ETH Price: $3,348.32 (+0.39%)
 

Overview

ETH Balance

0 ETH

Eth Value

$0.00

Token Holdings

Multichain Info

No addresses found
Transaction Hash
Method
Block
From
To

There are no matching entries

1 Internal Transaction and 1 Token Transfer found.

Latest 1 internal transaction

Advanced mode:
Parent Transaction Hash Block
From
To
115888452021-01-04 15:37:541457 days ago1609774674  Contract Creation0 ETH
Loading...
Loading

Similar Match Source Code
This contract matches the deployed Bytecode of the Source Code for Contract 0xeF90425e...0528d5858
The constructor portion of the code might be different and could alter the actual behaviour of the contract

Contract Name:
TokenTimelock

Compiler Version
v0.6.12+commit.27d51765

Optimization Enabled:
Yes with 200 runs

Other Settings:
default evmVersion
File 1 of 13 : TokenTimelock.sol
// SPDX-License-Identifier: MIT

pragma solidity >=0.6.0 <0.8.0;

import "./SafeERC20.sol";

/**
 * @dev A token holder contract that will allow a beneficiary to extract the
 * tokens after a given release time.
 *
 * Useful for simple vesting schedules like "advisors get all of their tokens
 * after 1 year".
 */
contract TokenTimelock {
    using SafeERC20 for IERC20;

    // ERC20 basic token contract being held
    IERC20 private _token;

    // beneficiary of tokens after they are released
    address private _beneficiary;

    // timestamp when token release is enabled
    uint256 private _releaseTime;

    constructor (IERC20 token_, address beneficiary_, uint256 releaseTime_) public {
        // solhint-disable-next-line not-rely-on-time
        require(releaseTime_ > block.timestamp, "TokenTimelock: release time is before current time");
        _token = token_;
        _beneficiary = beneficiary_;
        _releaseTime = releaseTime_;
    }

    /**
     * @return the token being held.
     */
    function token() public view returns (IERC20) {
        return _token;
    }

    /**
     * @return the beneficiary of the tokens.
     */
    function beneficiary() public view returns (address) {
        return _beneficiary;
    }

    /**
     * @return the time when the tokens are released.
     */
    function releaseTime() public view returns (uint256) {
        return _releaseTime;
    }

    /**
     * @notice Transfers tokens held by timelock to beneficiary.
     */
    function release() public virtual {
        // solhint-disable-next-line not-rely-on-time
        require(block.timestamp >= _releaseTime, "TokenTimelock: current time is before release time");

        uint256 amount = _token.balanceOf(address(this));
        require(amount > 0, "TokenTimelock: no tokens to release");

        _token.safeTransfer(_beneficiary, amount);
    }
}

File 2 of 13 : DecentralizedAutonomousTrust.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.6.0;
pragma experimental ABIEncoderV2;

import "./math/BigDiv.sol";
import "./math/Sqrt.sol";
import "./Take.sol";
import "./uniswap/IUniswapV2Router02.sol";
import "./uniswap/IUniswapV2Factory.sol";
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import "@openzeppelin/contracts/token/ERC20/SafeERC20.sol";
import "@openzeppelin/contracts/math/SafeMath.sol";
import "@openzeppelin/contracts/utils/Address.sol";
import "@openzeppelin/contracts/token/ERC20/TokenTimelock.sol";


/**
 * @title Decentralized Autonomous Trust
 * This contract is a modified version of the implementation provided by Fairmint for a
 * Decentralized Autonomous Trust as described in the continuous
 * organization whitepaper (https://github.com/c-org/whitepaper) and
 * specified here: https://github.com/fairmint/c-org/wiki.
 * Code from : https://github.com/Fairmint/c-org/blob/dfd3129f9bce8717406aba54d1f1888d8e253dbb/contracts/DecentralizedAutonomousTrust.sol
 * Changes Added: https://github.com/Fairmint/c-org/commit/60bb63b9112a82996f275a75a87c28b1d73e3f11
 *
 * Use at your own risk. 
 */
contract DecentralizedAutonomousTrust
  is Take
{
  using SafeMath for uint;
  using Sqrt for uint;
  using SafeERC20 for IERC20;

  /**
   * Events
   */

  event Buy(
    address indexed _from,
    address indexed _to,
    uint256 _currencyValue,
    uint256 _fairValue
  );
  event Close();
  event StateChange(
    uint256 _previousState,
    uint256 _newState
  );
  event UpdateConfig(
    address indexed _beneficiary,
    address indexed _control,
    address _uniswapRouterAddress,
    address _uniswapFactoryAddress,
    uint256 _minInvestment,
    uint256 _openUntilAtLeast
  );
  // Constants

  //  The default state
  uint256 private constant STATE_INIT = 0;

  //  The state after initGoal has been reached
  uint256 private constant STATE_RUN = 1;

  //  The state after closed by the `beneficiary` account from STATE_RUN
  uint256 private constant STATE_CLOSE = 2;

  //  The state after closed by the `beneficiary` account from STATE_INIT
  uint256 private constant STATE_CANCEL = 3;

  //  When multiplying 2 terms, the max value is 2^128-1
  uint256 private constant MAX_BEFORE_SQUARE = 2**128 - 1;

  //  The denominator component for values specified in basis points.
  uint256 private constant BASIS_POINTS_DEN = 10000;

  // The max `totalSupply`
  // @dev This limit ensures that the DAT's formulas do not overflow (<MAX_BEFORE_SQUARE/2)
  uint256 private constant MAX_SUPPLY = 10 ** 38;

  /**
   * Data for DAT business logic
   */

  /// @notice The address of the beneficiary organization which receives the investments.
  /// Points to the wallet of the organization.
  address payable public beneficiary;

  /// @notice The buy slope of the bonding curve.
  /// Does not affect the financial model, only the granularity of TAKE.
  /// @dev This is the numerator component of the fractional value.
  uint256 public buySlopeNum;

  /// @notice The buy slope of the bonding curve.
  /// Does not affect the financial model, only the granularity of TAKE.
  /// @dev This is the denominator component of the fractional value.
  uint256 public buySlopeDen;

  /// @notice The address from which the updatable variables can be updated
  address public control;

  /// @notice The address of the token used as reserve in the bonding curve
  /// (e.g. the DAI contract). Use ETH if 0.
  IERC20 public currency;

  /// @notice The initial fundraising goal (expressed in TAKE) to start the c-org.
  /// `0` means that there is no initial fundraising and the c-org immediately moves to run state.
  uint256 public initGoal;

  uint256 public initReserve;

  /// @notice The bonding curve fundraising goal.
  uint256 public bcGoal;

  /// @notice The bonding curve fundraising final result.
  uint256 public bcTakeReleased;

  /// @notice The investment reserve of the c-org. Defines the percentage of the value invested that is
  /// automatically funneled and held into the buyback_reserve expressed in basis points.
  uint256 public investmentReserveBasisPoints;

  /// @notice The earliest date/time (in seconds) that the DAT may enter the `CLOSE` state, ensuring
  /// that if the DAT reaches the `RUN` state it will remain running for at least this period of time.
  /// @dev This value may be increased anytime by the control account
  uint256 public openUntilAtLeast;

  /// @notice The minimum amount of `currency` investment accepted.
  uint256 public minInvestment;

  /// @notice The current state of the contract.
  /// @dev See the constants above for possible state values.
  uint256 public state;

  string public constant version = "2";
  // --- EIP712 niceties ---
  // Original source: https://etherscan.io/address/0x6b175474e89094c44da98b954eedeac495271d0f#code
  //  mapping (address => uint) public nonces;
  bytes32 public DOMAIN_SEPARATOR;
  // bytes32 public constant PERMIT_TYPEHASH = keccak256("Permit(address holder,address spender,uint256 nonce,uint256 expiry,bool allowed)");
  bytes32 public constant PERMIT_TYPEHASH = 0xea2aa0a1be11a07ed86d755c93467f4f82362b452371d1ba94d1715123511acb;

  address public  uniswapFactoryAddress;
  address public  uniswapRouterAddress;
  IUniswapV2Router02 private uniswapRouter;
  IUniswapV2Factory private uniswapFactory;
  address internal constant NULL_ADDRESS = 0x0000000000000000000000000000000000000000;
  uint96 private constant uniswapBurnRate = 1000;
  address public uniswapPairAddress = 0x0000000000000000000000000000000000000000;
  address public uniswapTokenTimelockAddress = 0x0000000000000000000000000000000000000000;
  address public takeTimelockAddress = 0x0000000000000000000000000000000000000000;

