token was burned from. * @param tokenId Token ID of the burned token. */ event Burn(address indexed account, uint256 tokenId); /** * @notice Mints some token ID for a user, checking first that contract recipients * are aware of the ERC721 protocol to prevent tokens from being forever locked. * * @param _to Address of the user to mint the token for. * @param _tokenId Token ID to mint. */ function safeMint(address _to, uint256 _tokenId) external; /** * @notice Burns a token ID from a user. * * @param _from Address of the user to burn the token from. * @param _tokenId Token ID to burn. */ function burn(address _from, uint256 _tokenId) external; /** * @notice Chain ID of the chain where the remote token is deployed. */ function REMOTE_CHAIN_ID() external view returns (uint256); /** * @notice Address of the token on the remote domain. */ function REMOTE_TOKEN() external view returns (address); /** * @notice Address of the ERC721 bridge on this network. */ function BRIDGE() external view returns (address); /** * @notice Chain ID of the chain where the remote token is deployed. */ function remoteChainId() external view returns (uint256); /** * @notice Address of the token on the remote domain. */ function remoteToken() external view returns (address); /** * @notice Address of the ERC721 bridge on this network. */ function bridge() external view returns (address); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol) pragma solidity ^0.8.1; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * * Furthermore, `isContract` will also return true if the target contract within * the same transaction is already scheduled for destruction by `SELFDESTRUCT`, * which only has an effect at the end of a transaction. * ==== * * [IMPORTANT] * ==== * You shouldn't rely on `isContract` to protect against flash loan attacks! * * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract * constructor. * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize/address.code.length, which returns 0 // for contracts in construction, since the code is only stored at the end // of the constructor execution. return account.code.length > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); (bool success, ) = recipient.call{value: amount}(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall( address target, bytes memory data, string memory errorMessage ) internal view returns (bytes memory) { (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { return functionDelegateCall(target, data, "Address: low-level delegate call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { (bool success, bytes memory returndata) = target.delegatecall(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract. * * _Available since v4.8._ */ function verifyCallResultFromTarget( address target, bool success, bytes memory returndata, string memory errorMessage ) internal view returns (bytes memory) { if (success) { if (returndata.length == 0) { // only check isContract if the call was successful and the return data is empty // otherwise we already know that it was a contract require(isContract(target), "Address: call to non-contract"); } return returndata; } else { _revert(returndata, errorMessage); } } /** * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the * revert reason or using the provided one. * * _Available since v4.3._ */ function verifyCallResult( bool success, bytes memory returndata, string memory errorMessage ) internal pure returns (bytes memory) { if (success) { return returndata; } else { _revert(returndata, errorMessage); } } function _revert(bytes memory returndata, string memory errorMessage) private pure { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly /// @solidity memory-safe-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } }
// SPDX-License-Identifier: MIT pragma solidity 0.8.15; import { PausableUpgradeable } from "@openzeppelin/contracts-upgradeable/security/PausableUpgradeable.sol"; import { Constants } from "../libraries/Constants.sol"; import { Encoding } from "../libraries/Encoding.sol"; import { Hashing } from "../libraries/Hashing.sol"; import { SafeCall } from "../libraries/SafeCall.sol"; /** * @custom:upgradeable * @title CrossDomainMessenger * @notice CrossDomainMessenger is a base contract that provides the core logic for the L1 and L2 * cross-chain messenger contracts. It's designed to be a universal interface that only * needs to be extended slightly to provide low-level message passing functionality on each * chain it's deployed on. Currently only designed for message passing between two paired * chains and does not support one-to-many interactions. * * Any changes to this contract MUST result in a semver bump for contracts that inherit it. */ abstract contract CrossDomainMessenger is PausableUpgradeable { /** * @notice Current message version identifier. */ uint16 public constant MESSAGE_VERSION = 0; /** * @notice Constant overhead added to the base gas for a message. */ uint64 public constant RELAY_CONSTANT_OVERHEAD = 200_000; /** * @notice Numerator for dynamic overhead added to the base gas for a message. */ uint64 public constant MIN_GAS_DYNAMIC_OVERHEAD_NUMERATOR = 64; /** * @notice Denominator for dynamic overhead added to the base gas for a message. */ uint64 public constant MIN_GAS_DYNAMIC_OVERHEAD_DENOMINATOR = 63; /** * @notice Extra gas added to base gas for each byte of calldata in a message. */ uint64 public constant MIN_GAS_CALLDATA_OVERHEAD = 16; /** * @notice Gas reserved for performing the external call in `relayMessage`. */ uint64 public constant RELAY_CALL_OVERHEAD = 40_000; /** * @notice Gas reserved for finalizing the execution of `relayMessage` after the safe call. */ uint64 public constant RELAY_RESERVED_GAS = 40_000; /** * @notice Gas reserved for the execution between the `hasMinGas` check and the external * call in `relayMessage`. */ uint64 public constant RELAY_GAS_CHECK_BUFFER = 5_000; /** * @notice Address of the paired CrossDomainMessenger contract on the other chain. */ address public immutable OTHER_MESSENGER; /** * @notice Mapping of message hashes to boolean receipt values. Note that a message will only * be present in this mapping if it has successfully been relayed on this chain, and * can therefore not be relayed again. */ mapping(bytes32 => bool) public successfulMessages; /** * @notice Address of the sender of the currently executing message on the other chain. If the * value of this variable is the default value (0x00000000...dead) then no message is * currently being executed. Use the xDomainMessageSender getter which will throw an * error if this is the case. */ address internal xDomainMsgSender; /** * @notice Nonce for the next message to be sent, without the message version applied. Use the * messageNonce getter which will insert the message version into the nonce to give you * the actual nonce to be used for the message. */ uint240 internal msgNonce; /** * @notice Mapping of message hashes to a boolean if and only if the message has failed to be * executed at least once. A message will not be present in this mapping if it * successfully executed on the first attempt. */ mapping(bytes32 => bool) public failedMessages; /** * @notice Reserve extra slots in the storage layout for future upgrades. * A gap size of 45 was chosen here, so that the first slot used in a child contract * would be a multiple of 50. */ uint256[45] private __gap; /** * @notice Emitted whenever a message is sent to the other chain. * * @param target Address of the recipient of the message. * @param sender Address of the sender of the message. * @param value ETH value sent along with the message to the recipient. * @param message Message to trigger the recipient address with. * @param messageNonce Unique nonce attached to the message. * @param gasLimit Minimum gas limit that the message can be executed with. */ event SentMessage( address indexed target, address indexed sender, uint256 value, bytes message, uint256 messageNonce, uint256 gasLimit ); /** * @notice Emitted whenever a message is successfully relayed on this chain. * * @param msgHash Hash of the message that was relayed. */ event RelayedMessage(bytes32 indexed msgHash); /** * @notice Emitted whenever a message fails to be relayed on this chain. * * @param msgHash Hash of the message that failed to be relayed. */ event FailedRelayedMessage(bytes32 indexed msgHash); /** * @param _otherMessenger Address of the messenger on the paired chain. */ constructor(address _otherMessenger) { OTHER_MESSENGER = _otherMessenger; } /** * @notice Sends a message to some target address on the other chain. Note that if the call * always reverts, then the message will be unrelayable, and any ETH sent will be * permanently locked. The same will occur if the target on the other chain is * considered unsafe (see the _isUnsafeTarget() function). * * @param _target Target contract or wallet address. * @param _message Message to trigger the target address with. * @param _minGasLimit Minimum gas limit that the message can be executed with. */ function sendMessage( address _target, bytes calldata _message, uint32 _minGasLimit ) external payable { // Triggers a message to the other messenger. Note that the amount of gas provided to the // message is the amount of gas requested by the user PLUS the base gas value. We want to // guarantee the property that the call to the target contract will always have at least // the minimum gas limit specified by the user. _sendMessage( OTHER_MESSENGER, baseGas(_message, _minGasLimit), msg.value, abi.encodeWithSelector( this.relayMessage.selector, messageNonce(), msg.sender, _target, msg.value, _minGasLimit, _message ) ); emit SentMessage(_target, msg.sender, msg.value, _message, messageNonce(), _minGasLimit); unchecked { ++msgNonce; } } /** * @notice Relays a message that was sent by the other CrossDomainMessenger contract. Can only * be executed via cross-chain call from the other messenger OR if the message was * already received once and is currently being replayed. * * @param _nonce Nonce of the message being relayed. * @param _sender Address of the user who sent the message. * @param _target Address that the message is targeted at. * @param _value ETH value to send with the message. * @param _minGasLimit Minimum amount of gas that the message can be executed with. * @param _message Message to send to the target. */ function relayMessage( uint256 _nonce, address _sender, address _target, uint256 _value, uint256 _minGasLimit, bytes calldata _message ) external payable { (, uint16 version) = Encoding.decodeVersionedNonce(_nonce); require( version < 1, "CrossDomainMessenger: only version 0 messages is supported at this time" ); // We use the v0 message hash as the unique identifier for the message because it commits // to the value and minimum gas limit of the message. bytes32 versionedHash = Hashing.hashCrossDomainMessageV0( _nonce, _sender, _target, _value, _minGasLimit, _message ); if (_isOtherMessenger()) { // These properties should always hold when the message is first submitted (as // opposed to being replayed). assert(msg.value == _value); assert(!failedMessages[versionedHash]); } else { require( msg.value == 0, "CrossDomainMessenger: value must be zero unless message is from a system address" ); require( failedMessages[versionedHash], "CrossDomainMessenger: message cannot be replayed" ); } require( _isUnsafeTarget(_target) == false, "CrossDomainMessenger: cannot send message to blocked system address" ); require( successfulMessages[versionedHash] == false, "CrossDomainMessenger: message has already been relayed" ); // If there is not enough gas left to perform the external call and finish the execution, // return early and assign the message to the failedMessages mapping. // We are asserting that we have enough gas to: // 1. Call the target contract (_minGasLimit + RELAY_CALL_OVERHEAD + RELAY_GAS_CHECK_BUFFER) // 1.a. The RELAY_CALL_OVERHEAD is included in `hasMinGas`. // 2. Finish the execution after the external call (RELAY_RESERVED_GAS). // // If `xDomainMsgSender` is not the default L2 sender, this function // is being re-entered. This marks the message as failed to allow it to be replayed. if ( !SafeCall.hasMinGas(_minGasLimit, RELAY_RESERVED_GAS + RELAY_GAS_CHECK_BUFFER) || xDomainMsgSender != Constants.DEFAULT_L2_SENDER ) { failedMessages[versionedHash] = true; emit FailedRelayedMessage(versionedHash); // Revert in this case if the transaction was triggered by the estimation address. This // should only be possible during gas estimation or we have bigger problems. Reverting // here will make the behavior of gas estimation change such that the gas limit // computed will be the amount required to relay the message, even if that amount is // greater than the minimum gas limit specified by the user. if (tx.origin == Constants.ESTIMATION_ADDRESS) { revert("CrossDomainMessenger: failed to relay message"); } return; } xDomainMsgSender = _sender; bool success = SafeCall.call(_target, gasleft() - RELAY_RESERVED_GAS, _value, _message); xDomainMsgSender = Constants.DEFAULT_L2_SENDER; if (success) { successfulMessages[versionedHash] = true; emit RelayedMessage(versionedHash); } else { failedMessages[versionedHash] = true; emit FailedRelayedMessage(versionedHash); // Revert in this case if the transaction was triggered by the estimation address. This // should only be possible during gas estimation or we have bigger problems. Reverting // here will make the behavior of gas estimation change such that the gas limit // computed will be the amount required to relay the message, even if that amount is // greater than the minimum gas limit specified by the user. if (tx.origin == Constants.ESTIMATION_ADDRESS) { revert("CrossDomainMessenger: failed to relay message"); } } } /** * @notice Retrieves the address of the contract or wallet that initiated the currently * executing message on the other chain. Will throw an error if there is no message * currently being executed. Allows the recipient of a call to see who triggered it. * * @return Address of the sender of the currently executing message on the other chain. */ function xDomainMessageSender() external view returns (address) { require( xDomainMsgSender != Constants.DEFAULT_L2_SENDER, "CrossDomainMessenger: xDomainMessageSender is not set" ); return xDomainMsgSender; } /** * @notice Retrieves the next message