More Info
Private Name Tags
ContractCreator
Latest 25 from a total of 122,664 transactions
(More than 25 Pending Txns)
Advanced mode: Intended for advanced users or developers and will display all Internal Transactions including zero value transfers. Name tag integration is not available in advanced view.
Latest 25 internal transactions (View All)
Advanced mode:
Parent Transaction Hash | Block | From | To | ||||
---|---|---|---|---|---|---|---|
21218757 | 2 mins ago | 0 ETH | |||||
21218757 | 2 mins ago | 0 ETH | |||||
21218741 | 5 mins ago | 0 ETH | |||||
21218741 | 5 mins ago | 0 ETH | |||||
21218726 | 8 mins ago | 0 ETH | |||||
21218726 | 8 mins ago | 0 ETH | |||||
21218716 | 10 mins ago | 0 ETH | |||||
21218716 | 10 mins ago | 0 ETH | |||||
21218700 | 13 mins ago | 0 ETH | |||||
21218700 | 13 mins ago | 0 ETH | |||||
21218683 | 17 mins ago | 0 ETH | |||||
21218683 | 17 mins ago | 0 ETH | |||||
21218610 | 31 mins ago | 0 ETH | |||||
21218610 | 31 mins ago | 0 ETH | |||||
21218074 | 2 hrs ago | 0 ETH | |||||
21218074 | 2 hrs ago | 0 ETH | |||||
21218060 | 2 hrs ago | 0 ETH | |||||
21218060 | 2 hrs ago | 0 ETH | |||||
21217827 | 3 hrs ago | 0 ETH | |||||
21217827 | 3 hrs ago | 0 ETH | |||||
21217603 | 3 hrs ago | 0 ETH | |||||
21217603 | 3 hrs ago | 0 ETH | |||||
21217446 | 4 hrs ago | 0 ETH | |||||
21217446 | 4 hrs ago | 0 ETH | |||||
21217426 | 4 hrs ago | 0 ETH |
Loading...
Loading
Similar Match Source Code This contract matches the deployed Bytecode of the Source Code for Contract 0x035bdAea...80aD4ad02 The constructor portion of the code might be different and could alter the actual behaviour of the contract
Contract Name:
SignedDistributor
Compiler Version
v0.8.23+commit.f704f362
Optimization Enabled:
Yes with 10000 runs
Other Settings:
paris EvmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: MIT pragma solidity 0.8.23; /* Built with ♥ by ░██╗░░░░░░░██╗░█████╗░███╗░░██╗██████╗░███████╗██████╗░██╗░░░░░░█████╗░███╗░░██╗██████╗░ ░██║░░██╗░░██║██╔══██╗████╗░██║██╔══██╗██╔════╝██╔══██╗██║░░░░░██╔══██╗████╗░██║██╔══██╗ ░╚██╗████╗██╔╝██║░░██║██╔██╗██║██║░░██║█████╗░░██████╔╝██║░░░░░███████║██╔██╗██║██║░░██║ ░░████╔═████║░██║░░██║██║╚████║██║░░██║██╔══╝░░██╔══██╗██║░░░░░██╔══██║██║╚████║██║░░██║ ░░╚██╔╝░╚██╔╝░╚█████╔╝██║░╚███║██████╔╝███████╗██║░░██║███████╗██║░░██║██║░╚███║██████╔╝ ░░░╚═╝░░░╚═╝░░░╚════╝░╚═╝░░╚══╝╚═════╝░╚══════╝╚═╝░░╚═╝╚══════╝╚═╝░░╚═╝╚═╝░░╚══╝╚═════╝░ https://defi.sucks */ import {ISignedDistributor} from 'interfaces/ISignedDistributor.sol'; import {Ownable, Ownable2Step} from 'openzeppelin/access/Ownable2Step.sol'; import {IERC20} from 'openzeppelin/token/ERC20/IERC20.sol'; import {ECDSA} from 'openzeppelin/utils/cryptography/ECDSA.sol'; import {MerkleProof} from 'openzeppelin/utils/cryptography/MerkleProof.sol'; import {MessageHashUtils} from 'openzeppelin/utils/cryptography/MessageHashUtils.sol'; contract SignedDistributor is ISignedDistributor, Ownable2Step { using ECDSA for bytes32; using MessageHashUtils for bytes32; /// @inheritdoc ISignedDistributor bytes32 public immutable MERKLE_ROOT; /// @inheritdoc ISignedDistributor IERC20 public immutable TOKEN; /// @inheritdoc ISignedDistributor address public signer; /// @inheritdoc ISignedDistributor mapping(address => bool) public hasClaimed; // solhint-disable-next-line no-unused-vars constructor(bytes32 _merkleRoot, address _signer, address _token, address _owner) Ownable(_owner) { MERKLE_ROOT = _merkleRoot; TOKEN = IERC20(_token); _updateSigner(_signer); } /// @inheritdoc ISignedDistributor function claim(uint256 amount, bytes32[] calldata merkleProof, bytes calldata signature) external { if (amount == 0) revert InvalidAmount(); if (signature.length == 0) revert InvalidSignature(); if (hasClaimed[msg.sender]) revert AlreadyClaimed(); // Verify the signature bytes32 _messageHash = keccak256(bytes.concat(keccak256(abi.encode(msg.sender, amount)))); bytes32 _ethSignedMessageHash = _messageHash.toEthSignedMessageHash(); address _recoveredSigner = _ethSignedMessageHash.recover(signature); if (_recoveredSigner != signer) revert InvalidSigner(); // Verify the merkle proof if (!MerkleProof.verify(merkleProof, MERKLE_ROOT, _messageHash)) revert InvalidProof(); // Mark as claimed and send the tokens hasClaimed[msg.sender] = true; TOKEN.transfer({to: msg.sender, value: amount}); emit Claimed(msg.sender, amount); } /// @inheritdoc ISignedDistributor function withdraw() external onlyOwner { uint256 _remainingBalance = TOKEN.balanceOf(address(this)); TOKEN.transfer({to: owner(), value: _remainingBalance}); emit Withdrawn(owner(), _remainingBalance); } /// @inheritdoc ISignedDistributor function updateSigner(address newSigner) external onlyOwner { _updateSigner(newSigner); } /** * @notice Updates the signer address * @param newSigner The new signer address */ function _updateSigner(address newSigner) internal { if (newSigner == address(0)) revert InvalidNewSigner(); address _oldSigner = signer; signer = newSigner; emit SignerUpdated(_oldSigner, newSigner); } }
// SPDX-License-Identifier: MIT pragma solidity 0.8.23; import {IERC20} from 'openzeppelin/token/ERC20/IERC20.sol'; /** * @title Signed Distributor Contract * @author Wonderland * @notice This contract is used to distribute tokens to users based on a merkle root and a signature */ interface ISignedDistributor { /*/////////////////////////////////////////////////////////////// EVENTS //////////////////////////////////////////////////////////////*/ /** * @notice Emitted when a user claims their tokens * @param account The account that claimed the tokens * @param amount The amount of tokens claimed */ event Claimed(address indexed account, uint256 amount); /** * @notice Emitted when the owner withdraws tokens from the contract * @param account The account that withdrew the tokens * @param amount The amount of tokens withdrawn */ event Withdrawn(address indexed account, uint256 amount); /** * @notice Emitted when the signer is updated by the owner * @param oldSigner The old signer address * @param newSigner The new signer address */ event SignerUpdated(address indexed oldSigner, address indexed newSigner); /*/////////////////////////////////////////////////////////////// ERRORS //////////////////////////////////////////////////////////////*/ /** * @notice Throws if the input amount is zero */ error InvalidAmount(); /** * @notice Throws if the input signature is invalid */ error InvalidSignature(); /** * @notice Throws if the user has already claimed their tokens */ error AlreadyClaimed(); /** * @notice Throws if the recovered signer is different from the expected signer */ error InvalidSigner(); /** * @notice Throws if the merkle verification fails */ error InvalidProof(); /** * @notice Throws if the new signer address is invalid */ error InvalidNewSigner(); /*/////////////////////////////////////////////////////////////// LOGIC //////////////////////////////////////////////////////////////*/ /** * @notice Claims the tokens for the sender * @param amount The amount of tokens to claim * @param merkleProof The merkle proof for the claim * @param signature The signature for verification of the claim data */ function claim(uint256 amount, bytes32[] calldata merkleProof, bytes calldata signature) external; /** * @notice Sends the remaining tokens to the owner * @dev Only callable by the owner */ function withdraw() external; /** * @notice Updates the signer address * @param newSigner The new signer address * @dev Only callable by the owner */ function updateSigner(address newSigner) external; /*/////////////////////////////////////////////////////////////// VARIABLES //////////////////////////////////////////////////////////////*/ /** * @notice The root of the merkle tree * @return _merkleRoot The root of the merkle tree */ // solhint-disable-next-line func-name-mixedcase function MERKLE_ROOT() external view returns (bytes32 _merkleRoot); /** * @notice The token being distributed * @return _token The address of the token */ // solhint-disable-next-line func-name-mixedcase function TOKEN() external view returns (IERC20 _token); /** * @notice The address of the signer * @return _signer The address of the signer */ function signer() external view returns (address _signer); /** * @notice Returns whether the user has claimed their tokens * @param _user The address of the user * @return _claimed Whether the user has claimed their tokens */ function hasClaimed(address _user) external view returns (bool _claimed); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable2Step.sol) pragma solidity ^0.8.20; import {Ownable} from "./Ownable.sol"; /** * @dev Contract module which provides access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * The initial owner is specified at deployment time in the constructor for `Ownable`. This * can later be changed with {transferOwnership} and {acceptOwnership}. * * This module is used through inheritance. It will make available all functions * from parent (Ownable). */ abstract contract Ownable2Step is Ownable { address private _pendingOwner; event OwnershipTransferStarted(address indexed previousOwner, address indexed newOwner); /** * @dev Returns the address of the pending owner. */ function pendingOwner() public view virtual returns (address) { return _pendingOwner; } /** * @dev Starts the ownership transfer of the contract to a new account. Replaces the pending transfer if there is one. * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual override onlyOwner { _pendingOwner = newOwner; emit OwnershipTransferStarted(owner(), newOwner); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`) and deletes any pending owner. * Internal function without access restriction. */ function _transferOwnership(address newOwner) internal virtual override { delete _pendingOwner; super._transferOwnership(newOwner); } /** * @dev The new owner accepts the ownership transfer. */ function acceptOwnership() public virtual { address sender = _msgSender(); if (pendingOwner() != sender) { revert OwnableUnauthorizedAccount(sender); } _transferOwnership(sender); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.20; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the value of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the value of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves a `value` amount of tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 value) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets a `value` amount of tokens as the allowance of `spender` over the * caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 value) external returns (bool); /** * @dev Moves a `value` amount of tokens from `from` to `to` using the * allowance mechanism. `value` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address from, address to, uint256 value) external returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/ECDSA.sol) pragma solidity ^0.8.20; /** * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations. * * These functions can be used to verify that a message was signed by the holder * of the private keys of a given address. */ library ECDSA { enum RecoverError { NoError, InvalidSignature, InvalidSignatureLength, InvalidSignatureS } /** * @dev The signature derives the `address(0)`. */ error ECDSAInvalidSignature(); /** * @dev The signature has an invalid length. */ error ECDSAInvalidSignatureLength(uint256 length); /** * @dev The signature has an S value that is in the upper half order. */ error ECDSAInvalidSignatureS(bytes32 s); /** * @dev Returns the address that signed a hashed message (`hash`) with `signature` or an error. This will not * return address(0) without also returning an error description. Errors are documented using an enum (error type) * and a bytes32 providing additional information about the error. * * If no error is returned, then the address can be used for verification purposes. * * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it. * * Documentation for signature generation: * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js] * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers] */ function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError, bytes32) { if (signature.length == 65) { bytes32 r; bytes32 s; uint8 v; // ecrecover takes the signature parameters, and the only way to get them // currently is to use assembly. /// @solidity memory-safe-assembly assembly { r := mload(add(signature, 0x20)) s := mload(add(signature, 0x40)) v := byte(0, mload(add(signature, 0x60))) } return tryRecover(hash, v, r, s); } else { return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length)); } } /** * @dev Returns the address that signed a hashed message (`hash`) with * `signature`. This address can then be used for verification purposes. * * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it. */ function recover(bytes32 hash, bytes memory signature) internal pure returns (address) { (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, signature); _throwError(error, errorArg); return recovered; } /** * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately. * * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures] */ function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address, RecoverError, bytes32) { unchecked { bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff); // We do not check for an overflow here since the shift operation results in 0 or 1. uint8 v = uint8((uint256(vs) >> 255) + 27); return tryRecover(hash, v, r, s); } } /** * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately. */ function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) { (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, r, vs); _throwError(error, errorArg); return recovered; } /** * @dev Overload of {ECDSA-tryRecover} that receives the `v`, * `r` and `s` signature fields separately. */ function tryRecover( bytes32 hash, uint8 v, bytes32 r, bytes32 s ) internal pure returns (address, RecoverError, bytes32) { // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most // signatures from current libraries generate a unique signature with an s-value in the lower half order. // // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept // these malleable signatures as well. if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) { return (address(0), RecoverError.InvalidSignatureS, s); } // If the signature is valid (and not malleable), return the signer address address signer = ecrecover(hash, v, r, s); if (signer == address(0)) { return (address(0), RecoverError.InvalidSignature, bytes32(0)); } return (signer, RecoverError.NoError, bytes32(0)); } /** * @dev Overload of {ECDSA-recover} that receives the `v`, * `r` and `s` signature fields separately. */ function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) { (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, v, r, s); _throwError(error, errorArg); return recovered; } /** * @dev Optionally reverts with the corresponding custom error according to the `error` argument provided. */ function _throwError(RecoverError error, bytes32 errorArg) private pure { if (error == RecoverError.NoError) { return; // no error: do nothing } else if (error == RecoverError.InvalidSignature) { revert ECDSAInvalidSignature(); } else if (error == RecoverError.InvalidSignatureLength) { revert ECDSAInvalidSignatureLength(uint256(errorArg)); } else if (error == RecoverError.InvalidSignatureS) { revert ECDSAInvalidSignatureS(errorArg); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/MerkleProof.sol) pragma solidity ^0.8.20; /** * @dev These functions deal with verification of Merkle Tree proofs. * * The tree and the proofs can be generated using our * https://github.com/OpenZeppelin/merkle-tree[JavaScript library]. * You will find a quickstart guide in the readme. * * WARNING: You should avoid using leaf values that are 64 bytes long prior to * hashing, or use a hash function other than keccak256 for hashing leaves. * This is because the concatenation of a sorted pair of internal nodes in * the Merkle tree could be reinterpreted as a leaf value. * OpenZeppelin's JavaScript library generates Merkle trees that are safe * against this attack out of the box. */ library MerkleProof { /** *@dev The multiproof provided is not valid. */ error MerkleProofInvalidMultiproof(); /** * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree * defined by `root`. For this, a `proof` must be provided, containing * sibling hashes on the branch from the leaf to the root of the tree. Each * pair of leaves and each pair of pre-images are assumed to be sorted. */ function verify(bytes32[] memory proof, bytes32 root, bytes32 leaf) internal pure returns (bool) { return processProof(proof, leaf) == root; } /** * @dev Calldata version of {verify} */ function verifyCalldata(bytes32[] calldata proof, bytes32 root, bytes32 leaf) internal pure returns (bool) { return processProofCalldata(proof, leaf) == root; } /** * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt * hash matches the root of the tree. When processing the proof, the pairs * of leafs & pre-images are assumed to be sorted. */ function processProof(bytes32[] memory proof, bytes32 leaf) internal pure returns (bytes32) { bytes32 computedHash = leaf; for (uint256 i = 0; i < proof.length; i++) { computedHash = _hashPair(computedHash, proof[i]); } return computedHash; } /** * @dev Calldata version of {processProof} */ function processProofCalldata(bytes32[] calldata proof, bytes32 leaf) internal pure returns (bytes32) { bytes32 computedHash = leaf; for (uint256 i = 0; i < proof.length; i++) { computedHash = _hashPair(computedHash, proof[i]); } return computedHash; } /** * @dev Returns true if the `leaves` can be simultaneously proven to be a part of a Merkle tree defined by * `root`, according to `proof` and `proofFlags` as described in {processMultiProof}. * * CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details. */ function multiProofVerify( bytes32[] memory proof, bool[] memory proofFlags, bytes32 