Contract Name:
RewardOpenSlim
Contract Source Code:
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import "../interfaces/IPool.sol";
import "../interfaces/IPosition.sol";
interface IFactory {
event PoolCreated(address poolAddress, uint256 fee, uint256 tickSpacing, int32 activeTick, int256 lookback, uint64 protocolFeeRatio, IERC20 tokenA, IERC20 tokenB);
event SetFactoryProtocolFeeRatio(uint64 protocolFeeRatio);
event SetFactoryOwner(address owner);
/// @notice creates new pool
/// @param _fee is a rate in prbmath 60x18 decimal format
/// @param _tickSpacing 1.0001^tickSpacing is the bin width
/// @param _activeTick initial activeTick of the pool
/// @param _lookback TWAP lookback in whole seconds
/// @param _tokenA ERC20 token
/// @param _tokenB ERC20 token
function create(
uint256 _fee,
uint256 _tickSpacing,
int256 _lookback,
int32 _activeTick,
IERC20 _tokenA,
IERC20 _tokenB
) external returns (IPool);
function lookup(
uint256 fee,
uint256 tickSpacing,
int256 lookback,
IERC20 tokenA,
IERC20 tokenB
) external view returns (IPool);
function owner() external view returns (address);
function position() external view returns (IPosition);
/// @notice protocolFeeRatio ratio of the swap fee that is kept for the
//protocol
function protocolFeeRatio() external view returns (uint64);
/// @notice lookup table for whether a pool is owned by the factory
function isFactoryPool(IPool pool) external view returns (bool);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import "./IFactory.sol";
interface IPool {
event Swap(address sender, address recipient, bool tokenAIn, bool exactOutput, uint256 amountIn, uint256 amountOut, int32 activeTick);
event AddLiquidity(address indexed sender, uint256 indexed tokenId, BinDelta[] binDeltas);
event MigrateBinsUpStack(address indexed sender, uint128 binId, uint32 maxRecursion);
event TransferLiquidity(uint256 fromTokenId, uint256 toTokenId, RemoveLiquidityParams[] params);
event RemoveLiquidity(address indexed sender, address indexed recipient, uint256 indexed tokenId, BinDelta[] binDeltas);
event BinMerged(uint128 indexed binId, uint128 reserveA, uint128 reserveB, uint128 mergeId);
event BinMoved(uint128 indexed binId, int128 previousTick, int128 newTick);
event ProtocolFeeCollected(uint256 protocolFee, bool isTokenA);
event SetProtocolFeeRatio(uint256 protocolFee);
/// @notice return parameters for Add/Remove liquidity
/// @param binId of the bin that changed
/// @param kind one of the 4 Kinds (0=static, 1=right, 2=left, 3=both)
/// @param isActive bool to indicate whether the bin is still active
/// @param lowerTick is the lower price tick of the bin in its current state
/// @param deltaA amount of A token that has been added or removed
/// @param deltaB amount of B token that has been added or removed
/// @param deltaLpToken amount of LP balance that has increase (add) or decreased (remove)
struct BinDelta {
uint128 deltaA;
uint128 deltaB;
uint256 deltaLpBalance;
uint128 binId;
uint8 kind;
int32 lowerTick;
bool isActive;
}
/// @notice time weighted average state
/// @param twa the twa at the last update instant
/// @param value the new value that was passed in at the last update
/// @param lastTimestamp timestamp of the last update in seconds
/// @param lookback time in seconds
struct TwaState {
int96 twa;
int96 value;
uint64 lastTimestamp;
}
/// @notice bin state parameters
/// @param kind one of the 4 Kinds (0=static, 1=right, 2=left, 3=both)
/// @param lowerTick is the lower price tick of the bin in its current state
/// @param mergeId binId of the bin that this bin has merged in to
/// @param reserveA amount of A token in bin
/// @param reserveB amount of B token in bin
/// @param totalSupply total amount of LP tokens in this bin
/// @param mergeBinBalance LP token balance that this bin posseses of the merge bin
struct BinState {
uint128 reserveA;
uint128 reserveB;
uint128 mergeBinBalance;
uint128 mergeId;
uint128 totalSupply;
uint8 kind;
int32 lowerTick;
}
/// @notice Parameters for each bin that will get new liquidity
/// @param kind one of the 4 Kinds (0=static, 1=right, 2=left, 3=both)
/// @param pos bin position
/// @param isDelta bool that indicates whether the bin position is relative
//to the current bin or an absolute position
/// @param deltaA amount of A token to add
/// @param deltaB amount of B token to add
struct AddLiquidityParams {
uint8 kind;
int32 pos;
bool isDelta;
uint128 deltaA;
uint128 deltaB;
}
/// @notice Parameters for each bin that will have liquidity removed
/// @param binId index of the bin losing liquidity
/// @param amount LP balance amount to remove
struct RemoveLiquidityParams {
uint128 binId;
uint128 amount;
}
/// @notice State of the pool
/// @param activeTick current bin position that contains the active bins
/// @param status pool status. e.g. locked or unlocked; status values
//defined in Pool.sol
/// @param binCounter index of the last bin created
/// @param protocolFeeRatio ratio of the swap fee that is kept for the
//protocol
struct State {
int32 activeTick;
uint8 status;
uint128 binCounter;
uint64 protocolFeeRatio;
}
/// @notice fee for pool in 18 decimal format
function fee() external view returns (uint256);
/// @notice tickSpacing of pool where 1.0001^tickSpacing is the bin width
function tickSpacing() external view returns (uint256);
/// @notice address of token A
function tokenA() external view returns (IERC20);
/// @notice address of token B
function tokenB() external view returns (IERC20);
/// @notice address of Factory
function factory() external view returns (IFactory);
/// @notice bitmap of active bins
function binMap(int32 tick) external view returns (uint256);
/// @notice mapping of tick/kind to binId
function binPositions(int32 tick, uint256 kind) external view returns (uint128);
/// @notice internal accounting of the sum tokenA balance across bins
function binBalanceA() external view returns (uint128);
/// @notice internal accounting of the sum tokenB balance across bins
function binBalanceB() external view returns (uint128);
/// @notice Twa state values
function getTwa() external view returns (TwaState memory);
/// @notice log base binWidth of the time weighted average price
function getCurrentTwa() external view returns (int256);
/// @notice pool state
function getState() external view returns (State memory);
/// @notice Add liquidity to a pool.
/// @param tokenId NFT token ID that will hold the position
/// @param params array of AddLiquidityParams that specify the mode and
//position of the liquidity
/// @param data callback function that addLiquidity will call so that the
//caller can transfer tokens
function addLiquidity(
uint256 tokenId,
AddLiquidityParams[] calldata params,
bytes calldata data
)
external
returns (
uint256 tokenAAmount,
uint256 tokenBAmount,
BinDelta[] memory binDeltas
);
/// @notice Transfer liquidity in an array of bins from one nft tokenId
//to another
/// @param fromTokenId NFT token ID that holds the position being transferred
/// @param toTokenId NFT token ID that is receiving liquidity
/// @param params array of binIds and amounts to transfer
function transferLiquidity(
uint256 fromTokenId,
uint256 toTokenId,
RemoveLiquidityParams[] calldata params
) external;
/// @notice Remove liquidity from a pool.
/// @param recipient address that will receive the removed tokens
/// @param tokenId NFT token ID that holds the position being removed
/// @param params array of RemoveLiquidityParams that specify the bins,
//and amounts
function removeLiquidity(
address recipient,
uint256 tokenId,
RemoveLiquidityParams[] calldata params
)
external
returns (
uint256 tokenAOut,
uint256 tokenBOut,
BinDelta[] memory binDeltas
);
/// @notice Migrate bins up the linked list of merged bins so that its
//mergeId is the currrent active bin.
/// @param binId is an array of the binIds to be migrated
/// @param maxRecursion is the maximum recursion depth of the migration. set to
//zero to recurse until the active bin is found.
function migrateBinUpStack(uint128 binId, uint32 maxRecursion) external;
/// @notice swap tokens
/// @param recipient address that will receive the output tokens
/// @param amount amount of token that is either the input if exactOutput
//is false or the output if exactOutput is true
/// @param tokenAIn bool indicating whether tokenA is the input
/// @param exactOutput bool indicating whether the amount specified is the
//exact output amount (true)
/// @param sqrtPriceLimit limiting sqrt price of the swap. A value of 0
//indicates no limit. Limit is only engaged for exactOutput=false. If the
//limit is reached only part of the input amount will be swapped and the
//callback will only require that amount of the swap to be paid.
/// @param data callback function that swap will call so that the
//caller can transfer tokens
function swap(
address recipient,
uint256 amount,
bool tokenAIn,
bool exactOutput,
uint256 sqrtPriceLimit,
bytes calldata data
) external returns (uint256 amountIn, uint256 amountOut);
/// @notice bin information for a given binId
function getBin(uint128 binId) external view returns (BinState memory bin);
/// @notice LP token balance for a given tokenId at a given binId
function balanceOf(uint256 tokenId, uint128 binId) external view returns (uint256 lpToken);
/// @notice tokenA scale value
/// @dev msb is a flag to indicate whether tokenA has more or less than 18
//decimals. Scale is used in conjuction with Math.toScale/Math.fromScale
//functions to convert from token amounts to D18 scale internal pool
//accounting.
function tokenAScale() external view returns (uint256);
/// @notice tokenB scale value
/// @dev msb is a flag to indicate whether tokenA has more or less than 18
//decimals. Scale is used in conjuction with Math.toScale/Math.fromScale
//functions to convert from token amounts to D18 scale internal pool
//accounting.
function tokenBScale() external view returns (uint256);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import "@openzeppelin/contracts/token/ERC721/extensions/IERC721Enumerable.sol";
import "../interfaces/IPositionMetadata.sol";
interface IPosition is IERC721Enumerable {
event SetMetadata(IPositionMetadata metadata);
/// @notice mint new position NFT
function mint(address to) external returns (uint256 tokenId);
/// @notice mint new position NFT
function tokenOfOwnerByIndexExists(address owner, uint256 index) external view returns (bool);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
interface IPositionMetadata {
function tokenURI(uint256 tokenId) external view returns (string memory);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (security/ReentrancyGuard.sol)
pragma solidity ^0.8.0;
/**
* @dev Contract module that helps prevent reentrant calls to a function.
*
* Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
* available, which can be applied to functions to make sure there are no nested
* (reentrant) calls to them.
*
* Note that because there is a single `nonReentrant` guard, functions marked as
* `nonReentrant` may not call one another. This can be worked around by making
* those functions `private`, and then adding `external` `nonReentrant` entry
* points to them.
*
* TIP: If you would like to learn more about reentrancy and alternative ways
* to protect against it, check out our blog post
* https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
*/
abstract contract ReentrancyGuard {
// Booleans are more expensive than uint256 or any type that takes up a full
// word because each write operation emits an extra SLOAD to first read the
// slot's contents, replace the bits taken up by the boolean, and then write
// back. This is the compiler's defense against contract upgrades and
// pointer aliasing, and it cannot be disabled.
// The values being non-zero value makes deployment a bit more expensive,
// but in exchange the refund on every call to nonReentrant will be lower in
// amount. Since refunds are capped to a percentage of the total
// transaction's gas, it is best to keep them low in cases like this one, to
// increase the likelihood of the full refund coming into effect.
uint256 private constant _NOT_ENTERED = 1;
uint256 private constant _ENTERED = 2;
uint256 private _status;
constructor() {
_status = _NOT_ENTERED;
}
/**
* @dev Prevents a contract from calling itself, directly or indirectly.
* Calling a `nonReentrant` function from another `nonReentrant`
* function is not supported. It is possible to prevent this from happening
* by making the `nonReentrant` function external, and making it call a
* `private` function that does the actual work.
