Overview
ETH Balance
0 ETH
Eth Value
$0.00More Info
Private Name Tags
ContractCreator
Latest 25 from a total of 31 transactions
Transaction Hash |
Method
|
Block
|
From
|
To
|
|||||
---|---|---|---|---|---|---|---|---|---|
Join Pool Via Ag... | 20928319 | 25 days ago | IN | 0 ETH | 0.00997921 | ||||
Join Pool Via Ag... | 20455808 | 91 days ago | IN | 0.0001 ETH | 0.00097923 | ||||
Join Pool Via Ag... | 20448887 | 92 days ago | IN | 0.001 ETH | 0.0010134 | ||||
Join Pool Via Ag... | 20448880 | 92 days ago | IN | 0.001 ETH | 0.00117577 | ||||
Join Pool Via Ag... | 20445123 | 93 days ago | IN | 0.001 ETH | 0.00071662 | ||||
Join Pool Via Ag... | 20406984 | 98 days ago | IN | 0 ETH | 0.00087848 | ||||
Join Pool Via Ag... | 20406864 | 98 days ago | IN | 0.009 ETH | 0.00081194 | ||||
Join Pool Via Ag... | 20375693 | 102 days ago | IN | 0.03 ETH | 0.00148941 | ||||
Join Pool Via Ag... | 20375675 | 102 days ago | IN | 0 ETH | 0.00142928 | ||||
Join Pool Via Ag... | 20366999 | 104 days ago | IN | 0.02241468 ETH | 0.00108794 | ||||
Join Pool Via Ag... | 20297957 | 113 days ago | IN | 0.005 ETH | 0.00074527 | ||||
Join Pool Via Ag... | 20253650 | 119 days ago | IN | 0 ETH | 0.00079633 | ||||
Join Pool Via Ag... | 20209993 | 126 days ago | IN | 0.005 ETH | 0.00124792 | ||||
Join Pool Via Ag... | 20165829 | 132 days ago | IN | 0.0005 ETH | 0.00155805 | ||||
Join Pool Via Ag... | 20104644 | 140 days ago | IN | 0 ETH | 0.00217531 | ||||
Join Pool Via Ag... | 20095046 | 142 days ago | IN | 0.005 ETH | 0.00240343 | ||||
Join Pool Via Ag... | 20060812 | 146 days ago | IN | 0.00286766 ETH | 0.00185798 | ||||
Join Pool Via Ag... | 20060106 | 146 days ago | IN | 0.01 ETH | 0.00258973 | ||||
Join Pool Via Ag... | 20058829 | 147 days ago | IN | 0.0003 ETH | 0.00140537 | ||||
Join Pool Via Ag... | 20050424 | 148 days ago | IN | 0.0001 ETH | 0.00194618 | ||||
Join Pool Via Ag... | 20045628 | 148 days ago | IN | 0 ETH | 0.00299141 | ||||
Join Pool Via Ag... | 19976082 | 158 days ago | IN | 0 ETH | 0.00851146 | ||||
Join Pool Via Ag... | 19976070 | 158 days ago | IN | 0 ETH | 0.00971499 | ||||
Join Pool Via Ag... | 19953020 | 161 days ago | IN | 0.01 ETH | 0.00160374 | ||||
Join Pool Via Ag... | 19948044 | 162 days ago | IN | 0.003 ETH | 0.00275766 |
Latest 25 internal transactions (View All)
Advanced mode:
Parent Transaction Hash | Block | From | To | |||
---|---|---|---|---|---|---|
20455808 | 91 days ago | 2 wei | ||||
20455808 | 91 days ago | 2 wei | ||||
20455808 | 91 days ago | 0.0001 ETH | ||||
20448887 | 92 days ago | 2 wei | ||||
20448887 | 92 days ago | 2 wei | ||||
20448887 | 92 days ago | 0.001 ETH | ||||
20448880 | 92 days ago | 1 wei | ||||
20448880 | 92 days ago | 1 wei | ||||
20448880 | 92 days ago | 0.001 ETH | ||||
20445123 | 93 days ago | 1 wei | ||||
20445123 | 93 days ago | 1 wei | ||||
20445123 | 93 days ago | 0.001 ETH | ||||
20406864 | 98 days ago | 1 wei | ||||
20406864 | 98 days ago | 1 wei | ||||
20406864 | 98 days ago | 0.009 ETH | ||||
20375693 | 102 days ago | 1 wei | ||||
20375693 | 102 days ago | 1 wei | ||||
20375693 | 102 days ago | 0.03 ETH | ||||
20375675 | 102 days ago | 0.00002971 ETH | ||||
20375675 | 102 days ago | 0.00002971 ETH | ||||
20366999 | 104 days ago | 0.00001274 ETH | ||||
20366999 | 104 days ago | 0.00001274 ETH | ||||
20366999 | 104 days ago | 0.02241468 ETH | ||||
20297957 | 113 days ago | 1 wei | ||||
20297957 | 113 days ago | 1 wei |
Loading...
Loading
Contract Name:
ProxyJoinViaAggregator
Compiler Version
v0.7.6+commit.7338295f
Optimization Enabled:
Yes with 99999 runs
Other Settings:
default evmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU Affero General Public License as published by // the Free Software Foundation, either version 3 of the License, or any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Affero General Public License for more details. // You should have received a copy of the GNU Affero General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. /* s███ ██████ @██████ ,s███` ,██████████████ █████████^@█████_ ██████████_ 7@███_ "█████████M @██████████_ `_ "@█████b ^^^^^^^^^^" ^"` ████████████████████p _█████████████████████ @████████████████████ @███████████WT@██████b ████████████████████ @███████████ ,██████ @███████████████████ @███████████████████b @██████████████████ @██████████████████b "█████████████████ @█████████████████b @███████████████ @████████████████ %█████████████ @██████████████` ^%██████████ @███████████" ████████ @██████W"` 1███████ "@█████ 7W@█ */ pragma solidity ^0.7.6; pragma abicoder v2; import "@swaap-labs/v2-errors/contracts/SwaapV2Errors.sol"; import "@swaap-labs/v2-interfaces/contracts/standalone-utils/IProxyJoinViaAggregator.sol"; import "@balancer-labs/v2-interfaces/contracts/vault/IVault.sol"; import "@balancer-labs/v2-interfaces/contracts/solidity-utils/openzeppelin/IERC20Permit.sol"; import "@balancer-labs/v2-interfaces/contracts/vault/IBasePool.sol"; import "@balancer-labs/v2-solidity-utils/contracts/math/FixedPoint.sol"; import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/Ownable.sol"; import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/ReentrancyGuard.sol"; import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/SafeERC20.sol"; import "@balancer-labs/v2-solidity-utils/contracts/helpers/ScalingHelpers.sol"; import "@balancer-labs/v2-interfaces/contracts/solidity-utils/misc/IWETH.sol"; import "@balancer-labs/v2-pool-utils/contracts/BasePoolAuthorization.sol"; import "@openzeppelin/contracts-v0.7/utils/Pausable.sol"; import "@openzeppelin/contracts-v0.7/utils/Address.sol"; /** * @title ProxyJoinViaAggregator * @author Swaap-labs (https://github.com/swaap-labs/swaap-v2-monorepo) * @notice Proxy that enables to swap tokens with aggregators before joining a pool. */ contract ProxyJoinViaAggregator is BasePoolAuthorization, ReentrancyGuard, Pausable, IProxyJoinViaAggregator { using FixedPoint for uint256; using SafeERC20 for IERC20; using Address for address payable; modifier beforeDeadline(uint256 deadline) { _srequire(block.timestamp <= deadline, SwaapV2Errors.PASSED_DEADLINE); _; } address constant private NATIVE_ADDRESS = address(0); uint256 constant private ONE = 10 ** 18; IVault immutable public vault; IWETH immutable public weth; address immutable public zeroEx; address immutable public paraswap; address immutable public oneInch; address immutable public odos; constructor(address _vault, IWETH _weth, address _zeroEx, address _paraswap, address _oneInch, address _odos) BasePoolAuthorization(_DELEGATE_OWNER) Authentication(bytes20(address(this))) { vault = IVault(_vault); weth = _weth; zeroEx = _zeroEx; paraswap = _paraswap; oneInch = _oneInch; odos = _odos; } /// @inheritdoc IProxyJoinViaAggregator function permitJoinPoolViaAggregator( bytes32 poolId, IVault.JoinPoolRequest calldata request, Quote[] calldata fillQuotes, IERC20[] calldata joiningAssets, uint256[] calldata joiningAmounts, PermitToken[] calldata permitTokens, uint256 minBptAmountOut, uint256 deadline ) external payable override whenNotPaused nonReentrant beforeDeadline(deadline) returns (uint256 bptAmountOut) { _permitERC20s(permitTokens); return _joinPoolViaAggregator( poolId, request, fillQuotes, joiningAssets, joiningAmounts, minBptAmountOut ); } function _permitERC20s(PermitToken[] calldata permitTokens) internal { // If permitData is empty, skip the permit call for(uint256 i; i < permitTokens.length; ++i) { _permitERC20(permitTokens[i].token, permitTokens[i].permitData); } } function _permitERC20(IERC20 joiningAsset, bytes calldata permitData) internal { // If permitData is empty, skip the permit call _srequire(permitData.length == 224, SwaapV2Errors.INVALID_DATA_LENGTH); (bool success, bytes memory returnData) = address(joiningAsset).call( abi.encodePacked( IERC20Permit.permit.selector, permitData ) ); if(!success) { assembly { revert(add(returnData, 32), mload(returnData)) } } } /// @inheritdoc IProxyJoinViaAggregator function joinPoolViaAggregator( bytes32 poolId, IVault.JoinPoolRequest memory request, Quote[] calldata fillQuotes, IERC20[] calldata joiningAssets, uint256[] calldata joiningAmounts, uint256 minBptAmountOut, uint256 deadline ) external payable override whenNotPaused nonReentrant beforeDeadline(deadline) returns (uint256 bptAmountOut) { return _joinPoolViaAggregator( poolId, request, fillQuotes, joiningAssets, joiningAmounts, minBptAmountOut ); } function _joinPoolViaAggregator( bytes32 poolId, IVault.JoinPoolRequest memory request, Quote[] calldata fillQuotes, IERC20[] calldata joiningAssets, uint256[] calldata joiningAmounts, uint256 minBptAmountOut ) internal returns (uint256 bptAmountOut) { _transferFromMultipleAssets(joiningAssets, joiningAmounts); _tradeAssetsExternally(fillQuotes); // The vault will make sure that the tokens are the same as the pool (IERC20[] memory poolTokens,uint256[] memory poolBalances,) = vault.getPoolTokens(poolId); bptAmountOut = _getMaximumPoolShares(_getPoolAddress(poolId), poolTokens, poolBalances, request); _srequire(bptAmountOut >= minBptAmountOut, SwaapV2Errors.MIN_BALANCE_OUT_NOT_MET); _injectPoolSharesOut(request.userData, bptAmountOut); _ensureVaultAllowances(poolTokens, request.maxAmountsIn); _joinPool(bptAmountOut, poolId, request); _handleRemainingTokens(poolTokens, joiningAssets); return bptAmountOut; } function _joinPool( uint256 expectedBptAmountOut, bytes32 poolId, IVault.JoinPoolRequest memory request ) internal { address poolAddress = _getPoolAddress(poolId); uint256 prevBptBalance = IERC20(poolAddress).balanceOf(msg.sender); vault.joinPool( poolId, address(this), msg.sender, request ); uint256 afterBptBalance = IERC20(poolAddress).balanceOf(msg.sender); _srequire(afterBptBalance.sub(prevBptBalance) >= expectedBptAmountOut, SwaapV2Errors.MIN_BALANCE_OUT_NOT_MET); } function _transferFromMultipleAssets(IERC20[] memory assets, uint256[] memory amounts) internal { // for gas optimization purposes we convert all native token // to wrapped native because the vault will do it anyways and // most likely the other exchanges will wrap it too // ensure length of joiningAssets and joiningAmounts are the same uint256 length = assets.length; InputHelpers.ensureInputLengthMatch(length, amounts.length); for(uint256 i; i < length; ++i) { transferFromAll(assets[i], amounts[i]); } } function _getExpectedPoolShares(bytes memory userData) internal pure returns (uint256 expectedPoolShares) { (, expectedPoolShares) = abi.decode(userData, (uint8, uint256)); } function _handleRemainingTokens( IERC20[] memory poolTokens, IERC20[] memory joiningAssets ) internal { for(uint256 i; i < joiningAssets.length; ++i) { IERC20 joiningAsset = joiningAssets[i]; transferAll(joiningAsset, getBalance(joiningAsset)); } for(uint256 i; i < poolTokens.length; ++i) { IERC20 poolToken = poolTokens[i]; transferAll(poolToken, getBalance(poolToken)); } } function _tradeAssetsExternally( Quote[] calldata fillQuotes ) internal { for(uint256 i; i < fillQuotes.length; ++i) { Quote memory quote = fillQuotes[i]; if(quote.targetAggregator == zeroEx) { _tradeWithAggregator(zeroEx, quote); } else if(quote.targetAggregator == paraswap) { _tradeWithAggregator(paraswap, quote); } else if(quote.targetAggregator == oneInch) { _tradeWithAggregator(oneInch, quote); } else if(quote.targetAggregator == odos) { _tradeWithAggregator(odos, quote); } else { _srevert(SwaapV2Errors.INVALID_AGGREGATOR); } } } function _tradeWithAggregator( address aggregator, Quote memory quote ) private { IERC20 sellToken = isNative(quote.sellToken)? weth : quote.sellToken; IERC20 buyToken = isNative(quote.buyToken)? weth : quote.buyToken; uint256 prevSellBalance = getBalance(sellToken); uint256 prevBuyBalance = getBalance(buyToken); _srequire(buyToken != sellToken, SwaapV2Errors.SAME_TOKENS); _getApproval(sellToken, quote.spender, quote.sellAmount); _performExternalCall(aggregator, quote.quoteCallData); uint256 soldAmount = prevSellBalance.sub(getBalance(sellToken)); uint256 boughtAmount = getBalance(buyToken).sub(prevBuyBalance); _srequire(soldAmount <= quote.sellAmount, SwaapV2Errors.EXCEEDED_SWAP_AMOUNT_IN); _srequire(boughtAmount >= quote.buyAmount, SwaapV2Errors.MIN_BALANCE_OUT_NOT_MET); } function _performExternalCall( address target, bytes memory data ) private returns (bytes memory) { bytes32 selector; assembly { selector := mload(add(data, 0x20)) } require(bytes4(selector) != IERC20.transferFrom.selector, "transferFrom not allowed for externalCall"); (bool success, bytes memory returnData) = target.call(data); if(!success) { assembly { revert(add(data, 32), mload(returnData)) } } return returnData; } function _ensureVaultAllowances( IERC20[] memory poolTokens, uint256[] memory maxAmountsIn ) internal { uint256 length = poolTokens.length; InputHelpers.ensureInputLengthMatch(length, maxAmountsIn.length); for(uint256 i; i < length; ++i) { _getApproval(poolTokens[i], address(vault), maxAmountsIn[i]); } } // calculates the maximum amount of pool shares that can be received and modifies the maxAmountsIn array function _getMaximumPoolShares( address pool, IERC20[] memory poolTokens, uint256[] memory poolBalances, IVault.JoinPoolRequest memory request // must be in the same order as the pool ) internal view returns (uint256) { // verify poolBalances length and maxAmountsIn length uint256 length = poolBalances.length; InputHelpers.ensureInputLengthMatch(length, request.maxAmountsIn.length); // get the proxy balances uint256[] memory proxyBalances = new uint256[](poolTokens.length); for(uint256 i; i < length; ++i) { proxyBalances[i] = getBalance(poolTokens[i]); } { // Get scaling factors uint256[] memory scalingFactors = IBasePool(pool).getScalingFactors(); // upscale pool balances _upscaleArray(proxyBalances, scalingFactors); _upscaleArray(poolBalances, scalingFactors); } { uint256 ratio = type(uint256).max; for(uint256 i; i < length; ++i) { uint256 localRatio = FixedPoint.divDown(proxyBalances[i], poolBalances[i]); if(localRatio < ratio) { ratio = localRatio; } } uint256 extractablePoolShares = FixedPoint.mulDown(ratio, IERC20(pool).totalSupply()); uint256 expectedPoolShares = _getExpectedPoolShares(request.userData); uint256 sharesRatio = FixedPoint.divUp(extractablePoolShares, expectedPoolShares); for(uint256 i; i < length; ++i) { request.maxAmountsIn[i] = FixedPoint.mulUp(request.maxAmountsIn[i], sharesRatio); } return extractablePoolShares; } } // expected userData = [joinKind, poolAmountOut] function _injectPoolSharesOut(bytes memory userData, uint256 sharesAmountOut) internal pure { assembly { mstore(add(userData, 0x40), sharesAmountOut) } } /** * @dev Returns the address of a Pool's contract. * * Due to how Pool IDs are created, this is done with no storage accesses and costs little gas. */ function _getPoolAddress(bytes32 poolId) internal pure returns (address) { // 12 byte logical shift left to remove the nonce and specialization setting. We don't need to mask, // since the logical shift already sets the upper bits to zero. return address(uint256(poolId) >> (12 * 8)); } function transferFromAll(IERC20 token, uint256 amount) internal { if (isNative(token)) { // The 'amount' input is not used in the payable case in order to convert all the // native token to wrapped native token. This is useful in function transferAll where only // one transfer is needed when a fraction of the wrapped tokens are used. weth.deposit{value: msg.value}(); } else { IERC20(token).safeTransferFrom(msg.sender, address(this), amount); } } function _getApproval(IERC20 token, address target, uint256 amount) internal { if (token.allowance(address(this), target) < amount) { token.safeApprove(target, type(uint256).max); } } function getBalance(IERC20 token) internal view returns (uint256) { if (isNative(token)) { return weth.balanceOf(address(this)); } else { return IERC20(token).balanceOf(address(this)); } } function transferAll(IERC20 token, uint256 amount) internal { if (amount != 0) { if (isNative(token)) { IWETH(weth).withdraw(amount); payable(msg.sender).sendValue(amount); } else { IERC20(token).safeTransfer(msg.sender, amount); } } } receive() external payable { _require(msg.sender == address(weth), Errors.ETH_TRANSFER); } function isNative(IERC20 token) internal pure returns(bool) { return (address(token) == NATIVE_ADDRESS); } // Pause functions function pause() external authenticate { _pause(); } function unpause() external authenticate { _unpause(); } // Must impement for BasePoolAuthorization function _getAuthorizer() internal view override returns (IAuthorizer) { return vault.getAuthorizer(); } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity >=0.7.0 <0.9.0; // solhint-disable /** * @dev Reverts if `condition` is false, with a revert reason containing `errorCode`. Only codes up to 999 are * supported. * Uses the default 'BAL' prefix for the error code */ function _require(bool condition, uint256 errorCode) pure { if (!condition) _revert(errorCode); } /** * @dev Reverts if `condition` is false, with a revert reason containing `errorCode`. Only codes up to 999 are * supported. */ function _require( bool condition, uint256 errorCode, bytes3 prefix ) pure { if (!condition) _revert(errorCode, prefix); } /** * @dev Reverts with a revert reason containing `errorCode`. Only codes up to 999 are supported. * Uses the default 'BAL' prefix for the error code */ function _revert(uint256 errorCode) pure { _revert(errorCode, 0x42414c); // This is the raw byte representation of "BAL" } /** * @dev Reverts with a revert reason containing `errorCode`. Only codes up to 999 are supported. */ function _revert(uint256 errorCode, bytes3 prefix) pure { uint256 prefixUint = uint256(uint24(prefix)); // We're going to dynamically create a revert string based on the error code, with the following format: // 'BAL#{errorCode}' // where the code is left-padded with zeroes to three digits (so they range from 000 to 999). // // We don't have revert strings embedded in the contract to save bytecode size: it takes much less space to store a // number (8 to 16 bits) than the individual string characters. // // The dynamic string creation algorithm that follows could be implemented in Solidity, but assembly allows for a // much denser implementation, again saving bytecode size. Given this function unconditionally reverts, this is a // safe place to rely on it without worrying about how its usage might affect e.g. memory contents. assembly { // First, we need to compute the ASCII representation of the error code. We assume that it is in the 0-999 // range, so we only need to convert three digits. To convert the digits to ASCII, we add 0x30, the value for // the '0' character. let units := add(mod(errorCode, 10), 0x30) errorCode := div(errorCode, 10) let tenths := add(mod(errorCode, 10), 0x30) errorCode := div(errorCode, 10) let hundreds := add(mod(errorCode, 10), 0x30) // With the individual characters, we can now construct the full string. // We first append the '#' character (0x23) to the prefix. In the case of 'BAL', it results in 0x42414c23 ('BAL#') // Then, we shift this by 24 (to provide space for the 3 bytes of the error code), and add the // characters to it, each shifted by a multiple of 8. // The revert reason is then shifted left by 200 bits (256 minus the length of the string, 7 characters * 8 bits // per character = 56) to locate it in the most significant part of the 256 slot (the beginning of a byte // array). let formattedPrefix := shl(24, add(0x23, shl(8, prefixUint))) let revertReason := shl(200, add(formattedPrefix, add(add(units, shl(8, tenths)), shl(16, hundreds)))) // We can now encode the reason in memory, which can be safely overwritten as we're about to revert. The encoded // message will have the following layout: // [ revert reason identifier ] [ string location offset ] [ string length ] [ string contents ] // The Solidity revert reason identifier is 0x08c739a0, the function selector of the Error(string) function. We // also write zeroes to the next 28 bytes of memory, but those are about to be overwritten. mstore(0x0, 0x08c379a000000000000000000000000000000000000000000000000000000000) // Next is the offset to the location of the string, which will be placed immediately after (20 bytes away). mstore(0x04, 0x0000000000000000000000000000000000000000000000000000000000000020) // The string length is fixed: 7 characters. mstore(0x24, 7) // Finally, the string itself is stored. mstore(0x44, revertReason) // Even if the string is only 7 bytes long, we need to return a full 32 byte slot containing it. The length of // the encoded message is therefore 4 + 32 + 32 + 32 = 100. revert(0, 100) } } library Errors { // Math uint256 internal constant ADD_OVERFLOW = 0; uint256 internal constant SUB_OVERFLOW = 1; uint256 internal constant SUB_UNDERFLOW = 2; uint256 internal constant MUL_OVERFLOW = 3; uint256 internal constant ZERO_DIVISION = 4; uint256 internal constant DIV_INTERNAL = 5; uint256 internal constant X_OUT_OF_BOUNDS = 6; uint256 internal constant Y_OUT_OF_BOUNDS = 7; uint256 internal constant PRODUCT_OUT_OF_BOUNDS = 8; uint256 internal constant INVALID_EXPONENT = 9; // Input uint256 internal constant OUT_OF_BOUNDS = 100; uint256 internal constant UNSORTED_ARRAY = 101; uint256 internal constant UNSORTED_TOKENS = 102; uint256 internal constant INPUT_LENGTH_MISMATCH = 103; uint256 internal constant ZERO_TOKEN = 104; uint256 internal constant INSUFFICIENT_DATA = 105; // Shared pools uint256 internal constant MIN_TOKENS = 200; uint256 internal constant MAX_TOKENS = 201; uint256 internal constant MAX_SWAP_FEE_PERCENTAGE = 202; uint256 internal constant MIN_SWAP_FEE_PERCENTAGE = 203; uint256 internal constant MINIMUM_BPT = 204; uint256 internal constant CALLER_NOT_VAULT = 205; uint256 internal constant UNINITIALIZED = 206; uint256 internal constant BPT_IN_MAX_AMOUNT = 207; uint256 internal constant BPT_OUT_MIN_AMOUNT = 208; uint256 internal constant EXPIRED_PERMIT = 209; uint256 internal constant NOT_TWO_TOKENS = 210; uint256 internal constant DISABLED = 211; // Pools uint256 internal constant MIN_AMP = 300; uint256 internal constant MAX_AMP = 301; uint256 internal constant MIN_WEIGHT = 302; uint256 internal constant MAX_STABLE_TOKENS = 303; uint256 internal constant MAX_IN_RATIO = 304; uint256 internal constant MAX_OUT_RATIO = 305; uint256 internal constant MIN_BPT_IN_FOR_TOKEN_OUT = 306; uint256 internal constant MAX_OUT_BPT_FOR_TOKEN_IN = 307; uint256 internal constant NORMALIZED_WEIGHT_INVARIANT = 308; uint256 internal constant INVALID_TOKEN = 309; uint256 internal constant UNHANDLED_JOIN_KIND = 310; uint256 internal constant ZERO_INVARIANT = 311; uint256 internal constant ORACLE_INVALID_SECONDS_QUERY = 312; uint256 internal constant ORACLE_NOT_INITIALIZED = 313; uint256 internal constant ORACLE_QUERY_TOO_OLD = 314; uint256 internal constant ORACLE_INVALID_INDEX = 315; uint256 internal constant ORACLE_BAD_SECS = 316; uint256 internal constant AMP_END_TIME_TOO_CLOSE = 317; uint256 internal constant AMP_ONGOING_UPDATE = 318; uint256 internal constant AMP_RATE_TOO_HIGH = 319; uint256 internal constant AMP_NO_ONGOING_UPDATE = 320; uint256 internal constant STABLE_INVARIANT_DIDNT_CONVERGE = 321; uint256 internal constant STABLE_GET_BALANCE_DIDNT_CONVERGE = 322; uint256 internal constant RELAYER_NOT_CONTRACT = 323; uint256 internal constant BASE_POOL_RELAYER_NOT_CALLED = 324; uint256 internal constant REBALANCING_RELAYER_REENTERED = 325; uint256 internal constant GRADUAL_UPDATE_TIME_TRAVEL = 326; uint256 internal constant SWAPS_DISABLED = 327; uint256 internal constant CALLER_IS_NOT_LBP_OWNER = 328; uint256 internal constant PRICE_RATE_OVERFLOW = 329; uint256 internal constant INVALID_JOIN_EXIT_KIND_WHILE_SWAPS_DISABLED = 330; uint256 internal constant WEIGHT_CHANGE_TOO_FAST = 331; uint256 internal constant LOWER_GREATER_THAN_UPPER_TARGET = 332; uint256 internal constant UPPER_TARGET_TOO_HIGH = 333; uint256 internal constant UNHANDLED_BY_LINEAR_POOL = 334; uint256 internal constant OUT_OF_TARGET_RANGE = 335; uint256 internal constant UNHANDLED_EXIT_KIND = 336; uint256 internal constant UNAUTHORIZED_EXIT = 337; uint256 internal constant MAX_MANAGEMENT_SWAP_FEE_PERCENTAGE = 338; uint256 internal constant UNHANDLED_BY_MANAGED_POOL = 339; uint256 internal constant UNHANDLED_BY_PHANTOM_POOL = 340; uint256 internal constant TOKEN_DOES_NOT_HAVE_RATE_PROVIDER = 341; uint256 internal constant INVALID_INITIALIZATION = 342; uint256 internal constant OUT_OF_NEW_TARGET_RANGE = 343; uint256 