nonce. Message version will be added to the upper two * bytes of the message nonce. Message version allows us to treat messages as having * different structures. * * @return Nonce of the next message to be sent, with added message version. */ function messageNonce() public view returns (uint256) { return Encoding.encodeVersionedNonce(msgNonce, MESSAGE_VERSION); } /** * @notice Computes the amount of gas required to guarantee that a given message will be * received on the other chain without running out of gas. Guaranteeing that a message * will not run out of gas is important because this ensures that a message can always * be replayed on the other chain if it fails to execute completely. * * @param _message Message to compute the amount of required gas for. * @param _minGasLimit Minimum desired gas limit when message goes to target. * * @return Amount of gas required to guarantee message receipt. */ function baseGas(bytes calldata _message, uint32 _minGasLimit) public pure returns (uint64) { return // Constant overhead RELAY_CONSTANT_OVERHEAD + // Calldata overhead (uint64(_message.length) * MIN_GAS_CALLDATA_OVERHEAD) + // Dynamic overhead (EIP-150) ((_minGasLimit * MIN_GAS_DYNAMIC_OVERHEAD_NUMERATOR) / MIN_GAS_DYNAMIC_OVERHEAD_DENOMINATOR) + // Gas reserved for the worst-case cost of 3/5 of the `CALL` opcode's dynamic gas // factors. (Conservative) RELAY_CALL_OVERHEAD + // Relay reserved gas (to ensure execution of `relayMessage` completes after the // subcontext finishes executing) (Conservative) RELAY_RESERVED_GAS + // Gas reserved for the execution between the `hasMinGas` check and the `CALL` // opcode. (Conservative) RELAY_GAS_CHECK_BUFFER; } /** * @notice Intializer. */ // solhint-disable-next-line func-name-mixedcase function __CrossDomainMessenger_init() internal onlyInitializing { xDomainMsgSender = Constants.DEFAULT_L2_SENDER; } /** * @notice Sends a low-level message to the other messenger. Needs to be implemented by child * contracts because the logic for this depends on the network where the messenger is * being deployed. * * @param _to Recipient of the message on the other chain. * @param _gasLimit Minimum gas limit the message can be executed with. * @param _value Amount of ETH to send with the message. * @param _data Message data. */ function _sendMessage( address _to, uint64 _gasLimit, uint256 _value, bytes memory _data ) internal virtual; /** * @notice Checks whether the message is coming from the other messenger. Implemented by child * contracts because the logic for this depends on the network where the messenger is * being deployed. * * @return Whether the message is coming from the other messenger. */ function _isOtherMessenger() internal view virtual returns (bool); /** * @notice Checks whether a given call target is a system address that could cause the * messenger to peform an unsafe action. This is NOT a mechanism for blocking user * addresses. This is ONLY used to prevent the execution of messages to specific * system addresses that could cause security issues, e.g., having the * CrossDomainMessenger send messages to itself. * * @param _target Address of the contract to check. * * @return Whether or not the address is an unsafe system address. */ function _isUnsafeTarget(address _target) internal view virtual returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/Strings.sol) pragma solidity ^0.8.0; import "./math/Math.sol"; import "./math/SignedMath.sol"; /** * @dev String operations. */ library Strings { bytes16 private constant _SYMBOLS = "0123456789abcdef"; uint8 private constant _ADDRESS_LENGTH = 20; /** * @dev Converts a `uint256` to its ASCII `string` decimal representation. */ function toString(uint256 value) internal pure returns (string memory) { unchecked { uint256 length = Math.log10(value) + 1; string memory buffer = new string(length); uint256 ptr; /// @solidity memory-safe-assembly assembly { ptr := add(buffer, add(32, length)) } while (true) { ptr--; /// @solidity memory-safe-assembly assembly { mstore8(ptr, byte(mod(value, 10), _SYMBOLS)) } value /= 10; if (value == 0) break; } return buffer; } } /** * @dev Converts a `int256` to its ASCII `string` decimal representation. */ function toString(int256 value) internal pure returns (string memory) { return string(abi.encodePacked(value < 0 ? "-" : "", toString(SignedMath.abs(value)))); } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation. */ function toHexString(uint256 value) internal pure returns (string memory) { unchecked { return toHexString(value, Math.log256(value) + 1); } } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length. */ function toHexString(uint256 value, uint256 length) internal pure returns (string memory) { bytes memory buffer = new bytes(2 * length + 2); buffer[0] = "0"; buffer[1] = "x"; for (uint256 i = 2 * length + 1; i > 1; --i) { buffer[i] = _SYMBOLS[value & 0xf]; value >>= 4; } require(value == 0, "Strings: hex length insufficient"); return string(buffer); } /** * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation. */ function toHexString(address addr) internal pure returns (string memory) { return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH); } /** * @dev Returns true if the two strings are equal. */ function equal(string memory a, string memory b) internal pure returns (bool) { return keccak256(bytes(a)) == keccak256(bytes(b)); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.5.0) (token/ERC721/extensions/IERC721Enumerable.sol) pragma solidity ^0.8.0; import "../IERC721.sol"; /** * @title ERC-721 Non-Fungible Token Standard, optional enumeration extension * @dev See https://eips.ethereum.org/EIPS/eip-721 */ interface IERC721Enumerable is IERC721 { /** * @dev Returns the total amount of tokens stored by the contract. */ function totalSupply() external view returns (uint256); /** * @dev Returns a token ID owned by `owner` at a given `index` of its token list. * Use along with {balanceOf} to enumerate all of ``owner``'s tokens. */ function tokenOfOwnerByIndex(address owner, uint256 index) external view returns (uint256); /** * @dev Returns a token ID at a given `index` of all the tokens stored by the contract. * Use along with {totalSupply} to enumerate all tokens. */ function tokenByIndex(uint256 index) external view returns (uint256); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (security/Pausable.sol) pragma solidity ^0.8.0; import "../utils/ContextUpgradeable.sol"; import "../proxy/utils/Initializable.sol"; /** * @dev Contract module which allows children to implement an emergency stop * mechanism that can be triggered by an authorized account. * * This module is used through inheritance. It will make available the * modifiers `whenNotPaused` and `whenPaused`, which can be applied to * the functions of your contract. Note that they will not be pausable by * simply including this module, only once the modifiers are put in place. */ abstract contract PausableUpgradeable is Initializable, ContextUpgradeable { /** * @dev Emitted when the pause is triggered by `account`. */ event Paused(address account); /** * @dev Emitted when the pause is lifted by `account`. */ event Unpaused(address account); bool private _paused; /** * @dev Initializes the contract in unpaused state. */ function __Pausable_init() internal onlyInitializing { __Pausable_init_unchained(); } function __Pausable_init_unchained() internal onlyInitializing { _paused = false; } /** * @dev Modifier to make a function callable only when the contract is not paused. * * Requirements: * * - The contract must not be paused. */ modifier whenNotPaused() { _requireNotPaused(); _; } /** * @dev Modifier to make a function callable only when the contract is paused. * * Requirements: * * - The contract must be paused. */ modifier whenPaused() { _requirePaused(); _; } /** * @dev Returns true if the contract is paused, and false otherwise. */ function paused() public view virtual returns (bool) { return _paused; } /** * @dev Throws if the contract is paused. */ function _requireNotPaused() internal view virtual { require(!paused(), "Pausable: paused"); } /** * @dev Throws if the contract is not paused. */ function _requirePaused() internal view virtual { require(paused(), "Pausable: not paused"); } /** * @dev Triggers stopped state. * * Requirements: * * - The contract must not be paused. */ function _pause() internal virtual whenNotPaused { _paused = true; emit Paused(_msgSender()); } /** * @dev Returns to normal state. * * Requirements: * * - The contract must be paused. */ function _unpause() internal virtual whenPaused { _paused = false; emit Unpaused(_msgSender()); } /** * @dev This empty reserved space is put in place to allow future versions to add new * variables without shifting down storage in the inheritance chain. * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps */ uint256[49] private __gap; }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import { ResourceMetering } from "../L1/ResourceMetering.sol"; /** * @title Constants * @notice Constants is a library for storing constants. Simple! Don't put everything in here, just * the stuff used in multiple contracts. Constants that only apply to a single contract * should be defined in that contract instead. */ library Constants { /** * @notice Special address to be used as the tx origin for gas estimation calls in the * KromaPortal and CrossDomainMessenger calls. You only need to use this address if * the minimum gas limit specified by the user is not actually enough to execute the * given message and you're attempting to estimate the actual necessary gas limit. We * use address(1) because it's the ecrecover precompile and therefore guaranteed to * never have any code on any EVM chain. */ address internal constant ESTIMATION_ADDRESS = address(1); /** * @notice Value used for the L2 sender storage slot in both the KromaPortal and the * CrossDomainMessenger contracts before an actual sender is set. This value is * non-zero to reduce the gas cost of message passing transactions. */ address internal constant DEFAULT_L2_SENDER = 0x000000000000000000000000000000000000dEaD; /** * @notice Returns the default values for the ResourceConfig. These are the recommended values * for a production network. */ function DEFAULT_RESOURCE_CONFIG() internal pure returns (ResourceMetering.ResourceConfig memory) { ResourceMetering.ResourceConfig memory config = ResourceMetering.ResourceConfig({ maxResourceLimit: 20_000_000, elasticityMultiplier: 10, baseFeeMaxChangeDenominator: 8, minimumBaseFee: 1 gwei, systemTxMaxGas: 1_000_000, maximumBaseFee: type(uint128).max }); return config; } /** * @notice The denominator of the validator reward. * DO NOT change this value if the L2 chain is already operational. */ uint256 internal constant VALIDATOR_REWARD_DENOMINATOR = 10000; /** * @notice An address that identifies that current submission round is a public round. */ address internal constant VALIDATOR_PUBLIC_ROUND_ADDRESS = address(type(uint160).max); }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import { Hashing } from "./Hashing.sol"; import { Types } from "./Types.sol"; import { RLPWriter } from "./rlp/RLPWriter.sol"; /** * @title Encoding * @notice Encoding handles Kroma's various different encoding schemes. */ library Encoding { /** * @notice RLP encodes the L2 transaction that would be generated when a given deposit is sent * to the L2 system. Useful for searching for a deposit in the L2 system. The * transaction is prefixed with 0x7e to identify its EIP-2718 type. * * @param _tx User deposit transaction to encode. * * @return RLP encoded L2 deposit transaction. */ function encodeDepositTransaction(Types.UserDepositTransaction memory _tx) internal pure returns (bytes memory) { bytes32 source = Hashing.hashDepositSource(_tx.l1BlockHash, _tx.logIndex); bytes[] memory raw = new bytes[](7); raw[0] = RLPWriter.writeBytes(abi.encodePacked(source)); raw[1] = RLPWriter.writeAddress(_tx.from); raw[2] = _tx.isCreation ? RLPWriter.writeBytes("") : RLPWriter.writeAddress(_tx.to); raw[3] = RLPWriter.writeUint(_tx.mint); raw[4] = RLPWriter.writeUint(_tx.value); raw[5] = RLPWriter.writeUint(uint256(_tx.gasLimit)); raw[6] = RLPWriter.writeBytes(_tx.data); return abi.encodePacked(uint8(0x7e), RLPWriter.writeList(raw)); } /** * @notice Encodes the cross domain message based on the version that is encoded into the * message nonce. * * @param _nonce Message nonce with version encoded into the first two bytes. * @param _sender Address of the sender of the message. * @param _target Address of the target of the message. * @param _value ETH value to send to the target. * @param _gasLimit Gas limit to use for the message. * @param _data Data to send with the message. * * @return Encoded cross domain message. */ function encodeCrossDomainMessage( uint256 _nonce, address _sender, address _target, uint256 _value, uint256 _gasLimit, bytes memory _data ) internal pure returns (bytes memory) { (, uint16 version) = decodeVersionedNonce(_nonce); if (version == 0) { return encodeCrossDomainMessageV0(_nonce, _sender, _target, _value, _gasLimit, _data); } else { revert("Encoding: unknown cross domain message version"); } } /** * @notice Encodes a cross domain message based on the V0 (current) encoding. * * @param _nonce Message nonce. * @param _sender Address of the sender of the message. * @param _target Address of the target of the message. * @param _value ETH value to send to the target. * @param _gasLimit Gas limit to use for the message. * @param _data Data to send with the message. * * @return Encoded cross domain message. */ function encodeCrossDomainMessageV0( uint256 _nonce, address _sender, address _target, uint256 _value, uint256 _gasLimit, bytes memory _data ) internal pure returns (bytes memory) { return abi.encodeWithSignature( "relayMessage(uint256,address,address,uint256,uint256,bytes)", _nonce, _sender, _target, _value, _gasLimit, _data ); } /** * @notice Adds a version number into the first two bytes of a message nonce. * * @param _nonce Message nonce to encode into. * @param _version Version number to encode into the message nonce. * * @return Message nonce with version encoded into the first two bytes. */ function encodeVersionedNonce(uint240 _nonce, uint16 _version) internal pure returns (uint256) { uint256 nonce; assembly { nonce := or(shl(240, _version), _nonce) } return nonce; } /** * @notice