*/
modifier nonReentrant() {
// On the first call to nonReentrant, _notEntered will be true
require(_status != _ENTERED, "ReentrancyGuard: reentrant call");
// Any calls to nonReentrant after this point will fail
_status = _ENTERED;
_;
// By storing the original value once again, a refund is triggered (see
// https://eips.ethereum.org/EIPS/eip-2200)
_status = _NOT_ENTERED;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/draft-IERC20Permit.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
* https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
*
* Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
* presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
* need to send a transaction, and thus is not required to hold Ether at all.
*/
interface IERC20Permit {
/**
* @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
* given ``owner``'s signed approval.
*
* IMPORTANT: The same issues {IERC20-approve} has related to transaction
* ordering also apply here.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `deadline` must be a timestamp in the future.
* - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
* over the EIP712-formatted function arguments.
* - the signature must use ``owner``'s current nonce (see {nonces}).
*
* For more information on the signature format, see the
* https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
* section].
*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external;
/**
* @dev Returns the current nonce for `owner`. This value must be
* included whenever a signature is generated for {permit}.
*
* Every successful call to {permit} increases ``owner``'s nonce by one. This
* prevents a signature from being used multiple times.
*/
function nonces(address owner) external view returns (uint256);
/**
* @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
*/
// solhint-disable-next-line func-name-mixedcase
function DOMAIN_SEPARATOR() external view returns (bytes32);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol)
pragma solidity ^0.8.0;
import "../IERC20.sol";
/**
* @dev Interface for the optional metadata functions from the ERC20 standard.
*
* _Available since v4.1._
*/
interface IERC20Metadata is IERC20 {
/**
* @dev Returns the name of the token.
*/
function name() external view returns (string memory);
/**
* @dev Returns the symbol of the token.
*/
function symbol() external view returns (string memory);
/**
* @dev Returns the decimals places of the token.
*/
function decimals() external view returns (uint8);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `from` to `to` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(
address from,
address to,
uint256 amount
) external returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (token/ERC20/utils/SafeERC20.sol)
pragma solidity ^0.8.0;
import "../IERC20.sol";
import "../extensions/draft-IERC20Permit.sol";
import "../../../utils/Address.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using Address for address;
function safeTransfer(
IERC20 token,
address to,
uint256 value
) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
}
function safeTransferFrom(
IERC20 token,
address from,
address to,
uint256 value
) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
}
/**
* @dev Deprecated. This function has issues similar to the ones found in
* {IERC20-approve}, and its usage is discouraged.
*
* Whenever possible, use {safeIncreaseAllowance} and
* {safeDecreaseAllowance} instead.
*/
function safeApprove(
IERC20 token,
address spender,
uint256 value
) internal {
// safeApprove should only be called when setting an initial allowance,
// or when resetting it to zero. To increase and decrease it, use
// 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
require(
(value == 0) || (token.allowance(address(this), spender) == 0),
"SafeERC20: approve from non-zero to non-zero allowance"
);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
}
function safeIncreaseAllowance(
IERC20 token,
address spender,
uint256 value
) internal {
uint256 newAllowance = token.allowance(address(this), spender) + value;
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
}
function safeDecreaseAllowance(
IERC20 token,
address spender,
uint256 value
) internal {
unchecked {
uint256 oldAllowance = token.allowance(address(this), spender);
require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
uint256 newAllowance = oldAllowance - value;
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
}
}
function safePermit(
IERC20Permit token,
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) internal {
uint256 nonceBefore = token.nonces(owner);
token.permit(owner, spender, value, deadline, v, r, s);
uint256 nonceAfter = token.nonces(owner);
require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that
// the target address contains contract code and also asserts for success in the low-level call.
bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
if (returndata.length > 0) {
// Return data is optional
require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.5.0) (token/ERC721/extensions/IERC721Enumerable.sol)
pragma solidity ^0.8.0;
import "../IERC721.sol";
/**
* @title ERC-721 Non-Fungible Token Standard, optional enumeration extension
* @dev See https://eips.ethereum.org/EIPS/eip-721
*/
interface IERC721Enumerable is IERC721 {
/**
* @dev Returns the total amount of tokens stored by the contract.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns a token ID owned by `owner` at a given `index` of its token list.
* Use along with {balanceOf} to enumerate all of ``owner``'s tokens.
*/
function tokenOfOwnerByIndex(address owner, uint256 index) external view returns (uint256);
/**
* @dev Returns a token ID at a given `index` of all the tokens stored by the contract.
* Use along with {totalSupply} to enumerate all tokens.
*/
function tokenByIndex(uint256 index) external view returns (uint256);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (token/ERC721/IERC721.sol)
pragma solidity ^0.8.0;
import "../../utils/introspection/IERC165.sol";
/**
* @dev Required interface of an ERC721 compliant contract.
*/
interface IERC721 is IERC165 {
/**
* @dev Emitted when `tokenId` token is transferred from `from` to `to`.
*/
event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);
/**
* @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
*/
event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);
/**
* @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets.
*/
event ApprovalForAll(address indexed owner, address indexed operator, bool approved);
/**
* @dev Returns the number of tokens in ``owner``'s account.
*/
function balanceOf(address owner) external view returns (uint256 balance);
/**
* @dev Returns the owner of the `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function ownerOf(uint256 tokenId) external view returns (address owner);
/**
* @dev Safely transfers `tokenId` token from `from` to `to`.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
*
* Emits a {Transfer} event.
*/
function safeTransferFrom(
address from,
address to,
uint256 tokenId,
bytes calldata data
) external;
/**
* @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
* are aware of the ERC721 protocol to prevent tokens from being forever locked.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If the caller is not `from`, it must have been allowed to move this token by either {approve} or {setApprovalForAll}.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
*
* Emits a {Transfer} event.
*/
function safeTransferFrom(
address from,
address to,
uint256 tokenId
) external;
/**
* @dev Transfers `tokenId` token from `from` to `to`.
*
* WARNING: Usage of this method is discouraged, use {safeTransferFrom} whenever possible.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
*
* Emits a {Transfer} event.
*/
function transferFrom(
address from,
address to,
uint256 tokenId
) external;
/**
* @dev Gives permission to `to` to transfer `tokenId` token to another account.
* The approval is cleared when the token is transferred.
*
* Only a single account can be approved at a time, so approving the zero address clears previous approvals.
*
* Requirements:
*
* - The caller must own the token or be an approved operator.
* - `tokenId` must exist.
*
* Emits an {Approval} event.
*/
function approve(address to, uint256 tokenId) external;
/**
* @dev Approve or remove `operator` as an operator for the caller.
* Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller.
*
* Requirements:
*
* - The `operator` cannot be the caller.
*
* Emits an {ApprovalForAll} event.
*/
function setApprovalForAll(address operator, bool _approved) external;
/**
* @dev Returns the account approved for `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function getApproved(uint256 tokenId) external view returns (address operator);
/**
* @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
*
* See {setApprovalForAll}
*/
function isApprovedForAll(address owner, address operator) external view returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (utils/Address.sol)
pragma solidity ^0.8.1;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
* ====
*
* [IMPORTANT]
* ====
* You shouldn't rely on `isContract` to protect against flash loan attacks!
*
* Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
* like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
* constructor.
* ====
*/
function isContract(address account) internal view returns (bool) {
// This method relies on extcodesize/address.code.length, which returns 0
// for contracts in construction, since the code is only stored at the end
// of the constructor execution.
return account.code.length > 0;
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
(bool success, ) = recipient.call{value: amount}("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCall(target, data, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value
) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value,
string memory errorMessage
) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
require(isContract(target), "Address: call to non-contract");
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResult(success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
return functionStaticCall(target, data, "Address: low-level static call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(
address target,
bytes memory data,
string memory errorMessage
) internal view returns (bytes memory) {
require(isContract(target), "Address: static call to non-contract");
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResult(success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
return functionDelegateCall(target, data, "Address: low-level delegate call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
require(isContract(target), "Address: delegate call to non-contract");
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResult(success, returndata, errorMessage);
}
/**
* @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the
* revert reason using the provided one.
*
* _Available since v4.3._
*/
function verifyCallResult(
bool success,
bytes memory returndata,
string memory errorMessage
) internal pure returns (bytes memory) {
if (success) {
return returndata;
} else {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
/// @solidity memory-safe-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC165 standard, as defined in the
* https://eips.ethereum.org/EIPS/eip-165[EIP].
*
* Implementers can declare support of contract interfaces, which can then be
* queried by others ({ERC165Checker}).
*
* For an implementation, see {ERC165}.
*/
interface IERC165 {
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
* to learn more about how these ids are created.
*
* This function call must use less than 30 000 gas.
*/
function supportsInterface(bytes4 interfaceId) external view returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (utils/math/Math.sol)
pragma solidity ^0.8.0;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Down, // Toward negative infinity
Up, // Toward infinity
Zero // Toward zero
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a >= b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds up instead
* of rounding down.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b - 1) / b can overflow on addition, so we distribute.
return a == 0 ? 0 : (a - 1) / b + 1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
* with further edits by Uniswap Labs also under MIT license.
*/
function mulDiv(
uint256 x,
uint256 y,
uint256 denominator
) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod0 := mul(x, y)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
require(denominator > prod1);
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
// See https://cs.stackexchange.com/q/138556/92363.
// Does not overflow because the denominator cannot be zero at this stage in the function.
uint256 twos = denominator & (~denominator + 1);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
// in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(
uint256 x,
uint256 y,
uint256 denominator,
Rounding rounding
) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
result += 1;
}
return result;
}
/**
* @dev Returns the square root of a number. It the number is not a perfect square, the value is rounded down.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`.
// We also know that `k`, the position of the most significant bit, is such that `msb(a) = 2**k`.
// This gives `2**k < a <= 2**(k+1)` → `2**(k/2) <= sqrt(a) < 2 ** (k/2+1)`.
// Using an algorithm similar to the msb conmputation, we are able to compute `result = 2**(k/2)` which is a
// good first aproximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1;
uint256 x = a;
if (x >> 128 > 0) {
x >>= 128;
result <<= 64;
}
if (x >> 64 > 0) {
x >>= 64;
result <<= 32;
}
if (x >> 32 > 0) {
x >>= 32;
result <<= 16;
}
if (x >> 16 > 0) {
x >>= 16;
result <<= 8;
}
if (x >> 8 > 0) {
x >>= 8;
result <<= 4;
}
if (x >> 4 > 0) {
x >>= 4;
result <<= 2;
}
if (x >> 2 > 0) {
result <<= 1;
}
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
// into the expected uint128 result.
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
uint256 result = sqrt(a);
if (rounding == Rounding.Up && result * result < a) {
result += 1;
}
return result;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.5.0) (utils/Multicall.sol)
pragma solidity ^0.8.0;
import "./Address.sol";
/**
* @dev Provides a function to batch together multiple calls in a single external call.
*
* _Available since v4.1._
*/
abstract contract Multicall {
/**
* @dev Receives and executes a batch of function calls on this contract.
