More Info
Private Name Tags
ContractCreator
Latest 1 internal transaction
Advanced mode:
Parent Transaction Hash | Block |
From
|
To
|
|||
---|---|---|---|---|---|---|
18776529 | 397 days ago | Contract Creation | 0 ETH |
Loading...
Loading
This contract may be a proxy contract. Click on More Options and select Is this a proxy? to confirm and enable the "Read as Proxy" & "Write as Proxy" tabs.
Similar Match Source Code This contract matches the deployed Bytecode of the Source Code for Contract 0x14edfe68...F6F3347d4 The constructor portion of the code might be different and could alter the actual behaviour of the contract
Contract Name:
RewardOpenSlim
Compiler Version
v0.8.17+commit.8df45f5f
Optimization Enabled:
Yes with 100000 runs
Other Settings:
default evmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: GPL-2.0-or-later pragma solidity ^0.8.0; import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol"; import {IPoolPositionAndRewardFactorySlim} from "./interfaces/IPoolPositionAndRewardFactorySlim.sol"; import {RewardBase} from "./RewardBase.sol"; contract RewardOpenSlim is RewardBase { constructor(IERC20 _stakingToken, IPoolPositionAndRewardFactorySlim _rewardFactory) RewardBase(_stakingToken, _rewardFactory) {} function stake(uint256 amount, address account) external { _stake(msg.sender, amount, account); } function unstake(uint256 amount, address recipient) external { _unstake(msg.sender, amount, recipient); } function unstakeAll(address recipient) external { _unstakeAll(msg.sender, recipient); } function getReward(address recipient, uint8[] calldata rewardTokenIndices) external { _getReward(msg.sender, recipient, rewardTokenIndices); } function getReward(address recipient, uint8 rewardTokenIndex) external returns (uint256) { return _getReward(msg.sender, recipient, rewardTokenIndex); } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import "@openzeppelin/contracts/token/ERC20/IERC20.sol"; import "../interfaces/IPool.sol"; import "../interfaces/IPosition.sol"; interface IFactory { event PoolCreated(address poolAddress, uint256 fee, uint256 tickSpacing, int32 activeTick, int256 lookback, uint64 protocolFeeRatio, IERC20 tokenA, IERC20 tokenB); event SetFactoryProtocolFeeRatio(uint64 protocolFeeRatio); event SetFactoryOwner(address owner); /// @notice creates new pool /// @param _fee is a rate in prbmath 60x18 decimal format /// @param _tickSpacing 1.0001^tickSpacing is the bin width /// @param _activeTick initial activeTick of the pool /// @param _lookback TWAP lookback in whole seconds /// @param _tokenA ERC20 token /// @param _tokenB ERC20 token function create( uint256 _fee, uint256 _tickSpacing, int256 _lookback, int32 _activeTick, IERC20 _tokenA, IERC20 _tokenB ) external returns (IPool); function lookup( uint256 fee, uint256 tickSpacing, int256 lookback, IERC20 tokenA, IERC20 tokenB ) external view returns (IPool); function owner() external view returns (address); function position() external view returns (IPosition); /// @notice protocolFeeRatio ratio of the swap fee that is kept for the //protocol function protocolFeeRatio() external view returns (uint64); /// @notice lookup table for whether a pool is owned by the factory function isFactoryPool(IPool pool) external view returns (bool); }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import "@openzeppelin/contracts/token/ERC20/IERC20.sol"; import "./IFactory.sol"; interface IPool { event Swap(address sender, address recipient, bool tokenAIn, bool exactOutput, uint256 amountIn, uint256 amountOut, int32 activeTick); event AddLiquidity(address indexed sender, uint256 indexed tokenId, BinDelta[] binDeltas); event MigrateBinsUpStack(address indexed sender, uint128 binId, uint32 maxRecursion); event TransferLiquidity(uint256 fromTokenId, uint256 toTokenId, RemoveLiquidityParams[] params); event RemoveLiquidity(address indexed sender, address indexed recipient, uint256 indexed tokenId, BinDelta[] binDeltas); event BinMerged(uint128 indexed binId, uint128 reserveA, uint128 reserveB, uint128 mergeId); event BinMoved(uint128 indexed binId, int128 previousTick, int128 newTick); event ProtocolFeeCollected(uint256 protocolFee, bool isTokenA); event SetProtocolFeeRatio(uint256 protocolFee); /// @notice return parameters for Add/Remove liquidity /// @param binId of the bin that changed /// @param kind one of the 4 Kinds (0=static, 1=right, 2=left, 3=both) /// @param isActive bool to indicate whether the bin is still active /// @param lowerTick is the lower price tick of the bin in its current state /// @param deltaA amount of A token that has been added or removed /// @param deltaB amount of B token that has been added or removed /// @param deltaLpToken amount of LP balance that has increase (add) or decreased (remove) struct BinDelta { uint128 deltaA; uint128 deltaB; uint256 deltaLpBalance; uint128 binId; uint8 kind; int32 lowerTick; bool isActive; } /// @notice time weighted average state /// @param twa the twa at the last update instant /// @param value the new value that was passed in at the last update /// @param lastTimestamp timestamp of the last update in seconds /// @param lookback time in seconds struct TwaState { int96 twa; int96 value; uint64 lastTimestamp; } /// @notice bin state parameters /// @param kind one of the 4 Kinds (0=static, 1=right, 2=left, 3=both) /// @param lowerTick is the lower price tick of the bin in its current state /// @param mergeId binId of the bin that this bin has merged in to /// @param reserveA amount of A token in bin /// @param reserveB amount of B token in bin /// @param totalSupply total amount of LP tokens in this bin /// @param mergeBinBalance LP token balance that this bin posseses of the merge bin struct BinState { uint128 reserveA; uint128 reserveB; uint128 mergeBinBalance; uint128 mergeId; uint128 totalSupply; uint8 kind; int32 lowerTick; } /// @notice Parameters for each bin that will get new liquidity /// @param kind one of the 4 Kinds (0=static, 1=right, 2=left, 3=both) /// @param pos bin position /// @param isDelta bool that indicates whether the bin position is relative //to the current bin or an absolute position /// @param deltaA amount of A token to add /// @param deltaB amount of B token to add struct AddLiquidityParams { uint8 kind; int32 pos; bool isDelta; uint128 deltaA; uint128 deltaB; } /// @notice Parameters for each bin that will have liquidity removed /// @param binId index of the bin losing liquidity /// @param amount LP balance amount to remove struct RemoveLiquidityParams { uint128 binId; uint128 amount; } /// @notice State of the pool /// @param activeTick current bin position that contains the active bins /// @param status pool status. e.g. locked or unlocked; status values //defined in Pool.sol /// @param binCounter index of the last bin created /// @param protocolFeeRatio ratio of the swap fee that is kept for the //protocol struct State { int32 activeTick; uint8 status; uint128 binCounter; uint64 protocolFeeRatio; } /// @notice fee for pool in 18 decimal format function fee() external view returns (uint256); /// @notice tickSpacing of pool where 1.0001^tickSpacing is the bin width function tickSpacing() external view returns (uint256); /// @notice address of token A function tokenA() external view returns (IERC20); /// @notice address of token B function tokenB() external view returns (IERC20); /// @notice address of Factory function factory() external view returns (IFactory); /// @notice bitmap of active bins function binMap(int32 tick) external view returns (uint256); /// @notice mapping of tick/kind to binId function binPositions(int32 tick, uint256 kind) external view returns (uint128); /// @notice internal accounting of the sum tokenA balance across bins function binBalanceA() external view returns (uint128); /// @notice internal accounting of the sum tokenB balance across bins function binBalanceB() external view returns (uint128); /// @notice Twa state values function getTwa() external view returns (TwaState memory); /// @notice log base binWidth of the time weighted average price function getCurrentTwa() external view returns (int256); /// @notice pool state function getState() external view returns (State memory); /// @notice Add liquidity to a pool. /// @param tokenId NFT token ID that will hold the position /// @param params array of AddLiquidityParams that specify the mode and //position of the liquidity /// @param data callback function that addLiquidity will call so that the //caller can transfer tokens function addLiquidity( uint256 tokenId, AddLiquidityParams[] calldata params, bytes calldata data ) external returns ( uint256 tokenAAmount, uint256 tokenBAmount, BinDelta[] memory binDeltas ); /// @notice Transfer liquidity in an array of bins from one nft tokenId //to another /// @param fromTokenId NFT token ID that holds the position being transferred /// @param toTokenId NFT token ID that is receiving liquidity /// @param params array of binIds and amounts to transfer function transferLiquidity( uint256 fromTokenId, uint256 toTokenId, RemoveLiquidityParams[] calldata params ) external; /// @notice Remove liquidity from a pool. /// @param recipient address that will receive the removed tokens /// @param tokenId NFT token ID that holds the position being removed /// @param params array of RemoveLiquidityParams that specify the bins, //and amounts function removeLiquidity( address recipient, uint256 tokenId, RemoveLiquidityParams[] calldata params ) external returns ( uint256 tokenAOut, uint256 tokenBOut, BinDelta[] memory binDeltas ); /// @notice Migrate bins up the linked list of merged bins so that its //mergeId is the currrent active bin. /// @param binId is an array of the binIds to be migrated /// @param maxRecursion is the maximum recursion depth of the migration. set to //zero to recurse until the active bin is found. function migrateBinUpStack(uint128 binId, uint32 maxRecursion) external; /// @notice swap tokens /// @param recipient address that will receive the output tokens /// @param amount amount of token that is either the input if exactOutput //is false or the output if exactOutput is true /// @param tokenAIn bool indicating whether tokenA is the input /// @param exactOutput bool indicating whether the amount specified is the //exact output amount (true) /// @param sqrtPriceLimit limiting sqrt price of the swap. A value of 0 //indicates no limit. Limit is only engaged for exactOutput=false. If the //limit is reached only part of the input amount will be swapped and the //callback will only require that amount of the swap to be paid. /// @param data callback function that swap will call so that the //caller can transfer tokens function swap( address recipient, uint256 amount, bool tokenAIn, bool exactOutput, uint256 sqrtPriceLimit, bytes calldata data ) external returns (uint256 amountIn, uint256 amountOut); /// @notice bin information for a given binId function getBin(uint128 binId) external view returns (BinState memory bin); /// @notice LP token balance for a given tokenId at a given binId function balanceOf(uint256 tokenId, uint128 binId) external view returns (uint256 lpToken); /// @notice tokenA scale value /// @dev msb is a flag to indicate whether tokenA has more or less than 18 //decimals. Scale is used in conjuction with Math.toScale/Math.fromScale //functions to convert from token amounts to D18 scale internal pool //accounting. function tokenAScale() external view returns (uint256); /// @notice tokenB scale value /// @dev msb is a flag to indicate whether tokenA has more or less than 18 //decimals. Scale is used in conjuction with Math.toScale/Math.fromScale //functions to convert from token amounts to D18 scale internal pool //accounting. function tokenBScale() external view returns (uint256); }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import "@openzeppelin/contracts/token/ERC721/extensions/IERC721Enumerable.sol"; import "../interfaces/IPositionMetadata.sol"; interface IPosition is IERC721Enumerable { event SetMetadata(IPositionMetadata metadata); /// @notice mint new position NFT function mint(address to) external returns (uint256 tokenId); /// @notice mint new position NFT function tokenOfOwnerByIndexExists(address owner, uint256 index) external view returns (bool); }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; interface IPositionMetadata { function tokenURI(uint256 tokenId) external view returns (string memory); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (security/ReentrancyGuard.sol) pragma solidity ^0.8.0; /** * @dev Contract module that helps prevent reentrant calls to a function. * * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier * available, which can be applied to functions to make sure there are no nested * (reentrant) calls to them. * * Note that because there is a single `nonReentrant` guard, functions marked as * `nonReentrant` may not call one another. This can be worked around by making * those functions `private`, and then adding `external` `nonReentrant` entry * points to them. * * TIP: If you would like to learn more about reentrancy and alternative ways * to protect against it, check out our blog post * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul]. */ abstract contract ReentrancyGuard { // Booleans are more expensive than uint256 or any type that takes up a full // word because each write operation emits an extra SLOAD to first read the // slot's contents, replace the bits taken up by the boolean, and then write // back. This is the compiler's defense against contract upgrades and // pointer aliasing, and it cannot be disabled. // The values being non-zero value makes deployment a bit more expensive, // but in exchange the refund on every call to nonReentrant will be lower in // amount. Since refunds are capped to a percentage of the total // transaction's gas, it is best to keep them low in cases like this one, to // increase the likelihood of the full refund coming into effect. uint256 private constant _NOT_ENTERED = 1; uint256 private constant _ENTERED = 2; uint256 private _status; constructor() { _status = _NOT_ENTERED; } /** * @dev Prevents a contract from calling itself, directly or indirectly. * Calling a `nonReentrant` function from another `nonReentrant` * function is not supported. It is possible to prevent this from happening * by making the `nonReentrant` function external, and making it call a * `private` function that does the actual work. */ modifier nonReentrant() { // On the first call to nonReentrant, _notEntered will be true require(_status != _ENTERED, "ReentrancyGuard: reentrant call"); // Any calls to nonReentrant after this point will fail _status = _ENTERED; _; // By storing the original value once again, a refund is triggered (see // https://eips.ethereum.org/EIPS/eip-2200) _status = _NOT_ENTERED; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/draft-IERC20Permit.