internal constant FEATURE_DISABLED = 344; uint256 internal constant UNINITIALIZED_POOL_CONTROLLER = 345; uint256 internal constant SET_SWAP_FEE_DURING_FEE_CHANGE = 346; uint256 internal constant SET_SWAP_FEE_PENDING_FEE_CHANGE = 347; uint256 internal constant CHANGE_TOKENS_DURING_WEIGHT_CHANGE = 348; uint256 internal constant CHANGE_TOKENS_PENDING_WEIGHT_CHANGE = 349; uint256 internal constant MAX_WEIGHT = 350; uint256 internal constant UNAUTHORIZED_JOIN = 351; uint256 internal constant MAX_MANAGEMENT_AUM_FEE_PERCENTAGE = 352; uint256 internal constant FRACTIONAL_TARGET = 353; uint256 internal constant ADD_OR_REMOVE_BPT = 354; uint256 internal constant INVALID_CIRCUIT_BREAKER_BOUNDS = 355; uint256 internal constant CIRCUIT_BREAKER_TRIPPED = 356; uint256 internal constant MALICIOUS_QUERY_REVERT = 357; uint256 internal constant JOINS_EXITS_DISABLED = 358; // Lib uint256 internal constant REENTRANCY = 400; uint256 internal constant SENDER_NOT_ALLOWED = 401; uint256 internal constant PAUSED = 402; uint256 internal constant PAUSE_WINDOW_EXPIRED = 403; uint256 internal constant MAX_PAUSE_WINDOW_DURATION = 404; uint256 internal constant MAX_BUFFER_PERIOD_DURATION = 405; uint256 internal constant INSUFFICIENT_BALANCE = 406; uint256 internal constant INSUFFICIENT_ALLOWANCE = 407; uint256 internal constant ERC20_TRANSFER_FROM_ZERO_ADDRESS = 408; uint256 internal constant ERC20_TRANSFER_TO_ZERO_ADDRESS = 409; uint256 internal constant ERC20_MINT_TO_ZERO_ADDRESS = 410; uint256 internal constant ERC20_BURN_FROM_ZERO_ADDRESS = 411; uint256 internal constant ERC20_APPROVE_FROM_ZERO_ADDRESS = 412; uint256 internal constant ERC20_APPROVE_TO_ZERO_ADDRESS = 413; uint256 internal constant ERC20_TRANSFER_EXCEEDS_ALLOWANCE = 414; uint256 internal constant ERC20_DECREASED_ALLOWANCE_BELOW_ZERO = 415; uint256 internal constant ERC20_TRANSFER_EXCEEDS_BALANCE = 416; uint256 internal constant ERC20_BURN_EXCEEDS_ALLOWANCE = 417; uint256 internal constant SAFE_ERC20_CALL_FAILED = 418; uint256 internal constant ADDRESS_INSUFFICIENT_BALANCE = 419; uint256 internal constant ADDRESS_CANNOT_SEND_VALUE = 420; uint256 internal constant SAFE_CAST_VALUE_CANT_FIT_INT256 = 421; uint256 internal constant GRANT_SENDER_NOT_ADMIN = 422; uint256 internal constant REVOKE_SENDER_NOT_ADMIN = 423; uint256 internal constant RENOUNCE_SENDER_NOT_ALLOWED = 424; uint256 internal constant BUFFER_PERIOD_EXPIRED = 425; uint256 internal constant CALLER_IS_NOT_OWNER = 426; uint256 internal constant NEW_OWNER_IS_ZERO = 427; uint256 internal constant CODE_DEPLOYMENT_FAILED = 428; uint256 internal constant CALL_TO_NON_CONTRACT = 429; uint256 internal constant LOW_LEVEL_CALL_FAILED = 430; uint256 internal constant NOT_PAUSED = 431; uint256 internal constant ADDRESS_ALREADY_ALLOWLISTED = 432; uint256 internal constant ADDRESS_NOT_ALLOWLISTED = 433; uint256 internal constant ERC20_BURN_EXCEEDS_BALANCE = 434; uint256 internal constant INVALID_OPERATION = 435; uint256 internal constant CODEC_OVERFLOW = 436; uint256 internal constant IN_RECOVERY_MODE = 437; uint256 internal constant NOT_IN_RECOVERY_MODE = 438; uint256 internal constant INDUCED_FAILURE = 439; uint256 internal constant EXPIRED_SIGNATURE = 440; uint256 internal constant MALFORMED_SIGNATURE = 441; uint256 internal constant SAFE_CAST_VALUE_CANT_FIT_UINT64 = 442; uint256 internal constant UNHANDLED_FEE_TYPE = 443; uint256 internal constant BURN_FROM_ZERO = 444; // Vault uint256 internal constant INVALID_POOL_ID = 500; uint256 internal constant CALLER_NOT_POOL = 501; uint256 internal constant SENDER_NOT_ASSET_MANAGER = 502; uint256 internal constant USER_DOESNT_ALLOW_RELAYER = 503; uint256 internal constant INVALID_SIGNATURE = 504; uint256 internal constant EXIT_BELOW_MIN = 505; uint256 internal constant JOIN_ABOVE_MAX = 506; uint256 internal constant SWAP_LIMIT = 507; uint256 internal constant SWAP_DEADLINE = 508; uint256 internal constant CANNOT_SWAP_SAME_TOKEN = 509; uint256 internal constant UNKNOWN_AMOUNT_IN_FIRST_SWAP = 510; uint256 internal constant MALCONSTRUCTED_MULTIHOP_SWAP = 511; uint256 internal constant INTERNAL_BALANCE_OVERFLOW = 512; uint256 internal constant INSUFFICIENT_INTERNAL_BALANCE = 513; uint256 internal constant INVALID_ETH_INTERNAL_BALANCE = 514; uint256 internal constant INVALID_POST_LOAN_BALANCE = 515; uint256 internal constant INSUFFICIENT_ETH = 516; uint256 internal constant UNALLOCATED_ETH = 517; uint256 internal constant ETH_TRANSFER = 518; uint256 internal constant CANNOT_USE_ETH_SENTINEL = 519; uint256 internal constant TOKENS_MISMATCH = 520; uint256 internal constant TOKEN_NOT_REGISTERED = 521; uint256 internal constant TOKEN_ALREADY_REGISTERED = 522; uint256 internal constant TOKENS_ALREADY_SET = 523; uint256 internal constant TOKENS_LENGTH_MUST_BE_2 = 524; uint256 internal constant NONZERO_TOKEN_BALANCE = 525; uint256 internal constant BALANCE_TOTAL_OVERFLOW = 526; uint256 internal constant POOL_NO_TOKENS = 527; uint256 internal constant INSUFFICIENT_FLASH_LOAN_BALANCE = 528; // Fees uint256 internal constant SWAP_FEE_PERCENTAGE_TOO_HIGH = 600; uint256 internal constant FLASH_LOAN_FEE_PERCENTAGE_TOO_HIGH = 601; uint256 internal constant INSUFFICIENT_FLASH_LOAN_FEE_AMOUNT = 602; uint256 internal constant AUM_FEE_PERCENTAGE_TOO_HIGH = 603; // FeeSplitter uint256 internal constant SPLITTER_FEE_PERCENTAGE_TOO_HIGH = 700; // Misc uint256 internal constant UNIMPLEMENTED = 998; uint256 internal constant SHOULD_NOT_HAPPEN = 999; }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity >=0.7.0 <0.9.0; interface IAuthentication { /** * @dev Returns the action identifier associated with the external function described by `selector`. */ function getActionId(bytes4 selector) external view returns (bytes32); }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity >=0.7.0 <0.9.0; /** * @dev Interface for the SignatureValidator helper, used to support meta-transactions. */ interface ISignaturesValidator { /** * @dev Returns the EIP712 domain separator. */ function getDomainSeparator() external view returns (bytes32); /** * @dev Returns the next nonce used by an address to sign messages. */ function getNextNonce(address user) external view returns (uint256); }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity >=0.7.0 <0.9.0; /** * @dev Interface for the TemporarilyPausable helper. */ interface ITemporarilyPausable { /** * @dev Emitted every time the pause state changes by `_setPaused`. */ event PausedStateChanged(bool paused); /** * @dev Returns the current paused state. */ function getPausedState() external view returns ( bool paused, uint256 pauseWindowEndTime, uint256 bufferPeriodEndTime ); }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity >=0.7.0 <0.9.0; import "../openzeppelin/IERC20.sol"; /** * @dev Interface for WETH9. * See https://github.com/gnosis/canonical-weth/blob/0dd1ea3e295eef916d0c6223ec63141137d22d67/contracts/WETH9.sol */ interface IWETH is IERC20 { function deposit() external payable; function withdraw(uint256 amount) external; }
// SPDX-License-Identifier: MIT pragma solidity >=0.7.0 <0.9.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `recipient`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address recipient, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `sender` to `recipient` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom( address sender, address recipient, uint256 amount ) external returns (bool); /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); }
// SPDX-License-Identifier: MIT pragma solidity >=0.7.0 <0.9.0; /** * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612]. * * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by * presenting a message signed by the account. By not relying on `{IERC20-approve}`, the token holder account doesn't * need to send a transaction, and thus is not required to hold Ether at all. */ interface IERC20Permit { /** * @dev Sets `value` as the allowance of `spender` over `owner`'s tokens, * given `owner`'s signed approval. * * IMPORTANT: The same issues {IERC20-approve} has related to transaction * ordering also apply here. * * Emits an {Approval} event. * * Requirements: * * - `spender` cannot be the zero address. * - `deadline` must be a timestamp in the future. * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner` * over the EIP712-formatted function arguments. * - the signature must use ``owner``'s current nonce (see {nonces}). * * For more information on the signature format, see the * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP * section]. */ function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) external; /** * @dev Returns the current nonce for `owner`. This value must be * included whenever a signature is generated for {permit}. * * Every successful call to {permit} increases ``owner``'s nonce by one. This * prevents a signature from being used multiple times. */ function nonces(address owner) external view returns (uint256); /** * @dev Returns the domain separator used in the encoding of the signature for `permit`, as defined by {EIP712}. */ // solhint-disable-next-line func-name-mixedcase function DOMAIN_SEPARATOR() external view returns (bytes32); }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity >=0.7.0 <0.9.0; /** * @dev This is an empty interface used to represent either ERC20-conforming token contracts or ETH (using the zero * address sentinel value). We're just relying on the fact that `interface` can be used to declare new address-like * types. * * This concept is unrelated to a Pool's Asset Managers. */ interface IAsset { // solhint-disable-previous-line no-empty-blocks }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity >=0.7.0 <0.9.0; interface IAuthorizer { /** * @dev Returns true if `account` can perform the action described by `actionId` in the contract `where`. */ function canPerform( bytes32 actionId, address account, address where ) external view returns (bool); }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity >=0.7.0 <0.9.0; pragma experimental ABIEncoderV2; import "./IVault.sol"; import "./IPoolSwapStructs.sol"; /** * @dev Interface for adding and removing liquidity that all Pool contracts should implement. Note that this is not * the complete Pool contract interface, as it is missing the swap hooks. Pool contracts should also inherit from * either IGeneralPool or IMinimalSwapInfoPool */ interface IBasePool is IPoolSwapStructs { /** * @dev Called by the Vault when a user calls `IVault.joinPool` to add liquidity to this Pool. Returns how many of * each registered token the user should provide, as well as the amount of protocol fees the Pool owes to the Vault. * The Vault will then take tokens from `sender` and add them to the Pool's balances, as well as collect * the reported amount in protocol fees, which the pool should calculate based on `protocolSwapFeePercentage`. * * Protocol fees are reported and charged on join events so that the Pool is free of debt whenever new users join. * * `sender` is the account performing the join (from which tokens will be withdrawn), and `recipient` is the account * designated to receive any benefits (typically pool shares). `balances` contains the total balances * for each token the Pool registered in the Vault, in the same order that `IVault.getPoolTokens` would return. * * `lastChangeBlock` is the last block in which *any* of the Pool's registered tokens last changed its total * balance. * * `userData` contains any pool-specific instructions needed to perform the calculations, such as the type of * join (e.g., proportional given an amount of pool shares, single-asset, multi-asset, etc.) * * Contracts implementing this function should check that the caller is indeed the Vault before performing any * state-changing operations, such as minting pool shares. */ function onJoinPool( bytes32 poolId, address sender, address recipient, uint256[] memory balances, uint256 lastChangeBlock, uint256 protocolSwapFeePercentage, bytes memory userData ) external returns (uint256[] memory amountsIn, uint256[] memory dueProtocolFeeAmounts); /** * @dev Called by the Vault when a user calls `IVault.exitPool` to remove liquidity from this Pool. Returns how many * tokens the Vault should deduct from the Pool's balances, as well as the amount of protocol fees the Pool owes * to the Vault. The Vault will then take tokens from the Pool's balances and send them to `recipient`, * as well as collect the reported amount in protocol fees, which the Pool should calculate based on * `protocolSwapFeePercentage`. * * Protocol fees are charged on exit events to guarantee that users exiting the Pool have paid their share. * * `sender` is the account performing the exit (typically the pool shareholder), and `recipient` is the account * to which the Vault will send the proceeds. `balances` contains the total token balances for each token * the Pool registered in the Vault, in the same order that `IVault.getPoolTokens` would return. * * `lastChangeBlock` is the last block in which *any* of the Pool's registered tokens last changed its total * balance. * * `userData` contains any pool-specific instructions needed to perform the calculations, such as the type of * exit (e.g., proportional given an amount of pool shares, single-asset, multi-asset, etc.) * * Contracts implementing this function should check that the caller is indeed the Vault before performing any * state-changing operations, such as burning pool shares. */ function onExitPool( bytes32 poolId, address sender, address recipient, uint256[] memory balances, uint256 lastChangeBlock, uint256 protocolSwapFeePercentage, bytes memory userData ) external returns (uint256[] memory amountsOut, uint256[] memory dueProtocolFeeAmounts); /** * @dev Returns this Pool's ID, used when interacting with the Vault (to e.g. join the Pool or swap with it). */ function getPoolId() external view returns (bytes32); /** * @dev Returns the current swap fee percentage as a 18 decimal fixed point number, so e.g. 1e17 corresponds to a * 10% swap fee. */ function getSwapFeePercentage() external view returns (uint256); /** * @dev Returns the scaling factors of each of the Pool's tokens. This is an implementation detail that is typically * not relevant for outside parties, but which might be useful for some types of Pools. */ function getScalingFactors() external view returns (uint256[] memory); function queryJoin( bytes32 poolId, address sender, address recipient, uint256[] memory balances, uint256 lastChangeBlock, uint256 protocolSwapFeePercentage, bytes memory userData ) external returns (uint256 bptOut, uint256[] memory amountsIn); function queryExit( bytes32 poolId, address sender, address recipient, uint256[] memory balances, uint256 lastChangeBlock, uint256 protocolSwapFeePercentage, bytes memory userData ) external returns (uint256 bptIn, uint256[] memory amountsOut); }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity >=0.7.0 <0.9.0; // Inspired by Aave Protocol's IFlashLoanReceiver. import "../solidity-utils/openzeppelin/IERC20.sol"; interface IFlashLoanRecipient { /** * @dev When `flashLoan` is called on the Vault, it invokes the `receiveFlashLoan` hook on the recipient. * * At the time of the call, the Vault will have transferred `amounts` for `tokens` to the recipient. Before this * call returns, the recipient must have transferred `amounts` plus `feeAmounts` for each token back to the * Vault, or else the entire flash loan will revert. * * `userData` is the same value passed in the `IVault.flashLoan` call. */ function receiveFlashLoan( IERC20[] memory tokens, uint256[] memory amounts, uint256[] memory feeAmounts, bytes memory userData ) external; }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity >=0.7.0 <0.9.0; pragma experimental ABIEncoderV2; import "../solidity-utils/openzeppelin/IERC20.sol"; import "./IVault.sol"; interface IPoolSwapStructs { // This is not really an interface - it just defines common structs used by other interfaces: IGeneralPool and // IMinimalSwapInfoPool. // // This data structure represents a request for a token swap, where `kind` indicates the swap type ('given in' or // 'given out') which indicates whether or not the amount sent by the pool is known. // // The pool receives `tokenIn` and sends `tokenOut`. `amount` is the number of `tokenIn` tokens the pool will take // in, or the number of `tokenOut` tokens the Pool will send out, depending on the given swap `kind`. // // All other fields are not strictly necessary for most swaps, but are provided to support advanced scenarios in // some Pools. // // `poolId` is the ID of the Pool involved in the swap - this is useful for Pool contracts that implement more than // one Pool. // // The meaning of `lastChangeBlock` depends on the Pool specialization: // - Two Token or Minimal Swap Info: the last block in which either `tokenIn` or `tokenOut` changed its total // balance. // - General: the last block in which *any* of the Pool's registered tokens changed its total balance. // // `from` is the origin address for the funds the Pool receives, and `to` is the destination address // where the Pool sends the outgoing tokens. // // `userData` is extra data provided by the caller - typically a signature from a trusted party. struct SwapRequest { IVault.SwapKind kind; IERC20 tokenIn; IERC20 tokenOut; uint256 amount; // Misc data bytes32 poolId; uint256 lastChangeBlock; address from; address to; bytes userData; } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity >=0.7.0 <0.9.0; pragma experimental ABIEncoderV2; import "../solidity-utils/openzeppelin/IERC20.sol"; import "./IVault.sol"; import "./IAuthorizer.sol"; interface IProtocolFeesCollector { event SwapFeePercentageChanged(uint256 newSwapFeePercentage); event FlashLoanFeePercentageChanged(uint256 newFlashLoanFeePercentage); function withdrawCollectedFees( IERC20[] calldata tokens, uint256[] calldata amounts, address recipient ) external; function setSwapFeePercentage(uint256 newSwapFeePercentage) external; function setFlashLoanFeePercentage(uint256 newFlashLoanFeePercentage) external; function getSwapFeePercentage() external view returns (uint256); function getFlashLoanFeePercentage() external view returns (uint256); function getCollectedFeeAmounts(IERC20[] memory tokens) external view returns (uint256[] memory feeAmounts); function getAuthorizer() external view returns (IAuthorizer); function vault() external view returns (IVault); }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma experimental ABIEncoderV2; import "../solidity-utils/openzeppelin/IERC20.sol"; import "../solidity-utils/helpers/IAuthentication.sol"; import "../solidity-utils/helpers/ISignaturesValidator.sol"; import "../solidity-utils/helpers/ITemporarilyPausable.sol"; import "../solidity-utils/misc/IWETH.sol"; import "./IAsset.sol"; import "./IAuthorizer.sol"; import "./IFlashLoanRecipient.sol"; import "./IProtocolFeesCollector.sol"; pragma solidity >=0.7.0 <0.9.0; /** * @dev Full external interface for the Vault core contract - no external or public methods exist in the contract that * don't override one of these declarations. */ interface IVault is ISignaturesValidator, ITemporarilyPausable, IAuthentication { // Generalities about the Vault: // // - Whenever documentation refers to 'tokens', it strictly refers to ERC20-compliant token contracts. Tokens are // transferred out of the Vault by calling the `IERC20.transfer` function, and transferred in by calling // `IERC20.transferFrom`. In these cases, the sender must have previously allowed the Vault to use their tokens by // calling `IERC20.approve`. The only deviation from the ERC20 standard that is supported is functions not returning // a boolean value: in these scenarios, a non-reverting call is assumed to be successful. // // - All non-view functions in the Vault are non-reentrant: calling them while another one is mid-execution (e.g. // while execution control is transferred to a token contract during a swap) will result in a revert. View // functions can be called in a re-reentrant way, but doing so might cause them to return inconsistent results. // Contracts calling view functions in the Vault must make sure the Vault has not already been entered. // // - View functions revert if referring to either unregistered Pools, or unregistered tokens for registered Pools. // Authorizer // // Some system actions are permissioned, like setting and collecting protocol fees. This permissioning system exists // outside of the Vault in the Authorizer contract: the Vault simply calls the Authorizer to check if the caller // can perform a given action. /** * @dev Returns the Vault's Authorizer. */ function getAuthorizer() external view returns (IAuthorizer); /** * @dev Sets a new Authorizer for the Vault. The caller must be allowed by the current Authorizer to do this. * * Emits an `AuthorizerChanged` event. */ function setAuthorizer(IAuthorizer newAuthorizer) external; /** * @dev Emitted when a new authorizer is set by `setAuthorizer`. */ event AuthorizerChanged(IAuthorizer indexed newAuthorizer); // Relayers // // Additionally, it is possible for an account to perform certain actions on behalf of another one, using their // Vault ERC20 allowance and Internal Balance. These accounts are said to be 'relayers' for these Vault functions, // and are expected to be smart contracts with sound authentication mechanisms. For an account to be able to wield // this power, two things must occur: // - The Authorizer must grant the account the permission to be a relayer for the relevant Vault function. This // means that Balancer governance must approve each individual contract to act as a relayer for the intended // functions. // - Each user must approve the relayer to act on their behalf. // This double protection means users cannot be tricked into approving malicious relayers (because they will not // have been allowed by the Authorizer via governance), nor can malicious relayers approved by a compromised // Authorizer or governance drain user funds, since they would also need to be approved by each individual user. /** * @dev Returns true if `user` has approved `relayer` to act as a relayer for them. */ function hasApprovedRelayer(address user, address relayer) external view returns (bool); /** * @dev Allows `relayer` to act as a relayer for `sender` if `approved` is true, and disallows it otherwise. * * Emits a `RelayerApprovalChanged` event. */ function setRelayerApproval( address sender, address relayer, bool approved ) external; /** * @dev Emitted every time a relayer is approved or disapproved by `setRelayerApproval`. */ event RelayerApprovalChanged(address indexed relayer, address indexed sender, bool approved); // Internal Balance // // Users can deposit tokens into the Vault, where they are allocated to their Internal Balance, and later // transferred or withdrawn. It can also be used as a source of tokens when joining Pools, as a destination // when exiting them, and as either when performing swaps. This usage of Internal Balance results in greatly reduced // gas costs when compared to relying on plain ERC20 transfers, leading to large savings for frequent users. // // Internal Balance management features batching, which means a single contract call can be used to perform multiple // operations of different kinds, with different senders and recipients, at once. /** * @dev Returns `user`'s Internal Balance for a set of tokens. */ function getInternalBalance(address user, IERC20[] memory tokens) external view returns (uint256[] memory); /** * @dev Performs a set of user balance operations, which involve Internal Balance (deposit, withdraw or transfer) * and plain ERC20 transfers using the Vault's allowance. This last feature is particularly useful for relayers, as * it lets integrators reuse a user's Vault allowance. * * For each operation, if the caller is not `sender`, it must be an authorized relayer for them. */ function manageUserBalance(UserBalanceOp[] memory ops) external payable; /** * @dev Data for `manageUserBalance` operations, which include the possibility for ETH to be sent and received without manual WETH wrapping or unwrapping. */ struct UserBalanceOp { UserBalanceOpKind kind; IAsset asset; uint256 amount; address sender; address payable recipient; } // There are four possible operations in `manageUserBalance`: // // - DEPOSIT_INTERNAL // Increases the Internal Balance of the `recipient` account by