  // Team Revenue in percent
  uint256 private constant teamRevenueBasisPoints = 3000;

  //
  bool public bcFlowAllowed = false;

  /// Pay

  /// @notice Pay the organization on-chain without minting any tokens.
  /// @dev This allows you to add funds directly to the buybackReserve.
  function pay() external payable
  {
    require(address(currency) == address(0), "ONLY_FOR_CURRENCY_ETH");
  }

  function handleBC(
    bool withdrawOnError
  ) external
  {
    require(state == STATE_CLOSE, "ONLY_AFTER_CLOSE");
    require(msg.sender == beneficiary, "BENEFICIARY_ONLY");

    uint256 reserve = address(this).balance;
    require(reserve > 0, "MUST_BUY_AT_LEAST_1");

    uint256 teamReserve = reserve.mul(teamRevenueBasisPoints);
    teamReserve /= BASIS_POINTS_DEN;
    uint256 uniswapPoolEthAmount  = reserve.sub(teamReserve);

    uint256 uniswapPoolTakeAmount = uniswapPoolEthAmount.mul(buySlopeDen);
    uniswapPoolTakeAmount = uniswapPoolTakeAmount.div(bcTakeReleased);
    uniswapPoolTakeAmount = uniswapPoolTakeAmount.div(buySlopeNum);

    super._allowTokenTransfer();
    super._approve(address(this), uniswapRouterAddress, uint(-1));
    try uniswapRouter.addLiquidityETH{
    value: uniswapPoolEthAmount
    }(
      address(this),
      uniswapPoolTakeAmount,
      uniswapPoolTakeAmount,
      uniswapPoolEthAmount,
      address(this),
      block.timestamp + 15
    ) returns (uint256 amountToken, uint256 amountETH, uint256 liquidity) {
      Address.sendValue(beneficiary, address(this).balance);

      uniswapPairAddress = uniswapFactory.getPair(uniswapRouter.WETH(), address(this));
      super._setBurnConfig(uniswapBurnRate, NULL_ADDRESS);
      super._addBurnSaleAddress(uniswapPairAddress);
      super._setApproveConfig(NULL_ADDRESS);

      lockTakeTokens();
    } catch {
      if (withdrawOnError) {
        Address.sendValue(beneficiary, address(this).balance);
        uint96 amount = safe96(this.balanceOf(address(this)), "DAT:: amount exceeds 96 bits");
        super._transferTokens(address(this), beneficiary, amount);
      }
    }

  }

  function lockUniswapTokens() external {
    require(state == STATE_CLOSE, "ONLY_AFTER_CLOSE");
    require(msg.sender == beneficiary, "BENEFICIARY_ONLY");

    IERC20 uniswapPair = IERC20(uniswapPairAddress);

    TokenTimelock uniswapTokenTimelock = new TokenTimelock(uniswapPair, beneficiary, block.timestamp + 31 days);
    uniswapTokenTimelockAddress = address(uniswapTokenTimelock);

    uniswapPair.transfer(uniswapTokenTimelockAddress, uniswapPair.balanceOf(address(this)) );
  }

  // --- Approve by signature ---
  // Original source: https://etherscan.io/address/0x6b175474e89094c44da98b954eedeac495271d0f#code
  function permit(
    address holder,
    address spender,
    uint256 nonce,
    uint256 expiry,
    bool allowed,
    uint8 v,
    bytes32 r,
    bytes32 s
  ) external
  {
    bytes32 digest = keccak256(
      abi.encodePacked(
        "\x19\x01",
        DOMAIN_SEPARATOR,
        keccak256(
          abi.encode(PERMIT_TYPEHASH,
          holder,
          spender,
          nonce,
          expiry,
          allowed
          )
        )
      )
    );

    require(holder != address(0), "DAT/invalid-address-0");
    require(holder == ecrecover(digest, v, r, s), "DAT/invalid-permit");
    require(expiry == 0 || now <= expiry, "DAT/permit-expired");
    require(nonce == nonces[holder]++, "DAT/invalid-nonce");
    uint256 wad = allowed ? uint(-1) : 0;
    super._approve(holder, spender, wad);
  }

  /**
   * Config / Control
   */

  /// @notice Called once after deploy to set the initial configuration.
  /// None of the values provided here may change once initially set.
  /// @dev using the init pattern in order to support zos upgrades
  function initialize(
    address _currencyAddress,
    uint256 _initGoal,
    uint256 _bcGoal,
    uint256 _buySlopeNum,
    uint256 _buySlopeDen,
    uint256 _investmentReserveBasisPoints
  ) public
  {
    require(control == address(0), "ALREADY_INITIALIZED");

    initReserve = 0;

    // Set initGoal, which in turn defines the initial state
    if(_initGoal == 0)
    {
      emit StateChange(state, STATE_RUN);
      state = STATE_RUN;
    }
    else
    {
      // Math: If this value got too large, the DAT would overflow on sell
      require(_initGoal < MAX_SUPPLY, "EXCESSIVE_GOAL");
      initGoal = _initGoal;
    }

    require(_bcGoal > 0, "INVALID_BC_GOAL");
    bcGoal = _bcGoal;

    bcTakeReleased = 0;

    require(_buySlopeNum > 0, "INVALID_SLOPE_NUM");
    require(_buySlopeDen > 0, "INVALID_SLOPE_DEN");
    require(_buySlopeNum < MAX_BEFORE_SQUARE, "EXCESSIVE_SLOPE_NUM");
    require(_buySlopeDen < MAX_BEFORE_SQUARE, "EXCESSIVE_SLOPE_DEN");
    buySlopeNum = _buySlopeNum;
    buySlopeDen = _buySlopeDen;
    // 100% or less
    require(_investmentReserveBasisPoints <= BASIS_POINTS_DEN, "INVALID_RESERVE");
    investmentReserveBasisPoints = _investmentReserveBasisPoints;

    // Set default values (which may be updated using `updateConfig`)
    minInvestment = 1 ether;
    beneficiary = msg.sender;
    control = msg.sender;

    // Save currency
    currency = IERC20(_currencyAddress);

    // Initialize permit
    DOMAIN_SEPARATOR = keccak256(
      abi.encode(
        keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"),
        keccak256(bytes(name)),
        keccak256(bytes(version)),
        _getChainId(),
        address(this)
      )
    );
  }

  function updateConfig(
    address payable _beneficiary,
    address _control,
    address _uniswapRouterAddress,
    address _uniswapFactoryAddress,
    uint256 _minInvestment,
    uint256 _openUntilAtLeast
  ) public
  {
    // This require(also confirms that initialize has been called.
    require(msg.sender == control, "CONTROL_ONLY");

    require(_control != address(0), "INVALID_ADDRESS");
    control = _control;

    require(_uniswapRouterAddress != address(0), "INVALID_ADDRESS");
    uniswapRouterAddress = _uniswapRouterAddress;

    require(_uniswapFactoryAddress != address(0), "INVALID_ADDRESS");
    uniswapFactoryAddress = _uniswapFactoryAddress;

    uniswapRouter = IUniswapV2Router02(uniswapRouterAddress);
    uniswapFactory = IUniswapV2Factory(uniswapFactoryAddress);

    require(_minInvestment > 0, "INVALID_MIN_INVESTMENT");
    minInvestment = _minInvestment;

    require(_openUntilAtLeast >= openUntilAtLeast, "OPEN_UNTIL_MAY_NOT_BE_REDUCED");
    openUntilAtLeast = _openUntilAtLeast;

    if(beneficiary != _beneficiary)
    {
      require(_beneficiary != address(0), "INVALID_ADDRESS");
      uint256 tokens = balances[beneficiary];
      if(tokens > 0)
      {
        _transfer(beneficiary, _beneficiary, tokens);
      }
      beneficiary = _beneficiary;
    }

    emit UpdateConfig(
      _beneficiary,
      _control,
      _uniswapRouterAddress,
      _uniswapFactoryAddress,
      _minInvestment,
      _openUntilAtLeast
    );
  }

  function allowBcFlow() public {
    require(msg.sender == beneficiary, "BENEFICIARY_ONLY");
    bcFlowAllowed = true;
  }

