ETH Price: $2,614.06 (+7.38%)
 

Overview

ETH Balance

0 ETH

Eth Value

$0.00

Multichain Info

No addresses found
Transaction Hash
Method
Block
From
To
Transfer174092892023-06-04 19:24:59520 days ago1685906699IN
0xcCF55755...d073085c7
0 ETH0.0011823125.09636618
Transfer155704572022-09-19 22:14:23778 days ago1663625663IN
0xcCF55755...d073085c7
0 ETH0.0007131615.13802732
Transfer148128202022-05-20 19:07:45900 days ago1653073665IN
0xcCF55755...d073085c7
0 ETH0.0012362941.21127113
Transfer147885972022-05-16 21:24:30904 days ago1652736270IN
0xcCF55755...d073085c7
0 ETH0.0006422513.63290694
Transfer147558022022-05-11 16:04:12909 days ago1652285052IN
0xcCF55755...d073085c7
0 ETH0.00451146129.68821337
Transfer147557832022-05-11 16:01:12909 days ago1652284872IN
0xcCF55755...d073085c7
0 ETH0.00838459161.59332746
Transfer146393952022-04-23 6:05:08928 days ago1650693908IN
0xcCF55755...d073085c7
0 ETH0.0014918431.6665788
Approve144170172022-03-19 13:01:42962 days ago1647694902IN
0xcCF55755...d073085c7
0 ETH0.0015396133.02688392
Transfer143075062022-03-02 12:12:39979 days ago1646223159IN
0xcCF55755...d073085c7
0 ETH0.0009764820.72723104
Transfer141267462022-02-02 12:52:411007 days ago1643806361IN
0xcCF55755...d073085c7
0 ETH0.00521348110.66389484

Latest 1 internal transaction

Advanced mode:
Parent Transaction Hash Block From To
134868282021-10-25 13:15:341107 days ago1635167734  Contract Creation0 ETH
Loading...
Loading

Contract Source Code Verified (Exact Match)

Contract Name:
InvestmentPool

Compiler Version
v0.7.1+commit.f4a555be

Optimization Enabled:
Yes with 9999 runs

Other Settings:
default evmVersion
File 1 of 63 : InvestmentPool.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;
pragma experimental ABIEncoderV2;

import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/EnumerableMap.sol";
import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/ReentrancyGuard.sol";
import "@balancer-labs/v2-solidity-utils/contracts/helpers/ERC20Helpers.sol";
import "@balancer-labs/v2-solidity-utils/contracts/helpers/WordCodec.sol";

import "../BaseWeightedPool.sol";
import "../WeightedPoolUserDataHelpers.sol";
import "./WeightCompression.sol";

/**
 * @dev Weighted Pool with mutable weights, designed to support investment use cases: large token counts,
 * rebalancing through gradual weight updates.
 */
contract InvestmentPool is BaseWeightedPool, ReentrancyGuard {
    // solhint-disable not-rely-on-time

    using FixedPoint for uint256;
    using WordCodec for bytes32;
    using WeightCompression for uint256;
    using WeightedPoolUserDataHelpers for bytes;
    using EnumerableMap for EnumerableMap.IERC20ToUint256Map;

    // State variables

    // The upper bound is WeightedMath.MAX_WEIGHTED_TOKENS, but this is constrained by other factors, such as Pool
    // creation gas consumption (which is linear).
    uint256 private constant _MAX_INVESTMENT_TOKENS = 50;

    // Percentage of swap fees that are allocated to the Pool owner.
    uint256 private immutable _managementSwapFeePercentage;
    uint256 private constant _MAX_MANAGEMENT_SWAP_FEE_PERCENTAGE = 1e18; // 100%

    // Use the _miscData slot in BasePool
    // First 64 bits are reserved for the swap fee
    //
    // Store non-token-based values:
    // Start/end timestamps for gradual weight update
    // Cache total tokens
    // [ 64 bits  |  120 bits |  32 bits  |   32 bits  |    7 bits    |    1 bit     ]
    // [ reserved |  unused   | end time  | start time | total tokens |   swap flag  ]
    // |MSB                                                                       LSB|
    uint256 private constant _SWAP_ENABLED_OFFSET = 0;
    uint256 private constant _TOTAL_TOKENS_OFFSET = 1;
    uint256 private constant _START_TIME_OFFSET = 8;
    uint256 private constant _END_TIME_OFFSET = 40;
    // 7 bits is enough for the token count, since _MAX_INVESTMENT_TOKENS is 50

    // Store scaling factor and start/end weights for each token
    // Mapping should be more efficient than trying to compress it further
    // [ 155 bits|   5 bits |  32 bits   |   64 bits    |
    // [ unused  | decimals | end weight | start weight |
    // |MSB                                          LSB|
    mapping(IERC20 => bytes32) private _tokenState;

    EnumerableMap.IERC20ToUint256Map private _tokenCollectedManagementFees;

    uint256 private constant _START_WEIGHT_OFFSET = 0;
    uint256 private constant _END_WEIGHT_OFFSET = 64;
    uint256 private constant _DECIMAL_DIFF_OFFSET = 96;

    uint256 private constant _MINIMUM_WEIGHT_CHANGE_DURATION = 1 days;

    // Event declarations

    event GradualWeightUpdateScheduled(
        uint256 startTime,
        uint256 endTime,
        uint256[] startWeights,
        uint256[] endWeights
    );
    event SwapEnabledSet(bool swapEnabled);
    event ManagementFeePercentageChanged(uint256 managementFeePercentage);
    event ManagementFeesCollected(IERC20[] tokens, uint256[] amounts);

    struct NewPoolParams {
        IVault vault;
        string name;
        string symbol;
        IERC20[] tokens;
        uint256[] normalizedWeights;
        address[] assetManagers;
        uint256 swapFeePercentage;
        uint256 pauseWindowDuration;
        uint256 bufferPeriodDuration;
        address owner;
        bool swapEnabledOnStart;
        uint256 managementSwapFeePercentage;
    }

    constructor(NewPoolParams memory params)
        BaseWeightedPool(
            params.vault,
            params.name,
            params.symbol,
            params.tokens,
            params.assetManagers,
            params.swapFeePercentage,
            params.pauseWindowDuration,
            params.bufferPeriodDuration,
            params.owner
        )
    {
        uint256 totalTokens = params.tokens.length;
        InputHelpers.ensureInputLengthMatch(totalTokens, params.normalizedWeights.length, params.assetManagers.length);

        _setMiscData(_getMiscData().insertUint7(totalTokens, _TOTAL_TOKENS_OFFSET));
        // Double check it fits in 7 bits
        _require(_getTotalTokens() == totalTokens, Errors.MAX_TOKENS);

        uint256 currentTime = block.timestamp;
        _startGradualWeightChange(
            currentTime,
            currentTime,
            params.normalizedWeights,
            params.normalizedWeights,
            params.tokens
        );

        // Initialize the accrued management fees map with the Pool's tokens and zero collected fees.
        for (uint256 i = 0; i < totalTokens; ++i) {
            _tokenCollectedManagementFees.set(params.tokens[i], 0);
        }

        // If false, the pool will start in the disabled state (prevents front-running the enable swaps transaction)
        _setSwapEnabled(params.swapEnabledOnStart);

        // This must be inlined in the constructor as we're setting an immutable variable.
        _require(
            params.managementSwapFeePercentage <= _MAX_MANAGEMENT_SWAP_FEE_PERCENTAGE,
            Errors.MAX_MANAGEMENT_SWAP_FEE_PERCENTAGE
        );
        _managementSwapFeePercentage = params.managementSwapFeePercentage;

        emit ManagementFeePercentageChanged(params.managementSwapFeePercentage);
    }

    /**
     * @dev Returns true if swaps are enabled.
     */
    function getSwapEnabled() public view returns (bool) {
        return _getMiscData().decodeBool(_SWAP_ENABLED_OFFSET);
    }

    /**
     * @dev Returns the management swap fee percentage as a 18-decimals fixed point number.
     */
    function getManagementSwapFeePercentage() public view returns (uint256) {
        return _managementSwapFeePercentage;
    }

    /**
     * @dev Returns the mimimum duration of a gradual weight change
     */
    function getMinimumWeightChangeDuration() external pure returns (uint256) {
        return _MINIMUM_WEIGHT_CHANGE_DURATION;
    }

    /**
     * @dev Return start time, end time, and endWeights as an array.
     * Current weights should be retrieved via `getNormalizedWeights()`.
     */
    function getGradualWeightUpdateParams()
        external
        view
        returns (
            uint256 startTime,
            uint256 endTime,
            uint256[] memory endWeights
        )
    {
        // Load current pool state from storage
        bytes32 poolState = _getMiscData();

        startTime = poolState.decodeUint32(_START_TIME_OFFSET);
        endTime = poolState.decodeUint32(_END_TIME_OFFSET);

        (IERC20[] memory tokens, , ) = getVault().getPoolTokens(getPoolId());
        uint256 totalTokens = tokens.length;

        endWeights = new uint256[](totalTokens);

        for (uint256 i = 0; i < totalTokens; i++) {
            endWeights[i] = _tokenState[tokens[i]].decodeUint32(_END_WEIGHT_OFFSET).uncompress32();
        }
    }

    function _getMaxTokens() internal pure virtual override returns (uint256) {
        return _MAX_INVESTMENT_TOKENS;
    }

    function _getTotalTokens() internal view virtual override returns (uint256) {
        return _getMiscData().decodeUint7(_TOTAL_TOKENS_OFFSET);
    }

    /**
     * @dev Schedule a gradual weight change, from the current weights to the given endWeights,
     * over startTime to endTime.
     */
    function updateWeightsGradually(
        uint256 startTime,
        uint256 endTime,
        uint256[] memory endWeights
    ) external authenticate whenNotPaused nonReentrant {
        InputHelpers.ensureInputLengthMatch(_getTotalTokens(), endWeights.length);

        // If the start time is in the past, "fast forward" to start now
        // This avoids discontinuities in the weight curve. Otherwise, if you set the start/end times with
        // only 10% of the period in the future, the weights would immediately jump 90%
        uint256 currentTime = block.timestamp;
        startTime = Math.max(currentTime, startTime);

        _require(startTime <= endTime, Errors.GRADUAL_UPDATE_TIME_TRAVEL);
        _require(endTime - startTime >= _MINIMUM_WEIGHT_CHANGE_DURATION, Errors.WEIGHT_CHANGE_TOO_FAST);

        (IERC20[] memory tokens, , ) = getVault().getPoolTokens(getPoolId());

        _startGradualWeightChange(startTime, endTime, _getNormalizedWeights(), endWeights, tokens);
    }

    function getCollectedManagementFees() public view returns (IERC20[] memory tokens, uint256[] memory collectedFees) {
        tokens = new IERC20[](_getTotalTokens());
        collectedFees = new uint256[](_getTotalTokens());

        for (uint256 i = 0; i < _getTotalTokens(); ++i) {
            // We can use unchecked getters as we know the map has the same size (and order!) as the Pool's tokens.
            (IERC20 token, uint256 fees) = _tokenCollectedManagementFees.unchecked_at(i);
            tokens[i] = token;
            collectedFees[i] = fees;
        }

        _downscaleDownArray(collectedFees, _scalingFactors());
    }

    function withdrawCollectedManagementFees(address recipient) external authenticate whenNotPaused nonReentrant {
        (IERC20[] memory tokens, uint256[] memory collectedFees) = getCollectedManagementFees();

        getVault().exitPool(
            getPoolId(),
            address(this),
            payable(recipient),
            IVault.ExitPoolRequest({
                assets: _asIAsset(tokens),
                minAmountsOut: collectedFees,
                userData: abi.encode(BaseWeightedPool.ExitKind.MANAGEMENT_FEE_TOKENS_OUT),
                toInternalBalance: false
            })
        );

        // Technically collectedFees is the minimum amount, not the actual amount. However, since no fees will be
        // collected during the exit, it will also be the actual amount.
        emit ManagementFeesCollected(tokens, collectedFees);
    }

    /*
     * @dev Can enable/disable trading
     */
    function setSwapEnabled(bool swapEnabled) external authenticate whenNotPaused nonReentrant {
        _setSwapEnabled(swapEnabled);
    }

    function _setSwapEnabled(bool swapEnabled) private {
        _setMiscData(_getMiscData().insertBool(swapEnabled, _SWAP_ENABLED_OFFSET));

        emit SwapEnabledSet(swapEnabled);
    }

    function _scalingFactor(IERC20 token) internal view virtual override returns (uint256) {
        return _readScalingFactor(_getTokenData(token));
    }

    function _scalingFactors() internal view virtual override returns (uint256[] memory scalingFactors) {
        (IERC20[] memory tokens, , ) = getVault().getPoolTokens(getPoolId());
        uint256 numTokens = tokens.length;

        scalingFactors = new uint256[](numTokens);

        for (uint256 i = 0; i < numTokens; i++) {
            scalingFactors[i] = _readScalingFactor(_tokenState[tokens[i]]);
        }
    }

    function _getNormalizedWeight(IERC20 token) internal view override returns (uint256) {
        uint256 pctProgress = _calculateWeightChangeProgress();
        bytes32 tokenData = _getTokenData(token);

        return _interpolateWeight(tokenData, pctProgress);
    }

    function _getNormalizedWeights() internal view override returns (uint256[] memory normalizedWeights) {
        (IERC20[] memory tokens, , ) = getVault().getPoolTokens(getPoolId());
        uint256 numTokens = tokens.length;

        normalizedWeights = new uint256[](numTokens);

        uint256 pctProgress = _calculateWeightChangeProgress();

        for (uint256 i = 0; i < numTokens; i++) {
            bytes32 tokenData = _tokenState[tokens[i]];

            normalizedWeights[i] = _interpolateWeight(tokenData, pctProgress);
        }
    }

    function _getNormalizedWeightsAndMaxWeightIndex()
        internal
        view
        override
        returns (uint256[] memory normalizedWeights, uint256 maxWeightTokenIndex)
    {
        normalizedWeights = _getNormalizedWeights();

        maxWeightTokenIndex = 0;
        uint256 maxNormalizedWeight = normalizedWeights[0];

        for (uint256 i = 1; i < normalizedWeights.length; i++) {
            if (normalizedWeights[i] > maxNormalizedWeight) {
                maxWeightTokenIndex = i;
                maxNormalizedWeight = normalizedWeights[i];
            }
        }
    }

    // Swap overrides - revert unless swaps are enabled

    function _onSwapGivenIn(
        SwapRequest memory swapRequest,
        uint256 currentBalanceTokenIn,
        uint256 currentBalanceTokenOut
    ) internal view override returns (uint256) {
        _require(getSwapEnabled(), Errors.SWAPS_DISABLED);

        return super._onSwapGivenIn(swapRequest, currentBalanceTokenIn, currentBalanceTokenOut);
    }

    function _onSwapGivenOut(
        SwapRequest memory swapRequest,
        uint256 currentBalanceTokenIn,
        uint256 currentBalanceTokenOut
    ) internal view override returns (uint256) {
        _require(getSwapEnabled(), Errors.SWAPS_DISABLED);

        return super._onSwapGivenOut(swapRequest, currentBalanceTokenIn, currentBalanceTokenOut);
    }

    /**
     * @dev Used to adjust balances by subtracting all collected fees from them, as if they had been withdrawn from the
     * Vault.
     */
    function _subtractCollectedFees(uint256[] memory balances) private view {
        for (uint256 i = 0; i < _getTotalTokens(); ++i) {
            // We can use unchecked getters as we know the map has the same size (and order!) as the Pool's tokens.
            balances[i] = balances[i].sub(_tokenCollectedManagementFees.unchecked_valueAt(i));
        }
    }

    // We override _onJoinPool and _onExitPool as we need to not compute the current invariant and calculate protocol
    // fees, since that mechanism does not work for Pools in which the weights change over time. Instead, this Pool
    // always pays zero protocol fees.
    // Additionally, we also check that only non-swap join and exit kinds are allowed while swaps are disabled.

    function getLastInvariant() public pure override returns (uint256) {
        _revert(Errors.UNHANDLED_BY_INVESTMENT_POOL);
    }

    function _onJoinPool(
        bytes32,
        address,
        address,
        uint256[] memory balances,
        uint256,
        uint256,
        uint256[] memory scalingFactors,
        bytes memory userData
    )
        internal
        virtual
        override
        whenNotPaused // All joins are disabled while the contract is paused.
        returns (
            uint256 bptAmountOut,
            uint256[] memory amountsIn,
            uint256[] memory dueProtocolFeeAmounts
        )
    {
        _subtractCollectedFees(balances);

        // If swaps are disabled, the only join kind that is allowed is the proportional one, as all others involve
        // implicit swaps and alter token prices.
        _require(
            getSwapEnabled() || userData.joinKind() == JoinKind.ALL_TOKENS_IN_FOR_EXACT_BPT_OUT,
            Errors.INVALID_JOIN_EXIT_KIND_WHILE_SWAPS_DISABLED
        );

        (bptAmountOut, amountsIn) = _doJoin(balances, _getNormalizedWeights(), scalingFactors, userData);
        dueProtocolFeeAmounts = new uint256[](_getTotalTokens());
    }

    function _onExitPool(
        bytes32,
        address sender,
        address,
        uint256[] memory balances,
        uint256,
        uint256,
        uint256[] memory scalingFactors,
        bytes memory userData
    )
        internal
        virtual
        override
        returns (
            uint256 bptAmountIn,
            uint256[] memory amountsOut,
            uint256[] memory dueProtocolFeeAmounts
        )
    {
        _subtractCollectedFees(balances);

        // Exits are not completely disabled while the contract is paused: proportional exits (exact BPT in for tokens
        // out) remain functional.

        // If swaps are disabled, the only exit kind that is allowed is the proportional one (as all others involve
        // implicit swaps and alter token prices) and management fee collection (as there's no point in restricting
        // that).
        ExitKind kind = userData.exitKind();
        _require(
            getSwapEnabled() ||
                kind == ExitKind.EXACT_BPT_IN_FOR_TOKENS_OUT ||
                kind == ExitKind.MANAGEMENT_FEE_TOKENS_OUT,
            Errors.INVALID_JOIN_EXIT_KIND_WHILE_SWAPS_DISABLED
        );

        (bptAmountIn, amountsOut) = _doInvestmentPoolExit(
            sender,
            balances,
            _getNormalizedWeights(),
            scalingFactors,
            userData
        );
        dueProtocolFeeAmounts = new uint256[](_getTotalTokens());
    }

    function _doInvestmentPoolExit(
        address sender,
        uint256[] memory balances,
        uint256[] memory normalizedWeights,
        uint256[] memory scalingFactors,
        bytes memory userData
    ) internal returns (uint256, uint256[] memory) {
        ExitKind kind = userData.exitKind();

        if (kind == ExitKind.MANAGEMENT_FEE_TOKENS_OUT) {
            return _exitManagerFeeTokensOut(sender);
        } else {
            return _doExit(balances, normalizedWeights, scalingFactors, userData);
        }
    }

    function _exitManagerFeeTokensOut(address sender)
        private
        whenNotPaused
        returns (uint256 bptAmountIn, uint256[] memory amountsOut)
    {
        // This exit function is disabled if the contract is paused.

        // This exit function can only be called by the Pool itself - the authorization logic that governs when that
        // call can be made resides in withdrawCollectedManagementFees.
        _require(sender == address(this), Errors.UNAUTHORIZED_EXIT);

        // Since what we're doing is sending out collected management fees, we don't require any BPT in exchange: we
        // simply send those funds over.
        bptAmountIn = 0;

        amountsOut = new uint256[](_getTotalTokens());
        for (uint256 i = 0; i < _getTotalTokens(); ++i) {
            // We can use unchecked getters and setters as we know the map has the same size (and order!) as the Pool's
            // tokens.
            amountsOut[i] = _tokenCollectedManagementFees.unchecked_valueAt(i);
            _tokenCollectedManagementFees.unchecked_setAt(i, 0);
        }
    }

    function _tokenAddressToIndex(IERC20 token) internal view override returns (uint256) {
        return _tokenCollectedManagementFees.indexOf(token, Errors.INVALID_TOKEN);
    }

    function _processSwapFeeAmount(uint256 index, uint256 amount) internal virtual override {
        if (amount > 0) {
            uint256 managementFeeAmount = amount.mulDown(_managementSwapFeePercentage);

            uint256 previousCollectedFees = _tokenCollectedManagementFees.unchecked_valueAt(index);
            _tokenCollectedManagementFees.unchecked_setAt(index, previousCollectedFees.add(managementFeeAmount));
        }

        super._processSwapFeeAmount(index, amount);
    }

    // Pool swap hook override - subtract collected fees from all token amounts. We do this here as the original
    // `onSwap` does quite a bit of work, including computing swap fees, so we need to intercept that.

    function onSwap(
        SwapRequest memory swapRequest,
        uint256 currentBalanceTokenIn,
        uint256 currentBalanceTokenOut
    ) public override returns (uint256) {
        uint256 tokenInUpscaledCollectedFees = _tokenCollectedManagementFees.get(
            swapRequest.tokenIn,
            Errors.INVALID_TOKEN
        );
        uint256 adjustedBalanceTokenIn = currentBalanceTokenIn.sub(
            _downscaleDown(tokenInUpscaledCollectedFees, _scalingFactor(swapRequest.tokenIn))
        );

        uint256 tokenOutUpscaledCollectedFees = _tokenCollectedManagementFees.get(
            swapRequest.tokenOut,
            Errors.INVALID_TOKEN
        );
        uint256 adjustedBalanceTokenOut = currentBalanceTokenOut.sub(
            _downscaleDown(tokenOutUpscaledCollectedFees, _scalingFactor(swapRequest.tokenOut))
        );

        return super.onSwap(swapRequest, adjustedBalanceTokenIn, adjustedBalanceTokenOut);
    }

    /**
     * @dev When calling updateWeightsGradually again during an update, reset the start weights to the current weights,
     * if necessary. Time travel elements commented out.
     */
    function _startGradualWeightChange(
        uint256 startTime,
        uint256 endTime,
        uint256[] memory startWeights,
        uint256[] memory endWeights,
        IERC20[] memory tokens
    ) internal virtual {
        uint256 normalizedSum = 0;
        bytes32 tokenState;

        for (uint256 i = 0; i < endWeights.length; i++) {
            uint256 endWeight = endWeights[i];
            _require(endWeight >= _MIN_WEIGHT, Errors.MIN_WEIGHT);

            IERC20 token = tokens[i];

            // Tokens with more than 18 decimals are not supported
            // Scaling calculations must be exact/lossless
            // Store decimal difference instead of actual scaling factor
            _tokenState[token] = tokenState
                .insertUint64(startWeights[i].compress64(), _START_WEIGHT_OFFSET)
                .insertUint32(endWeight.compress32(), _END_WEIGHT_OFFSET)
                .insertUint5(uint256(18).sub(ERC20(address(token)).decimals()), _DECIMAL_DIFF_OFFSET);

            normalizedSum = normalizedSum.add(endWeight);
        }
        // Ensure that the normalized weights sum to ONE
        _require(normalizedSum == FixedPoint.ONE, Errors.NORMALIZED_WEIGHT_INVARIANT);

        _setMiscData(
            _getMiscData().insertUint32(startTime, _START_TIME_OFFSET).insertUint32(endTime, _END_TIME_OFFSET)
        );

        emit GradualWeightUpdateScheduled(startTime, endTime, startWeights, endWeights);
    }

    function _readScalingFactor(bytes32 tokenState) private pure returns (uint256) {
        uint256 decimalsDifference = tokenState.decodeUint5(_DECIMAL_DIFF_OFFSET);

        return FixedPoint.ONE * 10**decimalsDifference;
    }

    /**
     * @dev Extend ownerOnly functions to include the Investment Pool control functions.
     */
    function _isOwnerOnlyAction(bytes32 actionId) internal view override returns (bool) {
        return
            (actionId == getActionId(InvestmentPool.updateWeightsGradually.selector)) ||
            (actionId == getActionId(InvestmentPool.setSwapEnabled.selector)) ||
            (actionId == getActionId(InvestmentPool.withdrawCollectedManagementFees.selector)) ||
            super._isOwnerOnlyAction(actionId);
    }

    /**
     * @dev Returns a fixed-point number representing how far along the current weight change is, where 0 means the
     * change has not yet started, and FixedPoint.ONE means it has fully completed.
     */
    function _calculateWeightChangeProgress() private view returns (uint256) {
        uint256 currentTime = block.timestamp;
        bytes32 poolState = _getMiscData();

        uint256 startTime = poolState.decodeUint32(_START_TIME_OFFSET);
        uint256 endTime = poolState.decodeUint32(_END_TIME_OFFSET);

        if (currentTime >= endTime) {
            return FixedPoint.ONE;
        } else if (currentTime <= startTime) {
            return 0;
        }

        uint256 totalSeconds = endTime - startTime;
        uint256 secondsElapsed = currentTime - startTime;

        // In the degenerate case of a zero duration change, consider it completed (and avoid division by zero)
        return secondsElapsed.divDown(totalSeconds);
    }

    function _interpolateWeight(bytes32 tokenData, uint256 pctProgress) private pure returns (uint256 finalWeight) {
        uint256 startWeight = tokenData.decodeUint64(_START_WEIGHT_OFFSET).uncompress64();
        uint256 endWeight = tokenData.decodeUint32(_END_WEIGHT_OFFSET).uncompress32();

        if (pctProgress == 0 || startWeight == endWeight) return startWeight;
        if (pctProgress >= FixedPoint.ONE) return endWeight;

        if (startWeight > endWeight) {
            uint256 weightDelta = pctProgress.mulDown(startWeight - endWeight);
            return startWeight - weightDelta;
        } else {
            uint256 weightDelta = pctProgress.mulDown(endWeight - startWeight);
            return startWeight + weightDelta;
        }
    }

    function _getTokenData(IERC20 token) private view returns (bytes32 tokenData) {
        tokenData = _tokenState[token];

        // A valid token can't be zero (must have non-zero weights)
        _require(tokenData != 0, Errors.INVALID_TOKEN);
    }
}

File 2 of 63 : BaseWeightedPool.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;
pragma experimental ABIEncoderV2;

import "@balancer-labs/v2-solidity-utils/contracts/math/FixedPoint.sol";
import "@balancer-labs/v2-solidity-utils/contracts/helpers/InputHelpers.sol";

import "@balancer-labs/v2-pool-utils/contracts/BaseMinimalSwapInfoPool.sol";

import "./WeightedMath.sol";
import "./WeightedPoolUserDataHelpers.sol";

