ETH Price: $3,268.00 (-0.55%)

Contract Diff Checker

Contract Name:
TokenTimelock

Contract Source Code:

// SPDX-License-Identifier: MIT
pragma solidity ^0.6.0;
pragma experimental ABIEncoderV2;

import "./math/BigDiv.sol";
import "./math/Sqrt.sol";
import "./Take.sol";
import "./uniswap/IUniswapV2Router02.sol";
import "./uniswap/IUniswapV2Factory.sol";
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import "@openzeppelin/contracts/token/ERC20/SafeERC20.sol";
import "@openzeppelin/contracts/math/SafeMath.sol";
import "@openzeppelin/contracts/utils/Address.sol";
import "@openzeppelin/contracts/token/ERC20/TokenTimelock.sol";


/**
 * @title Decentralized Autonomous Trust
 * This contract is a modified version of the implementation provided by Fairmint for a
 * Decentralized Autonomous Trust as described in the continuous
 * organization whitepaper (https://github.com/c-org/whitepaper) and
 * specified here: https://github.com/fairmint/c-org/wiki.
 * Code from : https://github.com/Fairmint/c-org/blob/dfd3129f9bce8717406aba54d1f1888d8e253dbb/contracts/DecentralizedAutonomousTrust.sol
 * Changes Added: https://github.com/Fairmint/c-org/commit/60bb63b9112a82996f275a75a87c28b1d73e3f11
 *
 * Use at your own risk. 
 */
contract DecentralizedAutonomousTrust
  is Take
{
  using SafeMath for uint;
  using Sqrt for uint;
  using SafeERC20 for IERC20;

  /**
   * Events
   */

  event Buy(
    address indexed _from,
    address indexed _to,
    uint256 _currencyValue,
    uint256 _fairValue
  );
  event Close();
  event StateChange(
    uint256 _previousState,
    uint256 _newState
  );
  event UpdateConfig(
    address indexed _beneficiary,
    address indexed _control,
    address _uniswapRouterAddress,
    address _uniswapFactoryAddress,
    uint256 _minInvestment,
    uint256 _openUntilAtLeast
  );
  // Constants

  //  The default state
  uint256 private constant STATE_INIT = 0;

  //  The state after initGoal has been reached
  uint256 private constant STATE_RUN = 1;

  //  The state after closed by the `beneficiary` account from STATE_RUN
  uint256 private constant STATE_CLOSE = 2;

  //  The state after closed by the `beneficiary` account from STATE_INIT
  uint256 private constant STATE_CANCEL = 3;

  //  When multiplying 2 terms, the max value is 2^128-1
  uint256 private constant MAX_BEFORE_SQUARE = 2**128 - 1;

  //  The denominator component for values specified in basis points.
  uint256 private constant BASIS_POINTS_DEN = 10000;

  // The max `totalSupply`
  // @dev This limit ensures that the DAT's formulas do not overflow (<MAX_BEFORE_SQUARE/2)
  uint256 private constant MAX_SUPPLY = 10 ** 38;

  /**
   * Data for DAT business logic
   */

  /// @notice The address of the beneficiary organization which receives the investments.
  /// Points to the wallet of the organization.
  address payable public beneficiary;

  /// @notice The buy slope of the bonding curve.
  /// Does not affect the financial model, only the granularity of TAKE.
  /// @dev This is the numerator component of the fractional value.
  uint256 public buySlopeNum;

  /// @notice The buy slope of the bonding curve.
  /// Does not affect the financial model, only the granularity of TAKE.
  /// @dev This is the denominator component of the fractional value.
  uint256 public buySlopeDen;

  /// @notice The address from which the updatable variables can be updated
  address public control;

  /// @notice The address of the token used as reserve in the bonding curve
  /// (e.g. the DAI contract). Use ETH if 0.
  IERC20 public currency;

  /// @notice The initial fundraising goal (expressed in TAKE) to start the c-org.
  /// `0` means that there is no initial fundraising and the c-org immediately moves to run state.
  uint256 public initGoal;

  uint256 public initReserve;

  /// @notice The bonding curve fundraising goal.
  uint256 public bcGoal;

  /// @notice The bonding curve fundraising final result.
  uint256 public bcTakeReleased;

  /// @notice The investment reserve of the c-org. Defines the percentage of the value invested that is
  /// automatically funneled and held into the buyback_reserve expressed in basis points.
  uint256 public investmentReserveBasisPoints;

  /// @notice The earliest date/time (in seconds) that the DAT may enter the `CLOSE` state, ensuring
  /// that if the DAT reaches the `RUN` state it will remain running for at least this period of time.
  /// @dev This value may be increased anytime by the control account
  uint256 public openUntilAtLeast;

  /// @notice The minimum amount of `currency` investment accepted.
  uint256 public minInvestment;

  /// @notice The current state of the contract.
  /// @dev See the constants above for possible state values.
  uint256 public state;

  string public constant version = "2";
  // --- EIP712 niceties ---
  // Original source: https://etherscan.io/address/0x6b175474e89094c44da98b954eedeac495271d0f#code
  //  mapping (address => uint) public nonces;
  bytes32 public DOMAIN_SEPARATOR;
  // bytes32 public constant PERMIT_TYPEHASH = keccak256("Permit(address holder,address spender,uint256 nonce,uint256 expiry,bool allowed)");
  bytes32 public constant PERMIT_TYPEHASH = 0xea2aa0a1be11a07ed86d755c93467f4f82362b452371d1ba94d1715123511acb;

  address public  uniswapFactoryAddress;
  address public  uniswapRouterAddress;
  IUniswapV2Router02 private uniswapRouter;
  IUniswapV2Factory private uniswapFactory;
  address internal constant NULL_ADDRESS = 0x0000000000000000000000000000000000000000;
  uint96 private constant uniswapBurnRate = 1000;
  address public uniswapPairAddress = 0x0000000000000000000000000000000000000000;
  address public uniswapTokenTimelockAddress = 0x0000000000000000000000000000000000000000;
  address public takeTimelockAddress = 0x0000000000000000000000000000000000000000;

  // Team Revenue in percent
  uint256 private constant teamRevenueBasisPoints = 3000;

  //
  bool public bcFlowAllowed = false;

  /// Pay

  /// @notice Pay the organization on-chain without minting any tokens.
  /// @dev This allows you to add funds directly to the buybackReserve.
  function pay() external payable
  {
    require(address(currency) == address(0), "ONLY_FOR_CURRENCY_ETH");
  }

  function handleBC(
    bool withdrawOnError
  ) external
  {
    require(state == STATE_CLOSE, "ONLY_AFTER_CLOSE");
    require(msg.sender == beneficiary, "BENEFICIARY_ONLY");

    uint256 reserve = address(this).balance;
    require(reserve > 0, "MUST_BUY_AT_LEAST_1");

    uint256 teamReserve = reserve.mul(teamRevenueBasisPoints);
    teamReserve /= BASIS_POINTS_DEN;
    uint256 uniswapPoolEthAmount  = reserve.sub(teamReserve);

    uint256 uniswapPoolTakeAmount = uniswapPoolEthAmount.mul(buySlopeDen);
    uniswapPoolTakeAmount = uniswapPoolTakeAmount.div(bcTakeReleased);
    uniswapPoolTakeAmount = uniswapPoolTakeAmount.div(buySlopeNum);

    super._allowTokenTransfer();
    super._approve(address(this), uniswapRouterAddress, uint(-1));
    try uniswapRouter.addLiquidityETH{
    value: uniswapPoolEthAmount
    }(
      address(this),
      uniswapPoolTakeAmount,
      uniswapPoolTakeAmount,
      uniswapPoolEthAmount,
      address(this),
      block.timestamp + 15
    ) returns (uint256 amountToken, uint256 amountETH, uint256 liquidity) {
      Address.sendValue(beneficiary, address(this).balance);

      uniswapPairAddress = uniswapFactory.getPair(uniswapRouter.WETH(), address(this));
      super._setBurnConfig(uniswapBurnRate, NULL_ADDRESS);
      super._addBurnSaleAddress(uniswapPairAddress);
      super._setApproveConfig(NULL_ADDRESS);

      lockTakeTokens();
    } catch {
      if (withdrawOnError) {
        Address.sendValue(beneficiary, address(this).balance);
        uint96 amount = safe96(this.balanceOf(address(this)), "DAT:: amount exceeds 96 bits");
        super._transferTokens(address(this), beneficiary, amount);
      }
    }