root, bytes32[] memory leaves ) internal pure returns (bool) { return processMultiProof(proof, proofFlags, leaves) == root; } /** * @dev Calldata version of {multiProofVerify} * * CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details. */ function multiProofVerifyCalldata( bytes32[] calldata proof, bool[] calldata proofFlags, bytes32 root, bytes32[] memory leaves ) internal pure returns (bool) { return processMultiProofCalldata(proof, proofFlags, leaves) == root; } /** * @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction * proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another * leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false * respectively. * * CAUTION: Not all Merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree * is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the * tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer). */ function processMultiProof( bytes32[] memory proof, bool[] memory proofFlags, bytes32[] memory leaves ) internal pure returns (bytes32 merkleRoot) { // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of // the Merkle tree. uint256 leavesLen = leaves.length; uint256 proofLen = proof.length; uint256 totalHashes = proofFlags.length; // Check proof validity. if (leavesLen + proofLen != totalHashes + 1) { revert MerkleProofInvalidMultiproof(); } // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop". bytes32[] memory hashes = new bytes32[](totalHashes); uint256 leafPos = 0; uint256 hashPos = 0; uint256 proofPos = 0; // At each step, we compute the next hash using two values: // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we // get the next hash. // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the // `proof` array. for (uint256 i = 0; i < totalHashes; i++) { bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++]; bytes32 b = proofFlags[i] ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++]) : proof[proofPos++]; hashes[i] = _hashPair(a, b); } if (totalHashes > 0) { if (proofPos != proofLen) { revert MerkleProofInvalidMultiproof(); } unchecked { return hashes[totalHashes - 1]; } } else if (leavesLen > 0) { return leaves[0]; } else { return proof[0]; } } /** * @dev Calldata version of {processMultiProof}. * * CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details. */ function processMultiProofCalldata( bytes32[] calldata proof, bool[] calldata proofFlags, bytes32[] memory leaves ) internal pure returns (bytes32 merkleRoot) { // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of // the Merkle tree. uint256 leavesLen = leaves.length; uint256 proofLen = proof.length; uint256 totalHashes = proofFlags.length; // Check proof validity. if (leavesLen + proofLen != totalHashes + 1) { revert MerkleProofInvalidMultiproof(); } // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop". bytes32[] memory hashes = new bytes32[](totalHashes); uint256 leafPos = 0; uint256 hashPos = 0; uint256 proofPos = 0; // At each step, we compute the next hash using two values: // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we // get the next hash. // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the // `proof` array. for (uint256 i = 0; i < totalHashes; i++) { bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++]; bytes32 b = proofFlags[i] ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++]) : proof[proofPos++]; hashes[i] = _hashPair(a, b); } if (totalHashes > 0) { if (proofPos != proofLen) { revert MerkleProofInvalidMultiproof(); } unchecked { return hashes[totalHashes - 1]; } } else if (leavesLen > 0) { return leaves[0]; } else { return proof[0]; } } /** * @dev Sorts the pair (a, b) and hashes the result. */ function _hashPair(bytes32 a, bytes32 b) private pure returns (bytes32) { return a < b ? _efficientHash(a, b) : _efficientHash(b, a); } /** * @dev Implementation of keccak256(abi.encode(a, b)) that doesn't allocate or expand memory. */ function _efficientHash(bytes32 a, bytes32 b) private pure returns (bytes32 value) { /// @solidity memory-safe-assembly assembly { mstore(0x00, a) mstore(0x20, b) value := keccak256(0x00, 0x40) } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/MessageHashUtils.sol) pragma solidity ^0.8.20; import {Strings} from "../Strings.sol"; /** * @dev Signature message hash utilities for producing digests to be consumed by {ECDSA} recovery or signing. * * The library provides methods for generating a hash of a message that conforms to the * https://eips.ethereum.org/EIPS/eip-191[EIP 191] and https://eips.ethereum.org/EIPS/eip-712[EIP 712] * specifications. */ library MessageHashUtils { /** * @dev Returns the keccak256 digest of an EIP-191 signed data with version * `0x45` (`personal_sign` messages). * * The digest is calculated by prefixing a bytes32 `messageHash` with * `"\x19Ethereum Signed Message:\n32"` and hashing the result. It corresponds with the * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method. * * NOTE: The `messageHash` parameter is intended to be the result of hashing a raw message with * keccak256, although any bytes32 value can be safely used because the final digest will * be re-hashed. * * See {ECDSA-recover}. */ function toEthSignedMessageHash(bytes32 messageHash) internal pure returns (bytes32 digest) { /// @solidity memory-safe-assembly assembly { mstore(0x00, "\x19Ethereum Signed Message:\n32") // 32 is the bytes-length of messageHash mstore(0x1c, messageHash) // 0x1c (28) is the length of the prefix digest := keccak256(0x00, 0x3c) // 0x3c is the length of the prefix (0x1c) + messageHash (0x20) } } /** * @dev Returns the keccak256 digest of an EIP-191 signed data with version * `0x45` (`personal_sign` messages). * * The digest is calculated by prefixing an arbitrary `message` with * `"\x19Ethereum Signed Message:\n" + len(message)` and hashing the result. It corresponds with the * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method. * * See {ECDSA-recover}. */ function toEthSignedMessageHash(bytes memory message) internal pure