/**
 * @dev Base class for WeightedPools containing swap, join and exit logic, but leaving storage and management of
 * the weights to subclasses. Derived contracts can choose to make weights immutable, mutable, or even dynamic
 *  based on local or external logic.
 */
abstract contract BaseWeightedPool is BaseMinimalSwapInfoPool, WeightedMath {
    using FixedPoint for uint256;
    using WeightedPoolUserDataHelpers for bytes;

    uint256 private _lastInvariant;

    // For backwards compatibility, make sure new join and exit kinds are added at the end of the enum.

    enum JoinKind { INIT, EXACT_TOKENS_IN_FOR_BPT_OUT, TOKEN_IN_FOR_EXACT_BPT_OUT, ALL_TOKENS_IN_FOR_EXACT_BPT_OUT }
    enum ExitKind {
        EXACT_BPT_IN_FOR_ONE_TOKEN_OUT,
        EXACT_BPT_IN_FOR_TOKENS_OUT,
        BPT_IN_FOR_EXACT_TOKENS_OUT,
        MANAGEMENT_FEE_TOKENS_OUT // for InvestmentPool
    }

    constructor(
        IVault vault,
        string memory name,
        string memory symbol,
        IERC20[] memory tokens,
        address[] memory assetManagers,
        uint256 swapFeePercentage,
        uint256 pauseWindowDuration,
        uint256 bufferPeriodDuration,
        address owner
    )
        BasePool(
            vault,
            // Given BaseMinimalSwapInfoPool supports both of these specializations, and this Pool never registers or
            // deregisters any tokens after construction, picking Two Token when the Pool only has two tokens is free
            // gas savings.
            tokens.length == 2 ? IVault.PoolSpecialization.TWO_TOKEN : IVault.PoolSpecialization.MINIMAL_SWAP_INFO,
            name,
            symbol,
            tokens,
            assetManagers,
            swapFeePercentage,
            pauseWindowDuration,
            bufferPeriodDuration,
            owner
        )
    {
        // solhint-disable-previous-line no-empty-blocks
    }

    // Virtual functions

    /**
     * @dev Returns the normalized weight of `token`. Weights are fixed point numbers that sum to FixedPoint.ONE.
     */
    function _getNormalizedWeight(IERC20 token) internal view virtual returns (uint256);

    /**
     * @dev Returns all normalized weights, in the same order as the Pool's tokens.
     */
    function _getNormalizedWeights() internal view virtual returns (uint256[] memory);

    /**
     * @dev Returns all normalized weights, in the same order as the Pool's tokens, along with the index of the token
     * with the highest weight.
     */
    function _getNormalizedWeightsAndMaxWeightIndex() internal view virtual returns (uint256[] memory, uint256);

    function getLastInvariant() public view virtual returns (uint256) {
        return _lastInvariant;
    }

    /**
     * @dev Returns the current value of the invariant.
     */
    function getInvariant() public view returns (uint256) {
        (, uint256[] memory balances, ) = getVault().getPoolTokens(getPoolId());

        // Since the Pool hooks always work with upscaled balances, we manually
        // upscale here for consistency
        _upscaleArray(balances, _scalingFactors());

        (uint256[] memory normalizedWeights, ) = _getNormalizedWeightsAndMaxWeightIndex();
        return WeightedMath._calculateInvariant(normalizedWeights, balances);
    }

    function getNormalizedWeights() external view returns (uint256[] memory) {
        return _getNormalizedWeights();
    }

    // Base Pool handlers

    // Swap

    function _onSwapGivenIn(
        SwapRequest memory swapRequest,
        uint256 currentBalanceTokenIn,
        uint256 currentBalanceTokenOut
    ) internal view virtual override whenNotPaused returns (uint256) {
        // Swaps are disabled while the contract is paused.

        return
            WeightedMath._calcOutGivenIn(
                currentBalanceTokenIn,
                _getNormalizedWeight(swapRequest.tokenIn),
                currentBalanceTokenOut,
                _getNormalizedWeight(swapRequest.tokenOut),
                swapRequest.amount
            );
    }

    function _onSwapGivenOut(
        SwapRequest memory swapRequest,
        uint256 currentBalanceTokenIn,
        uint256 currentBalanceTokenOut
    ) internal view virtual override whenNotPaused returns (uint256) {
        // Swaps are disabled while the contract is paused.

        return
            WeightedMath._calcInGivenOut(
                currentBalanceTokenIn,
                _getNormalizedWeight(swapRequest.tokenIn),
                currentBalanceTokenOut,
                _getNormalizedWeight(swapRequest.tokenOut),
                swapRequest.amount
            );
    }

    // Initialize

    function _onInitializePool(
        bytes32,
        address,
        address,
        uint256[] memory scalingFactors,
        bytes memory userData
    ) internal virtual override whenNotPaused returns (uint256, uint256[] memory) {
        // It would be strange for the Pool to be paused before it is initialized, but for consistency we prevent
        // initialization in this case.

        JoinKind kind = userData.joinKind();
        _require(kind == JoinKind.INIT, Errors.UNINITIALIZED);

        uint256[] memory amountsIn = userData.initialAmountsIn();
        InputHelpers.ensureInputLengthMatch(_getTotalTokens(), amountsIn.length);
        _upscaleArray(amountsIn, scalingFactors);

        (uint256[] memory normalizedWeights, ) = _getNormalizedWeightsAndMaxWeightIndex();

        uint256 invariantAfterJoin = WeightedMath._calculateInvariant(normalizedWeights, amountsIn);

        // Set the initial BPT to the value of the invariant times the number of tokens. This makes BPT supply more
        // consistent in Pools with similar compositions but different number of tokens.
        uint256 bptAmountOut = Math.mul(invariantAfterJoin, _getTotalTokens());

        _lastInvariant = invariantAfterJoin;

        return (bptAmountOut, amountsIn);
    }

    // Join

    function _onJoinPool(
        bytes32,
        address,
        address,
        uint256[] memory balances,
        uint256,
        uint256 protocolSwapFeePercentage,
        uint256[] memory scalingFactors,
        bytes memory userData
    )
        internal
        virtual
        override
        whenNotPaused
        returns (
            uint256,
            uint256[] memory,
            uint256[] memory
        )
    {
        // All joins are disabled while the contract is paused.

        (uint256[] memory normalizedWeights, uint256 maxWeightTokenIndex) = _getNormalizedWeightsAndMaxWeightIndex();

        // Due protocol swap fee amounts are computed by measuring the growth of the invariant between the previous join
        // or exit event and now - the invariant's growth is due exclusively to swap fees. This avoids spending gas
        // computing them on each individual swap
        uint256 invariantBeforeJoin = WeightedMath._calculateInvariant(normalizedWeights, balances);

        uint256[] memory dueProtocolFeeAmounts = _getDueProtocolFeeAmounts(
            balances,
            normalizedWeights,
            maxWeightTokenIndex,
            _lastInvariant,
            invariantBeforeJoin,
            protocolSwapFeePercentage
        );

        // Update current balances by subtracting the protocol fee amounts
        _mutateAmounts(balances, dueProtocolFeeAmounts, FixedPoint.sub);
        (uint256 bptAmountOut, uint256[] memory amountsIn) = _doJoin(
            balances,
            normalizedWeights,
            scalingFactors,
            userData
        );

        // Update the invariant with the balances the Pool will have after the join, in order to compute the
        // protocol swap fee amounts due in future joins and exits.
        _lastInvariant = _invariantAfterJoin(balances, amountsIn, normalizedWeights);

        return (bptAmountOut, amountsIn, dueProtocolFeeAmounts);
    }

    function _doJoin(
        uint256[] memory balances,
        uint256[] memory normalizedWeights,
        uint256[] memory scalingFactors,
        bytes memory userData
    ) internal returns (uint256, uint256[] memory) {
        JoinKind kind = userData.joinKind();

        if (kind == JoinKind.EXACT_TOKENS_IN_FOR_BPT_OUT) {
            return _joinExactTokensInForBPTOut(balances, normalizedWeights, scalingFactors, userData);
        } else if (kind == JoinKind.TOKEN_IN_FOR_EXACT_BPT_OUT) {
            return _joinTokenInForExactBPTOut(balances, normalizedWeights, userData);
        } else if (kind == JoinKind.ALL_TOKENS_IN_FOR_EXACT_BPT_OUT) {
            return _joinAllTokensInForExactBPTOut(balances, userData);
        } else {
            _revert(Errors.UNHANDLED_JOIN_KIND);
        }
    }

    function _joinExactTokensInForBPTOut(
        uint256[] memory balances,
        uint256[] memory normalizedWeights,
        uint256[] memory scalingFactors,
        bytes memory userData
    ) private returns (uint256, uint256[] memory) {
        (uint256[] memory amountsIn, uint256 minBPTAmountOut) = userData.exactTokensInForBptOut();
        InputHelpers.ensureInputLengthMatch(_getTotalTokens(), amountsIn.length);

        _upscaleArray(amountsIn, scalingFactors);

        (uint256 bptAmountOut, uint256[] memory swapFees) = WeightedMath._calcBptOutGivenExactTokensIn(
            balances,
            normalizedWeights,
            amountsIn,
            totalSupply(),
            getSwapFeePercentage()
        );

        // Note that swapFees is already upscaled
        _processSwapFeeAmounts(swapFees);

        _require(bptAmountOut >= minBPTAmountOut, Errors.BPT_OUT_MIN_AMOUNT);

        return (bptAmountOut, amountsIn);
    }

    function _joinTokenInForExactBPTOut(
        uint256[] memory balances,
        uint256[] memory normalizedWeights,
        bytes memory userData
    ) private returns (uint256, uint256[] memory) {
        (uint256 bptAmountOut, uint256 tokenIndex) = userData.tokenInForExactBptOut();
        // Note that there is no maximum amountIn parameter: this is handled by `IVault.joinPool`.

        _require(tokenIndex < _getTotalTokens(), Errors.OUT_OF_BOUNDS);

        (uint256 amountIn, uint256 swapFee) = WeightedMath._calcTokenInGivenExactBptOut(
            balances[tokenIndex],
            normalizedWeights[tokenIndex],
            bptAmountOut,
            totalSupply(),
            getSwapFeePercentage()
        );

        // Note that swapFee is already upscaled
        _processSwapFeeAmount(tokenIndex, swapFee);

        // We join in a single token, so we initialize amountsIn with zeros
        uint256[] memory amountsIn = new uint256[](_getTotalTokens());
        // And then assign the result to the selected token
        amountsIn[tokenIndex] = amountIn;

        return (bptAmountOut, amountsIn);
    }

    function _joinAllTokensInForExactBPTOut(uint256[] memory balances, bytes memory userData)
        private
        view
        returns (uint256, uint256[] memory)
    {
        uint256 bptAmountOut = userData.allTokensInForExactBptOut();
        // Note that there is no maximum amountsIn parameter: this is handled by `IVault.joinPool`.

        uint256[] memory amountsIn = WeightedMath._calcAllTokensInGivenExactBptOut(
            balances,
            bptAmountOut,
            totalSupply()
        );

        return (bptAmountOut, amountsIn);
    }

    // Exit

    function _onExitPool(
        bytes32,
        address,
        address,
        uint256[] memory balances,
        uint256,
        uint256 protocolSwapFeePercentage,
        uint256[] memory scalingFactors,
        bytes memory userData
    )
        internal
        virtual
        override
        returns (
            uint256 bptAmountIn,
            uint256[] memory amountsOut,
            uint256[] memory dueProtocolFeeAmounts
        )
    {
        (uint256[] memory normalizedWeights, uint256 maxWeightTokenIndex) = _getNormalizedWeightsAndMaxWeightIndex();

        // Exits are not completely disabled while the contract is paused: proportional exits (exact BPT in for tokens
        // out) remain functional.

        if (_isNotPaused()) {
            // Due protocol swap fee amounts are computed by measuring the growth of the invariant between the previous
            // join or exit event and now - the invariant's growth is due exclusively to swap fees. This avoids
            // spending gas calculating the fees on each individual swap.
            uint256 invariantBeforeExit = WeightedMath._calculateInvariant(normalizedWeights, balances);
            dueProtocolFeeAmounts = _getDueProtocolFeeAmounts(
                balances,
                normalizedWeights,
                maxWeightTokenIndex,
                _lastInvariant,
                invariantBeforeExit,
                protocolSwapFeePercentage
            );

            // Update current balances by subtracting the protocol fee amounts
            _mutateAmounts(balances, dueProtocolFeeAmounts, FixedPoint.sub);
        } else {
            // If the contract is paused, swap protocol fee amounts are not charged to avoid extra calculations and
            // reduce the potential for errors.
            dueProtocolFeeAmounts = new uint256[](_getTotalTokens());
        }

        (bptAmountIn, amountsOut) = _doExit(balances, normalizedWeights, scalingFactors, userData);

        // Update the invariant with the balances the Pool will have after the exit, in order to compute the
        // protocol swap fees due in future joins and exits.
        _lastInvariant = _invariantAfterExit(balances, amountsOut, normalizedWeights);

        return (bptAmountIn, amountsOut, dueProtocolFeeAmounts);
    }

    function _doExit(
        uint256[] memory balances,
        uint256[] memory normalizedWeights,
        uint256[] memory scalingFactors,
        bytes memory userData
    ) internal returns (uint256, uint256[] memory) {
        ExitKind kind = userData.exitKind();

        if (kind == ExitKind.EXACT_BPT_IN_FOR_ONE_TOKEN_OUT) {
            return _exitExactBPTInForTokenOut(balances, normalizedWeights, userData);
        } else if (kind == ExitKind.EXACT_BPT_IN_FOR_TOKENS_OUT) {
            return _exitExactBPTInForTokensOut(balances, userData);
        } else if (kind == ExitKind.BPT_IN_FOR_EXACT_TOKENS_OUT) {
            return _exitBPTInForExactTokensOut(balances, normalizedWeights, scalingFactors, userData);
        } else {
            _revert(Errors.UNHANDLED_EXIT_KIND);
        }
    }

    function _exitExactBPTInForTokenOut(
        uint256[] memory balances,
        uint256[] memory normalizedWeights,
        bytes memory userData
    ) private whenNotPaused returns (uint256, uint256[] memory) {
        // This exit function is disabled if the contract is paused.

        (uint256 bptAmountIn, uint256 tokenIndex) = userData.exactBptInForTokenOut();
        // Note that there is no minimum amountOut parameter: this is handled by `IVault.exitPool`.

        _require(tokenIndex < _getTotalTokens(), Errors.OUT_OF_BOUNDS);

        (uint256 amountOut, uint256 swapFee) = WeightedMath._calcTokenOutGivenExactBptIn(
            balances[tokenIndex],
            normalizedWeights[tokenIndex],
            bptAmountIn,
            totalSupply(),
            getSwapFeePercentage()
        );

        // This is an exceptional situation in which the fee is charged on a token out instead of a token in.
        // Note that swapFee is already upscaled.
        _processSwapFeeAmount(tokenIndex, swapFee);

        // We exit in a single token, so we initialize amountsOut with zeros
        uint256[] memory amountsOut = new uint256[](_getTotalTokens());
        // And then assign the result to the selected token
        amountsOut[tokenIndex] = amountOut;

        return (bptAmountIn, amountsOut);
    }

    function _exitExactBPTInForTokensOut(uint256[] memory balances, bytes memory userData)
        private
        view
        returns (uint256, uint256[] memory)
    {
        // This exit function is the only one that is not disabled if the contract is paused: it remains unrestricted
        // in an attempt to provide users with a mechanism to retrieve their tokens in case of an emergency.
        // This particular exit function is the only one that remains available because it is the simplest one, and
        // therefore the one with the lowest likelihood of errors.

        uint256 bptAmountIn = userData.exactBptInForTokensOut();
        // Note that there is no minimum amountOut parameter: this is handled by `IVault.exitPool`.

        uint256[] memory amountsOut = WeightedMath._calcTokensOutGivenExactBptIn(balances, bptAmountIn, totalSupply());
        return (bptAmountIn, amountsOut);
    }

    function _exitBPTInForExactTokensOut(
        uint256[] memory balances,
        uint256[] memory normalizedWeights,
        uint256[] memory scalingFactors,
        bytes memory userData
    ) private whenNotPaused returns (uint256, uint256[] memory) {
        // This exit function is disabled if the contract is paused.

        (uint256[] memory amountsOut, uint256 maxBPTAmountIn) = userData.bptInForExactTokensOut();
        InputHelpers.ensureInputLengthMatch(amountsOut.length, _getTotalTokens());
        _upscaleArray(amountsOut, scalingFactors);

        (uint256 bptAmountIn, uint256[] memory swapFees) = WeightedMath._calcBptInGivenExactTokensOut(
            balances,
            normalizedWeights,
            amountsOut,
            totalSupply(),
            getSwapFeePercentage()
        );
        _require(bptAmountIn <= maxBPTAmountIn, Errors.BPT_IN_MAX_AMOUNT);

        // This is an exceptional situation in which the fee is charged on a token out instead of a token in.
        // Note that swapFee is already upscaled.
        _processSwapFeeAmounts(swapFees);

        return (bptAmountIn, amountsOut);
    }

    // Helpers

    function _getDueProtocolFeeAmounts(
        uint256[] memory balances,
        uint256[] memory normalizedWeights,
        uint256 maxWeightTokenIndex,
        uint256 previousInvariant,
        uint256 currentInvariant,
        uint256 protocolSwapFeePercentage
    ) private view returns (uint256[] memory) {
        // Initialize with zeros
        uint256[] memory dueProtocolFeeAmounts = new uint256[](_getTotalTokens());

        // Early return if the protocol swap fee percentage is zero, saving gas.
        if (protocolSwapFeePercentage == 0) {
            return dueProtocolFeeAmounts;
        }

        // The protocol swap fees are always paid using the token with the largest weight in the Pool. As this is the
        // token that is expected to have the largest balance, using it to pay fees should not unbalance the Pool.
        dueProtocolFeeAmounts[maxWeightTokenIndex] = WeightedMath._calcDueTokenProtocolSwapFeeAmount(
            balances[maxWeightTokenIndex],
            normalizedWeights[maxWeightTokenIndex],
            previousInvariant,
            currentInvariant,
            protocolSwapFeePercentage
        );

        return dueProtocolFeeAmounts;
    }

    /**
     * @dev Returns the value of the invariant given `balances`, assuming they are increased by `amountsIn`. All
     * amounts are expected to be upscaled.
     */
    function _invariantAfterJoin(
        uint256[] memory balances,
        uint256[] memory amountsIn,
        uint256[] memory normalizedWeights
    ) private view returns (uint256) {
        _mutateAmounts(balances, amountsIn, FixedPoint.add);
        return WeightedMath._calculateInvariant(normalizedWeights, balances);
    }

    function _invariantAfterExit(
        uint256[] memory balances,
        uint256[] memory amountsOut,
        uint256[] memory normalizedWeights
    ) private view returns (uint256) {
        _mutateAmounts(balances, amountsOut, FixedPoint.sub);
        return WeightedMath._calculateInvariant(normalizedWeights, balances);
    }

    /**
     * @dev Mutates `amounts` by applying `mutation` with each entry in `arguments`.
     *
     * Equivalent to `amounts = amounts.map(mutation)`.
     */
    function _mutateAmounts(
        uint256[] memory toMutate,
        uint256[] memory arguments,
        function(uint256, uint256) pure returns (uint256) mutation
    ) private view {
        for (uint256 i = 0; i < _getTotalTokens(); ++i) {
            toMutate[i] = mutation(toMutate[i], arguments[i]);
        }
    }

    /**
     * @dev This function returns the appreciation of one BPT relative to the
     * underlying tokens. This starts at 1 when the pool is created and grows over time
     */
    function getRate() public view returns (uint256) {
        // The initial BPT supply is equal to the invariant times the number of tokens.
        return Math.mul(getInvariant(), _getTotalTokens()).divDown(totalSupply());
    }
}

File 3 of 63 : FixedPoint.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

import "./LogExpMath.sol";
import "../helpers/BalancerErrors.sol";

/* solhint-disable private-vars-leading-underscore */

library FixedPoint {
    uint256 internal constant ONE = 1e18; // 18 decimal places
    uint256 internal constant MAX_POW_RELATIVE_ERROR = 10000; // 10^(-14)

    // Minimum base for the power function when the exponent is 'free' (larger than ONE).
    uint256 internal constant MIN_POW_BASE_FREE_EXPONENT = 0.7e18;

    function add(uint256 a, uint256 b) internal pure returns (uint256) {
        // Fixed Point addition is the same as regular checked addition

        uint256 c = a + b;
        _require(c >= a, Errors.ADD_OVERFLOW);
        return c;
    }

    function sub(uint256 a, uint256 b) internal pure returns (uint256) {
        // Fixed Point addition is the same as regular checked addition

        _require(b <= a, Errors.SUB_OVERFLOW);
        uint256 c = a - b;
        return c;
    }

    function mulDown(uint256 a, uint256 b) internal pure returns (uint256) {
        uint256 product = a * b;
        _require(a == 0 || product / a == b, Errors.MUL_OVERFLOW);

        return product / ONE;
    }

    function mulUp(uint256 a, uint256 b) internal pure returns (uint256) {
        uint256 product = a * b;
        _require(a == 0 || product / a == b, Errors.MUL_OVERFLOW);

        if (product == 0) {
            return 0;
        } else {
            // The traditional divUp formula is:
            // divUp(x, y) := (x + y - 1) / y
            // To avoid intermediate overflow in the addition, we distribute the division and get:
            // divUp(x, y) := (x - 1) / y + 1
            // Note that this requires x != 0, which we already tested for.

            return ((product - 1) / ONE) + 1;
        }
    }

    function divDown(uint256 a, uint256 b) internal pure returns (uint256) {
        _require(b != 0, Errors.ZERO_DIVISION);

        if (a == 0) {
            return 0;
        } else {
            uint256 aInflated = a * ONE;
            _require(aInflated / a == ONE, Errors.DIV_INTERNAL); // mul overflow

            return aInflated / b;
        }
    }

    function divUp(uint256 a, uint256 b) internal pure returns (uint256) {
        _require(b != 0, Errors.ZERO_DIVISION);

        if (a == 0) {
            return 0;
        } else {
            uint256 aInflated = a * ONE;
            _require(aInflated / a == ONE, Errors.DIV_INTERNAL); // mul overflow

            // The traditional divUp formula is:
            // divUp(x, y) := (x + y - 1) / y
            // To avoid intermediate overflow in the addition, we distribute the division and get:
            // divUp(x, y) := (x - 1) / y + 1
            // Note that this requires x != 0, which we already tested for.

            return ((aInflated - 1) / b) + 1;
        }
    }

    /**
     * @dev Returns x^y, assuming both are fixed point numbers, rounding down. The result is guaranteed to not be above
     * the true value (that is, the error function expected - actual is always positive).
     */
    function powDown(uint256 x, uint256 y) internal pure returns (uint256) {
        uint256 raw = LogExpMath.pow(x, y);
        uint256 maxError = add(mulUp(raw, MAX_POW_RELATIVE_ERROR), 1);

        if (raw < maxError) {
            return 0;
        } else {
            return sub(raw, maxError);
        }
    }

    /**
     * @dev Returns x^y, assuming both are fixed point numbers, rounding up. The result is guaranteed to not be below
     * the true value (that is, the error function expected - actual is always negative).
     */
    function powUp(uint256 x, uint256 y) internal pure returns (uint256) {
        uint256 raw = LogExpMath.pow(x, y);
        uint256 maxError = add(mulUp(raw, MAX_POW_RELATIVE_ERROR), 1);

        return add(raw, maxError);
    }

    /**
     * @dev Returns the complement of a value (1 - x), capped to 0 if x is larger than 1.
     *
     * Useful when computing the complement for values with some level of relative error, as it strips this error and
     * prevents intermediate negative values.
     */
    function complement(uint256 x) internal pure returns (uint256) {
        return (x < ONE) ? (ONE - x) : 0;
    }
}

File 4 of 63 : InputHelpers.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

import "../openzeppelin/IERC20.sol";

import "./BalancerErrors.sol";

library InputHelpers {
    function ensureInputLengthMatch(uint256 a, uint256 b) internal pure {
        _require(a == b, Errors.INPUT_LENGTH_MISMATCH);
    }

    function ensureInputLengthMatch(
        uint256 a,
        uint256 b,
        uint256 c
    ) internal pure {
        _require(a == b && b == c, Errors.INPUT_LENGTH_MISMATCH);
    }

    function ensureArrayIsSorted(IERC20[] memory array) internal pure {
        address[] memory addressArray;
        // solhint-disable-next-line no-inline-assembly
        assembly {
            addressArray := array
        }
        ensureArrayIsSorted(addressArray);
    }

    function ensureArrayIsSorted(address[] memory array) internal pure {
        if (array.length < 2) {
            return;
        }

        address previous = array[0];
        for (uint256 i = 1; i < array.length; ++i) {
            address current = array[i];
            _require(previous < current, Errors.UNSORTED_ARRAY);
            previous = current;
        }
    }
}

File 5 of 63 : BaseMinimalSwapInfoPool.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;
pragma experimental ABIEncoderV2;

import "./BasePool.sol";
import "@balancer-labs/v2-vault/contracts/interfaces/IMinimalSwapInfoPool.sol";

/**
 * @dev Extension of `BasePool`, adding a handler for `IMinimalSwapInfoPool.onSwap`.
 *
 * Derived contracts must call `BasePool`'s constructor, and implement `_onSwapGivenIn` and `_onSwapGivenOut` along with
 * `BasePool`'s virtual functions. Inheriting from this contract lets derived contracts choose the Two Token or Minimal
 * Swap Info specialization settings.
 */
abstract contract BaseMinimalSwapInfoPool is IMinimalSwapInfoPool, BasePool {
    // Swap Hooks

    function onSwap(
        SwapRequest memory request,
        uint256 balanceTokenIn,
        uint256 balanceTokenOut
    ) public virtual override onlyVault(request.poolId) returns (uint256) {
        uint256 scalingFactorTokenIn = _scalingFactor(request.tokenIn);
        uint256 scalingFactorTokenOut = _scalingFactor(request.tokenOut);

        if (request.kind == IVault.SwapKind.GIVEN_IN) {
            // Fees are subtracted before scaling, to reduce the complexity of the rounding direction analysis.
            uint256 amountInMinusSwapFees = _subtractSwapFeeAmount(request.amount);