  }

  function lockUniswapTokens() external {
    require(state == STATE_CLOSE, "ONLY_AFTER_CLOSE");
    require(msg.sender == beneficiary, "BENEFICIARY_ONLY");

    IERC20 uniswapPair = IERC20(uniswapPairAddress);

    TokenTimelock uniswapTokenTimelock = new TokenTimelock(uniswapPair, beneficiary, block.timestamp + 31 days);
    uniswapTokenTimelockAddress = address(uniswapTokenTimelock);

    uniswapPair.transfer(uniswapTokenTimelockAddress, uniswapPair.balanceOf(address(this)) );
  }

  // --- Approve by signature ---
  // Original source: https://etherscan.io/address/0x6b175474e89094c44da98b954eedeac495271d0f#code
  function permit(
    address holder,
    address spender,
    uint256 nonce,
    uint256 expiry,
    bool allowed,
    uint8 v,
    bytes32 r,
    bytes32 s
  ) external
  {
    bytes32 digest = keccak256(
      abi.encodePacked(
        "\x19\x01",
        DOMAIN_SEPARATOR,
        keccak256(
          abi.encode(PERMIT_TYPEHASH,
          holder,
          spender,
          nonce,
          expiry,
          allowed
          )
        )
      )
    );

    require(holder != address(0), "DAT/invalid-address-0");
    require(holder == ecrecover(digest, v, r, s), "DAT/invalid-permit");
    require(expiry == 0 || now <= expiry, "DAT/permit-expired");
    require(nonce == nonces[holder]++, "DAT/invalid-nonce");
    uint256 wad = allowed ? uint(-1) : 0;
    super._approve(holder, spender, wad);
  }

  /**
   * Config / Control
   */

  /// @notice Called once after deploy to set the initial configuration.
  /// None of the values provided here may change once initially set.
  /// @dev using the init pattern in order to support zos upgrades
  function initialize(
    address _currencyAddress,
    uint256 _initGoal,
    uint256 _bcGoal,
    uint256 _buySlopeNum,
    uint256 _buySlopeDen,
    uint256 _investmentReserveBasisPoints
  ) public
  {
    require(control == address(0), "ALREADY_INITIALIZED");

    initReserve = 0;

    // Set initGoal, which in turn defines the initial state
    if(_initGoal == 0)
    {
      emit StateChange(state, STATE_RUN);
      state = STATE_RUN;
    }
    else
    {
      // Math: If this value got too large, the DAT would overflow on sell
      require(_initGoal < MAX_SUPPLY, "EXCESSIVE_GOAL");
      initGoal = _initGoal;
    }

    require(_bcGoal > 0, "INVALID_BC_GOAL");
    bcGoal = _bcGoal;

    bcTakeReleased = 0;

    require(_buySlopeNum > 0, "INVALID_SLOPE_NUM");
    require(_buySlopeDen > 0, "INVALID_SLOPE_DEN");
    require(_buySlopeNum < MAX_BEFORE_SQUARE, "EXCESSIVE_SLOPE_NUM");
    require(_buySlopeDen < MAX_BEFORE_SQUARE, "EXCESSIVE_SLOPE_DEN");
    buySlopeNum = _buySlopeNum;
    buySlopeDen = _buySlopeDen;
    // 100% or less
    require(_investmentReserveBasisPoints <= BASIS_POINTS_DEN, "INVALID_RESERVE");
    investmentReserveBasisPoints = _investmentReserveBasisPoints;

    // Set default values (which may be updated using `updateConfig`)
    minInvestment = 1 ether;
    beneficiary = msg.sender;
    control = msg.sender;

    // Save currency
    currency = IERC20(_currencyAddress);

    // Initialize permit
    DOMAIN_SEPARATOR = keccak256(
      abi.encode(
        keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"),
        keccak256(bytes(name)),
        keccak256(bytes(version)),
        _getChainId(),
        address(this)
      )
    );
  }

  function updateConfig(
    address payable _beneficiary,
    address _control,
    address _uniswapRouterAddress,
    address _uniswapFactoryAddress,
    uint256 _minInvestment,
    uint256 _openUntilAtLeast
  ) public
  {
    // This require(also confirms that initialize has been called.
    require(msg.sender == control, "CONTROL_ONLY");

    require(_control != address(0), "INVALID_ADDRESS");
    control = _control;

    require(_uniswapRouterAddress != address(0), "INVALID_ADDRESS");
    uniswapRouterAddress = _uniswapRouterAddress;

    require(_uniswapFactoryAddress != address(0), "INVALID_ADDRESS");
    uniswapFactoryAddress = _uniswapFactoryAddress;

    uniswapRouter = IUniswapV2Router02(uniswapRouterAddress);
    uniswapFactory = IUniswapV2Factory(uniswapFactoryAddress);

    require(_minInvestment > 0, "INVALID_MIN_INVESTMENT");
    minInvestment = _minInvestment;

    require(_openUntilAtLeast >= openUntilAtLeast, "OPEN_UNTIL_MAY_NOT_BE_REDUCED");
    openUntilAtLeast = _openUntilAtLeast;

    if(beneficiary != _beneficiary)
    {
      require(_beneficiary != address(0), "INVALID_ADDRESS");
      uint256 tokens = balances[beneficiary];
      if(tokens > 0)
      {
        _transfer(beneficiary, _beneficiary, tokens);
      }
      beneficiary = _beneficiary;
    }

    emit UpdateConfig(
      _beneficiary,
      _control,
      _uniswapRouterAddress,
      _uniswapFactoryAddress,
      _minInvestment,
      _openUntilAtLeast
    );
  }

  function allowBcFlow() public {
    require(msg.sender == beneficiary, "BENEFICIARY_ONLY");
    bcFlowAllowed = true;
  }

  /**
   * Functions for our business logic
   */


  // Buy

  /// @notice Calculate how many TAKE tokens you would buy with the given amount of currency if `buy` was called now.
  /// @param _currencyValue How much currency to spend in order to buy TAKE.
  function estimateBuyValue(
    uint256 _currencyValue
  ) public view
    returns (uint)
  {
    if(_currencyValue < minInvestment)
    {
      return 0;
    }

    /// Calculate the tokenValue for this investment
    uint256 tokenValue;
    if(state == STATE_RUN)
    {
      uint256 supply = bcTakeReleased;
      // Math: worst case
      // MAX * 2 * MAX_BEFORE_SQUARE
      // / MAX_BEFORE_SQUARE
      tokenValue = BigDiv.bigDiv2x1(
        _currencyValue,
        2 * buySlopeDen,
        buySlopeNum
      );