Pulls the version out of a version-encoded nonce. * * @param _nonce Message nonce with version encoded into the first two bytes. * * @return Nonce without encoded version. * @return Version of the message. */ function decodeVersionedNonce(uint256 _nonce) internal pure returns (uint240, uint16) { uint240 nonce; uint16 version; assembly { nonce := and(_nonce, 0x0000ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff) version := shr(240, _nonce) } return (nonce, version); } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import { Encoding } from "./Encoding.sol"; import { RLPWriter } from "./rlp/RLPWriter.sol"; import { Types } from "./Types.sol"; /** * @title Hashing * @notice Hashing handles Kroma's various different hashing schemes. */ library Hashing { /** * @notice Computes the hash of the RLP encoded L2 transaction that would be generated when a * given deposit is sent to the L2 system. Useful for searching for a deposit in the L2 * system. * * @param _tx User deposit transaction to hash. * * @return Hash of the RLP encoded L2 deposit transaction. */ function hashDepositTransaction(Types.UserDepositTransaction memory _tx) internal pure returns (bytes32) { return keccak256(Encoding.encodeDepositTransaction(_tx)); } /** * @notice Computes the deposit transaction's "source hash", a value that guarantees the hash * of the L2 transaction that corresponds to a deposit is unique and is * deterministically generated from L1 transaction data. * * @param _l1BlockHash Hash of the L1 block where the deposit was included. * @param _logIndex The index of the log that created the deposit transaction. * * @return Hash of the deposit transaction's "source hash". */ function hashDepositSource(bytes32 _l1BlockHash, uint64 _logIndex) internal pure returns (bytes32) { bytes32 depositId = keccak256(abi.encode(_l1BlockHash, _logIndex)); return keccak256(abi.encode(bytes32(0), depositId)); } /** * @notice Hashes the cross domain message based on the version that is encoded into the * message nonce. * * @param _nonce Message nonce with version encoded into the first two bytes. * @param _sender Address of the sender of the message. * @param _target Address of the target of the message. * @param _value ETH value to send to the target. * @param _gasLimit Gas limit to use for the message. * @param _data Data to send with the message. * * @return Hashed cross domain message. */ function hashCrossDomainMessage( uint256 _nonce, address _sender, address _target, uint256 _value, uint256 _gasLimit, bytes memory _data ) internal pure returns (bytes32) { (, uint16 version) = Encoding.decodeVersionedNonce(_nonce); if (version == 0) { return hashCrossDomainMessageV0(_nonce, _sender, _target, _value, _gasLimit, _data); } else { revert("Hashing: unknown cross domain message version"); } } /** * @notice Hashes a cross domain message based on the V0 (current) encoding. * * @param _nonce Message nonce. * @param _sender Address of the sender of the message. * @param _target Address of the target of the message. * @param _value ETH value to send to the target. * @param _gasLimit Gas limit to use for the message. * @param _data Data to send with the message. * * @return Hashed cross domain message. */ function hashCrossDomainMessageV0( uint256 _nonce, address _sender, address _target, uint256 _value, uint256 _gasLimit, bytes memory _data ) internal pure returns (bytes32) { return keccak256( Encoding.encodeCrossDomainMessageV0( _nonce, _sender, _target, _value, _gasLimit, _data ) ); } /** * @notice Derives the withdrawal hash according to the encoding in the L2 Withdrawer contract * * @param _tx Withdrawal transaction to hash. * * @return Hashed withdrawal transaction. */ function hashWithdrawal(Types.WithdrawalTransaction memory _tx) internal pure returns (bytes32) { return keccak256( abi.encode(_tx.nonce, _tx.sender, _tx.target, _tx.value, _tx.gasLimit, _tx.data) ); } /** * @notice Hashes the various elements of an output root proof into an output root hash which * can be used to check if the proof is valid. * * @param _outputRootProof Output root proof which should be hashed to an output root. * * @return Hashed output root proof. */ function hashOutputRootProof(Types.OutputRootProof memory _outputRootProof) internal pure returns (bytes32) { if (_outputRootProof.version == bytes32(uint256(0))) { return hashOutputRootProofV0(_outputRootProof); } else { revert("Hashing: unknown output root proof version"); } } /** * @notice Hashes the various elements of an output root proof into an output root hash which * can be used to check if the proof is valid. (version 0) * * @param _outputRootProof Output root proof which should be hashed to an output root. * * @return Hashed output root proof. */ function hashOutputRootProofV0(Types.OutputRootProof memory _outputRootProof) internal pure returns (bytes32) { return keccak256( abi.encode( _outputRootProof.version, _outputRootProof.stateRoot, _outputRootProof.messagePasserStorageRoot, _outputRootProof.blockHash, _outputRootProof.nextBlockHash ) ); } /** * @notice Fills the values of the block hash fields to a given bytes. * * @param _publicInput Public input which should be hashed to a block hash. * @param _rlps Pre-RLP encoded data which should be hashed to a block hash. * @param _raw An array of bytes to be populated. */ function _fillBlockHashFieldsToBytes( Types.PublicInput memory _publicInput, Types.BlockHeaderRLP memory _rlps, bytes[] memory _raw ) private pure { _raw[0] = RLPWriter.writeBytes(abi.encodePacked(_publicInput.parentHash)); _raw[1] = _rlps.uncleHash; _raw[2] = _rlps.coinbase; _raw[3] = RLPWriter.writeBytes(abi.encodePacked(_publicInput.stateRoot)); _raw[4] = RLPWriter.writeBytes(abi.encodePacked(_publicInput.transactionsRoot)); _raw[5] = _rlps.receiptsRoot; _raw[6] = _rlps.logsBloom; _raw[7] = _rlps.difficulty; _raw[8] = RLPWriter.writeUint(_publicInput.number); _raw[9] = RLPWriter.writeUint(_publicInput.gasLimit); _raw[10] = _rlps.gasUsed; _raw[11] = RLPWriter.writeUint(_publicInput.timestamp); _raw[12] = _rlps.extraData; _raw[13] = _rlps.mixHash; _raw[14] = _rlps.nonce; _raw[15] = RLPWriter.writeUint(_publicInput.baseFee); } /** * @notice Hashes the various elements of a block header into a block hash(before shanghai). * * @param _publicInput Public input which should be hashed to a block hash. * @param _rlps Pre-RLP encoded data which should be hashed to a block hash. * * @return Hashed block header. */ function hashBlockHeader( Types.PublicInput memory _publicInput, Types.BlockHeaderRLP memory _rlps ) internal pure returns (bytes32) { bytes[] memory raw = new bytes[](16); _fillBlockHashFieldsToBytes(_publicInput, _rlps, raw); return keccak256(RLPWriter.writeList(raw)); } /** * @notice Hashes the various elements of a block header into a block hash(after shanghai). * * @param _publicInput Public input which should be hashed to a block hash. * @param _rlps Pre-RLP encoded data which should be hashed to a block hash. * * @return Hashed block header. */ function hashBlockHeaderShanghai( Types.PublicInput memory _publicInput, Types.BlockHeaderRLP memory _rlps ) internal pure returns (bytes32) { bytes[] memory raw = new bytes[](17); _fillBlockHashFieldsToBytes(_publicInput, _rlps, raw); raw[16] = RLPWriter.writeBytes(abi.encodePacked(_publicInput.withdrawalsRoot)); return keccak256(RLPWriter.writeList(raw)); } /** * @notice Hashes the various elements of a public input into a public input hash. * * @param _prevStateRoot Previous state root. * @param _publicInput Public input which should be hashed to a public input hash. * @param _dummyHashes Dummy hashes returned from generateDummyHashes(). * * @return Hashed block header. */ function hashPublicInput( bytes32 _prevStateRoot, Types.PublicInput memory _publicInput, bytes32[] memory _dummyHashes ) internal pure returns (bytes32) { return keccak256( abi.encodePacked( _prevStateRoot, _publicInput.stateRoot, _publicInput.withdrawalsRoot, _publicInput.blockHash, _publicInput.parentHash, _publicInput.number, _publicInput.timestamp, _publicInput.baseFee, _publicInput.gasLimit, uint16(_publicInput.txHashes.length), _publicInput.txHashes, _dummyHashes ) ); } /** * @notice Generates a bytes32 array filled with a dummy hash for the given length. * * @param _dummyHashes Dummy hash. * @param _length A length of the array. * * @return Bytes32 array filled with dummy hash. */ function generateDummyHashes(bytes32 _dummyHashes, uint256 _length) internal pure returns (bytes32[] memory) { bytes32[] memory hashes = new bytes32[](_length); for (uint256 i = 0; i < _length; i++) { hashes[i] = _dummyHashes; } return hashes; } }
// SPDX-License-Identifier: MIT pragma solidity 0.8.15; /** * @title SafeCall * @notice Perform low level safe calls */ library SafeCall { /** * @notice Perform a low level call without copying any returndata * * @param _target Address to call * @param _gas Amount of gas to pass to the call * @param _value Amount of value to pass to the call * @param _calldata Calldata to pass to the call */ function call( address _target, uint256 _gas, uint256 _value, bytes memory _calldata ) internal returns (bool) { bool _success; assembly { _success := call( _gas, // gas _target, // recipient _value, // ether value add(_calldata, 32), // inloc mload(_calldata), // inlen 0, // outloc 0 // outlen ) } return _success; } /** * @notice Helper function to determine if there is sufficient gas remaining within the context * to guarantee that the minimum gas requirement for a call will be met as well as * optionally reserving a specified amount of gas for after the call has concluded. * * @param _minGas The minimum amount of gas that may be passed to the target context. * @param _reservedGas Optional amount of gas to reserve for the caller after the execution * of the target context. * * @return `true` if there is enough gas remaining to safely supply `_minGas` to the target * context as well as reserve `_reservedGas` for the caller after the execution of * the target context. * * @dev !!!!! FOOTGUN ALERT !!!!! * 1.) The 40_000 base buffer is to account for the worst case of the dynamic cost of the * `CALL` opcode's `address_access_cost`, `positive_value_cost`, and * `value_to_empty_account_cost` factors with an added buffer of 5,700 gas. It is * still possible to self-rekt by initiating a withdrawal with a minimum gas limit * that does not account for the `memory_expansion_cost` & `code_execution_cost` * factors of the dynamic cost of the `CALL` opcode. * 2.) This function should *directly* precede the external call if possible. There is an * added buffer to account for gas consumed between this check and the call, but it * is only 5,700 gas. * 3.) Because EIP-150 ensures that a maximum of 63/64ths of the remaining gas in the call * frame may be passed to a subcontext, we need to ensure that the gas will not be * truncated. * 4.) Use wisely. This function is not a silver bullet. */ function hasMinGas(uint256 _minGas, uint256 _reservedGas) internal view returns (bool) { bool _hasMinGas; assembly { // Equation: gas × 63 ≥ minGas × 64 + 63(40_000 + reservedGas) _hasMinGas := iszero( lt(mul(gas(), 63), add(mul(_minGas, 64), mul(add(40000, _reservedGas), 63))) ) } return _hasMinGas; } /** * @notice Perform a low level call without copying any returndata. This function * will revert if the call cannot be performed with the specified minimum * gas. * * @param _target Address to call * @param _minGas The minimum amount of gas that may be passed to the call * @param _value Amount of value to pass to the call * @param _calldata Calldata to pass to the call */ function callWithMinGas( address _target, uint256 _minGas, uint256 _value, bytes memory _calldata ) internal returns (bool) { bool _success; bool _hasMinGas = hasMinGas(_minGas, 0); assembly { // Assertion: gasleft() >= (_minGas * 64) / 63 + 40_000 if iszero(_hasMinGas) { // Store the "Error(string)" selector in scratch space. mstore(0, 0x08c379a0) // Store the pointer to the string length in scratch space. mstore(32, 32) // Store the string. // // SAFETY: // - We pad the beginning of the string with two zero bytes as well as the // length (24) to ensure that we override the free memory pointer at offset // 0x40. This is necessary because the free memory pointer is likely to // be greater than 1 byte when this function is called, but it is incredibly // unlikely that it will be greater than 3 bytes. As for the data within // 0x60, it is ensured that it is 0 due to 0x60 being the zero offset. // - It's fine to clobber the free memory pointer, we're reverting. mstore(88, 0x0000185361666543616c6c3a204e6f7420656e6f75676820676173) // Revert with 'Error("SafeCall: Not enough gas")' revert(28, 100) } // The call will be supplied at least ((_minGas * 64) / 63 + 40_000 - 49) gas due to the // above assertion. This ensures that, in all circumstances (except for when the // `_minGas` does not account for the `memory_expansion_cost` and `code_execution_cost` // factors of the dynamic cost of the `CALL` opcode), the call will receive at least // the minimum amount of gas specified. _success := call( gas(), // gas _target, // recipient _value, // ether value add(_calldata, 32), // inloc mload(_calldata), // inlen 0x00, // outloc 0x00 // outlen ) } return _success; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol) pragma solidity ^0.8.0; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { enum Rounding { Down, // Toward negative infinity Up, // Toward infinity Zero // Toward zero } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return a > b ? a : b; } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds up instead * of rounding down. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b - 1) / b can overflow on addition, so we distribute. return a == 0 ? 0 : (a - 1) / b + 1; } /** * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0 * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) * with further edits by Uniswap Labs also under MIT license. */ function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2^256 + prod0. uint256 prod0; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod0 := mul(x, y) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { // Solidity will revert if denominator == 0, unlike the div opcode on its own. // The surrounding unchecked block does not change this fact. // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic. return prod0 / denominator; } // Make sure the result is less than 2^256. Also prevents denominator == 0. require(denominator > prod1, "Math: mulDiv overflow"); /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1. // See https://cs.stackexchange.com/q/138556/92363. // Does not overflow because the denominator cannot be zero at this stage in the function. uint256 twos = denominator & (~denominator + 1); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv = 1 mod 2^4. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works // in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2^8 inverse *= 2 - denominator * inverse; // inverse mod 2^16 inverse *= 2 - denominator * inverse; // inverse mod 2^32 inverse *= 2 - denominator * inverse; // inverse mod 2^64 inverse *= 2 - denominator * inverse; // inverse mod 2^128 inverse *= 2 - denominator * inverse; // inverse mod 2^256 // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @notice Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) { uint256 result = mulDiv(x, y, denominator); if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) { result += 1; } return result; } /** * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down. * * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11). */ function sqrt(uint256 a) internal pure returns (uint256) { if (a == 0) { return 0; } // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target. // // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`. // // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)` // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))` // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)` // // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit. uint256 result = 1 << (log2(a) >> 1); // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128, // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision // into the expected uint128 result. unchecked { result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; return min(result, a / result); } } /** * @notice Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = sqrt(a); return result + (rounding == Rounding.Up && result * result < a ? 1 : 0); } } /** * @dev Return the log in base 2, rounded down, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 128; } if (value >> 64 > 0) { value >>= 64; result += 64; } if (value >> 32 > 0) { value >>= 32; result += 32; } if (value >> 16 > 0) { value >>= 16; result += 16; } if (value >> 8 > 0) { value >>= 8; result += 8; } if (value >> 4 > 0) { value >>= 4; result += 4; } if (value >> 2 > 0) { value >>= 2; result += 2; } if (value >> 1 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 2, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log2(value); return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0); } } /** * @dev Return the log in base 10, rounded down, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >= 10 ** 64) { value /= 10 ** 64; result += 64; } if (value >= 10 ** 32) { value /= 10 ** 32; result += 32; } if (value >= 10 ** 16) { value /= 10 ** 16; result += 16; } if (value >= 10 ** 8) { value /= 10 ** 8; result += 8; } if (value >= 10 ** 4) { value /= 10 ** 4; result += 4; } if (value >= 10 ** 2) { value /= 10 ** 2; result += 2; } if (value >= 10 ** 1) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log10(value); return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0); } } /** * @dev Return the log in base 256, rounded down, of a positive value. * Returns 0 if given 0. * * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string. */ function log256(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 16; } if (value >> 64 > 0) { value >>= 64; result += 8; } if (value >> 32 > 0) { value >>= 32; result += 4; } if (value >> 16 > 0) { value >>= 16; result += 2; } if (value >> 8 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 256, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log256(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log256(value); return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol) pragma solidity ^0.8.0; /** * @dev Standard signed math utilities missing in the Solidity language. */ library SignedMath { /** * @dev Returns the largest of two signed numbers. */ function max(int256 a, int256 b) internal pure returns (int256) { return a > b ? a : b; } /** * @dev Returns the smallest of two signed numbers. */ function min(int256 a, int256 b) internal pure returns (int256) { return a < b ? a : b; } /** * @dev Returns the average of two signed numbers without overflow. * The result is rounded towards zero. */ function average(int256 a, int256 b) internal pure returns (int256) { // Formula from the book "Hacker's Delight" int256 x = (a & b) + ((a ^ b) >> 1); return x + (int256(uint256(x) >> 255) & (a ^ b)); } /** * @dev Returns the absolute unsigned value of a signed value. */ function abs(int256 n) internal pure returns (uint256) { unchecked { // must be unchecked in order to support `n = type(int256).min` return uint256(n >= 0 ? n : -n); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/Context.sol) pragma solidity ^0.8.0; import "../proxy/utils/Initializable.sol"; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract ContextUpgradeable is Initializable { function __Context_init() internal onlyInitializing { } function __Context_init_unchained() internal onlyInitializing { } function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } /** * @dev This empty reserved space is put in place to allow future versions to add new * variables without shifting down storage in the inheritance chain. * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps */ uint256[50] private __gap; }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (proxy/utils/Initializable.sol) pragma solidity ^0.8.2; import "../../utils/AddressUpgradeable.sol"; /** * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect. * * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in * case an upgrade adds a module that needs to be initialized. * * For example: * * [.hljs-theme-light.nopadding] * ```solidity * contract MyToken is ERC20Upgradeable { * function initialize() initializer public { * __ERC20_init("MyToken", "MTK"); * } * } * * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable { * function initializeV2() reinitializer(2) public { * __ERC20Permit_init("MyToken"); * } * } * ``` * * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}. * * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity. * * [CAUTION] * ==== * Avoid leaving a contract uninitialized. * * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed: * * [.hljs-theme-light.nopadding] * ``` * /// @custom:oz-upgrades-unsafe-allow constructor * constructor() { * _disableInitializers(); * } * ``` * ==== */ abstract contract Initializable { /** * @dev Indicates that the contract has been initialized. * @custom:oz-retyped-from bool */ uint8 private _initialized; /** * @dev Indicates that the contract is in the process of being initialized. */ bool private _initializing; /** * @dev Triggered when the contract has been initialized or reinitialized. */ event Initialized(uint8 version); /** * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope, * `onlyInitializing` functions can be used to initialize parent contracts. * * Similar to `reinitializer(1)`, except that functions marked with `initializer` can be nested in the context of a * constructor. * * Emits an {Initialized} event. */ modifier initializer() { bool isTopLevelCall = !_initializing; require( (isTopLevelCall && _initialized < 1) || (!AddressUpgradeable.isContract(address(this)) && _initialized == 1), "Initializable: contract is already initialized" ); _initialized = 1; if (isTopLevelCall) { _initializing = true; } _; if (isTopLevelCall) { _initializing = false; emit Initialized(1); } } /** * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be * used to initialize parent contracts. * * A reinitializer may be used after the original initialization step. This is essential to configure modules that * are added through upgrades and that require initialization. * * When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer` * cannot be nested. If one is invoked in the context of another, execution will revert. * * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in * a contract, executing them in the right order is up to the developer or operator. * * WARNING: setting the version to 255 will prevent any future reinitialization. * * Emits an {Initialized} event. */ modifier reinitializer(uint8 version) { require(!_initializing && _initialized < version, "Initializable: contract is already initialized"); _initialized = version; _initializing = true; _; _initializing = false; emit Initialized(version); } /** * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the * {initializer} and {reinitializer} modifiers, directly or indirectly. */ modifier onlyInitializing() { require(_initializing, "Initializable: contract is not initializing"); _; } /** * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call. * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized * to any version. It is recommended to use this to lock implementation contracts that are designed to be called * through proxies. * * Emits an {Initialized} event the first time it is successfully executed. */ function _disableInitializers() internal virtual { require(!_initializing, "Initializable: contract is initializing"); if (_initialized != type(uint8).max) { _initialized = type(uint8).max; emit Initialized(type(uint8).max); } } /** * @dev Returns the highest version that has been initialized. See {reinitializer}. */ function _getInitializedVersion() internal view returns (uint8) { return _initialized; } /** * @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}. */ function _isInitializing() internal view returns (bool) { return _initializing; } }
// SPDX-License-Identifier: MIT pragma solidity 0.8.15; import { Initializable } from "@openzeppelin/contracts/proxy/utils/Initializable.sol"; import { Math } from "@openzeppelin/contracts/utils/math/Math.sol"; import { Arithmetic } from "../libraries/Arithmetic.sol"; import { Burn } from "../libraries/Burn.sol"; /** * @custom:upgradeable * @title ResourceMetering * @notice ResourceMetering implements an EIP-1559 style resource metering system where pricing * updates automatically based on current demand. */ abstract contract ResourceMetering is Initializable { /** * @notice Represents the various parameters that control the way in which resources are * metered. Corresponds to the EIP-1559 resource metering system. * * @custom:field prevBaseFee Base fee from the previous block(s). * @custom:field prevBoughtGas Amount of gas bought so far in the current block. * @custom:field prevBlockNum Last block number that the base fee was updated. */ struct ResourceParams { uint128 prevBaseFee; uint64 prevBoughtGas; uint64 prevBlockNum; } /** * @notice Represents the configuration for the EIP-1559 based curve for the deposit gas * market. These values should be set with care as it is possible to set them in * a way that breaks the deposit gas market. The target resource limit is defined as * maxResourceLimit / elasticityMultiplier. This struct was designed to fit within a * single word. There is additional space for additions in the future. * * @custom:field maxResourceLimit Represents the maximum amount of deposit gas that * can be purchased per block. * @custom:field elasticityMultiplier Determines the target resource limit along with * the resource limit. * @custom:field baseFeeMaxChangeDenominator Determines max change on fee per block. * @custom:field minimumBaseFee The min deposit base fee, it is clamped to this * value. * @custom:field systemTxMaxGas The amount of gas supplied to the system * transaction. This should be set to the same number * that the kroma-node sets as the gas limit for the * system transaction. * @custom:field maximumBaseFee The max deposit base fee, it is clamped to this * value. */ struct ResourceConfig { uint32 maxResourceLimit; uint8 elasticityMultiplier; uint8 baseFeeMaxChangeDenominator; uint32 minimumBaseFee; uint32 systemTxMaxGas; uint128 maximumBaseFee; } /** * @notice EIP-1559 style gas parameters. */ ResourceParams public params; /** * @notice Reserve extra slots (to a total of 50) in the storage layout for future upgrades. */ uint256[48] private __gap; /** * @notice Meters access to a function based an amount of a requested resource. * * @param _amount Amount of the resource requested. */ modifier metered(uint64 _amount) { // Record initial gas amount so we can refund for it later. uint256 initialGas = gasleft(); // Run the underlying function. _; // Run the metering function. _metered(_amount, initialGas); } /** * @notice An internal function that holds all of the logic for metering a resource. * * @param _amount Amount of the resource requested. * @param _initialGas The amount of gas before any modifier execution. */ function _metered(uint64 _amount, uint256 _initialGas) internal { // Update block number and base fee if necessary. uint256 blockDiff = block.number - params.prevBlockNum; ResourceConfig memory config = _resourceConfig(); int256 targetResourceLimit = int256(uint256(config.maxResourceLimit)) / int256(uint256(config.elasticityMultiplier)); if (blockDiff > 0) { // Handle updating EIP-1559 style gas parameters. We use EIP-1559 to restrict the rate // at which deposits can be created and therefore limit the potential for deposits to // spam the L2 system. Fee scheme is very similar to EIP-1559 with minor changes. int256 gasUsedDelta = int256(uint256(params.prevBoughtGas)) - targetResourceLimit; int256 baseFeeDelta = (int256(uint256(params.prevBaseFee)) * gasUsedDelta) / (targetResourceLimit * int256(uint256(config.baseFeeMaxChangeDenominator))); // Update base fee by adding the base fee delta and clamp the resulting value between // min and max. int256 newBaseFee = Arithmetic.clamp({ _value: int256(uint256(params.prevBaseFee)) + baseFeeDelta, _min: int256(uint256(config.minimumBaseFee)), _max: int256(uint256(config.maximumBaseFee)) }); // If we skipped more than one block, we also need to account for every empty block. // Empty block means there was no demand for deposits in that block, so we should // reflect this lack of demand in the fee. if (blockDiff > 1) { // Update the base fee