            // Process the (upscaled!) swap fee.
            uint256 swapFee = request.amount - amountInMinusSwapFees;
            _processSwapFeeAmount(request.tokenIn, _upscale(swapFee, scalingFactorTokenIn));

            request.amount = amountInMinusSwapFees;

            // All token amounts are upscaled.
            balanceTokenIn = _upscale(balanceTokenIn, scalingFactorTokenIn);
            balanceTokenOut = _upscale(balanceTokenOut, scalingFactorTokenOut);
            request.amount = _upscale(request.amount, scalingFactorTokenIn);

            uint256 amountOut = _onSwapGivenIn(request, balanceTokenIn, balanceTokenOut);

            // amountOut tokens are exiting the Pool, so we round down.
            return _downscaleDown(amountOut, scalingFactorTokenOut);
        } else {
            // All token amounts are upscaled.
            balanceTokenIn = _upscale(balanceTokenIn, scalingFactorTokenIn);
            balanceTokenOut = _upscale(balanceTokenOut, scalingFactorTokenOut);
            request.amount = _upscale(request.amount, scalingFactorTokenOut);

            uint256 amountIn = _onSwapGivenOut(request, balanceTokenIn, balanceTokenOut);

            // amountIn tokens are entering the Pool, so we round up.
            amountIn = _downscaleUp(amountIn, scalingFactorTokenIn);

            // Fees are added after scaling happens, to reduce the complexity of the rounding direction analysis.
            uint256 amountInPlusSwapFees = _addSwapFeeAmount(amountIn);

            // Process the (upscaled!) swap fee.
            uint256 swapFee = amountInPlusSwapFees - amountIn;
            _processSwapFeeAmount(request.tokenIn, _upscale(swapFee, scalingFactorTokenIn));

            return amountInPlusSwapFees;
        }
    }

    /*
     * @dev Called when a swap with the Pool occurs, where the amount of tokens entering the Pool is known.
     *
     * Returns the amount of tokens that will be taken from the Pool in return.
     *
     * All amounts inside `swapRequest`, `balanceTokenIn` and `balanceTokenOut` are upscaled. The swap fee has already
     * been deducted from `swapRequest.amount`.
     *
     * The return value is also considered upscaled, and will be downscaled (rounding down) before returning it to the
     * Vault.
     */
    function _onSwapGivenIn(
        SwapRequest memory swapRequest,
        uint256 balanceTokenIn,
        uint256 balanceTokenOut
    ) internal virtual returns (uint256);

    /*
     * @dev Called when a swap with the Pool occurs, where the amount of tokens exiting the Pool is known.
     *
     * Returns the amount of tokens that will be granted to the Pool in return.
     *
     * All amounts inside `swapRequest`, `balanceTokenIn` and `balanceTokenOut` are upscaled.
     *
     * The return value is also considered upscaled, and will be downscaled (rounding up) before applying the swap fee
     * and returning it to the Vault.
     */
    function _onSwapGivenOut(
        SwapRequest memory swapRequest,
        uint256 balanceTokenIn,
        uint256 balanceTokenOut
    ) internal virtual returns (uint256);

    /**
     * @dev Called whenever a swap fee is charged. Implementations should call their parents via super, to ensure all
     * implementations in the inheritance tree are called.
     *
     * Callers must call one of the three `_processSwapFeeAmount` functions when swap fees are computed,
     * and upscale `amount`.
     */
    function _processSwapFeeAmount(
        uint256, /*index*/
        uint256 /*amount*/
    ) internal virtual {}

    function _processSwapFeeAmount(IERC20 token, uint256 amount) internal {
        _processSwapFeeAmount(_tokenAddressToIndex(token), amount);
    }

    function _processSwapFeeAmounts(uint256[] memory amounts) internal {
        InputHelpers.ensureInputLengthMatch(amounts.length, _getTotalTokens());

        for (uint256 i = 0; i < _getTotalTokens(); ++i) {
            _processSwapFeeAmount(i, amounts[i]);
        }
    }

    /**
     * @dev Returns the index of `token` in the Pool's token array (i.e. the one `vault.getPoolTokens()` would return).
     *
     * A trivial (and incorrect!) implementation is already provided for Pools that don't override
     * `_processSwapFeeAmount` and skip the entire feature. However, Pools that do override `_processSwapFeeAmount`
     * *must* override this function with a meaningful implementation.
     */
    function _tokenAddressToIndex(
        IERC20 /*token*/
    ) internal view virtual returns (uint256) {
        return 0;
    }
}

File 6 of 63 : WeightedMath.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

import "@balancer-labs/v2-solidity-utils/contracts/math/FixedPoint.sol";
import "@balancer-labs/v2-solidity-utils/contracts/math/Math.sol";
import "@balancer-labs/v2-solidity-utils/contracts/helpers/InputHelpers.sol";

/* solhint-disable private-vars-leading-underscore */

contract WeightedMath {
    using FixedPoint for uint256;
    // A minimum normalized weight imposes a maximum weight ratio. We need this due to limitations in the
    // implementation of the power function, as these ratios are often exponents.
    uint256 internal constant _MIN_WEIGHT = 0.01e18;
    // Having a minimum normalized weight imposes a limit on the maximum number of tokens;
    // i.e., the largest possible pool is one where all tokens have exactly the minimum weight.
    uint256 internal constant _MAX_WEIGHTED_TOKENS = 100;

    // Pool limits that arise from limitations in the fixed point power function (and the imposed 1:100 maximum weight
    // ratio).

    // Swap limits: amounts swapped may not be larger than this percentage of total balance.
    uint256 internal constant _MAX_IN_RATIO = 0.3e18;
    uint256 internal constant _MAX_OUT_RATIO = 0.3e18;

    // Invariant growth limit: non-proportional joins cannot cause the invariant to increase by more than this ratio.
    uint256 internal constant _MAX_INVARIANT_RATIO = 3e18;
    // Invariant shrink limit: non-proportional exits cannot cause the invariant to decrease by less than this ratio.
    uint256 internal constant _MIN_INVARIANT_RATIO = 0.7e18;

    // Invariant is used to collect protocol swap fees by comparing its value between two times.
    // So we can round always to the same direction. It is also used to initiate the BPT amount
    // and, because there is a minimum BPT, we round down the invariant.
    function _calculateInvariant(uint256[] memory normalizedWeights, uint256[] memory balances)
        internal
        pure
        returns (uint256 invariant)
    {
        /**********************************************************************************************
        // invariant               _____                                                             //
        // wi = weight index i      | |      wi                                                      //
        // bi = balance index i     | |  bi ^   = i                                                  //
        // i = invariant                                                                             //
        **********************************************************************************************/

        invariant = FixedPoint.ONE;
        for (uint256 i = 0; i < normalizedWeights.length; i++) {
            invariant = invariant.mulDown(balances[i].powDown(normalizedWeights[i]));
        }

        _require(invariant > 0, Errors.ZERO_INVARIANT);
    }

    // Computes how many tokens can be taken out of a pool if `amountIn` are sent, given the
    // current balances and weights.
    function _calcOutGivenIn(
        uint256 balanceIn,
        uint256 weightIn,
        uint256 balanceOut,
        uint256 weightOut,
        uint256 amountIn
    ) internal pure returns (uint256) {
        /**********************************************************************************************
        // outGivenIn                                                                                //
        // aO = amountOut                                                                            //
        // bO = balanceOut                                                                           //
        // bI = balanceIn              /      /            bI             \    (wI / wO) \           //
        // aI = amountIn    aO = bO * |  1 - | --------------------------  | ^            |          //
        // wI = weightIn               \      \       ( bI + aI )         /              /           //
        // wO = weightOut                                                                            //
        **********************************************************************************************/

        // Amount out, so we round down overall.

        // The multiplication rounds down, and the subtrahend (power) rounds up (so the base rounds up too).
        // Because bI / (bI + aI) <= 1, the exponent rounds down.

        // Cannot exceed maximum in ratio
        _require(amountIn <= balanceIn.mulDown(_MAX_IN_RATIO), Errors.MAX_IN_RATIO);

        uint256 denominator = balanceIn.add(amountIn);
        uint256 base = balanceIn.divUp(denominator);
        uint256 exponent = weightIn.divDown(weightOut);
        uint256 power = base.powUp(exponent);

        return balanceOut.mulDown(power.complement());
    }

    // Computes how many tokens must be sent to a pool in order to take `amountOut`, given the
    // current balances and weights.
    function _calcInGivenOut(
        uint256 balanceIn,
        uint256 weightIn,
        uint256 balanceOut,
        uint256 weightOut,
        uint256 amountOut
    ) internal pure returns (uint256) {
        /**********************************************************************************************
        // inGivenOut                                                                                //
        // aO = amountOut                                                                            //
        // bO = balanceOut                                                                           //
        // bI = balanceIn              /  /            bO             \    (wO / wI)      \          //
        // aI = amountIn    aI = bI * |  | --------------------------  | ^            - 1  |         //
        // wI = weightIn               \  \       ( bO - aO )         /                   /          //
        // wO = weightOut                                                                            //
        **********************************************************************************************/

        // Amount in, so we round up overall.

        // The multiplication rounds up, and the power rounds up (so the base rounds up too).
        // Because b0 / (b0 - a0) >= 1, the exponent rounds up.

        // Cannot exceed maximum out ratio
        _require(amountOut <= balanceOut.mulDown(_MAX_OUT_RATIO), Errors.MAX_OUT_RATIO);

        uint256 base = balanceOut.divUp(balanceOut.sub(amountOut));
        uint256 exponent = weightOut.divUp(weightIn);
        uint256 power = base.powUp(exponent);

        // Because the base is larger than one (and the power rounds up), the power should always be larger than one, so
        // the following subtraction should never revert.
        uint256 ratio = power.sub(FixedPoint.ONE);

        return balanceIn.mulUp(ratio);
    }

    function _calcBptOutGivenExactTokensIn(
        uint256[] memory balances,
        uint256[] memory normalizedWeights,
        uint256[] memory amountsIn,
        uint256 bptTotalSupply,
        uint256 swapFeePercentage
    ) internal pure returns (uint256, uint256[] memory) {
        // BPT out, so we round down overall.

        uint256[] memory balanceRatiosWithFee = new uint256[](amountsIn.length);

        uint256 invariantRatioWithFees = 0;
        for (uint256 i = 0; i < balances.length; i++) {
            balanceRatiosWithFee[i] = balances[i].add(amountsIn[i]).divDown(balances[i]);
            invariantRatioWithFees = invariantRatioWithFees.add(balanceRatiosWithFee[i].mulDown(normalizedWeights[i]));
        }

        (uint256 invariantRatio, uint256[] memory swapFees) = _computeJoinExactTokensInInvariantRatio(
            balances,
            normalizedWeights,
            amountsIn,
            balanceRatiosWithFee,
            invariantRatioWithFees,
            swapFeePercentage
        );

        uint256 bptOut = (invariantRatio > FixedPoint.ONE)
            ? bptTotalSupply.mulDown(invariantRatio.sub(FixedPoint.ONE))
            : 0;
        return (bptOut, swapFees);
    }

    /**
     * @dev Intermediate function to avoid stack-too-deep errors.
     */
    function _computeJoinExactTokensInInvariantRatio(
        uint256[] memory balances,
        uint256[] memory normalizedWeights,
        uint256[] memory amountsIn,
        uint256[] memory balanceRatiosWithFee,
        uint256 invariantRatioWithFees,
        uint256 swapFeePercentage
    ) private pure returns (uint256 invariantRatio, uint256[] memory swapFees) {
        // Swap fees are charged on all tokens that are being added in a larger proportion than the overall invariant
        // increase.
        swapFees = new uint256[](amountsIn.length);
        invariantRatio = FixedPoint.ONE;

        for (uint256 i = 0; i < balances.length; i++) {
            uint256 amountInWithoutFee;

            if (balanceRatiosWithFee[i] > invariantRatioWithFees) {
                uint256 nonTaxableAmount = balances[i].mulDown(invariantRatioWithFees.sub(FixedPoint.ONE));
                uint256 taxableAmount = amountsIn[i].sub(nonTaxableAmount);
                uint256 swapFee = taxableAmount.mulUp(swapFeePercentage);

                amountInWithoutFee = nonTaxableAmount.add(taxableAmount.sub(swapFee));
                swapFees[i] = swapFee;
            } else {
                amountInWithoutFee = amountsIn[i];
            }

            uint256 balanceRatio = balances[i].add(amountInWithoutFee).divDown(balances[i]);

            invariantRatio = invariantRatio.mulDown(balanceRatio.powDown(normalizedWeights[i]));
        }
    }

    function _calcTokenInGivenExactBptOut(
        uint256 balance,
        uint256 normalizedWeight,
        uint256 bptAmountOut,
        uint256 bptTotalSupply,
        uint256 swapFeePercentage
    ) internal pure returns (uint256 amountIn, uint256 swapFee) {
        /******************************************************************************************
        // tokenInForExactBPTOut                                                                 //
        // a = amountIn                                                                          //
        // b = balance                      /  /    totalBPT + bptOut      \    (1 / w)       \  //
        // bptOut = bptAmountOut   a = b * |  | --------------------------  | ^          - 1  |  //
        // bpt = totalBPT                   \  \       totalBPT            /                  /  //
        // w = weight                                                                            //
        ******************************************************************************************/

        // Token in, so we round up overall.

        // Calculate the factor by which the invariant will increase after minting BPTAmountOut
        uint256 invariantRatio = bptTotalSupply.add(bptAmountOut).divUp(bptTotalSupply);
        _require(invariantRatio <= _MAX_INVARIANT_RATIO, Errors.MAX_OUT_BPT_FOR_TOKEN_IN);

        // Calculate by how much the token balance has to increase to match the invariantRatio
        uint256 balanceRatio = invariantRatio.powUp(FixedPoint.ONE.divUp(normalizedWeight));

        uint256 amountInWithoutFee = balance.mulUp(balanceRatio.sub(FixedPoint.ONE));

        // We can now compute how much extra balance is being deposited and used in virtual swaps, and charge swap fees
        // accordingly.
        uint256 taxablePercentage = normalizedWeight.complement();
        uint256 taxableAmount = amountInWithoutFee.mulUp(taxablePercentage);
        uint256 nonTaxableAmount = amountInWithoutFee.sub(taxableAmount);

        uint256 taxableAmountPlusFees = taxableAmount.divUp(FixedPoint.ONE.sub(swapFeePercentage));

        swapFee = taxableAmountPlusFees - taxableAmount;
        amountIn = nonTaxableAmount.add(taxableAmountPlusFees);
    }

    function _calcAllTokensInGivenExactBptOut(
        uint256[] memory balances,
        uint256 bptAmountOut,
        uint256 totalBPT
    ) internal pure returns (uint256[] memory) {
        /************************************************************************************
        // tokensInForExactBptOut                                                          //
        // (per token)                                                                     //
        // aI = amountIn                   /   bptOut   \                                  //
        // b = balance           aI = b * | ------------ |                                 //
        // bptOut = bptAmountOut           \  totalBPT  /                                  //
        // bpt = totalBPT                                                                  //
        ************************************************************************************/

        // Tokens in, so we round up overall.
        uint256 bptRatio = bptAmountOut.divUp(totalBPT);

        uint256[] memory amountsIn = new uint256[](balances.length);
        for (uint256 i = 0; i < balances.length; i++) {
            amountsIn[i] = balances[i].mulUp(bptRatio);
        }

        return amountsIn;
    }

    function _calcBptInGivenExactTokensOut(
        uint256[] memory balances,
        uint256[] memory normalizedWeights,
        uint256[] memory amountsOut,
        uint256 bptTotalSupply,
        uint256 swapFeePercentage
    ) internal pure returns (uint256, uint256[] memory) {
        // BPT in, so we round up overall.

        uint256[] memory balanceRatiosWithoutFee = new uint256[](amountsOut.length);
        uint256 invariantRatioWithoutFees = 0;
        for (uint256 i = 0; i < balances.length; i++) {
            balanceRatiosWithoutFee[i] = balances[i].sub(amountsOut[i]).divUp(balances[i]);
            invariantRatioWithoutFees = invariantRatioWithoutFees.add(
                balanceRatiosWithoutFee[i].mulUp(normalizedWeights[i])
            );
        }

        (uint256 invariantRatio, uint256[] memory swapFees) = _computeExitExactTokensOutInvariantRatio(
            balances,
            normalizedWeights,
            amountsOut,
            balanceRatiosWithoutFee,
            invariantRatioWithoutFees,
            swapFeePercentage
        );

        uint256 bptIn = bptTotalSupply.mulUp(invariantRatio.complement());
        return (bptIn, swapFees);
    }

    /**
     * @dev Intermediate function to avoid stack-too-deep errors.
     */
    function _computeExitExactTokensOutInvariantRatio(
        uint256[] memory balances,
        uint256[] memory normalizedWeights,
        uint256[] memory amountsOut,
        uint256[] memory balanceRatiosWithoutFee,
        uint256 invariantRatioWithoutFees,
        uint256 swapFeePercentage
    ) private pure returns (uint256 invariantRatio, uint256[] memory swapFees) {
        swapFees = new uint256[](amountsOut.length);
        invariantRatio = FixedPoint.ONE;

        for (uint256 i = 0; i < balances.length; i++) {
            // Swap fees are typically charged on 'token in', but there is no 'token in' here, so we apply it to
            // 'token out'. This results in slightly larger price impact.

            uint256 amountOutWithFee;
            if (invariantRatioWithoutFees > balanceRatiosWithoutFee[i]) {
                uint256 nonTaxableAmount = balances[i].mulDown(invariantRatioWithoutFees.complement());
                uint256 taxableAmount = amountsOut[i].sub(nonTaxableAmount);
                uint256 taxableAmountPlusFees = taxableAmount.divUp(FixedPoint.ONE.sub(swapFeePercentage));

                swapFees[i] = taxableAmountPlusFees - taxableAmount;
                amountOutWithFee = nonTaxableAmount.add(taxableAmountPlusFees);
            } else {
                amountOutWithFee = amountsOut[i];
            }

            uint256 balanceRatio = balances[i].sub(amountOutWithFee).divDown(balances[i]);

            invariantRatio = invariantRatio.mulDown(balanceRatio.powDown(normalizedWeights[i]));
        }
    }

    function _calcTokenOutGivenExactBptIn(
        uint256 balance,
        uint256 normalizedWeight,
        uint256 bptAmountIn,
        uint256 bptTotalSupply,
        uint256 swapFeePercentage
    ) internal pure returns (uint256 amountOut, uint256 swapFee) {
        /*****************************************************************************************
        // exactBPTInForTokenOut                                                                //
        // a = amountOut                                                                        //
        // b = balance                     /      /    totalBPT - bptIn       \    (1 / w)  \   //
        // bptIn = bptAmountIn    a = b * |  1 - | --------------------------  | ^           |  //
        // bpt = totalBPT                  \      \       totalBPT            /             /   //
        // w = weight                                                                           //
        *****************************************************************************************/

        // Token out, so we round down overall. The multiplication rounds down, but the power rounds up (so the base
        // rounds up). Because (totalBPT - bptIn) / totalBPT <= 1, the exponent rounds down.

        // Calculate the factor by which the invariant will decrease after burning BPTAmountIn
        uint256 invariantRatio = bptTotalSupply.sub(bptAmountIn).divUp(bptTotalSupply);
        _require(invariantRatio >= _MIN_INVARIANT_RATIO, Errors.MIN_BPT_IN_FOR_TOKEN_OUT);

        // Calculate by how much the token balance has to decrease to match invariantRatio
        uint256 balanceRatio = invariantRatio.powUp(FixedPoint.ONE.divDown(normalizedWeight));

        // Because of rounding up, balanceRatio can be greater than one. Using complement prevents reverts.
        uint256 amountOutWithoutFee = balance.mulDown(balanceRatio.complement());

        // We can now compute how much excess balance is being withdrawn as a result of the virtual swaps, which result
        // in swap fees.
        uint256 taxablePercentage = normalizedWeight.complement();

        // Swap fees are typically charged on 'token in', but there is no 'token in' here, so we apply it
        // to 'token out'. This results in slightly larger price impact. Fees are rounded up.
        uint256 taxableAmount = amountOutWithoutFee.mulUp(taxablePercentage);
        uint256 nonTaxableAmount = amountOutWithoutFee.sub(taxableAmount);

        swapFee = taxableAmount.mulUp(swapFeePercentage);
        amountOut = nonTaxableAmount.add(taxableAmount.sub(swapFee));
    }

    function _calcTokensOutGivenExactBptIn(
        uint256[] memory balances,
        uint256 bptAmountIn,
        uint256 totalBPT
    ) internal pure returns (uint256[] memory) {
        /**********************************************************************************************
        // exactBPTInForTokensOut                                                                    //
        // (per token)                                                                               //
        // aO = amountOut                  /        bptIn         \                                  //
        // b = balance           a0 = b * | ---------------------  |                                 //
        // bptIn = bptAmountIn             \       totalBPT       /                                  //
        // bpt = totalBPT                                                                            //
        **********************************************************************************************/

        // Since we're computing an amount out, we round down overall. This means rounding down on both the
        // multiplication and division.

        uint256 bptRatio = bptAmountIn.divDown(totalBPT);

        uint256[] memory amountsOut = new uint256[](balances.length);
        for (uint256 i = 0; i < balances.length; i++) {
            amountsOut[i] = balances[i].mulDown(bptRatio);
        }

        return amountsOut;
    }

    function _calcDueTokenProtocolSwapFeeAmount(
        uint256 balance,
        uint256 normalizedWeight,
        uint256 previousInvariant,
        uint256 currentInvariant,
        uint256 protocolSwapFeePercentage
    ) internal pure returns (uint256) {
        /*********************************************************************************
        /*  protocolSwapFeePercentage * balanceToken * ( 1 - (previousInvariant / currentInvariant) ^ (1 / weightToken))
        *********************************************************************************/

        if (currentInvariant <= previousInvariant) {
            // This shouldn't happen outside of rounding errors, but have this safeguard nonetheless to prevent the Pool
            // from entering a locked state in which joins and exits revert while computing accumulated swap fees.
            return 0;
        }

        // We round down to prevent issues in the Pool's accounting, even if it means paying slightly less in protocol
        // fees to the Vault.

        // Fee percentage and balance multiplications round down, while the subtrahend (power) rounds up (as does the
        // base). Because previousInvariant / currentInvariant <= 1, the exponent rounds down.

        uint256 base = previousInvariant.divUp(currentInvariant);
        uint256 exponent = FixedPoint.ONE.divDown(normalizedWeight);

        // Because the exponent is larger than one, the base of the power function has a lower bound. We cap to this
        // value to avoid numeric issues, which means in the extreme case (where the invariant growth is larger than
        // 1 / min exponent) the Pool will pay less in protocol fees than it should.
        base = Math.max(base, FixedPoint.MIN_POW_BASE_FREE_EXPONENT);

        uint256 power = base.powUp(exponent);

        uint256 tokenAccruedFees = balance.mulDown(power.complement());
        return tokenAccruedFees.mulDown(protocolSwapFeePercentage);
    }
}

File 7 of 63 : WeightedPoolUserDataHelpers.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/IERC20.sol";

import "./BaseWeightedPool.sol";

library WeightedPoolUserDataHelpers {
    function joinKind(bytes memory self) internal pure returns (BaseWeightedPool.JoinKind) {
        return abi.decode(self, (BaseWeightedPool.JoinKind));
    }

    function exitKind(bytes memory self) internal pure returns (BaseWeightedPool.ExitKind) {
        return abi.decode(self, (BaseWeightedPool.ExitKind));
    }

    // Joins

    function initialAmountsIn(bytes memory self) internal pure returns (uint256[] memory amountsIn) {
        (, amountsIn) = abi.decode(self, (BaseWeightedPool.JoinKind, uint256[]));
    }

    function exactTokensInForBptOut(bytes memory self)
        internal
        pure
        returns (uint256[] memory amountsIn, uint256 minBPTAmountOut)
    {
        (, amountsIn, minBPTAmountOut) = abi.decode(self, (BaseWeightedPool.JoinKind, uint256[], uint256));
    }

    function tokenInForExactBptOut(bytes memory self) internal pure returns (uint256 bptAmountOut, uint256 tokenIndex) {
        (, bptAmountOut, tokenIndex) = abi.decode(self, (BaseWeightedPool.JoinKind, uint256, uint256));
    }

    function allTokensInForExactBptOut(bytes memory self) internal pure returns (uint256 bptAmountOut) {
        (, bptAmountOut) = abi.decode(self, (BaseWeightedPool.JoinKind, uint256));
    }

    // Exits

    function exactBptInForTokenOut(bytes memory self) internal pure returns (uint256 bptAmountIn, uint256 tokenIndex) {
        (, bptAmountIn, tokenIndex) = abi.decode(self, (BaseWeightedPool.ExitKind, uint256, uint256));
    }

    function exactBptInForTokensOut(bytes memory self) internal pure returns (uint256 bptAmountIn) {
        (, bptAmountIn) = abi.decode(self, (BaseWeightedPool.ExitKind, uint256));
    }

    function bptInForExactTokensOut(bytes memory self)
        internal
        pure
        returns (uint256[] memory amountsOut, uint256 maxBPTAmountIn)
    {
        (, amountsOut, maxBPTAmountIn) = abi.decode(self, (BaseWeightedPool.ExitKind, uint256[], uint256));
    }
}

File 8 of 63 : LogExpMath.sol
// SPDX-License-Identifier: MIT
// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
// documentation files (the “Software”), to deal in the Software without restriction, including without limitation the
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to
// permit persons to whom the Software is furnished to do so, subject to the following conditions:

// The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
// Software.

// THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
// WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
// OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

pragma solidity ^0.7.0;

import "../helpers/BalancerErrors.sol";

/* solhint-disable */

/**
 * @dev Exponentiation and logarithm functions for 18 decimal fixed point numbers (both base and exponent/argument).
 *
 * Exponentiation and logarithm with arbitrary bases (x^y and log_x(y)) are implemented by conversion to natural
 * exponentiation and logarithm (where the base is Euler's number).
 *
 * @author Fernando Martinelli - @fernandomartinelli
 * @author Sergio Yuhjtman - @sergioyuhjtman
 * @author Daniel Fernandez - @dmf7z
 */
library LogExpMath {
    // All fixed point multiplications and divisions are inlined. This means we need to divide by ONE when multiplying
    // two numbers, and multiply by ONE when dividing them.