  /**
   * Functions for our business logic
   */


  // Buy

  /// @notice Calculate how many TAKE tokens you would buy with the given amount of currency if `buy` was called now.
  /// @param _currencyValue How much currency to spend in order to buy TAKE.
  function estimateBuyValue(
    uint256 _currencyValue
  ) public view
    returns (uint)
  {
    if(_currencyValue < minInvestment)
    {
      return 0;
    }

    /// Calculate the tokenValue for this investment
    uint256 tokenValue;
    if(state == STATE_RUN)
    {
      uint256 supply = bcTakeReleased;
      // Math: worst case
      // MAX * 2 * MAX_BEFORE_SQUARE
      // / MAX_BEFORE_SQUARE
      tokenValue = BigDiv.bigDiv2x1(
        _currencyValue,
        2 * buySlopeDen,
        buySlopeNum
      );

      // Math: worst case MAX + (MAX_BEFORE_SQUARE * MAX_BEFORE_SQUARE)
      tokenValue = tokenValue.add(supply * supply);
      tokenValue = tokenValue.sqrt();

      // Math: small chance of underflow due to possible rounding in sqrt
      tokenValue = tokenValue.sub(supply);
    }
    else
    {
      // invalid state
      return 0;
    }

    return tokenValue;
  }

  function estimateBuyTokensValue (
    uint256 _tokenValue
  ) public view
    returns (uint)
  {
    /// Calculate the investment to buy _tokenValue
    uint256 currencyValue;
    if(state == STATE_RUN) {
      uint256 supply = bcTakeReleased;

      uint256 tokenValue = _tokenValue.add(supply);

      tokenValue = tokenValue.mul(tokenValue);
      tokenValue = tokenValue.sub(supply * supply);

      currencyValue = BigDiv.bigDiv2x1(
        tokenValue,
        buySlopeNum,
        2 * buySlopeDen
      );
    }
    else
    {
      // invalid state
      return 0;
    }

  return currencyValue;
  }

  /// @notice Purchase TAKE tokens with the given amount of currency.
  /// @param _to The account to receive the TAKE tokens from this purchase.
  /// @param _currencyValue How much currency to spend in order to buy TAKE.
  /// @param _minTokensBought Buy at least this many TAKE tokens or the transaction reverts.
  /// @dev _minTokensBought is necessary as the price will change if some elses transaction mines after
  /// yours was submitted.
  function buy(
    address _to,
    uint256 _currencyValue,
    uint256 _minTokensBought
  ) public payable
  {
    require(bcFlowAllowed, "TOKEN_SALE_NOT_STARTED");
    require(_to != address(0), "INVALID_ADDRESS");
    require(_minTokensBought > 0, "MUST_BUY_AT_LEAST_1");
    require(bcGoal >= bcTakeReleased, "BC_GOAL_REACHED");

    bool closeAfterBuy = false;

    // Calculate the tokenValue for this investment
    uint256 tokenValue = estimateBuyValue(_currencyValue);
    if (bcTakeReleased.add(tokenValue) >= bcGoal) {
      closeAfterBuy = true;
      tokenValue = bcGoal.sub(bcTakeReleased);
      _currencyValue = estimateBuyTokensValue(tokenValue);
    }

    require(tokenValue >= _minTokensBought, "PRICE_SLIPPAGE");

    emit Buy(msg.sender, _to, _currencyValue, tokenValue);

    _collectInvestment(_currencyValue, msg.value, true);
    super._transferTokens(address(this), _to, safe96(tokenValue, "DAT:: amount exceeds 96 bits"));

    bcTakeReleased = bcTakeReleased.add(tokenValue);

    if(state == STATE_RUN && closeAfterBuy) {
      _close();
    }
  }
  
  /// Close

  /// @notice Called by the beneficiary account to STATE_CLOSE or STATE_CANCEL the c-org.
  function close() public
  {
    require(msg.sender == beneficiary, "BENEFICIARY_ONLY");
    _close();
  }

  /**
 * Functions required by the ERC-20 token standard
 */

  /// @dev Moves tokens from one account to another if authorized.
  function _transfer(
    address _from,
    address _to,
    uint256 _amount
  ) internal
  {
    require(state != STATE_INIT || _from == beneficiary, "ONLY_BENEFICIARY_DURING_INIT");
    uint96 amount = safe96(_amount, "DAT::transfer: amount exceeds 96 bits");
    super._transferTokens(_from, _to, amount);
  }

  function _close() private
  {
    if(state == STATE_INIT)
    {
      // Allow the org to cancel anytime if the initGoal was not reached.
      emit StateChange(state, STATE_CANCEL);
      state = STATE_CANCEL;
    }
    else if(state == STATE_RUN)
    {
      require(openUntilAtLeast <= block.timestamp, "TOO_EARLY");

      emit StateChange(state, STATE_CLOSE);
      state = STATE_CLOSE;
    }
    else
    {
      revert("INVALID_STATE");
    }

    emit Close();
  }


  /**
   * Transaction Helpers
   */

  /// @notice Confirms the transfer of `_quantityToInvest` currency to the contract.
  function _collectInvestment(
    uint256 _quantityToInvest,
    uint256 _msgValue,
    bool _refundRemainder
  ) private
  {
    if(address(currency) == address(0))
    {
      // currency is ETH
      if(_refundRemainder)
      {
        // Math: if _msgValue was not sufficient then revert
        uint256 refund = _msgValue.sub(_quantityToInvest);
        if(refund > 0)
        {
          Address.sendValue(msg.sender, refund);
        }
      }
      else
      {
        require(_quantityToInvest == _msgValue, "INCORRECT_MSG_VALUE");
      }
    }
    else
    {
      // currency is ERC20
      require(_msgValue == 0, "DO_NOT_SEND_ETH");

      currency.safeTransferFrom(msg.sender, address(this), _quantityToInvest);
    }
  }

  /// @dev Send `_amount` currency from the contract to the `_to` account.
  function _transferCurrency(
    address payable _to,
    uint256 _amount
  ) private
  {
    if(_amount > 0)
    {
      if(address(currency) == address(0))
      {
        Address.sendValue(_to, _amount);
      }
      else
      {
        currency.safeTransfer(_to, _amount);
      }
    }
  }

  function _getChainId(
  ) private pure
  returns (uint256 id)
  {
    // solium-disable-next-line
    assembly
    {
      id := chainid()
    }
  }

  function lockTakeTokens() private {
    require(state == STATE_CLOSE, "ONLY_AFTER_CLOSE");
    require(msg.sender == beneficiary, "BENEFICIARY_ONLY");

    TokenTimelock takeTokenTimelock = new TokenTimelock(IERC20(address(this)), beneficiary, block.timestamp + 31 days);
    takeTimelockAddress = address(takeTokenTimelock);

    this.transfer(takeTimelockAddress, this.balanceOf(address(this)) );
  }
}

File 3 of 13 : BigDiv.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.6.0;

import "@openzeppelin/contracts/math/SafeMath.sol";

/**
 * @title Reduces the size of terms before multiplication, to avoid an overflow, and then
 * restores the proper size after division.
 * @notice This effectively allows us to overflow values in the numerator and/or denominator
 * of a fraction, so long as the end result does not overflow as well.
 * @dev Results may be off by 1 + 0.000001% for 2x1 calls and 2 + 0.00001% for 2x2 calls.
 * Do not use if your contract expects very small result values to be accurate.
 */
library BigDiv
{
  using SafeMath for uint256;