transferring tokens from the corresponding // `sender`. The sender must have allowed the Vault to use their tokens via `IERC20.approve()`. // // ETH can be used by passing the ETH sentinel value as the asset and forwarding ETH in the call: it will be wrapped // and deposited as WETH. Any ETH amount remaining will be sent back to the caller (not the sender, which is // relevant for relayers). // // Emits an `InternalBalanceChanged` event. // // // - WITHDRAW_INTERNAL // Decreases the Internal Balance of the `sender` account by transferring tokens to the `recipient`. // // ETH can be used by passing the ETH sentinel value as the asset. This will deduct WETH instead, unwrap it and send // it to the recipient as ETH. // // Emits an `InternalBalanceChanged` event. // // // - TRANSFER_INTERNAL // Transfers tokens from the Internal Balance of the `sender` account to the Internal Balance of `recipient`. // // Reverts if the ETH sentinel value is passed. // // Emits an `InternalBalanceChanged` event. // // // - TRANSFER_EXTERNAL // Transfers tokens from `sender` to `recipient`, using the Vault's ERC20 allowance. This is typically used by // relayers, as it lets them reuse a user's Vault allowance. // // Reverts if the ETH sentinel value is passed. // // Emits an `ExternalBalanceTransfer` event. enum UserBalanceOpKind { DEPOSIT_INTERNAL, WITHDRAW_INTERNAL, TRANSFER_INTERNAL, TRANSFER_EXTERNAL } /** * @dev Emitted when a user's Internal Balance changes, either from calls to `manageUserBalance`, or through * interacting with Pools using Internal Balance. * * Because Internal Balance works exclusively with ERC20 tokens, ETH deposits and withdrawals will use the WETH * address. */ event InternalBalanceChanged(address indexed user, IERC20 indexed token, int256 delta); /** * @dev Emitted when a user's Vault ERC20 allowance is used by the Vault to transfer tokens to an external account. */ event ExternalBalanceTransfer(IERC20 indexed token, address indexed sender, address recipient, uint256 amount); // Pools // // There are three specialization settings for Pools, which allow for cheaper swaps at the cost of reduced // functionality: // // - General: no specialization, suited for all Pools. IGeneralPool is used for swap request callbacks, passing the // balance of all tokens in the Pool. These Pools have the largest swap costs (because of the extra storage reads), // which increase with the number of registered tokens. // // - Minimal Swap Info: IMinimalSwapInfoPool is used instead of IGeneralPool, which saves gas by only passing the // balance of the two tokens involved in the swap. This is suitable for some pricing algorithms, like the weighted // constant product one popularized by Balancer V1. Swap costs are smaller compared to general Pools, and are // independent of the number of registered tokens. // // - Two Token: only allows two tokens to be registered. This achieves the lowest possible swap gas cost. Like // minimal swap info Pools, these are called via IMinimalSwapInfoPool. enum PoolSpecialization { GENERAL, MINIMAL_SWAP_INFO, TWO_TOKEN } /** * @dev Registers the caller account as a Pool with a given specialization setting. Returns the Pool's ID, which * is used in all Pool-related functions. Pools cannot be deregistered, nor can the Pool's specialization be * changed. * * The caller is expected to be a smart contract that implements either `IGeneralPool` or `IMinimalSwapInfoPool`, * depending on the chosen specialization setting. This contract is known as the Pool's contract. * * Note that the same contract may register itself as multiple Pools with unique Pool IDs, or in other words, * multiple Pools may share the same contract. * * Emits a `PoolRegistered` event. */ function registerPool(PoolSpecialization specialization) external returns (bytes32); /** * @dev Emitted when a Pool is registered by calling `registerPool`. */ event PoolRegistered(bytes32 indexed poolId, address indexed poolAddress, PoolSpecialization specialization); /** * @dev Returns a Pool's contract address and specialization setting. */ function getPool(bytes32 poolId) external view returns (address, PoolSpecialization); /** * @dev Registers `tokens` for the `poolId` Pool. Must be called by the Pool's contract. * * Pools can only interact with tokens they have registered. Users join a Pool by transferring registered tokens, * exit by receiving registered tokens, and can only swap registered tokens. * * Each token can only be registered once. For Pools with the Two Token specialization, `tokens` must have a length * of two, that is, both tokens must be registered in the same `registerTokens` call, and they must be sorted in * ascending order. * * The `tokens` and `assetManagers` arrays must have the same length, and each entry in these indicates the Asset * Manager for the corresponding token. Asset Managers can manage a Pool's tokens via `managePoolBalance`, * depositing and withdrawing them directly, and can even set their balance to arbitrary amounts. They are therefore * expected to be highly secured smart contracts with sound design principles, and the decision to register an * Asset Manager should not be made lightly. * * Pools can choose not to assign an Asset Manager to a given token by passing in the zero address. Once an Asset * Manager is set, it cannot be changed except by deregistering the associated token and registering again with a * different Asset Manager. * * Emits a `TokensRegistered` event. */ function registerTokens( bytes32 poolId, IERC20[] memory tokens, address[] memory assetManagers ) external; /** * @dev Emitted when a Pool registers tokens by calling `registerTokens`. */ event TokensRegistered(bytes32 indexed poolId, IERC20[] tokens, address[] assetManagers); /** * @dev Deregisters `tokens` for the `poolId` Pool. Must be called by the Pool's contract. * * Only registered tokens (via `registerTokens`) can be deregistered. Additionally, they must have zero total * balance. For Pools with the Two Token specialization, `tokens` must have a length of two, that is, both tokens * must be deregistered in the same `deregisterTokens` call. * * A deregistered token can be re-registered later on, possibly with a different Asset Manager. * * Emits a `TokensDeregistered` event. */ function deregisterTokens(bytes32 poolId, IERC20[] memory tokens) external; /** * @dev Emitted when a Pool deregisters tokens by calling `deregisterTokens`. */ event TokensDeregistered(bytes32 indexed poolId, IERC20[] tokens); /** * @dev Returns detailed information for a Pool's registered token. * * `cash` is the number of tokens the Vault currently holds for the Pool. `managed` is the number of tokens * withdrawn and held outside the Vault by the Pool's token Asset Manager. The Pool's total balance for `token` * equals the sum of `cash` and `managed`. * * Internally, `cash` and `managed` are stored using 112 bits. No action can ever cause a Pool's token `cash`, * `managed` or `total` balance to be greater than 2^112 - 1. * * `lastChangeBlock` is the number of the block in which `token`'s total balance was last modified (via either a * join, exit, swap, or Asset Manager update). This value is useful to avoid so-called 'sandwich attacks', for * example when developing price oracles. A change of zero (e.g. caused by a swap with amount zero) is considered a * change for this purpose, and will update `lastChangeBlock`. * * `assetManager` is the Pool's token Asset Manager. */ function getPoolTokenInfo(bytes32 poolId, IERC20 token) external view returns ( uint256 cash, uint256 managed, uint256 lastChangeBlock, address assetManager ); /** * @dev Returns a Pool's registered tokens, the total balance for each, and the latest block when *any* of * the tokens' `balances` changed. * * The order of the `tokens` array is the same order that will be used in `joinPool`, `exitPool`, as well as in all * Pool hooks (where applicable). Calls to `registerTokens` and `deregisterTokens` may change this order. * * If a Pool only registers tokens once, and these are sorted in ascending order, they will be stored in the same * order as passed to `registerTokens`. * * Total balances include both tokens held by the Vault and those withdrawn by the Pool's Asset Managers. These are * the amounts used by joins, exits and swaps. For a detailed breakdown of token balances, use `getPoolTokenInfo` * instead. */ function getPoolTokens(bytes32 poolId) external view returns ( IERC20[] memory tokens, uint256[] memory balances, uint256 lastChangeBlock ); /** * @dev Called by users to join a Pool, which transfers tokens from `sender` into the Pool's balance. This will * trigger custom Pool behavior, which will typically grant something in return to `recipient` - often tokenized * Pool shares. * * If the caller is not `sender`, it must be an authorized relayer for them. * * The `assets` and `maxAmountsIn` arrays must have the same length, and each entry indicates the maximum amount * to send for each asset. The amounts to send are decided by the Pool and not the Vault: it just enforces * these maximums. * * If joining a Pool that holds WETH, it is possible to send ETH directly: the Vault will do the wrapping. To enable * this mechanism, the IAsset sentinel value (the zero address) must be passed in the `assets` array instead of the * WETH address. Note that it is not possible to combine ETH and WETH in the same join. Any excess ETH will be sent * back to the caller (not the sender, which is important for relayers). * * `assets` must have the same length and order as the array returned by `getPoolTokens`. This prevents issues when * interacting with Pools that register and deregister tokens frequently. If sending ETH however, the array must be * sorted *before* replacing the WETH address with the ETH sentinel value (the zero address), which means the final * `assets` array might not be sorted. Pools with no registered tokens cannot be joined. * * If `fromInternalBalance` is true, the caller's Internal Balance will be preferred: ERC20 transfers will only * be made for the difference between the requested amount and Internal Balance (if any). Note that ETH cannot be * withdrawn from Internal Balance: attempting to do so will trigger a revert. * * This causes the Vault to call the `IBasePool.onJoinPool` hook on the Pool's contract, where Pools implement * their own custom logic. This typically requires additional information from the user (such as the expected number * of Pool shares). This can be encoded in the `userData` argument, which is ignored by the Vault and passed * directly to the Pool's contract, as is `recipient`. * * Emits a `PoolBalanceChanged` event. */ function joinPool( bytes32 poolId, address sender, address recipient, JoinPoolRequest memory request ) external payable; struct JoinPoolRequest { IAsset[] assets; uint256[] maxAmountsIn; bytes userData; bool fromInternalBalance; } /** * @dev Called by users to exit a Pool, which transfers tokens from the Pool's balance to `recipient`. This will * trigger custom Pool behavior, which will typically ask for something in return from `sender` - often tokenized * Pool shares. The amount of tokens that can be withdrawn is limited by the Pool's `cash` balance (see * `getPoolTokenInfo`). * * If the caller is not `sender`, it must be an authorized relayer for them. * * The `tokens` and `minAmountsOut` arrays must have the same length, and each entry in these indicates the minimum * token amount to receive for each token contract. The amounts to send are decided by the Pool and not the Vault: * it just enforces these minimums. * * If exiting a Pool that holds WETH, it is possible to receive ETH directly: the Vault will do the unwrapping. To * enable this mechanism, the IAsset sentinel value (the zero address) must be passed in the `assets` array instead * of the WETH address. Note that it is not possible to combine ETH and WETH in the same exit. * * `assets` must have the same length and order as the array returned by `getPoolTokens`. This prevents issues when * interacting with Pools that register and deregister tokens frequently. If receiving ETH however, the array must * be sorted *before* replacing the WETH address with the ETH sentinel value (the zero address), which means the * final `assets` array might not be sorted. Pools with no registered tokens cannot be exited. * * If `toInternalBalance` is true, the tokens will be deposited to `recipient`'s Internal Balance. Otherwise, * an ERC20 transfer will be performed. Note that ETH cannot be deposited to Internal Balance: attempting to * do so will trigger a revert. * * `minAmountsOut` is the minimum amount of tokens the user expects to get out of the Pool, for each token in the * `tokens` array. This array must match the Pool's registered tokens. * * This causes the Vault to call the `IBasePool.onExitPool` hook on the Pool's contract, where Pools implement * their own custom logic. This typically requires additional information from the user (such as the expected number * of Pool shares to return). This can be encoded in the `userData` argument, which is ignored by the Vault and * passed directly to the Pool's contract. * * Emits a `PoolBalanceChanged` event. */ function exitPool( bytes32 poolId, address sender, address payable recipient, ExitPoolRequest memory request ) external; struct ExitPoolRequest { IAsset[] assets; uint256[] minAmountsOut; bytes userData; bool toInternalBalance; } /** * @dev Emitted when a user joins or exits a Pool by calling `joinPool` or `exitPool`, respectively. */ event PoolBalanceChanged( bytes32 indexed poolId, address indexed liquidityProvider, IERC20[] tokens, int256[] deltas, uint256[] protocolFeeAmounts ); enum PoolBalanceChangeKind { JOIN, EXIT } // Swaps // // Users can swap tokens with Pools by calling the `swap` and `batchSwap` functions. To do this, // they need not trust Pool contracts in any way: all security checks are made by the Vault. They must however be // aware of the Pools' pricing algorithms in order to estimate the prices Pools will quote. // // The `swap` function executes a single swap, while `batchSwap` can perform multiple swaps in sequence. // In each individual swap, tokens of one kind are sent from the sender to the Pool (this is the 'token in'), // and tokens of another kind are sent from the Pool to the recipient in exchange (this is the 'token out'). // More complex swaps, such as one token in to multiple tokens out can be achieved by batching together // individual swaps. // // There are two swap kinds: // - 'given in' swaps, where the amount of tokens in (sent to the Pool) is known, and the Pool determines (via the // `onSwap` hook) the amount of tokens out (to send to the recipient). // - 'given out' swaps, where the amount of tokens out (received from the Pool) is known, and the Pool determines // (via the `onSwap` hook) the amount of tokens in (to receive from the sender). // // Additionally, it is possible to chain swaps using a placeholder input amount, which the Vault replaces with // the calculated output of the previous swap. If the previous swap was 'given in', this will be the calculated // tokenOut amount. If the previous swap was 'given out', it will use the calculated tokenIn amount. These extended // swaps are known as 'multihop' swaps, since they 'hop' through a number of intermediate tokens before arriving at // the final intended token. // // In all cases, tokens are only transferred in and out of the Vault (or withdrawn from and deposited into Internal // Balance) after all individual swaps have been completed, and the net token balance change computed. This makes // certain swap patterns, such as multihops, or swaps that interact with the same token pair in multiple Pools, cost // much less gas than they would otherwise. // // It also means that under certain conditions it is possible to perform arbitrage by swapping with multiple // Pools in a way that results in net token movement out of the Vault (profit), with no tokens being sent in (only // updating the Pool's internal accounting). // // To protect users from front-running or the market changing rapidly, they supply a list of 'limits' for each token // involved in the swap, where either the maximum number of tokens to send (by passing a positive value) or the // minimum amount of tokens to receive (by passing a negative value) is specified. // // Additionally, a 'deadline' timestamp can also be provided, forcing the swap to fail if it occurs after // this point in time (e.g. if the transaction failed to be included in a block promptly). // // If interacting with Pools that hold WETH, it is possible to both send and receive ETH directly: the Vault will do // the wrapping and unwrapping. To enable this mechanism, the IAsset sentinel value (the zero address) must be // passed in the `assets` array instead of the WETH address. Note that it is possible to combine ETH and WETH in the // same swap. Any excess ETH will be sent back to the caller (not the sender, which is relevant for relayers). // // Finally, Internal Balance can be used when either sending or receiving tokens. enum SwapKind { GIVEN_IN, GIVEN_OUT } /** * @dev Performs a swap with a single Pool. * * If the swap is 'given in' (the number of tokens to send to the Pool is known), it returns the amount of tokens * taken from the Pool, which must be greater than or equal to `limit`. * * If the swap is 'given out' (the number of tokens to take from the Pool is known), it returns the amount of tokens * sent to the Pool, which must be less than or equal to `limit`. * * Internal Balance usage and the recipient are determined by the `funds` struct. * * Emits a `Swap` event. */ function swap( SingleSwap memory singleSwap, FundManagement memory funds, uint256 limit, uint256 deadline ) external payable returns (uint256); /** * @dev Data for a single swap executed by `swap`. `amount` is either `amountIn` or `amountOut` depending on * the `kind` value. * * `assetIn` and `assetOut` are either token addresses, or the IAsset sentinel value for ETH (the zero address). * Note that Pools never interact with ETH directly: it will be wrapped to or unwrapped from WETH by the Vault. * * The `userData` field is ignored by the Vault, but forwarded to the Pool in the `onSwap` hook, and may be * used to extend swap behavior. */ struct SingleSwap { bytes32 poolId; SwapKind kind; IAsset assetIn; IAsset assetOut; uint256 amount; bytes userData; } /** * @dev Performs a series of swaps with one or multiple Pools. In each individual swap, the caller determines either * the amount of tokens sent to or received from the Pool, depending on the `kind` value. * * Returns an array with the net Vault asset balance deltas. Positive amounts represent tokens (or ETH) sent to the * Vault, and negative amounts represent tokens (or ETH) sent by the Vault. Each delta corresponds to the asset at * the same index in the `assets` array. * * Swaps are executed sequentially, in the order specified by the `swaps` array. Each array element describes a * Pool, the token to be sent to this Pool, the token to receive from it, and an amount that is either `amountIn` or * `amountOut` depending on the swap kind. * * Multihop swaps can be executed by passing an `amount` value of zero for a swap. This will cause the amount in/out * of the previous swap to be used as the amount in for the current one. In a 'given in' swap, 'tokenIn' must equal * the previous swap's `tokenOut`. For a 'given out' swap, `tokenOut` must equal the previous swap's `tokenIn`. * * The `assets` array contains the addresses of all assets involved in the swaps. These are either token addresses, * or the IAsset sentinel value for ETH (the zero address). Each entry in the `swaps` array specifies tokens in and * out by referencing an index in `assets`. Note that Pools never interact with ETH directly: it will be wrapped to * or unwrapped from WETH by the Vault. * * Internal Balance usage, sender, and recipient are determined by the `funds` struct. The `limits` array specifies * the minimum or maximum amount of each token the vault is allowed to transfer. * * `batchSwap` can be used to make a single swap, like `swap` does, but doing so requires more gas than the * equivalent `swap` call. * * Emits `Swap` events. */ function batchSwap( SwapKind kind, BatchSwapStep[] memory swaps, IAsset[] memory assets, FundManagement memory funds, int256[] memory limits, uint256 deadline ) external payable returns (int256[] memory); /** * @dev Data for each individual swap executed by `batchSwap`. The asset in and out fields are indexes into the * `assets` array passed to that function, and ETH assets are converted to WETH. * * If `amount` is zero, the multihop mechanism is used to determine the actual amount based on the amount in/out * from the previous swap, depending on the swap kind. * * The `userData` field is ignored by the Vault, but forwarded to the Pool in the `onSwap` hook, and may be * used to extend swap behavior. */ struct BatchSwapStep { bytes32 poolId; uint256 assetInIndex; uint256 assetOutIndex; uint256 amount; bytes userData; } /** * @dev Emitted for each individual swap performed by `swap` or `batchSwap`. */ event Swap( bytes32 indexed poolId, IERC20 indexed tokenIn, IERC20 indexed tokenOut, uint256 amountIn, uint256 amountOut ); /** * @dev All tokens in a swap are either sent from the `sender` account to the Vault, or from the Vault to the * `recipient` account. * * If the caller is not `sender`, it must be an authorized relayer for them. * * If `fromInternalBalance` is true, the `sender`'s Internal Balance will be preferred, performing an ERC20 * transfer for the difference between the requested amount and the User's Internal Balance (if any). The `sender` * must have allowed the Vault to use their tokens via `IERC20.approve()`. This matches the behavior of * `joinPool`. * * If `toInternalBalance` is true, tokens will be deposited to `recipient`'s internal balance instead of * transferred. This matches the behavior of `exitPool`. * * Note that ETH cannot be deposited to or withdrawn from Internal Balance: attempting to do so will trigger a * revert. */ struct FundManagement { address sender; bool fromInternalBalance; address payable recipient; bool toInternalBalance; } /** * @dev Simulates a call to `batchSwap`, returning an array of Vault asset deltas. Calls to `swap` cannot be * simulated directly, but an equivalent `batchSwap` call can and will yield the exact same result. * * Each element in the array corresponds to the asset at the same index, and indicates the number of tokens (or ETH) * the Vault would take from the sender (if positive) or send to the recipient (if negative). The arguments it * receives are the same that an equivalent `batchSwap` call would receive. * * Unlike `batchSwap`, this function performs no checks on the sender or recipient field in the `funds` struct. * This makes it suitable to be called by off-chain applications via eth_call without needing to hold tokens, * approve them for the Vault, or even know a user's address. * * Note that this function is not 'view' (due to implementation details): the client code must explicitly execute * eth_call instead of eth_sendTransaction. */ function queryBatchSwap( SwapKind kind, BatchSwapStep[] memory swaps, IAsset[] memory assets, FundManagement memory funds ) external returns (int256[] memory assetDeltas); // Flash Loans /** * @dev Performs a 'flash loan', sending tokens to `recipient`, executing the `receiveFlashLoan` hook on it, * and then reverting unless the tokens plus a proportional protocol fee have been returned. * * The `tokens` and `amounts` arrays must have the same length, and each entry in these indicates the loan amount * for each token contract. `tokens` must be sorted in ascending order. * * The 'userData' field is ignored by the Vault, and forwarded as-is to `recipient` as part of the * `receiveFlashLoan` call. * * Emits `FlashLoan` events. */ function flashLoan( IFlashLoanRecipient recipient, IERC20[] memory tokens, uint256[] memory amounts, bytes memory userData ) external; /** * @dev Emitted for each individual flash loan performed by `flashLoan`. */ event FlashLoan(IFlashLoanRecipient indexed recipient, IERC20 indexed token, uint256 amount, uint256 feeAmount); // Asset Management // // Each token registered for a Pool can be assigned an Asset Manager, which is able to freely withdraw the Pool's // tokens from the Vault, deposit them, or assign arbitrary values to its `managed` balance (see // `getPoolTokenInfo`). This makes them extremely powerful and dangerous. Even if an Asset Manager only directly // controls one of the tokens in a Pool, a malicious manager could set that token's balance to manipulate the // prices of the other tokens, and then drain the Pool with swaps. The risk of using Asset Managers is therefore // not constrained to the tokens they are managing, but extends to the entire Pool's holdings. // // However, a properly designed Asset Manager smart contract can be safely used for the Pool's benefit, // for example by lending unused tokens out for interest, or using them to participate in voting protocols. // // This concept is unrelated to the IAsset interface. /** * @dev Performs a set of Pool balance operations, which may be either withdrawals, deposits or updates. * * Pool Balance management features batching, which means a single contract call can be used to perform multiple * operations of different kinds, with different Pools and tokens, at once. * * For each operation, the caller must be registered as the Asset Manager for `token` in `poolId`. */ function managePoolBalance(PoolBalanceOp[] memory ops) external; struct PoolBalanceOp { PoolBalanceOpKind kind; bytes32 poolId; IERC20 token; uint256 amount; } /** * Withdrawals decrease the Pool's cash, but increase its managed balance, leaving the total balance unchanged. * * Deposits increase the Pool's cash, but decrease its managed balance, leaving the total balance unchanged. * * Updates don't affect the Pool's cash balance, but because the managed balance changes, it does alter the total. * The external amount can be either increased or decreased by this call (i.e., reporting a gain or a loss). */ enum PoolBalanceOpKind { WITHDRAW, DEPOSIT, UPDATE } /** * @dev Emitted when a Pool's token Asset Manager alters its balance via `managePoolBalance`. */ event PoolBalanceManaged( bytes32 indexed poolId, address indexed assetManager, IERC20 indexed token, int256 cashDelta, int256 managedDelta ); // Protocol Fees // // Some operations cause the Vault to collect tokens in the form of protocol fees, which can then be withdrawn by // permissioned accounts. // // There are two kinds of protocol fees: // // - flash loan fees: charged on all flash loans, as a percentage of the amounts lent. // // - swap fees: a percentage of the fees charged by Pools when performing swaps. For a number of reasons, including // swap gas costs and interface simplicity, protocol swap fees are not charged on each individual swap. Rather, // Pools are expected to keep track of how much they have charged in swap fees, and pay any outstanding debts to the // Vault when they are joined or exited. This prevents users from joining a Pool with unpaid debt, as well as // exiting a Pool in debt without first paying their share. /** * @dev Returns the current protocol fee module. */ function getProtocolFeesCollector() external view returns (IProtocolFeesCollector); /** * @dev Safety mechanism to pause most Vault operations in the event of an emergency - typically detection of an * error in some part of the system. * * The Vault can only be paused during an initial time period, after which pausing is forever disabled. * * While the contract is paused, the following features are disabled: * - depositing and transferring internal balance * - transferring external balance (using the Vault's allowance) * - swaps * - joining Pools * - Asset Manager interactions * * Internal Balance can still be withdrawn, and Pools exited. */ function setPaused(bool paused) external; /** * @dev Returns the Vault's WETH instance. */ function WETH() external view returns (IWETH); // solhint-disable-previous-line func-name-mixedcase }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; import "@balancer-labs/v2-interfaces/contracts/vault/IAuthorizer.sol"; import "@balancer-labs/v2-solidity-utils/contracts/helpers/Authentication.sol"; /** * @dev Base authorization layer implementation for Pools. * * The owner account can call some of the permissioned functions - access control of the rest is delegated to the * Authorizer. Note that this owner is immutable: more sophisticated permission schemes, such as multiple ownership, * granular roles, etc., could be built on top of this by making the owner a smart contract. * * Access control of all other permissioned functions is delegated to an Authorizer. It is also possible to delegate * control of *all* permissioned functions to the Authorizer by setting the owner address to `_DELEGATE_OWNER`. */ abstract contract BasePoolAuthorization is Authentication { address private immutable _owner; address internal constant _DELEGATE_OWNER = 0xBA1BA1ba1BA1bA1bA1Ba1BA1ba1BA1bA1ba1ba1B; constructor(address owner) { _owner = owner; } function getOwner() public view returns (address) { return _owner; } function getAuthorizer() external view returns (IAuthorizer) { return _getAuthorizer(); } function _canPerform(bytes32 actionId, address account) internal view override returns (bool) { if ((getOwner() != _DELEGATE_OWNER) && _isOwnerOnlyAction(actionId)) { // Only the owner can perform "owner only" actions, unless the owner is delegated. return msg.sender == getOwner(); } else { // Non-owner actions are always processed via the Authorizer, as "owner only" ones are when delegated. return _getAuthorizer().canPerform(actionId, account, address(this)); } } function _isOwnerOnlyAction(bytes32) internal view virtual returns (bool) { return false; } function _getAuthorizer() internal view virtual returns (IAuthorizer); }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; import "@balancer-labs/v2-interfaces/contracts/solidity-utils/helpers/BalancerErrors.sol"; import "@balancer-labs/v2-interfaces/contracts/solidity-utils/helpers/IAuthentication.sol"; /** * @dev Building block for performing access control on external functions. * * This contract is used via the `authenticate` modifier (or the `_authenticateCaller` function), which can be applied * to external functions to only make them callable by authorized accounts. * * Derived contracts must implement the `_canPerform` function, which holds the actual access control logic. */ abstract contract Authentication is IAuthentication { bytes32 private immutable _actionIdDisambiguator; /** * @dev The main purpose of the `actionIdDisambiguator` is to prevent accidental function selector collisions in * multi contract systems. * * There are two main uses for it: * - if the contract is a singleton, any unique identifier can be used to make the associated action identifiers * unique. The contract's own address is a good option. * - if the contract belongs to a family that shares action identifiers for the same functions, an identifier * shared by the entire family (and no other contract) should be used instead. */ constructor(bytes32 actionIdDisambiguator) { _actionIdDisambiguator = actionIdDisambiguator; } /** * @dev Reverts unless the caller is allowed to call this function. Should only be applied to external functions. */ modifier authenticate() { _authenticateCaller(); _; } /** * @dev Reverts unless the caller is allowed to call the entry point function. */ function _authenticateCaller() internal view { bytes32 actionId = getActionId(msg.sig); _require(_canPerform(actionId, msg.sender), Errors.SENDER_NOT_ALLOWED); } function getActionId(bytes4 selector) public view override returns (bytes32) { // Each external function is dynamically assigned an action identifier as the hash of the disambiguator and the // function selector. Disambiguation is necessary to avoid potential collisions in the function selectors of // multiple contracts. return keccak256(abi.encodePacked(_actionIdDisambiguator, selector)); } function _canPerform(bytes32 actionId, address user) internal view virtual returns (bool); }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; import "@balancer-labs/v2-interfaces/contracts/solidity-utils/openzeppelin/IERC20.sol"; import "@balancer-labs/v2-interfaces/contracts/solidity-utils/helpers/BalancerErrors.sol"; library InputHelpers { function ensureInputLengthMatch(uint256 a, uint256 b) internal pure { _require(a == b, Errors.INPUT_LENGTH_MISMATCH); } function ensureInputLengthMatch( uint256 a, uint256 b, uint256 c ) internal pure { _require(a == b && b == c, Errors.INPUT_LENGTH_MISMATCH); } function ensureArrayIsSorted(IERC20[] memory array) internal pure { address[] memory addressArray; // solhint-disable-next-line no-inline-assembly assembly { addressArray := array } ensureArrayIsSorted(addressArray); } function ensureArrayIsSorted(address[] memory array) internal pure { if (array.length < 2) { return; } address previous = array[0]; for (uint256 i = 1; i < array.length; ++i) { address current = array[i]; _require(previous < current, Errors.UNSORTED_ARRAY); previous = current; } } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; import "../math/FixedPoint.sol"; import "../math/Math.sol"; import "../openzeppelin/ERC20.sol"; import "./InputHelpers.sol"; // solhint-disable // To simplify Pool logic, all token balances and amounts are normalized to behave as if the token had 18 decimals. // e.g. When comparing DAI (18 decimals) and USDC (6 decimals), 1 USDC and 1 DAI would both be represented as 1e18, // whereas without scaling 1 USDC would be represented as 1e6. // This allows us to not consider differences in token decimals in the internal Pool maths, simplifying it greatly. // Single Value /** * @dev Applies `scalingFactor` to `amount`, resulting in a larger or equal value depending on whether it needed * scaling or not. */ function _upscale(uint256 amount, uint256 scalingFactor) pure returns (uint256) { // Upscale rounding wouldn't necessarily always go in the same direction: in a swap for example the balance of // token in should be rounded up, and that of token out rounded down. This is the only place where we round in // the same direction for all amounts, as the impact of this rounding is expected to be minimal. return FixedPoint.mulDown(amount, scalingFactor); } /** * @dev Reverses the `scalingFactor` applied to `amount`, resulting in a smaller or equal value depending on * whether it needed scaling or not. The result is rounded down. */ function _downscaleDown(uint256 amount, uint256 scalingFactor) pure returns (uint256) { return FixedPoint.divDown(amount, scalingFactor); } /** * @dev Reverses the `scalingFactor` applied to `amount`, resulting in a smaller or equal value depending on * whether it needed scaling or not. The result is rounded up. */ function _downscaleUp(uint256 amount, uint256 scalingFactor) pure returns (uint256) { return FixedPoint.divUp(amount, scalingFactor); } // Array /** * @dev Same as `_upscale`, but for an entire array. This function does not return anything, but instead *mutates* * the `amounts` array. */ function _upscaleArray(uint256[] memory amounts, uint256[] memory scalingFactors) pure { uint256 length = amounts.length; InputHelpers.ensureInputLengthMatch(length, scalingFactors.length); for (uint256 i = 0; i < length; ++i) { amounts[i] = FixedPoint.mulDown(amounts[i], scalingFactors[i]); } } /** * @dev Same as `_downscaleDown`, but for an entire array. This function does not return anything, but instead * *mutates* the `amounts` array. */ function _downscaleDownArray(uint256[] memory amounts, uint256[] memory scalingFactors) pure { uint256 length = amounts.length; InputHelpers.ensureInputLengthMatch(length, scalingFactors.length); for (uint256 i = 0; i < length; ++i) { amounts[i] = FixedPoint.divDown(amounts[i], scalingFactors[i]); } } /** * @dev Same as `_downscaleUp`, but for an entire array. This function does not return anything, but instead * *mutates* the `amounts` array. */ function _downscaleUpArray(uint256[] memory amounts, uint256[] memory scalingFactors) pure { uint256 length = amounts.length; InputHelpers.ensureInputLengthMatch(length, scalingFactors.length); for (uint256 i = 0; i < length; ++i) { amounts[i] = FixedPoint.divUp(amounts[i], scalingFactors[i]); } } function _computeScalingFactor(IERC20 token) view returns (uint256) { // Tokens that don't implement the `decimals` method are not supported. uint256 tokenDecimals = ERC20(address(token)).decimals(); // Tokens with more than 18 decimals are not supported. uint256 decimalsDifference = Math.sub(18, tokenDecimals); return FixedPoint.ONE * 10**decimalsDifference; }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; import "@balancer-labs/v2-interfaces/contracts/solidity-utils/helpers/BalancerErrors.sol"; import "./LogExpMath.sol"; /* solhint-disable private-vars-leading-underscore */ library FixedPoint { // solhint-disable no-inline-assembly uint256 internal constant ONE = 1e18; // 18 decimal places uint256 internal constant TWO = 2 * ONE; uint256 internal constant FOUR = 4 * ONE; uint256 internal constant MAX_POW_RELATIVE_ERROR = 10000; // 10^(-14) // Minimum base for the power function when the exponent is 'free' (larger than ONE). uint256 internal constant MIN_POW_BASE_FREE_EXPONENT = 0.7e18; function add(uint256 a, uint256 b) internal pure returns (uint256) { // Fixed Point addition is the same as regular checked addition uint256 c = a + b; _require(c >= a, Errors.ADD_OVERFLOW); return c; } function sub(uint256 a, uint256 b) internal pure returns (uint256) { // Fixed Point addition is the same as regular checked addition _require(b <= a, Errors.SUB_OVERFLOW); uint256 c = a - b; return c; } function mulDown(uint256 a, uint256 b) internal pure returns (uint256) { uint256 product = a * b; _require(a == 0 || product / a == b, Errors.MUL_OVERFLOW); return product / ONE; } function mulUp(uint256 a, uint256 b) internal pure returns (uint256 result) { uint256 product = a * b; _require(a == 0 || product / a == b, Errors.MUL_OVERFLOW); // The traditional divUp formula is: // divUp(x, y) := (x + y - 1) / y // To avoid intermediate overflow in the addition, we distribute the division and get: // divUp(x, y) := (x - 1) / y + 1 // Note that this requires x != 0, if x == 0 then the result is zero // // Equivalent to: // result = product == 0 ? 0 : ((product - 1) / FixedPoint.ONE) + 1; assembly { result := mul(iszero(iszero(product)), add(div(sub(product, 1), ONE), 1)) } } function divDown(uint256 a, uint256 b) internal pure returns (uint256) { _require(b != 0, Errors.ZERO_DIVISION); uint256 aInflated = a * ONE; _require(a == 0 || aInflated / a == ONE, Errors.DIV_INTERNAL); // mul overflow return aInflated / b; } function divUp(uint256 a, uint256 b) internal pure returns (uint256 result) { _require(b != 0, Errors.ZERO_DIVISION); uint256 aInflated = a * ONE; _require(a == 0 || aInflated / a == ONE, Errors.DIV_INTERNAL); // mul overflow // The traditional divUp formula is: // divUp(x, y) := (x + y - 1) / y // To avoid intermediate overflow in the addition, we distribute the division and get: // divUp(x, y) := (x - 1) / y + 1 // Note that this requires x != 0, if x == 0 then the result is zero // // Equivalent to: // result = a == 0 ? 0 : (a * FixedPoint.ONE - 1) / b + 1; assembly { result := mul(iszero(iszero(aInflated)), add(div(sub(aInflated, 1), b), 1)) } } /** * @dev Returns x^y, assuming both are fixed point numbers, rounding down. The result is guaranteed to not be above * the true value (that is, the error function expected - actual is always positive). */ function powDown(uint256 x, uint256 y) internal pure returns (uint256) { // Optimize for when y equals 1.0, 2.0 or 4.0, as those are very simple to implement and occur often in 50/50 // and 80/20 Weighted Pools if (y == ONE) { return x; } else if (y == TWO) { return mulDown(x, x); } else if (y == FOUR) { uint256 square = mulDown(x, x); return mulDown(square, square); } else { uint256 raw = LogExpMath.pow(x, y); uint256 maxError = add(mulUp(raw, MAX_POW_RELATIVE_ERROR), 1); if (raw < maxError) { return 0; } else { return sub(raw, maxError); } } } /** * @dev Returns x^y, assuming both are fixed point numbers, rounding up. The result is guaranteed to not be below * the true value (that is, the error function expected - actual is always negative). */ function powUp(uint256 x, uint256 y) internal pure returns (uint256) { // Optimize for when y equals 1.0, 2.0 or 4.0, as those are very simple to implement and occur often in 50/50 // and 80/20 Weighted Pools if (y == ONE) { return x; } else if (y == TWO) { return mulUp(x, x); } else if (y == FOUR) { uint256 square = mulUp(x, x); return mulUp(square, square); } else { uint256 raw = LogExpMath.pow(x, y); uint256 maxError = add(mulUp(raw, MAX_POW_RELATIVE_ERROR), 1); return add(raw, maxError); } } /** * @dev Returns the complement of a value (1 - x), capped to 0 if x is larger than 1. * * Useful when computing the complement for values with some level of relative error, as it strips this error and * prevents intermediate negative values. */ function complement(uint256 x) internal pure returns (uint256 result) { // Equivalent to: // result = (x < ONE) ? (ONE - x) : 0; assembly { result := mul(lt(x, ONE), sub(ONE, x)) } } }
// SPDX-License-Identifier: MIT // Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated // documentation files (the “Software”), to deal in the Software without restriction, including without limitation the // rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to // permit persons to whom the Software is furnished to do so, subject to the following conditions: // The above copyright notice and this permission notice shall be included in all copies or substantial portions of the // Software. // THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE // WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR // COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR // OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. pragma solidity ^0.7.0; import "@balancer-labs/v2-interfaces/contracts/solidity-utils/helpers/BalancerErrors.sol"; /* solhint-disable */ /** * @dev Exponentiation and logarithm functions for 18 decimal fixed point numbers (both base and exponent/argument). * * Exponentiation and logarithm with arbitrary bases (x^y and log_x(y)) are implemented by conversion to natural * exponentiation and logarithm (where the base is Euler's number). * * @author Fernando Martinelli - @fernandomartinelli * @author Sergio Yuhjtman - @sergioyuhjtman * @author Daniel Fernandez - @dmf7z */ library LogExpMath { // All fixed point multiplications and divisions are inlined. This means we need to divide by ONE when multiplying // two numbers, and multiply by ONE when dividing them. // All arguments and return values are 18 decimal fixed point numbers. int256 constant ONE_18 = 1e18; // Internally, intermediate values are computed with higher precision as 20 decimal fixed point numbers, and in the // case of ln36, 36 decimals. int256 constant ONE_20 = 1e20; int256 constant ONE_36 = 1e36; // The domain of natural exponentiation is bound by the word size and number of decimals used. // // Because internally the result will be stored using 20 decimals, the largest possible result is // (2^255 - 1) / 10^20, which makes the largest exponent ln((2^255 - 1) / 10^20) = 130.700829182905140221. // The smallest possible result is 10^(-18), which makes largest negative argument // ln(10^(-18)) = -41.446531673892822312. // We use 130.0 and -41.0 to have some safety margin. int256 constant MAX_NATURAL_EXPONENT = 130e18; int256 constant MIN_NATURAL_EXPONENT = -41e18; // Bounds for ln_36's argument. Both ln(0.9) and ln(1.1) can be represented with 36 decimal places in a fixed point // 256 bit integer. int256 constant LN_36_LOWER_BOUND = ONE_18 - 1e17; int256 constant LN_36_UPPER_BOUND = ONE_18 + 1e17; uint256 constant MILD_EXPONENT_BOUND = 2**254 / uint256(ONE_20); // 18 decimal constants int256 constant x0 = 128000000000000000000; // 2ˆ7 int256 constant a0 = 38877084059945950922200000000000000000000000000000000000; // eˆ(x0) (no decimals) int256 constant x1 = 64000000000000000000; // 2ˆ6 int256 constant a1 = 6235149080811616882910000000; // eˆ(x1) (no decimals) // 20 decimal constants int256 constant x2 = 3200000000000000000000; // 2ˆ5 int256 constant a2 = 7896296018268069516100000000000000; // eˆ(x2) int256 constant x3 = 1600000000000000000000; // 2ˆ4 int256 constant a3 = 888611052050787263676000000; // eˆ(x3) int256 constant x4 = 800000000000000000000; // 2ˆ3 int256 constant a4 = 298095798704172827474000; // eˆ(x4) int256 constant x5 = 400000000000000000000; // 2ˆ2 int256 constant a5 = 5459815003314423907810; // eˆ(x5) int256 constant x6 = 200000000000000000000; // 2ˆ1 int256 constant a6 = 738905609893065022723; // eˆ(x6) int256 constant x7 = 100000000000000000000; // 2ˆ0 int256 constant a7 = 271828182845904523536; // eˆ(x7) int256 constant x8 = 50000000000000000000; // 2ˆ-1 int256 constant a8 = 164872127070012814685; // eˆ(x8) int256 constant x9 = 25000000000000000000; // 2ˆ-2 int256 constant a9 = 128402541668774148407; // eˆ(x9) int256 constant x10 = 12500000000000000000; // 2ˆ-3 int256 constant a10 = 113314845306682631683; // eˆ(x10) int256 constant x11 = 6250000000000000000; // 2ˆ-4 int256 constant a11 = 106449445891785942956; // eˆ(x11) /** * @dev Exponentiation (x^y) with unsigned 18 decimal fixed point base and exponent. * * Reverts if ln(x) * y is smaller than `MIN_NATURAL_EXPONENT`, or larger than `MAX_NATURAL_EXPONENT`. */ function pow(uint256 x, uint256 y) internal pure returns (uint256) { if (y == 0) { // We solve the 0^0 indetermination by making it equal one. return uint256(ONE_18); } if (x == 0) { return 0; } // Instead of computing x^y directly, we instead rely on the properties of logarithms and exponentiation to // arrive at that result. In particular, exp(ln(x)) = x, and ln(x^y) = y * ln(x). This means // x^y = exp(y * ln(x)). // The ln function takes a signed value, so we need to make sure x fits in the signed 256 bit range. _require(x >> 255 == 0, Errors.X_OUT_OF_BOUNDS); int256 x_int256 = int256(x); // We will compute y * ln(x) in a single step. Depending on the value of x, we can either use ln or ln_36. In // both cases, we leave the division by ONE_18 (due to fixed point multiplication) to the end. // This prevents y * ln(x) from overflowing, and at the same time guarantees y fits in the signed 256 bit range. _require(y < MILD_EXPONENT_BOUND, Errors.Y_OUT_OF_BOUNDS); int256 y_int256 = int256(y); int256 logx_times_y; if (LN_36_LOWER_BOUND < x_int256 && x_int256 < LN_36_UPPER_BOUND) { int256 ln_36_x = _ln_36(x_int256); // ln_36_x has 36 decimal places, so multiplying by y_int256 isn't as straightforward, since we can't just // bring y_int256 to 36 decimal places, as it might overflow. Instead, we perform two 18 decimal // multiplications and add the results: one with the first 18 decimals of ln_36_x, and one with the // (downscaled) last 18 decimals. logx_times_y = ((ln_36_x / ONE_18) * y_int256 + ((ln_36_x % ONE_18) * y_int256) / ONE_18); } else { logx_times_y = _ln(x_int256) * y_int256; } logx_times_y /= ONE_18; // Finally, we compute exp(y * ln(x)) to arrive at x^y _require( MIN_NATURAL_EXPONENT <= logx_times_y && logx_times_y <= MAX_NATURAL_EXPONENT, Errors.PRODUCT_OUT_OF_BOUNDS ); return uint256(exp(logx_times_y)); } /** * @dev Natural exponentiation (e^x) with signed 18 decimal fixed point exponent. * * Reverts if `x` is smaller than MIN_NATURAL_EXPONENT, or larger than `MAX_NATURAL_EXPONENT`. */ function exp(int256 x) internal pure returns (int256) { _require(x >= MIN_NATURAL_EXPONENT && x <= MAX_NATURAL_EXPONENT, Errors.INVALID_EXPONENT); if (x < 0) { // We only handle positive exponents: e^(-x) is computed as 1 / e^x. We can safely make x positive since it // fits in the signed 256 bit range (as it is larger than MIN_NATURAL_EXPONENT). // Fixed point division requires multiplying by ONE_18. return ((ONE_18 * ONE_18) / exp(-x)); } // First, we use the fact that e^(x+y) = e^x * e^y to decompose x into a sum of powers of two, which we call x_n, // where x_n == 2^(7 - n), and e^x_n = a_n has been precomputed. We choose the first x_n, x0, to equal 2^7 // because all larger powers are larger than MAX_NATURAL_EXPONENT, and therefore not present in the // decomposition. // At the end of this process we will have the product of all e^x_n = a_n that apply, and the remainder of this // decomposition, which will be lower than the smallest x_n. // exp(x) = k_0 * a_0 * k_1 * a_1 * ... + k_n * a_n * exp(remainder), where each k_n equals either 0 or 1. // We mutate x by subtracting x_n, making it the remainder of the decomposition. // The first two a_n (e^(2^7) and e^(2^6)) are too large if stored as 18 decimal numbers, and could cause // intermediate overflows. Instead we store them as plain integers, with 0 decimals. // Additionally, x0 + x1 is larger than MAX_NATURAL_EXPONENT, which means they will not both be present in the // decomposition. // For each x_n, we test if that term is present in the decomposition (if x is larger than it), and if so deduct // it and compute the accumulated product. int256 firstAN; if (x >= x0) { x -= x0; firstAN = a0; } else if (x >= x1) { x -= x1; firstAN = a1; } else { firstAN = 1; // One with no decimal places } // We now transform x into a 20 decimal fixed point number, to have enhanced precision when computing the // smaller terms. x *= 100; // `product` is the accumulated product of all a_n (except a0 and a1), which starts at 20 decimal fixed point // one. Recall that fixed point multiplication requires dividing by ONE_20. int256 product = ONE_20; if (x >= x2) { x -= x2; product = (product * a2) / ONE_20; } if (x >= x3) { x -= x3; product = (product * a3) / ONE_20; } if (x >= x4) { x -= x4; product = (product * a4) / ONE_20; } if (x >= x5) { x -= x5; product = (product * a5) / ONE_20; } if (x >= x6) { x -= x6; product = (product * a6) / ONE_20; } if (x >= x7) { x -= x7; product = (product * a7) / ONE_20; } if (x >= x8) { x -= x8; product = (product * a8) / ONE_20; } if (x >= x9) { x -= x9; product = (product * a9) / ONE_20; } // x10 and x11 are unnecessary here since we have high enough precision already. // Now we need to compute e^x, where x is small (in particular, it is smaller than x9). We use the Taylor series // expansion for e^x: 1 + x + (x^2 / 2!) + (x^3 / 3!) + ... + (x^n / n!). int256 seriesSum = ONE_20; // The initial one in the sum, with 20 decimal places. int256 term; // Each term in the sum, where the nth term is (x^n / n!). // The first term is simply x. term = x; seriesSum += term; // Each term (x^n / n!) equals the previous one times x, divided by n. Since x is a fixed point number, // multiplying by it requires dividing by ONE_20, but dividing by the non-fixed point n values does not. term = ((term * x) / ONE_20) / 2; seriesSum += term; term = ((term * x) / ONE_20) / 3; seriesSum += term; term = ((term * x) / ONE_20) / 4; seriesSum += term; term = ((term * x) / ONE_20) / 5; seriesSum += term; term = ((term * x) / ONE_20) / 6; seriesSum += term; term = ((term * x) / ONE_20) / 7; seriesSum += term; term = ((term * x) / ONE_20) / 8; seriesSum += term; term = ((term * x) / ONE_20) / 9; seriesSum += term; term = ((term * x) / ONE_20) / 10; seriesSum += term; term = ((term * x) / ONE_20) / 11; seriesSum += term; term = ((term * x) / ONE_20) / 12; seriesSum += term; // 12 Taylor terms are sufficient for 18 decimal precision. // We now have the first a_n (with no decimals), and the product of all other a_n present, and the Taylor // approximation of the exponentiation of the remainder (both with 20 decimals). All that remains is to multiply // all three (one 20 decimal fixed point multiplication, dividing by ONE_20, and one integer multiplication), // and then drop two digits to return an 18 decimal value. return (((product * seriesSum) / ONE_20) * firstAN) / 100; } /** * @dev Logarithm (log(arg, base), with signed 18 decimal fixed point base and argument. */ function log(int256 arg, int256 base) internal pure returns (int256) { // This performs a simple base change: log(arg, base) = ln(arg) / ln(base). // Both logBase and logArg are computed as 36 decimal fixed point numbers, either by using ln_36, or by // upscaling. int256 logBase; if (LN_36_LOWER_BOUND < base && base < LN_36_UPPER_BOUND) { logBase = _ln_36(base); } else { logBase = _ln(base) * ONE_18; } int256 logArg; if (LN_36_LOWER_BOUND < arg && arg < LN_36_UPPER_BOUND) { logArg = _ln_36(arg); } else { logArg = _ln(arg) * ONE_18; } // When dividing, we multiply by ONE_18 to arrive at a result with 18 decimal places return (logArg * ONE_18) / logBase; } /** * @dev Natural logarithm (ln(a)) with signed 18 decimal fixed point argument. */ function ln(int256 a) internal pure returns (int256) { // The real natural logarithm is not defined for negative numbers or zero. _require(a > 0, Errors.OUT_OF_BOUNDS); if (LN_36_LOWER_BOUND < a && a < LN_36_UPPER_BOUND) { return _ln_36(a) / ONE_18; } else { return _ln(a); } } /** * @dev Internal natural logarithm (ln(a)) with signed 18 decimal fixed point argument. */ function _ln(int256 a) private pure returns (int256) { if (a < ONE_18) { // Since ln(a^k) = k * ln(a), we can compute ln(a) as ln(a) = ln((1/a)^(-1)) = - ln((1/a)). If a is less // than one, 1/a will be greater than one, and this if statement will not be entered in the recursive call. // Fixed point division requires multiplying by ONE_18. return (-_ln((ONE_18 * ONE_18) / a)); } // First, we use the fact that ln^(a * b) = ln(a) + ln(b) to decompose ln(a) into a sum of powers of two, which // we call x_n, where x_n == 2^(7 - n), which are the natural logarithm of precomputed quantities a_n (that is, // ln(a_n) = x_n). We choose the first x_n, x0, to equal 2^7 because the exponential of all larger powers cannot // be represented as 18 fixed point decimal numbers in 256 bits, and are therefore larger than a. // At the end of this process we will have the sum of all x_n = ln(a_n) that apply, and the remainder of this // decomposition, which will be lower than the smallest a_n. // ln(a) = k_0 * x_0 + k_1 * x_1 + ... + k_n * x_n + ln(remainder), where each k_n equals either 0 or 1. // We mutate a by subtracting a_n, making it the remainder of the decomposition. // For reasons related to how `exp` works, the first two a_n (e^(2^7) and e^(2^6)) are not stored as fixed point // numbers with 18 decimals, but instead as plain integers with 0 decimals, so we need to multiply them by // ONE_18 to convert them to fixed point. // For each a_n, we test if that term is present in the decomposition (if a is larger than it), and if so divide // by it and compute the accumulated sum. int256 sum = 0; if (a >= a0 * ONE_18) { a /= a0; // Integer, not fixed point division sum += x0; } if (a >= a1 * ONE_18) { a /= a1; // Integer, not fixed point division sum += x1; } // All other a_n and x_n are stored as 20 digit fixed point numbers, so we convert the sum and a to this format. sum *= 100; a *= 100; // Because further a_n are 20 digit fixed point numbers, we multiply by ONE_20 when dividing by them. if (a >= a2) { a = (a * ONE_20) / a2; sum += x2; } if (a >= a3) { a = (a * ONE_20) / a3; sum += x3; } if (a >= a4) { a = (a * ONE_20) / a4; sum += x4; } if (a >= a5) { a = (a * ONE_20) / a5; sum += x5; } if (a >= a6) { a = (a * ONE_20) / a6; sum += x6; } if (a >= a7) { a = (a * ONE_20) / a7; sum += x7; } if (a >= a8) { a = (a * ONE_20) / a8; sum += x8; } if (a >= a9) { a = (a * ONE_20) / a9; sum += x9; } if (a >= a10) { a = (a * ONE_20) / a10; sum += x10; } if (a >= a11) { a = (a * ONE_20) / a11; sum += x11; } // a is now a small number (smaller than a_11, which roughly equals 1.06). This means we can use a Taylor series // that converges rapidly for values of `a` close to one - the same one used in ln_36. // Let z = (a - 1) / (a + 1). // ln(a) = 2 * (z + z^3 / 3 + z^5 / 5 + z^7 / 7 + ... + z^(2 * n + 1) / (2 * n + 1)) // Recall that 20 digit fixed point division requires multiplying by ONE_20, and multiplication requires // division by ONE_20. int256 z = ((a - ONE_20) * ONE_20) / (a + ONE_20); int256 z_squared = (z * z) / ONE_20; // num is the numerator of the series: the z^(2 * n + 1) term int256 num = z; // seriesSum holds the accumulated sum of each term in the series, starting with the initial z int256 seriesSum = num; // In each step, the numerator is multiplied by z^2 num = (num * z_squared) / ONE_20; seriesSum += num / 3; num = (num * z_squared) / ONE_20; seriesSum += num / 5; num = (num * z_squared) / ONE_20; seriesSum += num / 7; num = (num * z_squared) / ONE_20; seriesSum += num / 9; num = (num * z_squared) / ONE_20; seriesSum += num / 11; // 6 Taylor terms are sufficient for 36 decimal precision. // Finally, we multiply by 2 (non fixed point) to compute ln(remainder) seriesSum *= 2; // We now have the sum of all x_n present, and the Taylor approximation of the logarithm of the remainder (both // with 20 decimals). All that remains is to sum these two, and then drop two digits to return a 18 decimal // value. return (sum + seriesSum) / 100; } /** * @dev Intrnal high precision (36 decimal places) natural logarithm (ln(x)) with signed 18 decimal fixed point argument, * for x close to one. * * Should only be used if x is between LN_36_LOWER_BOUND and LN_36_UPPER_BOUND. */ function _ln_36(int256 x) private pure returns (int256) { // Since ln(1) = 0, a value of x close to one will yield a very small result, which makes using 36 digits // worthwhile. // First, we transform x to a 36 digit fixed point value. x *= ONE_18; // We will use the following Taylor expansion, which converges very rapidly. Let z = (x - 1) / (x + 1). // ln(x) = 2 * (z + z^3 / 3 + z^5 / 5 + z^7 / 7 + ... + z^(2 * n + 1) / (2 * n + 1)) // Recall that 36 digit fixed point division requires multiplying by ONE_36, and multiplication requires // division by ONE_36. int256 z = ((x - ONE_36) * ONE_36) / (x + ONE_36); int256 z_squared = (z * z) / ONE_36; // num is the numerator of the series: the z^(2 * n + 1) term int256 num = z; // seriesSum holds the accumulated sum of each term in the series, starting with the initial z int256 seriesSum = num; // In each step, the numerator is multiplied by z^2 num = (num * z_squared) / ONE_36; seriesSum += num / 3; num = (num * z_squared) / ONE_36; seriesSum += num / 5; num = (num * z_squared) / ONE_36; seriesSum += num / 7; num = (num * z_squared) / ONE_36; seriesSum += num / 9; num = (num * z_squared) / ONE_36; seriesSum += num / 11; num = (num * z_squared) / ONE_36; seriesSum += num / 13; num = (num * z_squared) / ONE_36; seriesSum += num / 15; // 8 Taylor terms are sufficient for 36 decimal precision. // All that remains is multiplying by 2 (non fixed point). return seriesSum * 2; } }
// SPDX-License-Identifier: MIT pragma solidity ^0.7.0; import "@balancer-labs/v2-interfaces/contracts/solidity-utils/helpers/BalancerErrors.sol"; /** * @dev Wrappers over Solidity's arithmetic operations with added overflow checks. * Adapted from OpenZeppelin's SafeMath library. */ library Math { // solhint-disable no-inline-assembly /** * @dev Returns the absolute value of a signed integer. */ function abs(int256 a) internal pure returns (uint256 result) { // Equivalent to: // result = a > 0 ? uint256(a) : uint256(-a) assembly { let s := sar(255, a) result := sub(xor(a, s), s) } } /** * @dev Returns the addition of two unsigned integers of 256 bits, reverting on overflow. */ function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; _require(c >= a, Errors.ADD_OVERFLOW); return c; } /** * @dev Returns the addition of two signed integers, reverting on overflow. */ function add(int256 a, int256 b) internal pure returns (int256) { int256 c = a + b; _require((b >= 0 && c >= a) || (b < 0 && c < a), Errors.ADD_OVERFLOW); return c; } /** * @dev Returns the subtraction of two unsigned integers of 256 bits, reverting on overflow. */ function sub(uint256 a, uint256 b) internal pure returns (uint256) { _require(b <= a, Errors.SUB_OVERFLOW); uint256 c = a - b; return c; } /** * @dev Returns the subtraction of two signed integers, reverting on overflow. */ function sub(int256 a, int256 b) internal pure returns (int256) { int256 c = a - b; _require((b >= 0 && c <= a) || (b < 0 && c > a), Errors.SUB_OVERFLOW); return c; } /** * @dev Returns the largest of two numbers of 256 bits. */ function max(uint256 a, uint256 b) internal pure returns (uint256 result) { // Equivalent to: // result = (a < b) ? b : a; assembly { result := sub(a, mul(sub(a, b), lt(a, b))) } } /** * @dev Returns the smallest of two numbers of 256 bits. */ function min(uint256 a, uint256 b) internal pure returns (uint256 result) { // Equivalent to `result = (a < b) ? a : b` assembly { result := sub(a, mul(sub(a, b), gt(a, b))) } } function mul(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a * b; _require(a == 0 || c / a == b, Errors.MUL_OVERFLOW); return c; } function div( uint256 a, uint256 b, bool roundUp ) internal pure returns (uint256) { return roundUp ? divUp(a, b) : divDown(a, b); } function divDown(uint256 a, uint256 b) internal pure returns (uint256) { _require(b != 0, Errors.ZERO_DIVISION); return a / b; } function divUp(uint256 a, uint256 b) internal pure returns (uint256 result) { _require(b != 0, Errors.ZERO_DIVISION); // Equivalent to: // result = a == 0 ? 0 : 1 + (a - 1) / b; assembly { result := mul(iszero(iszero(a)), add(1, div(sub(a, 1), b))) } } }
// SPDX-License-Identifier: MIT pragma solidity ^0.7.0; import "@balancer-labs/v2-interfaces/contracts/solidity-utils/helpers/BalancerErrors.sol"; import "@balancer-labs/v2-interfaces/contracts/solidity-utils/openzeppelin/IERC20.sol"; import "./SafeMath.sol"; /** * @dev Implementation of the {IERC20} interface. * * This implementation is agnostic to the way tokens are created. This means * that a supply mechanism has to be added in a derived contract using {_mint}. * For a generic mechanism see {ERC20PresetMinterPauser}. * * TIP: For a detailed writeup see our guide * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How * to implement supply mechanisms]. * * We have followed general OpenZeppelin guidelines: functions revert instead * of returning `false` on failure. This behavior is nonetheless conventional * and does not conflict with the expectations of ERC20 applications. * * Additionally, an {Approval} event is emitted on calls to {transferFrom}. * This allows applications to reconstruct the allowance for all accounts just * by listening to said events. Other implementations of the EIP may not emit * these events, as it isn't required by the specification. * * Finally, the non-standard {decreaseAllowance} and {increaseAllowance} * functions have been added to mitigate the well-known issues around setting * allowances. See {IERC20-approve}. */ contract ERC20 is IERC20 { using SafeMath for uint256; mapping(address => uint256) private _balances; mapping(address => mapping(address => uint256)) private _allowances; uint256 private _totalSupply; string private _name; string private _symbol; uint8 private _decimals; /** * @dev Sets the values for {name} and {symbol}, initializes {decimals} with * a default value of 18. * * To select a different value for {decimals}, use {_setupDecimals}. * * All three of these values are immutable: they can only be set once during * construction. */ constructor(string memory name_, string memory symbol_) { _name = name_; _symbol = symbol_; _decimals = 18; } /** * @dev Returns the name of the token. */ function name() public view returns (string memory) { return _name; } /** * @dev Returns the symbol of the token, usually a shorter version of the * name. */ function symbol() public view returns (string memory) { return _symbol; } /** * @dev Returns the number of decimals used to get its user representation. * For example, if `decimals` equals `2`, a balance of `505` tokens should * be displayed to a user as `5,05` (`505 / 10 ** 2`). * * Tokens usually opt for a value of 18, imitating the relationship between * Ether and Wei. This is the value {ERC20} uses, unless {_setupDecimals} is * called. * * NOTE: This information is only used for _display_ purposes: it in * no way affects any of the arithmetic of the contract, including * {IERC20-balanceOf} and {IERC20-transfer}. */ function decimals() public view returns (uint8) { return _decimals; } /** * @dev See {IERC20-totalSupply}. The total supply should only be read using this function * * Can be overridden by derived contracts to store the total supply in a different way (e.g. packed with other * storage values). */ function totalSupply() public view virtual override returns (uint256) { return _totalSupply; } /** * @dev Sets a new value for the total supply. It should only be set using this function. * * * Can be overridden by derived contracts to store the total supply in a different way (e.g. packed with other * storage values). */ function _setTotalSupply(uint256 value) internal virtual { _totalSupply = value; } /** * @dev See {IERC20-balanceOf}. */ function balanceOf(address account) public view override returns (uint256) { return _balances[account]; } /** * @dev See {IERC20-transfer}. * * Requirements: * * - `recipient` cannot be the zero address. * - the caller must have a balance of at least `amount`. */ function transfer(address recipient, uint256 amount) public virtual override returns (bool) { _transfer(msg.sender, recipient, amount); return true; } /** * @dev See {IERC20-allowance}. */ function allowance(address owner, address spender) public view virtual override returns (uint256) { return _allowances[owner][spender]; } /** * @dev See {IERC20-approve}. * * Requirements: * * - `spender` cannot be the zero address. */ function approve(address spender, uint256 amount) public virtual override returns (bool) { _approve(msg.sender, spender, amount); return true; } /** * @dev See {IERC20-transferFrom}. * * Emits an {Approval} event indicating the updated allowance. This is not * required by the EIP. See the note at the beginning of {ERC20}. * * Requirements: * * - `sender` and `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. * - the caller must have allowance for ``sender``'s tokens of at least * `amount`. */ function transferFrom( address sender, address recipient, uint256 amount ) public virtual override returns (bool) { _transfer(sender, recipient, amount); _approve( sender, msg.sender, _allowances[sender][msg.sender].sub(amount, Errors.ERC20_TRANSFER_EXCEEDS_ALLOWANCE) ); return true; } /** * @dev Atomically increases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. */ function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) { _approve(msg.sender, spender, _allowances[msg.sender][spender].add(addedValue)); return true; } /** * @dev Atomically decreases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. * - `spender` must have allowance for the caller of at least * `subtractedValue`. */ function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) { _approve( msg.sender, spender, _allowances[msg.sender][spender].sub(subtractedValue, Errors.ERC20_DECREASED_ALLOWANCE_BELOW_ZERO) ); return true; } /** * @dev Moves tokens `amount` from `sender` to `recipient`. * * This is internal function is equivalent to {transfer}, and can be used to * e.g. implement automatic token fees, slashing mechanisms, etc. * * Emits a {Transfer} event. * * Requirements: * * - `sender` cannot be the zero address. * - `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. */ function _transfer( address sender, address recipient, uint256 amount ) internal virtual { _require(sender != address(0), Errors.ERC20_TRANSFER_FROM_ZERO_ADDRESS); _require(recipient != address(0), Errors.ERC20_TRANSFER_TO_ZERO_ADDRESS); _beforeTokenTransfer(sender, recipient, amount); _balances[sender] = _balances[sender].sub(amount, Errors.ERC20_TRANSFER_EXCEEDS_BALANCE); _balances[recipient] = _balances[recipient].add(amount); emit Transfer(sender, recipient, amount); } /** @dev Creates `amount` tokens and assigns them to `account`, increasing * the total supply. * * Emits a {Transfer} event with `from` set to the zero address. * * Requirements: * * - `to` cannot be the zero address. */ function _mint(address account, uint256 amount) internal virtual { _beforeTokenTransfer(address(0), account, amount); _setTotalSupply(totalSupply().add(amount)); _balances[account] = _balances[account].add(amount); emit Transfer(address(0), account, amount); } /** * @dev Destroys `amount` tokens from `account`, reducing the * total supply. * * Emits a {Transfer} event with `to` set to the zero address. * * Requirements: * * - `account` cannot be the zero address. * - `account` must have at least `amount` tokens. */ function _burn(address account, uint256 amount) internal virtual { _require(account != address(0), Errors.ERC20_BURN_FROM_ZERO_ADDRESS); _beforeTokenTransfer(account, address(0), amount); _balances[account] = _balances[account].sub(amount, Errors.ERC20_BURN_EXCEEDS_BALANCE); _setTotalSupply(totalSupply().sub(amount)); emit Transfer(account, address(0), amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens. * * This internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. */ function _approve( address owner, address spender, uint256 amount ) internal virtual { _allowances[owner][spender] = amount; emit Approval(owner, spender, amount); } /** * @dev Sets {decimals} to a value other than the default one of 18. * * WARNING: This function should only be called from the constructor. Most * applications that interact with token contracts will not expect * {decimals} to ever change, and may work incorrectly if it does. */ function _setupDecimals(uint8 decimals_) internal { _decimals = decimals_; } /** * @dev Hook that is called before any transfer of tokens. This includes * minting and burning. * * Calling conditions: * * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens * will be to transferred to `to`. * - when `from` is zero, `amount` tokens will be minted for `to`. * - when `to` is zero, `amount` of ``from``'s tokens will be burned. * - `from` and `to` are never both zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _beforeTokenTransfer( address from, address to, uint256 amount ) internal virtual { // solhint-disable-previous-line no-empty-blocks } }
// SPDX-License-Identifier: MIT // Based on the Ownable library from OpenZeppelin Contracts, altered to reduce runtime gas by dropping // support for the GSN. pragma solidity ^0.7.0; import "@balancer-labs/v2-interfaces/contracts/solidity-utils/helpers/BalancerErrors.sol"; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * By default, the owner account will be the one that deploys the contract. This * can later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract Ownable { address private _owner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the deployer as the initial owner. */ constructor() { _transferOwnership(msg.sender); } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { _require(owner() == msg.sender, Errors.CALLER_IS_NOT_OWNER); _; } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions anymore. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby removing any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { _transferOwnership(address(0)); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { _require(newOwner != address(0), Errors.NEW_OWNER_IS_ZERO); _transferOwnership(newOwner); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Internal function without access restriction. */ function _transferOwnership(address newOwner) internal virtual { address oldOwner = _owner; _owner = newOwner; emit OwnershipTransferred(oldOwner, newOwner); } }