*/
function multicall(bytes[] calldata data) external virtual returns (bytes[] memory results) {
results = new bytes[](data.length);
for (uint256 i = 0; i < data.length; i++) {
results[i] = Address.functionDelegateCall(address(this), data[i]);
}
return results;
}
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.0;
import {IPool} from "@maverickprotocol/maverick-v1-interfaces/contracts/interfaces/IPool.sol";
import {IFactory} from "@maverickprotocol/maverick-v1-interfaces/contracts/interfaces/IFactory.sol";
import {IPoolPositionSlim} from "./IPoolPositionSlim.sol";
import {IReward} from "./IReward.sol";
interface IPoolPositionAndRewardFactorySlim {
event PoolPositionCreated(IPool pool, uint128[] binIds, uint128[] ratios, IPoolPositionSlim poolPosition, uint256 poolPositionNumber);
event LpRewardCreated(IPoolPositionSlim poolPosition, address reward);
event AddNewApprovedRewardToken(address rewardToken, uint256 minimumAmount);
struct RewardInfos {
IReward.RewardInfo[] rewardInfoList;
}
function allPoolPositions(uint256 poolPositionNumber) external view returns (IPoolPositionSlim poolPosition);
function poolPositionNumber(IPoolPositionSlim poolPosition) external view returns (uint256 poolPositionNumber);
function getLpRewardByPP(IPoolPositionSlim) external view returns (IReward);
function poolFactory() external view returns (IFactory);
function allPoolPositionsLength() external view returns (uint256);
function isApprovedRewardToken(address reward) external view returns (bool);
function minimumRewardAmount(address reward) external view returns (uint256);
function isPoolPosition(IPoolPositionSlim poolPosition) external view returns (bool);
function createPoolPositionAndRewards(IPool pool, uint128[] calldata binIds, uint128[] calldata ratios, bool isStatic) external returns (IPoolPositionSlim);
function owner() external view returns (address);
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.0;
import {IERC20Metadata} from "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol";
import {IPool} from "@maverickprotocol/maverick-v1-interfaces/contracts/interfaces/IPool.sol";
interface IPoolPositionSlim is IERC20Metadata {
error InvalidBinIds(uint128[] binIds);
error InvalidRatio();
error BinIsMerged();
error InvalidTokenId(uint256 tokenId);
event MigrateBinLiquidity(uint128 oldBinId, uint128 newBinId);
function allBinIds() external view returns (uint128[] memory);
function binIds(uint256) external view returns (uint128);
function ratios(uint256) external view returns (uint128);
/// @notice tokenId that holds PP assets
function tokenId() external view returns (uint256);
/// @notice Pool that the position exists in
function pool() external view returns (IPool);
/// @notice Whether or not the PP contains all static bins as opposed to
//movement bins
function isStatic() external view returns (bool);
/// @notice Returns struct array of bin lp amounts that need to be transfered for a mint
/// @param binZeroLpAddAmount LP amount of bin[0] to be added
function binLpAddAmountRequirement(uint128 binZeroLpAddAmount) external view returns (IPool.RemoveLiquidityParams[] memory params);
/// @notice Burns PoolPosition ERC20 tokens from given account and
//trasnfers Pool liquidity position to toTokenId
/// @param account wallet or contract whose PoolPosition tokens will be
//burned
/// @param toTokenId pool.position() that will own the output liquidity
/// @param lpAmountToUnStake number of PoolPosition LPs tokens to burn
function burnFromToTokenIdAsBinLiquidity(address account, uint256 toTokenId, uint256 lpAmountToUnStake) external returns (IPool.RemoveLiquidityParams[] memory params);
/// @notice Burns PoolPosition ERC20 tokens and trasnfers resulting
//liquidity as A/B tokens to recipient
/// @param account wallet or contract whose PoolPosition tokens will be
//burned
/// @param recipient pool.position() that will own the output tokens
/// @param lpAmountToUnStake number of PoolPosition LPs tokens to burn
function burnFromToAddressAsReserves(address account, address recipient, uint256 lpAmountToUnStake) external returns (uint256 amountA, uint256 amountB);
/// @notice Migrates the PoolPosition liquidity to active bin if the
//liquidity is currently merged
/// @dev Migrating only applies to one-bin dynamic-kind PoolPositions and
//it must be called before any other external call will execute if the bin
//in the PoolPosition has been merged.
function migrateBinLiquidity() external;
/// @notice Mint new PoolPosition tokens
/// @param to wallet or contract where PoolPosition tokens will be minted
/// @param fromTokenId pool.position() that will contribute input liquidity
/// @param binZeroLpAddAmount LP balance of pool.position() in PoolPosition
//bins[0] to be transfered
// @return liquidity number of PoolPosition LP tokens minted
function mint(address to, uint256 fromTokenId, uint128 binZeroLpAddAmount) external returns (uint256 liquidity);
/// @notice Amount of pool.tokenA() and pool.tokenB() tokens held by the
//PoolPosition
// @return reserveA Amount of pool.tokenA() tokens held by the
// PoolPosition
// @return reserveB Amount of pool.tokenB() tokens held by the
// PoolPosition
function getReserves() external view returns (uint256 reserveA, uint256 reserveB);
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.0;
import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
interface IReward {
event NotifyRewardAmount(address sender, address rewardTokenAddress, uint256 amount, uint256 duration, uint256 rewardRate);
event GetReward(address sender, address account, address recipient, uint8 rewardTokenIndex, address rewardTokenAddress, uint256 rewardPaid);
event UnStake(address sender, address account, uint256 amount, address recipient, uint256 userBalance, uint256 totalSupply);
event Stake(address sender, address supplier, uint256 amount, address account, uint256 userBalance, uint256 totalSupply);
event AddRewardToken(address rewardTokenAddress, uint8 rewardTokenIndex);
event RemoveRewardToken(address rewardTokenAddress, uint8 rewardTokenIndex);
error DurationOutOfBounds(uint256 duration);
error OnlyFactoryOwner();
error ZeroAmount();
error NotValidRewardToken(address rewardTokenAddress);
error TooManyRewardTokens();
error StaleToken(uint8 rewardTokenIndex);
error TokenNotStale(uint8 rewardTokenIndex);
error RewardStillActive(uint8 rewardTokenIndex);
error RewardAmountBelowThreshold(uint256 amount, uint256 minimumAmount);
struct RewardInfo {
// Timestamp of when the rewards finish
uint256 finishAt;
// Minimum of last updated time and reward finish time
uint256 updatedAt;
// Reward to be paid out per second
uint256 rewardRate;
// Sum of (reward rate * dt * 1e18 / total supply)
uint256 rewardPerTokenStored;
IERC20 rewardToken;
}
struct EarnedInfo {
// account
address account;
// earned
uint256 earned;
// reward token
IERC20 rewardToken;
}
function rewardInfo() external view returns (RewardInfo[] memory);
function tokenIndex(address tokenAddress) external view returns (uint8);
function balanceOf(address account) external view returns (uint256);
function earned(address account, address rewardTokenAddress) external view returns (uint256);
function earned(address account) external view returns (EarnedInfo[] memory earnedInfo);
/// @notice Add rewards tokens account the pot of rewards with a transferFrom.
/// @param rewardTokenAddress address of reward token added
function notifyAndTransfer(address rewardTokenAddress, uint256 amount, uint256 duration) external;
/// @notice Deposit LP tokens for reward allocation.
/// @param amount LP token amount account deposit.
/// @param account The receiver of `amount` deposit benefit.
function stake(uint256 amount, address account) external;
/// @notice Withdraw LP token stake.
/// @param amount LP token amount account withdraw.
/// @param recipient Receiver of the LP tokens.
function unstake(uint256 amount, address recipient) external;
/// @notice Withdraw entire amount of LP token stake.
/// @param recipient Receiver of the LP tokens.
function unstakeAll(address recipient) external;
/// @notice Get reward proceeds for transaction sender account `account`.
/// @param recipient Receiver of REWARD_TOKEN rewards.
/// @param rewardTokenIndices indices of reward tokens to collect
function getReward(address recipient, uint8[] calldata rewardTokenIndices) external;
/// @notice Get reward proceeds for transaction sender account `account`.
/// @param recipient Receiver of REWARD_TOKEN rewards.
/// @param rewardTokenIndex index of reward token to collect
function getReward(address recipient, uint8 rewardTokenIndex) external returns (uint256);
/// @notice Remove stale tokens from the reward contract
/// @param rewardTokenIndex is the index of the reward token in the
//tokenIndex mapping
function removeStaleToken(uint8 rewardTokenIndex) external;
}
// SPDX-License-Identifier: MIT
// modified from OpenZeppelin Contracts (last updated v4.8.0) (utils/structs/BitMaps.sol)
pragma solidity ^0.8.0;
/**
* @dev Library for managing uint256 to bool mapping in a compact and efficient way, providing the keys are sequential.
* Largely inspired by Uniswap's https://github.com/Uniswap/merkle-distributor/blob/master/contracts/MerkleDistributor.sol[merkle-distributor].
*/
library BitMap {
struct Instance {
uint256 _data;
}
/**
* @dev Returns whether the bit at `index` is set.
*/
function get(Instance storage self, uint8 index) internal view returns (bool) {
uint256 mask = 1 << index;
return self._data & mask != 0;
}
/**
* @dev Sets the bit at `index`.
*/
function set(Instance storage self, uint8 index) internal {
uint256 mask = 1 << index;
self._data |= mask;
}
/**
* @dev Unsets the bit at `index`.