returns (bytes32) { return keccak256(bytes.concat("\x19Ethereum Signed Message:\n", bytes(Strings.toString(message.length)), message)); } /** * @dev Returns the keccak256 digest of an EIP-191 signed data with version * `0x00` (data with intended validator). * * The digest is calculated by prefixing an arbitrary `data` with `"\x19\x00"` and the intended * `validator` address. Then hashing the result. * * See {ECDSA-recover}. */ function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) { return keccak256(abi.encodePacked(hex"19_00", validator, data)); } /** * @dev Returns the keccak256 digest of an EIP-712 typed data (EIP-191 version `0x01`). * * The digest is calculated from a `domainSeparator` and a `structHash`, by prefixing them with * `\x19\x01` and hashing the result. It corresponds to the hash signed by the * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] JSON-RPC method as part of EIP-712. * * See {ECDSA-recover}. */ function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 digest) { /// @solidity memory-safe-assembly assembly { let ptr := mload(0x40) mstore(ptr, hex"19_01") mstore(add(ptr, 0x02), domainSeparator) mstore(add(ptr, 0x22), structHash) digest := keccak256(ptr, 0x42) } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol) pragma solidity ^0.8.20; import {Context} from "../utils/Context.sol"; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * The initial owner is set to the address provided by the deployer. This can * later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract Ownable is Context { address private _owner; /** * @dev The caller account is not authorized to perform an operation. */ error OwnableUnauthorizedAccount(address account); /** * @dev The owner is not a valid owner account. (eg. `address(0)`) */ error OwnableInvalidOwner(address owner); event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the address provided by the deployer as the initial owner. */ constructor(address initialOwner) { if (initialOwner == address(0)) { revert OwnableInvalidOwner(address(0)); } _transferOwnership(initialOwner); } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { _checkOwner(); _; } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if the sender is not the owner. */ function _checkOwner() internal view virtual { if (owner() != _msgSender()) { revert OwnableUnauthorizedAccount(_msgSender()); } } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby disabling any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { _transferOwnership(address(0)); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { if (newOwner == address(0)) { revert OwnableInvalidOwner(address(0)); } _transferOwnership(newOwner); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Internal function without access restriction. */ function _transferOwnership(address newOwner) internal virtual { address oldOwner = _owner; _owner = newOwner; emit OwnershipTransferred(oldOwner, newOwner); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/Strings.sol) pragma solidity ^0.8.20; import {Math} from "./math/Math.sol"; import {SignedMath} from "./math/SignedMath.sol"; /** * @dev String operations. */ library Strings { bytes16 private constant HEX_DIGITS = "0123456789abcdef"; uint8 private constant ADDRESS_LENGTH = 20; /** * @dev The `value` string doesn't fit in the specified `length`. */ error StringsInsufficientHexLength(uint256 value, uint256 length); /** * @dev Converts a `uint256` to its ASCII `string` decimal representation. */ function toString(uint256 value) internal pure returns (string memory) { unchecked { uint256 length = Math.log10(value) + 1; string memory buffer = new string(length); uint256 ptr; /// @solidity memory-safe-assembly assembly { ptr := add(buffer, add(32, length)) } while (true) { ptr--; /// @solidity memory-safe-assembly assembly { mstore8(ptr, byte(mod(value, 10), HEX_DIGITS)) } value /= 10; if (value == 0) break; } return buffer; } } /** * @dev Converts a `int256` to its ASCII `string` decimal representation. */ function toStringSigned(int256 value) internal pure returns (string memory) { return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value))); } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation. */ function toHexString(uint256 value) internal pure returns (string memory) { unchecked { return toHexString(value, Math.log256(value) + 1); } } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length. */ function toHexString(uint256 value, uint256 length) internal pure returns (string memory) { uint256 localValue = value; bytes memory buffer = new bytes(2 * length + 2); buffer[0] = "0"; buffer[1] = "x"; for (uint256 i = 2 * length + 1; i > 1; --i) { buffer[i] = HEX_DIGITS[localValue & 0xf]; localValue >>= 4; } if (localValue != 0) { revert StringsInsufficientHexLength(value, length); } return string(buffer); } /** * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal * representation. */ function toHexString(address addr) internal pure returns (string memory) { return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH); } /** * @dev Returns true if the two strings are equal. */ function equal(string memory a, string memory b) internal pure returns (bool) { return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b)); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol) pragma solidity ^0.8.20; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } function _contextSuffixLength() internal view virtual returns (uint256) { return 0; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol) pragma solidity ^0.8.20; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { /** * @dev Muldiv operation overflow. */ error MathOverflowedMulDiv(); enum Rounding { Floor, // Toward negative infinity Ceil, // Toward positive infinity Trunc, // Toward zero Expand // Away from zero } /** * @dev Returns the addition of two unsigned integers, with an overflow flag. */ function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { uint256 c = a + b; if (c < a) return (false, 0); return (true, c); } } /** * @dev Returns the subtraction of two unsigned integers, with an overflow flag. */ function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { if (b > a) return (false, 0); return (true, a - b); } } /** * @dev Returns the multiplication of two unsigned integers, with an overflow flag. */ function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) return (true, 0); uint256 c = a * b; if (c / a != b) return (false, 0); return (true, c); } } /** * @dev Returns the division of two unsigned integers, with a division by zero flag. */ function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { if (b == 0) return (false, 0); return (true, a / b); } } /** * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag. */ function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { if (b == 0) return (false, 0); return (true, a % b); } } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return a > b ? a : b; } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds towards infinity instead * of rounding towards zero. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { if (b == 0) { // Guarantee the same behavior as in a regular Solidity division. return a / b; } // (a + b - 1) / b can overflow on addition, so we distribute. return a == 0 ? 0 : (a - 1) / b + 1; } /** * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or * denominator == 0. * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by * Uniswap Labs also under MIT license. */ function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2^256 + prod0. uint256 prod0 = x * y; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { // Solidity will revert if denominator == 0, unlike the div opcode on its own. // The surrounding unchecked block does not change this fact. // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic. return prod0 / denominator; } // Make sure the result is less than 2^256. Also prevents denominator == 0. if (denominator <= prod1) { revert MathOverflowedMulDiv(); } /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. // Always >= 1. See https://cs.stackexchange.com/q/138556/92363. uint256 twos = denominator & (0 - denominator); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv = 1 mod 2^4. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also // works in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2^8 inverse *= 2 - denominator * inverse; // inverse mod 2^16 inverse *= 2 - denominator * inverse; // inverse mod 2^32 inverse *= 2 - denominator * inverse; // inverse mod 2^64 inverse *= 2 - denominator * inverse; // inverse mod 2^128 inverse *= 2 - denominator * inverse; // inverse mod 2^256 // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @notice Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) { uint256 result = mulDiv(x, y, denominator); if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) { result += 1; } return result; } /** * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded * towards zero. * * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11). */ function sqrt(uint256 a) internal pure returns (uint256) { if (a == 0) { return 0; } // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target. // // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`. // // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)` // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))` // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)` // // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit. uint256 result = 1 << (log2(a) >> 1); // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128, // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision // into the expected uint128 result. unchecked { result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; return min(result, a / result); } } /** * @notice Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = sqrt(a); return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0); } } /** * @dev Return the log in base 2 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log2(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 128; } if (value >> 64 > 0) { value >>= 64; result += 64; } if (value >> 32 > 0) { value >>= 32; result += 32; } if (value >> 16 > 0) { value >>= 16; result += 16; } if (value >> 8 > 0) { value >>= 8; result += 8; } if (value >> 4 > 0) { value >>= 4; result += 4; } if (value >> 2 > 0) { value >>= 2; result += 2; } if (value >> 1 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 2, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log2(value); return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0); } } /** * @dev Return the log in base 10 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log10(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >= 10 ** 64) { value /= 10 ** 64; result += 64; } if (value >= 10 ** 32) { value /= 10 ** 32; result += 32; } if (value >= 10 ** 16) { value /= 10 ** 16; result += 16; } if (value >= 10 ** 8) { value /= 10 ** 8; result += 8; } if (value >= 10 ** 4) { value /= 10 ** 4; result += 4; } if (value >= 10 ** 2) { value /= 10 ** 2; result += 2; } if (value >= 10 ** 1) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log10(value); return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0); } } /** * @dev Return the log in base 256 of a positive value rounded towards zero. * Returns 0 if given 0. * * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string. */ function log256(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 16; } if (value >> 64 > 0) { value >>= 64; result += 8; } if (value >> 32 > 0) { value >>= 32; result += 4; } if (value >> 16 > 0) { value >>= 16; result += 2; } if (value >> 8 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 256, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log256(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log256(value); return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0); } } /** * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers. */ function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) { return uint8(rounding) % 2 == 1; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SignedMath.sol) pragma solidity ^0.8.20; /** * @dev Standard signed math utilities missing in the Solidity language. */ library SignedMath { /** * @dev Returns the largest of two signed numbers. */ function max(int256 a, int256 b) internal pure returns (int256) { return a > b ? a : b; } /** * @dev Returns the smallest of two signed numbers. */ function min(int256 a, int256 b) internal pure returns (int256) { return a < b ? a : b; } /** * @dev Returns the average of two signed numbers without overflow. * The result is rounded towards zero. */ function average(int256 a, int256 b) internal pure returns (int256) { // Formula from the book "Hacker's Delight" int256 x = (a & b) + ((a ^ b) >> 1); return x + (int256(uint256(x) >> 255) & (a ^ b)); } /** * @dev Returns the absolute unsigned value of a signed value. */ function abs(int256 n) internal pure returns (uint256) { unchecked { // must be unchecked in order to support `n = type(int256).min` return uint256(n >= 0 ? n : -n); } } }
{ "remappings": [ "ds-test/=node_modules/ds-test/src/", "forge-std/=node_modules/forge-std/src/", "openzeppelin/=node_modules/@openzeppelin/contracts/", "contracts/=src/contracts/", "interfaces/=src/interfaces/", "@openzeppelin/=node_modules/@openzeppelin/", "solhint/=node_modules/solhint/" ], "optimizer": { "enabled": true, "runs": 10000 }, "metadata": { "useLiteralContent": false, "bytecodeHash": "ipfs", "appendCBOR": true }, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } }, "evmVersion": "paris", "libraries": {} }
Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
[{"inputs":[{"internalType":"bytes32","name":"_merkleRoot","type":"bytes32"},{"internalType":"address","name":"_signer","type":"address"},{"internalType":"address","name":"_token","type":"address"},{"internalType":"address","name":"_owner","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"AlreadyClaimed","type":"error"},{"inputs":[],"name":"ECDSAInvalidSignature","type":"error"},{"inputs":[{"internalType":"uint256","name":"length","type":"uint256"}],"name":"ECDSAInvalidSignatureLength","type":"error"},{"inputs":[{"internalType":"bytes32","name":"s","type":"bytes32"}],"name":"ECDSAInvalidSignatureS","type":"error"},{"inputs":[],"name":"InvalidAmount","type":"error"},{"inputs":[],"name":"InvalidNewSigner","type":"error"},{"inputs":[],"name":"InvalidProof","type":"error"},{"inputs":[],"name":"InvalidSignature","type":"error"},{"inputs":[],"name":"InvalidSigner","type":"error"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"OwnableInvalidOwner","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"OwnableUnauthorizedAccount","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"Claimed","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferStarted","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"oldSigner","type":"address"},{"indexed":true,"internalType":"address","name":"newSigner","type":"address"}],"name":"SignerUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"Withdrawn","type":"event"},{"inputs":[],"name":"MERKLE_ROOT","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"TOKEN","outputs":[{"internalType":"contract IERC20","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"acceptOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"bytes32[]","name":"merkleProof","type":"bytes32[]"},{"internalType":"bytes","name":"signature","type":"bytes"}],"name":"claim","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"hasClaimed","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"pendingOwner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"signer","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newSigner","type":"address"}],"name":"updateSigner","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"withdraw","outputs":[],"stateMutability":"nonpayable","type":"function"}]
Deployed Bytecode
0x608060405234801561001057600080fd5b50600436106100d45760003560e01c806382bfefc811610081578063a7ecd37e1161005b578063a7ecd37e146101fd578063e30c397814610210578063f2fde38b1461022e57600080fd5b806382bfefc8146101a55780638da5cb5b146101cc5780639a15bf92146101ea57600080fd5b8063715018a6116100b2578063715018a61461016257806373b2e80e1461016a57806379ba50971461019d57600080fd5b8063238ac933146100d95780633ccfd60b1461012357806351e75e8b1461012d575b600080fd5b6002546100f99073ffffffffffffffffffffffffffffffffffffffff1681565b60405173ffffffffffffffffffffffffffffffffffffffff90911681526020015b60405180910390f35b61012b610241565b005b6101547fced4d06c8f43bc003baffe17f0a20bd46cc3cfc300c0260f69ef49bebd75050581565b60405190815260200161011a565b61012b610459565b61018d610178366004610e30565b60036020526000908152604090205460ff1681565b604051901515815260200161011a565b61012b61046d565b6100f97f000000000000000000000000ec53bf9167f50cdeb3ae105f56099aaab9061f8381565b60005473ffffffffffffffffffffffffffffffffffffffff166100f9565b61012b6101f8366004610eaf565b6104e9565b61012b61020b366004610e30565b6108ae565b60015473ffffffffffffffffffffffffffffffffffffffff166100f9565b61012b61023c366004610e30565b6108bf565b61024961096f565b6040517f70a082310000000000000000000000000000000000000000000000000000000081523060048201526000907f000000000000000000000000ec53bf9167f50cdeb3ae105f56099aaab9061f8373ffffffffffffffffffffffffffffffffffffffff16906370a0823190602401602060405180830381865afa1580156102d6573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906102fa9190610f5a565b90507f000000000000000000000000ec53bf9167f50cdeb3ae105f56099aaab9061f8373ffffffffffffffffffffffffffffffffffffffff1663a9059cbb61035760005473ffffffffffffffffffffffffffffffffffffffff1690565b6040517fffffffff0000000000000000000000000000000000000000000000000000000060e084901b16815273ffffffffffffffffffffffffffffffffffffffff9091166004820152602481018490526044016020604051808303816000875af11580156103c9573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906103ed9190610f73565b5060005473