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612]. * * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't * need to send a transaction, and thus is not required to hold Ether at all. */ interface IERC20Permit { /** * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens, * given ``owner``'s signed approval. * * IMPORTANT: The same issues {IERC20-approve} has related to transaction * ordering also apply here. * * Emits an {Approval} event. * * Requirements: * * - `spender` cannot be the zero address. * - `deadline` must be a timestamp in the future. * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner` * over the EIP712-formatted function arguments. * - the signature must use ``owner``'s current nonce (see {nonces}). * * For more information on the signature format, see the * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP * section]. */ function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) external; /** * @dev Returns the current nonce for `owner`. This value must be * included whenever a signature is generated for {permit}. * * Every successful call to {permit} increases ``owner``'s nonce by one. This * prevents a signature from being used multiple times. */ function nonces(address owner) external view returns (uint256); /** * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}. */ // solhint-disable-next-line func-name-mixedcase function DOMAIN_SEPARATOR() external view returns (bytes32); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol) pragma solidity ^0.8.0; import "../IERC20.sol"; /** * @dev Interface for the optional metadata functions from the ERC20 standard. * * _Available since v4.1._ */ interface IERC20Metadata is IERC20 { /** * @dev Returns the name of the token. */ function name() external view returns (string memory); /** * @dev Returns the symbol of the token. */ function symbol() external view returns (string memory); /** * @dev Returns the decimals places of the token. */ function decimals() external view returns (uint8); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `from` to `to` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom( address from, address to, uint256 amount ) external returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (token/ERC20/utils/SafeERC20.sol) pragma solidity ^0.8.0; import "../IERC20.sol"; import "../extensions/draft-IERC20Permit.sol"; import "../../../utils/Address.sol"; /** * @title SafeERC20 * @dev Wrappers around ERC20 operations that throw on failure (when the token * contract returns false). Tokens that return no value (and instead revert or * throw on failure) are also supported, non-reverting calls are assumed to be * successful. * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract, * which allows you to call the safe operations as `token.safeTransfer(...)`, etc. */ library SafeERC20 { using Address for address; function safeTransfer( IERC20 token, address to, uint256 value ) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value)); } function safeTransferFrom( IERC20 token, address from, address to, uint256 value ) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value)); } /** * @dev Deprecated. This function has issues similar to the ones found in * {IERC20-approve}, and its usage is discouraged. * * Whenever possible, use {safeIncreaseAllowance} and * {safeDecreaseAllowance} instead. */ function safeApprove( IERC20 token, address spender, uint256 value ) internal { // safeApprove should only be called when setting an initial allowance, // or when resetting it to zero. To increase and decrease it, use // 'safeIncreaseAllowance' and 'safeDecreaseAllowance' require( (value == 0) || (token.allowance(address(this), spender) == 0), "SafeERC20: approve from non-zero to non-zero allowance" ); _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value)); } function safeIncreaseAllowance( IERC20 token, address spender, uint256 value ) internal { uint256 newAllowance = token.allowance(address(this), spender) + value; _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance)); } function safeDecreaseAllowance( IERC20 token, address spender, uint256 value ) internal { unchecked { uint256 oldAllowance = token.allowance(address(this), spender); require(oldAllowance >= value, "SafeERC20: decreased allowance below zero"); uint256 newAllowance = oldAllowance - value; _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance)); } } function safePermit( IERC20Permit token, address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) internal { uint256 nonceBefore = token.nonces(owner); token.permit(owner, spender, value, deadline, v, r, s); uint256 nonceAfter = token.nonces(owner); require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed"); } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). */ function _callOptionalReturn(IERC20 token, bytes memory data) private { // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since // we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that // the target address contains contract code and also asserts for success in the low-level call. bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed"); if (returndata.length > 0) { // Return data is optional require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed"); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.5.0) (token/ERC721/extensions/IERC721Enumerable.sol) pragma solidity ^0.8.0; import "../IERC721.sol"; /** * @title ERC-721 Non-Fungible Token Standard, optional enumeration extension * @dev See https://eips.ethereum.org/EIPS/eip-721 */ interface IERC721Enumerable is IERC721 { /** * @dev Returns the total amount of tokens stored by the contract. */ function totalSupply() external view returns (uint256); /** * @dev Returns a token ID owned by `owner` at a given `index` of its token list. * Use along with {balanceOf} to enumerate all of ``owner``'s tokens. */ function tokenOfOwnerByIndex(address owner, uint256 index) external view returns (uint256); /** * @dev Returns a token ID at a given `index` of all the tokens stored by the contract. * Use along with {totalSupply} to enumerate all tokens. */ function tokenByIndex(uint256 index) external view returns (uint256); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (token/ERC721/IERC721.sol) pragma solidity ^0.8.0; import "../../utils/introspection/IERC165.sol"; /** * @dev Required interface of an ERC721 compliant contract. */ interface IERC721 is IERC165 { /** * @dev Emitted when `tokenId` token is transferred from `from` to `to`. */ event Transfer(address indexed from, address indexed to, uint256 indexed tokenId); /** * @dev Emitted when `owner` enables `approved` to manage the `tokenId` token. */ event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId); /** * @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets. */ event ApprovalForAll(address indexed owner, address indexed operator, bool approved); /** * @dev Returns the number of tokens in ``owner``'s account. */ function balanceOf(address owner) external view returns (uint256 balance); /** * @dev Returns the owner of the `tokenId` token. * * Requirements: * * - `tokenId` must exist. */ function ownerOf(uint256 tokenId) external view returns (address owner); /** * @dev Safely transfers `tokenId` token from `from` to `to`. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must exist and be owned by `from`. * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}. * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer. * * Emits a {Transfer} event. */ function safeTransferFrom( address from, address to, uint256 tokenId, bytes calldata data ) external; /** * @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients * are aware of the ERC721 protocol to prevent tokens from being forever locked. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must exist and be owned by `from`. * - If the caller is not `from`, it must have been allowed to move this token by either {approve} or {setApprovalForAll}. * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer. * * Emits a {Transfer} event. */ function safeTransferFrom( address from, address to, uint256 tokenId ) external; /** * @dev Transfers `tokenId` token from `from` to `to`. * * WARNING: Usage of this method is discouraged, use {safeTransferFrom} whenever possible. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must be owned by `from`. * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}. * * Emits a {Transfer} event. */ function transferFrom( address from, address to, uint256 tokenId ) external; /** * @dev Gives permission to `to` to transfer `tokenId` token to another account. * The approval is cleared when the token is transferred. * * Only a single account can be approved at a time, so approving the zero address clears previous approvals. * * Requirements: * * - The caller must own the token or be an approved operator. * - `tokenId` must exist. * * Emits an {Approval} event. */ function approve(address to, uint256 tokenId) external; /** * @dev Approve or remove `operator` as an operator for the caller. * Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller. * * Requirements: * * - The `operator` cannot be the caller. * * Emits an {ApprovalForAll} event. */ function setApprovalForAll(address operator, bool _approved) external; /** * @dev Returns the account approved for `tokenId` token. * * Requirements: * * - `tokenId` must exist. */ function getApproved(uint256 tokenId) external view returns (address operator); /** * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`. * * See {setApprovalForAll} */ function isApprovedForAll(address owner, address operator) external view returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (utils/Address.sol) pragma solidity ^0.8.1; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== * * [IMPORTANT] * ==== * You shouldn't rely on `isContract` to protect against flash loan attacks! * * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract * constructor. * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize/address.code.length, which returns 0 // for contracts in construction, since the code is only stored at the end // of the constructor execution. return account.code.length > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); (bool success, ) = recipient.call{value: amount}(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCall(target, data, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value ) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); require(isContract(target), "Address: call to non-contract"); (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall( address target, bytes memory data, string memory errorMessage ) internal view returns (bytes memory) { require(isContract(target), "Address: static call to non-contract"); (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { return functionDelegateCall(target, data, "Address: low-level delegate call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { require(isContract(target), "Address: delegate call to non-contract"); (bool success, bytes memory returndata) = target.delegatecall(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the * revert reason using the provided one. * * _Available since v4.3._ */ function verifyCallResult( bool success, bytes memory returndata, string memory errorMessage ) internal pure returns (bytes memory) { if (success) { return returndata; } else { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly /// @solidity memory-safe-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC165 standard, as defined in the * https://eips.ethereum.org/EIPS/eip-165[EIP]. * * Implementers can declare support of contract interfaces, which can then be * queried by others ({ERC165Checker}). * * For an implementation, see {ERC165}. */ interface IERC165 { /** * @dev Returns true if this contract implements the interface defined by * `interfaceId`. See the corresponding * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section] * to learn more about how these ids are created. * * This function call must use less than 30 000 gas. */ function supportsInterface(bytes4 interfaceId) external view returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (utils/math/Math.sol) pragma solidity ^0.8.0; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { enum Rounding { Down, // Toward negative infinity Up, // Toward infinity Zero // Toward zero } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return a >= b ? a : b; } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds up instead * of rounding down. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b - 1) / b can overflow on addition, so we distribute. return a == 0 ? 0 : (a - 1) / b + 1; } /** * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0 * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) * with further edits by Uniswap Labs also under MIT license. */ function mulDiv( uint256 x, uint256 y, uint256 denominator ) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2^256 + prod0. uint256 prod0; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod0 := mul(x, y) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { return prod0 / denominator; } // Make sure the result is less than 2^256. Also prevents denominator == 0. require(denominator > prod1); /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1. // See https://cs.stackexchange.com/q/138556/92363. // Does not overflow because the denominator cannot be zero at this stage in the function. uint256 twos = denominator & (~denominator + 1); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv = 1 mod 2^4. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works // in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2^8 inverse *= 2 - denominator * inverse; // inverse mod 2^16 inverse *= 2 - denominator * inverse; // inverse mod 2^32 inverse *= 2 - denominator * inverse; // inverse mod 2^64 inverse *= 2 - denominator * inverse; // inverse mod 2^128 inverse *= 2 - denominator * inverse; // inverse mod 2^256 // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @notice Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv( uint256 x, uint256 y, uint256 denominator, Rounding rounding ) internal pure returns (uint256) { uint256 result = mulDiv(x, y, denominator); if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) { result += 1; } return result; } /** * @dev Returns the square root of a number. It the number is not a perfect square, the value is rounded down. * * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11). */ function sqrt(uint256 a) internal pure returns (uint256) { if (a == 0) { return 0; } // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target. // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have // `msb(a) <= a < 2*msb(a)`. // We also know that `k`, the position of the most significant bit, is such that `msb(a) = 2**k`. // This gives `2**k < a <= 2**(k+1)` → `2**(k/2) <= sqrt(a) < 2 ** (k/2+1)`. // Using an algorithm similar to the msb conmputation, we are able to compute `result = 2**(k/2)` which is a // good first aproximation of `sqrt(a)` with at least 1 correct bit. uint256 result = 1; uint256 x = a; if (x >> 128 > 0) { x >>= 128; result <<= 64; } if (x >> 64 > 0) { x >>= 64; result <<= 32; } if (x >> 32 > 0) { x >>= 32; result <<= 16; } if (x >> 16 > 0) { x >>= 16; result <<= 8; } if (x >> 8 > 0) { x >>= 8; result <<= 4; } if (x >> 4 > 0) { x >>= 4; result <<= 2; } if (x >> 2 > 0) { result <<= 1; } // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128, // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision // into the expected uint128 result. unchecked { result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; return min(result, a / result); } } /** * @notice Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { uint256 result = sqrt(a); if (rounding == Rounding.Up && result * result < a) { result += 1; } return result; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.5.0) (utils/Multicall.sol) pragma solidity ^0.8.0; import "./Address.sol"; /** * @dev Provides a function to batch together multiple calls in a single external call. * * _Available since v4.1._ */ abstract contract Multicall { /** * @dev Receives and executes a batch of function calls on this contract. */ function multicall(bytes[] calldata data) external virtual returns (bytes[] memory results) { results = new bytes[](data.length); for (uint256 i = 0; i < data.length; i++) { results[i] = Address.functionDelegateCall(address(this), data[i]); } return results; } }