    // All arguments and return values are 18 decimal fixed point numbers.
    int256 constant ONE_18 = 1e18;

    // Internally, intermediate values are computed with higher precision as 20 decimal fixed point numbers, and in the
    // case of ln36, 36 decimals.
    int256 constant ONE_20 = 1e20;
    int256 constant ONE_36 = 1e36;

    // The domain of natural exponentiation is bound by the word size and number of decimals used.
    //
    // Because internally the result will be stored using 20 decimals, the largest possible result is
    // (2^255 - 1) / 10^20, which makes the largest exponent ln((2^255 - 1) / 10^20) = 130.700829182905140221.
    // The smallest possible result is 10^(-18), which makes largest negative argument
    // ln(10^(-18)) = -41.446531673892822312.
    // We use 130.0 and -41.0 to have some safety margin.
    int256 constant MAX_NATURAL_EXPONENT = 130e18;
    int256 constant MIN_NATURAL_EXPONENT = -41e18;

    // Bounds for ln_36's argument. Both ln(0.9) and ln(1.1) can be represented with 36 decimal places in a fixed point
    // 256 bit integer.
    int256 constant LN_36_LOWER_BOUND = ONE_18 - 1e17;
    int256 constant LN_36_UPPER_BOUND = ONE_18 + 1e17;

    uint256 constant MILD_EXPONENT_BOUND = 2**254 / uint256(ONE_20);

    // 18 decimal constants
    int256 constant x0 = 128000000000000000000; // 2ˆ7
    int256 constant a0 = 38877084059945950922200000000000000000000000000000000000; // eˆ(x0) (no decimals)
    int256 constant x1 = 64000000000000000000; // 2ˆ6
    int256 constant a1 = 6235149080811616882910000000; // eˆ(x1) (no decimals)

    // 20 decimal constants
    int256 constant x2 = 3200000000000000000000; // 2ˆ5
    int256 constant a2 = 7896296018268069516100000000000000; // eˆ(x2)
    int256 constant x3 = 1600000000000000000000; // 2ˆ4
    int256 constant a3 = 888611052050787263676000000; // eˆ(x3)
    int256 constant x4 = 800000000000000000000; // 2ˆ3
    int256 constant a4 = 298095798704172827474000; // eˆ(x4)
    int256 constant x5 = 400000000000000000000; // 2ˆ2
    int256 constant a5 = 5459815003314423907810; // eˆ(x5)
    int256 constant x6 = 200000000000000000000; // 2ˆ1
    int256 constant a6 = 738905609893065022723; // eˆ(x6)
    int256 constant x7 = 100000000000000000000; // 2ˆ0
    int256 constant a7 = 271828182845904523536; // eˆ(x7)
    int256 constant x8 = 50000000000000000000; // 2ˆ-1
    int256 constant a8 = 164872127070012814685; // eˆ(x8)
    int256 constant x9 = 25000000000000000000; // 2ˆ-2
    int256 constant a9 = 128402541668774148407; // eˆ(x9)
    int256 constant x10 = 12500000000000000000; // 2ˆ-3
    int256 constant a10 = 113314845306682631683; // eˆ(x10)
    int256 constant x11 = 6250000000000000000; // 2ˆ-4
    int256 constant a11 = 106449445891785942956; // eˆ(x11)

    /**
     * @dev Exponentiation (x^y) with unsigned 18 decimal fixed point base and exponent.
     *
     * Reverts if ln(x) * y is smaller than `MIN_NATURAL_EXPONENT`, or larger than `MAX_NATURAL_EXPONENT`.
     */
    function pow(uint256 x, uint256 y) internal pure returns (uint256) {
        if (y == 0) {
            // We solve the 0^0 indetermination by making it equal one.
            return uint256(ONE_18);
        }

        if (x == 0) {
            return 0;
        }

        // Instead of computing x^y directly, we instead rely on the properties of logarithms and exponentiation to
        // arrive at that result. In particular, exp(ln(x)) = x, and ln(x^y) = y * ln(x). This means
        // x^y = exp(y * ln(x)).

        // The ln function takes a signed value, so we need to make sure x fits in the signed 256 bit range.
        _require(x < 2**255, Errors.X_OUT_OF_BOUNDS);
        int256 x_int256 = int256(x);

        // We will compute y * ln(x) in a single step. Depending on the value of x, we can either use ln or ln_36. In
        // both cases, we leave the division by ONE_18 (due to fixed point multiplication) to the end.

        // This prevents y * ln(x) from overflowing, and at the same time guarantees y fits in the signed 256 bit range.
        _require(y < MILD_EXPONENT_BOUND, Errors.Y_OUT_OF_BOUNDS);
        int256 y_int256 = int256(y);

        int256 logx_times_y;
        if (LN_36_LOWER_BOUND < x_int256 && x_int256 < LN_36_UPPER_BOUND) {
            int256 ln_36_x = _ln_36(x_int256);

            // ln_36_x has 36 decimal places, so multiplying by y_int256 isn't as straightforward, since we can't just
            // bring y_int256 to 36 decimal places, as it might overflow. Instead, we perform two 18 decimal
            // multiplications and add the results: one with the first 18 decimals of ln_36_x, and one with the
            // (downscaled) last 18 decimals.
            logx_times_y = ((ln_36_x / ONE_18) * y_int256 + ((ln_36_x % ONE_18) * y_int256) / ONE_18);
        } else {
            logx_times_y = _ln(x_int256) * y_int256;
        }
        logx_times_y /= ONE_18;

        // Finally, we compute exp(y * ln(x)) to arrive at x^y
        _require(
            MIN_NATURAL_EXPONENT <= logx_times_y && logx_times_y <= MAX_NATURAL_EXPONENT,
            Errors.PRODUCT_OUT_OF_BOUNDS
        );

        return uint256(exp(logx_times_y));
    }

    /**
     * @dev Natural exponentiation (e^x) with signed 18 decimal fixed point exponent.
     *
     * Reverts if `x` is smaller than MIN_NATURAL_EXPONENT, or larger than `MAX_NATURAL_EXPONENT`.
     */
    function exp(int256 x) internal pure returns (int256) {
        _require(x >= MIN_NATURAL_EXPONENT && x <= MAX_NATURAL_EXPONENT, Errors.INVALID_EXPONENT);

        if (x < 0) {
            // We only handle positive exponents: e^(-x) is computed as 1 / e^x. We can safely make x positive since it
            // fits in the signed 256 bit range (as it is larger than MIN_NATURAL_EXPONENT).
            // Fixed point division requires multiplying by ONE_18.
            return ((ONE_18 * ONE_18) / exp(-x));
        }

        // First, we use the fact that e^(x+y) = e^x * e^y to decompose x into a sum of powers of two, which we call x_n,
        // where x_n == 2^(7 - n), and e^x_n = a_n has been precomputed. We choose the first x_n, x0, to equal 2^7
        // because all larger powers are larger than MAX_NATURAL_EXPONENT, and therefore not present in the
        // decomposition.
        // At the end of this process we will have the product of all e^x_n = a_n that apply, and the remainder of this
        // decomposition, which will be lower than the smallest x_n.
        // exp(x) = k_0 * a_0 * k_1 * a_1 * ... + k_n * a_n * exp(remainder), where each k_n equals either 0 or 1.
        // We mutate x by subtracting x_n, making it the remainder of the decomposition.

        // The first two a_n (e^(2^7) and e^(2^6)) are too large if stored as 18 decimal numbers, and could cause
        // intermediate overflows. Instead we store them as plain integers, with 0 decimals.
        // Additionally, x0 + x1 is larger than MAX_NATURAL_EXPONENT, which means they will not both be present in the
        // decomposition.

        // For each x_n, we test if that term is present in the decomposition (if x is larger than it), and if so deduct
        // it and compute the accumulated product.

        int256 firstAN;
        if (x >= x0) {
            x -= x0;
            firstAN = a0;
        } else if (x >= x1) {
            x -= x1;
            firstAN = a1;
        } else {
            firstAN = 1; // One with no decimal places
        }

        // We now transform x into a 20 decimal fixed point number, to have enhanced precision when computing the
        // smaller terms.
        x *= 100;

        // `product` is the accumulated product of all a_n (except a0 and a1), which starts at 20 decimal fixed point
        // one. Recall that fixed point multiplication requires dividing by ONE_20.
        int256 product = ONE_20;

        if (x >= x2) {
            x -= x2;
            product = (product * a2) / ONE_20;
        }
        if (x >= x3) {
            x -= x3;
            product = (product * a3) / ONE_20;
        }
        if (x >= x4) {
            x -= x4;
            product = (product * a4) / ONE_20;
        }
        if (x >= x5) {
            x -= x5;
            product = (product * a5) / ONE_20;
        }
        if (x >= x6) {
            x -= x6;
            product = (product * a6) / ONE_20;
        }
        if (x >= x7) {
            x -= x7;
            product = (product * a7) / ONE_20;
        }
        if (x >= x8) {
            x -= x8;
            product = (product * a8) / ONE_20;
        }
        if (x >= x9) {
            x -= x9;
            product = (product * a9) / ONE_20;
        }

        // x10 and x11 are unnecessary here since we have high enough precision already.

        // Now we need to compute e^x, where x is small (in particular, it is smaller than x9). We use the Taylor series
        // expansion for e^x: 1 + x + (x^2 / 2!) + (x^3 / 3!) + ... + (x^n / n!).

        int256 seriesSum = ONE_20; // The initial one in the sum, with 20 decimal places.
        int256 term; // Each term in the sum, where the nth term is (x^n / n!).

        // The first term is simply x.
        term = x;
        seriesSum += term;

        // Each term (x^n / n!) equals the previous one times x, divided by n. Since x is a fixed point number,
        // multiplying by it requires dividing by ONE_20, but dividing by the non-fixed point n values does not.

        term = ((term * x) / ONE_20) / 2;
        seriesSum += term;

        term = ((term * x) / ONE_20) / 3;
        seriesSum += term;

        term = ((term * x) / ONE_20) / 4;
        seriesSum += term;

        term = ((term * x) / ONE_20) / 5;
        seriesSum += term;

        term = ((term * x) / ONE_20) / 6;
        seriesSum += term;

        term = ((term * x) / ONE_20) / 7;
        seriesSum += term;

        term = ((term * x) / ONE_20) / 8;
        seriesSum += term;

        term = ((term * x) / ONE_20) / 9;
        seriesSum += term;

        term = ((term * x) / ONE_20) / 10;
        seriesSum += term;

        term = ((term * x) / ONE_20) / 11;
        seriesSum += term;

        term = ((term * x) / ONE_20) / 12;
        seriesSum += term;

        // 12 Taylor terms are sufficient for 18 decimal precision.

        // We now have the first a_n (with no decimals), and the product of all other a_n present, and the Taylor
        // approximation of the exponentiation of the remainder (both with 20 decimals). All that remains is to multiply
        // all three (one 20 decimal fixed point multiplication, dividing by ONE_20, and one integer multiplication),
        // and then drop two digits to return an 18 decimal value.

        return (((product * seriesSum) / ONE_20) * firstAN) / 100;
    }

    /**
     * @dev Logarithm (log(arg, base), with signed 18 decimal fixed point base and argument.
     */
    function log(int256 arg, int256 base) internal pure returns (int256) {
        // This performs a simple base change: log(arg, base) = ln(arg) / ln(base).

        // Both logBase and logArg are computed as 36 decimal fixed point numbers, either by using ln_36, or by
        // upscaling.

        int256 logBase;
        if (LN_36_LOWER_BOUND < base && base < LN_36_UPPER_BOUND) {
            logBase = _ln_36(base);
        } else {
            logBase = _ln(base) * ONE_18;
        }

        int256 logArg;
        if (LN_36_LOWER_BOUND < arg && arg < LN_36_UPPER_BOUND) {
            logArg = _ln_36(arg);
        } else {
            logArg = _ln(arg) * ONE_18;
        }

        // When dividing, we multiply by ONE_18 to arrive at a result with 18 decimal places
        return (logArg * ONE_18) / logBase;
    }

    /**
     * @dev Natural logarithm (ln(a)) with signed 18 decimal fixed point argument.
     */
    function ln(int256 a) internal pure returns (int256) {
        // The real natural logarithm is not defined for negative numbers or zero.
        _require(a > 0, Errors.OUT_OF_BOUNDS);
        if (LN_36_LOWER_BOUND < a && a < LN_36_UPPER_BOUND) {
            return _ln_36(a) / ONE_18;
        } else {
            return _ln(a);
        }
    }

    /**
     * @dev Internal natural logarithm (ln(a)) with signed 18 decimal fixed point argument.
     */
    function _ln(int256 a) private pure returns (int256) {
        if (a < ONE_18) {
            // Since ln(a^k) = k * ln(a), we can compute ln(a) as ln(a) = ln((1/a)^(-1)) = - ln((1/a)). If a is less
            // than one, 1/a will be greater than one, and this if statement will not be entered in the recursive call.
            // Fixed point division requires multiplying by ONE_18.
            return (-_ln((ONE_18 * ONE_18) / a));
        }

        // First, we use the fact that ln^(a * b) = ln(a) + ln(b) to decompose ln(a) into a sum of powers of two, which
        // we call x_n, where x_n == 2^(7 - n), which are the natural logarithm of precomputed quantities a_n (that is,
        // ln(a_n) = x_n). We choose the first x_n, x0, to equal 2^7 because the exponential of all larger powers cannot
        // be represented as 18 fixed point decimal numbers in 256 bits, and are therefore larger than a.
        // At the end of this process we will have the sum of all x_n = ln(a_n) that apply, and the remainder of this
        // decomposition, which will be lower than the smallest a_n.
        // ln(a) = k_0 * x_0 + k_1 * x_1 + ... + k_n * x_n + ln(remainder), where each k_n equals either 0 or 1.
        // We mutate a by subtracting a_n, making it the remainder of the decomposition.

        // For reasons related to how `exp` works, the first two a_n (e^(2^7) and e^(2^6)) are not stored as fixed point
        // numbers with 18 decimals, but instead as plain integers with 0 decimals, so we need to multiply them by
        // ONE_18 to convert them to fixed point.
        // For each a_n, we test if that term is present in the decomposition (if a is larger than it), and if so divide
        // by it and compute the accumulated sum.

        int256 sum = 0;
        if (a >= a0 * ONE_18) {
            a /= a0; // Integer, not fixed point division
            sum += x0;
        }

        if (a >= a1 * ONE_18) {
            a /= a1; // Integer, not fixed point division
            sum += x1;
        }

        // All other a_n and x_n are stored as 20 digit fixed point numbers, so we convert the sum and a to this format.
        sum *= 100;
        a *= 100;

        // Because further a_n are  20 digit fixed point numbers, we multiply by ONE_20 when dividing by them.

        if (a >= a2) {
            a = (a * ONE_20) / a2;
            sum += x2;
        }

        if (a >= a3) {
            a = (a * ONE_20) / a3;
            sum += x3;
        }

        if (a >= a4) {
            a = (a * ONE_20) / a4;
            sum += x4;
        }

        if (a >= a5) {
            a = (a * ONE_20) / a5;
            sum += x5;
        }

        if (a >= a6) {
            a = (a * ONE_20) / a6;
            sum += x6;
        }

        if (a >= a7) {
            a = (a * ONE_20) / a7;
            sum += x7;
        }

        if (a >= a8) {
            a = (a * ONE_20) / a8;
            sum += x8;
        }

        if (a >= a9) {
            a = (a * ONE_20) / a9;
            sum += x9;
        }

        if (a >= a10) {
            a = (a * ONE_20) / a10;
            sum += x10;
        }

        if (a >= a11) {
            a = (a * ONE_20) / a11;
            sum += x11;
        }

        // a is now a small number (smaller than a_11, which roughly equals 1.06). This means we can use a Taylor series
        // that converges rapidly for values of `a` close to one - the same one used in ln_36.
        // Let z = (a - 1) / (a + 1).
        // ln(a) = 2 * (z + z^3 / 3 + z^5 / 5 + z^7 / 7 + ... + z^(2 * n + 1) / (2 * n + 1))

        // Recall that 20 digit fixed point division requires multiplying by ONE_20, and multiplication requires
        // division by ONE_20.
        int256 z = ((a - ONE_20) * ONE_20) / (a + ONE_20);
        int256 z_squared = (z * z) / ONE_20;

        // num is the numerator of the series: the z^(2 * n + 1) term
        int256 num = z;

        // seriesSum holds the accumulated sum of each term in the series, starting with the initial z
        int256 seriesSum = num;

        // In each step, the numerator is multiplied by z^2
        num = (num * z_squared) / ONE_20;
        seriesSum += num / 3;

        num = (num * z_squared) / ONE_20;
        seriesSum += num / 5;

        num = (num * z_squared) / ONE_20;
        seriesSum += num / 7;

        num = (num * z_squared) / ONE_20;
        seriesSum += num / 9;

        num = (num * z_squared) / ONE_20;
        seriesSum += num / 11;

        // 6 Taylor terms are sufficient for 36 decimal precision.

        // Finally, we multiply by 2 (non fixed point) to compute ln(remainder)
        seriesSum *= 2;

        // We now have the sum of all x_n present, and the Taylor approximation of the logarithm of the remainder (both
        // with 20 decimals). All that remains is to sum these two, and then drop two digits to return a 18 decimal
        // value.

        return (sum + seriesSum) / 100;
    }

    /**
     * @dev Intrnal high precision (36 decimal places) natural logarithm (ln(x)) with signed 18 decimal fixed point argument,
     * for x close to one.
     *
     * Should only be used if x is between LN_36_LOWER_BOUND and LN_36_UPPER_BOUND.
     */
    function _ln_36(int256 x) private pure returns (int256) {
        // Since ln(1) = 0, a value of x close to one will yield a very small result, which makes using 36 digits
        // worthwhile.

        // First, we transform x to a 36 digit fixed point value.
        x *= ONE_18;

        // We will use the following Taylor expansion, which converges very rapidly. Let z = (x - 1) / (x + 1).
        // ln(x) = 2 * (z + z^3 / 3 + z^5 / 5 + z^7 / 7 + ... + z^(2 * n + 1) / (2 * n + 1))

        // Recall that 36 digit fixed point division requires multiplying by ONE_36, and multiplication requires
        // division by ONE_36.
        int256 z = ((x - ONE_36) * ONE_36) / (x + ONE_36);
        int256 z_squared = (z * z) / ONE_36;

        // num is the numerator of the series: the z^(2 * n + 1) term
        int256 num = z;

        // seriesSum holds the accumulated sum of each term in the series, starting with the initial z
        int256 seriesSum = num;

        // In each step, the numerator is multiplied by z^2
        num = (num * z_squared) / ONE_36;
        seriesSum += num / 3;

        num = (num * z_squared) / ONE_36;
        seriesSum += num / 5;

        num = (num * z_squared) / ONE_36;
        seriesSum += num / 7;

        num = (num * z_squared) / ONE_36;
        seriesSum += num / 9;

        num = (num * z_squared) / ONE_36;
        seriesSum += num / 11;

        num = (num * z_squared) / ONE_36;
        seriesSum += num / 13;

        num = (num * z_squared) / ONE_36;
        seriesSum += num / 15;

        // 8 Taylor terms are sufficient for 36 decimal precision.

        // All that remains is multiplying by 2 (non fixed point).
        return seriesSum * 2;
    }
}

File 9 of 63 : BalancerErrors.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

// solhint-disable

/**
 * @dev Reverts if `condition` is false, with a revert reason containing `errorCode`. Only codes up to 999 are
 * supported.
 */
function _require(bool condition, uint256 errorCode) pure {
    if (!condition) _revert(errorCode);
}

/**
 * @dev Reverts with a revert reason containing `errorCode`. Only codes up to 999 are supported.
 */
function _revert(uint256 errorCode) pure {
    // We're going to dynamically create a revert string based on the error code, with the following format:
    // 'BAL#{errorCode}'
    // where the code is left-padded with zeroes to three digits (so they range from 000 to 999).
    //
    // We don't have revert strings embedded in the contract to save bytecode size: it takes much less space to store a
    // number (8 to 16 bits) than the individual string characters.
    //
    // The dynamic string creation algorithm that follows could be implemented in Solidity, but assembly allows for a
    // much denser implementation, again saving bytecode size. Given this function unconditionally reverts, this is a
    // safe place to rely on it without worrying about how its usage might affect e.g. memory contents.
    assembly {
        // First, we need to compute the ASCII representation of the error code. We assume that it is in the 0-999
        // range, so we only need to convert three digits. To convert the digits to ASCII, we add 0x30, the value for
        // the '0' character.

        let units := add(mod(errorCode, 10), 0x30)

        errorCode := div(errorCode, 10)
        let tenths := add(mod(errorCode, 10), 0x30)

        errorCode := div(errorCode, 10)
        let hundreds := add(mod(errorCode, 10), 0x30)

        // With the individual characters, we can now construct the full string. The "BAL#" part is a known constant
        // (0x42414c23): we simply shift this by 24 (to provide space for the 3 bytes of the error code), and add the
        // characters to it, each shifted by a multiple of 8.
        // The revert reason is then shifted left by 200 bits (256 minus the length of the string, 7 characters * 8 bits
        // per character = 56) to locate it in the most significant part of the 256 slot (the beginning of a byte
        // array).

        let revertReason := shl(200, add(0x42414c23000000, add(add(units, shl(8, tenths)), shl(16, hundreds))))

        // We can now encode the reason in memory, which can be safely overwritten as we're about to revert. The encoded
        // message will have the following layout:
        // [ revert reason identifier ] [ string location offset ] [ string length ] [ string contents ]

        // The Solidity revert reason identifier is 0x08c739a0, the function selector of the Error(string) function. We
        // also write zeroes to the next 28 bytes of memory, but those are about to be overwritten.
        mstore(0x0, 0x08c379a000000000000000000000000000000000000000000000000000000000)
        // Next is the offset to the location of the string, which will be placed immediately after (20 bytes away).
        mstore(0x04, 0x0000000000000000000000000000000000000000000000000000000000000020)
        // The string length is fixed: 7 characters.
        mstore(0x24, 7)
        // Finally, the string itself is stored.
        mstore(0x44, revertReason)

        // Even if the string is only 7 bytes long, we need to return a full 32 byte slot containing it. The length of
        // the encoded message is therefore 4 + 32 + 32 + 32 = 100.
        revert(0, 100)
    }
}

library Errors {
    // Math
    uint256 internal constant ADD_OVERFLOW = 0;
    uint256 internal constant SUB_OVERFLOW = 1;
    uint256 internal constant SUB_UNDERFLOW = 2;
    uint256 internal constant MUL_OVERFLOW = 3;
    uint256 internal constant ZERO_DIVISION = 4;
    uint256 internal constant DIV_INTERNAL = 5;
    uint256 internal constant X_OUT_OF_BOUNDS = 6;
    uint256 internal constant Y_OUT_OF_BOUNDS = 7;
    uint256 internal constant PRODUCT_OUT_OF_BOUNDS = 8;
    uint256 internal constant INVALID_EXPONENT = 9;

    // Input
    uint256 internal constant OUT_OF_BOUNDS = 100;
    uint256 internal constant UNSORTED_ARRAY = 101;
    uint256 internal constant UNSORTED_TOKENS = 102;
    uint256 internal constant INPUT_LENGTH_MISMATCH = 103;
    uint256 internal constant ZERO_TOKEN = 104;

    // Shared pools
    uint256 internal constant MIN_TOKENS = 200;
    uint256 internal constant MAX_TOKENS = 201;
    uint256 internal constant MAX_SWAP_FEE_PERCENTAGE = 202;
    uint256 internal constant MIN_SWAP_FEE_PERCENTAGE = 203;
    uint256 internal constant MINIMUM_BPT = 204;
    uint256 internal constant CALLER_NOT_VAULT = 205;
    uint256 internal constant UNINITIALIZED = 206;
    uint256 internal constant BPT_IN_MAX_AMOUNT = 207;
    uint256 internal constant BPT_OUT_MIN_AMOUNT = 208;
    uint256 internal constant EXPIRED_PERMIT = 209;
    uint256 internal constant NOT_TWO_TOKENS = 210;

    // Pools
    uint256 internal constant MIN_AMP = 300;
    uint256 internal constant MAX_AMP = 301;
    uint256 internal constant MIN_WEIGHT = 302;
    uint256 internal constant MAX_STABLE_TOKENS = 303;
    uint256 internal constant MAX_IN_RATIO = 304;
    uint256 internal constant MAX_OUT_RATIO = 305;
    uint256 internal constant MIN_BPT_IN_FOR_TOKEN_OUT = 306;
    uint256 internal constant MAX_OUT_BPT_FOR_TOKEN_IN = 307;
    uint256 internal constant NORMALIZED_WEIGHT_INVARIANT = 308;
    uint256 internal constant INVALID_TOKEN = 309;
    uint256 internal constant UNHANDLED_JOIN_KIND = 310;
    uint256 internal constant ZERO_INVARIANT = 311;
    uint256 internal constant ORACLE_INVALID_SECONDS_QUERY = 312;
    uint256 internal constant ORACLE_NOT_INITIALIZED = 313;
    uint256 internal constant ORACLE_QUERY_TOO_OLD = 314;
    uint256 internal constant ORACLE_INVALID_INDEX = 315;
    uint256 internal constant ORACLE_BAD_SECS = 316;
    uint256 internal constant AMP_END_TIME_TOO_CLOSE = 317;
    uint256 internal constant AMP_ONGOING_UPDATE = 318;
    uint256 internal constant AMP_RATE_TOO_HIGH = 319;
    uint256 internal constant AMP_NO_ONGOING_UPDATE = 320;
    uint256 internal constant STABLE_INVARIANT_DIDNT_CONVERGE = 321;
    uint256 internal constant STABLE_GET_BALANCE_DIDNT_CONVERGE = 322;
    uint256 internal constant RELAYER_NOT_CONTRACT = 323;
    uint256 internal constant BASE_POOL_RELAYER_NOT_CALLED = 324;
    uint256 internal constant REBALANCING_RELAYER_REENTERED = 325;
    uint256 internal constant GRADUAL_UPDATE_TIME_TRAVEL = 326;
    uint256 internal constant SWAPS_DISABLED = 327;
    uint256 internal constant CALLER_IS_NOT_LBP_OWNER = 328;
    uint256 internal constant PRICE_RATE_OVERFLOW = 329;
    uint256 internal constant INVALID_JOIN_EXIT_KIND_WHILE_SWAPS_DISABLED = 330;
    uint256 internal constant WEIGHT_CHANGE_TOO_FAST = 331;
    uint256 internal constant LOWER_GREATER_THAN_UPPER_TARGET = 332;
    uint256 internal constant UPPER_TARGET_TOO_HIGH = 333;
    uint256 internal constant UNHANDLED_BY_LINEAR_POOL = 334;
    uint256 internal constant OUT_OF_TARGET_RANGE = 335;
    uint256 internal constant UNHANDLED_EXIT_KIND = 336;
    uint256 internal constant UNAUTHORIZED_EXIT = 337;
    uint256 internal constant MAX_MANAGEMENT_SWAP_FEE_PERCENTAGE = 338;
    uint256 internal constant UNHANDLED_BY_INVESTMENT_POOL = 339;