*/
function unset(Instance storage self, uint8 index) internal {
uint256 mask = 1 << index;
self._data &= ~mask;
}
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.0;
import {PRBMath} from "prb-math/contracts/PRBMath.sol";
import {PRBMathUD60x18} from "prb-math/contracts/PRBMathUD60x18.sol";
library Math {
using PRBMathUD60x18 for uint256;
uint256 constant MAX_BIT = 0x8000000000000000000000000000000000000000000000000000000000000000;
uint256 constant DEFAULT_SCALE = 1;
function max(uint256 x, uint256 y) internal pure returns (uint256) {
return x > y ? x : y;
}
function min(uint256 x, uint256 y) internal pure returns (uint256) {
return x < y ? x : y;
}
function mulDiv(uint256 x, uint256 y, uint256 k, bool ceil) internal pure returns (uint256 result) {
result = PRBMath.mulDiv(x, y, k);
if (ceil && mulmod(x, y, k) != 0) result = result + 1;
}
function clip(uint256 x, uint256 y) internal pure returns (uint256) {
return x < y ? 0 : x - y;
}
function toScale(uint256 amount, uint256 scaleFactor, bool ceil) internal pure returns (uint256) {
if (scaleFactor == DEFAULT_SCALE || amount == 0) {
return amount;
} else if ((scaleFactor & MAX_BIT) != 0) {
return amount * (scaleFactor & ~MAX_BIT);
} else {
return (ceil && mulmod(amount, 1, scaleFactor) != 0) ? amount / scaleFactor + 1 : amount / scaleFactor;
}
}
function fromScale(uint256 amount, uint256 scaleFactor) internal pure returns (uint256) {
if (scaleFactor == DEFAULT_SCALE) {
return amount;
} else if ((scaleFactor & MAX_BIT) != 0) {
return amount / (scaleFactor & ~MAX_BIT);
} else {
return amount * scaleFactor;
}
}
function tickSqrtPrice(uint256 tickSpacing, int32 _tick) internal pure returns (uint256 _result) {
unchecked {
uint256 tick = _tick < 0 ? uint256(-int256(_tick)) : uint256(int256(_tick));
tick *= tickSpacing;
uint256 ratio = tick & 0x1 != 0 ? 0xfffcb933bd6fad9d3af5f0b9f25db4d6 : 0x100000000000000000000000000000000;
if (tick & 0x2 != 0) ratio = (ratio * 0xfff97272373d41fd789c8cb37ffcaa1c) >> 128;
if (tick & 0x4 != 0) ratio = (ratio * 0xfff2e50f5f656ac9229c67059486f389) >> 128;
if (tick & 0x8 != 0) ratio = (ratio * 0xffe5caca7e10e81259b3cddc7a064941) >> 128;
if (tick & 0x10 != 0) ratio = (ratio * 0xffcb9843d60f67b19e8887e0bd251eb7) >> 128;
if (tick & 0x20 != 0) ratio = (ratio * 0xff973b41fa98cd2e57b660be99eb2c4a) >> 128;
if (tick & 0x40 != 0) ratio = (ratio * 0xff2ea16466c9838804e327cb417cafcb) >> 128;
if (tick & 0x80 != 0) ratio = (ratio * 0xfe5dee046a99d51e2cc356c2f617dbe0) >> 128;
if (tick & 0x100 != 0) ratio = (ratio * 0xfcbe86c7900aecf64236ab31f1f9dcb5) >> 128;
if (tick & 0x200 != 0) ratio = (ratio * 0xf987a7253ac4d9194200696907cf2e37) >> 128;
if (tick & 0x400 != 0) ratio = (ratio * 0xf3392b0822b88206f8abe8a3b44dd9be) >> 128;
if (tick & 0x800 != 0) ratio = (ratio * 0xe7159475a2c578ef4f1d17b2b235d480) >> 128;
if (tick & 0x1000 != 0) ratio = (ratio * 0xd097f3bdfd254ee83bdd3f248e7e785e) >> 128;
if (tick & 0x2000 != 0) ratio = (ratio * 0xa9f746462d8f7dd10e744d913d033333) >> 128;
if (tick & 0x4000 != 0) ratio = (ratio * 0x70d869a156ddd32a39e257bc3f50aa9b) >> 128;
if (tick & 0x8000 != 0) ratio = (ratio * 0x31be135f97da6e09a19dc367e3b6da40) >> 128;
if (tick & 0x10000 != 0) ratio = (ratio * 0x9aa508b5b7e5a9780b0cc4e25d61a56) >> 128;
if (tick & 0x20000 != 0) ratio = (ratio * 0x5d6af8dedbcb3a6ccb7ce618d14225) >> 128;
if (tick & 0x40000 != 0) ratio = (ratio * 0x2216e584f630389b2052b8db590e) >> 128;
if (_tick > 0) ratio = type(uint256).max / ratio;
_result = (ratio * PRBMathUD60x18.SCALE) >> 128;
}
}
function getTickL(uint256 _reserveA, uint256 _reserveB, uint256 _sqrtLowerTickPrice, uint256 _sqrtUpperTickPrice) internal pure returns (uint256) {
uint256 precisionBump = 0;
if ((_reserveA >> 60) == 0 && (_reserveB >> 60) == 0) {
precisionBump = 40;
_reserveA <<= precisionBump;
_reserveB <<= precisionBump;
}
if (_reserveA == 0 || _reserveB == 0) {
uint256 b = (_reserveA.div(_sqrtUpperTickPrice) + _reserveB.mul(_sqrtLowerTickPrice));
return mulDiv(b, _sqrtUpperTickPrice, _sqrtUpperTickPrice - _sqrtLowerTickPrice, false) >> precisionBump;
} else {
uint256 b = (_reserveA.div(_sqrtUpperTickPrice) + _reserveB.mul(_sqrtLowerTickPrice)) >> 1;
uint256 diff = _sqrtUpperTickPrice - _sqrtLowerTickPrice;
return mulDiv(b + (b.mul(b) + mulDiv(_reserveB.mul(_reserveA), diff, _sqrtUpperTickPrice, false)).sqrt(), _sqrtUpperTickPrice, diff, false) >> precisionBump;
}
}
function getTickSqrtPriceAndL(uint256 _reserveA, uint256 _reserveB, uint256 _sqrtLowerTickPrice, uint256 _sqrtUpperTickPrice) internal pure returns (uint256 sqrtPrice, uint256 liquidity) {
liquidity = getTickL(_reserveA, _reserveB, _sqrtLowerTickPrice, _sqrtUpperTickPrice);
if (_reserveA == 0) {
return (_sqrtLowerTickPrice, liquidity);
}
if (_reserveB == 0) {
return (_sqrtUpperTickPrice, liquidity);
}
sqrtPrice = ((_reserveA + liquidity.mul(_sqrtLowerTickPrice)).div(_reserveB + liquidity.div(_sqrtUpperTickPrice))).sqrt();
sqrtPrice = min(max(sqrtPrice, _sqrtLowerTickPrice), _sqrtUpperTickPrice);
}
}
// SPDX-License-Identifier: GPL-2.0-or-later
// adapted from https://github.com/Synthetixio/synthetix/blob/c53070db9a93e5717ca7f74fcaf3922e991fb71b/contracts/StakingRewards.sol
pragma solidity ^0.8.0;
import {SafeERC20} from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import {Math} from "@openzeppelin/contracts/utils/math/Math.sol";
import {ReentrancyGuard} from "@openzeppelin/contracts/security/ReentrancyGuard.sol";
import {Multicall} from "@openzeppelin/contracts/utils/Multicall.sol";
import {IReward} from "./interfaces/IReward.sol";
import {Math as MavMath} from "./libraries/Math.sol";
import {BitMap} from "./libraries/BitMap.sol";
import {IPoolPositionAndRewardFactorySlim} from "./interfaces/IPoolPositionAndRewardFactorySlim.sol";
abstract contract RewardBase is IReward, ReentrancyGuard, Multicall {
using SafeERC20 for IERC20;
using BitMap for BitMap.Instance;
uint8 public MAX_REWARD_TOKENS = 16;
uint256 constant ONE = 1e18;
// after this period of time without a reward, users can remove token from
// list
uint256 constant STALE_INTERVAL = 30 days;
IPoolPositionAndRewardFactorySlim public immutable rewardFactory;
IERC20 public immutable stakingToken;
// Max Duration of rewards to be paid out
uint256 constant MAX_DURATION = 30 days;
uint256 constant MIN_DURATION = 3 days;
// Total staked
uint256 public totalSupply;
// User address => staked amount
mapping(address => uint256) public balanceOf;
struct RewardData {
// Timestamp of when the rewards finish
uint256 finishAt;
// Minimum of last updated time and reward finish time
uint256 updatedAt;
// Reward to be paid out per second
uint256 rewardRate;
// Sum of (reward rate * dt * 1e18 / total supply)
uint256 rewardPerTokenStored;
// User address => rewardPerTokenStored
mapping(address => uint256) userRewardPerTokenPaid;
// User address => rewards to be claimed
mapping(address => uint256) rewards;
// User address => rewards mapping to track if token index has been
// updated
mapping(address => uint256) resetCount;
// total earned
uint256 escrowedReward;
uint256 globalResetCount;
IERC20 rewardToken;
}
RewardData[] public rewardData;
mapping(address => uint8) public tokenIndex;
BitMap.Instance public globalActive;
constructor(IERC20 _stakingToken, IPoolPositionAndRewardFactorySlim _rewardFactory) {
stakingToken = _stakingToken;
rewardFactory = _rewardFactory;
// push empty token so that we can use index zero as a sentinel value
// in tokenIndex mapping; ie if tokenIndex[X] = 0, we know X is not in
// the list
rewardData.push();
}
modifier checkAmount(uint256 amount) {
if (amount == 0) revert ZeroAmount();
_;
}
/////////////////////////////////////
/// View Functions
/////////////////////////////////////
function rewardInfo() external view returns (RewardInfo[] memory info) {
uint256 length = rewardData.length;
info = new RewardInfo[](length);
for (uint8 i = 1; i < length; i++) {
RewardData storage data = rewardData[i];
info[i] = RewardInfo({finishAt: data.finishAt, updatedAt: data.updatedAt, rewardRate: data.rewardRate, rewardPerTokenStored: data.rewardPerTokenStored, rewardToken: data.rewardToken});
}
}
function earned(address account) public view returns (EarnedInfo[] memory earnedInfo) {
uint256 length = rewardData.length;
earnedInfo = new EarnedInfo[](length);
for (uint8 i = 1; i < length; i++) {
RewardData storage data = rewardData[i];
earnedInfo[i] = EarnedInfo({account: account, earned: earned(account, data), rewardToken: data.rewardToken});
}
}
function earned(address account, address rewardTokenAddress) external view returns (uint256) {
uint256 rewardTokenIndex = tokenIndex[rewardTokenAddress];
if (rewardTokenIndex == 0) revert NotValidRewardToken(rewardTokenAddress);
RewardData storage data = rewardData[rewardTokenIndex];
return earned(account, data);
}
function earned(address account, RewardData storage data) internal view returns (uint256) {
return data.rewards[account] + Math.mulDiv(balanceOf[account], MavMath.clip(data.rewardPerTokenStored + deltaRewardPerToken(data), data.userRewardPerTokenPaid[account]), ONE);
}
/////////////////////////////////////
/// Internal Update Functions
/////////////////////////////////////
function updateReward(address account, RewardData storage data) internal {
uint256 reward = deltaRewardPerToken(data);
if (reward != 0) {
data.rewardPerTokenStored += reward;
data.escrowedReward += Math.mulDiv(reward, totalSupply, ONE, Math.Rounding(1));
}
data.updatedAt = lastTimeRewardApplicable(data.finishAt);
if (account != address(0)) {
if (data.resetCount[account] != data.globalResetCount) {
// check to see if this token index was changed
data.userRewardPerTokenPaid[account] = 0;
data.rewards[account] = 0;
data.resetCount[account] = data.globalResetCount;
}
data.rewards[account] += deltaEarned(account, data);
data.userRewardPerTokenPaid[account] = data.rewardPerTokenStored;
}
}
function deltaEarned(address account, RewardData storage data) internal view returns (uint256) {
return Math.mulDiv(balanceOf[account], MavMath.clip(data.rewardPerTokenStored, data.userRewardPerTokenPaid[account]), ONE);
}
function deltaRewardPerToken(RewardData storage data) internal view returns (uint256) {
uint256 timeDiff = MavMath.clip(lastTimeRewardApplicable(data.finishAt), data.updatedAt);
if (timeDiff == 0 || totalSupply == 0 || data.rewardRate == 0) {
return 0;
}
return Math.mulDiv(data.rewardRate, timeDiff * ONE, totalSupply);
}
function lastTimeRewardApplicable(uint256 dataFinishAt) internal view returns (uint256) {
return Math.min(dataFinishAt, block.timestamp);
}
function updateAllRewards(address account) internal {
uint256 length = rewardData.length;
for (uint8 i = 1; i < length; i++) {
if (!globalActive.get(i)) continue;
RewardData storage data = rewardData[i];
updateReward(account, data);
}
}
/// @dev add token if it is approved and is not already tracked
function _checkAndAddRewardToken(address rewardTokenAddress) internal returns (uint8 rewardTokenIndex) {
rewardTokenIndex = tokenIndex[rewardTokenAddress];
if (rewardTokenIndex != 0) return rewardTokenIndex;
if (!rewardFactory.isApprovedRewardToken(rewardTokenAddress)) revert NotValidRewardToken(rewardTokenAddress);
// find first unset token index and use it
for (uint8 i = 1; i < MAX_REWARD_TOKENS + 1; i++) {
if (globalActive.get(i)) continue;
rewardTokenIndex = i;
break;
}
if (rewardTokenIndex == 0) revert TooManyRewardTokens();
if (rewardTokenIndex == rewardData.length) rewardData.push();
RewardData storage _data = rewardData[rewardTokenIndex];
_data.rewardToken = IERC20(rewardTokenAddress);
_data.globalResetCount++;
tokenIndex[rewardTokenAddress] = rewardTokenIndex;
globalActive.set(rewardTokenIndex);
emit AddRewardToken(rewardTokenAddress, rewardTokenIndex);
}
/////////////////////////////////////
/// Internal User Functions
/////////////////////////////////////
function _stake(address supplier, uint256 amount, address account) internal nonReentrant checkAmount(amount) {
updateAllRewards(account);
stakingToken.safeTransferFrom(supplier, address(this), amount);
balanceOf[account] += amount;
totalSupply += amount;
emit Stake(msg.sender, supplier, amount, account, balanceOf[account], totalSupply);
}
function _unstake(address account, uint256 amount, address recipient) internal nonReentrant checkAmount(amount) {
updateAllRewards(account);
balanceOf[account] -= amount;
totalSupply -= amount;
stakingToken.safeTransfer(recipient, amount);
emit UnStake(msg.sender, account, amount, recipient, balanceOf[account], totalSupply);
}
function _unstakeAll(address account, address recipient) internal {
_unstake(account, balanceOf[account], recipient);
}
function _getReward(address account, address recipient, uint8 rewardTokenIndex) internal nonReentrant returns (uint256 reward) {
if (!globalActive.get(rewardTokenIndex)) revert StaleToken(rewardTokenIndex);
RewardData storage data = rewardData[rewardTokenIndex];
updateReward(account, data);
reward = data.rewards[account];
if (reward != 0) {
data.rewards[account] = 0;
data.escrowedReward -= reward;
data.rewardToken.safeTransfer(recipient, reward);
}
emit GetReward(msg.sender, account, recipient, rewardTokenIndex, address(data.rewardToken), reward);
}
function _getReward(address account, address recipient, uint8[] memory rewardTokenIndices) internal {
uint256 length = rewardTokenIndices.length;
for (uint8 i; i < length; i++) {
_getReward(account, recipient, rewardTokenIndices[i]);
}
}
/////////////////////////////////////
/// Add Reward
/////////////////////////////////////
/// @notice Adds reward to contract.