// SPDX-License-Identifier: GPL-2.0-or-later pragma solidity ^0.8.0; import {IPool} from "@maverickprotocol/maverick-v1-interfaces/contracts/interfaces/IPool.sol"; import {IFactory} from "@maverickprotocol/maverick-v1-interfaces/contracts/interfaces/IFactory.sol"; import {IPoolPositionSlim} from "./IPoolPositionSlim.sol"; import {IReward} from "./IReward.sol"; interface IPoolPositionAndRewardFactorySlim { event PoolPositionCreated(IPool pool, uint128[] binIds, uint128[] ratios, IPoolPositionSlim poolPosition, uint256 poolPositionNumber); event LpRewardCreated(IPoolPositionSlim poolPosition, address reward); event AddNewApprovedRewardToken(address rewardToken, uint256 minimumAmount); struct RewardInfos { IReward.RewardInfo[] rewardInfoList; } function allPoolPositions(uint256 poolPositionNumber) external view returns (IPoolPositionSlim poolPosition); function poolPositionNumber(IPoolPositionSlim poolPosition) external view returns (uint256 poolPositionNumber); function getLpRewardByPP(IPoolPositionSlim) external view returns (IReward); function poolFactory() external view returns (IFactory); function allPoolPositionsLength() external view returns (uint256); function isApprovedRewardToken(address reward) external view returns (bool); function minimumRewardAmount(address reward) external view returns (uint256); function isPoolPosition(IPoolPositionSlim poolPosition) external view returns (bool); function createPoolPositionAndRewards(IPool pool, uint128[] calldata binIds, uint128[] calldata ratios, bool isStatic) external returns (IPoolPositionSlim); function owner() external view returns (address); }
// SPDX-License-Identifier: GPL-2.0-or-later pragma solidity ^0.8.0; import {IERC20Metadata} from "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol"; import {IPool} from "@maverickprotocol/maverick-v1-interfaces/contracts/interfaces/IPool.sol"; interface IPoolPositionSlim is IERC20Metadata { error InvalidBinIds(uint128[] binIds); error InvalidRatio(); error BinIsMerged(); error InvalidTokenId(uint256 tokenId); event MigrateBinLiquidity(uint128 oldBinId, uint128 newBinId); function allBinIds() external view returns (uint128[] memory); function binIds(uint256) external view returns (uint128); function ratios(uint256) external view returns (uint128); /// @notice tokenId that holds PP assets function tokenId() external view returns (uint256); /// @notice Pool that the position exists in function pool() external view returns (IPool); /// @notice Whether or not the PP contains all static bins as opposed to //movement bins function isStatic() external view returns (bool); /// @notice Returns struct array of bin lp amounts that need to be transfered for a mint /// @param binZeroLpAddAmount LP amount of bin[0] to be added function binLpAddAmountRequirement(uint128 binZeroLpAddAmount) external view returns (IPool.RemoveLiquidityParams[] memory params); /// @notice Burns PoolPosition ERC20 tokens from given account and //trasnfers Pool liquidity position to toTokenId /// @param account wallet or contract whose PoolPosition tokens will be //burned /// @param toTokenId pool.position() that will own the output liquidity /// @param lpAmountToUnStake number of PoolPosition LPs tokens to burn function burnFromToTokenIdAsBinLiquidity(address account, uint256 toTokenId, uint256 lpAmountToUnStake) external returns (IPool.RemoveLiquidityParams[] memory params); /// @notice Burns PoolPosition ERC20 tokens and trasnfers resulting //liquidity as A/B tokens to recipient /// @param account wallet or contract whose PoolPosition tokens will be //burned /// @param recipient pool.position() that will own the output tokens /// @param lpAmountToUnStake number of PoolPosition LPs tokens to burn function burnFromToAddressAsReserves(address account, address recipient, uint256 lpAmountToUnStake) external returns (uint256 amountA, uint256 amountB); /// @notice Migrates the PoolPosition liquidity to active bin if the //liquidity is currently merged /// @dev Migrating only applies to one-bin dynamic-kind PoolPositions and //it must be called before any other external call will execute if the bin //in the PoolPosition has been merged. function migrateBinLiquidity() external; /// @notice Mint new PoolPosition tokens /// @param to wallet or contract where PoolPosition tokens will be minted /// @param fromTokenId pool.position() that will contribute input liquidity /// @param binZeroLpAddAmount LP balance of pool.position() in PoolPosition //bins[0] to be transfered // @return liquidity number of PoolPosition LP tokens minted function mint(address to, uint256 fromTokenId, uint128 binZeroLpAddAmount) external returns (uint256 liquidity); /// @notice Amount of pool.tokenA() and pool.tokenB() tokens held by the //PoolPosition // @return reserveA Amount of pool.tokenA() tokens held by the // PoolPosition // @return reserveB Amount of pool.tokenB() tokens held by the // PoolPosition function getReserves() external view returns (uint256 reserveA, uint256 reserveB); }
// SPDX-License-Identifier: GPL-2.0-or-later pragma solidity ^0.8.0; import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol"; interface IReward { event NotifyRewardAmount(address sender, address rewardTokenAddress, uint256 amount, uint256 duration, uint256 rewardRate); event GetReward(address sender, address account, address recipient, uint8 rewardTokenIndex, address rewardTokenAddress, uint256 rewardPaid); event UnStake(address sender, address account, uint256 amount, address recipient, uint256 userBalance, uint256 totalSupply); event Stake(address sender, address supplier, uint256 amount, address account, uint256 userBalance, uint256 totalSupply); event AddRewardToken(address rewardTokenAddress, uint8 rewardTokenIndex); event RemoveRewardToken(address rewardTokenAddress, uint8 rewardTokenIndex); error DurationOutOfBounds(uint256 duration); error OnlyFactoryOwner(); error ZeroAmount(); error NotValidRewardToken(address rewardTokenAddress); error TooManyRewardTokens(); error StaleToken(uint8 rewardTokenIndex); error TokenNotStale(uint8 rewardTokenIndex); error RewardStillActive(uint8 rewardTokenIndex); error RewardAmountBelowThreshold(uint256 amount, uint256 minimumAmount); struct RewardInfo { // Timestamp of when the rewards finish uint256 finishAt; // Minimum of last updated time and reward finish time uint256 updatedAt; // Reward to be paid out per second uint256 rewardRate; // Sum of (reward rate * dt * 1e18 / total supply) uint256 rewardPerTokenStored; IERC20 rewardToken; } struct EarnedInfo { // account address account; // earned uint256 earned; // reward token IERC20 rewardToken; } function rewardInfo() external view returns (RewardInfo[] memory); function tokenIndex(address tokenAddress) external view returns (uint8); function balanceOf(address account) external view returns (uint256); function earned(address account, address rewardTokenAddress) external view returns (uint256); function earned(address account) external view returns (EarnedInfo[] memory earnedInfo); /// @notice Add rewards tokens account the pot of rewards with a transferFrom. /// @param rewardTokenAddress address of reward token added function notifyAndTransfer(address rewardTokenAddress, uint256 amount, uint256 duration) external; /// @notice Deposit LP tokens for reward allocation. /// @param amount LP token amount account deposit. /// @param account The receiver of `amount` deposit benefit. function stake(uint256 amount, address account) external; /// @notice Withdraw LP token stake. /// @param amount LP token amount account withdraw. /// @param recipient Receiver of the LP tokens. function unstake(uint256 amount, address recipient) external; /// @notice Withdraw entire amount of LP token stake. /// @param recipient Receiver of the LP tokens. function unstakeAll(address recipient) external; /// @notice Get reward proceeds for transaction sender account `account`. /// @param recipient Receiver of REWARD_TOKEN rewards. /// @param rewardTokenIndices indices of reward tokens to collect function getReward(address recipient, uint8[] calldata rewardTokenIndices) external; /// @notice Get reward proceeds for transaction sender account `account`. /// @param recipient Receiver of REWARD_TOKEN rewards. /// @param rewardTokenIndex index of reward token to collect function getReward(address recipient, uint8 rewardTokenIndex) external returns (uint256); /// @notice Remove stale tokens from the reward contract /// @param rewardTokenIndex is the index of the reward token in the //tokenIndex mapping function removeStaleToken(uint8 rewardTokenIndex) external; }
// SPDX-License-Identifier: MIT // modified from OpenZeppelin Contracts (last updated v4.8.0) (utils/structs/BitMaps.sol) pragma solidity ^0.8.0; /** * @dev Library for managing uint256 to bool mapping in a compact and efficient way, providing the keys are sequential. * Largely inspired by Uniswap's https://github.com/Uniswap/merkle-distributor/blob/master/contracts/MerkleDistributor.sol[merkle-distributor]. */ library BitMap { struct Instance { uint256 _data; } /** * @dev Returns whether the bit at `index` is set. */ function get(Instance storage self, uint8 index) internal view returns (bool) { uint256 mask = 1 << index; return self._data & mask != 0; } /** * @dev Sets the bit at `index`. */ function set(Instance storage self, uint8 index) internal { uint256 mask = 1 << index; self._data |= mask; } /** * @dev Unsets the bit at `index`. */ function unset(Instance storage self, uint8 index) internal { uint256 mask = 1 << index; self._data &= ~mask; } }
// SPDX-License-Identifier: GPL-2.0-or-later pragma solidity ^0.8.0; import {PRBMath} from "prb-math/contracts/PRBMath.sol"; import {PRBMathUD60x18} from "prb-math/contracts/PRBMathUD60x18.sol"; library Math { using PRBMathUD60x18 for uint256; uint256 constant MAX_BIT = 0x8000000000000000000000000000000000000000000000000000000000000000; uint256 constant DEFAULT_SCALE = 1; function max(uint256 x, uint256 y) internal pure returns (uint256) { return x > y ? x : y; } function min(uint256 x, uint256 y) internal pure returns (uint256) { return x < y ? x : y; } function mulDiv(uint256 x, uint256 y, uint256 k, bool ceil) internal pure returns (uint256 result) { result = PRBMath.mulDiv(x, y, k); if (ceil && mulmod(x, y, k) != 0) result = result + 1; } function clip(uint256 x, uint256 y) internal pure returns (uint256) { return x < y ? 0 : x - y; } function toScale(uint256 amount, uint256 scaleFactor, bool ceil) internal pure returns (uint256) { if (scaleFactor == DEFAULT_SCALE || amount == 0) { return amount; } else if ((scaleFactor & MAX_BIT) != 0) { return amount * (scaleFactor & ~MAX_BIT); } else { return (ceil && mulmod(amount, 1, scaleFactor) != 0) ? amount / scaleFactor + 1 : amount / scaleFactor; } } function fromScale(uint256 amount, uint256 scaleFactor) internal pure returns (uint256) { if (scaleFactor == DEFAULT_SCALE) { return amount; } else if ((scaleFactor & MAX_BIT) != 0) { return amount / (scaleFactor & ~MAX_BIT); } else { return amount * scaleFactor; } } function tickSqrtPrice(uint256 tickSpacing, int32 _tick) internal pure returns (uint256 _result) { unchecked { uint256 tick = _tick < 0 ? uint256(-int256(_tick)) : uint256(int256(_tick)); tick *= tickSpacing; uint256 ratio = tick & 0x1 != 0 ? 0xfffcb933bd6fad9d3af5f0b9f25db4d6 : 0x100000000000000000000000000000000; if (tick & 0x2 != 0) ratio = (ratio * 0xfff97272373d41fd789c8cb37ffcaa1c) >> 128; if (tick & 0x4 != 0) ratio = (ratio * 0xfff2e50f5f656ac9229c67059486f389) >> 128; if (tick & 0x8 != 0) ratio = (ratio * 0xffe5caca7e10e81259b3cddc7a064941) >> 128; if (tick & 0x10 != 0) ratio = (ratio * 0xffcb9843d60f67b19e8887e0bd251eb7) >> 128; if (tick & 0x20 != 0) ratio = (ratio * 0xff973b41fa98cd2e57b660be99eb2c4a) >> 128; if (tick & 0x40 != 0) ratio = (ratio * 0xff2ea16466c9838804e327cb417cafcb) >> 128; if (tick & 0x80 != 0) ratio = (ratio * 0xfe5dee046a99d51e2cc356c2f617dbe0) >> 128; if (tick & 0x100 != 0) ratio = (ratio * 0xfcbe86c7900aecf64236ab31f1f9dcb5) >> 128; if (tick & 0x200 != 0) ratio = (ratio * 0xf987a7253ac4d9194200696907cf2e37) >> 128; if (tick & 0x400 != 0) ratio = (ratio * 0xf3392b0822b88206f8abe8a3b44dd9be) >> 128; if (tick & 0x800 != 0) ratio = (ratio * 0xe7159475a2c578ef4f1d17b2b235d480) >> 128; if (tick & 0x1000 != 0) ratio = (ratio * 0xd097f3bdfd254ee83bdd3f248e7e785e) >> 128; if (tick & 0x2000 != 0) ratio = (ratio * 0xa9f746462d8f7dd10e744d913d033333) >> 128; if (tick & 0x4000 != 0) ratio = (ratio * 0x70d869a156ddd32a39e257bc3f50aa9b) >> 128; if (tick & 0x8000 != 0) ratio = (ratio * 0x31be135f97da6e09a19dc367e3b6da40) >> 128; if (tick & 0x10000 != 0) ratio = (ratio * 0x9aa508b5b7e5a9780b0cc4e25d61a56) >> 128; if (tick & 0x20000 != 0) ratio = (ratio * 0x5d6af8dedbcb3a6ccb7ce618d14225) >> 128; if (tick & 0x40000 != 0) ratio = (ratio * 0x2216e584f630389b2052b8db590e) >> 128; if (_tick > 0) ratio = type(uint256).max / ratio; _result = (ratio * PRBMathUD60x18.SCALE) >> 128; } } function getTickL(uint256 _reserveA, uint256 _reserveB, uint256 _sqrtLowerTickPrice, uint256 _sqrtUpperTickPrice) internal pure returns (uint256) { uint256 precisionBump = 0; if ((_reserveA >> 60) == 0 && (_reserveB >> 60) == 0) { precisionBump = 40; _reserveA <<= precisionBump; _reserveB <<= precisionBump; } if (_reserveA == 0 || _reserveB == 0) { uint256 b = (_reserveA.div(_sqrtUpperTickPrice) + _reserveB.mul(_sqrtLowerTickPrice)); return mulDiv(b, _sqrtUpperTickPrice, _sqrtUpperTickPrice - _sqrtLowerTickPrice, false) >> precisionBump; } else { uint256 b = (_reserveA.div(_sqrtUpperTickPrice) + _reserveB.mul(_sqrtLowerTickPrice)) >> 1; uint256 diff = _sqrtUpperTickPrice - _sqrtLowerTickPrice; return mulDiv(b + (b.mul(b) + mulDiv(_reserveB.mul(_reserveA), diff, _sqrtUpperTickPrice, false)).sqrt(), _sqrtUpperTickPrice, diff, false) >> precisionBump; } } function getTickSqrtPriceAndL(uint256 _reserveA, uint256 _reserveB, uint256 _sqrtLowerTickPrice, uint256 _sqrtUpperTickPrice) internal pure returns (uint256 sqrtPrice, uint256 liquidity) { liquidity = getTickL(_reserveA, _reserveB, _sqrtLowerTickPrice, _sqrtUpperTickPrice); if (_reserveA == 0) { return (_sqrtLowerTickPrice, liquidity); } if (_reserveB == 0) { return (_sqrtUpperTickPrice, liquidity); } sqrtPrice = ((_reserveA + liquidity.mul(_sqrtLowerTickPrice)).div(_reserveB + liquidity.div(_sqrtUpperTickPrice))).sqrt(); sqrtPrice = min(max(sqrtPrice, _sqrtLowerTickPrice), _sqrtUpperTickPrice); } }