    // Lib
    uint256 internal constant REENTRANCY = 400;
    uint256 internal constant SENDER_NOT_ALLOWED = 401;
    uint256 internal constant PAUSED = 402;
    uint256 internal constant PAUSE_WINDOW_EXPIRED = 403;
    uint256 internal constant MAX_PAUSE_WINDOW_DURATION = 404;
    uint256 internal constant MAX_BUFFER_PERIOD_DURATION = 405;
    uint256 internal constant INSUFFICIENT_BALANCE = 406;
    uint256 internal constant INSUFFICIENT_ALLOWANCE = 407;
    uint256 internal constant ERC20_TRANSFER_FROM_ZERO_ADDRESS = 408;
    uint256 internal constant ERC20_TRANSFER_TO_ZERO_ADDRESS = 409;
    uint256 internal constant ERC20_MINT_TO_ZERO_ADDRESS = 410;
    uint256 internal constant ERC20_BURN_FROM_ZERO_ADDRESS = 411;
    uint256 internal constant ERC20_APPROVE_FROM_ZERO_ADDRESS = 412;
    uint256 internal constant ERC20_APPROVE_TO_ZERO_ADDRESS = 413;
    uint256 internal constant ERC20_TRANSFER_EXCEEDS_ALLOWANCE = 414;
    uint256 internal constant ERC20_DECREASED_ALLOWANCE_BELOW_ZERO = 415;
    uint256 internal constant ERC20_TRANSFER_EXCEEDS_BALANCE = 416;
    uint256 internal constant ERC20_BURN_EXCEEDS_ALLOWANCE = 417;
    uint256 internal constant SAFE_ERC20_CALL_FAILED = 418;
    uint256 internal constant ADDRESS_INSUFFICIENT_BALANCE = 419;
    uint256 internal constant ADDRESS_CANNOT_SEND_VALUE = 420;
    uint256 internal constant SAFE_CAST_VALUE_CANT_FIT_INT256 = 421;
    uint256 internal constant GRANT_SENDER_NOT_ADMIN = 422;
    uint256 internal constant REVOKE_SENDER_NOT_ADMIN = 423;
    uint256 internal constant RENOUNCE_SENDER_NOT_ALLOWED = 424;
    uint256 internal constant BUFFER_PERIOD_EXPIRED = 425;
    uint256 internal constant CALLER_IS_NOT_OWNER = 426;
    uint256 internal constant NEW_OWNER_IS_ZERO = 427;
    uint256 internal constant CODE_DEPLOYMENT_FAILED = 428;
    uint256 internal constant CALL_TO_NON_CONTRACT = 429;
    uint256 internal constant LOW_LEVEL_CALL_FAILED = 430;

    // Vault
    uint256 internal constant INVALID_POOL_ID = 500;
    uint256 internal constant CALLER_NOT_POOL = 501;
    uint256 internal constant SENDER_NOT_ASSET_MANAGER = 502;
    uint256 internal constant USER_DOESNT_ALLOW_RELAYER = 503;
    uint256 internal constant INVALID_SIGNATURE = 504;
    uint256 internal constant EXIT_BELOW_MIN = 505;
    uint256 internal constant JOIN_ABOVE_MAX = 506;
    uint256 internal constant SWAP_LIMIT = 507;
    uint256 internal constant SWAP_DEADLINE = 508;
    uint256 internal constant CANNOT_SWAP_SAME_TOKEN = 509;
    uint256 internal constant UNKNOWN_AMOUNT_IN_FIRST_SWAP = 510;
    uint256 internal constant MALCONSTRUCTED_MULTIHOP_SWAP = 511;
    uint256 internal constant INTERNAL_BALANCE_OVERFLOW = 512;
    uint256 internal constant INSUFFICIENT_INTERNAL_BALANCE = 513;
    uint256 internal constant INVALID_ETH_INTERNAL_BALANCE = 514;
    uint256 internal constant INVALID_POST_LOAN_BALANCE = 515;
    uint256 internal constant INSUFFICIENT_ETH = 516;
    uint256 internal constant UNALLOCATED_ETH = 517;
    uint256 internal constant ETH_TRANSFER = 518;
    uint256 internal constant CANNOT_USE_ETH_SENTINEL = 519;
    uint256 internal constant TOKENS_MISMATCH = 520;
    uint256 internal constant TOKEN_NOT_REGISTERED = 521;
    uint256 internal constant TOKEN_ALREADY_REGISTERED = 522;
    uint256 internal constant TOKENS_ALREADY_SET = 523;
    uint256 internal constant TOKENS_LENGTH_MUST_BE_2 = 524;
    uint256 internal constant NONZERO_TOKEN_BALANCE = 525;
    uint256 internal constant BALANCE_TOTAL_OVERFLOW = 526;
    uint256 internal constant POOL_NO_TOKENS = 527;
    uint256 internal constant INSUFFICIENT_FLASH_LOAN_BALANCE = 528;

    // Fees
    uint256 internal constant SWAP_FEE_PERCENTAGE_TOO_HIGH = 600;
    uint256 internal constant FLASH_LOAN_FEE_PERCENTAGE_TOO_HIGH = 601;
    uint256 internal constant INSUFFICIENT_FLASH_LOAN_FEE_AMOUNT = 602;
}

File 10 of 63 : IERC20.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.7.0;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Returns the amount of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the amount of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves `amount` tokens from the caller's account to `recipient`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address recipient, uint256 amount) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 amount) external returns (bool);

    /**
     * @dev Moves `amount` tokens from `sender` to `recipient` using the
     * allowance mechanism. `amount` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(
        address sender,
        address recipient,
        uint256 amount
    ) external returns (bool);

    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);
}

File 11 of 63 : BasePool.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;
pragma experimental ABIEncoderV2;

import "@balancer-labs/v2-solidity-utils/contracts/math/Math.sol";
import "@balancer-labs/v2-solidity-utils/contracts/math/FixedPoint.sol";
import "@balancer-labs/v2-solidity-utils/contracts/helpers/InputHelpers.sol";
import "@balancer-labs/v2-solidity-utils/contracts/helpers/TemporarilyPausable.sol";
import "@balancer-labs/v2-solidity-utils/contracts/helpers/WordCodec.sol";
import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/ERC20.sol";

import "@balancer-labs/v2-vault/contracts/interfaces/IVault.sol";
import "@balancer-labs/v2-vault/contracts/interfaces/IBasePool.sol";

import "@balancer-labs/v2-asset-manager-utils/contracts/IAssetManager.sol";

import "./BalancerPoolToken.sol";
import "./BasePoolAuthorization.sol";

// solhint-disable max-states-count

/**
 * @dev Reference implementation for the base layer of a Pool contract that manages a single Pool with optional
 * Asset Managers, an admin-controlled swap fee percentage, and an emergency pause mechanism.
 *
 * Note that neither swap fees nor the pause mechanism are used by this contract. They are passed through so that
 * derived contracts can use them via the `_addSwapFeeAmount` and `_subtractSwapFeeAmount` functions, and the
 * `whenNotPaused` modifier.
 *
 * No admin permissions are checked here: instead, this contract delegates that to the Vault's own Authorizer.
 *
 * Because this contract doesn't implement the swap hooks, derived contracts should generally inherit from
 * BaseGeneralPool or BaseMinimalSwapInfoPool. Otherwise, subclasses must inherit from the corresponding interfaces
 * and implement the swap callbacks themselves.
 */
abstract contract BasePool is IBasePool, BasePoolAuthorization, BalancerPoolToken, TemporarilyPausable {
    using WordCodec for bytes32;
    using FixedPoint for uint256;

    uint256 private constant _MIN_TOKENS = 2;

    uint256 private constant _MINIMUM_BPT = 1e6;

    // 1e18 corresponds to 1.0, or a 100% fee
    uint256 private constant _MIN_SWAP_FEE_PERCENTAGE = 1e12; // 0.0001%
    uint256 private constant _MAX_SWAP_FEE_PERCENTAGE = 1e17; // 10% - this fits in 64 bits

    // Storage slot that can be used to store unrelated pieces of information. In particular, by default is used
    // to store only the swap fee percentage of a pool. But it can be extended to store some more pieces of information.
    // The swap fee percentage is stored in the most-significant 64 bits, therefore the remaining 192 bits can be
    // used to store any other piece of information.
    bytes32 private _miscData;
    uint256 private constant _SWAP_FEE_PERCENTAGE_OFFSET = 192;

    IVault private immutable _vault;
    bytes32 private immutable _poolId;

    event SwapFeePercentageChanged(uint256 swapFeePercentage);

    constructor(
        IVault vault,
        IVault.PoolSpecialization specialization,
        string memory name,
        string memory symbol,
        IERC20[] memory tokens,
        address[] memory assetManagers,
        uint256 swapFeePercentage,
        uint256 pauseWindowDuration,
        uint256 bufferPeriodDuration,
        address owner
    )
        // Base Pools are expected to be deployed using factories. By using the factory address as the action
        // disambiguator, we make all Pools deployed by the same factory share action identifiers. This allows for
        // simpler management of permissions (such as being able to manage granting the 'set fee percentage' action in
        // any Pool created by the same factory), while still making action identifiers unique among different factories
        // if the selectors match, preventing accidental errors.
        Authentication(bytes32(uint256(msg.sender)))
        BalancerPoolToken(name, symbol)
        BasePoolAuthorization(owner)
        TemporarilyPausable(pauseWindowDuration, bufferPeriodDuration)
    {
        _require(tokens.length >= _MIN_TOKENS, Errors.MIN_TOKENS);
        _require(tokens.length <= _getMaxTokens(), Errors.MAX_TOKENS);

        // The Vault only requires the token list to be ordered for the Two Token Pools specialization. However,
        // to make the developer experience consistent, we are requiring this condition for all the native pools.
        // Also, since these Pools will register tokens only once, we can ensure the Pool tokens will follow the same
        // order. We rely on this property to make Pools simpler to write, as it lets us assume that the
        // order of token-specific parameters (such as token weights) will not change.
        InputHelpers.ensureArrayIsSorted(tokens);

        _setSwapFeePercentage(swapFeePercentage);

        bytes32 poolId = vault.registerPool(specialization);

        vault.registerTokens(poolId, tokens, assetManagers);

        // Set immutable state variables - these cannot be read from during construction
        _vault = vault;
        _poolId = poolId;
    }

    // Getters / Setters

    function getVault() public view returns (IVault) {
        return _vault;
    }

    function getPoolId() public view override returns (bytes32) {
        return _poolId;
    }

    function _getTotalTokens() internal view virtual returns (uint256);

    function _getMaxTokens() internal pure virtual returns (uint256);

    function _getMinimumBpt() internal pure virtual returns (uint256) {
        return _MINIMUM_BPT;
    }

    function getSwapFeePercentage() public view returns (uint256) {
        return _miscData.decodeUint64(_SWAP_FEE_PERCENTAGE_OFFSET);
    }

    function setSwapFeePercentage(uint256 swapFeePercentage) external virtual authenticate whenNotPaused {
        _setSwapFeePercentage(swapFeePercentage);
    }

    function _setSwapFeePercentage(uint256 swapFeePercentage) private {
        _require(swapFeePercentage >= _MIN_SWAP_FEE_PERCENTAGE, Errors.MIN_SWAP_FEE_PERCENTAGE);
        _require(swapFeePercentage <= _MAX_SWAP_FEE_PERCENTAGE, Errors.MAX_SWAP_FEE_PERCENTAGE);

        _miscData = _miscData.insertUint64(swapFeePercentage, _SWAP_FEE_PERCENTAGE_OFFSET);
        emit SwapFeePercentageChanged(swapFeePercentage);
    }

    function setAssetManagerPoolConfig(IERC20 token, bytes memory poolConfig)
        public
        virtual
        authenticate
        whenNotPaused
    {
        _setAssetManagerPoolConfig(token, poolConfig);
    }

    function _setAssetManagerPoolConfig(IERC20 token, bytes memory poolConfig) private {
        bytes32 poolId = getPoolId();
        (, , , address assetManager) = getVault().getPoolTokenInfo(poolId, token);

        IAssetManager(assetManager).setConfig(poolId, poolConfig);
    }

    function setPaused(bool paused) external authenticate {
        _setPaused(paused);
    }

    function _isOwnerOnlyAction(bytes32 actionId) internal view virtual override returns (bool) {
        return
            (actionId == getActionId(this.setSwapFeePercentage.selector)) ||
            (actionId == getActionId(this.setAssetManagerPoolConfig.selector));
    }

    function _getMiscData() internal view returns (bytes32) {
        return _miscData;
    }

    /**
     * Inserts data into the least-significant 192 bits of the misc data storage slot.
     * Note that the remaining 64 bits are used for the swap fee percentage and cannot be overloaded.
     */
    function _setMiscData(bytes32 newData) internal {
        _miscData = _miscData.insertBits192(newData, 0);
    }

    // Join / Exit Hooks

    modifier onlyVault(bytes32 poolId) {
        _require(msg.sender == address(getVault()), Errors.CALLER_NOT_VAULT);
        _require(poolId == getPoolId(), Errors.INVALID_POOL_ID);
        _;
    }

    function onJoinPool(
        bytes32 poolId,
        address sender,
        address recipient,
        uint256[] memory balances,
        uint256 lastChangeBlock,
        uint256 protocolSwapFeePercentage,
        bytes memory userData
    ) public virtual override onlyVault(poolId) returns (uint256[] memory, uint256[] memory) {
        uint256[] memory scalingFactors = _scalingFactors();

        if (totalSupply() == 0) {
            (uint256 bptAmountOut, uint256[] memory amountsIn) = _onInitializePool(
                poolId,
                sender,
                recipient,
                scalingFactors,
                userData
            );

            // On initialization, we lock _getMinimumBpt() by minting it for the zero address. This BPT acts as a
            // minimum as it will never be burned, which reduces potential issues with rounding, and also prevents the
            // Pool from ever being fully drained.
            _require(bptAmountOut >= _getMinimumBpt(), Errors.MINIMUM_BPT);
            _mintPoolTokens(address(0), _getMinimumBpt());
            _mintPoolTokens(recipient, bptAmountOut - _getMinimumBpt());

            // amountsIn are amounts entering the Pool, so we round up.
            _downscaleUpArray(amountsIn, scalingFactors);

            return (amountsIn, new uint256[](_getTotalTokens()));
        } else {
            _upscaleArray(balances, scalingFactors);
            (uint256 bptAmountOut, uint256[] memory amountsIn, uint256[] memory dueProtocolFeeAmounts) = _onJoinPool(
                poolId,
                sender,
                recipient,
                balances,
                lastChangeBlock,
                protocolSwapFeePercentage,
                scalingFactors,
                userData
            );

            // Note we no longer use `balances` after calling `_onJoinPool`, which may mutate it.

            _mintPoolTokens(recipient, bptAmountOut);

            // amountsIn are amounts entering the Pool, so we round up.
            _downscaleUpArray(amountsIn, scalingFactors);
            // dueProtocolFeeAmounts are amounts exiting the Pool, so we round down.
            _downscaleDownArray(dueProtocolFeeAmounts, scalingFactors);

            return (amountsIn, dueProtocolFeeAmounts);
        }
    }

    function onExitPool(
        bytes32 poolId,
        address sender,
        address recipient,
        uint256[] memory balances,
        uint256 lastChangeBlock,
        uint256 protocolSwapFeePercentage,
        bytes memory userData
    ) public virtual override onlyVault(poolId) returns (uint256[] memory, uint256[] memory) {
        uint256[] memory scalingFactors = _scalingFactors();
        _upscaleArray(balances, scalingFactors);

        (uint256 bptAmountIn, uint256[] memory amountsOut, uint256[] memory dueProtocolFeeAmounts) = _onExitPool(
            poolId,
            sender,
            recipient,
            balances,
            lastChangeBlock,
            protocolSwapFeePercentage,
            scalingFactors,
            userData
        );

        // Note we no longer use `balances` after calling `_onExitPool`, which may mutate it.

        _burnPoolTokens(sender, bptAmountIn);

        // Both amountsOut and dueProtocolFeeAmounts are amounts exiting the Pool, so we round down.
        _downscaleDownArray(amountsOut, scalingFactors);
        _downscaleDownArray(dueProtocolFeeAmounts, scalingFactors);

        return (amountsOut, dueProtocolFeeAmounts);
    }

    // Query functions

    /**
     * @dev Returns the amount of BPT that would be granted to `recipient` if the `onJoinPool` hook were called by the
     * Vault with the same arguments, along with the number of tokens `sender` would have to supply.
     *
     * This function is not meant to be called directly, but rather from a helper contract that fetches current Vault
     * data, such as the protocol swap fee percentage and Pool balances.
     *
     * Like `IVault.queryBatchSwap`, this function is not view due to internal implementation details: the caller must
     * explicitly use eth_call instead of eth_sendTransaction.
     */
    function queryJoin(
        bytes32 poolId,
        address sender,
        address recipient,
        uint256[] memory balances,
        uint256 lastChangeBlock,
        uint256 protocolSwapFeePercentage,
        bytes memory userData
    ) external returns (uint256 bptOut, uint256[] memory amountsIn) {
        InputHelpers.ensureInputLengthMatch(balances.length, _getTotalTokens());

        _queryAction(
            poolId,
            sender,
            recipient,
            balances,
            lastChangeBlock,
            protocolSwapFeePercentage,
            userData,
            _onJoinPool,
            _downscaleUpArray
        );

        // The `return` opcode is executed directly inside `_queryAction`, so execution never reaches this statement,
        // and we don't need to return anything here - it just silences compiler warnings.
        return (bptOut, amountsIn);
    }

    /**
     * @dev Returns the amount of BPT that would be burned from `sender` if the `onExitPool` hook were called by the
     * Vault with the same arguments, along with the number of tokens `recipient` would receive.
     *
     * This function is not meant to be called directly, but rather from a helper contract that fetches current Vault
     * data, such as the protocol swap fee percentage and Pool balances.
     *
     * Like `IVault.queryBatchSwap`, this function is not view due to internal implementation details: the caller must
     * explicitly use eth_call instead of eth_sendTransaction.
     */
    function queryExit(
        bytes32 poolId,
        address sender,
        address recipient,
        uint256[] memory balances,
        uint256 lastChangeBlock,
        uint256 protocolSwapFeePercentage,
        bytes memory userData
    ) external returns (uint256 bptIn, uint256[] memory amountsOut) {
        InputHelpers.ensureInputLengthMatch(balances.length, _getTotalTokens());

        _queryAction(
            poolId,
            sender,
            recipient,
            balances,
            lastChangeBlock,
            protocolSwapFeePercentage,
            userData,
            _onExitPool,
            _downscaleDownArray
        );

        // The `return` opcode is executed directly inside `_queryAction`, so execution never reaches this statement,
        // and we don't need to return anything here - it just silences compiler warnings.
        return (bptIn, amountsOut);
    }

    // Internal hooks to be overridden by derived contracts - all token amounts (except BPT) in these interfaces are
    // upscaled.

    /**
     * @dev Called when the Pool is joined for the first time; that is, when the BPT total supply is zero.
     *
     * Returns the amount of BPT to mint, and the token amounts the Pool will receive in return.
     *
     * Minted BPT will be sent to `recipient`, except for _getMinimumBpt(), which will be deducted from this amount and
     * sent to the zero address instead. This will cause that BPT to remain forever locked there, preventing total BTP
     * from ever dropping below that value, and ensuring `_onInitializePool` can only be called once in the entire
     * Pool's lifetime.
     *
     * The tokens granted to the Pool will be transferred from `sender`. These amounts are considered upscaled and will
     * be downscaled (rounding up) before being returned to the Vault.
     */
    function _onInitializePool(
        bytes32 poolId,
        address sender,
        address recipient,
        uint256[] memory scalingFactors,
        bytes memory userData
    ) internal virtual returns (uint256 bptAmountOut, uint256[] memory amountsIn);

    /**
     * @dev Called whenever the Pool is joined after the first initialization join (see `_onInitializePool`).
     *
     * Returns the amount of BPT to mint, the token amounts that the Pool will receive in return, and the number of
     * tokens to pay in protocol swap fees.
     *
     * Implementations of this function might choose to mutate the `balances` array to save gas (e.g. when
     * performing intermediate calculations, such as subtraction of due protocol fees). This can be done safely.
     *
     * Minted BPT will be sent to `recipient`.
     *
     * The tokens granted to the Pool will be transferred from `sender`. These amounts are considered upscaled and will
     * be downscaled (rounding up) before being returned to the Vault.
     *
     * Due protocol swap fees will be taken from the Pool's balance in the Vault (see `IBasePool.onJoinPool`). These
     * amounts are considered upscaled and will be downscaled (rounding down) before being returned to the Vault.
     */
    function _onJoinPool(
        bytes32 poolId,
        address sender,
        address recipient,
        uint256[] memory balances,
        uint256 lastChangeBlock,
        uint256 protocolSwapFeePercentage,
        uint256[] memory scalingFactors,
        bytes memory userData
    )
        internal
        virtual
        returns (
            uint256 bptAmountOut,
            uint256[] memory amountsIn,
            uint256[] memory dueProtocolFeeAmounts
        );

    /**
     * @dev Called whenever the Pool is exited.
     *
     * Returns the amount of BPT to burn, the token amounts for each Pool token that the Pool will grant in return, and
     * the number of tokens to pay in protocol swap fees.
     *
     * Implementations of this function might choose to mutate the `balances` array to save gas (e.g. when
     * performing intermediate calculations, such as subtraction of due protocol fees). This can be done safely.
     *
     * BPT will be burnt from `sender`.
     *
     * The Pool will grant tokens to `recipient`. These amounts are considered upscaled and will be downscaled
     * (rounding down) before being returned to the Vault.
     *
     * Due protocol swap fees will be taken from the Pool's balance in the Vault (see `IBasePool.onExitPool`). These
     * amounts are considered upscaled and will be downscaled (rounding down) before being returned to the Vault.
     */
    function _onExitPool(
        bytes32 poolId,
        address sender,
        address recipient,
        uint256[] memory balances,
        uint256 lastChangeBlock,
        uint256 protocolSwapFeePercentage,
        uint256[] memory scalingFactors,
        bytes memory userData
    )
        internal
        virtual
        returns (
            uint256 bptAmountIn,
            uint256[] memory amountsOut,
            uint256[] memory dueProtocolFeeAmounts
        );

    // Internal functions

    /**
     * @dev Adds swap fee amount to `amount`, returning a higher value.
     */
    function _addSwapFeeAmount(uint256 amount) internal view returns (uint256) {
        // This returns amount + fee amount, so we round up (favoring a higher fee amount).
        return amount.divUp(FixedPoint.ONE.sub(getSwapFeePercentage()));
    }

    /**
     * @dev Subtracts swap fee amount from `amount`, returning a lower value.
     */
    function _subtractSwapFeeAmount(uint256 amount) internal view returns (uint256) {
        // This returns amount - fee amount, so we round up (favoring a higher fee amount).
        uint256 feeAmount = amount.mulUp(getSwapFeePercentage());
        return amount.sub(feeAmount);
    }

    // Scaling

    /**
     * @dev Returns a scaling factor that, when multiplied to a token amount for `token`, normalizes its balance as if
     * it had 18 decimals.
     */
    function _computeScalingFactor(IERC20 token) internal view returns (uint256) {
        // Tokens that don't implement the `decimals` method are not supported.
        uint256 tokenDecimals = ERC20(address(token)).decimals();

        // Tokens with more than 18 decimals are not supported.
        uint256 decimalsDifference = Math.sub(18, tokenDecimals);
        return FixedPoint.ONE * 10**decimalsDifference;
    }

    /**
     * @dev Returns the scaling factor for one of the Pool's tokens. Reverts if `token` is not a token registered by the
     * Pool.
     *
     * All scaling factors are fixed-point values with 18 decimals, to allow for this function to be overridden by
     * derived contracts that need to apply further scaling, making these factors potentially non-integer.
     *
     * The largest 'base' scaling factor (i.e. in tokens with less than 18 decimals) is 10**18, which in fixed-point is
     * 10**36. This value can be multiplied with a 112 bit Vault balance with no overflow by a factor of ~1e7, making
     * even relatively 'large' factors safe to use.
     *
     * The 1e7 figure is the result of 2**256 / (1e18 * 1e18 * 2**112).
     */
    function _scalingFactor(IERC20 token) internal view virtual returns (uint256);

    /**
     * @dev Same as `_scalingFactor()`, except for all registered tokens (in the same order as registered). The Vault
     * will always pass balances in this order when calling any of the Pool hooks.
     */
    function _scalingFactors() internal view virtual returns (uint256[] memory);

    function getScalingFactors() external view returns (uint256[] memory) {
        return _scalingFactors();
    }

    /**
     * @dev Applies `scalingFactor` to `amount`, resulting in a larger or equal value depending on whether it needed
     * scaling or not.
     */
    function _upscale(uint256 amount, uint256 scalingFactor) internal pure returns (uint256) {
        // Upscale rounding wouldn't necessarily always go in the same direction: in a swap for example the balance of
        // token in should be rounded up, and that of token out rounded down. This is the only place where we round in
        // the same direction for all amounts, as the impact of this rounding is expected to be minimal (and there's no
        // rounding error unless `_scalingFactor()` is overriden).
        return FixedPoint.mulDown(amount, scalingFactor);
    }

    /**
     * @dev Same as `_upscale`, but for an entire array. This function does not return anything, but instead *mutates*
     * the `amounts` array.
     */
    function _upscaleArray(uint256[] memory amounts, uint256[] memory scalingFactors) internal view {
        for (uint256 i = 0; i < _getTotalTokens(); ++i) {
            amounts[i] = FixedPoint.mulDown(amounts[i], scalingFactors[i]);
        }
    }

    /**
     * @dev Reverses the `scalingFactor` applied to `amount`, resulting in a smaller or equal value depending on
     * whether it needed scaling or not. The result is rounded down.
     */
    function _downscaleDown(uint256 amount, uint256 scalingFactor) internal pure returns (uint256) {
        return FixedPoint.divDown(amount, scalingFactor);
    }

    /**
     * @dev Same as `_downscaleDown`, but for an entire array. This function does not return anything, but instead
     * *mutates* the `amounts` array.
     */
    function _downscaleDownArray(uint256[] memory amounts, uint256[] memory scalingFactors) internal view {
        for (uint256 i = 0; i < _getTotalTokens(); ++i) {
            amounts[i] = FixedPoint.divDown(amounts[i], scalingFactors[i]);
        }
    }

    /**
     * @dev Reverses the `scalingFactor` applied to `amount`, resulting in a smaller or equal value depending on
     * whether it needed scaling or not. The result is rounded up.
     */
    function _downscaleUp(uint256 amount, uint256 scalingFactor) internal pure returns (uint256) {
        return FixedPoint.divUp(amount, scalingFactor);
    }

    /**
     * @dev Same as `_downscaleUp`, but for an entire array. This function does not return anything, but instead
     * *mutates* the `amounts` array.
     */
    function _downscaleUpArray(uint256[] memory amounts, uint256[] memory scalingFactors) internal view {
        for (uint256 i = 0; i < _getTotalTokens(); ++i) {
            amounts[i] = FixedPoint.divUp(amounts[i], scalingFactors[i]);
        }
    }

    function _getAuthorizer() internal view override returns (IAuthorizer) {
        // Access control management is delegated to the Vault's Authorizer. This lets Balancer Governance manage which
        // accounts can call permissioned functions: for example, to perform emergency pauses.
        // If the owner is delegated, then *all* permissioned functions, including `setSwapFeePercentage`, will be under
        // Governance control.
        return getVault().getAuthorizer();
    }

    function _queryAction(
        bytes32 poolId,
        address sender,
        address recipient,
        uint256[] memory balances,
        uint256 lastChangeBlock,
        uint256 protocolSwapFeePercentage,
        bytes memory userData,
        function(bytes32, address, address, uint256[] memory, uint256, uint256, uint256[] memory, bytes memory)
            internal
            returns (uint256, uint256[] memory, uint256[] memory) _action,
        function(uint256[] memory, uint256[] memory) internal view _downscaleArray
    ) private {
        // This uses the same technique used by the Vault in queryBatchSwap. Refer to that function for a detailed
        // explanation.

        if (msg.sender != address(this)) {
            // We perform an external call to ourselves, forwarding the same calldata. In this call, the else clause of
            // the preceding if statement will be executed instead.