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff167f7084f5476618d8e60b11ef0d7d3f06914655adb8793e28ff7f018d4c76d505d58260405161044e91815260200190565b60405180910390a250565b61046161096f565b61046b60006109c2565b565b600154339073ffffffffffffffffffffffffffffffffffffffff1681146104dd576040517f118cdaa700000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff821660048201526024015b60405180910390fd5b6104e6816109c2565b50565b84600003610523576040517f2c5211c600000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b600081900361055e576040517f8baa579f00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b3360009081526003602052604090205460ff16156105a8576040517f646cf55800000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b60408051336020820152908101869052600090606001604080517fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe081840301815282825280516020918201209083015201604051602081830303815290604052805190602001209050600061064a827f19457468657265756d205369676e6564204d6573736167653a0a3332000000006000908152601c91909152603c902090565b9050600061069085858080601f01602080910402602001604051908101604052809392919081815260200183838082843760009201919091525086939250506109f39050565b60025490915073ffffffffffffffffffffffffffffffffffffffff8083169116146106e7576040517f815e1d6400000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6107478787808060200260200160405190810160405280939291908181526020018383602002808284376000920191909152507fced4d06c8f43bc003baffe17f0a20bd46cc3cfc300c0260f69ef49bebd7505059250879150610a1d9050565b61077d576040517f09bde33900000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b336000818152600360205260409081902080547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00166001179055517fa9059cbb0000000000000000000000000000000000000000000000000000000081526004810191909152602481018990527f000000000000000000000000ec53bf9167f50cdeb3ae105f56099aaab9061f8373ffffffffffffffffffffffffffffffffffffffff169063a9059cbb906044016020604051808303816000875af115801561084a573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061086e9190610f73565b5060405188815233907fd8138f8a3f377c5259ca548e70e4c2de94f129f5a11036a15b69513cba2b426a9060200160405180910390a25050505050505050565b6108b661096f565b6104e681610a33565b6108c761096f565b6001805473ffffffffffffffffffffffffffffffffffffffff83167fffffffffffffffffffffffff0000000000000000000000000000000000000000909116811790915561092a60005473ffffffffffffffffffffffffffffffffffffffff1690565b73ffffffffffffffffffffffffffffffffffffffff167f38d16b8cac22d99fc7c124b9cd0de2d3fa1faef420bfe791d8c362d765e2270060405160405180910390a350565b60005473ffffffffffffffffffffffffffffffffffffffff16331461046b576040517f118cdaa70000000000000000000000000000000000000000000000000000000081523360048201526024016104d4565b600180547fffffffffffffffffffffffff00000000000000000000000000000000000000001690556104e681610af7565b600080600080610a038686610b6c565b925092509250610a138282610bb9565b5090949350505050565b600082610a2a8584610cc1565b14949350505050565b73ffffffffffffffffffffffffffffffffffffffff8116610a80576040517f70ea704e00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6002805473ffffffffffffffffffffffffffffffffffffffff8381167fffffffffffffffffffffffff0000000000000000000000000000000000000000831681179093556040519116919082907f2d025324f0a785e8c12d0a0d91a9caa49df4ef20ff87e0df7213a1d4f3157beb90600090a35050565b6000805473ffffffffffffffffffffffffffffffffffffffff8381167fffffffffffffffffffffffff0000000000000000000000000000000000000000831681178455604051919092169283917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09190a35050565b60008060008351604103610ba65760208401516040850151606086015160001a610b9888828585610d04565b955095509550505050610bb2565b50508151600091506002905b9250925092565b6000826003811115610bcd57610bcd610f95565b03610bd6575050565b6001826003811115610bea57610bea610f95565b03610c21576040517ff645eedf00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6002826003811115610c3557610c35610f95565b03610c6f576040517ffce698f7000000000000000000000000000000000000000000000000000000008152600481018290526024016104d4565b6003826003811115610c8357610c83610f95565b03610cbd576040517fd78bce0c000000000000000000000000000000000000000000000000000000008152600481018290526024016104d4565b5050565b600081815b8451811015610cfc57610cf282868381518110610ce557610ce5610fc4565b6020026020010151610dfe565b9150600101610cc6565b509392505050565b600080807f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a0841115610d3f5750600091506003905082610df4565b604080516000808252602082018084528a905260ff891692820192909252606081018790526080810186905260019060a0016020604051602081039080840390855afa158015610d93573d6000803e3d6000fd5b50506040517fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0015191505073ffffffffffffffffffffffffffffffffffffffff8116610dea57506000925060019150829050610df4565b9250600091508190505b9450945094915050565b6000818310610e1a576000828152602084905260409020610e29565b60008381526020839052604090205b9392505050565b600060208284031215610e4257600080fd5b813573ffffffffffffffffffffffffffffffffffffffff81168114610e2957600080fd5b60008083601f840112610e7857600080fd5b50813567ffffffffffffffff811115610e9057600080fd5b602083019150836020828501011115610ea857600080fd5b9250929050565b600080600080600060608688031215610ec757600080fd5b85359450602086013567ffffffffffffffff80821115610ee657600080fd5b818801915088601f830112610efa57600080fd5b813581811115610f0957600080fd5b8960208260051b8501011115610f1e57600080fd5b602083019650809550506040880135915080821115610f3c57600080fd5b50610f4988828901610e66565b969995985093965092949392505050565b600060208284031215610f6c57600080fd5b5051919050565b600060208284031215610f8557600080fd5b81518015158114610e2957600080fd5b7f4e487b7100000000000000000000000000000000000000000000000000000000600052602160045260246000fd5b7f4e487b7100000000000000000000000000000000000000000000000000000000600052603260045260246000fdfea2646970667358221220b1304f06719277f460b9bb5184d5a5db55c17fd4bda98f1d2cdc581de08649c664736f6c63430008170033
Loading...
Loading
Loading...
Loading
Loading...
Loading
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.