// SPDX-License-Identifier: GPL-2.0-or-later // adapted from https://github.com/Synthetixio/synthetix/blob/c53070db9a93e5717ca7f74fcaf3922e991fb71b/contracts/StakingRewards.sol pragma solidity ^0.8.0; import {SafeERC20} from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol"; import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol"; import {Math} from "@openzeppelin/contracts/utils/math/Math.sol"; import {ReentrancyGuard} from "@openzeppelin/contracts/security/ReentrancyGuard.sol"; import {Multicall} from "@openzeppelin/contracts/utils/Multicall.sol"; import {IReward} from "./interfaces/IReward.sol"; import {Math as MavMath} from "./libraries/Math.sol"; import {BitMap} from "./libraries/BitMap.sol"; import {IPoolPositionAndRewardFactorySlim} from "./interfaces/IPoolPositionAndRewardFactorySlim.sol"; abstract contract RewardBase is IReward, ReentrancyGuard, Multicall { using SafeERC20 for IERC20; using BitMap for BitMap.Instance; uint8 public MAX_REWARD_TOKENS = 16; uint256 constant ONE = 1e18; // after this period of time without a reward, users can remove token from // list uint256 constant STALE_INTERVAL = 30 days; IPoolPositionAndRewardFactorySlim public immutable rewardFactory; IERC20 public immutable stakingToken; // Max Duration of rewards to be paid out uint256 constant MAX_DURATION = 30 days; uint256 constant MIN_DURATION = 3 days; // Total staked uint256 public totalSupply; // User address => staked amount mapping(address => uint256) public balanceOf; struct RewardData { // Timestamp of when the rewards finish uint256 finishAt; // Minimum of last updated time and reward finish time uint256 updatedAt; // Reward to be paid out per second uint256 rewardRate; // Sum of (reward rate * dt * 1e18 / total supply) uint256 rewardPerTokenStored; // User address => rewardPerTokenStored mapping(address => uint256) userRewardPerTokenPaid; // User address => rewards to be claimed mapping(address => uint256) rewards; // User address => rewards mapping to track if token index has been // updated mapping(address => uint256) resetCount; // total earned uint256 escrowedReward; uint256 globalResetCount; IERC20 rewardToken; } RewardData[] public rewardData; mapping(address => uint8) public tokenIndex; BitMap.Instance public globalActive; constructor(IERC20 _stakingToken, IPoolPositionAndRewardFactorySlim _rewardFactory) { stakingToken = _stakingToken; rewardFactory = _rewardFactory; // push empty token so that we can use index zero as a sentinel value // in tokenIndex mapping; ie if tokenIndex[X] = 0, we know X is not in // the list rewardData.push(); } modifier checkAmount(uint256 amount) { if (amount == 0) revert ZeroAmount(); _; } ///////////////////////////////////// /// View Functions ///////////////////////////////////// function rewardInfo() external view returns (RewardInfo[] memory info) { uint256 length = rewardData.length; info = new RewardInfo[](length); for (uint8 i = 1; i < length; i++) { RewardData storage data = rewardData[i]; info[i] = RewardInfo({finishAt: data.finishAt, updatedAt: data.updatedAt, rewardRate: data.rewardRate, rewardPerTokenStored: data.rewardPerTokenStored, rewardToken: data.rewardToken}); } } function earned(address account) public view returns (EarnedInfo[] memory earnedInfo) { uint256 length = rewardData.length; earnedInfo = new EarnedInfo[](length); for (uint8 i = 1; i < length; i++) { RewardData storage data = rewardData[i]; earnedInfo[i] = EarnedInfo({account: account, earned: earned(account, data), rewardToken: data.rewardToken}); } } function earned(address account, address rewardTokenAddress) external view returns (uint256) { uint256 rewardTokenIndex = tokenIndex[rewardTokenAddress]; if (rewardTokenIndex == 0) revert NotValidRewardToken(rewardTokenAddress); RewardData storage data = rewardData[rewardTokenIndex]; return earned(account, data); } function earned(address account, RewardData storage data) internal view returns (uint256) { return data.rewards[account] + Math.mulDiv(balanceOf[account], MavMath.clip(data.rewardPerTokenStored + deltaRewardPerToken(data), data.userRewardPerTokenPaid[account]), ONE); } ///////////////////////////////////// /// Internal Update Functions ///////////////////////////////////// function updateReward(address account, RewardData storage data) internal { uint256 reward = deltaRewardPerToken(data); if (reward != 0) { data.rewardPerTokenStored += reward; data.escrowedReward += Math.mulDiv(reward, totalSupply, ONE, Math.Rounding(1)); } data.updatedAt = lastTimeRewardApplicable(data.finishAt); if (account != address(0)) { if (data.resetCount[account] != data.globalResetCount) { // check to see if this token index was changed data.userRewardPerTokenPaid[account] = 0; data.rewards[account] = 0; data.resetCount[account] = data.globalResetCount; } data.rewards[account] += deltaEarned(account, data); data.userRewardPerTokenPaid[account] = data.rewardPerTokenStored; } } function deltaEarned(address account, RewardData storage data) internal view returns (uint256) { return Math.mulDiv(balanceOf[account], MavMath.clip(data.rewardPerTokenStored, data.userRewardPerTokenPaid[account]), ONE); } function deltaRewardPerToken(RewardData storage data) internal view returns (uint256) { uint256 timeDiff = MavMath.clip(lastTimeRewardApplicable(data.finishAt), data.updatedAt); if (timeDiff == 0 || totalSupply == 0 || data.rewardRate == 0) { return 0; } return Math.mulDiv(data.rewardRate, timeDiff * ONE, totalSupply); } function lastTimeRewardApplicable(uint256 dataFinishAt) internal view returns (uint256) { return Math.min(dataFinishAt, block.timestamp); } function updateAllRewards(address account) internal { uint256 length = rewardData.length; for (uint8 i = 1; i < length; i++) { if (!globalActive.get(i)) continue; RewardData storage data = rewardData[i]; updateReward(account, data); } } /// @dev add token if it is approved and is not already tracked function _checkAndAddRewardToken(address rewardTokenAddress) internal returns (uint8 rewardTokenIndex) { rewardTokenIndex = tokenIndex[rewardTokenAddress]; if (rewardTokenIndex != 0) return rewardTokenIndex; if (!rewardFactory.isApprovedRewardToken(rewardTokenAddress)) revert NotValidRewardToken(rewardTokenAddress); // find first unset token index and use it for (uint8 i = 1; i < MAX_REWARD_TOKENS + 1; i++) { if (globalActive.get(i)) continue; rewardTokenIndex = i; break; } if (rewardTokenIndex == 0) revert TooManyRewardTokens(); if (rewardTokenIndex == rewardData.length) rewardData.push(); RewardData storage _data = rewardData[rewardTokenIndex]; _data.rewardToken = IERC20(rewardTokenAddress); _data.globalResetCount++; tokenIndex[rewardTokenAddress] = rewardTokenIndex; globalActive.set(rewardTokenIndex); emit AddRewardToken(rewardTokenAddress, rewardTokenIndex); } ///////////////////////////////////// /// Internal User Functions ///////////////////////////////////// function _stake(address supplier, uint256 amount, address account) internal nonReentrant checkAmount(amount) { updateAllRewards(account); stakingToken.safeTransferFrom(supplier, address(this), amount); balanceOf[account] += amount; totalSupply += amount; emit Stake(msg.sender, supplier, amount, account, balanceOf[account], totalSupply); } function _unstake(address account, uint256 amount, address recipient) internal nonReentrant checkAmount(amount) { updateAllRewards(account); balanceOf[account] -= amount; totalSupply -= amount; stakingToken.safeTransfer(recipient, amount); emit UnStake(msg.sender, account, amount, recipient, balanceOf[account], totalSupply); } function _unstakeAll(address account, address recipient) internal { _unstake(account, balanceOf[account], recipient); } function _getReward(address account, address recipient, uint8 rewardTokenIndex) internal nonReentrant returns (uint256 reward) { if (!globalActive.get(rewardTokenIndex)) revert StaleToken(rewardTokenIndex); RewardData storage data = rewardData[rewardTokenIndex]; updateReward(account, data); reward = data.rewards[account]; if (reward != 0) { data.rewards[account] = 0; data.escrowedReward -= reward; data.rewardToken.safeTransfer(recipient, reward); } emit GetReward(msg.sender, account, recipient, rewardTokenIndex, address(data.rewardToken), reward); } function _getReward(address account, address recipient, uint8[] memory rewardTokenIndices) internal { uint256 length = rewardTokenIndices.length; for (uint8 i; i < length; i++) { _getReward(account, recipient, rewardTokenIndices[i]); } } ///////////////////////////////////// /// Add Reward ///////////////////////////////////// /// @notice Adds reward to contract. function notifyAndTransfer(address rewardTokenAddress, uint256 amount, uint256 duration) public nonReentrant { if (duration < MIN_DURATION) revert DurationOutOfBounds(duration); uint256 minimumAmount = rewardFactory.minimumRewardAmount(rewardTokenAddress); if (amount < minimumAmount) revert RewardAmountBelowThreshold(amount, minimumAmount); duration = _notifyRewardAmount(rewardTokenAddress, amount, duration); if (duration > MAX_DURATION) revert DurationOutOfBounds(duration); IERC20(rewardTokenAddress).safeTransferFrom(msg.sender, address(this), amount); } /* @notice called by reward depositor to recompute the reward rate. If * notifier sends more than remaining amount, then notifier sets the rate. * Else, we extend the duration at the current rate. We may notify with less * than enough of assets to cover the period. In that case, reward rate will * be 0 and the assets sit on the contract until another notify happens with * enough assets for a positive rate. * @dev Must notify before transfering assets. Transfering and then * notifying with the same amount will break the logic of this reward * contract. If a contract needs to transfer and then notify, the * notification amount should be 0. */ function _notifyRewardAmount(address rewardTokenAddress, uint256 amount, uint256 duration) internal returns (uint256) { uint8 rewardTokenIndex = _checkAndAddRewardToken(rewardTokenAddress); RewardData storage data = rewardData[rewardTokenIndex]; updateReward(address(0), data); uint256 remainingRewards = MavMath.clip(data.rewardToken.balanceOf(address(this)), data.escrowedReward); if (amount > remainingRewards || data.rewardRate == 0) { // if notifying new amount, notifier gets to set the rate data.rewardRate = (amount + remainingRewards) / duration; } else { // if notifier doesn't bring enough, we extend the duration at the // same rate duration = (amount + remainingRewards) / data.rewardRate; } data.finishAt = block.timestamp + duration; data.updatedAt = block.timestamp; emit NotifyRewardAmount(msg.sender, rewardTokenAddress, amount, duration, data.rewardRate); return duration; } ///////////////////////////////////// /// Admin Function ///////////////////////////////////// function removeStaleToken(uint8 rewardTokenIndex) public virtual nonReentrant { _removeStaleToken(rewardTokenIndex); } function _removeStaleToken(uint8 rewardTokenIndex) internal { RewardData storage data = rewardData[rewardTokenIndex]; if (block.timestamp < STALE_INTERVAL + data.finishAt) revert TokenNotStale(rewardTokenIndex); emit RemoveRewardToken(address(data.rewardToken), rewardTokenIndex); // remove token from list globalActive.unset(rewardTokenIndex); delete tokenIndex[address(data.rewardToken)]; delete data.rewardToken; delete data.escrowedReward; delete data.rewardPerTokenStored; delete data.rewardRate; delete data.finishAt; delete data.updatedAt; } }
// SPDX-License-Identifier: Unlicense pragma solidity >=0.8.4; /// @notice Emitted when the result overflows uint256. error PRBMath__MulDivFixedPointOverflow(uint256 prod1); /// @notice Emitted when the result overflows uint256. error PRBMath__MulDivOverflow(uint256 prod1, uint256 denominator); /// @notice Emitted when one of the inputs is type(int256).min. error PRBMath__MulDivSignedInputTooSmall(); /// @notice Emitted when the intermediary absolute result overflows int256. error PRBMath__MulDivSignedOverflow(uint256 rAbs); /// @notice Emitted when the input is MIN_SD59x18. error PRBMathSD59x18__AbsInputTooSmall(); /// @notice Emitted when ceiling a number overflows SD59x18. error PRBMathSD59x18__CeilOverflow(int256 x); /// @notice Emitted when one of the inputs is MIN_SD59x18. error PRBMathSD59x18__DivInputTooSmall(); /// @notice Emitted when one of the intermediary unsigned results overflows SD59x18. error PRBMathSD59x18__DivOverflow(uint256 rAbs); /// @notice Emitted when the input is greater than 133.084258667509499441. error PRBMathSD59x18__ExpInputTooBig(int256 x); /// @notice Emitted when the input is greater than 192. error PRBMathSD59x18__Exp2InputTooBig(int256 x); /// @notice Emitted when flooring a number underflows SD59x18. error PRBMathSD59x18__FloorUnderflow(int256 x); /// @notice Emitted when converting a basic integer to the fixed-point format overflows SD59x18. error PRBMathSD59x18__FromIntOverflow(int256 x); /// @notice Emitted when converting a basic integer to the fixed-point format underflows SD59x18. error PRBMathSD59x18__FromIntUnderflow(int256 x); /// @notice Emitted when the product of the inputs is negative. error PRBMathSD59x18__GmNegativeProduct(int256 x, int256 y); /// @notice Emitted when multiplying the inputs overflows SD59x18. error PRBMathSD59x18__GmOverflow(int256 x, int256 y); /// @notice Emitted when the input is less than or equal to zero. error PRBMathSD59x18__LogInputTooSmall(int256 x); /// @notice Emitted when one of the inputs is MIN_SD59x18. error PRBMathSD59x18__MulInputTooSmall(); /// @notice Emitted when the intermediary absolute result overflows SD59x18. error PRBMathSD59x18__MulOverflow(uint256 rAbs); /// @notice Emitted when the intermediary absolute result overflows SD59x18. error PRBMathSD59x18__PowuOverflow(uint256 rAbs); /// @notice Emitted when the input is negative. error PRBMathSD59x18__SqrtNegativeInput(int256 x); /// @notice Emitted when the calculating the square root overflows SD59x18. error PRBMathSD59x18__SqrtOverflow(int256 x); /// @notice Emitted when addition overflows UD60x18. error PRBMathUD60x18__AddOverflow(uint256 x, uint256 y); /// @notice Emitted when ceiling a number overflows UD60x18. error PRBMathUD60x18__CeilOverflow(uint256 x); /// @notice Emitted when the input is greater than 133.084258667509499441. error PRBMathUD60x18__ExpInputTooBig(uint256 x); /// @notice Emitted when the input is greater than 192. error PRBMathUD60x18__Exp2InputTooBig(uint256 x); /// @notice Emitted when converting a basic integer to the fixed-point format format overflows UD60x18. error PRBMathUD60x18__FromUintOverflow(uint256 x); /// @notice Emitted when multiplying the inputs overflows UD60x18. error PRBMathUD60x18__GmOverflow(uint256 x, uint256 y); /// @notice Emitted when the input is less than 1. error PRBMathUD60x18__LogInputTooSmall(uint256 x); /// @notice Emitted when the calculating the square root overflows UD60x18. error PRBMathUD60x18__SqrtOverflow(uint256 x); /// @notice Emitted when subtraction underflows UD60x18. error PRBMathUD60x18__SubUnderflow(uint256 x, uint256 y); /// @dev Common mathematical functions used in both PRBMathSD59x18 and PRBMathUD60x18. Note that this shared library /// does not always assume the signed 59.18-decimal fixed-point or the unsigned 60.18-decimal fixed-point /// representation. When it does not, it is explicitly mentioned in the NatSpec documentation. library PRBMath { /// STRUCTS /// struct SD59x18 { int256 value; } struct UD60x18 { uint256 value; } /// STORAGE /// /// @dev How many trailing decimals can be represented. uint256 internal constant SCALE = 1e18; /// @dev Largest power of two divisor of SCALE. uint256 internal constant SCALE_LPOTD = 262144; /// @dev SCALE inverted mod 2^256. uint256 internal constant SCALE_INVERSE = 78156646155174841979727994598816262306175212592076161876661_508869554232690281; /// FUNCTIONS /// /// @notice Calculates the binary