  // @notice The max possible value
  uint256 private constant MAX_UINT = 2**256 - 1;

  // @notice When multiplying 2 terms <= this value the result won't overflow
  uint256 private constant MAX_BEFORE_SQUARE = 2**128 - 1;

  // @notice The max error target is off by 1 plus up to 0.000001% error
  // for bigDiv2x1 and that `* 2` for bigDiv2x2
  uint256 private constant MAX_ERROR = 100000000;

  // @notice A larger error threshold to use when multiple rounding errors may apply
  uint256 private constant MAX_ERROR_BEFORE_DIV = MAX_ERROR * 2;

  /**
   * @notice Returns the approx result of `a * b / d` so long as the result is <= MAX_UINT
   * @param _numA the first numerator term
   * @param _numB the second numerator term
   * @param _den the denominator
   * @return the approx result with up to off by 1 + MAX_ERROR, rounding down if needed
   */
  function bigDiv2x1(
    uint256 _numA,
    uint256 _numB,
    uint256 _den
  ) internal pure
    returns(uint256)
  {
    if(_numA == 0 || _numB == 0)
    {
      // would div by 0 or underflow if we don't special case 0
      return 0;
    }

    uint256 value;

    if(MAX_UINT / _numA >= _numB)
    {
      // a*b does not overflow, return exact math
      value = _numA * _numB;
      value /= _den;
      return value;
    }

    // Sort numerators
    uint256 numMax = _numB;
    uint256 numMin = _numA;
    if(_numA > _numB)
    {
      numMax = _numA;
      numMin = _numB;
    }

    value = numMax / _den;
    if(value > MAX_ERROR)
    {
      // _den is small enough to be MAX_ERROR or better w/o a factor
      value = value.mul(numMin);
      return value;
    }

    // formula = ((a / f) * b) / (d / f)
    // factor >= a / sqrt(MAX) * (b / sqrt(MAX))
    uint256 factor = numMin - 1;
    factor /= MAX_BEFORE_SQUARE;
    factor += 1;
    uint256 temp = numMax - 1;
    temp /= MAX_BEFORE_SQUARE;
    temp += 1;
    if(MAX_UINT / factor >= temp)
    {
      factor *= temp;
      value = numMax / factor;
      if(value > MAX_ERROR_BEFORE_DIV)
      {
        value = value.mul(numMin);
        temp = _den - 1;
        temp /= factor;
        temp = temp.add(1);
        value /= temp;
        return value;
      }
    }

    // formula: (a / (d / f)) * (b / f)
    // factor: b / sqrt(MAX)
    factor = numMin - 1;
    factor /= MAX_BEFORE_SQUARE;
    factor += 1;
    value = numMin / factor;
    temp = _den - 1;
    temp /= factor;
    temp += 1;
    temp = numMax / temp;
    value = value.mul(temp);
    return value;
  }

  /**
   * @notice Returns the approx result of `a * b / d` so long as the result is <= MAX_UINT
   * @param _numA the first numerator term
   * @param _numB the second numerator term
   * @param _den the denominator
   * @return the approx result with up to off by 1 + MAX_ERROR, rounding down if needed
   * @dev roundUp is implemented by first rounding down and then adding the max error to the result
   */
  function bigDiv2x1RoundUp(
    uint256 _numA,
    uint256 _numB,
    uint256 _den
  ) internal pure
    returns(uint256)
  {
    // first get the rounded down result
    uint256 value = bigDiv2x1(_numA, _numB, _den);

    if(value == 0)
    {
      // when the value rounds down to 0, assume up to an off by 1 error
      return 1;
    }

    // round down has a max error of MAX_ERROR, add that to the result
    // for a round up error of <= MAX_ERROR
    uint256 temp = value - 1;
    temp /= MAX_ERROR;
    temp += 1;
    if(MAX_UINT - value < temp)
    {
      // value + error would overflow, return MAX
      return MAX_UINT;
    }

    value += temp;

    return value;
  }

  /**
   * @notice Returns the approx result of `a * b / (c * d)` so long as the result is <= MAX_UINT
   * @param _numA the first numerator term
   * @param _numB the second numerator term
   * @param _denA the first denominator term
   * @param _denB the second denominator term
   * @return the approx result with up to off by 2 + MAX_ERROR*10 error, rounding down if needed
   * @dev this uses bigDiv2x1 and adds additional rounding error so the max error of this
   * formula is larger
   */
  function bigDiv2x2(
    uint256 _numA,
    uint256 _numB,
    uint256 _denA,
    uint256 _denB
  ) internal pure
    returns (uint256)
  {
    if(MAX_UINT / _denA >= _denB)
    {
      // denA*denB does not overflow, use bigDiv2x1 instead
      return bigDiv2x1(_numA, _numB, _denA * _denB);
    }

    if(_numA == 0 || _numB == 0)
    {
      // would div by 0 or underflow if we don't special case 0
      return 0;
    }

    // Sort denominators
    uint256 denMax = _denB;
    uint256 denMin = _denA;
    if(_denA > _denB)
    {
      denMax = _denA;
      denMin = _denB;
    }

    uint256 value;

    if(MAX_UINT / _numA >= _numB)
    {
      // a*b does not overflow, use `a / d / c`
      value = _numA * _numB;
      value /= denMin;
      value /= denMax;
      return value;
    }

    // `ab / cd` where both `ab` and `cd` would overflow

    // Sort numerators
    uint256 numMax = _numB;
    uint256 numMin = _numA;
    if(_numA > _numB)
    {
      numMax = _numA;
      numMin = _numB;
    }

    // formula = (a/d) * b / c
    uint256 temp = numMax / denMin;
    if(temp > MAX_ERROR_BEFORE_DIV)
    {
      return bigDiv2x1(temp, numMin, denMax);
    }

    // formula: ((a/f) * b) / d then either * f / c or / c * f
    // factor >= a / sqrt(MAX) * (b / sqrt(MAX))
    uint256 factor = numMin - 1;
    factor /= MAX_BEFORE_SQUARE;
    factor += 1;
    temp = numMax - 1;
    temp /= MAX_BEFORE_SQUARE;
    temp += 1;
    if(MAX_UINT / factor >= temp)
    {
      factor *= temp;

      value = numMax / factor;
      if(value > MAX_ERROR_BEFORE_DIV)
      {
        value = value.mul(numMin);
        value /= denMin;
        if(value > 0 && MAX_UINT / value >= factor)
        {
          value *= factor;
          value /= denMax;
          return value;
        }
      }
    }

    // formula: (a/f) * b / ((c*d)/f)
    // factor >= c / sqrt(MAX) * (d / sqrt(MAX))
    factor = denMin;
    factor /= MAX_BEFORE_SQUARE;
    temp = denMax;
    // + 1 here prevents overflow of factor*temp
    temp /= MAX_BEFORE_SQUARE + 1;
    factor *= temp;
    return bigDiv2x1(numMax / factor, numMin, MAX_UINT);
  }
}

File 4 of 13 : Sqrt.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.6.0;


/**
 * @title Calculates the square root of a given value.
 * @dev Results may be off by 1.
 */
library Sqrt
{
  // The max possible value
  uint256 private constant MAX_UINT = 2**256 - 1;

  // Source: https://github.com/ethereum/dapp-bin/pull/50
  function sqrt(
    uint x
  ) internal pure
    returns (uint y)
  {
    if (x == 0)
    {
      return 0;
    }
    else if (x <= 3)
    {
      return 1;
    }
    else if (x == MAX_UINT)
    {
      // Without this we fail on x + 1 below
      return 2**128 - 1;
    }

    uint z = (x + 1) / 2;
    y = x;
    while (z < y)
    {
      y = z;
      z = (x / z + z) / 2;
    }
  }
}

File 5 of 13 : Take.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.6.0;
pragma experimental ABIEncoderV2;

import "@openzeppelin/contracts/math/SafeMath.sol";
import "@openzeppelin/contracts/access/Ownable.sol";

contract Take is Ownable {
    using SafeMath for uint;