function notifyAndTransfer(address rewardTokenAddress, uint256 amount, uint256 duration) public nonReentrant {
if (duration < MIN_DURATION) revert DurationOutOfBounds(duration);
uint256 minimumAmount = rewardFactory.minimumRewardAmount(rewardTokenAddress);
if (amount < minimumAmount) revert RewardAmountBelowThreshold(amount, minimumAmount);
duration = _notifyRewardAmount(rewardTokenAddress, amount, duration);
if (duration > MAX_DURATION) revert DurationOutOfBounds(duration);
IERC20(rewardTokenAddress).safeTransferFrom(msg.sender, address(this), amount);
}
/* @notice called by reward depositor to recompute the reward rate. If
* notifier sends more than remaining amount, then notifier sets the rate.
* Else, we extend the duration at the current rate. We may notify with less
* than enough of assets to cover the period. In that case, reward rate will
* be 0 and the assets sit on the contract until another notify happens with
* enough assets for a positive rate.
* @dev Must notify before transfering assets. Transfering and then
* notifying with the same amount will break the logic of this reward
* contract. If a contract needs to transfer and then notify, the
* notification amount should be 0.
*/
function _notifyRewardAmount(address rewardTokenAddress, uint256 amount, uint256 duration) internal returns (uint256) {
uint8 rewardTokenIndex = _checkAndAddRewardToken(rewardTokenAddress);
RewardData storage data = rewardData[rewardTokenIndex];
updateReward(address(0), data);
uint256 remainingRewards = MavMath.clip(data.rewardToken.balanceOf(address(this)), data.escrowedReward);
if (amount > remainingRewards || data.rewardRate == 0) {
// if notifying new amount, notifier gets to set the rate
data.rewardRate = (amount + remainingRewards) / duration;
} else {
// if notifier doesn't bring enough, we extend the duration at the
// same rate
duration = (amount + remainingRewards) / data.rewardRate;
}
data.finishAt = block.timestamp + duration;
data.updatedAt = block.timestamp;
emit NotifyRewardAmount(msg.sender, rewardTokenAddress, amount, duration, data.rewardRate);
return duration;
}
/////////////////////////////////////
/// Admin Function
/////////////////////////////////////
function removeStaleToken(uint8 rewardTokenIndex) public virtual nonReentrant {
_removeStaleToken(rewardTokenIndex);
}
function _removeStaleToken(uint8 rewardTokenIndex) internal {
RewardData storage data = rewardData[rewardTokenIndex];
if (block.timestamp < STALE_INTERVAL + data.finishAt) revert TokenNotStale(rewardTokenIndex);
emit RemoveRewardToken(address(data.rewardToken), rewardTokenIndex);
// remove token from list
globalActive.unset(rewardTokenIndex);
delete tokenIndex[address(data.rewardToken)];
delete data.rewardToken;
delete data.escrowedReward;
delete data.rewardPerTokenStored;
delete data.rewardRate;
delete data.finishAt;
delete data.updatedAt;
}
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.0;
import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import {IPoolPositionAndRewardFactorySlim} from "./interfaces/IPoolPositionAndRewardFactorySlim.sol";
import {RewardBase} from "./RewardBase.sol";
contract RewardOpenSlim is RewardBase {
constructor(IERC20 _stakingToken, IPoolPositionAndRewardFactorySlim _rewardFactory) RewardBase(_stakingToken, _rewardFactory) {}
function stake(uint256 amount, address account) external {
_stake(msg.sender, amount, account);
}
function unstake(uint256 amount, address recipient) external {
_unstake(msg.sender, amount, recipient);
}
function unstakeAll(address recipient) external {
_unstakeAll(msg.sender, recipient);
}
function getReward(address recipient, uint8[] calldata rewardTokenIndices) external {
_getReward(msg.sender, recipient, rewardTokenIndices);
}
function getReward(address recipient, uint8 rewardTokenIndex) external returns (uint256) {
return _getReward(msg.sender, recipient, rewardTokenIndex);
}
}
// SPDX-License-Identifier: Unlicense
pragma solidity >=0.8.4;
/// @notice Emitted when the result overflows uint256.
error PRBMath__MulDivFixedPointOverflow(uint256 prod1);
/// @notice Emitted when the result overflows uint256.
error PRBMath__MulDivOverflow(uint256 prod1, uint256 denominator);
/// @notice Emitted when one of the inputs is type(int256).min.
error PRBMath__MulDivSignedInputTooSmall();
/// @notice Emitted when the intermediary absolute result overflows int256.
error PRBMath__MulDivSignedOverflow(uint256 rAbs);
/// @notice Emitted when the input is MIN_SD59x18.
error PRBMathSD59x18__AbsInputTooSmall();
/// @notice Emitted when ceiling a number overflows SD59x18.
error PRBMathSD59x18__CeilOverflow(int256 x);
/// @notice Emitted when one of the inputs is MIN_SD59x18.
error PRBMathSD59x18__DivInputTooSmall();
/// @notice Emitted when one of the intermediary unsigned results overflows SD59x18.
error PRBMathSD59x18__DivOverflow(uint256 rAbs);
/// @notice Emitted when the input is greater than 133.084258667509499441.
error PRBMathSD59x18__ExpInputTooBig(int256 x);
/// @notice Emitted when the input is greater than 192.
error PRBMathSD59x18__Exp2InputTooBig(int256 x);
/// @notice Emitted when flooring a number underflows SD59x18.
error PRBMathSD59x18__FloorUnderflow(int256 x);
/// @notice Emitted when converting a basic integer to the fixed-point format overflows SD59x18.
error PRBMathSD59x18__FromIntOverflow(int256 x);
/// @notice Emitted when converting a basic integer to the fixed-point format underflows SD59x18.
error PRBMathSD59x18__FromIntUnderflow(int256 x);
/// @notice Emitted when the product of the inputs is negative.
error PRBMathSD59x18__GmNegativeProduct(int256 x, int256 y);
/// @notice Emitted when multiplying the inputs overflows SD59x18.
error PRBMathSD59x18__GmOverflow(int256 x, int256 y);
/// @notice Emitted when the input is less than or equal to zero.
error PRBMathSD59x18__LogInputTooSmall(int256 x);
/// @notice Emitted when one of the inputs is MIN_SD59x18.
error PRBMathSD59x18__MulInputTooSmall();
/// @notice Emitted when the intermediary absolute result overflows SD59x18.
error PRBMathSD59x18__MulOverflow(uint256 rAbs);
/// @notice Emitted when the intermediary absolute result overflows SD59x18.
error PRBMathSD59x18__PowuOverflow(uint256 rAbs);
/// @notice Emitted when the input is negative.
error PRBMathSD59x18__SqrtNegativeInput(int256 x);
/// @notice Emitted when the calculating the square root overflows SD59x18.
error PRBMathSD59x18__SqrtOverflow(int256 x);
/// @notice Emitted when addition overflows UD60x18.
error PRBMathUD60x18__AddOverflow(uint256 x, uint256 y);
/// @notice Emitted when ceiling a number overflows UD60x18.
error PRBMathUD60x18__CeilOverflow(uint256 x);
/// @notice Emitted when the input is greater than 133.084258667509499441.
error PRBMathUD60x18__ExpInputTooBig(uint256 x);
/// @notice Emitted when the input is greater than 192.
error PRBMathUD60x18__Exp2InputTooBig(uint256 x);
/// @notice Emitted when converting a basic integer to the fixed-point format format overflows UD60x18.
error PRBMathUD60x18__FromUintOverflow(uint256 x);
/// @notice Emitted when multiplying the inputs overflows UD60x18.
error PRBMathUD60x18__GmOverflow(uint256 x, uint256 y);
/// @notice Emitted when the input is less than 1.
error PRBMathUD60x18__LogInputTooSmall(uint256 x);
/// @notice Emitted when the calculating the square root overflows UD60x18.
error PRBMathUD60x18__SqrtOverflow(uint256 x);
/// @notice Emitted when subtraction underflows UD60x18.
error PRBMathUD60x18__SubUnderflow(uint256 x, uint256 y);
/// @dev Common mathematical functions used in both PRBMathSD59x18 and PRBMathUD60x18. Note that this shared library
/// does not always assume the signed 59.18-decimal fixed-point or the unsigned 60.18-decimal fixed-point
/// representation. When it does not, it is explicitly mentioned in the NatSpec documentation.
library PRBMath {
/// STRUCTS ///
struct SD59x18 {
int256 value;
}
struct UD60x18 {
uint256 value;
}
/// STORAGE ///
/// @dev How many trailing decimals can be represented.
uint256 internal constant SCALE = 1e18;
/// @dev Largest power of two divisor of SCALE.
uint256 internal constant SCALE_LPOTD = 262144;
/// @dev SCALE inverted mod 2^256.
uint256 internal constant SCALE_INVERSE =
78156646155174841979727994598816262306175212592076161876661_508869554232690281;
/// FUNCTIONS ///
/// @notice Calculates the binary exponent of x using the binary fraction method.
/// @dev Has to use 192.64-bit fixed-point numbers.
/// See https://ethereum.stackexchange.com/a/96594/24693.
/// @param x The exponent as an unsigned 192.64-bit fixed-point number.