      // Math: worst case MAX + (MAX_BEFORE_SQUARE * MAX_BEFORE_SQUARE)
      tokenValue = tokenValue.add(supply * supply);
      tokenValue = tokenValue.sqrt();

      // Math: small chance of underflow due to possible rounding in sqrt
      tokenValue = tokenValue.sub(supply);
    }
    else
    {
      // invalid state
      return 0;
    }

    return tokenValue;
  }

  function estimateBuyTokensValue (
    uint256 _tokenValue
  ) public view
    returns (uint)
  {
    /// Calculate the investment to buy _tokenValue
    uint256 currencyValue;
    if(state == STATE_RUN) {
      uint256 supply = bcTakeReleased;

      uint256 tokenValue = _tokenValue.add(supply);

      tokenValue = tokenValue.mul(tokenValue);
      tokenValue = tokenValue.sub(supply * supply);

      currencyValue = BigDiv.bigDiv2x1(
        tokenValue,
        buySlopeNum,
        2 * buySlopeDen
      );
    }
    else
    {
      // invalid state
      return 0;
    }

  return currencyValue;
  }

  /// @notice Purchase TAKE tokens with the given amount of currency.
  /// @param _to The account to receive the TAKE tokens from this purchase.
  /// @param _currencyValue How much currency to spend in order to buy TAKE.
  /// @param _minTokensBought Buy at least this many TAKE tokens or the transaction reverts.
  /// @dev _minTokensBought is necessary as the price will change if some elses transaction mines after
  /// yours was submitted.
  function buy(
    address _to,
    uint256 _currencyValue,
    uint256 _minTokensBought
  ) public payable
  {
    require(bcFlowAllowed, "TOKEN_SALE_NOT_STARTED");
    require(_to != address(0), "INVALID_ADDRESS");
    require(_minTokensBought > 0, "MUST_BUY_AT_LEAST_1");
    require(bcGoal >= bcTakeReleased, "BC_GOAL_REACHED");

    bool closeAfterBuy = false;

    // Calculate the tokenValue for this investment
    uint256 tokenValue = estimateBuyValue(_currencyValue);
    if (bcTakeReleased.add(tokenValue) >= bcGoal) {
      closeAfterBuy = true;
      tokenValue = bcGoal.sub(bcTakeReleased);
      _currencyValue = estimateBuyTokensValue(tokenValue);
    }

    require(tokenValue >= _minTokensBought, "PRICE_SLIPPAGE");

    emit Buy(msg.sender, _to, _currencyValue, tokenValue);

    _collectInvestment(_currencyValue, msg.value, true);
    super._transferTokens(address(this), _to, safe96(tokenValue, "DAT:: amount exceeds 96 bits"));

    bcTakeReleased = bcTakeReleased.add(tokenValue);

    if(state == STATE_RUN && closeAfterBuy) {
      _close();
    }
  }
  
  /// Close

  /// @notice Called by the beneficiary account to STATE_CLOSE or STATE_CANCEL the c-org.
  function close() public
  {
    require(msg.sender == beneficiary, "BENEFICIARY_ONLY");
    _close();
  }

  /**
 * Functions required by the ERC-20 token standard
 */

  /// @dev Moves tokens from one account to another if authorized.
  function _transfer(
    address _from,
    address _to,
    uint256 _amount
  ) internal
  {
    require(state != STATE_INIT || _from == beneficiary, "ONLY_BENEFICIARY_DURING_INIT");
    uint96 amount = safe96(_amount, "DAT::transfer: amount exceeds 96 bits");
    super._transferTokens(_from, _to, amount);
  }

  function _close() private
  {
    if(state == STATE_INIT)
    {
      // Allow the org to cancel anytime if the initGoal was not reached.
      emit StateChange(state, STATE_CANCEL);
      state = STATE_CANCEL;
    }
    else if(state == STATE_RUN)
    {
      require(openUntilAtLeast <= block.timestamp, "TOO_EARLY");

      emit StateChange(state, STATE_CLOSE);
      state = STATE_CLOSE;
    }
    else
    {
      revert("INVALID_STATE");
    }

    emit Close();
  }


  /**
   * Transaction Helpers
   */

  /// @notice Confirms the transfer of `_quantityToInvest` currency to the contract.
  function _collectInvestment(
    uint256 _quantityToInvest,
    uint256 _msgValue,
    bool _refundRemainder
  ) private
  {
    if(address(currency) == address(0))
    {
      // currency is ETH
      if(_refundRemainder)
      {
        // Math: if _msgValue was not sufficient then revert
        uint256 refund = _msgValue.sub(_quantityToInvest);
        if(refund > 0)
        {
          Address.sendValue(msg.sender, refund);
        }
      }
      else
      {
        require(_quantityToInvest == _msgValue, "INCORRECT_MSG_VALUE");
      }
    }
    else
    {
      // currency is ERC20
      require(_msgValue == 0, "DO_NOT_SEND_ETH");

      currency.safeTransferFrom(msg.sender, address(this), _quantityToInvest);
    }
  }

  /// @dev Send `_amount` currency from the contract to the `_to` account.
  function _transferCurrency(
    address payable _to,
    uint256 _amount
  ) private
  {
    if(_amount > 0)
    {
      if(address(currency) == address(0))
      {
        Address.sendValue(_to, _amount);
      }
      else
      {
        currency.safeTransfer(_to, _amount);
      }
    }
  }

  function _getChainId(
  ) private pure
  returns (uint256 id)
  {
    // solium-disable-next-line
    assembly
    {
      id := chainid()
    }
  }

  function lockTakeTokens() private {
    require(state == STATE_CLOSE, "ONLY_AFTER_CLOSE");
    require(msg.sender == beneficiary, "BENEFICIARY_ONLY");

    TokenTimelock takeTokenTimelock = new TokenTimelock(IERC20(address(this)), beneficiary, block.timestamp + 31 days);
    takeTimelockAddress = address(takeTokenTimelock);

    this.transfer(takeTimelockAddress, this.balanceOf(address(this)) );
  }
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.6.0;

import "@openzeppelin/contracts/math/SafeMath.sol";

/**
 * @title Reduces the size of terms before multiplication, to avoid an overflow, and then
 * restores the proper size after division.
 * @notice This effectively allows us to overflow values in the numerator and/or denominator
 * of a fraction, so long as the end result does not overflow as well.
 * @dev Results may be off by 1 + 0.000001% for 2x1 calls and 2 + 0.00001% for 2x2 calls.
 * Do not use if your contract expects very small result values to be accurate.
 */
library BigDiv
{
  using SafeMath for uint256;

  // @notice The max possible value
  uint256 private constant MAX_UINT = 2**256 - 1;

  // @notice When multiplying 2 terms <= this value the result won't overflow
  uint256 private constant MAX_BEFORE_SQUARE = 2**128 - 1;

  // @notice The max error target is off by 1 plus up to 0.000001% error
  // for bigDiv2x1 and that `* 2` for bigDiv2x2
  uint256 private constant MAX_ERROR = 100000000;

  // @notice A larger error threshold to use when multiple rounding errors may apply
  uint256 private constant MAX_ERROR_BEFORE_DIV = MAX_ERROR * 2;