    /// @notice EIP-20 token name for this token
    string public constant name = "Take";

    /// @notice EIP-20 token symbol for this token
    string public constant symbol = "TAKE";

    /// @notice EIP-20 token decimals for this token
    uint8 public constant decimals = 18;

    /// @notice Total number of tokens in circulation
    uint256 public totalSupply;

    // Allowance amounts on behalf of others
    mapping (address => mapping (address => uint96)) internal allowances;

    // Official record of token balances for each account
    mapping (address => uint96) internal balances;

    /// @notice A record of each accounts delegate
    mapping (address => address) public delegates;

    /// @notice A checkpoint for marking number of votes from a given block
    struct Checkpoint {
        uint32 fromBlock;
        uint96 votes;
    }

    /// @notice A record of votes checkpoints for each account, by index
    mapping (address => mapping (uint32 => Checkpoint)) public checkpoints;

    /// @notice The number of checkpoints for each account
    mapping (address => uint32) public numCheckpoints;

    /// @notice A record of states for signing / validating signatures
    mapping (address => uint) public nonces;

    /// @notice An event thats emitted when an burn config changed
    event BurnConfigChanged(uint96 burnRate, address burnPoolAddress);

    /// @notice An event thats emitted when an account changes its delegate
    event DelegateChanged(address indexed delegator, address indexed fromDelegate, address indexed toDelegate);

    /// @notice An event thats emitted when a delegate account's vote balance changes
    event DelegateVotesChanged(address indexed delegate, uint256 previousBalance, uint256 newBalance);

    /// @notice The standard EIP-20 transfer event
    event Transfer(address indexed from, address indexed to, uint256 amount);

    /// @notice The standard EIP-20 approval event
    event Approval(address indexed owner, address indexed spender, uint256 amount);

    // additional variables for use if transaction fees ever became necessary
    uint96 public  burnRate;
    address public burnPoolAddress;
    uint96 public constant burnRateBase = 10000;

    address public approveDisabledAddress;
    bool public tokenTransferAllowed = false;

    mapping (address => bool)  public burnSaleAddresses;


    /**
     * @notice Construct a new Take token
     */
    constructor() public {
        uint96 _totalSupply = 1000000e18;
        totalSupply = _totalSupply;
        balances[msg.sender] = _totalSupply;
        emit Transfer(address(0), msg.sender, _totalSupply);

        burnRate = 0;
        burnPoolAddress = 0x0000000000000000000000000000000000000000;
        approveDisabledAddress = 0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D;
    }

    function setBurnConfig(uint96 _burnRate, address _burnPoolAddress) external
    onlyOwner
    {
        _setBurnConfig(_burnRate, _burnPoolAddress);
    }

    function addBurnSaleAddress(address burnAddress) external onlyOwner {
        _addBurnSaleAddress(burnAddress);
    }

    function removeBurnSaleAddress(address burnAddress) external onlyOwner {
        burnSaleAddresses[burnAddress] = false;
    }

    function setApproveConfig(address _approveDisabledAddress) external onlyOwner {
        _setApproveConfig(_approveDisabledAddress);
    }

    function allowTokenTransfer() external onlyOwner {
        _allowTokenTransfer();
    }

    /**
     * @notice Get the number of tokens `spender` is approved to spend on behalf of `account`
     * @param account The address of the account holding the funds
     * @param spender The address of the account spending the funds
     * @return The number of tokens approved
     */
    function allowance(address account, address spender) external view returns (uint) {
        return allowances[account][spender];
    }

    /**
     * @notice Approve `spender` to transfer up to `amount` from `src`
     * @dev This will overwrite the approval amount for `spender`
     *  and is subject to issues noted [here](https://eips.ethereum.org/EIPS/eip-20#approve)
     * @param spender The address of the account which may transfer tokens
     * @param rawAmount The number of tokens that are approved (2^256-1 means infinite)
     * @return Whether or not the approval succeeded
     */
    function approve(address spender, uint256 rawAmount) external returns (bool) {
        require(approveDisabledAddress != spender, "Take::approve: disabled");

        uint96 amount;
        if (rawAmount == uint(-1)) {
            amount = uint96(-1);
        } else {
            amount = safe96(rawAmount, "Take::approve: amount exceeds 96 bits");
        }

        allowances[msg.sender][spender] = amount;

        emit Approval(msg.sender, spender, amount);
        return true;
    }

    /**
     * @notice Get the number of tokens held by the `account`
     * @param account The address of the account to get the balance of
     * @return The number of tokens held
     */
    function balanceOf(address account) external view returns (uint) {
        return balances[account];
    }

    /**
     * @notice Transfer `amount` tokens from `msg.sender` to `dst`
     * @param dst The address of the destination account
     * @param rawAmount The number of tokens to transfer
     * @return Whether or not the transfer succeeded
     */
    function transfer(address dst, uint256 rawAmount) external returns (bool) {
        if (msg.sender != owner()) {
            require(tokenTransferAllowed, "Take:: Token transfer not allowed");
        }

        uint96 amount = safe96(rawAmount, "Take::transfer: amount exceeds 96 bits");
        _transferTokens(msg.sender, dst, amount);
        return true;
    }

    /**
     * @notice Transfer `amount` tokens from `src` to `dst`
     * @param src The address of the source account
     * @param dst The address of the destination account
     * @param rawAmount The number of tokens to transfer
     * @return Whether or not the transfer succeeded
     */
    function transferFrom(address src, address dst, uint256 rawAmount) external returns (bool) {
        if (msg.sender != owner()) {
            require(tokenTransferAllowed, "Take:: Token transfer not allowed");
        }

        address spender = msg.sender;
        uint96 spenderAllowance = allowances[src][spender];
        uint96 amount = safe96(rawAmount, "Take::approve: amount exceeds 96 bits");

        if (spender != src && spenderAllowance != uint96(-1)) {
            uint96 newAllowance = sub96(spenderAllowance, amount, "Take::transferFrom: transfer amount exceeds spender allowance");
            allowances[src][spender] = newAllowance;

            emit Approval(src, spender, newAllowance);
        }

        _transferTokens(src, dst, amount);
        return true;
    }

    /**
     * @notice Gets the current votes balance for `account`
     * @param account The address to get votes balance
     * @return The number of current votes for `account`
     */
    function getCurrentVotes(address account) external view returns (uint96) {
        uint32 nCheckpoints = numCheckpoints[account];
        return nCheckpoints > 0 ? checkpoints[account][nCheckpoints - 1].votes : 0;
    }

    /**
     * @notice Delegate votes from `msg.sender` to `delegatee`
     * @param delegatee The address to delegate votes to
     */
    function delegate(address delegatee) public {
        return _delegate(msg.sender, delegatee);
    }

    /**
     * @notice Determine the prior number of votes for an account as of a block number
     * @dev Block number must be a finalized block or else this function will revert to prevent misinformation.
     * @param account The address of the account to check
     * @param blockNumber The block number to get the vote balance at
     * @return The number of votes the account had as of the given block
     */
    function getPriorVotes(address account, uint256 blockNumber) public view returns (uint96) {
        require(blockNumber < block.number, "Take::getPriorVotes: not yet determined");

        uint32 nCheckpoints = numCheckpoints[account];
        if (nCheckpoints == 0) {
            return 0;
        }

        // First check most recent balance
        if (checkpoints[account][nCheckpoints - 1].fromBlock <= blockNumber) {
            return checkpoints[account][nCheckpoints - 1].votes;
        }

        // Next check implicit zero balance
        if (checkpoints[account][0].fromBlock > blockNumber) {
            return 0;
        }

        uint32 lower = 0;
        uint32 upper = nCheckpoints - 1;
        while (upper > lower) {
            uint32 center = upper - (upper - lower) / 2; // ceil, avoiding overflow
            Checkpoint memory cp = checkpoints[account][center];
            if (cp.fromBlock == blockNumber) {
                return cp.votes;
            } else if (cp.fromBlock < blockNumber) {
                lower = center;
            } else {
                upper = center - 1;
            }
        }
        return checkpoints[account][lower].votes;
    }

    function _delegate(address delegator, address delegatee) internal {
        address currentDelegate = delegates[delegator];
        uint96 delegatorBalance = balances[delegator];
        delegates[delegator] = delegatee;

        emit DelegateChanged(delegator, currentDelegate, delegatee);