            // solhint-disable-next-line avoid-low-level-calls
            (bool success, ) = address(this).call(msg.data);

            // solhint-disable-next-line no-inline-assembly
            assembly {
                // This call should always revert to decode the bpt and token amounts from the revert reason
                switch success
                    case 0 {
                        // Note we are manually writing the memory slot 0. We can safely overwrite whatever is
                        // stored there as we take full control of the execution and then immediately return.

                        // We copy the first 4 bytes to check if it matches with the expected signature, otherwise
                        // there was another revert reason and we should forward it.
                        returndatacopy(0, 0, 0x04)
                        let error := and(mload(0), 0xffffffff00000000000000000000000000000000000000000000000000000000)

                        // If the first 4 bytes don't match with the expected signature, we forward the revert reason.
                        if eq(eq(error, 0x43adbafb00000000000000000000000000000000000000000000000000000000), 0) {
                            returndatacopy(0, 0, returndatasize())
                            revert(0, returndatasize())
                        }

                        // The returndata contains the signature, followed by the raw memory representation of the
                        // `bptAmount` and `tokenAmounts` (array: length + data). We need to return an ABI-encoded
                        // representation of these.
                        // An ABI-encoded response will include one additional field to indicate the starting offset of
                        // the `tokenAmounts` array. The `bptAmount` will be laid out in the first word of the
                        // returndata.
                        //
                        // In returndata:
                        // [ signature ][ bptAmount ][ tokenAmounts length ][ tokenAmounts values ]
                        // [  4 bytes  ][  32 bytes ][       32 bytes      ][ (32 * length) bytes ]
                        //
                        // We now need to return (ABI-encoded values):
                        // [ bptAmount ][ tokeAmounts offset ][ tokenAmounts length ][ tokenAmounts values ]
                        // [  32 bytes ][       32 bytes     ][       32 bytes      ][ (32 * length) bytes ]

                        // We copy 32 bytes for the `bptAmount` from returndata into memory.
                        // Note that we skip the first 4 bytes for the error signature
                        returndatacopy(0, 0x04, 32)

                        // The offsets are 32-bytes long, so the array of `tokenAmounts` will start after
                        // the initial 64 bytes.
                        mstore(0x20, 64)

                        // We now copy the raw memory array for the `tokenAmounts` from returndata into memory.
                        // Since bpt amount and offset take up 64 bytes, we start copying at address 0x40. We also
                        // skip the first 36 bytes from returndata, which correspond to the signature plus bpt amount.
                        returndatacopy(0x40, 0x24, sub(returndatasize(), 36))

                        // We finally return the ABI-encoded uint256 and the array, which has a total length equal to
                        // the size of returndata, plus the 32 bytes of the offset but without the 4 bytes of the
                        // error signature.
                        return(0, add(returndatasize(), 28))
                    }
                    default {
                        // This call should always revert, but we fail nonetheless if that didn't happen
                        invalid()
                    }
            }
        } else {
            uint256[] memory scalingFactors = _scalingFactors();
            _upscaleArray(balances, scalingFactors);

            (uint256 bptAmount, uint256[] memory tokenAmounts, ) = _action(
                poolId,
                sender,
                recipient,
                balances,
                lastChangeBlock,
                protocolSwapFeePercentage,
                scalingFactors,
                userData
            );

            _downscaleArray(tokenAmounts, scalingFactors);

            // solhint-disable-next-line no-inline-assembly
            assembly {
                // We will return a raw representation of `bptAmount` and `tokenAmounts` in memory, which is composed of
                // a 32-byte uint256, followed by a 32-byte for the array length, and finally the 32-byte uint256 values
                // Because revert expects a size in bytes, we multiply the array length (stored at `tokenAmounts`) by 32
                let size := mul(mload(tokenAmounts), 32)

                // We store the `bptAmount` in the previous slot to the `tokenAmounts` array. We can make sure there
                // will be at least one available slot due to how the memory scratch space works.
                // We can safely overwrite whatever is stored in this slot as we will revert immediately after that.
                let start := sub(tokenAmounts, 0x20)
                mstore(start, bptAmount)

                // We send one extra value for the error signature "QueryError(uint256,uint256[])" which is 0x43adbafb
                // We use the previous slot to `bptAmount`.
                mstore(sub(start, 0x20), 0x0000000000000000000000000000000000000000000000000000000043adbafb)
                start := sub(start, 0x04)

                // When copying from `tokenAmounts` into returndata, we copy the additional 68 bytes to also return
                // the `bptAmount`, the array 's length, and the error signature.
                revert(start, add(size, 68))
            }
        }
    }
}

File 12 of 63 : IMinimalSwapInfoPool.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;
pragma experimental ABIEncoderV2;

import "./IBasePool.sol";

/**
 * @dev Pool contracts with the MinimalSwapInfo or TwoToken specialization settings should implement this interface.
 *
 * This is called by the Vault when a user calls `IVault.swap` or `IVault.batchSwap` to swap with this Pool.
 * Returns the number of tokens the Pool will grant to the user in a 'given in' swap, or that the user will grant
 * to the pool in a 'given out' swap.
 *
 * This can often be implemented by a `view` function, since many pricing algorithms don't need to track state
 * changes in swaps. However, contracts implementing this in non-view functions should check that the caller is
 * indeed the Vault.
 */
interface IMinimalSwapInfoPool is IBasePool {
    function onSwap(
        SwapRequest memory swapRequest,
        uint256 currentBalanceTokenIn,
        uint256 currentBalanceTokenOut
    ) external returns (uint256 amount);
}

File 13 of 63 : Math.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.7.0;

import "../helpers/BalancerErrors.sol";

/**
 * @dev Wrappers over Solidity's arithmetic operations with added overflow checks.
 * Adapted from OpenZeppelin's SafeMath library
 */
library Math {
    /**
     * @dev Returns the addition of two unsigned integers of 256 bits, reverting on overflow.
     */
    function add(uint256 a, uint256 b) internal pure returns (uint256) {
        uint256 c = a + b;
        _require(c >= a, Errors.ADD_OVERFLOW);
        return c;
    }

    /**
     * @dev Returns the addition of two signed integers, reverting on overflow.
     */
    function add(int256 a, int256 b) internal pure returns (int256) {
        int256 c = a + b;
        _require((b >= 0 && c >= a) || (b < 0 && c < a), Errors.ADD_OVERFLOW);
        return c;
    }

    /**
     * @dev Returns the subtraction of two unsigned integers of 256 bits, reverting on overflow.
     */
    function sub(uint256 a, uint256 b) internal pure returns (uint256) {
        _require(b <= a, Errors.SUB_OVERFLOW);
        uint256 c = a - b;
        return c;
    }

    /**
     * @dev Returns the subtraction of two signed integers, reverting on overflow.
     */
    function sub(int256 a, int256 b) internal pure returns (int256) {
        int256 c = a - b;
        _require((b >= 0 && c <= a) || (b < 0 && c > a), Errors.SUB_OVERFLOW);
        return c;
    }

    /**
     * @dev Returns the largest of two numbers of 256 bits.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a >= b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers of 256 bits.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    function mul(uint256 a, uint256 b) internal pure returns (uint256) {
        uint256 c = a * b;
        _require(a == 0 || c / a == b, Errors.MUL_OVERFLOW);
        return c;
    }

    function div(
        uint256 a,
        uint256 b,
        bool roundUp
    ) internal pure returns (uint256) {
        return roundUp ? divUp(a, b) : divDown(a, b);
    }

    function divDown(uint256 a, uint256 b) internal pure returns (uint256) {
        _require(b != 0, Errors.ZERO_DIVISION);
        return a / b;
    }

    function divUp(uint256 a, uint256 b) internal pure returns (uint256) {
        _require(b != 0, Errors.ZERO_DIVISION);

        if (a == 0) {
            return 0;
        } else {
            return 1 + (a - 1) / b;
        }
    }
}

File 14 of 63 : TemporarilyPausable.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

import "./BalancerErrors.sol";
import "./ITemporarilyPausable.sol";

/**
 * @dev Allows for a contract to be paused during an initial period after deployment, disabling functionality. Can be
 * used as an emergency switch in case a security vulnerability or threat is identified.
 *
 * The contract can only be paused during the Pause Window, a period that starts at deployment. It can also be
 * unpaused and repaused any number of times during this period. This is intended to serve as a safety measure: it lets
 * system managers react quickly to potentially dangerous situations, knowing that this action is reversible if careful
 * analysis later determines there was a false alarm.
 *
 * If the contract is paused when the Pause Window finishes, it will remain in the paused state through an additional
 * Buffer Period, after which it will be automatically unpaused forever. This is to ensure there is always enough time
 * to react to an emergency, even if the threat is discovered shortly before the Pause Window expires.
 *
 * Note that since the contract can only be paused within the Pause Window, unpausing during the Buffer Period is
 * irreversible.
 */
abstract contract TemporarilyPausable is ITemporarilyPausable {
    // The Pause Window and Buffer Period are timestamp-based: they should not be relied upon for sub-minute accuracy.
    // solhint-disable not-rely-on-time

    uint256 private constant _MAX_PAUSE_WINDOW_DURATION = 90 days;
    uint256 private constant _MAX_BUFFER_PERIOD_DURATION = 30 days;

    uint256 private immutable _pauseWindowEndTime;
    uint256 private immutable _bufferPeriodEndTime;

    bool private _paused;

    constructor(uint256 pauseWindowDuration, uint256 bufferPeriodDuration) {
        _require(pauseWindowDuration <= _MAX_PAUSE_WINDOW_DURATION, Errors.MAX_PAUSE_WINDOW_DURATION);
        _require(bufferPeriodDuration <= _MAX_BUFFER_PERIOD_DURATION, Errors.MAX_BUFFER_PERIOD_DURATION);

        uint256 pauseWindowEndTime = block.timestamp + pauseWindowDuration;

        _pauseWindowEndTime = pauseWindowEndTime;
        _bufferPeriodEndTime = pauseWindowEndTime + bufferPeriodDuration;
    }

    /**
     * @dev Reverts if the contract is paused.
     */
    modifier whenNotPaused() {
        _ensureNotPaused();
        _;
    }

    /**
     * @dev Returns the current contract pause status, as well as the end times of the Pause Window and Buffer
     * Period.
     */
    function getPausedState()
        external
        view
        override
        returns (
            bool paused,
            uint256 pauseWindowEndTime,
            uint256 bufferPeriodEndTime
        )
    {
        paused = !_isNotPaused();
        pauseWindowEndTime = _getPauseWindowEndTime();
        bufferPeriodEndTime = _getBufferPeriodEndTime();
    }

    /**
     * @dev Sets the pause state to `paused`. The contract can only be paused until the end of the Pause Window, and
     * unpaused until the end of the Buffer Period.
     *
     * Once the Buffer Period expires, this function reverts unconditionally.
     */
    function _setPaused(bool paused) internal {
        if (paused) {
            _require(block.timestamp < _getPauseWindowEndTime(), Errors.PAUSE_WINDOW_EXPIRED);
        } else {
            _require(block.timestamp < _getBufferPeriodEndTime(), Errors.BUFFER_PERIOD_EXPIRED);
        }

        _paused = paused;
        emit PausedStateChanged(paused);
    }

    /**
     * @dev Reverts if the contract is paused.
     */
    function _ensureNotPaused() internal view {
        _require(_isNotPaused(), Errors.PAUSED);
    }

    /**
     * @dev Returns true if the contract is unpaused.
     *
     * Once the Buffer Period expires, the gas cost of calling this function is reduced dramatically, as storage is no
     * longer accessed.
     */
    function _isNotPaused() internal view returns (bool) {
        // After the Buffer Period, the (inexpensive) timestamp check short-circuits the storage access.
        return block.timestamp > _getBufferPeriodEndTime() || !_paused;
    }

    // These getters lead to reduced bytecode size by inlining the immutable variables in a single place.

    function _getPauseWindowEndTime() private view returns (uint256) {
        return _pauseWindowEndTime;
    }

    function _getBufferPeriodEndTime() private view returns (uint256) {
        return _bufferPeriodEndTime;
    }
}

File 15 of 63 : WordCodec.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

/**
 * @dev Library for encoding and decoding values stored inside a 256 bit word. Typically used to pack multiple values in
 * a single storage slot, saving gas by performing less storage accesses.
 *
 * Each value is defined by its size and the least significant bit in the word, also known as offset. For example, two
 * 128 bit values may be encoded in a word by assigning one an offset of 0, and the other an offset of 128.
 */
library WordCodec {
    // Masks are values with the least significant N bits set. They can be used to extract an encoded value from a word,
    // or to insert a new one replacing the old.
    uint256 private constant _MASK_1 = 2**(1) - 1;
    uint256 private constant _MASK_5 = 2**(5) - 1;
    uint256 private constant _MASK_7 = 2**(7) - 1;
    uint256 private constant _MASK_10 = 2**(10) - 1;
    uint256 private constant _MASK_16 = 2**(16) - 1;
    uint256 private constant _MASK_22 = 2**(22) - 1;
    uint256 private constant _MASK_31 = 2**(31) - 1;
    uint256 private constant _MASK_32 = 2**(32) - 1;
    uint256 private constant _MASK_53 = 2**(53) - 1;
    uint256 private constant _MASK_64 = 2**(64) - 1;
    uint256 private constant _MASK_128 = 2**(128) - 1;
    uint256 private constant _MASK_192 = 2**(192) - 1;

    // Largest positive values that can be represented as N bits signed integers.
    int256 private constant _MAX_INT_22 = 2**(21) - 1;
    int256 private constant _MAX_INT_53 = 2**(52) - 1;

    // In-place insertion

    /**
     * @dev Inserts a boolean value shifted by an offset into a 256 bit word, replacing the old value. Returns the new
     * word.
     */
    function insertBool(
        bytes32 word,
        bool value,
        uint256 offset
    ) internal pure returns (bytes32) {
        bytes32 clearedWord = bytes32(uint256(word) & ~(_MASK_1 << offset));
        return clearedWord | bytes32(uint256(value ? 1 : 0) << offset);
    }

    // Unsigned

    /**
     * @dev Inserts a 5 bit unsigned integer shifted by an offset into a 256 bit word, replacing the old value. Returns
     * the new word.
     *
     * Assumes `value` only uses its least significant 5 bits, otherwise it may overwrite sibling bytes.
     */
    function insertUint5(
        bytes32 word,
        uint256 value,
        uint256 offset
    ) internal pure returns (bytes32) {
        bytes32 clearedWord = bytes32(uint256(word) & ~(_MASK_5 << offset));
        return clearedWord | bytes32(value << offset);
    }

    /**
     * @dev Inserts a 7 bit unsigned integer shifted by an offset into a 256 bit word, replacing the old value. Returns
     * the new word.
     *
     * Assumes `value` only uses its least significant 7 bits, otherwise it may overwrite sibling bytes.
     */
    function insertUint7(
        bytes32 word,
        uint256 value,
        uint256 offset
    ) internal pure returns (bytes32) {
        bytes32 clearedWord = bytes32(uint256(word) & ~(_MASK_7 << offset));
        return clearedWord | bytes32(value << offset);
    }

    /**
     * @dev Inserts a 10 bit unsigned integer shifted by an offset into a 256 bit word, replacing the old value. Returns
     * the new word.
     *
     * Assumes `value` only uses its least significant 10 bits, otherwise it may overwrite sibling bytes.
     */
    function insertUint10(
        bytes32 word,
        uint256 value,
        uint256 offset
    ) internal pure returns (bytes32) {
        bytes32 clearedWord = bytes32(uint256(word) & ~(_MASK_10 << offset));
        return clearedWord | bytes32(value << offset);
    }

    /**
     * @dev Inserts a 16 bit unsigned integer shifted by an offset into a 256 bit word, replacing the old value.
     * Returns the new word.
     *
     * Assumes `value` only uses its least significant 16 bits, otherwise it may overwrite sibling bytes.
     */
    function insertUint16(
        bytes32 word,
        uint256 value,
        uint256 offset
    ) internal pure returns (bytes32) {
        bytes32 clearedWord = bytes32(uint256(word) & ~(_MASK_16 << offset));
        return clearedWord | bytes32(value << offset);
    }

    /**
     * @dev Inserts a 31 bit unsigned integer shifted by an offset into a 256 bit word, replacing the old value. Returns
     * the new word.
     *
     * Assumes `value` can be represented using 31 bits.
     */
    function insertUint31(
        bytes32 word,
        uint256 value,
        uint256 offset
    ) internal pure returns (bytes32) {
        bytes32 clearedWord = bytes32(uint256(word) & ~(_MASK_31 << offset));
        return clearedWord | bytes32(value << offset);
    }

    /**
     * @dev Inserts a 32 bit unsigned integer shifted by an offset into a 256 bit word, replacing the old value. Returns
     * the new word.
     *
     * Assumes `value` only uses its least significant 32 bits, otherwise it may overwrite sibling bytes.
     */
    function insertUint32(
        bytes32 word,
        uint256 value,
        uint256 offset
    ) internal pure returns (bytes32) {
        bytes32 clearedWord = bytes32(uint256(word) & ~(_MASK_32 << offset));
        return clearedWord | bytes32(value << offset);
    }

    /**
     * @dev Inserts a 64 bit unsigned integer shifted by an offset into a 256 bit word, replacing the old value. Returns
     * the new word.
     *
     * Assumes `value` only uses its least significant 64 bits, otherwise it may overwrite sibling bytes.
     */
    function insertUint64(
        bytes32 word,
        uint256 value,
        uint256 offset
    ) internal pure returns (bytes32) {
        bytes32 clearedWord = bytes32(uint256(word) & ~(_MASK_64 << offset));
        return clearedWord | bytes32(value << offset);
    }

    // Signed

    /**
     * @dev Inserts a 22 bits signed integer shifted by an offset into a 256 bit word, replacing the old value. Returns
     * the new word.
     *
     * Assumes `value` can be represented using 22 bits.
     */
    function insertInt22(
        bytes32 word,
        int256 value,
        uint256 offset
    ) internal pure returns (bytes32) {
        bytes32 clearedWord = bytes32(uint256(word) & ~(_MASK_22 << offset));
        // Integer values need masking to remove the upper bits of negative values.
        return clearedWord | bytes32((uint256(value) & _MASK_22) << offset);
    }

    // Bytes

    /**
     * @dev Inserts 192 bit shifted by an offset into a 256 bit word, replacing the old value. Returns the new word.
     *
     * Assumes `value` can be represented using 192 bits.
     */
    function insertBits192(
        bytes32 word,
        bytes32 value,
        uint256 offset
    ) internal pure returns (bytes32) {
        bytes32 clearedWord = bytes32(uint256(word) & ~(_MASK_192 << offset));
        return clearedWord | bytes32((uint256(value) & _MASK_192) << offset);
    }

    // Encoding

    // Unsigned

    /**
     * @dev Encodes an unsigned integer shifted by an offset. This performs no size checks: it is up to the caller to
     * ensure that the values are bounded.
     *
     * The return value can be logically ORed with other encoded values to form a 256 bit word.
     */
    function encodeUint(uint256 value, uint256 offset) internal pure returns (bytes32) {
        return bytes32(value << offset);
    }

    // Signed

    /**
     * @dev Encodes a 22 bits signed integer shifted by an offset.
     *
     * The return value can be logically ORed with other encoded values to form a 256 bit word.
     */
    function encodeInt22(int256 value, uint256 offset) internal pure returns (bytes32) {
        // Integer values need masking to remove the upper bits of negative values.
        return bytes32((uint256(value) & _MASK_22) << offset);
    }

    /**
     * @dev Encodes a 53 bits signed integer shifted by an offset.
     *
     * The return value can be logically ORed with other encoded values to form a 256 bit word.
     */
    function encodeInt53(int256 value, uint256 offset) internal pure returns (bytes32) {
        // Integer values need masking to remove the upper bits of negative values.
        return bytes32((uint256(value) & _MASK_53) << offset);
    }

    // Decoding

    /**
     * @dev Decodes and returns a boolean shifted by an offset from a 256 bit word.
     */
    function decodeBool(bytes32 word, uint256 offset) internal pure returns (bool) {
        return (uint256(word >> offset) & _MASK_1) == 1;
    }

    // Unsigned

    /**
     * @dev Decodes and returns a 5 bit unsigned integer shifted by an offset from a 256 bit word.
     */
    function decodeUint5(bytes32 word, uint256 offset) internal pure returns (uint256) {
        return uint256(word >> offset) & _MASK_5;
    }

    /**
     * @dev Decodes and returns a 7 bit unsigned integer shifted by an offset from a 256 bit word.
     */
    function decodeUint7(bytes32 word, uint256 offset) internal pure returns (uint256) {
        return uint256(word >> offset) & _MASK_7;
    }

    /**
     * @dev Decodes and returns a 10 bit unsigned integer shifted by an offset from a 256 bit word.
     */
    function decodeUint10(bytes32 word, uint256 offset) internal pure returns (uint256) {
        return uint256(word >> offset) & _MASK_10;
    }

    /**
     * @dev Decodes and returns a 16 bit unsigned integer shifted by an offset from a 256 bit word.
     */
    function decodeUint16(bytes32 word, uint256 offset) internal pure returns (uint256) {
        return uint256(word >> offset) & _MASK_16;
    }

    /**
     * @dev Decodes and returns a 31 bit unsigned integer shifted by an offset from a 256 bit word.
     */
    function decodeUint31(bytes32 word, uint256 offset) internal pure returns (uint256) {
        return uint256(word >> offset) & _MASK_31;
    }

    /**
     * @dev Decodes and returns a 32 bit unsigned integer shifted by an offset from a 256 bit word.
     */
    function decodeUint32(bytes32 word, uint256 offset) internal pure returns (uint256) {
        return uint256(word >> offset) & _MASK_32;
    }

    /**
     * @dev Decodes and returns a 64 bit unsigned integer shifted by an offset from a 256 bit word.
     */
    function decodeUint64(bytes32 word, uint256 offset) internal pure returns (uint256) {
        return uint256(word >> offset) & _MASK_64;
    }

    /**
     * @dev Decodes and returns a 128 bit unsigned integer shifted by an offset from a 256 bit word.
     */
    function decodeUint128(bytes32 word, uint256 offset) internal pure returns (uint256) {
        return uint256(word >> offset) & _MASK_128;
    }

    // Signed

    /**
     * @dev Decodes and returns a 22 bits signed integer shifted by an offset from a 256 bit word.
     */
    function decodeInt22(bytes32 word, uint256 offset) internal pure returns (int256) {
        int256 value = int256(uint256(word >> offset) & _MASK_22);
        // In case the decoded value is greater than the max positive integer that can be represented with 22 bits,
        // we know it was originally a negative integer. Therefore, we mask it to restore the sign in the 256 bit
        // representation.
        return value > _MAX_INT_22 ? (value | int256(~_MASK_22)) : value;
    }

    /**
     * @dev Decodes and returns a 53 bits signed integer shifted by an offset from a 256 bit word.
     */
    function decodeInt53(bytes32 word, uint256 offset) internal pure returns (int256) {
        int256 value = int256(uint256(word >> offset) & _MASK_53);
        // In case the decoded value is greater than the max positive integer that can be represented with 53 bits,
        // we know it was originally a negative integer. Therefore, we mask it to restore the sign in the 256 bit
        // representation.

        return value > _MAX_INT_53 ? (value | int256(~_MASK_53)) : value;
    }
}

File 16 of 63 : ERC20.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.7.0;

import "../helpers/BalancerErrors.sol";

import "./IERC20.sol";
import "./SafeMath.sol";