/// @return result The result as an unsigned 60.18-decimal fixed-point number.
function exp2(uint256 x) internal pure returns (uint256 result) {
unchecked {
// Start from 0.5 in the 192.64-bit fixed-point format.
result = 0x800000000000000000000000000000000000000000000000;
// Multiply the result by root(2, 2^-i) when the bit at position i is 1. None of the intermediary results overflows
// because the initial result is 2^191 and all magic factors are less than 2^65.
if (x & 0x8000000000000000 > 0) {
result = (result * 0x16A09E667F3BCC909) >> 64;
}
if (x & 0x4000000000000000 > 0) {
result = (result * 0x1306FE0A31B7152DF) >> 64;
}
if (x & 0x2000000000000000 > 0) {
result = (result * 0x1172B83C7D517ADCE) >> 64;
}
if (x & 0x1000000000000000 > 0) {
result = (result * 0x10B5586CF9890F62A) >> 64;
}
if (x & 0x800000000000000 > 0) {
result = (result * 0x1059B0D31585743AE) >> 64;
}
if (x & 0x400000000000000 > 0) {
result = (result * 0x102C9A3E778060EE7) >> 64;
}
if (x & 0x200000000000000 > 0) {
result = (result * 0x10163DA9FB33356D8) >> 64;
}
if (x & 0x100000000000000 > 0) {
result = (result * 0x100B1AFA5ABCBED61) >> 64;
}
if (x & 0x80000000000000 > 0) {
result = (result * 0x10058C86DA1C09EA2) >> 64;
}
if (x & 0x40000000000000 > 0) {
result = (result * 0x1002C605E2E8CEC50) >> 64;
}
if (x & 0x20000000000000 > 0) {
result = (result * 0x100162F3904051FA1) >> 64;
}
if (x & 0x10000000000000 > 0) {
result = (result * 0x1000B175EFFDC76BA) >> 64;
}
if (x & 0x8000000000000 > 0) {
result = (result * 0x100058BA01FB9F96D) >> 64;
}
if (x & 0x4000000000000 > 0) {
result = (result * 0x10002C5CC37DA9492) >> 64;
}
if (x & 0x2000000000000 > 0) {
result = (result * 0x1000162E525EE0547) >> 64;
}
if (x & 0x1000000000000 > 0) {
result = (result * 0x10000B17255775C04) >> 64;
}
if (x & 0x800000000000 > 0) {
result = (result * 0x1000058B91B5BC9AE) >> 64;
}
if (x & 0x400000000000 > 0) {
result = (result * 0x100002C5C89D5EC6D) >> 64;
}
if (x & 0x200000000000 > 0) {
result = (result * 0x10000162E43F4F831) >> 64;
}
if (x & 0x100000000000 > 0) {
result = (result * 0x100000B1721BCFC9A) >> 64;
}
if (x & 0x80000000000 > 0) {
result = (result * 0x10000058B90CF1E6E) >> 64;
}
if (x & 0x40000000000 > 0) {
result = (result * 0x1000002C5C863B73F) >> 64;
}
if (x & 0x20000000000 > 0) {
result = (result * 0x100000162E430E5A2) >> 64;
}
if (x & 0x10000000000 > 0) {
result = (result * 0x1000000B172183551) >> 64;
}
if (x & 0x8000000000 > 0) {
result = (result * 0x100000058B90C0B49) >> 64;
}
if (x & 0x4000000000 > 0) {
result = (result * 0x10000002C5C8601CC) >> 64;
}
if (x & 0x2000000000 > 0) {
result = (result * 0x1000000162E42FFF0) >> 64;
}
if (x & 0x1000000000 > 0) {
result = (result * 0x10000000B17217FBB) >> 64;
}
if (x & 0x800000000 > 0) {
result = (result * 0x1000000058B90BFCE) >> 64;
}
if (x & 0x400000000 > 0) {
result = (result * 0x100000002C5C85FE3) >> 64;
}
if (x & 0x200000000 > 0) {
result = (result * 0x10000000162E42FF1) >> 64;
}
if (x & 0x100000000 > 0) {
result = (result * 0x100000000B17217F8) >> 64;
}
if (x & 0x80000000 > 0) {
result = (result * 0x10000000058B90BFC) >> 64;
}
if (x & 0x40000000 > 0) {
result = (result * 0x1000000002C5C85FE) >> 64;
}
if (x & 0x20000000 > 0) {
result = (result * 0x100000000162E42FF) >> 64;
}
if (x & 0x10000000 > 0) {
result = (result * 0x1000000000B17217F) >> 64;
}
if (x & 0x8000000 > 0) {
result = (result * 0x100000000058B90C0) >> 64;
}
if (x & 0x4000000 > 0) {
result = (result * 0x10000000002C5C860) >> 64;
}
if (x & 0x2000000 > 0) {
result = (result * 0x1000000000162E430) >> 64;
}
if (x & 0x1000000 > 0) {
result = (result * 0x10000000000B17218) >> 64;
}
if (x & 0x800000 > 0) {
result = (result * 0x1000000000058B90C) >> 64;
}
if (x & 0x400000 > 0) {
result = (result * 0x100000000002C5C86) >> 64;
}
if (x & 0x200000 > 0) {
result = (result * 0x10000000000162E43) >> 64;
}
if (x & 0x100000 > 0) {
result = (result * 0x100000000000B1721) >> 64;
}
if (x & 0x80000 > 0) {
result = (result * 0x10000000000058B91) >> 64;
}
if (x & 0x40000 > 0) {
result = (result * 0x1000000000002C5C8) >> 64;
}
if (x & 0x20000 > 0) {
result = (result * 0x100000000000162E4) >> 64;
}
if (x & 0x10000 > 0) {
result = (result * 0x1000000000000B172) >> 64;
}
if (x & 0x8000 > 0) {
result = (result * 0x100000000000058B9) >> 64;
}
if (x & 0x4000 > 0) {
result = (result * 0x10000000000002C5D) >> 64;
}
if (x & 0x2000 > 0) {
result = (result * 0x1000000000000162E) >> 64;
}
if (x & 0x1000 > 0) {
result = (result * 0x10000000000000B17) >> 64;
}
if (x & 0x800 > 0) {
result = (result * 0x1000000000000058C) >> 64;
}
if (x & 0x400 > 0) {
result = (result * 0x100000000000002C6) >> 64;
}
if (x & 0x200 > 0) {
result = (result * 0x10000000000000163) >> 64;
}
if (x & 0x100 > 0) {
result = (result * 0x100000000000000B1) >> 64;
}
if (x & 0x80 > 0) {
result = (result * 0x10000000000000059) >> 64;
}
if (x & 0x40 > 0) {
result = (result * 0x1000000000000002C) >> 64;
}
if (x & 0x20 > 0) {
result = (result * 0x10000000000000016) >> 64;
}
if (x & 0x10 > 0) {
result = (result * 0x1000000000000000B) >> 64;
}
if (x & 0x8 > 0) {
result = (result * 0x10000000000000006) >> 64;
}
if (x & 0x4 > 0) {
result = (result * 0x10000000000000003) >> 64;
}
if (x & 0x2 > 0) {
result = (result * 0x10000000000000001) >> 64;
}
if (x & 0x1 > 0) {
result = (result * 0x10000000000000001) >> 64;
}
// We're doing two things at the same time:
//
// 1. Multiply the result by 2^n + 1, where "2^n" is the integer part and the one is added to account for
// the fact that we initially set the result to 0.5. This is accomplished by subtracting from 191
// rather than 192.
// 2. Convert the result to the unsigned 60.18-decimal fixed-point format.
//
// This works because 2^(191-ip) = 2^ip / 2^191, where "ip" is the integer part "2^n".
result *= SCALE;
result >>= (191 - (x >> 64));
}
}
/// @notice Finds the zero-based index of the first one in the binary representation of x.
/// @dev See the note on msb in the "Find First Set" Wikipedia article https://en.wikipedia.org/wiki/Find_first_set
/// @param x The uint256 number for which to find the index of the most significant bit.
/// @return msb The index of the most significant bit as an uint256.
function mostSignificantBit(uint256 x) internal pure returns (uint256 msb) {
if (x >= 2**128) {
x >>= 128;
msb += 128;
}
if (x >= 2**64) {
x >>= 64;
msb += 64;
}
if (x >= 2**32) {
x >>= 32;
msb += 32;
}
if (x >= 2**16) {
x >>= 16;
msb += 16;
}
if (x >= 2**8) {
x >>= 8;
msb += 8;
}
if (x >= 2**4) {
x >>= 4;
msb += 4;
}
if (x >= 2**2) {
x >>= 2;
msb += 2;
}
if (x >= 2**1) {
// No need to shift x any more.
msb += 1;
}
}
/// @notice Calculates floor(x*y÷denominator) with full precision.
///
/// @dev Credit to Remco Bloemen under MIT license https://xn--2-umb.com/21/muldiv.
///
/// Requirements:
/// - The denominator cannot be zero.
/// - The result must fit within uint256.
///
/// Caveats:
/// - This function does not work with fixed-point numbers.
///
/// @param x The multiplicand as an uint256.
/// @param y The multiplier as an uint256.
/// @param denominator The divisor as an uint256.
/// @return result The result as an uint256.
function mulDiv(
uint256 x,
uint256 y,
uint256 denominator
) internal pure returns (uint256 result) {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod0 := mul(x, y)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
unchecked {
result = prod0 / denominator;
}
return result;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
if (prod1 >= denominator) {
revert PRBMath__MulDivOverflow(prod1, denominator);
}
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
// See https://cs.stackexchange.com/q/138556/92363.
unchecked {
// Does not overflow because the denominator cannot be zero at this stage in the function.
uint256 lpotdod = denominator & (~denominator + 1);
assembly {
// Divide denominator by lpotdod.
denominator := div(denominator, lpotdod)
// Divide [prod1 prod0] by lpotdod.
prod0 := div(prod0, lpotdod)
// Flip lpotdod such that it is 2^256 / lpotdod. If lpotdod is zero, then it becomes one.
lpotdod := add(div(sub(0, lpotdod), lpotdod), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * lpotdod;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
// in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/// @notice Calculates floor(x*y÷1e18) with full precision.
///
/// @dev Variant of "mulDiv" with constant folding, i.e. in which the denominator is always 1e18. Before returning the
/// final result, we add 1 if (x * y) % SCALE >= HALF_SCALE. Without this, 6.6e-19 would be truncated to 0 instead of
/// being rounded to 1e-18. See "Listing 6" and text above it at https://accu.org/index.php/journals/1717.
///
/// Requirements:
/// - The result must fit within uint256.
///
/// Caveats:
/// - The body is purposely left uncommented; see the NatSpec comments in "PRBMath.mulDiv" to understand how this works.
/// - It is assumed that the result can never be type(uint256).max when x and y solve the following two equations:
/// 1. x * y = type(uint256).max * SCALE
/// 2. (x * y) % SCALE >= SCALE / 2
///
/// @param x The multiplicand as an unsigned 60.18-decimal fixed-point number.
/// @param y The multiplier as an unsigned 60.18-decimal fixed-point number.
/// @return result The result as an unsigned 60.18-decimal fixed-point number.
function mulDivFixedPoint(uint256 x, uint256 y) internal pure returns (uint256 result) {
uint256 prod0;
uint256 prod1;
assembly {
let mm := mulmod(x, y, not(0))
prod0 := mul(x, y)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
if (prod1 >= SCALE) {
revert PRBMath__MulDivFixedPointOverflow(prod1);
}
uint256 remainder;
uint256 roundUpUnit;
assembly {
remainder := mulmod(x, y, SCALE)
roundUpUnit := gt(remainder, 499999999999999999)
}
if (prod1 == 0) {
unchecked {
result = (prod0 / SCALE) + roundUpUnit;
return result;
}
}
assembly {
result := add(
mul(
or(
div(sub(prod0, remainder), SCALE_LPOTD),
mul(sub(prod1, gt(remainder, prod0)), add(div(sub(0, SCALE_LPOTD), SCALE_LPOTD), 1))
),
SCALE_INVERSE
),
roundUpUnit
)
}
}
/// @notice Calculates floor(x*y÷denominator) with full precision.
///
/// @dev An extension of "mulDiv" for signed numbers. Works by computing the signs and the absolute values separately.
///
/// Requirements:
/// - None of the inputs can be type(int256).min.
/// - The result must fit within int256.
///
/// @param x The multiplicand as an int256.
/// @param y The multiplier as an int256.
/// @param denominator The divisor as an int256.