// SPDX-License-Identifier: MIT // Based on the ReentrancyGuard library from OpenZeppelin Contracts, altered to reduce bytecode size. // Modifier code is inlined by the compiler, which causes its code to appear multiple times in the codebase. By using // private functions, we achieve the same end result with slightly higher runtime gas costs, but reduced bytecode size. pragma solidity ^0.7.0; import "@balancer-labs/v2-interfaces/contracts/solidity-utils/helpers/BalancerErrors.sol"; /** * @dev Contract module that helps prevent reentrant calls to a function. * * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier * available, which can be applied to functions to make sure there are no nested * (reentrant) calls to them. * * Note that because there is a single `nonReentrant` guard, functions marked as * `nonReentrant` may not call one another. This can be worked around by making * those functions `private`, and then adding `external` `nonReentrant` entry * points to them. * * TIP: If you would like to learn more about reentrancy and alternative ways * to protect against it, check out our blog post * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul]. */ abstract contract ReentrancyGuard { // Booleans are more expensive than uint256 or any type that takes up a full // word because each write operation emits an extra SLOAD to first read the // slot's contents, replace the bits taken up by the boolean, and then write // back. This is the compiler's defense against contract upgrades and // pointer aliasing, and it cannot be disabled. // The values being non-zero value makes deployment a bit more expensive, // but in exchange the refund on every call to nonReentrant will be lower in // amount. Since refunds are capped to a percentage of the total // transaction's gas, it is best to keep them low in cases like this one, to // increase the likelihood of the full refund coming into effect. uint256 private constant _NOT_ENTERED = 1; uint256 private constant _ENTERED = 2; uint256 private _status; constructor() { _status = _NOT_ENTERED; } /** * @dev Prevents a contract from calling itself, directly or indirectly. * Calling a `nonReentrant` function from another `nonReentrant` * function is not supported. It is possible to prevent this from happening * by making the `nonReentrant` function external, and make it call a * `private` function that does the actual work. */ modifier nonReentrant() { _enterNonReentrant(); _; _exitNonReentrant(); } function _enterNonReentrant() private { // On the first call to nonReentrant, _status will be _NOT_ENTERED _require(_status != _ENTERED, Errors.REENTRANCY); // Any calls to nonReentrant after this point will fail _status = _ENTERED; } function _exitNonReentrant() private { // By storing the original value once again, a refund is triggered (see // https://eips.ethereum.org/EIPS/eip-2200) _status = _NOT_ENTERED; } }
// SPDX-License-Identifier: MIT // Based on the ReentrancyGuard library from OpenZeppelin Contracts, altered to reduce gas costs. // The `safeTransfer` and `safeTransferFrom` functions assume that `token` is a contract (an account with code), and // work differently from the OpenZeppelin version if it is not. pragma solidity ^0.7.0; import "@balancer-labs/v2-interfaces/contracts/solidity-utils/helpers/BalancerErrors.sol"; import "@balancer-labs/v2-interfaces/contracts/solidity-utils/openzeppelin/IERC20.sol"; /** * @title SafeERC20 * @dev Wrappers around ERC20 operations that throw on failure (when the token * contract returns false). Tokens that return no value (and instead revert or * throw on failure) are also supported, non-reverting calls are assumed to be * successful. * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract, * which allows you to call the safe operations as `token.safeTransfer(...)`, etc. */ library SafeERC20 { function safeApprove( IERC20 token, address to, uint256 value ) internal { // Some contracts need their allowance reduced to 0 before setting it to an arbitrary amount. if (value != 0 && token.allowance(address(this), address(to)) != 0) { _callOptionalReturn(address(token), abi.encodeWithSelector(token.approve.selector, to, 0)); } _callOptionalReturn(address(token), abi.encodeWithSelector(token.approve.selector, to, value)); } function safeTransfer( IERC20 token, address to, uint256 value ) internal { _callOptionalReturn(address(token), abi.encodeWithSelector(token.transfer.selector, to, value)); } function safeTransferFrom( IERC20 token, address from, address to, uint256 value ) internal { _callOptionalReturn(address(token), abi.encodeWithSelector(token.transferFrom.selector, from, to, value)); } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * * WARNING: `token` is assumed to be a contract: calls to EOAs will *not* revert. */ function _callOptionalReturn(address token, bytes memory data) private { // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since // we're implementing it ourselves. // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = token.call(data); // If the low-level call didn't succeed we return whatever was returned from it. // solhint-disable-next-line no-inline-assembly assembly { if eq(success, 0) { returndatacopy(0, 0, returndatasize()) revert(0, returndatasize()) } } // Finally we check the returndata size is either zero or true - note that this check will always pass for EOAs _require(returndata.length == 0 || abi.decode(returndata, (bool)), Errors.SAFE_ERC20_CALL_FAILED); } }
// SPDX-License-Identifier: MIT pragma solidity ^0.7.0; import "@balancer-labs/v2-interfaces/contracts/solidity-utils/helpers/BalancerErrors.sol"; /** * @dev Wrappers over Solidity's arithmetic operations with added overflow * checks. * * Arithmetic operations in Solidity wrap on overflow. This can easily result * in bugs, because programmers usually assume that an overflow raises an * error, which is the standard behavior in high level programming languages. * `SafeMath` restores this intuition by reverting the transaction when an * operation overflows. * * Using this library instead of the unchecked operations eliminates an entire * class of bugs, so it's recommended to use it always. */ library SafeMath { /** * @dev Returns the addition of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `+` operator. * * Requirements: * * - Addition cannot overflow. */ function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; _require(c >= a, Errors.ADD_OVERFLOW); return c; } /** * @dev Returns the subtraction of two unsigned integers, reverting on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b) internal pure returns (uint256) { return sub(a, b, Errors.SUB_OVERFLOW); } /** * @dev Returns the subtraction of two unsigned integers, reverting with custom message on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub( uint256 a, uint256 b, uint256 errorCode ) internal pure returns (uint256) { _require(b <= a, errorCode); uint256 c = a - b; return c; } }
// SPDX-License-Identifier: MIT pragma solidity >=0.6.2 <0.8.0; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize, which returns 0 for contracts in // construction, since the code is only stored at the end of the // constructor execution. uint256 size; // solhint-disable-next-line no-inline-assembly assembly { size := extcodesize(account) } return size > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); // solhint-disable-next-line avoid-low-level-calls, avoid-call-value (bool success, ) = recipient.call{ value: amount }(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain`call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCall(target, data, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); require(isContract(target), "Address: call to non-contract"); // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = target.call{ value: value }(data); return _verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data, string memory errorMessage) internal view returns (bytes memory) { require(isContract(target), "Address: static call to non-contract"); // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = target.staticcall(data); return _verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { return functionDelegateCall(target, data, "Address: low-level delegate call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) { require(isContract(target), "Address: delegate call to non-contract"); // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = target.delegatecall(data); return _verifyCallResult(success, returndata, errorMessage); } function _verifyCallResult(bool success, bytes memory returndata, string memory errorMessage) private pure returns(bytes memory) { if (success) { return returndata; } else { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly // solhint-disable-next-line no-inline-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } }
// SPDX-License-Identifier: MIT pragma solidity >=0.6.0 <0.8.0; /* * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with GSN meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address payable) { return msg.sender; } function _msgData() internal view virtual returns (bytes memory) { this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691 return msg.data; } }
// SPDX-License-Identifier: MIT pragma solidity >=0.6.0 <0.8.0; import "./Context.sol"; /** * @dev Contract module which allows children to implement an emergency stop * mechanism that can be triggered by an authorized account. * * This module is used through inheritance. It will make available the * modifiers `whenNotPaused` and `whenPaused`, which can be applied to * the functions of your contract. Note that they will not be pausable by * simply including this module, only once the modifiers are put in place. */ abstract contract Pausable is Context { /** * @dev Emitted when the pause is triggered by `account`. */ event Paused(address account); /** * @dev Emitted when the pause is lifted by `account`. */ event Unpaused(address account); bool private _paused; /** * @dev Initializes the contract in unpaused state. */ constructor () internal { _paused = false; } /** * @dev Returns true if the contract is paused, and false otherwise. */ function paused() public view virtual returns (bool) { return _paused; } /** * @dev Modifier to make a function callable only when the contract is not paused. * * Requirements: * * - The contract must not be paused. */ modifier whenNotPaused() { require(!paused(), "Pausable: paused"); _; } /** * @dev Modifier to make a function callable only when the contract is paused. * * Requirements: * * - The contract must be paused. */ modifier whenPaused() { require(paused(), "Pausable: not paused"); _; } /** * @dev Triggers stopped state. * * Requirements: * * - The contract must not be paused. */ function _pause() internal virtual whenNotPaused { _paused = true; emit Paused(_msgSender()); } /** * @dev Returns to normal state. * * Requirements: * * - The contract must be paused. */ function _unpause() internal virtual whenPaused { _paused = false; emit Unpaused(_msgSender()); } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity >=0.7.0 <0.9.0; library SwaapV2Errors { // Safeguard Pool uint256 internal constant EXCEEDED_SWAP_AMOUNT_IN = 0; uint256 internal constant EXCEEDED_SWAP_AMOUNT_OUT = 1; uint256 internal constant UNFAIR_PRICE = 2; uint256 internal constant LOW_PERFORMANCE = 3; uint256 internal constant MIN_BALANCE_OUT_NOT_MET = 4; uint256 internal constant NOT_ENOUGH_PT_OUT = 5; uint256 internal constant EXCEEDED_BURNED_PT = 6; uint256 internal constant SIGNER_CANNOT_BE_NULL_ADDRESS = 7; uint256 internal constant PERFORMANCE_UPDATE_INTERVAL_TOO_LOW = 8; uint256 internal constant PERFORMANCE_UPDATE_INTERVAL_TOO_HIGH = 9; uint256 internal constant MAX_PERFORMANCE_DEV_TOO_LOW = 10; uint256 internal constant MAX_PERFORMANCE_DEV_TOO_HIGH = 11; uint256 internal constant MAX_TARGET_DEV_TOO_LOW = 12; uint256 internal constant MAX_TARGET_DEV_TOO_LARGE = 13; uint256 internal constant MAX_PRICE_DEV_TOO_LOW = 14; uint256 internal constant MAX_PRICE_DEV_TOO_LARGE = 15; uint256 internal constant PERFORMANCE_UPDATE_TOO_SOON = 16; uint256 internal constant BITMAP_SIGNATURE_NOT_VALID = 17; uint256 internal constant QUOTE_ALREADY_USED = 18; uint256 internal constant REPLAYABLE_SIGNATURE_NOT_VALID = 19; uint256 internal constant QUOTE_BALANCE_NO_LONGER_VALID = 20; uint256 internal constant WRONG_TOKEN_IN_IN_EXCESS = 21; uint256 internal constant WRONG_TOKEN_OUT_IN_EXCESS = 22; uint256 internal constant EXCEEDS_TIMEOUT = 23; uint256 internal constant NON_POSITIVE_PRICE = 24; uint256 internal constant FEES_TOO_HIGH = 25; uint256 internal constant LOW_INITIAL_BALANCE = 26; uint256 internal constant ORACLE_TIMEOUT_TOO_HIGH = 27; uint256 internal constant OUTDATED_ORACLE_ROUND_ID = 28; uint256 internal constant LOW_SWAP_AMOUNT_IN = 29; uint256 internal constant LOW_SWAP_AMOUNT_OUT = 30; uint256 internal constant PAUSED = 31; uint256 internal constant INVALID_AGGREGATOR = 32; uint256 internal constant PASSED_DEADLINE = 33; uint256 internal constant SAME_TOKENS = 34; uint256 internal constant INVALID_DATA_LENGTH = 35; } /** * @dev Reverts if `condition` is false, with a revert reason containing `errorCode`. Only codes up to 99 are * supported. */ function _srequire(bool condition, uint256 errorCode) pure { if (!condition) _srevert(errorCode); } /** * @dev Reverts with a revert reason containing `errorCode`. Only codes up to 99 are supported. */ function _srevert(uint256 errorCode) pure { // We're going to dynamically create a revert uint256 based on the error code, with the following format: // 'SWAAP#{errorCode}' // where the code is left-padded with zeroes to two digits (so they range from 00 to 99). // // We don't have revert uint256s embedded in the contract to save bytecode size: it takes much less space to store a // number (8 to 16 bits) than the individual uint256 characters. // // The dynamic uint256 creation algorithm that follows could be implemented in Solidity, but assembly allows for a // much denser implementation, again saving bytecode size. Given this function unconditionally reverts, this is a // safe place to rely on it without worrying about how its usage might affect e.g. memory contents. assembly { // First, we need to compute the ASCII representation of the error code. We assume that it is in the 0-99 // range, so we only need to convert two digits. To convert the digits to ASCII, we add 0x30, the value for // the '0' character. let units := add(mod(errorCode, 10), 0x30) errorCode := div(errorCode, 10) let tenths := add(mod(errorCode, 10), 0x30) // With the individual characters, we can now construct the full uint256. The SWAAP# part is a known constant // (0x535741415023): we simply shift this by 16 (to provide space for the 2 bytes of the error code), and add // the characters to it, each shifted by a multiple of 8. // The revert reason is then shifted left by 192 bits (256 minus the length of the uint256, 8 characters * 8 // bits per character = 64) to locate it in the most significant part of the 256 slot (the beginning of a byte // array). let revertReason := shl(192, add(0x5357414150230000, add(units, shl(8, tenths)))) // We can now encode the reason in memory, which can be safely overwritten as we're about to revert. The encoded // message will have the following layout: // [ revert reason identifier ] [ uint256 location offset ] [ uint256 length ] [ uint256 contents ] // The Solidity revert reason identifier is 0x08c739a0, the function selector of the Error(uint256) function. We // also write zeroes to the next 29 bytes of memory, but those are about to be overwritten. mstore(0x0, 0x08c379a000000000000000000000000000000000000000000000000000000000) // Next is the offset to the location of the uint256, which will be placed immediately after (20 bytes away). mstore(0x04, 0x0000000000000000000000000000000000000000000000000000000000000020) // The uint256 length is fixed: 8 characters. mstore(0x24, 8) // Finally, the uint256 itself is stored. mstore(0x44, revertReason) // Even if the uint256 is only 8 bytes long, we need to return a full 32 byte slot containing it. The length of // the encoded message is therefore 4 + 32 + 32 + 32 = 100. revert(0, 100) } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity >=0.7.0 <0.9.0; pragma experimental ABIEncoderV2; import "@balancer-labs/v2-interfaces/contracts/vault/IVault.sol"; interface IProxyJoinViaAggregator { struct Quote { address targetAggregator; IERC20 sellToken; IERC20 buyToken; uint256 sellAmount; uint256 buyAmount; address spender; bytes quoteCallData; } struct PermitToken { IERC20 token; bytes permitData; } /** * @notice Joins the pool after trading input token(s) with the necessary ones externally to the pool * @dev The joiningAssets and joiningAmounts should be in the same order * @dev The request.assets and request.maxAmountIn should be in the same order as vault.getPoolTokens(poolId) * @dev When joining the pool using the native token, the external swap should be done with the wrapped native token * @param poolId The pool's id * @param request The vault's join pool request * @param fillQuotes The external trades needed before joining the pool * @param joiningAssets The addresses of the input tokens * @param joiningAmounts The total amounts of input tokens * @param permitTokens The tokens that need to be permitted before joining the pool * @param minBptAmountOut The minimum acceptable amount of pool shares received * @param deadline Maximum deadline for accepting the joinswapExternAmountIn * @return bptAmountOut The amount of pool shares received */ function permitJoinPoolViaAggregator( bytes32 poolId, IVault.JoinPoolRequest memory request, Quote[] calldata fillQuotes, IERC20[] calldata joiningAssets, uint256[] calldata joiningAmounts, PermitToken[] calldata permitTokens, uint256 minBptAmountOut, uint256 deadline ) external payable returns (uint256 bptAmountOut); /** * @notice Joins the pool after trading input token(s) with the necessary ones externally to the pool * @dev The joiningAssets and joiningAmounts should be in the same order * @dev The request.assets and request.maxAmountIn should be in the same order as vault.getPoolTokens(poolId) * @dev When joining the pool using the native token, the external swap should be done with the wrapped native token * @param poolId The pool's id * @param request The vault's join pool request * @param fillQuotes The external trades needed before joining the pool * @param joiningAssets The addresses of the input tokens * @param joiningAmounts The total amounts of input tokens * @param minBptAmountOut The minimum acceptable amount of pool shares received * @param deadline Maximum deadline for accepting the joinswapExternAmountIn * @return bptAmountOut The amount of pool shares received */ function joinPoolViaAggregator( bytes32 poolId, IVault.JoinPoolRequest memory request, Quote[] calldata fillQuotes, IERC20[] calldata joiningAssets, uint256[] calldata joiningAmounts, uint256 minBptAmountOut, uint256 deadline ) external payable returns (uint256 bptAmountOut); }
{ "optimizer": { "enabled": true, "runs": 99999 }, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } }, "libraries": {} }
Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
[{"inputs":[{"internalType":"address","name":"_vault","type":"address"},{"internalType":"contract IWETH","name":"_weth","type":"address"},{"internalType":"address","name":"_zeroEx","type":"address"},{"internalType":"address","name":"_paraswap","type":"address"},{"internalType":"address","name":"_oneInch","type":"address"},{"internalType":"address","name":"_odos","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"account","type":"address"}],"name":"Paused","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"account","type":"address"}],"name":"Unpaused","type":"event"},{"inputs":[{"internalType":"bytes4","name":"selector","type":"bytes4"}],"name":"getActionId","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getAuthorizer","outputs":[{"internalType":"contract IAuthorizer","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getOwner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"poolId","type":"bytes32"},{"components":[{"internalType":"contract IAsset[]","name":"assets","type":"address[]"},{"internalType":"uint256[]","name":"maxAmountsIn","type":"uint256[]"},{"internalType":"bytes","name":"userData","type":"bytes"},{"internalType":"bool","name":"fromInternalBalance","type":"bool"}],"internalType":"struct IVault.JoinPoolRequest","name":"request","type":"tuple"},{"components":[{"internalType":"address","name":"targetAggregator","type":"address"},{"internalType":"contract IERC20","name":"sellToken","type":"address"},{"internalType":"contract IERC20","name":"buyToken","type":"address"},{"internalType":"uint256","name":"sellAmount","type":"uint256"},{"internalType":"uint256","name":"buyAmount","type":"uint256"},{"internalType":"address","name":"spender","type":"address"},{"internalType":"bytes","name":"quoteCallData","type":"bytes"}],"internalType":"struct IProxyJoinViaAggregator.Quote[]","name":"fillQuotes","type":"tuple[]"},{"internalType":"contract IERC20[]","name":"joiningAssets","type":"address[]"},{"internalType":"uint256[]","name":"joiningAmounts","type":"uint256[]"},{"internalType":"uint256","name":"minBptAmountOut","type":"uint256"},{"internalType":"uint256","name":"deadline","type":"uint256"}],"name":"joinPoolViaAggregator","outputs":[{"internalType":"uint256","name":"bptAmountOut","type":"uint256"}],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"odos","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"oneInch","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"paraswap","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"pause","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"paused","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"poolId","type":"bytes32"},{"components":[{"internalType":"contract IAsset[]","name":"assets","type":"address[]"},{"internalType":"uint256[]","name":"maxAmountsIn","type":"uint256[]"},{"internalType":"bytes","name":"userData","type":"bytes"},{"internalType":"bool","name":"fromInternalBalance","type":"bool"}],"internalType":"struct IVault.JoinPoolRequest","name":"request","type":"tuple"},{"components":[{"internalType":"address","name":"targetAggregator","type":"address"},{"internalType":"contract IERC20","name":"sellToken","type":"address"},{"internalType":"contract IERC20","name":"buyToken","type":"address"},{"internalType":"uint256","name":"sellAmount","type":"uint256"},{"internalType":"uint256","name":"buyAmount","type":"uint256"},{"internalType":"address","name":"spender","type":"address"},{"internalType":"bytes","name":"quoteCallData","type":"bytes"}],"internalType":"struct IProxyJoinViaAggregator.Quote[]","name":"fillQuotes","type":"tuple[]"},{"internalType":"contract IERC20[]","name":"joiningAssets","type":"address[]"},{"internalType":"uint256[]","name":"joiningAmounts","type":"uint256[]"},{"components":[{"internalType":"contract IERC20","name":"token","type":"address"},{"internalType":"bytes","name":"permitData","type":"bytes"}],"internalType":"struct IProxyJoinViaAggregator.PermitToken[]","name":"permitTokens","type":"tuple[]"},{"internalType":"uint256","name":"minBptAmountOut","type":"uint256"},{"internalType":"uint256","name":"deadline","type":"uint256"}],"name":"permitJoinPoolViaAggregator","outputs":[{"internalType":"uint256","name":"bptAmountOut","type":"uint256"}],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"unpause","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"vault","outputs":[{"internalType":"contract IVault","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"weth","outputs":[{"internalType":"contract IWETH","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"zeroEx","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"stateMutability":"payable","type":"receive"}]
Contract Creation Code