        _moveDelegates(currentDelegate, delegatee, delegatorBalance);
    }

    function _transferTokens(address src, address dst, uint96 amount) internal {
        require(src != address(0), "Take::_transferTokens: cannot transfer from the zero address");
        require(dst != address(0), "Take::_transferTokens: cannot transfer to the zero address");

        uint96 sendAmount = amount;
        uint96 burnFee = div96(mul96(burnRate, amount), burnRateBase);
        if (burnFee >0 && burnSaleAddresses[dst]) {
            balances[burnPoolAddress] = add96(
                balances[burnPoolAddress],
                burnFee,
                "Take::_transferTokens: transfer amount burnFee overflows"
            );
            sendAmount = sub96(amount, burnFee, "Take::_transferTokens: burnFee > amount");

            emit Transfer(src, burnPoolAddress, burnFee);
        }

        balances[src] = sub96(balances[src], amount, "Take::_transferTokens: transfer amount exceeds balance");
        balances[dst] = add96(balances[dst], sendAmount, "Take::_transferTokens: transfer amount overflows");
        emit Transfer(src, dst, sendAmount);

        _moveDelegates(delegates[src], delegates[dst], amount);
    }

    function _moveDelegates(address srcRep, address dstRep, uint96 amount) internal {
        if (srcRep != dstRep && amount > 0) {
            if (srcRep != address(0)) {
                uint32 srcRepNum = numCheckpoints[srcRep];
                uint96 srcRepOld = srcRepNum > 0 ? checkpoints[srcRep][srcRepNum - 1].votes : 0;
                uint96 srcRepNew = sub96(srcRepOld, amount, "Take::_moveVotes: vote amount underflows");
                _writeCheckpoint(srcRep, srcRepNum, srcRepOld, srcRepNew);
            }

            if (dstRep != address(0)) {
                uint32 dstRepNum = numCheckpoints[dstRep];
                uint96 dstRepOld = dstRepNum > 0 ? checkpoints[dstRep][dstRepNum - 1].votes : 0;
                uint96 dstRepNew = add96(dstRepOld, amount, "Take::_moveVotes: vote amount overflows");
                _writeCheckpoint(dstRep, dstRepNum, dstRepOld, dstRepNew);
            }
        }
    }

    function _writeCheckpoint(address delegatee, uint32 nCheckpoints, uint96 oldVotes, uint96 newVotes) internal {
        uint32 blockNumber = safe32(block.number, "Take::_writeCheckpoint: block number exceeds 32 bits");

        if (nCheckpoints > 0 && checkpoints[delegatee][nCheckpoints - 1].fromBlock == blockNumber) {
            checkpoints[delegatee][nCheckpoints - 1].votes = newVotes;
        } else {
            checkpoints[delegatee][nCheckpoints] = Checkpoint(blockNumber, newVotes);
            numCheckpoints[delegatee] = nCheckpoints + 1;
        }

        emit DelegateVotesChanged(delegatee, oldVotes, newVotes);
    }

    function safe32(uint256 n, string memory errorMessage) internal pure returns (uint32) {
        require(n < 2**32, errorMessage);
        return uint32(n);
    }

    function safe96(uint256 n, string memory errorMessage) internal pure returns (uint96) {
        require(n < 2**96, errorMessage);
        return uint96(n);
    }

    function add96(uint96 a, uint96 b, string memory errorMessage) internal pure returns (uint96) {
        uint96 c = a + b;
        require(c >= a, errorMessage);
        return c;
    }

    function sub96(uint96 a, uint96 b, string memory errorMessage) internal pure returns (uint96) {
        require(b <= a, errorMessage);
        return a - b;
    }

    function mul96(uint96 a, uint96 b) internal pure returns (uint96) {
        if (a == 0) {
            return 0;
        }

        uint96 c = a * b;
        require(c / a == b, "multiplication overflow");

        return c;
    }

    function div96(uint96 a, uint96 b) internal pure returns (uint96) {
        require(b > 0, "division by zero");
        uint96 c = a / b;

        return c;
    }

    function getChainId() internal pure returns (uint) {
        uint256 chainId;
        assembly { chainId := chainid() }
        return chainId;
    }
    //DAT Helpers

    function _approve(address owner, address spender, uint256 rawAmount) internal {
        require(owner != address(0), "Take::approve: approve from the zero address");
        require(spender != address(0), "Take::approve: approve to the zero address");

        uint96 amount;
        if (rawAmount == uint(-1)) {
            amount = uint96(-1);
        } else {
            amount = safe96(rawAmount, "Take::approve: amount exceeds 96 bits");
        }

        allowances[owner][spender] = amount;
        emit Approval(owner, spender, amount);
    }

    function _addBurnSaleAddress(address burnAddress) internal onlyOwner {
        burnSaleAddresses[burnAddress] = true;
    }

    function _setBurnConfig(uint96 _burnRate, address _burnPoolAddress) internal
    {
        burnRate = _burnRate;
        burnPoolAddress = _burnPoolAddress;

        emit BurnConfigChanged(burnRate, burnPoolAddress);
    }

    function _setApproveConfig(address _approveDisabledAddress) internal {
        approveDisabledAddress = _approveDisabledAddress;
    }

    function _allowTokenTransfer() internal {
        tokenTransferAllowed = true;
    }
}

File 6 of 13 : IUniswapV2Router02.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.6.0;

interface IUniswapV2Router02 {
    function factory() external pure returns (address);
    function WETH() external pure returns (address);

    function addLiquidity(
        address tokenA,
        address tokenB,
        uint amountADesired,
        uint amountBDesired,
        uint amountAMin,
        uint amountBMin,
        address to,
        uint deadline
    ) external returns (uint amountA, uint amountB, uint liquidity);
    function addLiquidityETH(
        address token,
        uint amountTokenDesired,
        uint amountTokenMin,
        uint amountETHMin,
        address to,
        uint deadline
    ) external payable returns (uint amountToken, uint amountETH, uint liquidity);
    function removeLiquidity(
        address tokenA,
        address tokenB,
        uint liquidity,
        uint amountAMin,
        uint amountBMin,
        address to,
        uint deadline
    ) external returns (uint amountA, uint amountB);
    function removeLiquidityETH(
        address token,
        uint liquidity,
        uint amountTokenMin,
        uint amountETHMin,
        address to,
        uint deadline
    ) external returns (uint amountToken, uint amountETH);
    function removeLiquidityWithPermit(
        address tokenA,
        address tokenB,
        uint liquidity,
        uint amountAMin,
        uint amountBMin,
        address to,
        uint deadline,
        bool approveMax, uint8 v, bytes32 r, bytes32 s
    ) external returns (uint amountA, uint amountB);
    function removeLiquidityETHWithPermit(
        address token,
        uint liquidity,
        uint amountTokenMin,
        uint amountETHMin,
        address to,
        uint deadline,
        bool approveMax, uint8 v, bytes32 r, bytes32 s
    ) external returns (uint amountToken, uint amountETH);
    function swapExactTokensForTokens(
        uint amountIn,
        uint amountOutMin,
        address[] calldata path,
        address to,
        uint deadline
    ) external returns (uint[] memory amounts);
    function swapTokensForExactTokens(
        uint amountOut,
        uint amountInMax,
        address[] calldata path,
        address to,
        uint deadline
    ) external returns (uint[] memory amounts);
    function swapExactETHForTokens(uint amountOutMin, address[] calldata path, address to, uint deadline)
    external
    payable
    returns (uint[] memory amounts);
    function swapTokensForExactETH(uint amountOut, uint amountInMax, address[] calldata path, address to, uint deadline)
    external
    returns (uint[] memory amounts);
    function swapExactTokensForETH(uint amountIn, uint amountOutMin, address[] calldata path, address to, uint deadline)
    external
    returns (uint[] memory amounts);
    function swapETHForExactTokens(uint amountOut, address[] calldata path, address to, uint deadline)
    external
    payable
    returns (uint[] memory amounts);