exponent of x using the binary fraction method. /// @dev Has to use 192.64-bit fixed-point numbers. /// See https://ethereum.stackexchange.com/a/96594/24693. /// @param x The exponent as an unsigned 192.64-bit fixed-point number. /// @return result The result as an unsigned 60.18-decimal fixed-point number. function exp2(uint256 x) internal pure returns (uint256 result) { unchecked { // Start from 0.5 in the 192.64-bit fixed-point format. result = 0x800000000000000000000000000000000000000000000000; // Multiply the result by root(2, 2^-i) when the bit at position i is 1. None of the intermediary results overflows // because the initial result is 2^191 and all magic factors are less than 2^65. if (x & 0x8000000000000000 > 0) { result = (result * 0x16A09E667F3BCC909) >> 64; } if (x & 0x4000000000000000 > 0) { result = (result * 0x1306FE0A31B7152DF) >> 64; } if (x & 0x2000000000000000 > 0) { result = (result * 0x1172B83C7D517ADCE) >> 64; } if (x & 0x1000000000000000 > 0) { result = (result * 0x10B5586CF9890F62A) >> 64; } if (x & 0x800000000000000 > 0) { result = (result * 0x1059B0D31585743AE) >> 64; } if (x & 0x400000000000000 > 0) { result = (result * 0x102C9A3E778060EE7) >> 64; } if (x & 0x200000000000000 > 0) { result = (result * 0x10163DA9FB33356D8) >> 64; } if (x & 0x100000000000000 > 0) { result = (result * 0x100B1AFA5ABCBED61) >> 64; } if (x & 0x80000000000000 > 0) { result = (result * 0x10058C86DA1C09EA2) >> 64; } if (x & 0x40000000000000 > 0) { result = (result * 0x1002C605E2E8CEC50) >> 64; } if (x & 0x20000000000000 > 0) { result = (result * 0x100162F3904051FA1) >> 64; } if (x & 0x10000000000000 > 0) { result = (result * 0x1000B175EFFDC76BA) >> 64; } if (x & 0x8000000000000 > 0) { result = (result * 0x100058BA01FB9F96D) >> 64; } if (x & 0x4000000000000 > 0) { result = (result * 0x10002C5CC37DA9492) >> 64; } if (x & 0x2000000000000 > 0) { result = (result * 0x1000162E525EE0547) >> 64; } if (x & 0x1000000000000 > 0) { result = (result * 0x10000B17255775C04) >> 64; } if (x & 0x800000000000 > 0) { result = (result * 0x1000058B91B5BC9AE) >> 64; } if (x & 0x400000000000 > 0) { result = (result * 0x100002C5C89D5EC6D) >> 64; } if (x & 0x200000000000 > 0) { result = (result * 0x10000162E43F4F831) >> 64; } if (x & 0x100000000000 > 0) { result = (result * 0x100000B1721BCFC9A) >> 64; } if (x & 0x80000000000 > 0) { result = (result * 0x10000058B90CF1E6E) >> 64; } if (x & 0x40000000000 > 0) { result = (result * 0x1000002C5C863B73F) >> 64; } if (x & 0x20000000000 > 0) { result = (result * 0x100000162E430E5A2) >> 64; } if (x & 0x10000000000 > 0) { result = (result * 0x1000000B172183551) >> 64; } if (x & 0x8000000000 > 0) { result = (result * 0x100000058B90C0B49) >> 64; } if (x & 0x4000000000 > 0) { result = (result * 0x10000002C5C8601CC) >> 64; } if (x & 0x2000000000 > 0) { result = (result * 0x1000000162E42FFF0) >> 64; } if (x & 0x1000000000 > 0) { result = (result * 0x10000000B17217FBB) >> 64; } if (x & 0x800000000 > 0) { result = (result * 0x1000000058B90BFCE) >> 64; } if (x & 0x400000000 > 0) { result = (result * 0x100000002C5C85FE3) >> 64; } if (x & 0x200000000 > 0) { result = (result * 0x10000000162E42FF1) >> 64; } if (x & 0x100000000 > 0) { result = (result * 0x100000000B17217F8) >> 64; } if (x & 0x80000000 > 0) { result = (result * 0x10000000058B90BFC) >> 64; } if (x & 0x40000000 > 0) { result = (result * 0x1000000002C5C85FE) >> 64; } if (x & 0x20000000 > 0) { result = (result * 0x100000000162E42FF) >> 64; } if (x & 0x10000000 > 0) { result = (result * 0x1000000000B17217F) >> 64; } if (x & 0x8000000 > 0) { result = (result * 0x100000000058B90C0) >> 64; } if (x & 0x4000000 > 0) { result = (result * 0x10000000002C5C860) >> 64; } if (x & 0x2000000 > 0) { result = (result * 0x1000000000162E430) >> 64; } if (x & 0x1000000 > 0) { result = (result * 0x10000000000B17218) >> 64; } if (x & 0x800000 > 0) { result = (result * 0x1000000000058B90C) >> 64; } if (x & 0x400000 > 0) { result = (result * 0x100000000002C5C86) >> 64; } if (x & 0x200000 > 0) { result = (result * 0x10000000000162E43) >> 64; } if (x & 0x100000 > 0) { result = (result * 0x100000000000B1721) >> 64; } if (x & 0x80000 > 0) { result = (result * 0x10000000000058B91) >> 64; } if (x & 0x40000 > 0) { result = (result * 0x1000000000002C5C8) >> 64; } if (x & 0x20000 > 0) { result = (result * 0x100000000000162E4) >> 64; } if (x & 0x10000 > 0) { result = (result * 0x1000000000000B172) >> 64; } if (x & 0x8000 > 0) { result = (result * 0x100000000000058B9) >> 64; } if (x & 0x4000 > 0) { result = (result * 0x10000000000002C5D) >> 64; } if (x & 0x2000 > 0) { result = (result * 0x1000000000000162E) >> 64; } if (x & 0x1000 > 0) { result = (result * 0x10000000000000B17) >> 64; } if (x & 0x800 > 0) { result = (result * 0x1000000000000058C) >> 64; } if (x & 0x400 > 0) { result = (result * 0x100000000000002C6) >> 64; } if (x & 0x200 > 0) { result = (result * 0x10000000000000163) >> 64; } if (x & 0x100 > 0) { result = (result * 0x100000000000000B1) >> 64; } if (x & 0x80 > 0) { result = (result * 0x10000000000000059) >> 64; } if (x & 0x40 > 0) { result = (result * 0x1000000000000002C) >> 64; } if (x & 0x20 > 0) { result = (result * 0x10000000000000016) >> 64; } if (x & 0x10 > 0) { result = (result * 0x1000000000000000B) >> 64; } if (x & 0x8 > 0) { result = (result * 0x10000000000000006) >> 64; } if (x & 0x4 > 0) { result = (result * 0x10000000000000003) >> 64; } if (x & 0x2 > 0) { result = (result * 0x10000000000000001) >> 64; } if (x & 0x1 > 0) { result = (result * 0x10000000000000001) >> 64; } // We're doing two things at the same time: // // 1. Multiply the result by 2^n + 1, where "2^n" is the integer part and the one is added to account for // the fact that we initially set the result to 0.5. This is accomplished by subtracting from 191 // rather than 192. // 2. Convert the result to the unsigned 60.18-decimal fixed-point format. // // This works because 2^(191-ip) = 2^ip / 2^191, where "ip" is the integer part "2^n". result *= SCALE; result >>= (191 - (x >> 64)); } } /// @notice Finds the zero-based index of the first one in the binary representation of x. /// @dev See the note on msb in the "Find First Set" Wikipedia article https://en.wikipedia.org/wiki/Find_first_set /// @param x The uint256 number for which to find the index of the most significant bit. /// @return msb The index of the most significant bit as an uint256. function mostSignificantBit(uint256 x) internal pure returns (uint256 msb) { if (x >= 2**128) { x >>= 128; msb += 128; } if (x >= 2**64) { x >>= 64; msb += 64; } if (x >= 2**32) { x >>= 32; msb += 32; } if (x >= 2**16) { x >>= 16; msb += 16; } if (x >= 2**8) { x >>= 8; msb += 8; } if (x >= 2**4) { x >>= 4; msb += 4; } if (x >= 2**2) { x >>= 2; msb += 2; } if (x >= 2**1) { // No need to shift x any more. msb += 1; } } /// @notice Calculates floor(x*y÷denominator) with full precision. /// /// @dev Credit to Remco Bloemen under MIT license https://xn--2-umb.com/21/muldiv. /// /// Requirements: /// - The denominator cannot be zero. /// - The result must fit within uint256. /// /// Caveats: /// - This function does not work with fixed-point numbers. /// /// @param x The multiplicand as an uint256. /// @param y The multiplier as an uint256. /// @param denominator The divisor as an uint256. /// @return result The result as an uint256. function mulDiv( uint256 x, uint256 y, uint256 denominator ) internal pure returns (uint256 result) { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2^256 + prod0. uint256 prod0; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod0 := mul(x, y) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { unchecked { result = prod0 / denominator; } return result; } // Make sure the result is less than 2^256. Also prevents denominator == 0. if (prod1 >= denominator) { revert PRBMath__MulDivOverflow(prod1, denominator); } /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1. // See https://cs.stackexchange.com/q/138556/92363. unchecked { // Does not overflow because the denominator cannot be zero at this stage in the function. uint256 lpotdod = denominator & (~denominator + 1); assembly { // Divide denominator by lpotdod. denominator := div(denominator, lpotdod) // Divide [prod1 prod0] by lpotdod. prod0 := div(prod0, lpotdod) // Flip lpotdod such that it is 2^256 / lpotdod. If lpotdod is zero, then it becomes one. lpotdod := add(div(sub(0, lpotdod), lpotdod), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * lpotdod; // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv = 1 mod 2^4. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works // in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2^8 inverse *= 2 - denominator * inverse; // inverse mod 2^16 inverse *= 2 - denominator * inverse; // inverse mod 2^32 inverse *= 2 - denominator * inverse; // inverse mod 2^64 inverse *= 2 - denominator * inverse; // inverse mod 2^128 inverse *= 2 - denominator * inverse; // inverse mod 2^256 // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /// @notice Calculates floor(x*y÷1e18) with full precision. /// /// @dev Variant of "mulDiv" with constant folding, i.e. in which the denominator is always 1e18. Before returning the /// final result, we add 1 if (x * y) % SCALE >= HALF_SCALE. Without this, 6.6e-19 would be truncated to 0 instead of /// being rounded to 1e-18. See "Listing 6" and text above it at https://accu.org/index.php/journals/1717. /// /// Requirements: /// - The result must fit within uint256. /// /// Caveats: /// - The body is purposely left uncommented; see the NatSpec comments in "PRBMath.mulDiv" to understand how this works. /// - It is assumed that the result can never be type(uint256).max when x and y solve the following two equations: /// 1. x * y = type(uint256).max * SCALE /// 2. (x * y) % SCALE >= SCALE / 2 /// /// @param x The multiplicand as an unsigned 60.18-decimal fixed-point number. /// @param y The multiplier as an unsigned 60.18-decimal fixed-point number. /// @return result The result as an unsigned 60.18-decimal fixed-point number. function mulDivFixedPoint(uint256 x, uint256 y) internal pure returns (uint256 result) { uint256 prod0; uint256 prod1; assembly { let mm := mulmod(x, y, not(0)) prod0 := mul(x, y) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } if (prod1 >= SCALE) { revert PRBMath__MulDivFixedPointOverflow(prod1); } uint256 remainder; uint256 roundUpUnit; assembly { remainder := mulmod(x, y, SCALE) roundUpUnit := gt(remainder, 499999999999999999) } if (prod1 == 0) { unchecked { result = (prod0 / SCALE) + roundUpUnit; return result; } } assembly { result := add( mul( or( div(sub(prod0, remainder), SCALE_LPOTD), mul(sub(prod1, gt(remainder, prod0)), add(div(sub(0, SCALE_LPOTD), SCALE_LPOTD), 1)) ), SCALE_INVERSE ), roundUpUnit ) } } /// @notice Calculates floor(x*y÷denominator) with full precision. /// /// @dev An extension of "mulDiv" for signed numbers. Works by computing the signs and the absolute values separately. /// /// Requirements: /// - None of the inputs can be type(int256).min. /// - The result must fit within int256. /// /// @param x The multiplicand as an int256. /// @param y The multiplier as an int256. /// @param denominator The divisor as an int256. /// @return result The result as an int256. function mulDivSigned( int256 x, int256 y, int256 denominator ) internal pure returns (int256 result) { if (x == type(int256).min || y == type(int256).min || denominator == type(int256).min) { revert PRBMath__MulDivSignedInputTooSmall(); } // Get hold of the absolute values of x, y and the denominator. uint256 ax; uint256 ay; uint256 ad; unchecked { ax = x < 0 ? uint256(-x) : uint256(x); ay = y < 0 ? uint256(-y) : uint256(y); ad = denominator < 0 ? uint256(-denominator) : uint256(denominator); } // Compute the absolute value of (x*y)÷denominator. The result must fit within int256. uint256 rAbs = mulDiv(ax, ay, ad); if (rAbs > uint256(type(int256).max)) { revert PRBMath__MulDivSignedOverflow(rAbs); } // Get the signs of x, y and the denominator. uint256 sx; uint256 sy; uint256 sd; assembly { sx := sgt(x, sub(0, 1)) sy := sgt(y, sub(0, 1)) sd := sgt(denominator, sub(0, 1)) } // XOR over sx, sy and sd. This is checking whether there are one or three negative signs in the inputs. // If yes, the result should be negative. result = sx ^ sy ^ sd == 0 ? -int256(rAbs) : int256(rAbs); } /// @notice Calculates the square root of x, rounding down. /// @dev Uses the Babylonian method https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method. /// /// Caveats: /// - This function does not work with fixed-point numbers. /// /// @param x The uint256 number for which to calculate the square root. /// @return result The result as an uint256. function sqrt(uint256 x) internal pure returns (uint256 result) { if (x == 0) { return 0; } // Set the initial guess to the least power of two that is greater than or equal to sqrt(x). uint256 xAux = uint256(x); result = 1; if (xAux >= 0x100000000000000000000000000000000) { xAux >>= 128; result <<= 64; } if (xAux >= 0x10000000000000000) { xAux >>= 64; result <<= 32; } if (xAux >= 0x100000000) { xAux >>= 32; result <<= 16; } if (xAux >= 0x10000) { xAux >>= 16; result <<= 8; } if (xAux >= 0x100) { xAux >>= 8; result <<= 4; } if (xAux >= 0x10) { xAux >>= 4; result <<= 2; } if (xAux >= 0x8) { result <<= 1; } // The operations can never overflow because the result is max 2^127 when it enters this block. unchecked { result = (result + x / result) >> 1; result = (result + x / result) >> 1; result = (result + x / result) >> 1; result = (result + x / result) >> 1; result = (result + x / result) >> 1; result = (result + x / result) >> 1; result = (result + x / result) >> 1; // Seven iterations should be enough uint256 roundedDownResult = x / result; return result >= roundedDownResult ? roundedDownResult : result; } } }