  /**
   * @notice Returns the approx result of `a * b / d` so long as the result is <= MAX_UINT
   * @param _numA the first numerator term
   * @param _numB the second numerator term
   * @param _den the denominator
   * @return the approx result with up to off by 1 + MAX_ERROR, rounding down if needed
   */
  function bigDiv2x1(
    uint256 _numA,
    uint256 _numB,
    uint256 _den
  ) internal pure
    returns(uint256)
  {
    if(_numA == 0 || _numB == 0)
    {
      // would div by 0 or underflow if we don't special case 0
      return 0;
    }

    uint256 value;

    if(MAX_UINT / _numA >= _numB)
    {
      // a*b does not overflow, return exact math
      value = _numA * _numB;
      value /= _den;
      return value;
    }

    // Sort numerators
    uint256 numMax = _numB;
    uint256 numMin = _numA;
    if(_numA > _numB)
    {
      numMax = _numA;
      numMin = _numB;
    }

    value = numMax / _den;
    if(value > MAX_ERROR)
    {
      // _den is small enough to be MAX_ERROR or better w/o a factor
      value = value.mul(numMin);
      return value;
    }

    // formula = ((a / f) * b) / (d / f)
    // factor >= a / sqrt(MAX) * (b / sqrt(MAX))
    uint256 factor = numMin - 1;
    factor /= MAX_BEFORE_SQUARE;
    factor += 1;
    uint256 temp = numMax - 1;
    temp /= MAX_BEFORE_SQUARE;
    temp += 1;
    if(MAX_UINT / factor >= temp)
    {
      factor *= temp;
      value = numMax / factor;
      if(value > MAX_ERROR_BEFORE_DIV)
      {
        value = value.mul(numMin);
        temp = _den - 1;
        temp /= factor;
        temp = temp.add(1);
        value /= temp;
        return value;
      }
    }

    // formula: (a / (d / f)) * (b / f)
    // factor: b / sqrt(MAX)
    factor = numMin - 1;
    factor /= MAX_BEFORE_SQUARE;
    factor += 1;
    value = numMin / factor;
    temp = _den - 1;
    temp /= factor;
    temp += 1;
    temp = numMax / temp;
    value = value.mul(temp);
    return value;
  }

  /**
   * @notice Returns the approx result of `a * b / d` so long as the result is <= MAX_UINT
   * @param _numA the first numerator term
   * @param _numB the second numerator term
   * @param _den the denominator
   * @return the approx result with up to off by 1 + MAX_ERROR, rounding down if needed
   * @dev roundUp is implemented by first rounding down and then adding the max error to the result
   */
  function bigDiv2x1RoundUp(
    uint256 _numA,
    uint256 _numB,
    uint256 _den
  ) internal pure
    returns(uint256)
  {
    // first get the rounded down result
    uint256 value = bigDiv2x1(_numA, _numB, _den);

    if(value == 0)
    {
      // when the value rounds down to 0, assume up to an off by 1 error
      return 1;
    }

    // round down has a max error of MAX_ERROR, add that to the result
    // for a round up error of <= MAX_ERROR
    uint256 temp = value - 1;
    temp /= MAX_ERROR;
    temp += 1;
    if(MAX_UINT - value < temp)
    {
      // value + error would overflow, return MAX
      return MAX_UINT;
    }

    value += temp;

    return value;
  }

  /**
   * @notice Returns the approx result of `a * b / (c * d)` so long as the result is <= MAX_UINT
   * @param _numA the first numerator term
   * @param _numB the second numerator term
   * @param _denA the first denominator term
   * @param _denB the second denominator term
   * @return the approx result with up to off by 2 + MAX_ERROR*10 error, rounding down if needed
   * @dev this uses bigDiv2x1 and adds additional rounding error so the max error of this
   * formula is larger
   */
  function bigDiv2x2(
    uint256 _numA,
    uint256 _numB,
    uint256 _denA,
    uint256 _denB
  ) internal pure
    returns (uint256)
  {
    if(MAX_UINT / _denA >= _denB)
    {
      // denA*denB does not overflow, use bigDiv2x1 instead
      return bigDiv2x1(_numA, _numB, _denA * _denB);
    }

    if(_numA == 0 || _numB == 0)
    {
      // would div by 0 or underflow if we don't special case 0
      return 0;
    }

    // Sort denominators
    uint256 denMax = _denB;
    uint256 denMin = _denA;
    if(_denA > _denB)
    {
      denMax = _denA;
      denMin = _denB;
    }

    uint256 value;

    if(MAX_UINT / _numA >= _numB)
    {
      // a*b does not overflow, use `a / d / c`
      value = _numA * _numB;
      value /= denMin;
      value /= denMax;
      return value;
    }

    // `ab / cd` where both `ab` and `cd` would overflow

    // Sort numerators
    uint256 numMax = _numB;
    uint256 numMin = _numA;
    if(_numA > _numB)
    {
      numMax = _numA;
      numMin = _numB;
    }

    // formula = (a/d) * b / c
    uint256 temp = numMax / denMin;
    if(temp > MAX_ERROR_BEFORE_DIV)
    {
      return bigDiv2x1(temp, numMin, denMax);
    }

    // formula: ((a/f) * b) / d then either * f / c or / c * f
    // factor >= a / sqrt(MAX) * (b / sqrt(MAX))
    uint256 factor = numMin - 1;
    factor /= MAX_BEFORE_SQUARE;
    factor += 1;
    temp = numMax - 1;
    temp /= MAX_BEFORE_SQUARE;
    temp += 1;
    if(MAX_UINT / factor >= temp)
    {
      factor *= temp;

      value = numMax / factor;
      if(value > MAX_ERROR_BEFORE_DIV)
      {
        value = value.mul(numMin);
        value /= denMin;
        if(value > 0 && MAX_UINT / value >= factor)
        {
          value *= factor;
          value /= denMax;
          return value;
        }
      }
    }

    // formula: (a/f) * b / ((c*d)/f)
    // factor >= c / sqrt(MAX) * (d / sqrt(MAX))
    factor = denMin;
    factor /= MAX_BEFORE_SQUARE;
    temp = denMax;
    // + 1 here prevents overflow of factor*temp
    temp /= MAX_BEFORE_SQUARE + 1;
    factor *= temp;
    return bigDiv2x1(numMax / factor, numMin, MAX_UINT);
  }
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.6.0;


/**
 * @title Calculates the square root of a given value.
 * @dev Results may be off by 1.
 */
library Sqrt
{
  // The max possible value
  uint256 private constant MAX_UINT = 2**256 - 1;

  // Source: https://github.com/ethereum/dapp-bin/pull/50
  function sqrt(
    uint x
  ) internal pure
    returns (uint y)
  {
    if (x == 0)
    {
      return 0;
    }
    else if (x <= 3)
    {
      return 1;
    }
    else if (x == MAX_UINT)
    {
      // Without this we fail on x + 1 below
      return 2**128 - 1;
    }

    uint z = (x + 1) / 2;
    y = x;
    while (z < y)
    {
      y = z;
      z = (x / z + z) / 2;
    }
  }
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.6.0;
pragma experimental ABIEncoderV2;

import "@openzeppelin/contracts/math/SafeMath.sol";
import "@openzeppelin/contracts/access/Ownable.sol";

contract Take is Ownable {
    using SafeMath for uint;

    /// @notice EIP-20 token name for this token
    string public constant name = "Take";