by repeatedly applying the exponent 1-(1/change_denominator) // blockDiff - 1 times. Simulates multiple empty blocks. Clamp the resulting value // between min and max. newBaseFee = Arithmetic.clamp({ _value: Arithmetic.cdexp({ _coefficient: newBaseFee, _denominator: int256(uint256(config.baseFeeMaxChangeDenominator)), _exponent: int256(blockDiff - 1) }), _min: int256(uint256(config.minimumBaseFee)), _max: int256(uint256(config.maximumBaseFee)) }); } // Update new base fee, reset bought gas, and update block number. params.prevBaseFee = uint128(uint256(newBaseFee)); params.prevBoughtGas = 0; params.prevBlockNum = uint64(block.number); } // Make sure we can actually buy the resource amount requested by the user. params.prevBoughtGas += _amount; require( int256(uint256(params.prevBoughtGas)) <= int256(uint256(config.maxResourceLimit)), "ResourceMetering: cannot buy more gas than available gas limit" ); // Determine the amount of ETH to be paid. uint256 resourceCost = uint256(_amount) * uint256(params.prevBaseFee); // We currently charge for this ETH amount as an L1 gas burn, so we convert the ETH amount // into gas by dividing by the L1 base fee. We assume a minimum base fee of 1 gwei to avoid // division by zero for L1s that don't support 1559 or to avoid excessive gas burns during // periods of extremely low L1 demand. One-day average gas fee hasn't dipped below 1 gwei // during any 1 day period in the last 5 years, so should be fine. uint256 gasCost = resourceCost / Math.max(block.basefee, 1 gwei); // Give the user a refund based on the amount of gas they used to do all of the work up to // this point. Since we're at the end of the modifier, this should be pretty accurate. Acts // effectively like a dynamic stipend (with a minimum value). uint256 usedGas = _initialGas - gasleft(); if (gasCost > usedGas) { Burn.gas(gasCost - usedGas); } } /** * @notice Virtual function that returns the resource config. Contracts that inherit this * contract must implement this function. * * @return ResourceConfig */ function _resourceConfig() internal virtual returns (ResourceConfig memory); /** * @notice Sets initial resource parameter values. This function must either be called by the * initializer function of an upgradeable child contract. */ // solhint-disable-next-line func-name-mixedcase function __ResourceMetering_init() internal onlyInitializing { params = ResourceParams({ prevBaseFee: 1 gwei, prevBoughtGas: 0, prevBlockNum: uint64(block.number) }); } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.9; /** * @title Types * @notice Contains various types used throughout the Kroma contract system. */ library Types { /** * @notice CheckpointOutput represents a commitment to the state of L2 checkpoint. The timestamp * is the L1 timestamp that the output root is posted. This timestamp is used to verify * that the finalization period has passed since the output root was submitted. * * @custom:field submitter Address of the output submitter. * @custom:field outputRoot Hash of the L2 output. * @custom:field timestamp Timestamp of the L1 block that the output root was submitted in. * @custom:field l2BlockNumber L2 block number that the output corresponds to. */ struct CheckpointOutput { address submitter; bytes32 outputRoot; uint128 timestamp; uint128 l2BlockNumber; } /** * @notice Struct representing the elements that are hashed together to generate an output root * which itself represents a snapshot of the L2 state. * * @custom:field version Version of the output root. * @custom:field stateRoot Root of the state trie at the block of this output. * @custom:field messagePasserStorageRoot Root of the message passer storage trie. * @custom:field blockHash Hash of the block this output was generated from. * @custom:field nextBlockHash Hash of the next block. */ struct OutputRootProof { bytes32 version; bytes32 stateRoot; bytes32 messagePasserStorageRoot; bytes32 blockHash; bytes32 nextBlockHash; } /** * @notice Struct representing the elements that are hashed together to generate a public input. * * @custom:field blockHash The hash of the block. * @custom:field parentHash The hash of the previous block. * @custom:field timestamp The block time. * @custom:field number The block number. * @custom:field gasLimit Maximum gas allowed. * @custom:field baseFee The base fee per gas. * @custom:field transactionsRoot Root hash of the transactions. * @custom:field stateRoot Root hash of the state trie. * @custom:field withdrawalsRoot Root hash of the withdrawals. * @custom:field txHashes Array of hash of the transaction. */ struct PublicInput { bytes32 blockHash; bytes32 parentHash; uint64 timestamp; uint64 number; uint64 gasLimit; uint256 baseFee; bytes32 transactionsRoot; bytes32 stateRoot; bytes32 withdrawalsRoot; bytes32[] txHashes; } /** * @notice Struct representing the elements that are hashed together to generate a block hash. * Some of fields that are contained in PublicInput are omitted. * * @custom:field uncleHash RLP encoded uncle hash. * @custom:field coinbase RLP encoded coinbase. * @custom:field receiptsRoot RLP encoded receipts root. * @custom:field logsBloom RLP encoded logs bloom. * @custom:field difficulty RLP encoded difficulty. * @custom:field gasUsed RLP encoded gas used. * @custom:field extraData RLP encoded extra data. * @custom:field mixHash RLP encoded mix hash. * @custom:field nonce RLP encoded nonce. */ struct BlockHeaderRLP { bytes uncleHash; bytes coinbase; bytes receiptsRoot; bytes logsBloom; bytes difficulty; bytes gasUsed; bytes extraData; bytes mixHash; bytes nonce; } /** * @notice Struct representing a deposit transaction (L1 => L2 transaction) created by an end * user (as opposed to a system deposit transaction generated by the system). * * @custom:field from Address of the sender of the transaction. * @custom:field to Address of the recipient of the transaction. * @custom:field isCreation True if the transaction is a contract creation. * @custom:field value Value to send to the recipient. * @custom:field mint Amount of ETH to mint. * @custom:field gasLimit Gas limit of the transaction. * @custom:field data Data of the transaction. * @custom:field l1BlockHash Hash of the block the transaction was submitted in. * @custom:field logIndex Index of the log in the block the transaction was submitted in. */ struct UserDepositTransaction { address from; address to; bool isCreation; uint256 value; uint256 mint; uint64 gasLimit; bytes data; bytes32 l1BlockHash; uint64 logIndex; } /** * @notice Struct representing a withdrawal transaction. * * @custom:field nonce Nonce of the withdrawal transaction * @custom:field sender Address of the sender of the transaction. * @custom:field target Address of the recipient of the transaction. * @custom:field value Value to send to the recipient. * @custom:field gasLimit Gas limit of the transaction. * @custom:field data Data of the transaction. */ struct WithdrawalTransaction { uint256 nonce; address sender; address target; uint256 value; uint256 gasLimit; bytes data; } /** * @notice Struct representing a challenge. * * @custom:field turn The current turn. * @custom:field timeoutAt Timeout timestamp of the next turn. * @custom:field asserter Address of the asserter. * @custom:field challenger Address of the challenger. * @custom:field segments Array of the segment. * @custom:field segStart The L2 block number of the first segment. * @custom:field segSize The number of L2 blocks. */ struct Challenge { uint8 turn; uint64 timeoutAt; address asserter; address challenger; bytes32[] segments; uint256 segSize; uint256 segStart; } /** * @notice Struct representing a validator's bond. * * @custom:field amount Amount of the lock. * @custom:field expiresAt The expiration timestamp of bond. */ struct Bond { uint128 amount; uint128 expiresAt; } /** * @notice Struct representing multisig transaction data. * * @custom:field destination The destination address to run the transaction. * @custom:field executed Record whether a transaction was executed or not. * @custom:field value The value passed in while executing the transaction. * @custom:field data Calldata for transaction. */ struct MultiSigTransaction { address destination; bool executed; uint256 value; bytes data; } /** * @notice Struct representing the data for verifying the public input. * * @custom:field srcOutputRootProof Proof of the source output root. * @custom:field dstOutputRootProof Proof of the destination output root. * @custom:field publicInput Ingredients to compute the public input used by ZK proof verification. * @custom:field rlps Pre-encoded RLPs to compute the next block hash * of the source output root proof. * @custom:field l2ToL1MessagePasserBalance Balance of the L2ToL1MessagePasser account. * @custom:field l2ToL1MessagePasserCodeHash Codehash of the L2ToL1MessagePasser account. * @custom:field merkleProof Merkle proof of L2ToL1MessagePasser account against the state root. */ struct PublicInputProof { OutputRootProof srcOutputRootProof; OutputRootProof dstOutputRootProof; PublicInput publicInput; BlockHeaderRLP rlps; bytes32 l2ToL1MessagePasserBalance; bytes32 l2ToL1MessagePasserCodeHash; bytes[] merkleProof; } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /** * @custom:attribution https://github.com/bakaoh/solidity-rlp-encode * @title RLPWriter * @author RLPWriter is a library for encoding Solidity types to RLP bytes. Adapted from Bakaoh's * RLPEncode library (https://github.com/bakaoh/solidity-rlp-encode) with minor * modifications to improve legibility. */ library RLPWriter { /** * @notice RLP encodes a byte string. * * @param _in The byte string to encode. * * @return The RLP encoded string in bytes. */ function writeBytes(bytes memory _in) internal pure returns (bytes memory) { bytes memory encoded; if (_in.length == 1 && uint8(_in[0]) < 128) { encoded = _in; } else { encoded = abi.encodePacked(_writeLength(_in.length, 128), _in); } return encoded; } /** * @notice RLP encodes a list of RLP encoded byte byte strings. * * @param _in The list of RLP encoded byte strings. * * @return The RLP encoded list of items in bytes. */ function writeList(bytes[] memory _in) internal pure returns (bytes memory) { bytes memory list = _flatten(_in); return abi.encodePacked(_writeLength(list.length, 192), list); } /** * @notice RLP encodes a string. * * @param _in The string to encode. * * @return The RLP encoded string in bytes. */ function writeString(string memory _in) internal pure returns (bytes memory) { return writeBytes(bytes(_in)); } /** * @notice RLP encodes an address. * * @param _in The address to encode. * * @return The RLP encoded address in bytes. */ function writeAddress(address _in) internal pure returns (bytes memory) { return writeBytes(abi.encodePacked(_in)); } /** * @notice RLP encodes a uint. * * @param _in The uint256 to encode. * * @return The RLP encoded uint256 in bytes. */ function writeUint(uint256 _in) internal pure returns (bytes memory) { return writeBytes(_toBinary(_in)); } /** * @notice RLP encodes a bool. * * @param _in The bool to encode. * * @return The RLP encoded bool in bytes. */ function writeBool(bool _in) internal pure returns (bytes memory) { bytes memory encoded = new bytes(1); encoded[0] = (_in ? bytes1(0x01) : bytes1(0x80)); return encoded; } /** * @notice Encode the first byte and then the `len` in binary form if `length` is more than 55. * * @param _len The length of the string or the payload. * @param _offset 128 if item is string, 192 if item is list. * * @return RLP encoded bytes. */ function _writeLength(uint256 _len, uint256 _offset) private pure returns (bytes memory) { bytes memory encoded; if (_len < 56) { encoded = new bytes(1); encoded[0] = bytes1(uint8(_len) + uint8(_offset)); } else { uint256 lenLen; uint256 i = 1; while (_len / i != 0) { lenLen++; i *= 256; } encoded = new bytes(lenLen + 1); encoded[0] = bytes1(uint8(lenLen) + uint8(_offset) + 55); for (i = 1; i <= lenLen; i++) { encoded[i] = bytes1(uint8((_len / (256**(lenLen - i))) % 256)); } } return encoded; } /** * @notice Encode integer in big endian binary form with no leading zeroes. * * @param _x The integer to encode. * * @return RLP encoded bytes. */ function _toBinary(uint256 _x) private pure returns (bytes memory) { bytes memory b = abi.encodePacked(_x); uint256 i = 0; for (; i < 32; i++) { if (b[i] != 0) { break; } } bytes memory res = new bytes(32 - i); for (uint256 j = 0; j < res.length; j++) { res[j] = b[i++]; } return res; } /** * @custom:attribution https://github.com/Arachnid/solidity-stringutils * @notice Copies a piece of memory to another location. * * @param _dest Destination location. * @param _src Source location. * @param _len Length of memory to copy. */ function _memcpy( uint256 _dest, uint256 _src, uint256 _len ) private pure { uint256 dest = _dest; uint256 src = _src; uint256 len = _len; for (; len >= 32; len -= 32) { assembly { mstore(dest, mload(src)) } dest += 32; src += 32; } uint256 mask; unchecked { mask = 256**(32 - len) - 1; } assembly { let srcpart := and(mload(src), not(mask)) let destpart := and(mload(dest), mask) mstore(dest, or(destpart, srcpart)) } } /** * @custom:attribution https://github.com/sammayo/solidity-rlp-encoder * @notice Flattens a list of byte strings into one byte string. * * @param _list List of byte strings to flatten. * * @return The flattened byte string. */ function _flatten(bytes[] memory _list) private pure returns (bytes memory) { if (_list.length == 0) { return new bytes(0); } uint256 len; uint256 i = 0; for (; i < _list.length; i++) { len += _list[i].length; } bytes memory flattened = new bytes(len); uint256 flattenedPtr; assembly { flattenedPtr := add(flattened, 0x20) } for (i = 0; i < _list.length; i++) { bytes memory item = _list[i]; uint256 listPtr; assembly { listPtr := add(item, 0x20) } _memcpy(flattenedPtr, listPtr, item.length); flattenedPtr += _list[i].length; } return flattened; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol) pragma solidity ^0.8.1; /** * @dev Collection of functions related to the address type */ library AddressUpgradeable { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * * Furthermore, `isContract` will also return true if the target contract within * the same transaction is already scheduled for destruction by `SELFDESTRUCT`, * which only has an effect at the end of a transaction. * ==== * * [IMPORTANT] * ==== * You shouldn't rely on `isContract` to protect against flash loan attacks! * * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract * constructor. * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize/address.code.length, which returns 0 // for contracts in construction, since the code is only stored at the end // of the constructor execution. return account.code.length > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); (bool success, ) = recipient.call{value: amount}(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall( address target, bytes memory data, string memory errorMessage ) internal view returns (bytes memory) { (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { return functionDelegateCall(target, data, "Address: low-level delegate call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { (bool success, bytes memory returndata) = target.delegatecall(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract. * * _Available since v4.8._ */ function verifyCallResultFromTarget( address target, bool success, bytes memory returndata, string memory errorMessage ) internal view returns (bytes memory) { if (success) { if (returndata.length == 0) { // only check isContract if the call was successful and the return data is empty // otherwise we already know that it was a contract require(isContract(target), "Address: call to non-contract"); } return returndata; } else { _revert(returndata, errorMessage); } } /** * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the * revert reason or using the provided one. * * _Available since v4.3._ */ function verifyCallResult( bool success, bytes memory returndata, string memory errorMessage ) internal pure returns (bytes memory) { if (success) { return returndata; } else { _revert(returndata, errorMessage); } } function _revert(bytes memory returndata, string memory errorMessage) private pure { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly /// @solidity memory-safe-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (proxy/utils/Initializable.sol) pragma solidity ^0.8.2; import "../../utils/Address.sol"; /** * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect. * * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in * case an upgrade adds a module that needs to be initialized. * * For example: * * [.hljs-theme-light.nopadding] * ```solidity * contract MyToken is ERC20Upgradeable { * function initialize() initializer public { * __ERC20_init("MyToken", "MTK"); * } * } * * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable { * function initializeV2() reinitializer(2) public { * __ERC20Permit_init("MyToken"); * } * } * ``` * * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}. * * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity. * * [CAUTION] * ==== * Avoid leaving a contract uninitialized. * * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed: * * [.hljs-theme-light.nopadding] * ``` * /// @custom:oz-upgrades-unsafe-allow constructor * constructor() { * _disableInitializers(); * } * ``` * ==== */ abstract contract Initializable { /** * @dev Indicates that the contract has been initialized. * @custom:oz-retyped-from bool */ uint8 private _initialized; /** * @dev Indicates that the contract is in the process of being initialized. */ bool private _initializing; /** * @dev Triggered when the contract has been initialized or reinitialized. */ event Initialized(uint8 version); /** * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope, * `onlyInitializing` functions can be used to initialize parent contracts. * * Similar to `reinitializer(1)`, except that functions marked with `initializer` can be nested in the context of a * constructor. * * Emits an {Initialized} event. */ modifier initializer() { bool isTopLevelCall = !_initializing; require( (isTopLevelCall && _initialized < 1) || (!Address.isContract(address(this)) && _initialized == 1), "Initializable: contract is already initialized" ); _initialized = 1; if (isTopLevelCall) { _initializing = true; } _; if (isTopLevelCall) { _initializing = false; emit Initialized(1); } } /** * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be * used to initialize parent contracts. * * A reinitializer may be used after the original initialization step. This is essential to configure modules that * are added through upgrades and that require initialization. * * When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer` * cannot be nested. If one is invoked in the context of another, execution will revert. * * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in * a contract, executing them in the right order is up to the developer or operator. * * WARNING: setting the version to 255 will prevent any future reinitialization. * * Emits an {Initialized} event. */ modifier reinitializer(uint8 version) { require(!_initializing && _initialized < version, "Initializable: contract is already initialized"); _initialized = version; _initializing = true; _; _initializing = false; emit Initialized(version); } /** * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the * {initializer} and {reinitializer} modifiers, directly or indirectly. */ modifier onlyInitializing() { require(_initializing, "Initializable: contract is not initializing"); _; } /** * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call. * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized * to any version. It is recommended to use this to lock implementation contracts that are designed to be called * through proxies. * * Emits an {Initialized} event the first time it is successfully executed. */ function _disableInitializers() internal virtual { require(!_initializing, "Initializable: contract is initializing"); if (_initialized != type(uint8).max) { _initialized = type(uint8).max; emit Initialized(type(uint8).max); } } /** * @dev Returns the highest version that has been initialized. See {reinitializer}. */ function _getInitializedVersion() internal view returns (uint8) { return _initialized; } /** * @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}. */ function _isInitializing() internal view returns (bool) { return _initializing; } }
// SPDX-License-Identifier: MIT pragma solidity 0.8.15; import { Math } from "@openzeppelin/contracts/utils/math/Math.sol"; import { SignedMath } from "@openzeppelin/contracts/utils/math/SignedMath.sol"; import { FixedPointMathLib } from "@rari-capital/solmate/src/utils/FixedPointMathLib.sol"; /** * @title Arithmetic * @notice Even more math than before. */ library Arithmetic { /** * @notice Clamps a value between a minimum and maximum. * * @param _value The value to clamp. * @param _min The minimum value. * @param _max The maximum value. * * @return The clamped value. */ function clamp( int256 _value, int256 _min, int256 _max ) internal pure returns (int256) { return SignedMath.min(SignedMath.max(_value, _min), _max); } /** * @notice Clamps a value between a minimum and maximum. * * @param _value The value to clamp. * @param _min The minimum value. * @param _max The maximum value. * * @return The clamped value. */ function clamp( uint256 _value, uint256 _min, uint256 _max ) internal pure returns (uint256) { return Math.min(Math.max(_value, _min), _max); } /** * @notice (c)oefficient (d)enominator (exp)onentiation function. * Returns the result of: c * (1 - 1/d)^exp. * * @param _coefficient Coefficient of the function. * @param _denominator Fractional denominator. * @param _exponent Power function exponent. * * @return Result of c * (1 - 1/d)^exp. */ function cdexp( int256 _coefficient, int256 _denominator, int256 _exponent ) internal pure returns (int256) { return (_coefficient * (FixedPointMathLib.powWad(1e18 - (1e18 / _denominator), _exponent * 1e18))) / 1e18; } }
// SPDX-License-Identifier: MIT pragma solidity 0.8.15; import { SafeCall } from "./SafeCall.sol"; /** * @title Burn * @notice Utilities for burning stuff. */ library Burn { /** * Burns a given amount of ETH. * Note that execution engine of Kroma does not support SELFDESTRUCT opcode, so it sends ETH to zero address. * * @param _amount Amount of ETH to burn. */ function eth(uint256 _amount) internal { SafeCall.call(address(0), gasleft(), _amount, ""); } /** * Burns a given amount of gas. * * @param _amount Amount of gas to burn. */ function gas(uint256 _amount) internal view { uint256 i = 0; uint256 initialGas = gasleft(); while (initialGas - gasleft() < _amount) { ++i; } } }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.0; /// @notice Arithmetic library with operations for fixed-point numbers. /// @author Solmate (https://github.com/Rari-Capital/solmate/blob/main/src/utils/FixedPointMathLib.sol) library FixedPointMathLib { /*////////////////////////////////////////////////////////////// SIMPLIFIED FIXED POINT OPERATIONS //////////////////////////////////////////////////////////////*/ uint256 internal constant WAD = 1e18; // The scalar of ETH and most ERC20s. function mulWadDown(uint256 x, uint256 y) internal pure returns (uint256) { return mulDivDown(x, y, WAD); // Equivalent to (x * y) / WAD rounded down. } function mulWadUp(uint256 x, uint256 y) internal pure returns (uint256) { return mulDivUp(x, y, WAD); // Equivalent to (x * y) / WAD rounded up. } function divWadDown(uint256 x, uint256 y) internal pure returns (uint256) { return mulDivDown(x, WAD, y); // Equivalent to (x * WAD) / y rounded down. } function divWadUp(uint256 x, uint256 y) internal pure returns (uint256) { return mulDivUp(x, WAD, y); // Equivalent to (x * WAD) / y rounded up. } function powWad(int256 x, int256 y) internal pure returns (int256) { // Equivalent to x to the power of y because x ** y = (e ** ln(x)) ** y = e ** (ln(x) * y) return expWad((lnWad(x) * y) / int256(WAD)); // Using ln(x) means x must be greater than 0. } function expWad(int256 x) internal pure returns (int256 r) { unchecked { // When the result is < 0.5 we return zero. This happens when // x <= floor(log(0.5e18) * 1e18) ~ -42e18 if (x <= -42139678854452767551) return 0; // When the result is > (2**255 - 1) / 1e18 we can not represent it as an // int. This happens when x >= floor(log((2**255 - 1) / 1e18) * 1e18) ~ 135. if (x >= 135305999368893231589) revert("EXP_OVERFLOW"); // x is now in the range (-42, 136) * 1e18. Convert to (-42, 136) * 2**96 // for more intermediate precision and a binary basis. This base conversion // is a multiplication by 1e18 / 2**96 = 5**18 / 2**78. x = (x << 78) / 5**18; // Reduce range of x to (-½ ln 2, ½ ln 2) * 2**96 by factoring out powers // of two such that exp(x) = exp(x') * 2**k, where k is an integer. // Solving this gives k = round(x / log(2)) and x' = x - k * log(2). int256 k = ((x << 96) / 54916777467707473351141471128 + 2**95) >> 96; x = x - k * 54916777467707473351141471128; // k is in the range [-61, 195]. // Evaluate using a (6, 7)-term rational approximation. // p is made monic, we'll multiply by a scale factor later. int256 y = x + 1346386616545796478920950773328; y = ((y * x) >> 96) + 57155421227552351082224309758442; int256 p = y + x - 94201549194550492254356042504812; p = ((p * y) >> 96) + 28719021644029726153956944680412240; p = p * x + (4385272521454847904659076985693276 << 96); // We leave p in 2**192 basis so we don't need to scale it back up for the division. int256 q = x - 2855989394907223263936484059900; q = ((q * x) >> 96) + 50020603652535783019961831881945; q = ((q * x) >> 96) - 533845033583426703283633433725380; q = ((q * x) >> 96) + 3604857256930695427073651918091429; q = ((q * x) >> 96) - 14423608567350463180887372962807573; q = ((q * x) >> 96) + 26449188498355588339934803723976023; assembly { // Div in assembly because solidity adds a zero check despite the unchecked. // The q polynomial won't have zeros in the domain as all its roots are complex. // No scaling is necessary because p is already 2**96 too large. r := sdiv(p, q) } // r should be in the range (0.09, 0.25) * 2**96. // We now need to multiply r by: // * the scale factor s = ~6.031367120. // * the 2**k factor from the range reduction. // * the 1e18 / 2**96 factor for base conversion. // We do this all at once, with an intermediate result in 2**213 // basis, so the final right shift is always by a positive amount. r = int256((uint256(r) * 3822833074963236453042738258902158003155416615667) >> uint256(195 - k)); } } function lnWad(int256 x) internal pure returns (int256 r) { unchecked { require(x > 0, "UNDEFINED"); // We want to convert x from 10**18 fixed point to 2**96 fixed point. // We do this by multiplying by 2**96 / 10**18. But since // ln(x * C) = ln(x) + ln(C), we can simply do nothing here // and add ln(2**96 / 10**18) at the end. // Reduce range of x to (1, 2) * 2**96 // ln(2^k * x) = k * ln(2) + ln(x) int256 k = int256(log2(uint256(x))) - 96; x <<= uint256(159 - k); x = int256(uint256(x) >> 159); // Evaluate using a (8, 8)-term rational approximation. // p is made monic, we will multiply by a scale factor later. int256 p = x + 3273285459638523848632254066296; p = ((p * x) >> 96) + 24828157081833163892658089445524; p = ((p * x) >> 96) + 43456485725739037958740375743393; p = ((p * x) >> 96) - 11111509109440967052023855526967; p = ((p * x) >> 96) - 45023709667254063763336534515857; p = ((p * x) >> 96) - 14706773417378608786704636184526; p = p * x - (795164235651350426258249787498 << 96); // We leave p in 2**192 basis so we don't need to scale it back up for the division. // q is monic by convention. int256 q = x + 5573035233440673466300451813936; q = ((q * x) >> 96) + 71694874799317883764090561454958; q = ((q * x) >> 96) + 283447036172924575727196451306956; q = ((q * x) >> 96) + 401686690394027663651624208769553; q = ((q * x) >> 96) + 204048457590392012362485061816622; q = ((q * x) >> 96) + 31853899698501571402653359427138; q = ((q * x) >> 96) + 909429971244387300277376558375; assembly { // Div in assembly because solidity adds a zero check despite the unchecked. // The q polynomial is known not to have zeros in the domain. // No scaling required because p is already 2**96 too large. r := sdiv(p, q) } // r is in the range (0, 0.125) * 2**96 // Finalization, we need to: // * multiply by the scale factor s = 5.549… // * add ln(2**96 / 10**18) // * add k * ln(2) // * multiply by 10**18 / 2**96 = 5**18 >> 78 // mul s * 5e18 * 2**96, base is now 5**18 * 2**192 r *= 1677202110996718588342820967067443963516166; // add ln(2) * k * 5e18 * 2**192 r += 16597577552685614221487285958193947469193820559219878177908093499208371 * k; // add ln(2**96 / 10**18) * 5e18 * 2**192 r += 600920179829731861736702779321621459595472258049074101567377883020018308; // base conversion: mul 2**18 / 2**192 r >>= 174; } } /*////////////////////////////////////////////////////////////// LOW LEVEL FIXED POINT OPERATIONS //////////////////////////////////////////////////////////////*/ function mulDivDown( uint256 x, uint256 y, uint256 denominator ) internal pure returns (uint256 z) { assembly { // Store x * y in z for now. z := mul(x, y) // Equivalent to require(denominator != 0 && (x == 0 || (x * y) / x == y)) if iszero(and(iszero(iszero(denominator)), or(iszero(x), eq(div(z, x), y)))) { revert(0, 0) } // Divide z by the denominator. z := div(z, denominator) } } function mulDivUp( uint256 x, uint256 y, uint256 denominator ) internal pure returns (uint256 z) { assembly { // Store x * y in z for now. z := mul(x, y) // Equivalent to require(denominator != 0 && (x == 0 || (x * y) / x == y)) if iszero(and(iszero(iszero(denominator)), or(iszero(x), eq(div(z, x), y)))) { revert(0, 0) } // First, divide z - 1 by the denominator and add 1. // We allow z - 1 to underflow if z is 0, because we multiply the // end result by 0 if z is zero, ensuring we return 0 if z is zero. z := mul(iszero(iszero(z)), add(div(sub(z, 1), denominator), 1)) } } function rpow( uint256 x, uint256 n, uint256 scalar ) internal pure returns (uint256 z) { assembly { switch x case 0 { switch n case 0 { // 0 ** 0 = 1 z := scalar } default { // 0 ** n = 0 z := 0 } } default { switch mod(n, 2) case 0 { // If n is even, store scalar in z for now. z := scalar } default { // If n is odd, store x in z for now. z := x } // Shifting right by 1 is like dividing by 2. let half := shr(1, scalar) for { // Shift n right by 1 before looping to halve it. n := shr(1, n) } n { // Shift n right by 1 each iteration to halve it. n := shr(1, n) } { // Revert immediately if x ** 2 would overflow. // Equivalent to iszero(eq(div(xx, x), x)) here. if shr(128, x) { revert(0, 0) } // Store x squared. let xx := mul(x, x) // Round to the nearest number. let xxRound := add(xx, half) // Revert if xx + half overflowed. if lt(xxRound, xx) { revert(0, 0) } // Set x to scaled xxRound. x := div(xxRound, scalar) // If n is even: if mod(n, 2) { // Compute z * x. let zx := mul(z, x) // If z * x overflowed: if iszero(eq(div(zx, x), z)) { // Revert if x is non-zero. if iszero(iszero(x)) { revert(0, 0) } } // Round to the nearest number. let zxRound := add(zx, half) // Revert if zx + half overflowed. if lt(zxRound, zx) { revert(0, 0) } // Return properly scaled zxRound. z := div(zxRound, scalar) } } } } } /*////////////////////////////////////////////////////////////// GENERAL NUMBER UTILITIES //////////////////////////////////////////////////////////////*/ function sqrt(uint256 x) internal pure returns (uint256 z) { assembly { let y := x // We start y at x, which will help us make our initial estimate. z := 181 // The "correct" value is 1, but this saves a multiplication later. // This segment is to get a reasonable initial estimate for the Babylonian method. With a bad // start, the correct # of bits increases ~linearly each iteration instead of ~quadratically. // We check y >= 2^(k + 8) but shift right by k bits // each branch to ensure that if x >= 256, then y >= 256. if iszero(lt(y, 0x10000000000000000000000000000000000)) { y := shr(128, y) z := shl(64, z) } if iszero(lt(y, 0x1000000000000000000)) { y := shr(64, y) z := shl(32, z) } if iszero(lt(y, 0x10000000000)) { y := shr(32, y) z := shl(16, z) } if iszero(lt(y, 0x1000000)) { y := shr(16, y) z := shl(8, z) } // Goal was to get z*z*y within a small factor of x. More iterations could // get y in a tighter range. Currently, we will have y in [256, 256*2^16). // We ensured y >= 256 so that the relative difference between y and y+1 is small. // That's not possible if x < 256 but we can just verify those cases exhaustively. // Now, z*z*y <= x < z*z*(y+1), and y <= 2^(16+8), and either y >= 256, or x < 256. // Correctness can be checked exhaustively for x < 256, so we assume y >= 256. // Then z*sqrt(y) is within sqrt(257)/sqrt(256) of sqrt(x), or about 20bps. // For s in the range [1/256, 256], the estimate f(s) = (181/1024) * (s+1) is in the range // (1/2.84 * sqrt(s), 2.84 * sqrt(s)), with largest error when s = 1 and when s = 256 or 1/256. // Since y is in [256, 256*2^16), let a = y/65536, so that a is in [1/256, 256). Then we can estimate // sqrt(y) using sqrt(65536) * 181/1024 * (a + 1) = 181/4 * (y + 65536)/65536 = 181 * (y + 65536)/2^18. // There is no overflow risk here since y < 2^136 after the first branch above. z := shr(18, mul(z, add(y, 65536))) // A mul() is saved from starting z at 181. // Given the worst case multiplicative error of 2.84 above, 7 iterations should be enough. z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) // If x+1 is a perfect square, the Babylonian method cycles between // floor(sqrt(x)) and ceil(sqrt(x)). This statement ensures we return floor. // See: https://en.wikipedia.org/wiki/Integer_square_root#Using_only_integer_division // Since the ceil is rare, we save gas on the assignment and repeat division in the rare case. // If you don't care whether the floor or ceil square root is returned, you can remove this statement. z := sub(z, lt(div(x, z), z)) } } function log2(uint256 x) internal pure returns (uint256 r) { require(x > 0, "UNDEFINED"); assembly { r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x)) r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x)))) r := or(r, shl(5, lt(0xffffffff, shr(r, x)))) r := or(r, shl(4, lt(0xffff, shr(r, x)))) r := or(r, shl(3, lt(0xff, shr(r, x)))) r := or(r, shl(2, lt(0xf, shr(r, x)))) r := or(r, shl(1, lt(0x3, shr(r, x)))) r := or(r, lt(0x1, shr(r, x))) } } }
{ "remappings": [ "@openzeppelin/=node_modules/@openzeppelin/", "@openzeppelin/contracts-upgradeable/=node_modules/@openzeppelin/contracts-upgradeable/", "@openzeppelin/contracts/=node_modules/@openzeppelin/contracts/", "@rari-capital/=node_modules/@rari-capital/", "@rari-capital/solmate/=node_modules/@rari-capital/solmate/", "ds-test/=node_modules/ds-test/src/", "forge-std/=node_modules/forge-std/src/" ], "optimizer": { "enabled": true, "runs": 10000 }, "metadata": { "bytecodeHash": "none" }, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } }, "evmVersion": "london", "libraries": {} }
Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
[{"inputs":[{"internalType":"address","name":"_messenger","type":"address"},{"internalType":"address","name":"_otherBridge","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"localToken","type":"address"},{"indexed":true,"internalType":"address","name":"remoteToken","type":"address"},{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":false,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"tokenId","type":"uint256"},{"indexed":false,"internalType":"bytes","name":"extraData","type":"bytes"}],"name":"ERC721BridgeFinalized","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"localToken","type":"address"},{"indexed":true,"internalType":"address","name":"remoteToken","type":"address"},{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":false,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"tokenId","type":"uint256"},{"indexed":false,"internalType":"bytes","name":"extraData","type":"bytes"}],"name":"ERC721BridgeInitiated","type":"event"},{"inputs":[],"name":"MESSENGER","outputs":[{"internalType":"contract CrossDomainMessenger","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"OTHER_BRIDGE","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_localToken","type":"address"},{"internalType":"address","name":"_remoteToken","type":"address"},{"internalType":"uint256","name":"_tokenId","type":"uint256"},{"internalType":"uint32","name":"_minGasLimit","type":"uint32"},{"internalType":"bytes","name":"_extraData","type":"bytes"}],"name":"bridgeERC721","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_localToken","type":"address"},{"internalType":"address","name":"_remoteToken","type":"address"},{"internalType":"address","name":"_to","type":"address"},{"internalType":"uint256","name":"_tokenId","type":"uint256"},{"internalType":"uint32","name":"_minGasLimit","type":"uint32"},{"internalType":"bytes","name":"_extraData","type":"bytes"}],"name":"bridgeERC721To","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"},{"internalType":"address","name":"","type":"address"},{"internalType":"uint256","name":"","type":"uint256"}],"name":"deposits","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_localToken","type":"address"},{"internalType":"address","name":"_remoteToken","type":"address"},{"internalType":"address","name":"_from","type":"address"},{"internalType":"address","name":"_to","type":"address"},{"internalType":"uint256","name":"_tokenId","type":"uint256"},{"internalType":"bytes","name":"_extraData","type":"bytes"}],"name":"finalizeBridgeERC721","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"version","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"}]
Contract Creation Code
61012060405234801561001157600080fd5b5060405162001413380380620014138339810160408190526100329161015a565b600160008084846001600160a01b0382166100a95760405162461bcd60e51b815260206004820152602c60248201527f4552433732314272696467653a206d657373656e6765722063616e6e6f74206260448201526b65206164647265737328302960a01b60648201526084015b60405180910390fd5b6001600160a01b0381166101175760405162461bcd60e51b815260206004820152602f60248201527f4552433732314272696467653a206f74686572206272696467652063616e6e6f60448201526e74206265206164647265737328302960881b60648201526084016100a0565b6001600160a01b039182166080521660a05260c09290925260e052610100525061018d9050565b80516001600160a01b038116811461015557600080fd5b919050565b6000806040838503121561016d57600080fd5b6101768361013e565b91506101846020840161013e565b90509250929050565b60805160a05160c05160e0516101005161121e620001f560003960006102970152600061026e01526000610245015260008181610111015281816103230152610aaa01526000818161015d015281816102f90152818161035a0152610a7b015261121e6000f3fe608060405234801561001057600080fd5b506004361061007d5760003560e01c8063761f44931161005b578063761f4493146100f95780637f46ddb21461010c578063927ede2d14610158578063aa5574521461017f57600080fd5b80633687011a1461008257806354fd4d50146100975780635d93a3fc146100b5575b600080fd5b610095610090366004610dbd565b610192565b005b61009f61023e565b6040516100ac9190610eba565b60405180910390f35b6100e96100c3366004610ed4565b603160209081526000938452604080852082529284528284209052825290205460ff1681565b60405190151581526020016100ac565b610095610107366004610f15565b6102e1565b6101337f000000000000000000000000000000000000000000000000000000000000000081565b60405173ffffffffffffffffffffffffffffffffffffffff90911681526020016100ac565b6101337f000000000000000000000000000000000000000000000000000000000000000081565b61009561018d366004610fad565b610762565b333b15610226576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602d60248201527f4552433732314272696467653a206163636f756e74206973206e6f742065787460448201527f65726e616c6c79206f776e65640000000000000000000000000000000000000060648201526084015b60405180910390fd5b610236868633338888888861081e565b505050505050565b60606102697f0000000000000000000000000000000000000000000000000000000000000000610b95565b6102927f0000000000000000000000000000000000000000000000000000000000000000610b95565b6102bb7f0000000000000000000000000000000000000000000000000000000000000000610b95565b6040516020016102cd93929190611024565b604051602081830303815290604052905090565b3373ffffffffffffffffffffffffffffffffffffffff7f0000000000000000000000000000000000000000000000000000000000000000161480156103ff57507f000000000000000000000000000000000000000000000000000000000000000073ffffffffffffffffffffffffffffffffffffffff167f000000000000000000000000000000000000000000000000000000000000000073ffffffffffffffffffffffffffffffffffffffff16636e296e456040518163ffffffff1660e01b8152600401602060405180830381865afa1580156103c3573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906103e7919061109a565b73ffffffffffffffffffffffffffffffffffffffff16145b61048b576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152603f60248201527f4552433732314272696467653a2066756e6374696f6e2063616e206f6e6c792060448201527f62652063616c6c65642066726f6d20746865206f746865722062726964676500606482015260840161021d565b3073ffffffffffffffffffffffffffffffffffffffff881603610530576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602a60248201527f4c314552433732314272696467653a206c6f63616c20746f6b656e2063616e6e60448201527f6f742062652073656c6600000000000000000000000000000000000000000000606482015260840161021d565b73ffffffffffffffffffffffffffffffffffffffff8088166000908152603160209081526040808320938a1683529281528282208683529052205460ff1615156001146105ff576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152603960248201527f4c314552433732314272696467653a20546f6b656e204944206973206e6f742060448201527f657363726f77656420696e20746865204c312042726964676500000000000000606482015260840161021d565b73ffffffffffffffffffffffffffffffffffffffff87811660008181526031602090815260408083208b8616845282528083208884529091529081902080547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00169055517f42842e0e000000000000000000000000000000000000000000000000000000008152306004820152918616602483015260448201859052906342842e0e90606401600060405180830381600087803b1580156106bf57600080fd5b505af11580156106d3573d6000803e3d6000fd5b505050508473ffffffffffffffffffffffffffffffffffffffff168673ffffffffffffffffffffffffffffffffffffffff168873ffffffffffffffffffffffffffffffffffffffff167f1f39bf6707b5d608453e0ae4c067b562bcc4c85c0f562ef5d2c774d2e7f131ac878787876040516107519493929190611100565b60405180910390a450505050505050565b73ffffffffffffffffffffffffffffffffffffffff8516610805576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152603060248201527f4552433732314272696467653a206e667420726563697069656e742063616e6e60448201527f6f74206265206164647265737328302900000000000000000000000000000000606482015260840161021d565b610815878733888888888861081e565b50505050505050565b73ffffffffffffffffffffffffffffffffffffffff87166108c1576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152603160248201527f4c314552433732314272696467653a2072656d6f746520746f6b656e2063616e60448201527f6e6f742062652061646472657373283029000000000000000000000000000000606482015260840161021d565b600063761f449360e01b888a89898988886040516024