6101806040523480156200001257600080fd5b5060405162003192380380620031928339810160408190526200003591620000b4565b6001600160601b031930606090811b82166080527fba1ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1b00000000000000000000000060a05260016000819055805460ff1916905596871b811660c05294861b851660e05292851b84166101005290841b831661012052831b82166101405290911b166101605262000160565b60008060008060008060c08789031215620000cd578182fd5b8651620000da8162000147565b6020880151909650620000ed8162000147565b6040880151909550620001008162000147565b6060880151909450620001138162000147565b6080880151909350620001268162000147565b60a0880151909250620001398162000147565b809150509295509295509295565b6001600160a01b03811681146200015d57600080fd5b50565b60805160a05160601c60c05160601c60e05160601c6101005160601c6101205160601c6101405160601c6101605160601c612f656200022d600039806102c65280611041528061109c5250806102a25280610fbf528061101a5250806103445280610f3d5280610f985250806103205280610eb65280610f1152508061010152806102fc52806116da528061179f52806117e052806119215280611ce45250806105a852806108485280610a7f52806113f2528061150a5250806104be5250806104505250612f656000f3fe6080604052600436106100e15760003560e01c80635f6765491161007f578063893d20e811610059578063893d20e81461023c5780638c4b7aa714610251578063aaabadc514610264578063fbfa77cf146102795761012c565b80635f676549146101e75780638456cb5914610207578063851c1bb31461021c5761012c565b80633fc8cef3116100bb5780633fc8cef31461018657806352ab413b1461019b5780635af7462f146101b05780635c975abb146101c55761012c565b8063045c08d5146101315780631eba02ec1461015c5780633f4ba83a146101715761012c565b3661012c5761012a3373ffffffffffffffffffffffffffffffffffffffff7f0000000000000000000000000000000000000000000000000000000000000000161461020661028e565b005b600080fd5b34801561013d57600080fd5b506101466102a0565b6040516101539190612b45565b60405180910390f35b34801561016857600080fd5b506101466102c4565b34801561017d57600080fd5b5061012a6102e8565b34801561019257600080fd5b506101466102fa565b3480156101a757600080fd5b5061014661031e565b3480156101bc57600080fd5b50610146610342565b3480156101d157600080fd5b506101da610366565b6040516101539190612b8d565b6101fa6101f53660046127a8565b61036f565b6040516101539190612b98565b34801561021357600080fd5b5061012a61043a565b34801561022857600080fd5b506101fa6102373660046129a1565b61044a565b34801561024857600080fd5b506101466104bc565b6101fa61025f3660046128cc565b6104e0565b34801561027057600080fd5b50610146610597565b34801561028557600080fd5b506101466105a6565b8161029c5761029c816105ca565b5050565b7f000000000000000000000000000000000000000000000000000000000000000081565b7f000000000000000000000000000000000000000000000000000000000000000081565b6102f06105f7565b6102f861063d565b565b7f000000000000000000000000000000000000000000000000000000000000000081565b7f000000000000000000000000000000000000000000000000000000000000000081565b7f000000000000000000000000000000000000000000000000000000000000000081565b60015460ff1690565b6000610379610366565b156103e557604080517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601060248201527f5061757361626c653a2070617573656400000000000000000000000000000000604482015290519081900360640190fd5b6103ed61072b565b816103fc814211156021610744565b6104068686610752565b61041f8e6104138f612dfd565b8e8e8e8e8e8e8c6107ca565b91505061042a6109ad565b9c9b505050505050505050505050565b6104426105f7565b6102f86109b4565b604080517f00000000000000000000000000000000000000000000000000000000000000006020808301919091527fffffffff0000000000000000000000000000000000000000000000000000000084168284015282516024818403018152604490920190925280519101205b919050565b7f000000000000000000000000000000000000000000000000000000000000000090565b60006104ea610366565b1561055657604080517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601060248201527f5061757361626c653a2070617573656400000000000000000000000000000000604482015290519081900360640190fd5b61055e61072b565b8161056d814211156021610744565b61057e8c8c8c8c8c8c8c8c8c6107ca565b9150506105896109ad565b9a9950505050505050505050565b60006105a1610a7b565b905090565b7f000000000000000000000000000000000000000000000000000000000000000081565b6105f4817f42414c0000000000000000000000000000000000000000000000000000000000610b1b565b50565b60006106266000357fffffffff000000000000000000000000000000000000000000000000000000001661044a565b90506105f46106358233610b96565b61019161028e565b610645610366565b6106b057604080517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601460248201527f5061757361626c653a206e6f7420706175736564000000000000000000000000604482015290519081900360640190fd5b600180547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff001690557f5db9ee0a495bf2e6ff9c91a7834c1ba4fdd244a5e8aa4e537bd38aeae4b073aa610701610ce8565b6040805173ffffffffffffffffffffffffffffffffffffffff9092168252519081900360200190a1565b61073d6002600054141561019061028e565b6002600055565b8161029c5761029c81610cec565b60005b818110156107c5576107bd83838381811061076c57fe5b905060200281019061077e9190612d55565b61078c9060208101906129fd565b84848481811061079857fe5b90506020028101906107aa9190612d55565b6107b8906020810190612cf2565b610d4f565b600101610755565b505050565b600061083986868080602002602001604051908101604052809392919081815260200183836020028082843760009201919091525050604080516020808a02828101820190935289825290935089925088918291850190849080828437600092019190915250610e2692505050565b6108438888610e7e565b6000807f000000000000000000000000000000000000000000000000000000000000000073ffffffffffffffffffffffffffffffffffffffff1663f94d46688d6040518263ffffffff1660e01b815260040161089f9190612b98565b60006040518083038186803b1580156108b757600080fd5b505afa1580156108cb573d6000803e3d6000fd5b505050506040513d6000823e601f3d9081017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe016820160405261091191908101906126a1565b509150915061092a6109228d6110d4565b83838e6110da565b925061093a848410156004610744565b6109488b60400151846113b6565b610956828c602001516113bf565b610961838d8d611432565b61099e8289898080602002602001604051908101604052809392919081815260200183836020028082843760009201919091525061163d92505050565b50509998505050505050505050565b6001600055565b6109bc610366565b15610a2857604080517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601060248201527f5061757361626c653a2070617573656400000000000000000000000000000000604482015290519081900360640190fd5b600180547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff0016811790557f62e78cea01bee320cd4e420270b5ea74000d11b0c9f74754ebdbfc544b05a258610701610ce8565b60007f000000000000000000000000000000000000000000000000000000000000000073ffffffffffffffffffffffffffffffffffffffff1663aaabadc56040518163ffffffff1660e01b815260040160206040518083038186803b158015610ae357600080fd5b505afa158015610af7573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906105a191906129e1565b7f08c379a000000000000000000000000000000000000000000000000000000000600090815260206004526007602452600a808404818106603090810160081b958390069590950190829004918206850160101b01602363ffffff0060e086901c160160181b0190930160c81b60445260e882901c90606490fd5b600073ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1b610bb56104bc565b73ffffffffffffffffffffffffffffffffffffffff1614158015610bdd5750610bdd836116b7565b15610c1f57610bea6104bc565b73ffffffffffffffffffffffffffffffffffffffff163373ffffffffffffffffffffffffffffffffffffffff16149050610ce2565b610c27610a7b565b73ffffffffffffffffffffffffffffffffffffffff16639be2a8848484306040518463ffffffff1660e01b8152600401808481526020018373ffffffffffffffffffffffffffffffffffffffff1681526020018273ffffffffffffffffffffffffffffffffffffffff168152602001935050505060206040518083038186803b158015610cb357600080fd5b505afa158015610cc7573d6000803e3d6000fd5b505050506040513d6020811015610cdd57600080fd5b505190505b92915050565b3390565b6030600a820601600a820491506030600a8306018060081b82016753574141502300000160c01b9150507f08c379a00000000000000000000000000000000000000000000000000000000060005260206004526008602452806044525060646000fd5b610d5d60e082146023610744565b6000808473ffffffffffffffffffffffffffffffffffffffff1663d505accf60e01b8585604051602001610d9393929190612aed565b604080517fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe081840301815290829052610dcb91612b29565b6000604051808303816000865af19150503d8060008114610e08576040519150601f19603f3d011682016040523d82523d6000602084013e610e0d565b606091505b509150915081610e1f57805160208201fd5b5050505050565b81518151610e359082906116bd565b60005b81811015610e7857610e70848281518110610e4f57fe5b6020026020010151848381518110610e6357fe5b60200260200101516116ca565b600101610e38565b50505050565b60005b818110156107c5576000838383818110610e9757fe5b9050602002810190610ea99190612d88565b610eb290612e09565b90507f000000000000000000000000000000000000000000000000000000000000000073ffffffffffffffffffffffffffffffffffffffff16816000015173ffffffffffffffffffffffffffffffffffffffff161415610f3b57610f367f000000000000000000000000000000000000000000000000000000000000000082611780565b6110cb565b7f000000000000000000000000000000000000000000000000000000000000000073ffffffffffffffffffffffffffffffffffffffff16816000015173ffffffffffffffffffffffffffffffffffffffff161415610fbd57610f367f000000000000000000000000000000000000000000000000000000000000000082611780565b7f000000000000000000000000000000000000000000000000000000000000000073ffffffffffffffffffffffffffffffffffffffff16816000015173ffffffffffffffffffffffffffffffffffffffff16141561103f57610f367f000000000000000000000000000000000000000000000000000000000000000082611780565b7f000000000000000000000000000000000000000000000000000000000000000073ffffffffffffffffffffffffffffffffffffffff16816000015173ffffffffffffffffffffffffffffffffffffffff1614156110c157610f367f000000000000000000000000000000000000000000000000000000000000000082611780565b6110cb6020610cec565b50600101610e81565b60601c90565b600080835190506110f0818460200151516116bd565b6000855167ffffffffffffffff8111801561110a57600080fd5b50604051908082528060200260200182016040528015611134578160200160208202803683370190505b50905060005b8281101561117d5761115e87828151811061115157fe5b60200260200101516118d4565b82828151811061116a57fe5b602090810291909101015260010161113a565b5060008773ffffffffffffffffffffffffffffffffffffffff16631dd746ea6040518163ffffffff1660e01b815260040160006040518083038186803b1580156111c657600080fd5b505afa1580156111da573d6000803e3d6000fd5b505050506040513d6000823e601f3d9081017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0168201604052611220919081019061276d565b905061122c82826119ff565b61123686826119ff565b507fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff60005b838110156112ac57600061129584838151811061127457fe5b602002602001015189848151811061128857fe5b6020026020010151611a68565b9050828110156112a3578092505b5060010161125b565b506000611336828a73ffffffffffffffffffffffffffffffffffffffff166318160ddd6040518163ffffffff1660e01b815260040160206040518083038186803b1580156112f957600080fd5b505afa15801561130d573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906113319190612a19565b611abb565b905060006113478760400151611aee565b905060006113558383611b0b565b905060005b868110156113a6576113838960200151828151811061137557fe5b602002602001015183611b58565b8960200151828151811061139357fe5b602090810291909101015260010161135a565b50919a9950505050505050505050565b60409190910152565b815181516113ce9082906116bd565b60005b81811015610e785761142a8482815181106113e857fe5b60200260200101517f000000000000000000000000000000000000000000000000000000000000000085848151811061141d57fe5b6020026020010151611b90565b6001016113d1565b600061143d836110d4565b905060008173ffffffffffffffffffffffffffffffffffffffff166370a08231336040518263ffffffff1660e01b815260040161147a9190612b45565b60206040518083038186803b15801561149257600080fd5b505afa1580156114a6573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906114ca9190612a19565b6040517fb95cac2800000000000000000000000000000000000000000000000000000000815290915073ffffffffffffffffffffffffffffffffffffffff7f0000000000000000000000000000000000000000000000000000000000000000169063b95cac2890611545908790309033908990600401612ba1565b600060405180830381600087803b15801561155f57600080fd5b505af1158015611573573d6000803e3d6000fd5b50506040517f70a082310000000000000000000000000000000000000000000000000000000081526000925073ffffffffffffffffffffffffffffffffffffffff851691506370a08231906115cc903390600401612b45565b60206040518083038186803b1580156115e457600080fd5b505afa1580156115f8573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061161c9190612a19565b90506116358661162c8385611c7d565b10156004610744565b505050505050565b60005b815181101561167c57600082828151811061165757fe5b602002602001015190506116738161166e836118d4565b611c93565b50600101611640565b5060005b82518110156107c557600083828151811061169757fe5b602002602001015190506116ae8161166e836118d4565b50600101611680565b50600090565b61029c818314606761028e565b6116d382611d7e565b1561175e577f000000000000000000000000000000000000000000000000000000000000000073ffffffffffffffffffffffffffffffffffffffff1663d0e30db0346040518263ffffffff1660e01b81526004016000604051808303818588803b15801561174057600080fd5b505af1158015611754573d6000803e3d6000fd5b505050505061029c565b61029c73ffffffffffffffffffffffffffffffffffffffff8316333084611d98565b600061178f8260200151611d7e565b61179d5781602001516117bf565b7f00000000000000000000000000000000000000000000000000000000000000005b905060006117d08360400151611d7e565b6117de578260400151611800565b7f00000000000000000000000000000000000000000000000000000000000000005b9050600061180d836118d4565b9050600061181a836118d4565b90506118568473ffffffffffffffffffffffffffffffffffffffff168473ffffffffffffffffffffffffffffffffffffffff1614156022610744565b611869848660a001518760600151611b90565b611877868660c00151611e2d565b50600061188d611886866118d4565b8490611c7d565b905060006118a48361189e876118d4565b90611c7d565b90506118b887606001518311156000610744565b6118ca87608001518210156004610744565b5050505050505050565b60006118df82611d7e565b156119ad576040517f70a0823100000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff7f000000000000000000000000000000000000000000000000000000000000000016906370a0823190611956903090600401612b45565b60206040518083038186803b15801561196e57600080fd5b505afa158015611982573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906119a69190612a19565b90506104b7565b6040517f70a0823100000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff8316906370a0823190611956903090600401612b45565b81518151611a0e9082906116bd565b60005b81811015610e7857611a49848281518110611a2857fe5b6020026020010151848381518110611a3c57fe5b6020026020010151611abb565b848281518110611a5557fe5b6020908102919091010152600101611a11565b6000611a77821515600461028e565b670de0b6b3a76400008302611aa9841580611aa25750670de0b6b3a7640000858381611a9f57fe5b04145b600561028e565b828181611ab257fe5b04949350505050565b6000828202611adf841580611ad8575083858381611ad557fe5b04145b600361028e565b670de0b6b3a764000081611ab2565b600081806020019051810190611b049190612a31565b9392505050565b6000611b1a821515600461028e565b670de0b6b3a76400008302611b42841580611aa25750670de0b6b3a7640000858381611a9f57fe5b6001836001830304018115150291505092915050565b6000828202611b72841580611ad8575083858381611ad557fe5b6001670de0b6b3a76400006001830304018115150291505092915050565b6040517fdd62ed3e000000000000000000000000000000000000000000000000000000008152819073ffffffffffffffffffffffffffffffffffffffff85169063dd62ed3e90611be69030908790600401612b66565b60206040518083038186803b158015611bfe57600080fd5b505afa158015611c12573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190611c369190612a19565b10156107c5576107c573ffffffffffffffffffffffffffffffffffffffff8416837fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff611f3f565b6000611c8d83831115600161028e565b50900390565b801561029c57611ca282611d7e565b15611d5d576040517f2e1a7d4d00000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff7f00000000000000000000000000000000000000000000000000000000000000001690632e1a7d4d90611d19908490600401612b98565b600060405180830381600087803b158015611d3357600080fd5b505af1158015611d47573d6000803e3d6000fd5b50611d589250339150839050612110565b61029c565b61029c73ffffffffffffffffffffffffffffffffffffffff83163383612236565b73ffffffffffffffffffffffffffffffffffffffff161590565b6040805173ffffffffffffffffffffffffffffffffffffffff80861660248301528416604482015260648082018490528251808303909101815260849091019091526020810180517bffffffffffffffffffffffffffffffffffffffffffffffffffffffff167f23b872dd00000000000000000000000000000000000000000000000000000000179052610e789085906122bf565b60208101516060907fffffffff0000000000000000000000000000000000000000000000000000000081167f23b872dd000000000000000000000000000000000000000000000000000000001415611eba576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401611eb190612c95565b60405180910390fd5b6000808573ffffffffffffffffffffffffffffffffffffffff1685604051611ee29190612b29565b6000604051808303816000865af19150503d8060008114611f1f576040519150601f19603f3d011682016040523d82523d6000602084013e611f24565b606091505b509150915081611f3657805160208601fd5b95945050505050565b8015801590611fee5750604080517fdd62ed3e00000000000000000000000000000000000000000000000000000000815230600482015273ffffffffffffffffffffffffffffffffffffffff848116602483015291519185169163dd62ed3e91604480820192602092909190829003018186803b158015611fbf57600080fd5b505afa158015611fd3573d6000803e3d6000fd5b505050506040513d6020811015611fe957600080fd5b505115155b15612083576040805173ffffffffffffffffffffffffffffffffffffffff8416602482015260006044808301919091528251808303909101815260649091019091526020810180517bffffffffffffffffffffffffffffffffffffffffffffffffffffffff167f095ea7b3000000000000000000000000000000000000000000000000000000001790526120839084906122bf565b6040805173ffffffffffffffffffffffffffffffffffffffff8416602482015260448082018490528251808303909101815260649091019091526020810180517bffffffffffffffffffffffffffffffffffffffffffffffffffffffff167f095ea7b3000000000000000000000000000000000000000000000000000000001790526107c59084906122bf565b8047101561217f57604080517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601d60248201527f416464726573733a20696e73756666696369656e742062616c616e6365000000604482015290519081900360640190fd5b60405160009073ffffffffffffffffffffffffffffffffffffffff84169083908381818185875af1925050503d80600081146121d7576040519150601f19603f3d011682016040523d82523d6000602084013e6121dc565b606091505b50509050806107c5576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040180806020018281038252603a815260200180612ef6603a913960400191505060405180910390fd5b6040805173ffffffffffffffffffffffffffffffffffffffff8416602482015260448082018490528251808303909101815260649091019091526020810180517bffffffffffffffffffffffffffffffffffffffffffffffffffffffff167fa9059cbb000000000000000000000000000000000000000000000000000000001790526107c59084905b6000808373ffffffffffffffffffffffffffffffffffffffff16836040518082805190602001908083835b6020831061232757805182527fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe090920191602091820191016122ea565b6001836020036101000a0380198251168184511680821785525050505050509050019150506000604051808303816000865af19150503d8060008114612389576040519150601f19603f3d011682016040523d82523d6000602084013e61238e565b606091505b509150915060008214156123a6573d6000803e3d6000fd5b610e788151600014806123cc57508180602001905160208110156123c957600080fd5b50515b6101a261028e565b80356104b781612ed3565b600082601f8301126123ef578081fd5b813560206124046123ff83612ddf565b612dbb565b8281528181019085830183850287018401881015612420578586fd5b855b8581101561244757813561243581612ed3565b84529284019290840190600101612422565b5090979650505050505050565b60008083601f840112612465578182fd5b50813567ffffffffffffffff81111561247c578182fd5b602083019150836020808302850101111561249657600080fd5b9250929050565b600082601f8301126124ad578081fd5b813560206124bd6123ff83612ddf565b82815281810190858301838502870184018810156124d9578586fd5b855b85811015612447578135845292840192908401906001016124db565b600082601f830112612507578081fd5b815160206125176123ff83612ddf565b8281528181019085830183850287018401881015612533578586fd5b855b8581101561244757815184529284019290840190600101612535565b803580151581146104b757600080fd5b600082601f830112612571578081fd5b813567ffffffffffffffff81111561258557fe5b6125b660207fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0601f84011601612dbb565b8181528460208386010111156125ca578283fd5b816020850160208301379081016020019190915292915050565b6000608082840312156125f5578081fd5b50919050565b60006080828403121561260c578081fd5b6126166080612dbb565b9050813567ffffffffffffffff8082111561263057600080fd5b61263c858386016123df565b8352602084013591508082111561265257600080fd5b61265e8583860161249d565b6020840152604084013591508082111561267757600080fd5b5061268484828501612561565b60408301525061269660608301612551565b606082015292915050565b6000806000606084860312156126b5578283fd5b835167ffffffffffffffff808211156126cc578485fd5b818601915086601f8301126126df578485fd5b815160206126ef6123ff83612ddf565b82815281810190858301838502870184018c101561270b57898afd5b8996505b8487101561273657805161272281612ed3565b83526001969096019591830191830161270f565b509189015191975090935050508082111561274f578384fd5b5061275c868287016124f7565b925050604084015190509250925092565b60006020828403121561277e578081fd5b815167ffffffffffffffff811115612794578182fd5b6127a0848285016124f7565b949350505050565b6000806000806000806000806000806000806101008d8f0312156127ca57898afd5b8c359b5067ffffffffffffffff60208e013511156127e657898afd5b6127f68e60208f01358f016125e4565b9a5067ffffffffffffffff60408e0135111561281057898afd5b6128208e60408f01358f01612454565b909a50985067ffffffffffffffff60608e0135111561283d578788fd5b61284d8e60608f01358f01612454565b909850965067ffffffffffffffff60808e0135111561286a578586fd5b61287a8e60808f01358f01612454565b909650945067ffffffffffffffff60a08e01351115612897578384fd5b6128a78e60a08f01358f01612454565b9c9f9b9e50999c989b979a969995989497959660c08601359560e00135945092505050565b60008060008060008060008060008060e08b8d0312156128ea578384fd5b8a35995060208b013567ffffffffffffffff80821115612908578586fd5b6129148e838f016125fb565b9a5060408d0135915080821115612929578586fd5b6129358e838f01612454565b909a50985060608d013591508082111561294d578586fd5b6129598e838f01612454565b909850965060808d0135915080821115612971578586fd5b5061297e8d828e01612454565b9b9e9a9d50989b979a969995989760a08101359660c09091013595509350505050565b6000602082840312156129b2578081fd5b81357fffffffff0000000000000000000000000000000000000000000000000000000081168114611b04578182fd5b6000602082840312156129f2578081fd5b8151611b0481612ed3565b600060208284031215612a0e578081fd5b8135611b0481612ed3565b600060208284031215612a2a578081fd5b5051919050565b60008060408385031215612a43578182fd5b825160ff81168114612a53578283fd5b6020939093015192949293505050565b6000815180845260208085019450808401835b83811015612a9257815187529582019590820190600101612a76565b509495945050505050565b15159052565b60008151808452612abb816020860160208601612ea7565b601f017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0169290920160200192915050565b60007fffffffff000000000000000000000000000000000000000000000000000000008516825282846004840137910160040190815292915050565b60008251612b3b818460208701612ea7565b9190910192915050565b73ffffffffffffffffffffffffffffffffffffffff91909116815260200190565b73ffffffffffffffffffffffffffffffffffffffff92831681529116602082015260400190565b901515815260200190565b90815260200190565b6000858252602073ffffffffffffffffffffffffffffffffffffffff80871682850152808616604085015260806060850152610100840185516080808701528181518084526101208801915085830193508692505b80831015612c1857835185168252928501926001929092019190850190612bf6565b508488015194507fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff809350838782030160a0880152612c568186612a63565b94505050506040850151818584030160c0860152612c748382612aa3565b925050506060840151612c8a60e0850182612a9d565b509695505050505050565b60208082526029908201527f7472616e7366657246726f6d206e6f7420616c6c6f77656420666f722065787460408201527f65726e616c43616c6c0000000000000000000000000000000000000000000000606082015260800190565b60008083357fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe1843603018112612d26578283fd5b83018035915067ffffffffffffffff821115612d40578283fd5b60200191503681900382131561249657600080fd5b600082357fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc1833603018112612b3b578182fd5b600082357fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff21833603018112612b3b578182fd5b60405181810167ffffffffffffffff81118282101715612dd757fe5b604052919050565b600067ffffffffffffffff821115612df357fe5b5060209081020190565b6000610ce236836125fb565b600060e08236031215612e1a578081fd5b612e2460e0612dbb565b612e2d836123d4565b8152612e3b602084016123d4565b6020820152612e4c604084016123d4565b60408201526060830135606082015260808301356080820152612e7160a084016123d4565b60a082015260c083013567ffffffffffffffff811115612e8f578283fd5b612e9b36828601612561565b60c08301525092915050565b60005b83811015612ec2578181015183820152602001612eaa565b83811115610e785750506000910152565b73ffffffffffffffffffffffffffffffffffffffff811681146105f457600080fdfe416464726573733a20756e61626c6520746f2073656e642076616c75652c20726563697069656e74206d61792068617665207265766572746564a26469706673582212200f36a712a790acbe276c81840d8f372beae3241afb32694746157236add7353f64736f6c63430007060033000000000000000000000000d315a9c38ec871068fec378e4ce78af528c76293000000000000000000000000c02aaa39b223fe8d0a0e5c4f27ead9083c756cc2000000000000000000000000def1c0ded9bec7f1a1670819833240f027b25eff000000000000000000000000def171fe48cf0115b1d80b88dc8eab59176fee570000000000000000000000001111111254eeb25477b68fb85ed929f73a960582000000000000000000000000cf5540fffcdc3d510b18bfca6d2b9987b0772559
Deployed Bytecode