    /// @notice EIP-20 token symbol for this token
    string public constant symbol = "TAKE";

    /// @notice EIP-20 token decimals for this token
    uint8 public constant decimals = 18;

    /// @notice Total number of tokens in circulation
    uint256 public totalSupply;

    // Allowance amounts on behalf of others
    mapping (address => mapping (address => uint96)) internal allowances;

    // Official record of token balances for each account
    mapping (address => uint96) internal balances;

    /// @notice A record of each accounts delegate
    mapping (address => address) public delegates;

    /// @notice A checkpoint for marking number of votes from a given block
    struct Checkpoint {
        uint32 fromBlock;
        uint96 votes;
    }

    /// @notice A record of votes checkpoints for each account, by index
    mapping (address => mapping (uint32 => Checkpoint)) public checkpoints;

    /// @notice The number of checkpoints for each account
    mapping (address => uint32) public numCheckpoints;

    /// @notice A record of states for signing / validating signatures
    mapping (address => uint) public nonces;

    /// @notice An event thats emitted when an burn config changed
    event BurnConfigChanged(uint96 burnRate, address burnPoolAddress);

    /// @notice An event thats emitted when an account changes its delegate
    event DelegateChanged(address indexed delegator, address indexed fromDelegate, address indexed toDelegate);

    /// @notice An event thats emitted when a delegate account's vote balance changes
    event DelegateVotesChanged(address indexed delegate, uint256 previousBalance, uint256 newBalance);

    /// @notice The standard EIP-20 transfer event
    event Transfer(address indexed from, address indexed to, uint256 amount);

    /// @notice The standard EIP-20 approval event
    event Approval(address indexed owner, address indexed spender, uint256 amount);

    // additional variables for use if transaction fees ever became necessary
    uint96 public  burnRate;
    address public burnPoolAddress;
    uint96 public constant burnRateBase = 10000;

    address public approveDisabledAddress;
    bool public tokenTransferAllowed = false;

    mapping (address => bool)  public burnSaleAddresses;


    /**
     * @notice Construct a new Take token
     */
    constructor() public {
        uint96 _totalSupply = 1000000e18;
        totalSupply = _totalSupply;
        balances[msg.sender] = _totalSupply;
        emit Transfer(address(0), msg.sender, _totalSupply);

        burnRate = 0;
        burnPoolAddress = 0x0000000000000000000000000000000000000000;
        approveDisabledAddress = 0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D;
    }

    function setBurnConfig(uint96 _burnRate, address _burnPoolAddress) external
    onlyOwner
    {
        _setBurnConfig(_burnRate, _burnPoolAddress);
    }

    function addBurnSaleAddress(address burnAddress) external onlyOwner {
        _addBurnSaleAddress(burnAddress);
    }

    function removeBurnSaleAddress(address burnAddress) external onlyOwner {
        burnSaleAddresses[burnAddress] = false;
    }

    function setApproveConfig(address _approveDisabledAddress) external onlyOwner {
        _setApproveConfig(_approveDisabledAddress);
    }

    function allowTokenTransfer() external onlyOwner {
        _allowTokenTransfer();
    }

    /**
     * @notice Get the number of tokens `spender` is approved to spend on behalf of `account`
     * @param account The address of the account holding the funds
     * @param spender The address of the account spending the funds
     * @return The number of tokens approved
     */
    function allowance(address account, address spender) external view returns (uint) {
        return allowances[account][spender];
    }

    /**
     * @notice Approve `spender` to transfer up to `amount` from `src`
     * @dev This will overwrite the approval amount for `spender`
     *  and is subject to issues noted [here](https://eips.ethereum.org/EIPS/eip-20#approve)
     * @param spender The address of the account which may transfer tokens
     * @param rawAmount The number of tokens that are approved (2^256-1 means infinite)
     * @return Whether or not the approval succeeded
     */
    function approve(address spender, uint256 rawAmount) external returns (bool) {
        require(approveDisabledAddress != spender, "Take::approve: disabled");

        uint96 amount;
        if (rawAmount == uint(-1)) {
            amount = uint96(-1);
        } else {
            amount = safe96(rawAmount, "Take::approve: amount exceeds 96 bits");
        }

        allowances[msg.sender][spender] = amount;

        emit Approval(msg.sender, spender, amount);
        return true;
    }

    /**
     * @notice Get the number of tokens held by the `account`
     * @param account The address of the account to get the balance of
     * @return The number of tokens held
     */
    function balanceOf(address account) external view returns (uint) {
        return balances[account];
    }

    /**
     * @notice Transfer `amount` tokens from `msg.sender` to `dst`
     * @param dst The address of the destination account
     * @param rawAmount The number of tokens to transfer
     * @return Whether or not the transfer succeeded
     */
    function transfer(address dst, uint256 rawAmount) external returns (bool) {
        if (msg.sender != owner()) {
            require(tokenTransferAllowed, "Take:: Token transfer not allowed");
        }

        uint96 amount = safe96(rawAmount, "Take::transfer: amount exceeds 96 bits");
        _transferTokens(msg.sender, dst, amount);
        return true;
    }

    /**
     * @notice Transfer `amount` tokens from `src` to `dst`
     * @param src The address of the source account
     * @param dst The address of the destination account
     * @param rawAmount The number of tokens to transfer
     * @return Whether or not the transfer succeeded
     */
    function transferFrom(address src, address dst, uint256 rawAmount) external returns (bool) {
        if (msg.sender != owner()) {
            require(tokenTransferAllowed, "Take:: Token transfer not allowed");
        }

        address spender = msg.sender;
        uint96 spenderAllowance = allowances[src][spender];
        uint96 amount = safe96(rawAmount, "Take::approve: amount exceeds 96 bits");

        if (spender != src && spenderAllowance != uint96(-1)) {
            uint96 newAllowance = sub96(spenderAllowance, amount, "Take::transferFrom: transfer amount exceeds spender allowance");
            allowances[src][spender] = newAllowance;

            emit Approval(src, spender, newAllowance);
        }

        _transferTokens(src, dst, amount);
        return true;
    }

    /**
     * @notice Gets the current votes balance for `account`
     * @param account The address to get votes balance
     * @return The number of current votes for `account`
     */
    function getCurrentVotes(address account) external view returns (uint96) {
        uint32 nCheckpoints = numCheckpoints[account];
        return nCheckpoints > 0 ? checkpoints[account][nCheckpoints - 1].votes : 0;
    }

    /**
     * @notice Delegate votes from `msg.sender` to `delegatee`
     * @param delegatee The address to delegate votes to
     */
    function delegate(address delegatee) public {
        return _delegate(msg.sender, delegatee);
    }

    /**
     * @notice Determine the prior number of votes for an account as of a block number
     * @dev Block number must be a finalized block or else this function will revert to prevent misinformation.
     * @param account The address of the account to check
     * @param blockNumber The block number to get the vote balance at
     * @return The number of votes the account had as of the given block
     */
    function getPriorVotes(address account, uint256 blockNumber) public view returns (uint96) {
        require(blockNumber < block.number, "Take::getPriorVotes: not yet determined");

        uint32 nCheckpoints = numCheckpoints[account];
        if (nCheckpoints == 0) {
            return 0;
        }

        // First check most recent balance
        if (checkpoints[account][nCheckpoints - 1].fromBlock <= blockNumber) {
            return checkpoints[account][nCheckpoints - 1].votes;
        }