016108e89796959493929190611140565b604080517fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0818403018152918152602080830180517bffffffffffffffffffffffffffffffffffffffffffffffffffffffff167fffffffff00000000000000000000000000000000000000000000000000000000959095169490941790935273ffffffffffffffffffffffffffffffffffffffff8c81166000818152603186528381208e8416825286528381208b82529095529382902080547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff0016600117905590517f23b872dd000000000000000000000000000000000000000000000000000000008152908a166004820152306024820152604481018890529092506323b872dd90606401600060405180830381600087803b158015610a2857600080fd5b505af1158015610a3c573d6000803e3d6000fd5b50506040517f3dbb202b00000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff7f0000000000000000000000000000000000000000000000000000000000000000169250633dbb202b9150610ad6907f0000000000000000000000000000000000000000000000000000000000000000908590899060040161119d565b600060405180830381600087803b158015610af057600080fd5b505af1158015610b04573d6000803e3d6000fd5b505050508673ffffffffffffffffffffffffffffffffffffffff168873ffffffffffffffffffffffffffffffffffffffff168a73ffffffffffffffffffffffffffffffffffffffff167fb7460e2a880f256ebef3406116ff3eee0cee51ebccdc2a40698f87ebb2e9c1a589898888604051610b829493929190611100565b60405180910390a4505050505050505050565b60606000610ba283610c53565b600101905060008167ffffffffffffffff811115610bc257610bc26111e2565b6040519080825280601f01601f191660200182016040528015610bec576020820181803683370190505b5090508181016020015b7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff017f3031323334353637383961626364656600000000000000000000000000000000600a86061a8153600a8504945084610bf657509392505050565b6000807a184f03e93ff9f4daa797ed6e38ed64bf6a1f0100000000000000008310610c9c577a184f03e93ff9f4daa797ed6e38ed64bf6a1f010000000000000000830492506040015b6d04ee2d6d415b85acef81000000008310610cc8576d04ee2d6d415b85acef8100000000830492506020015b662386f26fc100008310610ce657662386f26fc10000830492506010015b6305f5e1008310610cfe576305f5e100830492506008015b6127108310610d1257612710830492506004015b60648310610d24576064830492506002015b600a8310610d30576001015b92915050565b73ffffffffffffffffffffffffffffffffffffffff81168114610d5857600080fd5b50565b803563ffffffff81168114610d6f57600080fd5b919050565b60008083601f840112610d8657600080fd5b50813567ffffffffffffffff811115610d9e57600080fd5b602083019150836020828501011115610db657600080fd5b9250929050565b60008060008060008060a08789031215610dd657600080fd5b8635610de181610d36565b95506020870135610df181610d36565b945060408701359350610e0660608801610d5b565b9250608087013567ffffffffffffffff811115610e2257600080fd5b610e2e89828a01610d74565b979a9699509497509295939492505050565b60005b83811015610e5b578181015183820152602001610e43565b83811115610e6a576000848401525b50505050565b60008151808452610e88816020860160208601610e40565b601f017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0169290920160200192915050565b602081526000610ecd6020830184610e70565b9392505050565b600080600060608486031215610ee957600080fd5b8335610ef481610d36565b92506020840135610f0481610d36565b929592945050506040919091013590565b600080600080600080600060c0888a031215610f3057600080fd5b8735610f3b81610d36565b96506020880135610f4b81610d36565b95506040880135610f5b81610d36565b94506060880135610f6b81610d36565b93506080880135925060a088013567ffffffffffffffff811115610f8e57600080fd5b610f9a8a828b01610d74565b989b979a50959850939692959293505050565b600080600080600080600060c0888a031215610fc857600080fd5b8735610fd381610d36565b96506020880135610fe381610d36565b95506040880135610ff381610d36565b94506060880135935061100860808901610d5b565b925060a088013567ffffffffffffffff811115610f8e57600080fd5b60008451611036818460208901610e40565b80830190507f2e000000000000000000000000000000000000000000000000000000000000008082528551611072816001850160208a01610e40565b6001920191820152835161108d816002840160208801610e40565b0160020195945050505050565b6000602082840312156110ac57600080fd5b8151610ecd81610d36565b8183528181602085013750600060208284010152600060207fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0601f840116840101905092915050565b73ffffffffffffffffffffffffffffffffffffffff851681528360208201526060604082015260006111366060830184866110b7565b9695505050505050565b600073ffffffffffffffffffffffffffffffffffffffff808a1683528089166020840152808816604084015280871660608401525084608083015260c060a083015261119060c0830184866110b7565b9998505050505050505050565b73ffffffffffffffffffffffffffffffffffffffff841681526060602082015260006111cc6060830185610e70565b905063ffffffff83166040830152949350505050565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052604160045260246000fdfea164736f6c634300080f000a000000000000000000000000636e63f4ed43e396b2454560ab4e6a37581c6e90000000000000000000000000420000000000000000000000000000000000000a
Deployed Bytecode
0x608060405234801561001057600080fd5b506004361061007d5760003560e01c8063761f44931161005b578063761f4493146100f95780637f46ddb21461010c578063927ede2d14610158578063aa5574521461017f57600080fd5b80633687011a1461008257806354fd4d50146100975780635d93a3fc146100b5575b600080fd5b610095610090366004610dbd565b610192565b005b61009f61023e565b6040516100ac9190610eba565b60405180910390f35b6100e96100c3366004610ed4565b603160209081526000938452604080852082529284528284209052825290205460ff1681565b60405190151581526020016100ac565b610095610107366004610f15565b6102e1565b6101337f000000000000000000000000420000000000000000000000000000000000000a81565b60405173ffffffffffffffffffffffffffffffffffffffff90911681526020016100ac565b6101337f000000000000000000000000636e63f4ed43e396b2454560ab4e6a37581c6e9081565b61009561018d366004610fad565b610762565b333b15610226576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602d60248201527f4552433732314272696467653a206163636f756e74206973206e6f742065787460448201527f65726e616c6c79206f776e65640000000000000000000000000000000000000060648201526084015b60405180910390fd5b610236868633338888888861081e565b505050505050565b60606102697f0000000000000000000000000000000000000000000000000000000000000001610b95565b6102927f0000000000000000000000000000000000000000000000000000000000000000610b95565b6102bb7f0000000000000000000000000000000000000000000000000000000000000000610b95565b6040516020016102cd93929190611024565b604051602081830303815290604052905090565b3373ffffffffffffffffffffffffffffffffffffffff7f000000000000000000000000636e63f4ed43e396b2454560ab4e6a37581c6e90161480156103ff57507f000000000000000000000000420000000000000000000000000000000000000a73ffffffffffffffffffffffffffffffffffffffff167f000000000000000000000000636e63f4ed43e396b2454560ab4e6a37581c6e9073ffffffffffffffffffffffffffffffffffffffff16636e296e456040518163ffffffff1660e01b8152600401602060405180830381865afa1580156103c3573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906103e7919061109a565b73ffffffffffffffffffffffffffffffffffffffff16145b61048b576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152603f60248201527f4552433732314272696467653a2066756e6374696f6e2063616e206f6e6c792060448201527f62652063616c6c65642066726f6d20746865206f746865722062726964676500606482015260840161021d565b3073ffffffffffffffffffffffffffffffffffffffff881603610530576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602a60248201527f4c314552433732314272696467653a206c6f63616c20746f6b656e2063616e6e60448201527f6f742062652073656c6600000000000000000000000000000000000000000000606482015260840161021d565b73ffffffffffffffffffffffffffffffffffffffff8088166000908152603160209081526040808320938a1683529281528282208683529052205460ff1615156001146105ff576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152603960248201527f4c314552433732314272696467653a20546f6b656e204944206973206e6f742060448201527f657363726f77656420696e20746865204c312042726964676500000000000000606482015260840161021d565b73ffffffffffffffffffffffffffffffffffffffff87811660008181526031602090815260408083208b8616845282528083208884529091529081902080547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00169055517f42842e0e000000000000000000000000000000000000000000000000000000008152306004820152918616602483015260448201859052906342842e0e90606401600060405180830381600087803b1580156106bf57600080fd5b505af11580156106d3573d6000803e3d6000fd5b505050508473ffffffffffffffffffffffffffffffffffffffff168673ffffffffffffffffffffffffffffffffffffffff168873ffffffffffffffffffffffffffffffffffffffff167f1f39bf6707b5d608453e0ae4c067b562bcc4c85c0f562ef5d2c774d2e7f131ac878787876040516107519493929190611100565b60405180910390a450505050505050565b73ffffffffffffffffffffffffffffffffffffffff8516610805576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152603060248201527f4552433732314272696467653a206e667420726563697069656e742063616e6e60448201527f6f74206265206164647265737328302900000000000000000000000000000000606482015260840161021d565b610815878733888888888861081e565b50505050505050565b73ffffffffffffffffffffffffffffffffffffffff87166108c1576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152603160248201527f4c314552433732314272696467653a2072656d6f746520746f6b656e2063616e60448201527f6e6f742062652061646472657373283029000000000000000000000000000000606482015260840161021d565b600063761f449360e01b888a89898988886040516024016108e89796959493929190611140565b604080517fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0818403018152918152602080830180517bffffffffffffffffffffffffffffffffffffffffffffffffffffffff167fffffffff00000000000000000000000000000000000000000000000000000000959095169490941790935273ffffffffffffffffffffffffffffffffffffffff8c81166000818152603186528381208e8416825286528381208b82529095529382902080547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff0016600117905590517f23b872dd000000000000000000000000000000000000000000000000000000008152908a166004820152306024820152604481018890529092506323b872dd90606401600060405180830381600087803b158015610a2857600080fd5b505af1158015610a3c573d6000803e3d6000fd5b50506040517f3dbb202b00000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff7f000000000000000000000000636e63f4ed43e396b2454560ab4e6a37581c6e90169250633dbb202b9150610ad6907f000000000000000000000000420000000000000000000000000000000000000a908590899060040161119d565b600060405180830381600087803b158015610af057600080fd5b505af1158015610b04573d6000803e3d6000fd5b505050508673ffffffffffffffffffffffffffffffffffffffff168873ffffffffffffffffffffffffffffffffffffffff168a73ffffffffffffffffffffffffffffffffffffffff167fb7460e2a880f256ebef3406116ff3eee0cee51ebccdc2a40698f87ebb2e9c1a589898888604051610b829493929190611100565b60405180910390a4505050505050505050565b60606000610ba283610c53565b600101905060008167ffffffffffffffff811115610bc257610bc26111e2565b6040519080825280601f01601f191660200182016040528015610bec576020820181803683370190505b5090508181016020015b7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff017f3031323334353637383961626364656600000000000000000000000000000000600a86061a8153600a8504945084610bf657509392505050565b6000807a184f03e93ff9f4daa797ed6e38ed64bf6a1f0100000000000000008310610c9c577a184f03e93ff9f4daa797ed6e38ed64bf6a1f010000000000000000830492506040015b6d04ee2d6d415b85acef81000000008310610cc8576d04ee2d6d415b85acef8100000000830492506020015b662386f26fc100008310610ce657662386f26fc10000830492506010015b6305f5e1008310610cfe576305f5e100830492506008015b6127108310610d1257612710830492506004015b60648310610d24576064830492506002015b600a8310610d30576001015b92915050565b73ffffffffffffffffffffffffffffffffffffffff81168114610d5857600080fd5b50565b803563ffffffff81168114610d6f57600080fd5b919050565b60008083601f840112610d8657600080fd5b50813567ffffffffffffffff811115610d9e57600080fd5b602083019150836020828501011115610db657600080fd5b9250929050565b60008060008060008060a08789031215610dd657600080fd5b8635610de181610d36565b95506020870135610df181610d36565b945060408701359350610e0660608801610d5b565b9250608087013567ffffffffffffffff811115610e2257600080fd5b610e2e89828a01610d74565b979a9699509497509295939492505050565b60005b83811015610e5b578181015183820152602001610e43565b83811115610e6a576000848401525b50505050565b60008151808452610e88816020860160208601610e40565b601f017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0169290920160200192915050565b602081526000610ecd6020830184610e70565b9392505050565b600080600060608486031215610ee957600080fd5b8335610ef481610d36565b92506020840135610f0481610d36565b929592945050506040919091013590565b600080600080600080600060c0888a031215610f3057600080fd5b8735610f3b81610d36565b96506020880135610f4b81610d36565b95506040880135610f5b81610d36565b94506060880135610f6b81610d36565b93506080880135925060a088013567ffffffffffffffff811115610f8e57600080fd5b610f9a8a828b01610d74565b989b979a50959850939692959293505050565b600080600080600080600060c0888a031215610fc857600080fd5b8735610fd381610d36565b96506020880135610fe381610d36565b95506040880135610ff381610d36565b94506060880135935061100860808901610d5b565b925060a088013567ffffffffffffffff811115610f8e57600080fd5b60008451611036818460208901610e40565b80830190507f2e000000000000000000000000000000000000000000000000000000000000008082528551611072816001850160208a01610e40565b6001920191820152835161108d816002840160208801610e40565b0160020195945050505050565b6000602082840312156110ac57600080fd5b8151610ecd81610d36565b8183528181602085013750600060208284010152600060207fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0601f840116840101905092915050565b73ffffffffffffffffffffffffffffffffffffffff851681528360208201526060604082015260006111366060830184866110b7565b9695505050505050565b600073ffffffffffffffffffffffffffffffffffffffff808a1683528089166020840152808816604084015280871660608401525084608083015260c060a083015261119060c0830184866110b7565b9998505050505050505050565b73ffffffffffffffffffffffffffffffffffffffff841681526060602082015260006111cc6060830185610e70565b905063ffffffff83166040830152949350505050565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052604160045260246000fdfea164736f6c634300080f000a
Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)
000000000000000000000000636e63f4ed43e396b2454560ab4e6a37581c6e90000000000000000000000000420000000000000000000000000000000000000a
-----Decoded View---------------
Arg [0] : _messenger (address): 0x636E63F4ED43E396b2454560ab4E6a37581C6e90
Arg [1] : _otherBridge (address): 0x420000000000000000000000000000000000000A
-----Encoded View---------------
2 Constructor Arguments found :
Arg [0] : 000000000000000000000000636e63f4ed43e396b2454560ab4e6a37581c6e90
Arg [1] : 000000000000000000000000420000000000000000000000000000000000000a
Loading...
Loading
Loading...
Loading
Loading...
Loading
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.