/// @return result The result as an int256.
function mulDivSigned(
int256 x,
int256 y,
int256 denominator
) internal pure returns (int256 result) {
if (x == type(int256).min || y == type(int256).min || denominator == type(int256).min) {
revert PRBMath__MulDivSignedInputTooSmall();
}
// Get hold of the absolute values of x, y and the denominator.
uint256 ax;
uint256 ay;
uint256 ad;
unchecked {
ax = x < 0 ? uint256(-x) : uint256(x);
ay = y < 0 ? uint256(-y) : uint256(y);
ad = denominator < 0 ? uint256(-denominator) : uint256(denominator);
}
// Compute the absolute value of (x*y)÷denominator. The result must fit within int256.
uint256 rAbs = mulDiv(ax, ay, ad);
if (rAbs > uint256(type(int256).max)) {
revert PRBMath__MulDivSignedOverflow(rAbs);
}
// Get the signs of x, y and the denominator.
uint256 sx;
uint256 sy;
uint256 sd;
assembly {
sx := sgt(x, sub(0, 1))
sy := sgt(y, sub(0, 1))
sd := sgt(denominator, sub(0, 1))
}
// XOR over sx, sy and sd. This is checking whether there are one or three negative signs in the inputs.
// If yes, the result should be negative.
result = sx ^ sy ^ sd == 0 ? -int256(rAbs) : int256(rAbs);
}
/// @notice Calculates the square root of x, rounding down.
/// @dev Uses the Babylonian method https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method.
///
/// Caveats:
/// - This function does not work with fixed-point numbers.
///
/// @param x The uint256 number for which to calculate the square root.
/// @return result The result as an uint256.
function sqrt(uint256 x) internal pure returns (uint256 result) {
if (x == 0) {
return 0;
}
// Set the initial guess to the least power of two that is greater than or equal to sqrt(x).
uint256 xAux = uint256(x);
result = 1;
if (xAux >= 0x100000000000000000000000000000000) {
xAux >>= 128;
result <<= 64;
}
if (xAux >= 0x10000000000000000) {
xAux >>= 64;
result <<= 32;
}
if (xAux >= 0x100000000) {
xAux >>= 32;
result <<= 16;
}
if (xAux >= 0x10000) {
xAux >>= 16;
result <<= 8;
}
if (xAux >= 0x100) {
xAux >>= 8;
result <<= 4;
}
if (xAux >= 0x10) {
xAux >>= 4;
result <<= 2;
}
if (xAux >= 0x8) {
result <<= 1;
}
// The operations can never overflow because the result is max 2^127 when it enters this block.
unchecked {
result = (result + x / result) >> 1;
result = (result + x / result) >> 1;
result = (result + x / result) >> 1;
result = (result + x / result) >> 1;
result = (result + x / result) >> 1;
result = (result + x / result) >> 1;
result = (result + x / result) >> 1; // Seven iterations should be enough
uint256 roundedDownResult = x / result;
return result >= roundedDownResult ? roundedDownResult : result;
}
}
}
// SPDX-License-Identifier: Unlicense
pragma solidity >=0.8.4;
import "./PRBMath.sol";
/// @title PRBMathUD60x18
/// @author Paul Razvan Berg
/// @notice Smart contract library for advanced fixed-point math that works with uint256 numbers considered to have 18
/// trailing decimals. We call this number representation unsigned 60.18-decimal fixed-point, since there can be up to 60
/// digits in the integer part and up to 18 decimals in the fractional part. The numbers are bound by the minimum and the
/// maximum values permitted by the Solidity type uint256.
library PRBMathUD60x18 {
/// @dev Half the SCALE number.
uint256 internal constant HALF_SCALE = 5e17;
/// @dev log2(e) as an unsigned 60.18-decimal fixed-point number.
uint256 internal constant LOG2_E = 1_442695040888963407;
/// @dev The maximum value an unsigned 60.18-decimal fixed-point number can have.
uint256 internal constant MAX_UD60x18 =
115792089237316195423570985008687907853269984665640564039457_584007913129639935;
/// @dev The maximum whole value an unsigned 60.18-decimal fixed-point number can have.
uint256 internal constant MAX_WHOLE_UD60x18 =
115792089237316195423570985008687907853269984665640564039457_000000000000000000;
/// @dev How many trailing decimals can be represented.
uint256 internal constant SCALE = 1e18;
/// @notice Calculates the arithmetic average of x and y, rounding down.
/// @param x The first operand as an unsigned 60.18-decimal fixed-point number.
/// @param y The second operand as an unsigned 60.18-decimal fixed-point number.
/// @return result The arithmetic average as an unsigned 60.18-decimal fixed-point number.
function avg(uint256 x, uint256 y) internal pure returns (uint256 result) {
// The operations can never overflow.
unchecked {
// The last operand checks if both x and y are odd and if that is the case, we add 1 to the result. We need
// to do this because if both numbers are odd, the 0.5 remainder gets truncated twice.
result = (x >> 1) + (y >> 1) + (x & y & 1);
}
}
/// @notice Yields the least unsigned 60.18 decimal fixed-point number greater than or equal to x.
///
/// @dev Optimized for fractional value inputs, because for every whole value there are (1e18 - 1) fractional counterparts.
/// See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions.
///
/// Requirements:
/// - x must be less than or equal to MAX_WHOLE_UD60x18.
///
/// @param x The unsigned 60.18-decimal fixed-point number to ceil.
/// @param result The least integer greater than or equal to x, as an unsigned 60.18-decimal fixed-point number.
function ceil(uint256 x) internal pure returns (uint256 result) {
if (x > MAX_WHOLE_UD60x18) {
revert PRBMathUD60x18__CeilOverflow(x);
}
assembly {
// Equivalent to "x % SCALE" but faster.
let remainder := mod(x, SCALE)
// Equivalent to "SCALE - remainder" but faster.
let delta := sub(SCALE, remainder)
// Equivalent to "x + delta * (remainder > 0 ? 1 : 0)" but faster.
result := add(x, mul(delta, gt(remainder, 0)))
}
}
/// @notice Divides two unsigned 60.18-decimal fixed-point numbers, returning a new unsigned 60.18-decimal fixed-point number.
///
/// @dev Uses mulDiv to enable overflow-safe multiplication and division.
///
/// Requirements:
/// - The denominator cannot be zero.
///
/// @param x The numerator as an unsigned 60.18-decimal fixed-point number.
/// @param y The denominator as an unsigned 60.18-decimal fixed-point number.
/// @param result The quotient as an unsigned 60.18-decimal fixed-point number.
function div(uint256 x, uint256 y) internal pure returns (uint256 result) {
result = PRBMath.mulDiv(x, SCALE, y);
}
/// @notice Returns Euler's number as an unsigned 60.18-decimal fixed-point number.
/// @dev See https://en.wikipedia.org/wiki/E_(mathematical_constant).
function e() internal pure returns (uint256 result) {
result = 2_718281828459045235;
}
/// @notice Calculates the natural exponent of x.
///
/// @dev Based on the insight that e^x = 2^(x * log2(e)).
///
/// Requirements:
/// - All from "log2".
/// - x must be less than 133.084258667509499441.
///
/// @param x The exponent as an unsigned 60.18-decimal fixed-point number.
/// @return result The result as an unsigned 60.18-decimal fixed-point number.
function exp(uint256 x) internal pure returns (uint256 result) {
// Without this check, the value passed to "exp2" would be greater than 192.
if (x >= 133_084258667509499441) {
revert PRBMathUD60x18__ExpInputTooBig(x);
}
// Do the fixed-point multiplication inline to save gas.
unchecked {
uint256 doubleScaleProduct = x * LOG2_E;
result = exp2((doubleScaleProduct + HALF_SCALE) / SCALE);
}
}
/// @notice Calculates the binary exponent of x using the binary fraction method.
///
/// @dev See https://ethereum.stackexchange.com/q/79903/24693.
///
/// Requirements:
/// - x must be 192 or less.
/// - The result must fit within MAX_UD60x18.
///
/// @param x The exponent as an unsigned 60.18-decimal fixed-point number.
/// @return result The result as an unsigned 60.18-decimal fixed-point number.
function exp2(uint256 x) internal pure returns (uint256 result) {
// 2^192 doesn't fit within the 192.64-bit format used internally in this function.
if (x >= 192e18) {
revert PRBMathUD60x18__Exp2InputTooBig(x);
}
unchecked {
// Convert x to the 192.64-bit fixed-point format.
uint256 x192x64 = (x << 64) / SCALE;
// Pass x to the PRBMath.exp2 function, which uses the 192.64-bit fixed-point number representation.
result = PRBMath.exp2(x192x64);
}
}
/// @notice Yields the greatest unsigned 60.18 decimal fixed-point number less than or equal to x.
/// @dev Optimized for fractional value inputs, because for every whole value there are (1e18 - 1) fractional counterparts.
/// See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions.
/// @param x The unsigned 60.18-decimal fixed-point number to floor.
/// @param result The greatest integer less than or equal to x, as an unsigned 60.18-decimal fixed-point number.
function floor(uint256 x) internal pure returns (uint256 result) {
assembly {
// Equivalent to "x % SCALE" but faster.
let remainder := mod(x, SCALE)
// Equivalent to "x - remainder * (remainder > 0 ? 1 : 0)" but faster.
result := sub(x, mul(remainder, gt(remainder, 0)))
}
}
/// @notice Yields the excess beyond the floor of x.
/// @dev Based on the odd function definition https://en.wikipedia.org/wiki/Fractional_part.
/// @param x The unsigned 60.18-decimal fixed-point number to get the fractional part of.
/// @param result The fractional part of x as an unsigned 60.18-decimal fixed-point number.
function frac(uint256 x) internal pure returns (uint256 result) {
assembly {
result := mod(x, SCALE)
}
}
/// @notice Converts a number from basic integer form to unsigned 60.18-decimal fixed-point representation.
///
/// @dev Requirements:
/// - x must be less than or equal to MAX_UD60x18 divided by SCALE.
///
/// @param x The basic integer to convert.
/// @param result The same number in unsigned 60.18-decimal fixed-point representation.
function fromUint(uint256 x) internal pure returns (uint256 result) {
unchecked {
if (x > MAX_UD60x18 / SCALE) {
revert PRBMathUD60x18__FromUintOverflow(x);
}
result = x * SCALE;
}
}
/// @notice Calculates geometric mean of x and y, i.e. sqrt(x * y), rounding down.
///
/// @dev Requirements:
/// - x * y must fit within MAX_UD60x18, lest it overflows.
///
/// @param x The first operand as an unsigned 60.18-decimal fixed-point number.
/// @param y The second operand as an unsigned 60.18-decimal fixed-point number.
/// @return result The result as an unsigned 60.18-decimal fixed-point number.
function gm(uint256 x, uint256 y) internal pure returns (uint256 result) {
if (x == 0) {
return 0;
}
unchecked {
// Checking for overflow this way is faster than letting Solidity do it.
uint256 xy = x * y;
if (xy / x != y) {
revert PRBMathUD60x18__GmOverflow(x, y);
}
// We don't need to multiply by the SCALE here because the x*y product had already picked up a factor of SCALE
// during multiplication. See the comments within the "sqrt" function.
result = PRBMath.sqrt(xy);
}
}
/// @notice Calculates 1 / x, rounding toward zero.
///
/// @dev Requirements:
/// - x cannot be zero.
///
/// @param x The unsigned 60.18-decimal fixed-point number for which to calculate the inverse.
/// @return result The inverse as an unsigned 60.18-decimal fixed-point number.
function inv(uint256 x) internal pure returns (uint256 result) {
unchecked {
// 1e36 is SCALE * SCALE.
result = 1e36 / x;
}
}
/// @notice Calculates the natural logarithm of x.
///
/// @dev Based on the insight that ln(x) = log2(x) / log2(e).
///
/// Requirements:
/// - All from "log2".
///
/// Caveats:
/// - All from "log2".
/// - This doesn't return exactly 1 for 2.718281828459045235, for that we would need more fine-grained precision.