0x6080604052600436106100e15760003560e01c80635f6765491161007f578063893d20e811610059578063893d20e81461023c5780638c4b7aa714610251578063aaabadc514610264578063fbfa77cf146102795761012c565b80635f676549146101e75780638456cb5914610207578063851c1bb31461021c5761012c565b80633fc8cef3116100bb5780633fc8cef31461018657806352ab413b1461019b5780635af7462f146101b05780635c975abb146101c55761012c565b8063045c08d5146101315780631eba02ec1461015c5780633f4ba83a146101715761012c565b3661012c5761012a3373ffffffffffffffffffffffffffffffffffffffff7f000000000000000000000000c02aaa39b223fe8d0a0e5c4f27ead9083c756cc2161461020661028e565b005b600080fd5b34801561013d57600080fd5b506101466102a0565b6040516101539190612b45565b60405180910390f35b34801561016857600080fd5b506101466102c4565b34801561017d57600080fd5b5061012a6102e8565b34801561019257600080fd5b506101466102fa565b3480156101a757600080fd5b5061014661031e565b3480156101bc57600080fd5b50610146610342565b3480156101d157600080fd5b506101da610366565b6040516101539190612b8d565b6101fa6101f53660046127a8565b61036f565b6040516101539190612b98565b34801561021357600080fd5b5061012a61043a565b34801561022857600080fd5b506101fa6102373660046129a1565b61044a565b34801561024857600080fd5b506101466104bc565b6101fa61025f3660046128cc565b6104e0565b34801561027057600080fd5b50610146610597565b34801561028557600080fd5b506101466105a6565b8161029c5761029c816105ca565b5050565b7f0000000000000000000000001111111254eeb25477b68fb85ed929f73a96058281565b7f000000000000000000000000cf5540fffcdc3d510b18bfca6d2b9987b077255981565b6102f06105f7565b6102f861063d565b565b7f000000000000000000000000c02aaa39b223fe8d0a0e5c4f27ead9083c756cc281565b7f000000000000000000000000def1c0ded9bec7f1a1670819833240f027b25eff81565b7f000000000000000000000000def171fe48cf0115b1d80b88dc8eab59176fee5781565b60015460ff1690565b6000610379610366565b156103e557604080517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601060248201527f5061757361626c653a2070617573656400000000000000000000000000000000604482015290519081900360640190fd5b6103ed61072b565b816103fc814211156021610744565b6104068686610752565b61041f8e6104138f612dfd565b8e8e8e8e8e8e8c6107ca565b91505061042a6109ad565b9c9b505050505050505050505050565b6104426105f7565b6102f86109b4565b604080517f9574c8a1653717d2da71269c17ac28e891e880670000000000000000000000006020808301919091527fffffffff0000000000000000000000000000000000000000000000000000000084168284015282516024818403018152604490920190925280519101205b919050565b7f000000000000000000000000ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1b90565b60006104ea610366565b1561055657604080517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601060248201527f5061757361626c653a2070617573656400000000000000000000000000000000604482015290519081900360640190fd5b61055e61072b565b8161056d814211156021610744565b61057e8c8c8c8c8c8c8c8c8c6107ca565b9150506105896109ad565b9a9950505050505050505050565b60006105a1610a7b565b905090565b7f000000000000000000000000d315a9c38ec871068fec378e4ce78af528c7629381565b6105f4817f42414c0000000000000000000000000000000000000000000000000000000000610b1b565b50565b60006106266000357fffffffff000000000000000000000000000000000000000000000000000000001661044a565b90506105f46106358233610b96565b61019161028e565b610645610366565b6106b057604080517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601460248201527f5061757361626c653a206e6f7420706175736564000000000000000000000000604482015290519081900360640190fd5b600180547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff001690557f5db9ee0a495bf2e6ff9c91a7834c1ba4fdd244a5e8aa4e537bd38aeae4b073aa610701610ce8565b6040805173ffffffffffffffffffffffffffffffffffffffff9092168252519081900360200190a1565b61073d6002600054141561019061028e565b6002600055565b8161029c5761029c81610cec565b60005b818110156107c5576107bd83838381811061076c57fe5b905060200281019061077e9190612d55565b61078c9060208101906129fd565b84848481811061079857fe5b90506020028101906107aa9190612d55565b6107b8906020810190612cf2565b610d4f565b600101610755565b505050565b600061083986868080602002602001604051908101604052809392919081815260200183836020028082843760009201919091525050604080516020808a02828101820190935289825290935089925088918291850190849080828437600092019190915250610e2692505050565b6108438888610e7e565b6000807f000000000000000000000000d315a9c38ec871068fec378e4ce78af528c7629373ffffffffffffffffffffffffffffffffffffffff1663f94d46688d6040518263ffffffff1660e01b815260040161089f9190612b98565b60006040518083038186803b1580156108b757600080fd5b505afa1580156108cb573d6000803e3d6000fd5b505050506040513d6000823e601f3d9081017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe016820160405261091191908101906126a1565b509150915061092a6109228d6110d4565b83838e6110da565b925061093a848410156004610744565b6109488b60400151846113b6565b610956828c602001516113bf565b610961838d8d611432565b61099e8289898080602002602001604051908101604052809392919081815260200183836020028082843760009201919091525061163d92505050565b50509998505050505050505050565b6001600055565b6109bc610366565b15610a2857604080517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601060248201527f5061757361626c653a2070617573656400000000000000000000000000000000604482015290519081900360640190fd5b600180547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff0016811790557f62e78cea01bee320cd4e420270b5ea74000d11b0c9f74754ebdbfc544b05a258610701610ce8565b60007f000000000000000000000000d315a9c38ec871068fec378e4ce78af528c7629373ffffffffffffffffffffffffffffffffffffffff1663aaabadc56040518163ffffffff1660e01b815260040160206040518083038186803b158015610ae357600080fd5b505afa158015610af7573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906105a191906129e1565b7f08c379a000000000000000000000000000000000000000000000000000000000600090815260206004526007602452600a808404818106603090810160081b958390069590950190829004918206850160101b01602363ffffff0060e086901c160160181b0190930160c81b60445260e882901c90606490fd5b600073ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1b610bb56104bc565b73ffffffffffffffffffffffffffffffffffffffff1614158015610bdd5750610bdd836116b7565b15610c1f57610bea6104bc565b73ffffffffffffffffffffffffffffffffffffffff163373ffffffffffffffffffffffffffffffffffffffff16149050610ce2565b610c27610a7b565b73ffffffffffffffffffffffffffffffffffffffff16639be2a8848484306040518463ffffffff1660e01b8152600401808481526020018373ffffffffffffffffffffffffffffffffffffffff1681526020018273ffffffffffffffffffffffffffffffffffffffff168152602001935050505060206040518083038186803b158015610cb357600080fd5b505afa158015610cc7573d6000803e3d6000fd5b505050506040513d6020811015610cdd57600080fd5b505190505b92915050565b3390565b6030600a820601600a820491506030600a8306018060081b82016753574141502300000160c01b9150507f08c379a00000000000000000000000000000000000000000000000000000000060005260206004526008602452806044525060646000fd5b610d5d60e082146023610744565b6000808473ffffffffffffffffffffffffffffffffffffffff1663d505accf60e01b8585604051602001610d9393929190612aed565b604080517fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe081840301815290829052610dcb91612b29565b6000604051808303816000865af19150503d8060008114610e08576040519150601f19603f3d011682016040523d82523d6000602084013e610e0d565b606091505b509150915081610e1f57805160208201fd5b5050505050565b81518151610e359082906116bd565b60005b81811015610e7857610e70848281518110610e4f57fe5b6020026020010151848381518110610e6357fe5b60200260200101516116ca565b600101610e38565b50505050565b60005b818110156107c5576000838383818110610e9757fe5b9050602002810190610ea99190612d88565b610eb290612e09565b90507f000000000000000000000000def1c0ded9bec7f1a1670819833240f027b25eff73ffffffffffffffffffffffffffffffffffffffff16816000015173ffffffffffffffffffffffffffffffffffffffff161415610f3b57610f367f000000000000000000000000def1c0ded9bec7f1a1670819833240f027b25eff82611780565b6110cb565b7f000000000000000000000000def171fe48cf0115b1d80b88dc8eab59176fee5773ffffffffffffffffffffffffffffffffffffffff16816000015173ffffffffffffffffffffffffffffffffffffffff161415610fbd57610f367f000000000000000000000000def171fe48cf0115b1d80b88dc8eab59176fee5782611780565b7f0000000000000000000000001111111254eeb25477b68fb85ed929f73a96058273ffffffffffffffffffffffffffffffffffffffff16816000015173ffffffffffffffffffffffffffffffffffffffff16141561103f57610f367f0000000000000000000000001111111254eeb25477b68fb85ed929f73a96058282611780565b7f000000000000000000000000cf5540fffcdc3d510b18bfca6d2b9987b077255973ffffffffffffffffffffffffffffffffffffffff16816000015173ffffffffffffffffffffffffffffffffffffffff1614156110c157610f367f000000000000000000000000cf5540fffcdc3d510b18bfca6d2b9987b077255982611780565b6110cb6020610cec565b50600101610e81565b60601c90565b600080835190506110f0818460200151516116bd565b6000855167ffffffffffffffff8111801561110a57600080fd5b50604051908082528060200260200182016040528015611134578160200160208202803683370190505b50905060005b8281101561117d5761115e87828151811061115157fe5b60200260200101516118d4565b82828151811061116a57fe5b602090810291909101015260010161113a565b5060008773ffffffffffffffffffffffffffffffffffffffff16631dd746ea6040518163ffffffff1660e01b815260040160006040518083038186803b1580156111c657600080fd5b505afa1580156111da573d6000803e3d6000fd5b505050506040513d6000823e601f3d9081017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0168201604052611220919081019061276d565b905061122c82826119ff565b61123686826119ff565b507fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff60005b838110156112ac57600061129584838151811061127457fe5b602002602001015189848151811061128857fe5b6020026020010151611a68565b9050828110156112a3578092505b5060010161125b565b506000611336828a73ffffffffffffffffffffffffffffffffffffffff166318160ddd6040518163ffffffff1660e01b815260040160206040518083038186803b1580156112f957600080fd5b505afa15801561130d573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906113319190612a19565b611abb565b905060006113478760400151611aee565b905060006113558383611b0b565b905060005b868110156113a6576113838960200151828151811061137557fe5b602002602001015183611b58565b8960200151828151811061139357fe5b602090810291909101015260010161135a565b50919a9950505050505050505050565b60409190910152565b815181516113ce9082906116bd565b60005b81811015610e785761142a8482815181106113e857fe5b60200260200101517f000000000000000000000000d315a9c38ec871068fec378e4ce78af528c7629385848151811061141d57fe5b6020026020010151611b90565b6001016113d1565b600061143d836110d4565b905060008173ffffffffffffffffffffffffffffffffffffffff166370a08231336040518263ffffffff1660e01b815260040161147a9190612b45565b60206040518083038186803b15801561149257600080fd5b505afa1580156114a6573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906114ca9190612a19565b6040517fb95cac2800000000000000000000000000000000000000000000000000000000815290915073ffffffffffffffffffffffffffffffffffffffff7f000000000000000000000000d315a9c38ec871068fec378e4ce78af528c76293169063b95cac2890611545908790309033908990600401612ba1565b600060405180830381600087803b15801561155f57600080fd5b505af1158015611573573d6000803e3d6000fd5b50506040517f70a082310000000000000000000000000000000000000000000000000000000081526000925073ffffffffffffffffffffffffffffffffffffffff851691506370a08231906115cc903390600401612b45565b60206040518083038186803b1580156115e457600080fd5b505afa1580156115f8573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061161c9190612a19565b90506116358661162c8385611c7d565b10156004610744565b505050505050565b60005b815181101561167c57600082828151811061165757fe5b602002602001015190506116738161166e836118d4565b611c93565b50600101611640565b5060005b82518110156107c557600083828151811061169757fe5b602002602001015190506116ae8161166e836118d4565b50600101611680565b50600090565b61029c818314606761028e565b6116d382611d7e565b1561175e577f000000000000000000000000c02aaa39b223fe8d0a0e5c4f27ead9083c756cc273ffffffffffffffffffffffffffffffffffffffff1663d0e30db0346040518263ffffffff1660e01b81526004016000604051808303818588803b15801561174057600080fd5b505af1158015611754573d6000803e3d6000fd5b505050505061029c565b61029c73ffffffffffffffffffffffffffffffffffffffff8316333084611d98565b600061178f8260200151611d7e565b61179d5781602001516117bf565b7f000000000000000000000000c02aaa39b223fe8d0a0e5c4f27ead9083c756cc25b905060006117d08360400151611d7e565b6117de578260400151611800565b7f000000000000000000000000c02aaa39b223fe8d0a0e5c4f27ead9083c756cc25b9050600061180d836118d4565b9050600061181a836118d4565b90506118568473ffffffffffffffffffffffffffffffffffffffff168473ffffffffffffffffffffffffffffffffffffffff1614156022610744565b611869848660a001518760600151611b90565b611877868660c00151611e2d565b50600061188d611886866118d4565b8490611c7d565b905060006118a48361189e876118d4565b90611c7d565b90506118b887606001518311156000610744565b6118ca87608001518210156004610744565b5050505050505050565b60006118df82611d7e565b156119ad576040517f70a0823100000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff7f000000000000000000000000c02aaa39b223fe8d0a0e5c4f27ead9083c756cc216906370a0823190611956903090600401612b45565b60206040518083038186803b15801561196e57600080fd5b505afa158015611982573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906119a69190612a19565b90506104b7565b6040517f70a0823100000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff8316906370a0823190611956903090600401612b45565b81518151611a0e9082906116bd565b60005b81811015610e7857611a49848281518110611a2857fe5b6020026020010151848381518110611a3c57fe5b6020026020010151611abb565b848281518110611a5557fe5b6020908102919091010152600101611a11565b6000611a77821515600461028e565b670de0b6b3a76400008302611aa9841580611aa25750670de0b6b3a7640000858381611a9f57fe5b04145b600561028e565b828181611ab257fe5b04949350505050565b6000828202611adf841580611ad8575083858381611ad557fe5b04145b600361028e565b670de0b6b3a764000081611ab2565b600081806020019051810190611b049190612a31565b9392505050565b6000611b1a821515600461028e565b670de0b6b3a76400008302611b42841580611aa25750670de0b6b3a7640000858381611a9f57fe5b6001836001830304018115150291505092915050565b6000828202611b72841580611ad8575083858381611ad557fe5b6001670de0b6b3a76400006001830304018115150291505092915050565b6040517fdd62ed3e000000000000000000000000000000000000000000000000000000008152819073ffffffffffffffffffffffffffffffffffffffff85169063dd62ed3e90611be69030908790600401612b66565b60206040518083038186803b158015611bfe57600080fd5b505afa158015611c12573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190611c369190612a19565b10156107c5576107c573ffffffffffffffffffffffffffffffffffffffff8416837fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff611f3f565b6000611c8d83831115600161028e565b50900390565b801561029c57611ca282611d7e565b15611d5d576040517f2e1a7d4d00000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff7f000000000000000000000000c02aaa39b223fe8d0a0e5c4f27ead9083c756cc21690632e1a7d4d90611d19908490600401612b98565b600060405180830381600087803b158015611d3357600080fd5b505af1158015611d47573d6000803e3d6000fd5b50611d589250339150839050612110565b61029c565b61029c73ffffffffffffffffffffffffffffffffffffffff83163383612236565b73ffffffffffffffffffffffffffffffffffffffff161590565b6040805173ffffffffffffffffffffffffffffffffffffffff80861660248301528416604482015260648082018490528251808303909101815260849091019091526020810180517bffffffffffffffffffffffffffffffffffffffffffffffffffffffff167f23b872dd00000000000000000000000000000000000000000000000000000000179052610e789085906122bf565b60208101516060907fffffffff0000000000000000000000000000000000000000000000000000000081167f23b872dd000000000000000000000000000000000000000000000000000000001415611eba576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401611eb190612c95565b60405180910390fd5b6000808573ffffffffffffffffffffffffffffffffffffffff1685604051611ee29190612b29565b6000604051808303816000865af19150503d8060008114611f1f576040519150601f19603f3d011682016040523d82523d6000602084013e611f24565b606091505b509150915081611f3657805160208601fd5b95945050505050565b8015801590611fee5750604080517fdd62ed3e00000000000000000000000000000000000000000000000000000000815230600482015273ffffffffffffffffffffffffffffffffffffffff848116602483015291519185169163dd62ed3e91604480820192602092909190829003018186803b158015611fbf57600080fd5b505afa158015611fd3573d6000803e3d6000fd5b505050506040513d6020811015611fe957600080fd5b505115155b15612083576040805173ffffffffffffffffffffffffffffffffffffffff8416602482015260006044808301919091528251808303909101815260649091019091526020810180517bffffffffffffffffffffffffffffffffffffffffffffffffffffffff167f095ea7b3000000000000000000000000000000000000000000000000000000001790526120839084906122bf565b6040805173ffffffffffffffffffffffffffffffffffffffff8416602482015260448082018490528251808303909101815260649091019091526020810180517bffffffffffffffffffffffffffffffffffffffffffffffffffffffff167f095ea7b3000000000000000000000000000000000000000000000000000000001790526107c59084906122bf565b8047101561217f57604080517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601d60248201527f416464726573733a20696e73756666696369656e742062616c616e6365000000604482015290519081900360640190fd5b60405160009073ffffffffffffffffffffffffffffffffffffffff84169083908381818185875af1925050503d80600081146121d7576040519150601f19603f3d011682016040523d82523d6000602084013e6121dc565b606091505b50509050806107c5576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040180806020018281038252603a815260200180612ef6603a913960400191505060405180910390fd5b6040805173ffffffffffffffffffffffffffffffffffffffff8416602482015260448082018490528251808303909101815260649091019091526020810180517bffffffffffffffffffffffffffffffffffffffffffffffffffffffff167fa9059cbb000000000000000000000000000000000000000000000000000000001790526107c59084905b6000808373ffffffffffffffffffffffffffffffffffffffff16836040518082805190602001908083835b6020831061232757805182527fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe090920191602091820191016122ea565b6001836020036101000a0380198251168184511680821785525050505050509050019150506000604051808303816000865af19150503d8060008114612389576040519150601f19603f3d011682016040523d82523d6000602084013e61238e565b606091505b509150915060008214156123a6573d6000803e3d6000fd5b610e788151600014806123cc57508180602001905160208110156123c957600080fd5b50515b6101a261028e565b80356104b781612ed3565b600082601f8301126123ef578081fd5b813560206124046123ff83612ddf565b612dbb565b8281528181019085830183850287018401881015612420578586fd5b855b8581101561244757813561243581612ed3565b84529284019290840190600101612422565b5090979650505050505050565b60008083601f840112612465578182fd5b50813567ffffffffffffffff81111561247c578182fd5b602083019150836020808302850101111561249657600080fd5b9250929050565b600082601f8301126124ad578081fd5b813560206124bd6123ff83612ddf565b82815281810190858301838502870184018810156124d9578586fd5b855b85811015612447578135845292840192908401906001016124db565b600082601f830112612507578081fd5b815160206125176123ff83612ddf565b8281528181019085830183850287018401881015612533578586fd5b855b8581101561244757815184529284019290840190600101612535565b803580151581146104b757600080fd5b600082601f830112612571578081fd5b813567ffffffffffffffff81111561258557fe5b6125b660207fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0601f84011601612dbb565b8181528460208386010111156125ca578283fd5b816020850160208301379081016020019190915292915050565b6000608082840312156125f5578081fd5b50919050565b60006080828403121561260c578081fd5b6126166080612dbb565b9050813567ffffffffffffffff8082111561263057600080fd5b61263c858386016123df565b8352602084013591508082111561265257600080fd5b61265e8583860161249d565b6020840152604084013591508082111561267757600080fd5b5061268484828501612561565b60408301525061269660608301612551565b606082015292915050565b6000806000606084860312156126b5578283fd5b835167ffffffffffffffff808211156126cc578485fd5b818601915086601f8301126126df578485fd5b815160206126ef6123ff83612ddf565b82815281810190858301838502870184018c101561270b57898afd5b8996505b8487101561273657805161272281612ed3565b83526001969096019591830191830161270f565b509189015191975090935050508082111561274f578384fd5b5061275c868287016124f7565b925050604084015190509250925092565b60006020828403121561277e578081fd5b815167ffffffffffffffff811115612794578182fd5b6127a0848285016124f7565b949350505050565b6000806000806000806000806000806000806101008d8f0312156127ca57898afd5b8c359b5067ffffffffffffffff60208e013511156127e657898afd5b6127f68e60208f01358f016125e4565b9a5067ffffffffffffffff60408e0135111561281057898afd5b6128208e60408f01358f01612454565b909a50985067ffffffffffffffff60608e0135111561283d578788fd5b61284d8e60608f01358f01612454565b909850965067ffffffffffffffff60808e0135111561286a578586fd5b61287a8e60808f01358f01612454565b909650945067ffffffffffffffff60a08e01351115612897578384fd5b6128a78e60a08f01358f01612454565b9c9f9b9e50999c989b979a969995989497959660c08601359560e00135945092505050565b60008060008060008060008060008060e08b8d0312156128ea578384fd5b8a35995060208b013567ffffffffffffffff80821115612908578586fd5b6129148e838f016125fb565b9a5060408d0135915080821115612929578586fd5b6129358e838f01612454565b909a50985060608d013591508082111561294d578586fd5b6129598e838f01612454565b909850965060808d0135915080821115612971578586fd5b5061297e8d828e01612454565b9b9e9a9d50989b979a969995989760a08101359660c09091013595509350505050565b6000602082840312156129b2578081fd5b81357fffffffff0000000000000000000000000000000000000000000000000000000081168114611b04578182fd5b6000602082840312156129f2578081fd5b8151611b0481612ed3565b600060208284031215612a0e578081fd5b8135611b0481612ed3565b600060208284031215612a2a578081fd5b5051919050565b60008060408385031215612a43578182fd5b825160ff81168114612a53578283fd5b6020939093015192949293505050565b6000815180845260208085019450808401835b83811015612a9257815187529582019590820190600101612a76565b509495945050505050565b15159052565b60008151808452612abb816020860160208601612ea7565b601f017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0169290920160200192915050565b60007fffffffff000000000000000000000000000000000000000000000000000000008516825282846004840137910160040190815292915050565b60008251612b3b818460208701612ea7565b9190910192915050565b73ffffffffffffffffffffffffffffffffffffffff91909116815260200190565b73ffffffffffffffffffffffffffffffffffffffff92831681529116602082015260400190565b901515815260200190565b90815260200190565b6000858252602073ffffffffffffffffffffffffffffffffffffffff80871682850152808616604085015260806060850152610100840185516080808701528181518084526101208801915085830193508692505b80831015612c1857835185168252928501926001929092019190850190612bf6565b508488015194507fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff809350838782030160a0880152612c568186612a63565b94505050506040850151818584030160c0860152612c748382612aa3565b925050506060840151612c8a60e0850182612a9d565b509695505050505050565b60208082526029908201527f7472616e7366657246726f6d206e6f7420616c6c6f77656420666f722065787460408201527f65726e616c43616c6c0000000000000000000000000000000000000000000000606082015260800190565b60008083357fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe1843603018112612d26578283fd5b83018035915067ffffffffffffffff821115612d40578283fd5b60200191503681900382131561249657600080fd5b600082357fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc1833603018112612b3b578182fd5b600082357fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff21833603018112612b3b578182fd5b60405181810167ffffffffffffffff81118282101715612dd757fe5b604052919050565b600067ffffffffffffffff821115612df357fe5b5060209081020190565b6000610ce236836125fb565b600060e08236031215612e1a578081fd5b612e2460e0612dbb565b612e2d836123d4565b8152612e3b602084016123d4565b6020820152612e4c604084016123d4565b60408201526060830135606082015260808301356080820152612e7160a084016123d4565b60a082015260c083013567ffffffffffffffff811115612e8f578283fd5b612e9b36828601612561565b60c08301525092915050565b60005b83811015612ec2578181015183820152602001612eaa565b83811115610e785750506000910152565b73ffffffffffffffffffffffffffffffffffffffff811681146105f457600080fdfe416464726573733a20756e61626c6520746f2073656e642076616c75652c20726563697069656e74206d61792068617665207265766572746564a26469706673582212200f36a712a790acbe276c81840d8f372beae3241afb32694746157236add7353f64736f6c63430007060033
Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)
000000000000000000000000d315a9c38ec871068fec378e4ce78af528c76293000000000000000000000000c02aaa39b223fe8d0a0e5c4f27ead9083c756cc2000000000000000000000000def1c0ded9bec7f1a1670819833240f027b25eff000000000000000000000000def171fe48cf0115b1d80b88dc8eab59176fee570000000000000000000000001111111254eeb25477b68fb85ed929f73a960582000000000000000000000000cf5540fffcdc3d510b18bfca6d2b9987b0772559
-----Decoded View---------------
Arg [0] : _vault (address): 0xd315a9C38eC871068FEC378E4Ce78AF528C76293
Arg [1] : _weth (address): 0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2
Arg [2] : _zeroEx (address): 0xDef1C0ded9bec7F1a1670819833240f027b25EfF
Arg [3] : _paraswap (address): 0xDEF171Fe48CF0115B1d80b88dc8eAB59176FEe57
Arg [4] : _oneInch (address): 0x1111111254EEB25477B68fb85Ed929f73A960582
Arg [5] : _odos (address): 0xCf5540fFFCdC3d510B18bFcA6d2b9987b0772559
-----Encoded View---------------
6 Constructor Arguments found :
Arg [0] : 000000000000000000000000d315a9c38ec871068fec378e4ce78af528c76293
Arg [1] : 000000000000000000000000c02aaa39b223fe8d0a0e5c4f27ead9083c756cc2
Arg [2] : 000000000000000000000000def1c0ded9bec7f1a1670819833240f027b25eff
Arg [3] : 000000000000000000000000def171fe48cf0115b1d80b88dc8eab59176fee57
Arg [4] : 0000000000000000000000001111111254eeb25477b68fb85ed929f73a960582
Arg [5] : 000000000000000000000000cf5540fffcdc3d510b18bfca6d2b9987b0772559
Loading...
Loading
Loading...
Loading
Multichain Portfolio | 30 Chains
Chain | Token | Portfolio % | Price | Amount | Value |
---|
Loading...
Loading
[ Download: CSV Export ]
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.