/**
 * @dev Implementation of the {IERC20} interface.
 *
 * This implementation is agnostic to the way tokens are created. This means
 * that a supply mechanism has to be added in a derived contract using {_mint}.
 * For a generic mechanism see {ERC20PresetMinterPauser}.
 *
 * TIP: For a detailed writeup see our guide
 * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How
 * to implement supply mechanisms].
 *
 * We have followed general OpenZeppelin guidelines: functions revert instead
 * of returning `false` on failure. This behavior is nonetheless conventional
 * and does not conflict with the expectations of ERC20 applications.
 *
 * Additionally, an {Approval} event is emitted on calls to {transferFrom}.
 * This allows applications to reconstruct the allowance for all accounts just
 * by listening to said events. Other implementations of the EIP may not emit
 * these events, as it isn't required by the specification.
 *
 * Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
 * functions have been added to mitigate the well-known issues around setting
 * allowances. See {IERC20-approve}.
 */
contract ERC20 is IERC20 {
    using SafeMath for uint256;

    mapping(address => uint256) private _balances;

    mapping(address => mapping(address => uint256)) private _allowances;

    uint256 private _totalSupply;

    string private _name;
    string private _symbol;
    uint8 private _decimals;

    /**
     * @dev Sets the values for {name} and {symbol}, initializes {decimals} with
     * a default value of 18.
     *
     * To select a different value for {decimals}, use {_setupDecimals}.
     *
     * All three of these values are immutable: they can only be set once during
     * construction.
     */
    constructor(string memory name_, string memory symbol_) {
        _name = name_;
        _symbol = symbol_;
        _decimals = 18;
    }

    /**
     * @dev Returns the name of the token.
     */
    function name() public view returns (string memory) {
        return _name;
    }

    /**
     * @dev Returns the symbol of the token, usually a shorter version of the
     * name.
     */
    function symbol() public view returns (string memory) {
        return _symbol;
    }

    /**
     * @dev Returns the number of decimals used to get its user representation.
     * For example, if `decimals` equals `2`, a balance of `505` tokens should
     * be displayed to a user as `5,05` (`505 / 10 ** 2`).
     *
     * Tokens usually opt for a value of 18, imitating the relationship between
     * Ether and Wei. This is the value {ERC20} uses, unless {_setupDecimals} is
     * called.
     *
     * NOTE: This information is only used for _display_ purposes: it in
     * no way affects any of the arithmetic of the contract, including
     * {IERC20-balanceOf} and {IERC20-transfer}.
     */
    function decimals() public view returns (uint8) {
        return _decimals;
    }

    /**
     * @dev See {IERC20-totalSupply}.
     */
    function totalSupply() public view override returns (uint256) {
        return _totalSupply;
    }

    /**
     * @dev See {IERC20-balanceOf}.
     */
    function balanceOf(address account) public view override returns (uint256) {
        return _balances[account];
    }

    /**
     * @dev See {IERC20-transfer}.
     *
     * Requirements:
     *
     * - `recipient` cannot be the zero address.
     * - the caller must have a balance of at least `amount`.
     */
    function transfer(address recipient, uint256 amount) public virtual override returns (bool) {
        _transfer(msg.sender, recipient, amount);
        return true;
    }

    /**
     * @dev See {IERC20-allowance}.
     */
    function allowance(address owner, address spender) public view virtual override returns (uint256) {
        return _allowances[owner][spender];
    }

    /**
     * @dev See {IERC20-approve}.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function approve(address spender, uint256 amount) public virtual override returns (bool) {
        _approve(msg.sender, spender, amount);
        return true;
    }

    /**
     * @dev See {IERC20-transferFrom}.
     *
     * Emits an {Approval} event indicating the updated allowance. This is not
     * required by the EIP. See the note at the beginning of {ERC20}.
     *
     * Requirements:
     *
     * - `sender` and `recipient` cannot be the zero address.
     * - `sender` must have a balance of at least `amount`.
     * - the caller must have allowance for ``sender``'s tokens of at least
     * `amount`.
     */
    function transferFrom(
        address sender,
        address recipient,
        uint256 amount
    ) public virtual override returns (bool) {
        _transfer(sender, recipient, amount);
        _approve(
            sender,
            msg.sender,
            _allowances[sender][msg.sender].sub(amount, Errors.ERC20_TRANSFER_EXCEEDS_ALLOWANCE)
        );
        return true;
    }

    /**
     * @dev Atomically increases the allowance granted to `spender` by the caller.
     *
     * This is an alternative to {approve} that can be used as a mitigation for
     * problems described in {IERC20-approve}.
     *
     * Emits an {Approval} event indicating the updated allowance.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
        _approve(msg.sender, spender, _allowances[msg.sender][spender].add(addedValue));
        return true;
    }

    /**
     * @dev Atomically decreases the allowance granted to `spender` by the caller.
     *
     * This is an alternative to {approve} that can be used as a mitigation for
     * problems described in {IERC20-approve}.
     *
     * Emits an {Approval} event indicating the updated allowance.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `spender` must have allowance for the caller of at least
     * `subtractedValue`.
     */
    function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
        _approve(
            msg.sender,
            spender,
            _allowances[msg.sender][spender].sub(subtractedValue, Errors.ERC20_DECREASED_ALLOWANCE_BELOW_ZERO)
        );
        return true;
    }

    /**
     * @dev Moves tokens `amount` from `sender` to `recipient`.
     *
     * This is internal function is equivalent to {transfer}, and can be used to
     * e.g. implement automatic token fees, slashing mechanisms, etc.
     *
     * Emits a {Transfer} event.
     *
     * Requirements:
     *
     * - `sender` cannot be the zero address.
     * - `recipient` cannot be the zero address.
     * - `sender` must have a balance of at least `amount`.
     */
    function _transfer(
        address sender,
        address recipient,
        uint256 amount
    ) internal virtual {
        _require(sender != address(0), Errors.ERC20_TRANSFER_FROM_ZERO_ADDRESS);
        _require(recipient != address(0), Errors.ERC20_TRANSFER_TO_ZERO_ADDRESS);

        _beforeTokenTransfer(sender, recipient, amount);

        _balances[sender] = _balances[sender].sub(amount, Errors.ERC20_TRANSFER_EXCEEDS_BALANCE);
        _balances[recipient] = _balances[recipient].add(amount);
        emit Transfer(sender, recipient, amount);
    }

    /** @dev Creates `amount` tokens and assigns them to `account`, increasing
     * the total supply.
     *
     * Emits a {Transfer} event with `from` set to the zero address.
     *
     * Requirements:
     *
     * - `to` cannot be the zero address.
     */
    function _mint(address account, uint256 amount) internal virtual {
        _beforeTokenTransfer(address(0), account, amount);

        _totalSupply = _totalSupply.add(amount);
        _balances[account] = _balances[account].add(amount);
        emit Transfer(address(0), account, amount);
    }

    /**
     * @dev Destroys `amount` tokens from `account`, reducing the
     * total supply.
     *
     * Emits a {Transfer} event with `to` set to the zero address.
     *
     * Requirements:
     *
     * - `account` cannot be the zero address.
     * - `account` must have at least `amount` tokens.
     */
    function _burn(address account, uint256 amount) internal virtual {
        _require(account != address(0), Errors.ERC20_BURN_FROM_ZERO_ADDRESS);

        _beforeTokenTransfer(account, address(0), amount);

        _balances[account] = _balances[account].sub(amount, Errors.ERC20_BURN_EXCEEDS_ALLOWANCE);
        _totalSupply = _totalSupply.sub(amount);
        emit Transfer(account, address(0), amount);
    }

    /**
     * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
     *
     * This internal function is equivalent to `approve`, and can be used to
     * e.g. set automatic allowances for certain subsystems, etc.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `owner` cannot be the zero address.
     * - `spender` cannot be the zero address.
     */
    function _approve(
        address owner,
        address spender,
        uint256 amount
    ) internal virtual {
        _allowances[owner][spender] = amount;
        emit Approval(owner, spender, amount);
    }

    /**
     * @dev Sets {decimals} to a value other than the default one of 18.
     *
     * WARNING: This function should only be called from the constructor. Most
     * applications that interact with token contracts will not expect
     * {decimals} to ever change, and may work incorrectly if it does.
     */
    function _setupDecimals(uint8 decimals_) internal {
        _decimals = decimals_;
    }

    /**
     * @dev Hook that is called before any transfer of tokens. This includes
     * minting and burning.
     *
     * Calling conditions:
     *
     * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
     * will be to transferred to `to`.
     * - when `from` is zero, `amount` tokens will be minted for `to`.
     * - when `to` is zero, `amount` of ``from``'s tokens will be burned.
     * - `from` and `to` are never both zero.
     *
     * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
     */
    function _beforeTokenTransfer(
        address from,
        address to,
        uint256 amount
    ) internal virtual {}
}

File 17 of 63 : IVault.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma experimental ABIEncoderV2;

import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/IERC20.sol";
import "@balancer-labs/v2-solidity-utils/contracts/helpers/ISignaturesValidator.sol";
import "@balancer-labs/v2-solidity-utils/contracts/helpers/ITemporarilyPausable.sol";
import "@balancer-labs/v2-solidity-utils/contracts/misc/IWETH.sol";

import "./IAsset.sol";
import "./IAuthorizer.sol";
import "./IFlashLoanRecipient.sol";
import "./IProtocolFeesCollector.sol";

pragma solidity ^0.7.0;

/**
 * @dev Full external interface for the Vault core contract - no external or public methods exist in the contract that
 * don't override one of these declarations.
 */
interface IVault is ISignaturesValidator, ITemporarilyPausable {
    // Generalities about the Vault:
    //
    // - Whenever documentation refers to 'tokens', it strictly refers to ERC20-compliant token contracts. Tokens are
    // transferred out of the Vault by calling the `IERC20.transfer` function, and transferred in by calling
    // `IERC20.transferFrom`. In these cases, the sender must have previously allowed the Vault to use their tokens by
    // calling `IERC20.approve`. The only deviation from the ERC20 standard that is supported is functions not returning
    // a boolean value: in these scenarios, a non-reverting call is assumed to be successful.
    //
    // - All non-view functions in the Vault are non-reentrant: calling them while another one is mid-execution (e.g.
    // while execution control is transferred to a token contract during a swap) will result in a revert. View
    // functions can be called in a re-reentrant way, but doing so might cause them to return inconsistent results.
    // Contracts calling view functions in the Vault must make sure the Vault has not already been entered.
    //
    // - View functions revert if referring to either unregistered Pools, or unregistered tokens for registered Pools.

    // Authorizer
    //
    // Some system actions are permissioned, like setting and collecting protocol fees. This permissioning system exists
    // outside of the Vault in the Authorizer contract: the Vault simply calls the Authorizer to check if the caller
    // can perform a given action.

    /**
     * @dev Returns the Vault's Authorizer.
     */
    function getAuthorizer() external view returns (IAuthorizer);

    /**
     * @dev Sets a new Authorizer for the Vault. The caller must be allowed by the current Authorizer to do this.
     *
     * Emits an `AuthorizerChanged` event.
     */
    function setAuthorizer(IAuthorizer newAuthorizer) external;

    /**
     * @dev Emitted when a new authorizer is set by `setAuthorizer`.
     */
    event AuthorizerChanged(IAuthorizer indexed newAuthorizer);

    // Relayers
    //
    // Additionally, it is possible for an account to perform certain actions on behalf of another one, using their
    // Vault ERC20 allowance and Internal Balance. These accounts are said to be 'relayers' for these Vault functions,
    // and are expected to be smart contracts with sound authentication mechanisms. For an account to be able to wield
    // this power, two things must occur:
    //  - The Authorizer must grant the account the permission to be a relayer for the relevant Vault function. This
    //    means that Balancer governance must approve each individual contract to act as a relayer for the intended
    //    functions.
    //  - Each user must approve the relayer to act on their behalf.
    // This double protection means users cannot be tricked into approving malicious relayers (because they will not
    // have been allowed by the Authorizer via governance), nor can malicious relayers approved by a compromised
    // Authorizer or governance drain user funds, since they would also need to be approved by each individual user.

    /**
     * @dev Returns true if `user` has approved `relayer` to act as a relayer for them.
     */
    function hasApprovedRelayer(address user, address relayer) external view returns (bool);

    /**
     * @dev Allows `relayer` to act as a relayer for `sender` if `approved` is true, and disallows it otherwise.
     *
     * Emits a `RelayerApprovalChanged` event.
     */
    function setRelayerApproval(
        address sender,
        address relayer,
        bool approved
    ) external;

    /**
     * @dev Emitted every time a relayer is approved or disapproved by `setRelayerApproval`.
     */
    event RelayerApprovalChanged(address indexed relayer, address indexed sender, bool approved);

    // Internal Balance
    //
    // Users can deposit tokens into the Vault, where they are allocated to their Internal Balance, and later
    // transferred or withdrawn. It can also be used as a source of tokens when joining Pools, as a destination
    // when exiting them, and as either when performing swaps. This usage of Internal Balance results in greatly reduced
    // gas costs when compared to relying on plain ERC20 transfers, leading to large savings for frequent users.
    //
    // Internal Balance management features batching, which means a single contract call can be used to perform multiple
    // operations of different kinds, with different senders and recipients, at once.

    /**
     * @dev Returns `user`'s Internal Balance for a set of tokens.
     */
    function getInternalBalance(address user, IERC20[] memory tokens) external view returns (uint256[] memory);

    /**
     * @dev Performs a set of user balance operations, which involve Internal Balance (deposit, withdraw or transfer)
     * and plain ERC20 transfers using the Vault's allowance. This last feature is particularly useful for relayers, as
     * it lets integrators reuse a user's Vault allowance.
     *
     * For each operation, if the caller is not `sender`, it must be an authorized relayer for them.
     */
    function manageUserBalance(UserBalanceOp[] memory ops) external payable;

    /**
     * @dev Data for `manageUserBalance` operations, which include the possibility for ETH to be sent and received
     without manual WETH wrapping or unwrapping.
     */
    struct UserBalanceOp {
        UserBalanceOpKind kind;
        IAsset asset;
        uint256 amount;
        address sender;
        address payable recipient;
    }

    // There are four possible operations in `manageUserBalance`:
    //
    // - DEPOSIT_INTERNAL
    // Increases the Internal Balance of the `recipient` account by transferring tokens from the corresponding
    // `sender`. The sender must have allowed the Vault to use their tokens via `IERC20.approve()`.
    //
    // ETH can be used by passing the ETH sentinel value as the asset and forwarding ETH in the call: it will be wrapped
    // and deposited as WETH. Any ETH amount remaining will be sent back to the caller (not the sender, which is
    // relevant for relayers).
    //
    // Emits an `InternalBalanceChanged` event.
    //
    //
    // - WITHDRAW_INTERNAL
    // Decreases the Internal Balance of the `sender` account by transferring tokens to the `recipient`.
    //
    // ETH can be used by passing the ETH sentinel value as the asset. This will deduct WETH instead, unwrap it and send
    // it to the recipient as ETH.
    //
    // Emits an `InternalBalanceChanged` event.
    //
    //
    // - TRANSFER_INTERNAL
    // Transfers tokens from the Internal Balance of the `sender` account to the Internal Balance of `recipient`.
    //
    // Reverts if the ETH sentinel value is passed.
    //
    // Emits an `InternalBalanceChanged` event.
    //
    //
    // - TRANSFER_EXTERNAL
    // Transfers tokens from `sender` to `recipient`, using the Vault's ERC20 allowance. This is typically used by
    // relayers, as it lets them reuse a user's Vault allowance.
    //
    // Reverts if the ETH sentinel value is passed.
    //
    // Emits an `ExternalBalanceTransfer` event.

    enum UserBalanceOpKind { DEPOSIT_INTERNAL, WITHDRAW_INTERNAL, TRANSFER_INTERNAL, TRANSFER_EXTERNAL }

    /**
     * @dev Emitted when a user's Internal Balance changes, either from calls to `manageUserBalance`, or through
     * interacting with Pools using Internal Balance.
     *
     * Because Internal Balance works exclusively with ERC20 tokens, ETH deposits and withdrawals will use the WETH
     * address.
     */
    event InternalBalanceChanged(address indexed user, IERC20 indexed token, int256 delta);

    /**
     * @dev Emitted when a user's Vault ERC20 allowance is used by the Vault to transfer tokens to an external account.
     */
    event ExternalBalanceTransfer(IERC20 indexed token, address indexed sender, address recipient, uint256 amount);

    // Pools
    //
    // There are three specialization settings for Pools, which allow for cheaper swaps at the cost of reduced
    // functionality:
    //
    //  - General: no specialization, suited for all Pools. IGeneralPool is used for swap request callbacks, passing the
    // balance of all tokens in the Pool. These Pools have the largest swap costs (because of the extra storage reads),
    // which increase with the number of registered tokens.
    //
    //  - Minimal Swap Info: IMinimalSwapInfoPool is used instead of IGeneralPool, which saves gas by only passing the
    // balance of the two tokens involved in the swap. This is suitable for some pricing algorithms, like the weighted
    // constant product one popularized by Balancer V1. Swap costs are smaller compared to general Pools, and are
    // independent of the number of registered tokens.
    //
    //  - Two Token: only allows two tokens to be registered. This achieves the lowest possible swap gas cost. Like
    // minimal swap info Pools, these are called via IMinimalSwapInfoPool.

    enum PoolSpecialization { GENERAL, MINIMAL_SWAP_INFO, TWO_TOKEN }

    /**
     * @dev Registers the caller account as a Pool with a given specialization setting. Returns the Pool's ID, which
     * is used in all Pool-related functions. Pools cannot be deregistered, nor can the Pool's specialization be
     * changed.
     *
     * The caller is expected to be a smart contract that implements either `IGeneralPool` or `IMinimalSwapInfoPool`,
     * depending on the chosen specialization setting. This contract is known as the Pool's contract.
     *
     * Note that the same contract may register itself as multiple Pools with unique Pool IDs, or in other words,
     * multiple Pools may share the same contract.
     *
     * Emits a `PoolRegistered` event.
     */
    function registerPool(PoolSpecialization specialization) external returns (bytes32);

    /**
     * @dev Emitted when a Pool is registered by calling `registerPool`.
     */
    event PoolRegistered(bytes32 indexed poolId, address indexed poolAddress, PoolSpecialization specialization);

    /**
     * @dev Returns a Pool's contract address and specialization setting.
     */
    function getPool(bytes32 poolId) external view returns (address, PoolSpecialization);

    /**
     * @dev Registers `tokens` for the `poolId` Pool. Must be called by the Pool's contract.
     *
     * Pools can only interact with tokens they have registered. Users join a Pool by transferring registered tokens,
     * exit by receiving registered tokens, and can only swap registered tokens.
     *
     * Each token can only be registered once. For Pools with the Two Token specialization, `tokens` must have a length
     * of two, that is, both tokens must be registered in the same `registerTokens` call, and they must be sorted in
     * ascending order.
     *
     * The `tokens` and `assetManagers` arrays must have the same length, and each entry in these indicates the Asset
     * Manager for the corresponding token. Asset Managers can manage a Pool's tokens via `managePoolBalance`,
     * depositing and withdrawing them directly, and can even set their balance to arbitrary amounts. They are therefore
     * expected to be highly secured smart contracts with sound design principles, and the decision to register an
     * Asset Manager should not be made lightly.
     *
     * Pools can choose not to assign an Asset Manager to a given token by passing in the zero address. Once an Asset
     * Manager is set, it cannot be changed except by deregistering the associated token and registering again with a
     * different Asset Manager.
     *
     * Emits a `TokensRegistered` event.
     */
    function registerTokens(
        bytes32 poolId,
        IERC20[] memory tokens,
        address[] memory assetManagers
    ) external;

    /**
     * @dev Emitted when a Pool registers tokens by calling `registerTokens`.
     */
    event TokensRegistered(bytes32 indexed poolId, IERC20[] tokens, address[] assetManagers);

    /**
     * @dev Deregisters `tokens` for the `poolId` Pool. Must be called by the Pool's contract.
     *
     * Only registered tokens (via `registerTokens`) can be deregistered. Additionally, they must have zero total
     * balance. For Pools with the Two Token specialization, `tokens` must have a length of two, that is, both tokens
     * must be deregistered in the same `deregisterTokens` call.
     *
     * A deregistered token can be re-registered later on, possibly with a different Asset Manager.
     *
     * Emits a `TokensDeregistered` event.
     */
    function deregisterTokens(bytes32 poolId, IERC20[] memory tokens) external;

    /**
     * @dev Emitted when a Pool deregisters tokens by calling `deregisterTokens`.
     */
    event TokensDeregistered(bytes32 indexed poolId, IERC20[] tokens);

    /**
     * @dev Returns detailed information for a Pool's registered token.
     *
     * `cash` is the number of tokens the Vault currently holds for the Pool. `managed` is the number of tokens
     * withdrawn and held outside the Vault by the Pool's token Asset Manager. The Pool's total balance for `token`
     * equals the sum of `cash` and `managed`.
     *
     * Internally, `cash` and `managed` are stored using 112 bits. No action can ever cause a Pool's token `cash`,
     * `managed` or `total` balance to be greater than 2^112 - 1.
     *
     * `lastChangeBlock` is the number of the block in which `token`'s total balance was last modified (via either a
     * join, exit, swap, or Asset Manager update). This value is useful to avoid so-called 'sandwich attacks', for
     * example when developing price oracles. A change of zero (e.g. caused by a swap with amount zero) is considered a
     * change for this purpose, and will update `lastChangeBlock`.
     *
     * `assetManager` is the Pool's token Asset Manager.
     */
    function getPoolTokenInfo(bytes32 poolId, IERC20 token)
        external
        view
        returns (
            uint256 cash,
            uint256 managed,
            uint256 lastChangeBlock,
            address assetManager
        );

    /**
     * @dev Returns a Pool's registered tokens, the total balance for each, and the latest block when *any* of
     * the tokens' `balances` changed.
     *
     * The order of the `tokens` array is the same order that will be used in `joinPool`, `exitPool`, as well as in all
     * Pool hooks (where applicable). Calls to `registerTokens` and `deregisterTokens` may change this order.
     *
     * If a Pool only registers tokens once, and these are sorted in ascending order, they will be stored in the same
     * order as passed to `registerTokens`.
     *
     * Total balances include both tokens held by the Vault and those withdrawn by the Pool's Asset Managers. These are
     * the amounts used by joins, exits and swaps. For a detailed breakdown of token balances, use `getPoolTokenInfo`
     * instead.
     */
    function getPoolTokens(bytes32 poolId)
        external
        view
        returns (
            IERC20[] memory tokens,
            uint256[] memory balances,
            uint256 lastChangeBlock
        );

    /**
     * @dev Called by users to join a Pool, which transfers tokens from `sender` into the Pool's balance. This will
     * trigger custom Pool behavior, which will typically grant something in return to `recipient` - often tokenized
     * Pool shares.
     *
     * If the caller is not `sender`, it must be an authorized relayer for them.
     *
     * The `assets` and `maxAmountsIn` arrays must have the same length, and each entry indicates the maximum amount
     * to send for each asset. The amounts to send are decided by the Pool and not the Vault: it just enforces
     * these maximums.
     *
     * If joining a Pool that holds WETH, it is possible to send ETH directly: the Vault will do the wrapping. To enable
     * this mechanism, the IAsset sentinel value (the zero address) must be passed in the `assets` array instead of the
     * WETH address. Note that it is not possible to combine ETH and WETH in the same join. Any excess ETH will be sent
     * back to the caller (not the sender, which is important for relayers).
     *
     * `assets` must have the same length and order as the array returned by `getPoolTokens`. This prevents issues when
     * interacting with Pools that register and deregister tokens frequently. If sending ETH however, the array must be
     * sorted *before* replacing the WETH address with the ETH sentinel value (the zero address), which means the final
     * `assets` array might not be sorted. Pools with no registered tokens cannot be joined.
     *
     * If `fromInternalBalance` is true, the caller's Internal Balance will be preferred: ERC20 transfers will only
     * be made for the difference between the requested amount and Internal Balance (if any). Note that ETH cannot be
     * withdrawn from Internal Balance: attempting to do so will trigger a revert.
     *
     * This causes the Vault to call the `IBasePool.onJoinPool` hook on the Pool's contract, where Pools implement
     * their own custom logic. This typically requires additional information from the user (such as the expected number
     * of Pool shares). This can be encoded in the `userData` argument, which is ignored by the Vault and passed
     * directly to the Pool's contract, as is `recipient`.
     *
     * Emits a `PoolBalanceChanged` event.
     */
    function joinPool(
        bytes32 poolId,
        address sender,
        address recipient,
        JoinPoolRequest memory request
    ) external payable;

    struct JoinPoolRequest {
        IAsset[] assets;
        uint256[] maxAmountsIn;
        bytes userData;
        bool fromInternalBalance;
    }

    /**
     * @dev Called by users to exit a Pool, which transfers tokens from the Pool's balance to `recipient`. This will
     * trigger custom Pool behavior, which will typically ask for something in return from `sender` - often tokenized
     * Pool shares. The amount of tokens that can be withdrawn is limited by the Pool's `cash` balance (see
     * `getPoolTokenInfo`).
     *
     * If the caller is not `sender`, it must be an authorized relayer for them.
     *
     * The `tokens` and `minAmountsOut` arrays must have the same length, and each entry in these indicates the minimum
     * token amount to receive for each token contract. The amounts to send are decided by the Pool and not the Vault:
     * it just enforces these minimums.
     *
     * If exiting a Pool that holds WETH, it is possible to receive ETH directly: the Vault will do the unwrapping. To
     * enable this mechanism, the IAsset sentinel value (the zero address) must be passed in the `assets` array instead
     * of the WETH address. Note that it is not possible to combine ETH and WETH in the same exit.
     *
     * `assets` must have the same length and order as the array returned by `getPoolTokens`. This prevents issues when
     * interacting with Pools that register and deregister tokens frequently. If receiving ETH however, the array must
     * be sorted *before* replacing the WETH address with the ETH sentinel value (the zero address), which means the
     * final `assets` array might not be sorted. Pools with no registered tokens cannot be exited.
     *
     * If `toInternalBalance` is true, the tokens will be deposited to `recipient`'s Internal Balance. Otherwise,
     * an ERC20 transfer will be performed. Note that ETH cannot be deposited to Internal Balance: attempting to
     * do so will trigger a revert.
     *
     * `minAmountsOut` is the minimum amount of tokens the user expects to get out of the Pool, for each token in the
     * `tokens` array. This array must match the Pool's registered tokens.
     *
     * This causes the Vault to call the `IBasePool.onExitPool` hook on the Pool's contract, where Pools implement
     * their own custom logic. This typically requires additional information from the user (such as the expected number
     * of Pool shares to return). This can be encoded in the `userData` argument, which is ignored by the Vault and
     * passed directly to the Pool's contract.
     *
     * Emits a `PoolBalanceChanged` event.
     */
    function exitPool(
        bytes32 poolId,
        address sender,
        address payable recipient,
        ExitPoolRequest memory request
    ) external;

    struct ExitPoolRequest {
        IAsset[] assets;
        uint256[] minAmountsOut;
        bytes userData;
        bool toInternalBalance;
    }