///
/// @param x The unsigned 60.18-decimal fixed-point number for which to calculate the natural logarithm.
/// @return result The natural logarithm as an unsigned 60.18-decimal fixed-point number.
function ln(uint256 x) internal pure returns (uint256 result) {
// Do the fixed-point multiplication inline to save gas. This is overflow-safe because the maximum value that log2(x)
// can return is 196205294292027477728.
unchecked {
result = (log2(x) * SCALE) / LOG2_E;
}
}
/// @notice Calculates the common logarithm of x.
///
/// @dev First checks if x is an exact power of ten and it stops if yes. If it's not, calculates the common
/// logarithm based on the insight that log10(x) = log2(x) / log2(10).
///
/// Requirements:
/// - All from "log2".
///
/// Caveats:
/// - All from "log2".
///
/// @param x The unsigned 60.18-decimal fixed-point number for which to calculate the common logarithm.
/// @return result The common logarithm as an unsigned 60.18-decimal fixed-point number.
function log10(uint256 x) internal pure returns (uint256 result) {
if (x < SCALE) {
revert PRBMathUD60x18__LogInputTooSmall(x);
}
// Note that the "mul" in this block is the assembly multiplication operation, not the "mul" function defined
// in this contract.
// prettier-ignore
assembly {
switch x
case 1 { result := mul(SCALE, sub(0, 18)) }
case 10 { result := mul(SCALE, sub(1, 18)) }
case 100 { result := mul(SCALE, sub(2, 18)) }
case 1000 { result := mul(SCALE, sub(3, 18)) }
case 10000 { result := mul(SCALE, sub(4, 18)) }
case 100000 { result := mul(SCALE, sub(5, 18)) }
case 1000000 { result := mul(SCALE, sub(6, 18)) }
case 10000000 { result := mul(SCALE, sub(7, 18)) }
case 100000000 { result := mul(SCALE, sub(8, 18)) }
case 1000000000 { result := mul(SCALE, sub(9, 18)) }
case 10000000000 { result := mul(SCALE, sub(10, 18)) }
case 100000000000 { result := mul(SCALE, sub(11, 18)) }
case 1000000000000 { result := mul(SCALE, sub(12, 18)) }
case 10000000000000 { result := mul(SCALE, sub(13, 18)) }
case 100000000000000 { result := mul(SCALE, sub(14, 18)) }
case 1000000000000000 { result := mul(SCALE, sub(15, 18)) }
case 10000000000000000 { result := mul(SCALE, sub(16, 18)) }
case 100000000000000000 { result := mul(SCALE, sub(17, 18)) }
case 1000000000000000000 { result := 0 }
case 10000000000000000000 { result := SCALE }
case 100000000000000000000 { result := mul(SCALE, 2) }
case 1000000000000000000000 { result := mul(SCALE, 3) }
case 10000000000000000000000 { result := mul(SCALE, 4) }
case 100000000000000000000000 { result := mul(SCALE, 5) }
case 1000000000000000000000000 { result := mul(SCALE, 6) }
case 10000000000000000000000000 { result := mul(SCALE, 7) }
case 100000000000000000000000000 { result := mul(SCALE, 8) }
case 1000000000000000000000000000 { result := mul(SCALE, 9) }
case 10000000000000000000000000000 { result := mul(SCALE, 10) }
case 100000000000000000000000000000 { result := mul(SCALE, 11) }
case 1000000000000000000000000000000 { result := mul(SCALE, 12) }
case 10000000000000000000000000000000 { result := mul(SCALE, 13) }
case 100000000000000000000000000000000 { result := mul(SCALE, 14) }
case 1000000000000000000000000000000000 { result := mul(SCALE, 15) }
case 10000000000000000000000000000000000 { result := mul(SCALE, 16) }
case 100000000000000000000000000000000000 { result := mul(SCALE, 17) }
case 1000000000000000000000000000000000000 { result := mul(SCALE, 18) }
case 10000000000000000000000000000000000000 { result := mul(SCALE, 19) }
case 100000000000000000000000000000000000000 { result := mul(SCALE, 20) }
case 1000000000000000000000000000000000000000 { result := mul(SCALE, 21) }
case 10000000000000000000000000000000000000000 { result := mul(SCALE, 22) }
case 100000000000000000000000000000000000000000 { result := mul(SCALE, 23) }
case 1000000000000000000000000000000000000000000 { result := mul(SCALE, 24) }
case 10000000000000000000000000000000000000000000 { result := mul(SCALE, 25) }
case 100000000000000000000000000000000000000000000 { result := mul(SCALE, 26) }
case 1000000000000000000000000000000000000000000000 { result := mul(SCALE, 27) }
case 10000000000000000000000000000000000000000000000 { result := mul(SCALE, 28) }
case 100000000000000000000000000000000000000000000000 { result := mul(SCALE, 29) }
case 1000000000000000000000000000000000000000000000000 { result := mul(SCALE, 30) }
case 10000000000000000000000000000000000000000000000000 { result := mul(SCALE, 31) }
case 100000000000000000000000000000000000000000000000000 { result := mul(SCALE, 32) }
case 1000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 33) }
case 10000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 34) }
case 100000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 35) }
case 1000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 36) }
case 10000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 37) }
case 100000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 38) }
case 1000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 39) }
case 10000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 40) }
case 100000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 41) }
case 1000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 42) }
case 10000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 43) }
case 100000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 44) }
case 1000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 45) }
case 10000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 46) }
case 100000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 47) }
case 1000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 48) }
case 10000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 49) }
case 100000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 50) }
case 1000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 51) }
case 10000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 52) }
case 100000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 53) }
case 1000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 54) }
case 10000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 55) }
case 100000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 56) }
case 1000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 57) }
case 10000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 58) }
case 100000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 59) }
default {
result := MAX_UD60x18
}
}
if (result == MAX_UD60x18) {
// Do the fixed-point division inline to save gas. The denominator is log2(10).
unchecked {
result = (log2(x) * SCALE) / 3_321928094887362347;
}
}
}
/// @notice Calculates the binary logarithm of x.
///
/// @dev Based on the iterative approximation algorithm.
/// https://en.wikipedia.org/wiki/Binary_logarithm#Iterative_approximation
///
/// Requirements:
/// - x must be greater than or equal to SCALE, otherwise the result would be negative.
///
/// Caveats:
/// - The results are nor perfectly accurate to the last decimal, due to the lossy precision of the iterative approximation.
///
/// @param x The unsigned 60.18-decimal fixed-point number for which to calculate the binary logarithm.
/// @return result The binary logarithm as an unsigned 60.18-decimal fixed-point number.
function log2(uint256 x) internal pure returns (uint256 result) {
if (x < SCALE) {
revert PRBMathUD60x18__LogInputTooSmall(x);
}
unchecked {
// Calculate the integer part of the logarithm and add it to the result and finally calculate y = x * 2^(-n).
uint256 n = PRBMath.mostSignificantBit(x / SCALE);
// The integer part of the logarithm as an unsigned 60.18-decimal fixed-point number. The operation can't overflow
// because n is maximum 255 and SCALE is 1e18.
result = n * SCALE;
// This is y = x * 2^(-n).
uint256 y = x >> n;
// If y = 1, the fractional part is zero.
if (y == SCALE) {
return result;
}
// Calculate the fractional part via the iterative approximation.
// The "delta >>= 1" part is equivalent to "delta /= 2", but shifting bits is faster.
for (uint256 delta = HALF_SCALE; delta > 0; delta >>= 1) {
y = (y * y) / SCALE;
// Is y^2 > 2 and so in the range [2,4)?
if (y >= 2 * SCALE) {
// Add the 2^(-m) factor to the logarithm.
result += delta;
// Corresponds to z/2 on Wikipedia.
y >>= 1;
}
}
}
}
/// @notice Multiplies two unsigned 60.18-decimal fixed-point numbers together, returning a new unsigned 60.18-decimal
/// fixed-point number.
/// @dev See the documentation for the "PRBMath.mulDivFixedPoint" function.
/// @param x The multiplicand as an unsigned 60.18-decimal fixed-point number.
/// @param y The multiplier as an unsigned 60.18-decimal fixed-point number.
/// @return result The product as an unsigned 60.18-decimal fixed-point number.
function mul(uint256 x, uint256 y) internal pure returns (uint256 result) {
result = PRBMath.mulDivFixedPoint(x, y);
}
/// @notice Returns PI as an unsigned 60.18-decimal fixed-point number.
function pi() internal pure returns (uint256 result) {
result = 3_141592653589793238;
}
/// @notice Raises x to the power of y.
///
/// @dev Based on the insight that x^y = 2^(log2(x) * y).
///
/// Requirements:
/// - All from "exp2", "log2" and "mul".
///
/// Caveats:
/// - All from "exp2", "log2" and "mul".
/// - Assumes 0^0 is 1.
///
/// @param x Number to raise to given power y, as an unsigned 60.18-decimal fixed-point number.
/// @param y Exponent to raise x to, as an unsigned 60.18-decimal fixed-point number.
/// @return result x raised to power y, as an unsigned 60.18-decimal fixed-point number.
function pow(uint256 x, uint256 y) internal pure returns (uint256 result) {
if (x == 0) {
result = y == 0 ? SCALE : uint256(0);
} else {
result = exp2(mul(log2(x), y));
}
}
/// @notice Raises x (unsigned 60.18-decimal fixed-point number) to the power of y (basic unsigned integer) using the
/// famous algorithm "exponentiation by squaring".
///
/// @dev See https://en.wikipedia.org/wiki/Exponentiation_by_squaring
///
/// Requirements:
/// - The result must fit within MAX_UD60x18.
///
/// Caveats:
/// - All from "mul".
/// - Assumes 0^0 is 1.
///
/// @param x The base as an unsigned 60.18-decimal fixed-point number.
/// @param y The exponent as an uint256.
/// @return result The result as an unsigned 60.18-decimal fixed-point number.
function powu(uint256 x, uint256 y) internal pure returns (uint256 result) {
// Calculate the first iteration of the loop in advance.
result = y & 1 > 0 ? x : SCALE;
// Equivalent to "for(y /= 2; y > 0; y /= 2)" but faster.
for (y >>= 1; y > 0; y >>= 1) {
x = PRBMath.mulDivFixedPoint(x, x);
// Equivalent to "y % 2 == 1" but faster.
if (y & 1 > 0) {
result = PRBMath.mulDivFixedPoint(result, x);
}
}
}
/// @notice Returns 1 as an unsigned 60.18-decimal fixed-point number.
function scale() internal pure returns (uint256 result) {
result = SCALE;
}
/// @notice Calculates the square root of x, rounding down.
/// @dev Uses the Babylonian method https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method.
///
/// Requirements:
/// - x must be less than MAX_UD60x18 / SCALE.
///
/// @param x The unsigned 60.18-decimal fixed-point number for which to calculate the square root.
/// @return result The result as an unsigned 60.18-decimal fixed-point .
function sqrt(uint256 x) internal pure returns (uint256 result) {
unchecked {
if (x > MAX_UD60x18 / SCALE) {
revert PRBMathUD60x18__SqrtOverflow(x);
}
// Multiply x by the SCALE to account for the factor of SCALE that is picked up when multiplying two unsigned
// 60.18-decimal fixed-point numbers together (in this case, those two numbers are both the square root).
result = PRBMath.sqrt(x * SCALE);
}
}
/// @notice Converts a unsigned 60.18-decimal fixed-point number to basic integer form, rounding down in the process.
/// @param x The unsigned 60.18-decimal fixed-point number to convert.
/// @return result The same number in basic integer form.
function toUint(uint256 x) internal pure returns (uint256 result) {
unchecked {
result = x / SCALE;
}
}
}