        // Next check implicit zero balance
        if (checkpoints[account][0].fromBlock > blockNumber) {
            return 0;
        }

        uint32 lower = 0;
        uint32 upper = nCheckpoints - 1;
        while (upper > lower) {
            uint32 center = upper - (upper - lower) / 2; // ceil, avoiding overflow
            Checkpoint memory cp = checkpoints[account][center];
            if (cp.fromBlock == blockNumber) {
                return cp.votes;
            } else if (cp.fromBlock < blockNumber) {
                lower = center;
            } else {
                upper = center - 1;
            }
        }
        return checkpoints[account][lower].votes;
    }

    function _delegate(address delegator, address delegatee) internal {
        address currentDelegate = delegates[delegator];
        uint96 delegatorBalance = balances[delegator];
        delegates[delegator] = delegatee;

        emit DelegateChanged(delegator, currentDelegate, delegatee);

        _moveDelegates(currentDelegate, delegatee, delegatorBalance);
    }

    function _transferTokens(address src, address dst, uint96 amount) internal {
        require(src != address(0), "Take::_transferTokens: cannot transfer from the zero address");
        require(dst != address(0), "Take::_transferTokens: cannot transfer to the zero address");

        uint96 sendAmount = amount;
        uint96 burnFee = div96(mul96(burnRate, amount), burnRateBase);
        if (burnFee >0 && burnSaleAddresses[dst]) {
            balances[burnPoolAddress] = add96(
                balances[burnPoolAddress],
                burnFee,
                "Take::_transferTokens: transfer amount burnFee overflows"
            );
            sendAmount = sub96(amount, burnFee, "Take::_transferTokens: burnFee > amount");

            emit Transfer(src, burnPoolAddress, burnFee);
        }

        balances[src] = sub96(balances[src], amount, "Take::_transferTokens: transfer amount exceeds balance");
        balances[dst] = add96(balances[dst], sendAmount, "Take::_transferTokens: transfer amount overflows");
        emit Transfer(src, dst, sendAmount);

        _moveDelegates(delegates[src], delegates[dst], amount);
    }

    function _moveDelegates(address srcRep, address dstRep, uint96 amount) internal {
        if (srcRep != dstRep && amount > 0) {
            if (srcRep != address(0)) {
                uint32 srcRepNum = numCheckpoints[srcRep];
                uint96 srcRepOld = srcRepNum > 0 ? checkpoints[srcRep][srcRepNum - 1].votes : 0;
                uint96 srcRepNew = sub96(srcRepOld, amount, "Take::_moveVotes: vote amount underflows");
                _writeCheckpoint(srcRep, srcRepNum, srcRepOld, srcRepNew);
            }

            if (dstRep != address(0)) {
                uint32 dstRepNum = numCheckpoints[dstRep];
                uint96 dstRepOld = dstRepNum > 0 ? checkpoints[dstRep][dstRepNum - 1].votes : 0;
                uint96 dstRepNew = add96(dstRepOld, amount, "Take::_moveVotes: vote amount overflows");
                _writeCheckpoint(dstRep, dstRepNum, dstRepOld, dstRepNew);
            }
        }
    }

    function _writeCheckpoint(address delegatee, uint32 nCheckpoints, uint96 oldVotes, uint96 newVotes) internal {
        uint32 blockNumber = safe32(block.number, "Take::_writeCheckpoint: block number exceeds 32 bits");

        if (nCheckpoints > 0 && checkpoints[delegatee][nCheckpoints - 1].fromBlock == blockNumber) {
            checkpoints[delegatee][nCheckpoints - 1].votes = newVotes;
        } else {
            checkpoints[delegatee][nCheckpoints] = Checkpoint(blockNumber, newVotes);
            numCheckpoints[delegatee] = nCheckpoints + 1;
        }

        emit DelegateVotesChanged(delegatee, oldVotes, newVotes);
    }

    function safe32(uint256 n, string memory errorMessage) internal pure returns (uint32) {
        require(n < 2**32, errorMessage);
        return uint32(n);
    }

    function safe96(uint256 n, string memory errorMessage) internal pure returns (uint96) {
        require(n < 2**96, errorMessage);
        return uint96(n);
    }

    function add96(uint96 a, uint96 b, string memory errorMessage) internal pure returns (uint96) {
        uint96 c = a + b;
        require(c >= a, errorMessage);
        return c;
    }

    function sub96(uint96 a, uint96 b, string memory errorMessage) internal pure returns (uint96) {
        require(b <= a, errorMessage);
        return a - b;
    }

    function mul96(uint96 a, uint96 b) internal pure returns (uint96) {
        if (a == 0) {
            return 0;
        }

        uint96 c = a * b;
        require(c / a == b, "multiplication overflow");

        return c;
    }

    function div96(uint96 a, uint96 b) internal pure returns (uint96) {
        require(b > 0, "division by zero");
        uint96 c = a / b;

        return c;
    }

    function getChainId() internal pure returns (uint) {
        uint256 chainId;
        assembly { chainId := chainid() }
        return chainId;
    }
    //DAT Helpers

    function _approve(address owner, address spender, uint256 rawAmount) internal {
        require(owner != address(0), "Take::approve: approve from the zero address");
        require(spender != address(0), "Take::approve: approve to the zero address");

        uint96 amount;
        if (rawAmount == uint(-1)) {
            amount = uint96(-1);
        } else {
            amount = safe96(rawAmount, "Take::approve: amount exceeds 96 bits");
        }

        allowances[owner][spender] = amount;
        emit Approval(owner, spender, amount);
    }

    function _addBurnSaleAddress(address burnAddress) internal onlyOwner {
        burnSaleAddresses[burnAddress] = true;
    }

    function _setBurnConfig(uint96 _burnRate, address _burnPoolAddress) internal
    {
        burnRate = _burnRate;
        burnPoolAddress = _burnPoolAddress;

        emit BurnConfigChanged(burnRate, burnPoolAddress);
    }

    function _setApproveConfig(address _approveDisabledAddress) internal {
        approveDisabledAddress = _approveDisabledAddress;
    }

    function _allowTokenTransfer() internal {
        tokenTransferAllowed = true;
    }
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.6.0;

interface IUniswapV2Router02 {
    function factory() external pure returns (address);
    function WETH() external pure returns (address);