// SPDX-License-Identifier: Unlicense pragma solidity >=0.8.4; import "./PRBMath.sol"; /// @title PRBMathUD60x18 /// @author Paul Razvan Berg /// @notice Smart contract library for advanced fixed-point math that works with uint256 numbers considered to have 18 /// trailing decimals. We call this number representation unsigned 60.18-decimal fixed-point, since there can be up to 60 /// digits in the integer part and up to 18 decimals in the fractional part. The numbers are bound by the minimum and the /// maximum values permitted by the Solidity type uint256. library PRBMathUD60x18 { /// @dev Half the SCALE number. uint256 internal constant HALF_SCALE = 5e17; /// @dev log2(e) as an unsigned 60.18-decimal fixed-point number. uint256 internal constant LOG2_E = 1_442695040888963407; /// @dev The maximum value an unsigned 60.18-decimal fixed-point number can have. uint256 internal constant MAX_UD60x18 = 115792089237316195423570985008687907853269984665640564039457_584007913129639935; /// @dev The maximum whole value an unsigned 60.18-decimal fixed-point number can have. uint256 internal constant MAX_WHOLE_UD60x18 = 115792089237316195423570985008687907853269984665640564039457_000000000000000000; /// @dev How many trailing decimals can be represented. uint256 internal constant SCALE = 1e18; /// @notice Calculates the arithmetic average of x and y, rounding down. /// @param x The first operand as an unsigned 60.18-decimal fixed-point number. /// @param y The second operand as an unsigned 60.18-decimal fixed-point number. /// @return result The arithmetic average as an unsigned 60.18-decimal fixed-point number. function avg(uint256 x, uint256 y) internal pure returns (uint256 result) { // The operations can never overflow. unchecked { // The last operand checks if both x and y are odd and if that is the case, we add 1 to the result. We need // to do this because if both numbers are odd, the 0.5 remainder gets truncated twice. result = (x >> 1) + (y >> 1) + (x & y & 1); } } /// @notice Yields the least unsigned 60.18 decimal fixed-point number greater than or equal to x. /// /// @dev Optimized for fractional value inputs, because for every whole value there are (1e18 - 1) fractional counterparts. /// See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions. /// /// Requirements: /// - x must be less than or equal to MAX_WHOLE_UD60x18. /// /// @param x The unsigned 60.18-decimal fixed-point number to ceil. /// @param result The least integer greater than or equal to x, as an unsigned 60.18-decimal fixed-point number. function ceil(uint256 x) internal pure returns (uint256 result) { if (x > MAX_WHOLE_UD60x18) { revert PRBMathUD60x18__CeilOverflow(x); } assembly { // Equivalent to "x % SCALE" but faster. let remainder := mod(x, SCALE) // Equivalent to "SCALE - remainder" but faster. let delta := sub(SCALE, remainder) // Equivalent to "x + delta * (remainder > 0 ? 1 : 0)" but faster. result := add(x, mul(delta, gt(remainder, 0))) } } /// @notice Divides two unsigned 60.18-decimal fixed-point numbers, returning a new unsigned 60.18-decimal fixed-point number. /// /// @dev Uses mulDiv to enable overflow-safe multiplication and division. /// /// Requirements: /// - The denominator cannot be zero. /// /// @param x The numerator as an unsigned 60.18-decimal fixed-point number. /// @param y The denominator as an unsigned 60.18-decimal fixed-point number. /// @param result The quotient as an unsigned 60.18-decimal fixed-point number. function div(uint256 x, uint256 y) internal pure returns (uint256 result) { result = PRBMath.mulDiv(x, SCALE, y); } /// @notice Returns Euler's number as an unsigned 60.18-decimal fixed-point number. /// @dev See https://en.wikipedia.org/wiki/E_(mathematical_constant). function e() internal pure returns (uint256 result) { result = 2_718281828459045235; } /// @notice Calculates the natural exponent of x. /// /// @dev Based on the insight that e^x = 2^(x * log2(e)). /// /// Requirements: /// - All from "log2". /// - x must be less than 133.084258667509499441. /// /// @param x The exponent as an unsigned 60.18-decimal fixed-point number. /// @return result The result as an unsigned 60.18-decimal fixed-point number. function exp(uint256 x) internal pure returns (uint256 result) { // Without this check, the value passed to "exp2" would be greater than 192. if (x >= 133_084258667509499441) { revert PRBMathUD60x18__ExpInputTooBig(x); } // Do the fixed-point multiplication inline to save gas. unchecked { uint256 doubleScaleProduct = x * LOG2_E; result = exp2((doubleScaleProduct + HALF_SCALE) / SCALE); } } /// @notice Calculates the binary exponent of x using the binary fraction method. /// /// @dev See https://ethereum.stackexchange.com/q/79903/24693. /// /// Requirements: /// - x must be 192 or less. /// - The result must fit within MAX_UD60x18. /// /// @param x The exponent as an unsigned 60.18-decimal fixed-point number. /// @return result The result as an unsigned 60.18-decimal fixed-point number. function exp2(uint256 x) internal pure returns (uint256 result) { // 2^192 doesn't fit within the 192.64-bit format used internally in this function. if (x >= 192e18) { revert PRBMathUD60x18__Exp2InputTooBig(x); } unchecked { // Convert x to the 192.64-bit fixed-point format. uint256 x192x64 = (x << 64) / SCALE; // Pass x to the PRBMath.exp2 function, which uses the 192.64-bit fixed-point number representation. result = PRBMath.exp2(x192x64); } } /// @notice Yields the greatest unsigned 60.18 decimal fixed-point number less than or equal to x. /// @dev Optimized for fractional value inputs, because for every whole value there are (1e18 - 1) fractional counterparts. /// See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions. /// @param x The unsigned 60.18-decimal fixed-point number to floor. /// @param result The greatest integer less than or equal to x, as an unsigned 60.18-decimal fixed-point number. function floor(uint256 x) internal pure returns (uint256 result) { assembly { // Equivalent to "x % SCALE" but faster. let remainder := mod(x, SCALE) // Equivalent to "x - remainder * (remainder > 0 ? 1 : 0)" but faster. result := sub(x, mul(remainder, gt(remainder, 0))) } } /// @notice Yields the excess beyond the floor of x. /// @dev Based on the odd function definition https://en.wikipedia.org/wiki/Fractional_part. /// @param x The unsigned 60.18-decimal fixed-point number to get the fractional part of. /// @param result The fractional part of x as an unsigned 60.18-decimal fixed-point number. function frac(uint256 x) internal pure returns (uint256 result) { assembly { result := mod(x, SCALE) } } /// @notice Converts a number from basic integer form to unsigned 60.18-decimal fixed-point representation. /// /// @dev Requirements: /// - x must be less than or equal to MAX_UD60x18 divided by SCALE. /// /// @param x The basic integer to convert. /// @param result The same number in unsigned 60.18-decimal fixed-point representation. function fromUint(uint256 x) internal pure returns (uint256 result) { unchecked { if (x > MAX_UD60x18 / SCALE) { revert PRBMathUD60x18__FromUintOverflow(x); } result = x * SCALE; } } /// @notice Calculates geometric mean of x and y, i.e. sqrt(x * y), rounding down. /// /// @dev Requirements: /// - x * y must fit within MAX_UD60x18, lest it overflows. /// /// @param x The first operand as an unsigned 60.18-decimal fixed-point number. /// @param y The second operand as an unsigned 60.18-decimal fixed-point number. /// @return result The result as an unsigned 60.18-decimal fixed-point number. function gm(uint256 x, uint256 y) internal pure returns (uint256 result) { if (x == 0) { return 0; } unchecked { // Checking for overflow this way is faster than letting Solidity do it. uint256 xy = x * y; if (xy / x != y) { revert PRBMathUD60x18__GmOverflow(x, y); } // We don't need to multiply by the SCALE here because the x*y product had already picked up a factor of SCALE // during multiplication. See the comments within the "sqrt" function. result = PRBMath.sqrt(xy); } } /// @notice Calculates 1 / x, rounding toward zero. /// /// @dev Requirements: /// - x cannot be zero. /// /// @param x The unsigned 60.18-decimal fixed-point number for which to calculate the inverse. /// @return result The inverse as an unsigned 60.18-decimal fixed-point number. function inv(uint256 x) internal pure returns (uint256 result) { unchecked { // 1e36 is SCALE * SCALE. result = 1e36 / x; } } /// @notice Calculates the natural logarithm of x. /// /// @dev Based on the insight that ln(x) = log2(x) / log2(e). /// /// Requirements: /// - All from "log2". /// /// Caveats: /// - All from "log2". /// - This doesn't return exactly 1 for 2.718281828459045235, for that we would need more fine-grained precision. /// /// @param x The unsigned 60.18-decimal fixed-point number for which to calculate the natural logarithm. /// @return result The natural logarithm as an unsigned 60.18-decimal fixed-point number. function ln(uint256 x) internal pure returns (uint256 result) { // Do the fixed-point multiplication inline to save gas. This is overflow-safe because the maximum value that log2(x) // can return is 196205294292027477728. unchecked { result = (log2(x) * SCALE) / LOG2_E; } } /// @notice Calculates the common logarithm of x. /// /// @dev First checks if x is an exact power of ten and it stops if yes. If it's not, calculates the common /// logarithm based on the insight that log10(x) = log2(x) / log2(10). /// /// Requirements: /// - All from "log2". /// /// Caveats: /// - All from "log2". /// /// @param x The unsigned 60.18-decimal fixed-point number for which to calculate the common logarithm. /// @return result The common logarithm as an unsigned 60.18-decimal fixed-point number. function log10(uint256 x) internal pure returns (uint256 result) { if (x < SCALE) { revert PRBMathUD60x18__LogInputTooSmall(x); } // Note that the "mul" in this block is the assembly multiplication operation, not the "mul" function defined // in this contract. // prettier-ignore assembly { switch x case 1 { result := mul(SCALE, sub(0, 18)) } case 10 { result := mul(SCALE, sub(1, 18)) } case 100 { result := mul(SCALE, sub(2, 18)) } case 1000 { result := mul(SCALE, sub(3, 18)) } case 10000 { result := mul(SCALE, sub(4, 18)) } case 100000 { result := mul(SCALE, sub(5, 18)) } case 1000000 { result := mul(SCALE, sub(6, 18)) } case 10000000 { result := mul(SCALE, sub(7, 18)) } case 100000000 { result := mul(SCALE, sub(8, 18)) } case 1000000000 { result := mul(SCALE, sub(9, 18)) } case 10000000000 { result := mul(SCALE, sub(10, 18)) } case 100000000000 { result := mul(SCALE, sub(11, 18)) } case 1000000000000 { result := mul(SCALE, sub(12, 18)) } case 10000000000000 { result := mul(SCALE, sub(13, 18)) } case 100000000000000 { result := mul(SCALE, sub(14, 18)) } case 1000000000000000 { result := mul(SCALE, sub(15, 18)) } case 10000000000000000 { result := mul(SCALE, sub(16, 18)) } case 100000000000000000 { result := mul(SCALE, sub(17, 18)) } case 1000000000000000000 { result := 0 } case 10000000000000000000 { result := SCALE } case 100000000000000000000 { result := mul(SCALE, 2) } case 1000000000000000000000 { result := mul(SCALE, 3) } case 10000000000000000000000 { result := mul(SCALE, 4) } case 100000000000000000000000 { result := mul(SCALE, 5) } case 1000000000000000000000000 { result := mul(SCALE, 6) } case 10000000000000000000000000 { result := mul(SCALE, 7) } case 100000000000000000000000000 { result := mul(SCALE, 8) } case 1000000000000000000000000000 { result := mul(SCALE, 9) } case 10000000000000000000000000000 { result := mul(SCALE, 10) } case 100000000000000000000000000000 { result := mul(SCALE, 11) } case 1000000000000000000000000000000 { result := mul(SCALE, 12) } case 10000000000000000000000000000000 { result := mul(SCALE, 13) } case 100000000000000000000000000000000 { result := mul(SCALE, 14) } case 1000000000000000000000000000000000 { result := mul(SCALE, 15) } case 10000000000000000000000000000000000 { result := mul(SCALE, 16) } case 100000000000000000000000000000000000 { result := mul(SCALE, 17) } case 1000000000000000000000000000000000000 { result := mul(SCALE, 18) } case 10000000000000000000000000000000000000 { result := mul(SCALE, 19) } case 100000000000000000000000000000000000000 { result := mul(SCALE, 20) } case 1000000000000000000000000000000000000000 { result := mul(SCALE, 21) } case 10000000000000000000000000000000000000000 { result := mul(SCALE, 22) } case 100000000000000000000000000000000000000000 { result := mul(SCALE, 23) } case 1000000000000000000000000000000000000000000 { result := mul(SCALE, 24) } case 10000000000000000000000000000000000000000000 { result := mul(SCALE, 25) } case 100000000000000000000000000000000000000000000 { result := mul(SCALE, 26) } case 1000000000000000000000000000000000000000000000 { result := mul(SCALE, 27) } case 10000000000000000000000000000000000000000000000 { result := mul(SCALE, 28) } case 100000000000000000000000000000000000000000000000 { result := mul(SCALE, 29) } case 1000000000000000000000000000000000000000000000000 { result := mul(SCALE, 30) } case 10000000000000000000000000000000000000000000000000 { result := mul(SCALE, 31) } case 100000000000000000000000000000000000000000000000000 { result := mul(SCALE, 32) } case 1000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 33) } case 10000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 34) } case 100000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 35) } case 1000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 36) } case 10000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 37) } case 100000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 38) } case 1000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 39) } case 10000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 40) } case 100000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 41) } case 1000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 42) } case 10000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 43) } case 100000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 44) } case 1000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 45) } case 10000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 46) } case 100000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 47) } case 1000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 48) } case 10000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 49) } case 100000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 50) } case 1000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 51) } case 10000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 52) } case 100000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 53) } case 1000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 54) } case 10000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 55) } case 100000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 56) } case 1000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 57) } case 10000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 58) } case 100000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 59) } default { result := MAX_UD60x18 } } if (result == MAX_UD60x18) { // Do the fixed-point division inline to save gas. The denominator is log2(10). unchecked { result = (log2(x) * SCALE) / 3_321928094887362347; } } } /// @notice Calculates the binary logarithm of x. /// /// @dev Based on the iterative approximation algorithm. /// https://en.wikipedia.org/wiki/Binary_logarithm#Iterative_approximation /// /// Requirements: /// - x must be greater than or equal to SCALE, otherwise the result would be negative. /// /// Caveats: /// - The results are nor perfectly accurate to the last decimal, due to the lossy precision of the iterative approximation. /// /// @param x The unsigned 60.18-decimal fixed-point number for which to calculate the binary logarithm. /// @return result The binary logarithm as an unsigned 60.18-decimal fixed-point number. function log2(uint256 x) internal pure returns (uint256 result) { if (x < SCALE) { revert PRBMathUD60x18__LogInputTooSmall(x); } unchecked { // Calculate the integer part of the logarithm and add it to the result and finally calculate y = x * 2^(-n). uint256 n = PRBMath.mostSignificantBit(x / SCALE); // The integer part of the logarithm as an unsigned 60.18-decimal fixed-point number. The operation can't overflow // because n is maximum 255 and SCALE is 1e18. result = n * SCALE; // This is y = x * 2^(-n). uint256 y = x >> n; // If y = 1, the fractional part is zero. if (y == SCALE) { return result; } // Calculate the fractional part via the iterative approximation. // The "delta >>= 1" part is equivalent to "delta /= 2", but shifting bits is faster. for (uint256 delta = HALF_SCALE; delta > 0; delta >>= 1) { y = (y * y) / SCALE; // Is y^2 > 2 and so in the range [2,4)? if (y >= 2 * SCALE) { // Add the 2^(-m) factor to the logarithm. result += delta; // Corresponds to z/2 on Wikipedia. y >>= 1; } } } } /// @notice Multiplies two unsigned 60.18-decimal