    function quote(uint amountA, uint reserveA, uint reserveB) external pure returns (uint amountB);
    function getAmountOut(uint amountIn, uint reserveIn, uint reserveOut) external pure returns (uint amountOut);
    function getAmountIn(uint amountOut, uint reserveIn, uint reserveOut) external pure returns (uint amountIn);
    function getAmountsOut(uint amountIn, address[] calldata path) external view returns (uint[] memory amounts);
    function getAmountsIn(uint amountOut, address[] calldata path) external view returns (uint[] memory amounts);

    function removeLiquidityETHSupportingFeeOnTransferTokens(
        address token,
        uint liquidity,
        uint amountTokenMin,
        uint amountETHMin,
        address to,
        uint deadline
    ) external returns (uint amountETH);
    function removeLiquidityETHWithPermitSupportingFeeOnTransferTokens(
        address token,
        uint liquidity,
        uint amountTokenMin,
        uint amountETHMin,
        address to,
        uint deadline,
        bool approveMax, uint8 v, bytes32 r, bytes32 s
    ) external returns (uint amountETH);

    function swapExactTokensForTokensSupportingFeeOnTransferTokens(
        uint amountIn,
        uint amountOutMin,
        address[] calldata path,
        address to,
        uint deadline
    ) external;
    function swapExactETHForTokensSupportingFeeOnTransferTokens(
        uint amountOutMin,
        address[] calldata path,
        address to,
        uint deadline
    ) external payable;
    function swapExactTokensForETHSupportingFeeOnTransferTokens(
        uint amountIn,
        uint amountOutMin,
        address[] calldata path,
        address to,
        uint deadline
    ) external;
}

File 7 of 13 : IUniswapV2Factory.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.5.0;

interface IUniswapV2Factory {
    event PairCreated(address indexed token0, address indexed token1, address pair, uint);

    function feeTo() external view returns (address);
    function feeToSetter() external view returns (address);

    function getPair(address tokenA, address tokenB) external view returns (address pair);
    function allPairs(uint) external view returns (address pair);
    function allPairsLength() external view returns (uint);

    function createPair(address tokenA, address tokenB) external returns (address pair);

    function setFeeTo(address) external;
    function setFeeToSetter(address) external;
}

File 8 of 13 : IERC20.sol
// SPDX-License-Identifier: MIT

pragma solidity >=0.6.0 <0.8.0;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Returns the amount of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the amount of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves `amount` tokens from the caller's account to `recipient`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address recipient, uint256 amount) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 amount) external returns (bool);

    /**
     * @dev Moves `amount` tokens from `sender` to `recipient` using the
     * allowance mechanism. `amount` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);

    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);
}

File 9 of 13 : SafeERC20.sol
// SPDX-License-Identifier: MIT

pragma solidity >=0.6.0 <0.8.0;

import "./IERC20.sol";
import "../../math/SafeMath.sol";
import "../../utils/Address.sol";

/**
 * @title SafeERC20
 * @dev Wrappers around ERC20 operations that throw on failure (when the token
 * contract returns false). Tokens that return no value (and instead revert or
 * throw on failure) are also supported, non-reverting calls are assumed to be
 * successful.
 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
 */
library SafeERC20 {
    using SafeMath for uint256;
    using Address for address;

    function safeTransfer(IERC20 token, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
    }

    function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
    }

    /**
     * @dev Deprecated. This function has issues similar to the ones found in
     * {IERC20-approve}, and its usage is discouraged.
     *
     * Whenever possible, use {safeIncreaseAllowance} and
     * {safeDecreaseAllowance} instead.
     */
    function safeApprove(IERC20 token, address spender, uint256 value) internal {
        // safeApprove should only be called when setting an initial allowance,
        // or when resetting it to zero. To increase and decrease it, use
        // 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
        // solhint-disable-next-line max-line-length
        require((value == 0) || (token.allowance(address(this), spender) == 0),
            "SafeERC20: approve from non-zero to non-zero allowance"
        );
        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
    }

    function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
        uint256 newAllowance = token.allowance(address(this), spender).add(value);
        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
    }

    function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal {
        uint256 newAllowance = token.allowance(address(this), spender).sub(value, "SafeERC20: decreased allowance below zero");
        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     */
    function _callOptionalReturn(IERC20 token, bytes memory data) private {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that
        // the target address contains contract code and also asserts for success in the low-level call.

        bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
        if (returndata.length > 0) { // Return data is optional
            // solhint-disable-next-line max-line-length
            require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
        }
    }
}

File 10 of 13 : SafeMath.sol
// SPDX-License-Identifier: MIT

pragma solidity >=0.6.0 <0.8.0;

/**
 * @dev Wrappers over Solidity's arithmetic operations with added overflow
 * checks.
 *
 * Arithmetic operations in Solidity wrap on overflow. This can easily result
 * in bugs, because programmers usually assume that an overflow raises an
 * error, which is the standard behavior in high level programming languages.
 * `SafeMath` restores this intuition by reverting the transaction when an
 * operation overflows.
 *
 * Using this library instead of the unchecked operations eliminates an entire
 * class of bugs, so it's recommended to use it always.
 */
library SafeMath {
    /**
     * @dev Returns the addition of two unsigned integers, reverting on
     * overflow.
     *
     * Counterpart to Solidity's `+` operator.
     *
     * Requirements:
     *
     * - Addition cannot overflow.
     */
    function add(uint256 a, uint256 b) internal pure returns (uint256) {
        uint256 c = a + b;
        require(c >= a, "SafeMath: addition overflow");

        return c;
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, reverting on
     * overflow (when the result is negative).
     *
     * Counterpart to Solidity's `-` operator.
     *
     * Requirements:
     *
     * - Subtraction cannot overflow.
     */
    function sub(uint256 a, uint256 b) internal pure returns (uint256) {
        return sub(a, b, "SafeMath: subtraction overflow");
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, reverting with custom message on
     * overflow (when the result is negative).
     *
     * Counterpart to Solidity's `-` operator.
     *
     * Requirements:
     *
     * - Subtraction cannot overflow.
     */
    function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
        require(b <= a, errorMessage);
        uint256 c = a - b;

        return c;
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, reverting on
     * overflow.
     *
     * Counterpart to Solidity's `*` operator.
     *
     * Requirements:
     *
     * - Multiplication cannot overflow.
     */
    function mul(uint256 a, uint256 b) internal pure returns (uint256) {
        // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
        // benefit is lost if 'b' is also tested.
        // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
        if (a == 0) {
            return 0;
        }

        uint256 c = a * b;
        require(c / a == b, "SafeMath: multiplication overflow");

        return c;
    }

    /**
     * @dev Returns the integer division of two unsigned integers. Reverts on
     * division by zero. The result is rounded towards zero.
     *
     * Counterpart to Solidity's `/` operator. Note: this function uses a
     * `revert` opcode (which leaves remaining gas untouched) while Solidity
     * uses an invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function div(uint256 a, uint256 b) internal pure returns (uint256) {
        return div(a, b, "SafeMath: division by zero");
    }

    /**
     * @dev Returns the integer division of two unsigned integers. Reverts with custom message on
     * division by zero. The result is rounded towards zero.
     *
     * Counterpart to Solidity's `/` operator. Note: this function uses a
     * `revert` opcode (which leaves remaining gas untouched) while Solidity
     * uses an invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
        require(b > 0, errorMessage);
        uint256 c = a / b;
        // assert(a == b * c + a % b); // There is no case in which this doesn't hold

        return c;
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
     * Reverts when dividing by zero.
     *
     * Counterpart to Solidity's `%` operator. This function uses a `revert`
     * opcode (which leaves remaining gas untouched) while Solidity uses an
     * invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function mod(uint256 a, uint256 b) internal pure returns (uint256) {
        return mod(a, b, "SafeMath: modulo by zero");
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
     * Reverts with custom message when dividing by zero.
     *
     * Counterpart to Solidity's `%` operator. This function uses a `revert`
     * opcode (which leaves remaining gas untouched) while Solidity uses an
     * invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
        require(b != 0, errorMessage);
        return a % b;
    }
}