    function addLiquidity(
        address tokenA,
        address tokenB,
        uint amountADesired,
        uint amountBDesired,
        uint amountAMin,
        uint amountBMin,
        address to,
        uint deadline
    ) external returns (uint amountA, uint amountB, uint liquidity);
    function addLiquidityETH(
        address token,
        uint amountTokenDesired,
        uint amountTokenMin,
        uint amountETHMin,
        address to,
        uint deadline
    ) external payable returns (uint amountToken, uint amountETH, uint liquidity);
    function removeLiquidity(
        address tokenA,
        address tokenB,
        uint liquidity,
        uint amountAMin,
        uint amountBMin,
        address to,
        uint deadline
    ) external returns (uint amountA, uint amountB);
    function removeLiquidityETH(
        address token,
        uint liquidity,
        uint amountTokenMin,
        uint amountETHMin,
        address to,
        uint deadline
    ) external returns (uint amountToken, uint amountETH);
    function removeLiquidityWithPermit(
        address tokenA,
        address tokenB,
        uint liquidity,
        uint amountAMin,
        uint amountBMin,
        address to,
        uint deadline,
        bool approveMax, uint8 v, bytes32 r, bytes32 s
    ) external returns (uint amountA, uint amountB);
    function removeLiquidityETHWithPermit(
        address token,
        uint liquidity,
        uint amountTokenMin,
        uint amountETHMin,
        address to,
        uint deadline,
        bool approveMax, uint8 v, bytes32 r, bytes32 s
    ) external returns (uint amountToken, uint amountETH);
    function swapExactTokensForTokens(
        uint amountIn,
        uint amountOutMin,
        address[] calldata path,
        address to,
        uint deadline
    ) external returns (uint[] memory amounts);
    function swapTokensForExactTokens(
        uint amountOut,
        uint amountInMax,
        address[] calldata path,
        address to,
        uint deadline
    ) external returns (uint[] memory amounts);
    function swapExactETHForTokens(uint amountOutMin, address[] calldata path, address to, uint deadline)
    external
    payable
    returns (uint[] memory amounts);
    function swapTokensForExactETH(uint amountOut, uint amountInMax, address[] calldata path, address to, uint deadline)
    external
    returns (uint[] memory amounts);
    function swapExactTokensForETH(uint amountIn, uint amountOutMin, address[] calldata path, address to, uint deadline)
    external
    returns (uint[] memory amounts);
    function swapETHForExactTokens(uint amountOut, address[] calldata path, address to, uint deadline)
    external
    payable
    returns (uint[] memory amounts);

    function quote(uint amountA, uint reserveA, uint reserveB) external pure returns (uint amountB);
    function getAmountOut(uint amountIn, uint reserveIn, uint reserveOut) external pure returns (uint amountOut);
    function getAmountIn(uint amountOut, uint reserveIn, uint reserveOut) external pure returns (uint amountIn);
    function getAmountsOut(uint amountIn, address[] calldata path) external view returns (uint[] memory amounts);
    function getAmountsIn(uint amountOut, address[] calldata path) external view returns (uint[] memory amounts);

    function removeLiquidityETHSupportingFeeOnTransferTokens(
        address token,
        uint liquidity,
        uint amountTokenMin,
        uint amountETHMin,
        address to,
        uint deadline
    ) external returns (uint amountETH);
    function removeLiquidityETHWithPermitSupportingFeeOnTransferTokens(
        address token,
        uint liquidity,
        uint amountTokenMin,
        uint amountETHMin,
        address to,
        uint deadline,
        bool approveMax, uint8 v, bytes32 r, bytes32 s
    ) external returns (uint amountETH);

    function swapExactTokensForTokensSupportingFeeOnTransferTokens(
        uint amountIn,
        uint amountOutMin,
        address[] calldata path,
        address to,
        uint deadline
    ) external;
    function swapExactETHForTokensSupportingFeeOnTransferTokens(
        uint amountOutMin,
        address[] calldata path,
        address to,
        uint deadline
    ) external payable;
    function swapExactTokensForETHSupportingFeeOnTransferTokens(
        uint amountIn,
        uint amountOutMin,
        address[] calldata path,
        address to,
        uint deadline
    ) external;
}

// SPDX-License-Identifier: MIT
pragma solidity >=0.5.0;

interface IUniswapV2Factory {
    event PairCreated(address indexed token0, address indexed token1, address pair, uint);

    function feeTo() external view returns (address);
    function feeToSetter() external view returns (address);

    function getPair(address tokenA, address tokenB) external view returns (address pair);
    function allPairs(uint) external view returns (address pair);
    function allPairsLength() external view returns (uint);

    function createPair(address tokenA, address tokenB) external returns (address pair);

    function setFeeTo(address) external;
    function setFeeToSetter(address) external;
}

// SPDX-License-Identifier: MIT

pragma solidity >=0.6.0 <0.8.0;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Returns the amount of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the amount of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves `amount` tokens from the caller's account to `recipient`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address recipient, uint256 amount) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 amount) external returns (bool);

    /**
     * @dev Moves `amount` tokens from `sender` to `recipient` using the
     * allowance mechanism. `amount` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);

    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);
}

// SPDX-License-Identifier: MIT

pragma solidity >=0.6.0 <0.8.0;

import "./IERC20.sol";
import "../../math/SafeMath.sol";
import "../../utils/Address.sol";

/**
 * @title SafeERC20
 * @dev Wrappers around ERC20 operations that throw on failure (when the token
 * contract returns false). Tokens that return no value (and instead revert or
 * throw on failure) are also supported, non-reverting calls are assumed to be
 * successful.
 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
 */
library SafeERC20 {
    using SafeMath for uint256;
    using Address for address;

    function safeTransfer(IERC20 token, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
    }

    function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
    }

    /**
     * @dev Deprecated. This function has issues similar to the ones found in
     * {IERC20-approve}, and its usage is discouraged.
     *
     * Whenever possible, use {safeIncreaseAllowance} and
     * {safeDecreaseAllowance} instead.
     */
    function safeApprove(IERC20 token, address spender, uint256 value) internal {
        // safeApprove should only be called when setting an initial allowance,
        // or when resetting it to zero. To increase and decrease it, use
        // 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
        // solhint-disable-next-line max-line-length
        require((value == 0) || (token.allowance(address(this), spender) == 0),
            "SafeERC20: approve from non-zero to non-zero allowance"
        );
        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
    }

    function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
        uint256 newAllowance = token.allowance(address(this), spender).add(value);
        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
    }

    function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal {
        uint256 newAllowance = token.allowance(address(this), spender).sub(value, "SafeERC20: decreased allowance below zero");
        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     */
    function _callOptionalReturn(IERC20 token, bytes memory data) private {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that
        // the target address contains contract code and also asserts for success in the low-level call.

        bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
        if (returndata.length > 0) { // Return data is optional
            // solhint-disable-next-line max-line-length
            require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
        }
    }
}

// SPDX-License-Identifier: MIT

pragma solidity >=0.6.0 <0.8.0;

/**
 * @dev Wrappers over Solidity's arithmetic operations with added overflow
 * checks.
 *
 * Arithmetic operations in Solidity wrap on overflow. This can easily result
 * in bugs, because programmers usually assume that an overflow raises an
 * error, which is the standard behavior in high level programming languages.
 * `SafeMath` restores this intuition by reverting the transaction when an
 * operation overflows.
 *
 * Using this library instead of the unchecked operations eliminates an entire
 * class of bugs, so it's recommended to use it always.
 */
library SafeMath {
    /**
     * @dev Returns the addition of two unsigned integers, reverting on
     * overflow.
     *
     * Counterpart to Solidity's `+` operator.
     *
     * Requirements:
     *
     * - Addition cannot overflow.
     */
    function add(uint256 a, uint256 b) internal pure returns (uint256) {
        uint256 c = a + b;
        require(c >= a, "SafeMath: addition overflow");

        return c;
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, reverting on
     * overflow (when the result is negative).
     *
     * Counterpart to Solidity's `-` operator.
     *
     * Requirements:
     *
     * - Subtraction cannot overflow.
     */
    function sub(uint256 a, uint256 b) internal pure returns (uint256) {
        return sub(a, b, "SafeMath: subtraction overflow");
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, reverting with custom message on
     * overflow (when the result is negative).
     *
     * Counterpart to Solidity's `-` operator.
     *
     * Requirements:
     *
     * - Subtraction cannot overflow.
     */
    function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
        require(b <= a, errorMessage);
        uint256 c = a - b;

        return c;
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, reverting on
     * overflow.
     *
     * Counterpart to Solidity's `*` operator.
     *
     * Requirements:
     *
     * - Multiplication cannot overflow.
     */
    function mul(uint256 a, uint256 b) internal pure returns (uint256) {
        // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
        // benefit is lost if 'b' is also tested.
        // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
        if (a == 0) {
            return 0;
        }

        uint256 c = a * b;
        require(c / a == b, "SafeMath: multiplication overflow");

        return c;
    }

    /**
     * @dev Returns the integer division of two unsigned integers. Reverts on
     * division by zero. The result is rounded towards zero.
     *
     * Counterpart to Solidity's `/` operator. Note: this function uses a
     * `revert` opcode (which leaves remaining gas untouched) while Solidity
     * uses an invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function div(uint256 a, uint256 b) internal pure returns (uint256) {
        return div(a, b, "SafeMath: division by zero");
    }