fixed-point numbers together, returning a new unsigned 60.18-decimal /// fixed-point number. /// @dev See the documentation for the "PRBMath.mulDivFixedPoint" function. /// @param x The multiplicand as an unsigned 60.18-decimal fixed-point number. /// @param y The multiplier as an unsigned 60.18-decimal fixed-point number. /// @return result The product as an unsigned 60.18-decimal fixed-point number. function mul(uint256 x, uint256 y) internal pure returns (uint256 result) { result = PRBMath.mulDivFixedPoint(x, y); } /// @notice Returns PI as an unsigned 60.18-decimal fixed-point number. function pi() internal pure returns (uint256 result) { result = 3_141592653589793238; } /// @notice Raises x to the power of y. /// /// @dev Based on the insight that x^y = 2^(log2(x) * y). /// /// Requirements: /// - All from "exp2", "log2" and "mul". /// /// Caveats: /// - All from "exp2", "log2" and "mul". /// - Assumes 0^0 is 1. /// /// @param x Number to raise to given power y, as an unsigned 60.18-decimal fixed-point number. /// @param y Exponent to raise x to, as an unsigned 60.18-decimal fixed-point number. /// @return result x raised to power y, as an unsigned 60.18-decimal fixed-point number. function pow(uint256 x, uint256 y) internal pure returns (uint256 result) { if (x == 0) { result = y == 0 ? SCALE : uint256(0); } else { result = exp2(mul(log2(x), y)); } } /// @notice Raises x (unsigned 60.18-decimal fixed-point number) to the power of y (basic unsigned integer) using the /// famous algorithm "exponentiation by squaring". /// /// @dev See https://en.wikipedia.org/wiki/Exponentiation_by_squaring /// /// Requirements: /// - The result must fit within MAX_UD60x18. /// /// Caveats: /// - All from "mul". /// - Assumes 0^0 is 1. /// /// @param x The base as an unsigned 60.18-decimal fixed-point number. /// @param y The exponent as an uint256. /// @return result The result as an unsigned 60.18-decimal fixed-point number. function powu(uint256 x, uint256 y) internal pure returns (uint256 result) { // Calculate the first iteration of the loop in advance. result = y & 1 > 0 ? x : SCALE; // Equivalent to "for(y /= 2; y > 0; y /= 2)" but faster. for (y >>= 1; y > 0; y >>= 1) { x = PRBMath.mulDivFixedPoint(x, x); // Equivalent to "y % 2 == 1" but faster. if (y & 1 > 0) { result = PRBMath.mulDivFixedPoint(result, x); } } } /// @notice Returns 1 as an unsigned 60.18-decimal fixed-point number. function scale() internal pure returns (uint256 result) { result = SCALE; } /// @notice Calculates the square root of x, rounding down. /// @dev Uses the Babylonian method https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method. /// /// Requirements: /// - x must be less than MAX_UD60x18 / SCALE. /// /// @param x The unsigned 60.18-decimal fixed-point number for which to calculate the square root. /// @return result The result as an unsigned 60.18-decimal fixed-point . function sqrt(uint256 x) internal pure returns (uint256 result) { unchecked { if (x > MAX_UD60x18 / SCALE) { revert PRBMathUD60x18__SqrtOverflow(x); } // Multiply x by the SCALE to account for the factor of SCALE that is picked up when multiplying two unsigned // 60.18-decimal fixed-point numbers together (in this case, those two numbers are both the square root). result = PRBMath.sqrt(x * SCALE); } } /// @notice Converts a unsigned 60.18-decimal fixed-point number to basic integer form, rounding down in the process. /// @param x The unsigned 60.18-decimal fixed-point number to convert. /// @return result The same number in basic integer form. function toUint(uint256 x) internal pure returns (uint256 result) { unchecked { result = x / SCALE; } } }
{ "optimizer": { "enabled": true, "runs": 100000 }, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } }, "metadata": { "useLiteralContent": true }, "libraries": {} }
Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
[{"inputs":[{"internalType":"contract IERC20","name":"_stakingToken","type":"address"},{"internalType":"contract IPoolPositionAndRewardFactorySlim","name":"_rewardFactory","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[{"internalType":"uint256","name":"duration","type":"uint256"}],"name":"DurationOutOfBounds","type":"error"},{"inputs":[{"internalType":"address","name":"rewardTokenAddress","type":"address"}],"name":"NotValidRewardToken","type":"error"},{"inputs":[],"name":"OnlyFactoryOwner","type":"error"},{"inputs":[{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"uint256","name":"minimumAmount","type":"uint256"}],"name":"RewardAmountBelowThreshold","type":"error"},{"inputs":[{"internalType":"uint8","name":"rewardTokenIndex","type":"uint8"}],"name":"RewardStillActive","type":"error"},{"inputs":[{"internalType":"uint8","name":"rewardTokenIndex","type":"uint8"}],"name":"StaleToken","type":"error"},{"inputs":[{"internalType":"uint8","name":"rewardTokenIndex","type":"uint8"}],"name":"TokenNotStale","type":"error"},{"inputs":[],"name":"TooManyRewardTokens","type":"error"},{"inputs":[],"name":"ZeroAmount","type":"error"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"rewardTokenAddress","type":"address"},{"indexed":false,"internalType":"uint8","name":"rewardTokenIndex","type":"uint8"}],"name":"AddRewardToken","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"sender","type":"address"},{"indexed":false,"internalType":"address","name":"account","type":"address"},{"indexed":false,"internalType":"address","name":"recipient","type":"address"},{"indexed":false,"internalType":"uint8","name":"rewardTokenIndex","type":"uint8"},{"indexed":false,"internalType":"address","name":"rewardTokenAddress","type":"address"},{"indexed":false,"internalType":"uint256","name":"rewardPaid","type":"uint256"}],"name":"GetReward","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"sender","type":"address"},{"indexed":false,"internalType":"address","name":"rewardTokenAddress","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"duration","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"rewardRate","type":"uint256"}],"name":"NotifyRewardAmount","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"rewardTokenAddress","type":"address"},{"indexed":false,"internalType":"uint8","name":"rewardTokenIndex","type":"uint8"}],"name":"RemoveRewardToken","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"sender","type":"address"},{"indexed":false,"internalType":"address","name":"supplier","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"},{"indexed":false,"internalType":"address","name":"account","type":"address"},{"indexed":false,"internalType":"uint256","name":"userBalance","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"totalSupply","type":"uint256"}],"name":"Stake","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"sender","type":"address"},{"indexed":false,"internalType":"address","name":"account","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"},{"indexed":false,"internalType":"address","name":"recipient","type":"address"},{"indexed":false,"internalType":"uint256","name":"userBalance","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"totalSupply","type":"uint256"}],"name":"UnStake","type":"event"},{"inputs":[],"name":"MAX_REWARD_TOKENS","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"earned","outputs":[{"components":[{"internalType":"address","name":"account","type":"address"},{"internalType":"uint256","name":"earned","type":"uint256"},{"internalType":"contract IERC20","name":"rewardToken","type":"address"}],"internalType":"struct IReward.EarnedInfo[]","name":"earnedInfo","type":"tuple[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"address","name":"rewardTokenAddress","type":"address"}],"name":"earned","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint8[]","name":"rewardTokenIndices","type":"uint8[]"}],"name":"getReward","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint8","name":"rewardTokenIndex","type":"uint8"}],"name":"getReward","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"globalActive","outputs":[{"internalType":"uint256","name":"_data","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes[]","name":"data","type":"bytes[]"}],"name":"multicall","outputs":[{"internalType":"bytes[]","name":"results","type":"bytes[]"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"rewardTokenAddress","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"uint256","name":"duration","type":"uint256"}],"name":"notifyAndTransfer","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint8","name":"rewardTokenIndex","type":"uint8"}],"name":"removeStaleToken","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"rewardData","outputs":[{"internalType":"uint256","name":"finishAt","type":"uint256"},{"internalType":"uint256","name":"updatedAt","type":"uint256"},{"internalType":"uint256","name":"rewardRate","type":"uint256"},{"internalType":"uint256","name":"rewardPerTokenStored","type":"uint256"},{"internalType":"uint256","name":"escrowedReward","type":"uint256"},{"internalType":"uint256","name":"globalResetCount","type":"uint256"},{"internalType":"contract IERC20","name":"rewardToken","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"rewardFactory","outputs":[{"internalType":"contract IPoolPositionAndRewardFactorySlim","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"rewardInfo","outputs":[{"components":[{"internalType":"uint256","name":"finishAt","type":"uint256"},{"internalType":"uint256","name":"updatedAt","type":"uint256"},{"internalType":"uint256","name":"rewardRate","type":"uint256"},{"internalType":"uint256","name":"rewardPerTokenStored","type":"uint256"},{"internalType":"contract IERC20","name":"rewardToken","type":"address"}],"internalType":"struct IReward.RewardInfo[]","name":"info","type":"tuple[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"address","name":"account","type":"address"}],"name":"stake","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"stakingToken","outputs":[{"internalType":"contract IERC20","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"tokenIndex","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"address","name":"recipient","type":"address"}],"name":"unstake","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"recipient","type":"address"}],"name":"unstakeAll","outputs":[],"stateMutability":"nonpayable","type":"function"}]
Deployed Bytecode
0x608060405234801561001057600080fd5b50600436106101505760003560e01c80635d0cde97116100cd5780638381e18211610081578063ac9650d811610066578063ac9650d814610359578063c9f6707214610379578063d2cadaf31461038e57600080fd5b80638381e18214610333578063a0d6ff9a1461034657600080fd5b806370a08231116100b257806370a08231146102d957806372f702f3146102f95780637acb77571461032057600080fd5b80635d0cde97146102b9578063664366db146102c657600080fd5b8063211dc32d116101245780633e3cc239116101095780633e3cc23914610213578063427f91a61461027157806349d3b6e2146102a657600080fd5b8063211dc32d146101b4578063245e4bf0146101c757600080fd5b80628cc262146101555780630e7cacf91461017e57806318160ddd146101935780631f671765146101aa575b600080fd5b61016861016336600461228a565b6103a1565b60405161017591906122a5565b60405180910390f35b61019161018c366004612318565b6104f3565b005b61019c60025481565b604051908152602001610175565b60065461019c9081565b61019c6101c236600461234b565b61071e565b6101ee7f0000000000000000000000004f24d73773fcce560f4fd641125c23a2b93fcb0581565b60405173ffffffffffffffffffffffffffffffffffffffff9091168152602001610175565b61022661022136600461237e565b6107d2565b604080519788526020880196909652948601939093526060850191909152608084015260a083015273ffffffffffffffffffffffffffffffffffffffff1660c082015260e001610175565b61029461027f36600461228a565b60056020526000908152604090205460ff1681565b60405160ff9091168152602001610175565b6101916102b43660046123a8565b610837565b6001546102949060ff1681565b6101916102d436600461240f565b6108b9565b61019c6102e736600461228a565b60036020526000908152604090205481565b6101ee7f0000000000000000000000003f6a1a138cff672094847b68579493eb116fff2781565b61019161032e366004612462565b6108fc565b610191610341366004612462565b61090b565b61019161035436600461228a565b610916565b61036c610367366004612485565b610923565b6040516101759190612535565b610381610a18565b60405161017591906125b5565b61019c61039c36600461262c565b610b93565b6004546060908067ffffffffffffffff8111156103c0576103c0612656565b60405190808252806020026020018201604052801561042957816020015b60408051606081018252600080825260208083018290529282015282527fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff9092019101816103de5790505b50915060015b818160ff1610156104ec57600060048260ff168154811061045257610452612685565b90600052602060002090600a0201905060405180606001604052808673ffffffffffffffffffffffffffffffffffffffff1681526020016104938784610ba7565b8152600983015473ffffffffffffffffffffffffffffffffffffffff166020909101528451859060ff85169081106104cd576104cd612685565b60200260200101819052505080806104e4906126e3565b91505061042f565b5050919050565b600260005403610564576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601f60248201527f5265656e7472616e637947756172643a207265656e7472616e742063616c6c0060448201526064015b60405180910390fd5b60026000556203f4808110156105a9576040517f91aaaf240000000000000000000000000000000000000000000000000000000081526004810182905260240161055b565b6040517f0975acad00000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff84811660048301526000917f0000000000000000000000004f24d73773fcce560f4fd641125c23a2b93fcb0590911690630975acad90602401602060405180830381865afa15801561063a573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061065e9190612702565b9050808310156106a4576040517f1eecc570000000000000000000000000000000000000000000000000000000008152600481018490526024810182905260440161055b565b6106af848484610c59565b915062278d008211156106f1576040517f91aaaf240000000000000000000000000000000000000000000000000000000081526004810183905260240161055b565b61071373ffffffffffffffffffffffffffffffffffffffff8516333086610e16565b505060016000555050565b73ffffffffffffffffffffffffffffffffffffffff811660009081526005602052604081205460ff16808203610798576040517fe63bc0be00000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff8416600482015260240161055b565b6000600482815481106107ad576107ad612685565b90600052602060002090600a020190506107c78582610ba7565b925050505b92915050565b600481815481106107e257600080fd5b60009182526020909120600a90910201805460018201546002830154600384015460078501546008860154600990960154949650929491939092919073ffffffffffffffffffffffffffffffffffffffff1687565b6002600054036108a3576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601f60248201527f5265656e7472616e637947756172643a207265656e7472616e742063616c6c00604482015260640161055b565b60026000556108b181610ef8565b506001600055565b6108f7338484848080602002602001604051908101604052809392919081815260200183836020028082843760009201919091525061106f92505050565b505050565b6109073383836110c0565b5050565b61090733838361129b565b6109203382611464565b50565b60608167ffffffffffffffff81111561093e5761093e612656565b60405190808252806020026020018201604052801561097157816020015b606081526020019060019003908161095c5790505b50905060005b82811015610a11576109e13085858481811061099557610995612685565b90506020028101906109a7919061271b565b8080601f01602080910402602001604051908101604052809392919081815260200183838082843760009201919091525061149692505050565b8282815181106109f3576109f3612685565b60200260200101819052508080610a0990612780565b915050610977565b5092915050565b6004546060908067ffffffffffffffff811115610a3757610a37612656565b604051908082528060200260200182016040528015610ab057816020