File 11 of 13 : Address.sol
// SPDX-License-Identifier: MIT

pragma solidity >=0.6.2 <0.8.0;

/**
 * @dev Collection of functions related to the address type
 */
library Address {
    /**
     * @dev Returns true if `account` is a contract.
     *
     * [IMPORTANT]
     * ====
     * It is unsafe to assume that an address for which this function returns
     * false is an externally-owned account (EOA) and not a contract.
     *
     * Among others, `isContract` will return false for the following
     * types of addresses:
     *
     *  - an externally-owned account
     *  - a contract in construction
     *  - an address where a contract will be created
     *  - an address where a contract lived, but was destroyed
     * ====
     */
    function isContract(address account) internal view returns (bool) {
        // This method relies on extcodesize, which returns 0 for contracts in
        // construction, since the code is only stored at the end of the
        // constructor execution.

        uint256 size;
        // solhint-disable-next-line no-inline-assembly
        assembly { size := extcodesize(account) }
        return size > 0;
    }

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        require(address(this).balance >= amount, "Address: insufficient balance");

        // solhint-disable-next-line avoid-low-level-calls, avoid-call-value
        (bool success, ) = recipient.call{ value: amount }("");
        require(success, "Address: unable to send value, recipient may have reverted");
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain`call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason, it is bubbled up by this
     * function (like regular Solidity function calls).
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     *
     * _Available since v3.1._
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
      return functionCall(target, data, "Address: low-level call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
     * `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
        return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
    }

    /**
     * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
     * with `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) {
        require(address(this).balance >= value, "Address: insufficient balance for call");
        require(isContract(target), "Address: call to non-contract");

        // solhint-disable-next-line avoid-low-level-calls
        (bool success, bytes memory returndata) = target.call{ value: value }(data);
        return _verifyCallResult(success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        return functionStaticCall(target, data, "Address: low-level static call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(address target, bytes memory data, string memory errorMessage) internal view returns (bytes memory) {
        require(isContract(target), "Address: static call to non-contract");

        // solhint-disable-next-line avoid-low-level-calls
        (bool success, bytes memory returndata) = target.staticcall(data);
        return _verifyCallResult(success, returndata, errorMessage);
    }

    function _verifyCallResult(bool success, bytes memory returndata, string memory errorMessage) private pure returns(bytes memory) {
        if (success) {
            return returndata;
        } else {
            // Look for revert reason and bubble it up if present
            if (returndata.length > 0) {
                // The easiest way to bubble the revert reason is using memory via assembly

                // solhint-disable-next-line no-inline-assembly
                assembly {
                    let returndata_size := mload(returndata)
                    revert(add(32, returndata), returndata_size)
                }
            } else {
                revert(errorMessage);
            }
        }
    }
}

File 12 of 13 : Ownable.sol
// SPDX-License-Identifier: MIT

pragma solidity >=0.6.0 <0.8.0;

import "../GSN/Context.sol";
/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * By default, the owner account will be the one that deploys the contract. This
 * can later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract Ownable is Context {
    address private _owner;

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the deployer as the initial owner.
     */
    constructor () internal {
        address msgSender = _msgSender();
        _owner = msgSender;
        emit OwnershipTransferred(address(0), msgSender);
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view returns (address) {
        return _owner;
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        require(_owner == _msgSender(), "Ownable: caller is not the owner");
        _;
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions anymore. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby removing any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        emit OwnershipTransferred(_owner, address(0));
        _owner = address(0);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        require(newOwner != address(0), "Ownable: new owner is the zero address");
        emit OwnershipTransferred(_owner, newOwner);
        _owner = newOwner;
    }
}

File 13 of 13 : Context.sol
// SPDX-License-Identifier: MIT

pragma solidity >=0.6.0 <0.8.0;

/*
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with GSN meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address payable) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes memory) {
        this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691
        return msg.data;
    }
}

Settings
{
  "optimizer": {
    "enabled": true,
    "runs": 200
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "abi"
      ]
    }
  },
  "libraries": {}
}

Contract Security Audit

Contract ABI

[{"inputs":[{"internalType":"contract IERC20","name":"token_","type":"address"},{"internalType":"address","name":"beneficiary_","type":"address"},{"internalType":"uint256","name":"releaseTime_","type":"uint256"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"beneficiary","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"release","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"releaseTime","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"token","outputs":[{"internalType":"contract IERC20","name":"","type":"address"}],"stateMutability":"view","type":"function"}]

Deployed Bytecode

0x608060405234801561001057600080fd5b506004361061004c5760003560e01c806338af3eed1461005157806386d1a69f14610075578063b91d40011461007f578063fc0c546a14610099575b600080fd5b6100596100a1565b604080516001600160a01b039092168252519081900360200190f35b61007d6100b0565b005b6100876101c7565b60408051918252519081900360200190f35b6100596101cd565b6001546001600160a01b031690565b6002544210156100f15760405162461bcd60e51b81526004018080602001828103825260328152602001806105046032913960400191505060405180910390fd5b60008054604080516370a0823160e01b815230600482015290516001600160a01b03909216916370a0823191602480820192602092909190829003018186803b15801561013d57600080fd5b505afa158015610151573d6000803e3d6000fd5b505050506040513d602081101561016757600080fd5b50519050806101a75760405162461bcd60e51b81526004018080602001828103825260238152602001806105866023913960400191505060405180910390fd5b6001546000546101c4916001600160a01b039182169116836101dc565b50565b60025490565b6000546001600160a01b031690565b604080516001600160a01b038416602482015260448082018490528251808303909101815260649091019091526020810180516001600160e01b031663a9059cbb60e01b17905261022e908490610233565b505050565b6060610288826040518060400160405280602081526020017f5361666545524332303a206c6f772d6c6576656c2063616c6c206661696c6564815250856001600160a01b03166102e49092919063ffffffff16565b80519091501561022e578080602001905160208110156102a757600080fd5b505161022e5760405162461bcd60e51b815260040180806020018281038252602a81526020018061055c602a913960400191505060405180910390fd5b60606102f384846000856102fd565b90505b9392505050565b60608247101561033e5760405162461bcd60e51b81526004018080602001828103825260268152602001806105366026913960400191505060405180910390fd5b61034785610459565b610398576040805162461bcd60e51b815260206004820152601d60248201527f416464726573733a2063616c6c20746f206e6f6e2d636f6e7472616374000000604482015290519081900360640190fd5b60006060866001600160a01b031685876040518082805190602001908083835b602083106103d75780518252601f1990920191602091820191016103b8565b6001836020036101000a03801982511681845116808217855250505050505090500191505060006040518083038185875af1925050503d8060008114610439576040519150601f19603f3d011682016040523d82523d6000602084013e61043e565b606091505b509150915061044e82828661045f565b979650505050505050565b3b151590565b6060831561046e5750816102f6565b82511561047e5782518084602001fd5b8160405162461bcd60e51b81526004018080602001828103825283818151815260200191508051906020019080838360005b838110156104c85781810151838201526020016104b0565b50505050905090810190601f1680156104f55780820380516001836020036101000a031916815260200191505b509250505060405180910390fdfe546f6b656e54696d656c6f636b3a2063757272656e742074696d65206973206265666f72652072656c656173652074696d65416464726573733a20696e73756666696369656e742062616c616e636520666f722063616c6c5361666545524332303a204552433230206f7065726174696f6e20646964206e6f742073756363656564546f6b656e54696d656c6f636b3a206e6f20746f6b656e7320746f2072656c65617365a26469706673582212208a4695abce7ef9551fe36dc0524676fd0a70f9bcbfee39f5b7025883077b1a6564736f6c634300060c0033

Block Transaction Difficulty Gas Used Reward
View All Blocks Produced

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
Loading...
Loading
[ Download: CSV Export  ]

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.