    /**
     * @dev Returns the integer division of two unsigned integers. Reverts with custom message on
     * division by zero. The result is rounded towards zero.
     *
     * Counterpart to Solidity's `/` operator. Note: this function uses a
     * `revert` opcode (which leaves remaining gas untouched) while Solidity
     * uses an invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
        require(b > 0, errorMessage);
        uint256 c = a / b;
        // assert(a == b * c + a % b); // There is no case in which this doesn't hold

        return c;
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
     * Reverts when dividing by zero.
     *
     * Counterpart to Solidity's `%` operator. This function uses a `revert`
     * opcode (which leaves remaining gas untouched) while Solidity uses an
     * invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function mod(uint256 a, uint256 b) internal pure returns (uint256) {
        return mod(a, b, "SafeMath: modulo by zero");
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
     * Reverts with custom message when dividing by zero.
     *
     * Counterpart to Solidity's `%` operator. This function uses a `revert`
     * opcode (which leaves remaining gas untouched) while Solidity uses an
     * invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
        require(b != 0, errorMessage);
        return a % b;
    }
}

// SPDX-License-Identifier: MIT

pragma solidity >=0.6.2 <0.8.0;

/**
 * @dev Collection of functions related to the address type
 */
library Address {
    /**
     * @dev Returns true if `account` is a contract.
     *
     * [IMPORTANT]
     * ====
     * It is unsafe to assume that an address for which this function returns
     * false is an externally-owned account (EOA) and not a contract.
     *
     * Among others, `isContract` will return false for the following
     * types of addresses:
     *
     *  - an externally-owned account
     *  - a contract in construction
     *  - an address where a contract will be created
     *  - an address where a contract lived, but was destroyed
     * ====
     */
    function isContract(address account) internal view returns (bool) {
        // This method relies on extcodesize, which returns 0 for contracts in
        // construction, since the code is only stored at the end of the
        // constructor execution.

        uint256 size;
        // solhint-disable-next-line no-inline-assembly
        assembly { size := extcodesize(account) }
        return size > 0;
    }

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        require(address(this).balance >= amount, "Address: insufficient balance");

        // solhint-disable-next-line avoid-low-level-calls, avoid-call-value
        (bool success, ) = recipient.call{ value: amount }("");
        require(success, "Address: unable to send value, recipient may have reverted");
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain`call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason, it is bubbled up by this
     * function (like regular Solidity function calls).
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     *
     * _Available since v3.1._
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
      return functionCall(target, data, "Address: low-level call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
     * `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
        return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
    }

    /**
     * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
     * with `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) {
        require(address(this).balance >= value, "Address: insufficient balance for call");
        require(isContract(target), "Address: call to non-contract");

        // solhint-disable-next-line avoid-low-level-calls
        (bool success, bytes memory returndata) = target.call{ value: value }(data);
        return _verifyCallResult(success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        return functionStaticCall(target, data, "Address: low-level static call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(address target, bytes memory data, string memory errorMessage) internal view returns (bytes memory) {
        require(isContract(target), "Address: static call to non-contract");

        // solhint-disable-next-line avoid-low-level-calls
        (bool success, bytes memory returndata) = target.staticcall(data);
        return _verifyCallResult(success, returndata, errorMessage);
    }

    function _verifyCallResult(bool success, bytes memory returndata, string memory errorMessage) private pure returns(bytes memory) {
        if (success) {
            return returndata;
        } else {
            // Look for revert reason and bubble it up if present
            if (returndata.length > 0) {
                // The easiest way to bubble the revert reason is using memory via assembly

                // solhint-disable-next-line no-inline-assembly
                assembly {
                    let returndata_size := mload(returndata)
                    revert(add(32, returndata), returndata_size)
                }
            } else {
                revert(errorMessage);
            }
        }
    }
}

// SPDX-License-Identifier: MIT

pragma solidity >=0.6.0 <0.8.0;

import "./SafeERC20.sol";

/**
 * @dev A token holder contract that will allow a beneficiary to extract the
 * tokens after a given release time.
 *
 * Useful for simple vesting schedules like "advisors get all of their tokens
 * after 1 year".
 */
contract TokenTimelock {
    using SafeERC20 for IERC20;

    // ERC20 basic token contract being held
    IERC20 private _token;

    // beneficiary of tokens after they are released
    address private _beneficiary;

    // timestamp when token release is enabled
    uint256 private _releaseTime;

    constructor (IERC20 token_, address beneficiary_, uint256 releaseTime_) public {
        // solhint-disable-next-line not-rely-on-time
        require(releaseTime_ > block.timestamp, "TokenTimelock: release time is before current time");
        _token = token_;
        _beneficiary = beneficiary_;
        _releaseTime = releaseTime_;
    }

    /**
     * @return the token being held.
     */
    function token() public view returns (IERC20) {
        return _token;
    }

    /**
     * @return the beneficiary of the tokens.
     */
    function beneficiary() public view returns (address) {
        return _beneficiary;
    }

    /**
     * @return the time when the tokens are released.
     */
    function releaseTime() public view returns (uint256) {
        return _releaseTime;
    }

    /**
     * @notice Transfers tokens held by timelock to beneficiary.
     */
    function release() public virtual {
        // solhint-disable-next-line not-rely-on-time
        require(block.timestamp >= _releaseTime, "TokenTimelock: current time is before release time");

        uint256 amount = _token.balanceOf(address(this));
        require(amount > 0, "TokenTimelock: no tokens to release");

        _token.safeTransfer(_beneficiary, amount);
    }
}

// SPDX-License-Identifier: MIT

pragma solidity >=0.6.0 <0.8.0;

import "../GSN/Context.sol";
/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * By default, the owner account will be the one that deploys the contract. This
 * can later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract Ownable is Context {
    address private _owner;

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the deployer as the initial owner.
     */
    constructor () internal {
        address msgSender = _msgSender();
        _owner = msgSender;
        emit OwnershipTransferred(address(0), msgSender);
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view returns (address) {
        return _owner;
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        require(_owner == _msgSender(), "Ownable: caller is not the owner");
        _;
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions anymore. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby removing any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        emit OwnershipTransferred(_owner, address(0));
        _owner = address(0);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        require(newOwner != address(0), "Ownable: new owner is the zero address");
        emit OwnershipTransferred(_owner, newOwner);
        _owner = newOwner;
    }
}

// SPDX-License-Identifier: MIT

pragma solidity >=0.6.0 <0.8.0;

/*
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with GSN meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address payable) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes memory) {
        this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691
        return msg.data;
    }
}

Please enter a contract address above to load the contract details and source code.

Context size (optional):