015b610a9d6040518060a0016040528060008152602001600081526020016000815260200160008152602001600073ffffffffffffffffffffffffffffffffffffffff1681525090565b815260200190600190039081610a555790505b50915060015b818160ff161015610b8e57600060048260ff1681548110610ad957610ad9612685565b90600052602060002090600a020190506040518060a00160405280826000015481526020018260010154815260200182600201548152602001826003015481526020018260090160009054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff16815250848360ff1681518110610b6f57610b6f612685565b6020026020010181905250508080610b86906126e3565b915050610ab6565b505090565b6000610ba03384846114bb565b9392505050565b73ffffffffffffffffffffffffffffffffffffffff8216600090815260036020526040812054610c2790610c19610bdd856116bf565b8560030154610bec91906127b8565b73ffffffffffffffffffffffffffffffffffffffff87166000908152600487016020526040902054611729565b670de0b6b3a764000061174a565b73ffffffffffffffffffffffffffffffffffffffff84166000908152600584016020526040902054610ba091906127b8565b600080610c6585611817565b9050600060048260ff1681548110610c7f57610c7f612685565b90600052602060002090600a02019050610c9a600082611b2e565b60098101546040517f70a08231000000000000000000000000000000000000000000000000000000008152306004820152600091610d3f9173ffffffffffffffffffffffffffffffffffffffff909116906370a0823190602401602060405180830381865afa158015610d11573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610d359190612702565b8360070154611729565b905080861180610d5157506002820154155b15610d755784610d6182886127b8565b610d6b91906127fa565b6002830155610d91565b6002820154610d8482886127b8565b610d8e91906127fa565b94505b610d9b85426127b8565b825542600183015560028201546040805133815273ffffffffffffffffffffffffffffffffffffffff8a166020820152808201899052606081018890526080810192909252517ffcb9ca03b70a876a8d62dc2ef18aa125118fd02dae56cfffc36a627e7b1c48119181900360a00190a1509295945050505050565b60405173ffffffffffffffffffffffffffffffffffffffff80851660248301528316604482015260648101829052610ef29085907f23b872dd00000000000000000000000000000000000000000000000000000000906084015b604080517fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe08184030181529190526020810180517bffffffffffffffffffffffffffffffffffffffffffffffffffffffff167fffffffff0000000000000000000000000000000000000000000000000000000090931692909217909152611cac565b50505050565b600060048260ff1681548110610f1057610f10612685565b90600052602060002090600a02019050806000015462278d00610f3391906127b8565b421015610f71576040517ff062126c00000000000000000000000000000000000000000000000000000000815260ff8316600482015260240161055b565b60098101546040805173ffffffffffffffffffffffffffffffffffffffff909216825260ff841660208301527f353ebfaea553ae85160f3da125ac0ded25dcae43d4ef924530be7a0f9a919dac910160405180910390a160068054600160ff85161b1916905560098101805473ffffffffffffffffffffffffffffffffffffffff16600090815260056020526040812080547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff0016905581547fffffffffffffffffffffffff00000000000000000000000000000000000000001690915560078201819055600382018190556002820181905580825560019091015550565b805160005b818160ff1610156110b9576110a68585858460ff168151811061109957611099612685565b60200260200101516114bb565b50806110b1816126e3565b915050611074565b5050505050565b60026000540361112c576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601f60248201527f5265656e7472616e637947756172643a207265656e7472616e742063616c6c00604482015260640161055b565b6002600081905550818060000361116f576040517f1f2a200500000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b61117882611db8565b6111ba73ffffffffffffffffffffffffffffffffffffffff7f0000000000000000000000003f6a1a138cff672094847b68579493eb116fff2716853086610e16565b73ffffffffffffffffffffffffffffffffffffffff8216600090815260036020526040812080548592906111ef9084906127b8565b92505081905550826002600082825461120891906127b8565b909155505073ffffffffffffffffffffffffffffffffffffffff828116600081815260036020908152604091829020546002548351338152958a16928601929092529184018790526060840192909252608083015260a08201527f085d03d4e08946d168a8e39b4d6fb3dac61848912dae1a052fbe35f51e790e309060c0015b60405180910390a1505060016000555050565b600260005403611307576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601f60248201527f5265656e7472616e637947756172643a207265656e7472616e742063616c6c00604482015260640161055b565b6002600081905550818060000361134a576040517f1f2a200500000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b61135384611db8565b73ffffffffffffffffffffffffffffffffffffffff841660009081526003602052604081208054859290611388908490612835565b9250508190555082600260008282546113a19190612835565b909155506113e8905073ffffffffffffffffffffffffffffffffffffffff7f0000000000000000000000003f6a1a138cff672094847b68579493eb116fff27168385611e1f565b73ffffffffffffffffffffffffffffffffffffffff848116600081815260036020908152604091829020546002548351338152928301949094529181018790529285166060840152608083015260a08201527f624749dcbc3e908a465e807a4005f6ff77637b2f4fb4bafc79e36dc67c43f9569060c001611288565b73ffffffffffffffffffffffffffffffffffffffff82166000908152600360205260409020546109079083908361129b565b6060610ba083836040518060600160405280602781526020016128f960279139611e75565b6000600260005403611529576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601f60248201527f5265656e7472616e637947756172643a207265656e7472616e742063616c6c00604482015260640161055b565b6002600055600654600160ff84161b16611574576040517fadcabdeb00000000000000000000000000000000000000000000000000000000815260ff8316600482015260240161055b565b600060048360ff168154811061158c5761158c612685565b90600052602060002090600a020190506115a68582611b2e565b73ffffffffffffffffffffffffffffffffffffffff851660009081526005820160205260409020549150811561163f5773ffffffffffffffffffffffffffffffffffffffff851660009081526005820160205260408120819055600782018054849290611614908490612835565b9091555050600981015461163f9073ffffffffffffffffffffffffffffffffffffffff168584611e1f565b60098101546040805133815273ffffffffffffffffffffffffffffffffffffffff88811660208301528781168284015260ff87166060830152909216608083015260a08201849052517f668db5c1eca9fc9d61c658150ed33ea6dd7ccf0c809339169c4262c12cf53fd39181900360c00190a15060016000559392505050565b6000806116dc6116d28460000154611f9d565b8460010154611729565b90508015806116eb5750600254155b806116f857506002830154155b156117065750600092915050565b6002830154610ba090611721670de0b6b3a764000084612848565b60025461174a565b60008183106117415761173c8284612835565b610ba0565b50600092915050565b600080807fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff858709858702925082811083820303915050806000036117a257838281611798576117986127cb565b0492505050610ba0565b8084116117ae57600080fd5b60008486880960026001871981018816978890046003810283188082028403028082028403028082028403028082028403028082028403029081029092039091026000889003889004909101858311909403939093029303949094049190911702949350505050565b73ffffffffffffffffffffffffffffffffffffffff811660009081526005602052604090205460ff16801561184b57919050565b6040517f7095bffc00000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff83811660048301527f0000000000000000000000004f24d73773fcce560f4fd641125c23a2b93fcb051690637095bffc90602401602060405180830381865afa1580156118d7573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906118fb919061285f565b611949576040517fe63bc0be00000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff8316600482015260240161055b565b60015b6001805461195f9160ff90911690612881565b60ff168160ff16101561199557600654600160ff83161b1661198357809150611995565b8061198d816126e3565b91505061194c565b508060ff166000036119d3576040517f0d1470a400000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b60045460ff8216036119ec576004805460010181556000525b600060048260ff1681548110611a0457611a04612685565b600091825260208220600a91909102016009810180547fffffffffffffffffffffffff00000000000000000000000000000000000000001673ffffffffffffffffffffffffffffffffffffffff87161790556008810180549193509091611a6a83612780565b909155505073ffffffffffffffffffffffffffffffffffffffff8316600090815260056020526040902080547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff001660ff8416179055611ad76006838154600160ff9092169190911b179055565b6040805173ffffffffffffffffffffffffffffffffffffffff8516815260ff841660208201527f8b19e0126c38fb29a20d80185dfa44abf853d0d22e1c9d4f9db32dc269f0bc4b910160405180910390a150919050565b6000611b39826116bf565b90508015611b8c5780826003016000828254611b5591906127b8565b9091555050600254611b73908290670de0b6b3a76400006001611fa9565b826007016000828254611b8691906127b8565b90915550505b8154611b9790611f9d565b600183015573ffffffffffffffffffffffffffffffffffffffff8316156108f757600882015473ffffffffffffffffffffffffffffffffffffffff8416600090815260068401602052604090205414611c345773ffffffffffffffffffffffffffffffffffffffff831660009081526004830160209081526040808320839055600585018252808320839055600885015460068601909252909120555b611c3e8383612006565b73ffffffffffffffffffffffffffffffffffffffff8416600090815260058401602052604081208054909190611c759084906127b8565b9091555050600382015473ffffffffffffffffffffffffffffffffffffffff84166000908152600484016020526040902055505050565b6000611d0e826040518060400160405280602081526020017f5361666545524332303a206c6f772d6c6576656c2063616c6c206661696c65648152508573ffffffffffffffffffffffffffffffffffffffff1661204b9092919063ffffffff16565b8051909150156108f75780806020019051810190611d2c919061285f565b6108f7576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602a60248201527f5361666545524332303a204552433230206f7065726174696f6e20646964206e60448201527f6f74207375636365656400000000000000000000000000000000000000000000606482015260840161055b565b60045460015b818160ff1610156108f757600654600160ff83161b1615611e0d57600060048260ff1681548110611df157611df1612685565b90600052602060002090600a02019050611e0b8482611b2e565b505b80611e17816126e3565b915050611dbe565b60405173ffffffffffffffffffffffffffffffffffffffff83166024820152604481018290526108f79084907fa9059cbb0000000000000000000000000000000000000000000000000000000090606401610e70565b606073ffffffffffffffffffffffffffffffffffffffff84163b611f1b576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602660248201527f416464726573733a2064656c65676174652063616c6c20746f206e6f6e2d636f60448201527f6e74726163740000000000000000000000000000000000000000000000000000606482015260840161055b565b6000808573ffffffffffffffffffffffffffffffffffffffff1685604051611f4391906128c9565b600060405180830381855af49150503d8060008114611f7e576040519150601f19603f3d011682016040523d82523d6000602084013e611f83565b606091505b5091509150611f93828286612062565b9695505050505050565b60006107cc82426120b5565b600080611fb786868661174a565b90506001836002811115611fcd57611fcd61289a565b148015611fea575060008480611fe557611fe56127cb565b868809115b15611ffd57611ffa6001826127b8565b90505b95945050505050565b73ffffffffffffffffffffffffffffffffffffffff82166000908152600360208181526040808420549285015460048601909252832054610ba09291610c1991611729565b606061205a84846000856120cb565b949350505050565b60608315612071575081610ba0565b8251156120815782518084602001fd5b816040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161055b91906128e5565b60008183106120c45781610ba0565b5090919050565b60608247101561215d576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602660248201527f416464726573733a20696e73756666696369656e742062616c616e636520666f60448201527f722063616c6c0000000000000000000000000000000000000000000000000000606482015260840161055b565b73ffffffffffffffffffffffffffffffffffffffff85163b6121db576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601d60248201527f416464726573733a2063616c6c20746f206e6f6e2d636f6e7472616374000000604482015260640161055b565b6000808673ffffffffffffffffffffffffffffffffffffffff16858760405161220491906128c9565b60006040518083038185875af1925050503d8060008114612241576040519150601f19603f3d011682016040523d82523d6000602084013e612246565b606091505b5091509150612256828286612062565b979650505050505050565b803573ffffffffffffffffffffffffffffffffffffffff8116811461228557600080fd5b919050565b60006020828403121561229c57600080fd5b610ba082612261565b602080825282518282018190526000919060409081850190868401855b8281101561230b578151805173ffffffffffffffffffffffffffffffffffffffff90811686528782015188870152908601511685850152606090930192908501906001016122c2565b5091979650505050505050565b60008060006060848603121561232d57600080fd5b61233684612261565b95602085013595506040909401359392505050565b6000806040838503121561235e57600080fd5b61236783612261565b915061237560208401612261565b90509250929050565b60006020828403121561239057600080fd5b5035919050565b803560ff8116811461228557600080fd5b6000602082840312156123ba57600080fd5b610ba082612397565b60008083601f8401126123d557600080fd5b50813567ffffffffffffffff8111156123ed57600080fd5b6020830191508360208260051b850101111561240857600080fd5b9250929050565b60008060006040848603121561242457600080fd5b61242d84612261565b9250602084013567ffffffffffffffff81111561244957600080fd5b612455868287016123c3565b9497909650939450505050565b6000806040838503121561247557600080fd5b8235915061237560208401612261565b6000806020838503121561249857600080fd5b823567ffffffffffffffff8111156124af57600080fd5b6124bb858286016123c3565b90969095509350505050565b60005b838110156124e25781810151838201526020016124ca565b50506000910152565b600081518084526125038160208601602086016124c7565b601f017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0169290920160200192915050565b6000602080830181845280855180835260408601915060408160051b870101925083870160005b828110156125a8577fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc08886030184526125968583516124eb565b9450928501929085019060010161255c565b5092979650505050505050565b602080825282518282018190526000919060409081850190868401855b8281101561230b57815180518552868101518786015285810151868601526060808201519086015260809081015173ffffffffffffffffffffffffffffffffffffffff169085015260a090930192908501906001016125d2565b6000806040838503121561263f57600080fd5b61264883612261565b915061237560208401612397565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052604160045260246000fd5b7f4e487b7100000000000000000000000000000000000000000000000000000000600052603260045260246000fd5b7f4e487b7100000000000000000000000000000000000000000000000000000000600052601160045260246000fd5b600060ff821660ff81036126f9576126f96126b4565b60010192915050565b60006020828403121561271457600080fd5b5051919050565b60008083357fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe184360301811261275057600080fd5b83018035915067ffffffffffffffff82111561276b57600080fd5b60200191503681900382131561240857600080fd5b60007fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff82036127b1576127b16126b4565b5060010190565b808201808211156107cc576107cc6126b4565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052601260045260246000fd5b600082612830577f4e487b7100000000000000000000000000000000000000000000000000000000600052601260045260246000fd5b500490565b818103818111156107cc576107cc6126b4565b80820281158282048414176107cc576107cc6126b4565b60006020828403121561287157600080fd5b81518015158114610ba057600080fd5b60ff81811683821601908111156107cc576107cc6126b4565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052602160045260246000fd5b600082516128db8184602087016124c7565b9190910192915050565b602081526000610ba060208301846124eb56fe416464726573733a206c6f772d6c6576656c2064656c65676174652063616c6c206661696c6564a2646970667358221220bf76dd457f868e41da97d28d929ba52f9df04cba340ba50fdad8d643bab866a564736f6c63430008110033
Loading...
Loading
Loading...
Loading
Multichain Portfolio | 30 Chains
Chain | Token | Portfolio % | Price | Amount | Value |
---|
Loading...
Loading
[ Download: CSV Export ]
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.