    /**
     * @dev Emitted when a user joins or exits a Pool by calling `joinPool` or `exitPool`, respectively.
     */
    event PoolBalanceChanged(
        bytes32 indexed poolId,
        address indexed liquidityProvider,
        IERC20[] tokens,
        int256[] deltas,
        uint256[] protocolFeeAmounts
    );

    enum PoolBalanceChangeKind { JOIN, EXIT }

    // Swaps
    //
    // Users can swap tokens with Pools by calling the `swap` and `batchSwap` functions. To do this,
    // they need not trust Pool contracts in any way: all security checks are made by the Vault. They must however be
    // aware of the Pools' pricing algorithms in order to estimate the prices Pools will quote.
    //
    // The `swap` function executes a single swap, while `batchSwap` can perform multiple swaps in sequence.
    // In each individual swap, tokens of one kind are sent from the sender to the Pool (this is the 'token in'),
    // and tokens of another kind are sent from the Pool to the recipient in exchange (this is the 'token out').
    // More complex swaps, such as one token in to multiple tokens out can be achieved by batching together
    // individual swaps.
    //
    // There are two swap kinds:
    //  - 'given in' swaps, where the amount of tokens in (sent to the Pool) is known, and the Pool determines (via the
    // `onSwap` hook) the amount of tokens out (to send to the recipient).
    //  - 'given out' swaps, where the amount of tokens out (received from the Pool) is known, and the Pool determines
    // (via the `onSwap` hook) the amount of tokens in (to receive from the sender).
    //
    // Additionally, it is possible to chain swaps using a placeholder input amount, which the Vault replaces with
    // the calculated output of the previous swap. If the previous swap was 'given in', this will be the calculated
    // tokenOut amount. If the previous swap was 'given out', it will use the calculated tokenIn amount. These extended
    // swaps are known as 'multihop' swaps, since they 'hop' through a number of intermediate tokens before arriving at
    // the final intended token.
    //
    // In all cases, tokens are only transferred in and out of the Vault (or withdrawn from and deposited into Internal
    // Balance) after all individual swaps have been completed, and the net token balance change computed. This makes
    // certain swap patterns, such as multihops, or swaps that interact with the same token pair in multiple Pools, cost
    // much less gas than they would otherwise.
    //
    // It also means that under certain conditions it is possible to perform arbitrage by swapping with multiple
    // Pools in a way that results in net token movement out of the Vault (profit), with no tokens being sent in (only
    // updating the Pool's internal accounting).
    //
    // To protect users from front-running or the market changing rapidly, they supply a list of 'limits' for each token
    // involved in the swap, where either the maximum number of tokens to send (by passing a positive value) or the
    // minimum amount of tokens to receive (by passing a negative value) is specified.
    //
    // Additionally, a 'deadline' timestamp can also be provided, forcing the swap to fail if it occurs after
    // this point in time (e.g. if the transaction failed to be included in a block promptly).
    //
    // If interacting with Pools that hold WETH, it is possible to both send and receive ETH directly: the Vault will do
    // the wrapping and unwrapping. To enable this mechanism, the IAsset sentinel value (the zero address) must be
    // passed in the `assets` array instead of the WETH address. Note that it is possible to combine ETH and WETH in the
    // same swap. Any excess ETH will be sent back to the caller (not the sender, which is relevant for relayers).
    //
    // Finally, Internal Balance can be used when either sending or receiving tokens.

    enum SwapKind { GIVEN_IN, GIVEN_OUT }

    /**
     * @dev Performs a swap with a single Pool.
     *
     * If the swap is 'given in' (the number of tokens to send to the Pool is known), it returns the amount of tokens
     * taken from the Pool, which must be greater than or equal to `limit`.
     *
     * If the swap is 'given out' (the number of tokens to take from the Pool is known), it returns the amount of tokens
     * sent to the Pool, which must be less than or equal to `limit`.
     *
     * Internal Balance usage and the recipient are determined by the `funds` struct.
     *
     * Emits a `Swap` event.
     */
    function swap(
        SingleSwap memory singleSwap,
        FundManagement memory funds,
        uint256 limit,
        uint256 deadline
    ) external payable returns (uint256);

    /**
     * @dev Data for a single swap executed by `swap`. `amount` is either `amountIn` or `amountOut` depending on
     * the `kind` value.
     *
     * `assetIn` and `assetOut` are either token addresses, or the IAsset sentinel value for ETH (the zero address).
     * Note that Pools never interact with ETH directly: it will be wrapped to or unwrapped from WETH by the Vault.
     *
     * The `userData` field is ignored by the Vault, but forwarded to the Pool in the `onSwap` hook, and may be
     * used to extend swap behavior.
     */
    struct SingleSwap {
        bytes32 poolId;
        SwapKind kind;
        IAsset assetIn;
        IAsset assetOut;
        uint256 amount;
        bytes userData;
    }

    /**
     * @dev Performs a series of swaps with one or multiple Pools. In each individual swap, the caller determines either
     * the amount of tokens sent to or received from the Pool, depending on the `kind` value.
     *
     * Returns an array with the net Vault asset balance deltas. Positive amounts represent tokens (or ETH) sent to the
     * Vault, and negative amounts represent tokens (or ETH) sent by the Vault. Each delta corresponds to the asset at
     * the same index in the `assets` array.
     *
     * Swaps are executed sequentially, in the order specified by the `swaps` array. Each array element describes a
     * Pool, the token to be sent to this Pool, the token to receive from it, and an amount that is either `amountIn` or
     * `amountOut` depending on the swap kind.
     *
     * Multihop swaps can be executed by passing an `amount` value of zero for a swap. This will cause the amount in/out
     * of the previous swap to be used as the amount in for the current one. In a 'given in' swap, 'tokenIn' must equal
     * the previous swap's `tokenOut`. For a 'given out' swap, `tokenOut` must equal the previous swap's `tokenIn`.
     *
     * The `assets` array contains the addresses of all assets involved in the swaps. These are either token addresses,
     * or the IAsset sentinel value for ETH (the zero address). Each entry in the `swaps` array specifies tokens in and
     * out by referencing an index in `assets`. Note that Pools never interact with ETH directly: it will be wrapped to
     * or unwrapped from WETH by the Vault.
     *
     * Internal Balance usage, sender, and recipient are determined by the `funds` struct. The `limits` array specifies
     * the minimum or maximum amount of each token the vault is allowed to transfer.
     *
     * `batchSwap` can be used to make a single swap, like `swap` does, but doing so requires more gas than the
     * equivalent `swap` call.
     *
     * Emits `Swap` events.
     */
    function batchSwap(
        SwapKind kind,
        BatchSwapStep[] memory swaps,
        IAsset[] memory assets,
        FundManagement memory funds,
        int256[] memory limits,
        uint256 deadline
    ) external payable returns (int256[] memory);

    /**
     * @dev Data for each individual swap executed by `batchSwap`. The asset in and out fields are indexes into the
     * `assets` array passed to that function, and ETH assets are converted to WETH.
     *
     * If `amount` is zero, the multihop mechanism is used to determine the actual amount based on the amount in/out
     * from the previous swap, depending on the swap kind.
     *
     * The `userData` field is ignored by the Vault, but forwarded to the Pool in the `onSwap` hook, and may be
     * used to extend swap behavior.
     */
    struct BatchSwapStep {
        bytes32 poolId;
        uint256 assetInIndex;
        uint256 assetOutIndex;
        uint256 amount;
        bytes userData;
    }

    /**
     * @dev Emitted for each individual swap performed by `swap` or `batchSwap`.
     */
    event Swap(
        bytes32 indexed poolId,
        IERC20 indexed tokenIn,
        IERC20 indexed tokenOut,
        uint256 amountIn,
        uint256 amountOut
    );

    /**
     * @dev All tokens in a swap are either sent from the `sender` account to the Vault, or from the Vault to the
     * `recipient` account.
     *
     * If the caller is not `sender`, it must be an authorized relayer for them.
     *
     * If `fromInternalBalance` is true, the `sender`'s Internal Balance will be preferred, performing an ERC20
     * transfer for the difference between the requested amount and the User's Internal Balance (if any). The `sender`
     * must have allowed the Vault to use their tokens via `IERC20.approve()`. This matches the behavior of
     * `joinPool`.
     *
     * If `toInternalBalance` is true, tokens will be deposited to `recipient`'s internal balance instead of
     * transferred. This matches the behavior of `exitPool`.
     *
     * Note that ETH cannot be deposited to or withdrawn from Internal Balance: attempting to do so will trigger a
     * revert.
     */
    struct FundManagement {
        address sender;
        bool fromInternalBalance;
        address payable recipient;
        bool toInternalBalance;
    }

    /**
     * @dev Simulates a call to `batchSwap`, returning an array of Vault asset deltas. Calls to `swap` cannot be
     * simulated directly, but an equivalent `batchSwap` call can and will yield the exact same result.
     *
     * Each element in the array corresponds to the asset at the same index, and indicates the number of tokens (or ETH)
     * the Vault would take from the sender (if positive) or send to the recipient (if negative). The arguments it
     * receives are the same that an equivalent `batchSwap` call would receive.
     *
     * Unlike `batchSwap`, this function performs no checks on the sender or recipient field in the `funds` struct.
     * This makes it suitable to be called by off-chain applications via eth_call without needing to hold tokens,
     * approve them for the Vault, or even know a user's address.
     *
     * Note that this function is not 'view' (due to implementation details): the client code must explicitly execute
     * eth_call instead of eth_sendTransaction.
     */
    function queryBatchSwap(
        SwapKind kind,
        BatchSwapStep[] memory swaps,
        IAsset[] memory assets,
        FundManagement memory funds
    ) external returns (int256[] memory assetDeltas);

    // Flash Loans

    /**
     * @dev Performs a 'flash loan', sending tokens to `recipient`, executing the `receiveFlashLoan` hook on it,
     * and then reverting unless the tokens plus a proportional protocol fee have been returned.
     *
     * The `tokens` and `amounts` arrays must have the same length, and each entry in these indicates the loan amount
     * for each token contract. `tokens` must be sorted in ascending order.
     *
     * The 'userData' field is ignored by the Vault, and forwarded as-is to `recipient` as part of the
     * `receiveFlashLoan` call.
     *
     * Emits `FlashLoan` events.
     */
    function flashLoan(
        IFlashLoanRecipient recipient,
        IERC20[] memory tokens,
        uint256[] memory amounts,
        bytes memory userData
    ) external;

    /**
     * @dev Emitted for each individual flash loan performed by `flashLoan`.
     */
    event FlashLoan(IFlashLoanRecipient indexed recipient, IERC20 indexed token, uint256 amount, uint256 feeAmount);

    // Asset Management
    //
    // Each token registered for a Pool can be assigned an Asset Manager, which is able to freely withdraw the Pool's
    // tokens from the Vault, deposit them, or assign arbitrary values to its `managed` balance (see
    // `getPoolTokenInfo`). This makes them extremely powerful and dangerous. Even if an Asset Manager only directly
    // controls one of the tokens in a Pool, a malicious manager could set that token's balance to manipulate the
    // prices of the other tokens, and then drain the Pool with swaps. The risk of using Asset Managers is therefore
    // not constrained to the tokens they are managing, but extends to the entire Pool's holdings.
    //
    // However, a properly designed Asset Manager smart contract can be safely used for the Pool's benefit,
    // for example by lending unused tokens out for interest, or using them to participate in voting protocols.
    //
    // This concept is unrelated to the IAsset interface.

    /**
     * @dev Performs a set of Pool balance operations, which may be either withdrawals, deposits or updates.
     *
     * Pool Balance management features batching, which means a single contract call can be used to perform multiple
     * operations of different kinds, with different Pools and tokens, at once.
     *
     * For each operation, the caller must be registered as the Asset Manager for `token` in `poolId`.
     */
    function managePoolBalance(PoolBalanceOp[] memory ops) external;

    struct PoolBalanceOp {
        PoolBalanceOpKind kind;
        bytes32 poolId;
        IERC20 token;
        uint256 amount;
    }

    /**
     * Withdrawals decrease the Pool's cash, but increase its managed balance, leaving the total balance unchanged.
     *
     * Deposits increase the Pool's cash, but decrease its managed balance, leaving the total balance unchanged.
     *
     * Updates don't affect the Pool's cash balance, but because the managed balance changes, it does alter the total.
     * The external amount can be either increased or decreased by this call (i.e., reporting a gain or a loss).
     */
    enum PoolBalanceOpKind { WITHDRAW, DEPOSIT, UPDATE }

    /**
     * @dev Emitted when a Pool's token Asset Manager alters its balance via `managePoolBalance`.
     */
    event PoolBalanceManaged(
        bytes32 indexed poolId,
        address indexed assetManager,
        IERC20 indexed token,
        int256 cashDelta,
        int256 managedDelta
    );

    // Protocol Fees
    //
    // Some operations cause the Vault to collect tokens in the form of protocol fees, which can then be withdrawn by
    // permissioned accounts.
    //
    // There are two kinds of protocol fees:
    //
    //  - flash loan fees: charged on all flash loans, as a percentage of the amounts lent.
    //
    //  - swap fees: a percentage of the fees charged by Pools when performing swaps. For a number of reasons, including
    // swap gas costs and interface simplicity, protocol swap fees are not charged on each individual swap. Rather,
    // Pools are expected to keep track of how much they have charged in swap fees, and pay any outstanding debts to the
    // Vault when they are joined or exited. This prevents users from joining a Pool with unpaid debt, as well as
    // exiting a Pool in debt without first paying their share.

    /**
     * @dev Returns the current protocol fee module.
     */
    function getProtocolFeesCollector() external view returns (IProtocolFeesCollector);

    /**
     * @dev Safety mechanism to pause most Vault operations in the event of an emergency - typically detection of an
     * error in some part of the system.
     *
     * The Vault can only be paused during an initial time period, after which pausing is forever disabled.
     *
     * While the contract is paused, the following features are disabled:
     * - depositing and transferring internal balance
     * - transferring external balance (using the Vault's allowance)
     * - swaps
     * - joining Pools
     * - Asset Manager interactions
     *
     * Internal Balance can still be withdrawn, and Pools exited.
     */
    function setPaused(bool paused) external;

    /**
     * @dev Returns the Vault's WETH instance.
     */
    function WETH() external view returns (IWETH);
    // solhint-disable-previous-line func-name-mixedcase
}

File 18 of 63 : IBasePool.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;
pragma experimental ABIEncoderV2;

import "./IVault.sol";
import "./IPoolSwapStructs.sol";

/**
 * @dev Interface for adding and removing liquidity that all Pool contracts should implement. Note that this is not
 * the complete Pool contract interface, as it is missing the swap hooks. Pool contracts should also inherit from
 * either IGeneralPool or IMinimalSwapInfoPool
 */
interface IBasePool is IPoolSwapStructs {
    /**
     * @dev Called by the Vault when a user calls `IVault.joinPool` to add liquidity to this Pool. Returns how many of
     * each registered token the user should provide, as well as the amount of protocol fees the Pool owes to the Vault.
     * The Vault will then take tokens from `sender` and add them to the Pool's balances, as well as collect
     * the reported amount in protocol fees, which the pool should calculate based on `protocolSwapFeePercentage`.
     *
     * Protocol fees are reported and charged on join events so that the Pool is free of debt whenever new users join.
     *
     * `sender` is the account performing the join (from which tokens will be withdrawn), and `recipient` is the account
     * designated to receive any benefits (typically pool shares). `balances` contains the total balances
     * for each token the Pool registered in the Vault, in the same order that `IVault.getPoolTokens` would return.
     *
     * `lastChangeBlock` is the last block in which *any* of the Pool's registered tokens last changed its total
     * balance.
     *
     * `userData` contains any pool-specific instructions needed to perform the calculations, such as the type of
     * join (e.g., proportional given an amount of pool shares, single-asset, multi-asset, etc.)
     *
     * Contracts implementing this function should check that the caller is indeed the Vault before performing any
     * state-changing operations, such as minting pool shares.
     */
    function onJoinPool(
        bytes32 poolId,
        address sender,
        address recipient,
        uint256[] memory balances,
        uint256 lastChangeBlock,
        uint256 protocolSwapFeePercentage,
        bytes memory userData
    ) external returns (uint256[] memory amountsIn, uint256[] memory dueProtocolFeeAmounts);

    /**
     * @dev Called by the Vault when a user calls `IVault.exitPool` to remove liquidity from this Pool. Returns how many
     * tokens the Vault should deduct from the Pool's balances, as well as the amount of protocol fees the Pool owes
     * to the Vault. The Vault will then take tokens from the Pool's balances and send them to `recipient`,
     * as well as collect the reported amount in protocol fees, which the Pool should calculate based on
     * `protocolSwapFeePercentage`.
     *
     * Protocol fees are charged on exit events to guarantee that users exiting the Pool have paid their share.
     *
     * `sender` is the account performing the exit (typically the pool shareholder), and `recipient` is the account
     * to which the Vault will send the proceeds. `balances` contains the total token balances for each token
     * the Pool registered in the Vault, in the same order that `IVault.getPoolTokens` would return.
     *
     * `lastChangeBlock` is the last block in which *any* of the Pool's registered tokens last changed its total
     * balance.
     *
     * `userData` contains any pool-specific instructions needed to perform the calculations, such as the type of
     * exit (e.g., proportional given an amount of pool shares, single-asset, multi-asset, etc.)
     *
     * Contracts implementing this function should check that the caller is indeed the Vault before performing any
     * state-changing operations, such as burning pool shares.
     */
    function onExitPool(
        bytes32 poolId,
        address sender,
        address recipient,
        uint256[] memory balances,
        uint256 lastChangeBlock,
        uint256 protocolSwapFeePercentage,
        bytes memory userData
    ) external returns (uint256[] memory amountsOut, uint256[] memory dueProtocolFeeAmounts);

    function getPoolId() external view returns (bytes32);
}

File 19 of 63 : IAssetManager.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;
pragma experimental ABIEncoderV2;

import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/IERC20.sol";

interface IAssetManager {
    /**
     * @notice Emitted when asset manager is rebalanced
     */
    event Rebalance(bytes32 poolId);

    /**
     * @notice Sets the config
     */
    function setConfig(bytes32 poolId, bytes calldata config) external;

    /**
     * Note: No function to read the asset manager config is included in IAssetManager
     * as the signature is expected to vary between asset manager implementations
     */

    /**
     * @notice Returns the asset manager's token
     */
    function getToken() external view returns (IERC20);

    /**
     * @return the current assets under management of this asset manager
     */
    function getAUM(bytes32 poolId) external view returns (uint256);

    /**
     * @return poolCash - The up-to-date cash balance of the pool
     * @return poolManaged - The up-to-date managed balance of the pool
     */
    function getPoolBalances(bytes32 poolId) external view returns (uint256 poolCash, uint256 poolManaged);

    /**
     * @return The difference in tokens between the target investment
     * and the currently invested amount (i.e. the amount that can be invested)
     */
    function maxInvestableBalance(bytes32 poolId) external view returns (int256);

    /**
     * @notice Updates the Vault on the value of the pool's investment returns
     */
    function updateBalanceOfPool(bytes32 poolId) external;

    /**
     * @notice Determines whether the pool should rebalance given the provided balances
     */
    function shouldRebalance(uint256 cash, uint256 managed) external view returns (bool);

    /**
     * @notice Rebalances funds between the pool and the asset manager to maintain target investment percentage.
     * @param poolId - the poolId of the pool to be rebalanced
     * @param force - a boolean representing whether a rebalance should be forced even when the pool is near balance
     */
    function rebalance(bytes32 poolId, bool force) external;

    /**
     * @notice allows an authorized rebalancer to remove capital to facilitate large withdrawals
     * @param poolId - the poolId of the pool to withdraw funds back to
     * @param amount - the amount of tokens to withdraw back to the pool
     */
    function capitalOut(bytes32 poolId, uint256 amount) external;
}

File 20 of 63 : BalancerPoolToken.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/ERC20.sol";
import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/ERC20Permit.sol";

/**
 * @title Highly opinionated token implementation
 * @author Balancer Labs
 * @dev
 * - Includes functions to increase and decrease allowance as a workaround
 *   for the well-known issue with `approve`:
 *   https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
 * - Allows for 'infinite allowance', where an allowance of 0xff..ff is not
 *   decreased by calls to transferFrom
 * - Lets a token holder use `transferFrom` to send their own tokens,
 *   without first setting allowance
 * - Emits 'Approval' events whenever allowance is changed by `transferFrom`
 */
contract BalancerPoolToken is ERC20, ERC20Permit {
    constructor(string memory tokenName, string memory tokenSymbol)
        ERC20(tokenName, tokenSymbol)
        ERC20Permit(tokenName)
    {
        // solhint-disable-previous-line no-empty-blocks
    }

    // Overrides

    /**
     * @dev Override to allow for 'infinite allowance' and let the token owner use `transferFrom` with no self-allowance
     */
    function transferFrom(
        address sender,
        address recipient,
        uint256 amount
    ) public override returns (bool) {
        uint256 currentAllowance = allowance(sender, msg.sender);
        _require(msg.sender == sender || currentAllowance >= amount, Errors.ERC20_TRANSFER_EXCEEDS_ALLOWANCE);

        _transfer(sender, recipient, amount);

        if (msg.sender != sender && currentAllowance != uint256(-1)) {
            // Because of the previous require, we know that if msg.sender != sender then currentAllowance >= amount
            _approve(sender, msg.sender, currentAllowance - amount);
        }

        return true;
    }

    /**
     * @dev Override to allow decreasing allowance by more than the current amount (setting it to zero)
     */
    function decreaseAllowance(address spender, uint256 amount) public override returns (bool) {
        uint256 currentAllowance = allowance(msg.sender, spender);

        if (amount >= currentAllowance) {
            _approve(msg.sender, spender, 0);
        } else {
            // No risk of underflow due to if condition
            _approve(msg.sender, spender, currentAllowance - amount);
        }

        return true;
    }

    // Internal functions

    function _mintPoolTokens(address recipient, uint256 amount) internal {
        _mint(recipient, amount);
    }

    function _burnPoolTokens(address sender, uint256 amount) internal {
        _burn(sender, amount);
    }
}

File 21 of 63 : BasePoolAuthorization.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

import "@balancer-labs/v2-solidity-utils/contracts/helpers/Authentication.sol";
import "@balancer-labs/v2-vault/contracts/interfaces/IAuthorizer.sol";

import "./BasePool.sol";

/**
 * @dev Base authorization layer implementation for Pools.
 *
 * The owner account can call some of the permissioned functions - access control of the rest is delegated to the
 * Authorizer. Note that this owner is immutable: more sophisticated permission schemes, such as multiple ownership,
 * granular roles, etc., could be built on top of this by making the owner a smart contract.
 *
 * Access control of all other permissioned functions is delegated to an Authorizer. It is also possible to delegate
 * control of *all* permissioned functions to the Authorizer by setting the owner address to `_DELEGATE_OWNER`.
 */
abstract contract BasePoolAuthorization is Authentication {
    address private immutable _owner;

    address private constant _DELEGATE_OWNER = 0xBA1BA1ba1BA1bA1bA1Ba1BA1ba1BA1bA1ba1ba1B;

    constructor(address owner) {
        _owner = owner;
    }

    function getOwner() public view returns (address) {
        return _owner;
    }

    function getAuthorizer() external view returns (IAuthorizer) {
        return _getAuthorizer();
    }

    function _canPerform(bytes32 actionId, address account) internal view override returns (bool) {
        if ((getOwner() != _DELEGATE_OWNER) && _isOwnerOnlyAction(actionId)) {
            // Only the owner can perform "owner only" actions, unless the owner is delegated.
            return msg.sender == getOwner();
        } else {
            // Non-owner actions are always processed via the Authorizer, as "owner only" ones are when delegated.
            return _getAuthorizer().canPerform(actionId, account, address(this));
        }
    }

    function _isOwnerOnlyAction(bytes32 actionId) internal view virtual returns (bool);

    function _getAuthorizer() internal view virtual returns (IAuthorizer);
}

File 22 of 63 : ITemporarilyPausable.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

/**
 * @dev Interface for the TemporarilyPausable helper.
 */
interface ITemporarilyPausable {
    /**
     * @dev Emitted every time the pause state changes by `_setPaused`.
     */
    event PausedStateChanged(bool paused);

    /**
     * @dev Returns the current paused state.
     */
    function getPausedState()
        external
        view
        returns (
            bool paused,
            uint256 pauseWindowEndTime,
            uint256 bufferPeriodEndTime
        );
}

File 23 of 63 : SafeMath.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.7.0;

import "../helpers/BalancerErrors.sol";

/**
 * @dev Wrappers over Solidity's arithmetic operations with added overflow
 * checks.
 *
 * Arithmetic operations in Solidity wrap on overflow. This can easily result
 * in bugs, because programmers usually assume that an overflow raises an
 * error, which is the standard behavior in high level programming languages.
 * `SafeMath` restores this intuition by reverting the transaction when an
 * operation overflows.
 *
 * Using this library instead of the unchecked operations eliminates an entire
 * class of bugs, so it's recommended to use it always.
 */
library SafeMath {
    /**
     * @dev Returns the addition of two unsigned integers, reverting on
     * overflow.
     *
     * Counterpart to Solidity's `+` operator.
     *
     * Requirements:
     *
     * - Addition cannot overflow.
     */
    function add(uint256 a, uint256 b) internal pure returns (uint256) {
        uint256 c = a + b;
        _require(c >= a, Errors.ADD_OVERFLOW);

        return c;
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, reverting on
     * overflow (when the result is negative).
     *
     * Counterpart to Solidity's `-` operator.
     *
     * Requirements:
     *
     * - Subtraction cannot overflow.
     */
    function sub(uint256 a, uint256 b) internal pure returns (uint256) {
        return sub(a, b, Errors.SUB_OVERFLOW);
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, reverting with custom message on
     * overflow (when the result is negative).
     *
     * Counterpart to Solidity's `-` operator.
     *
     * Requirements:
     *
     * - Subtraction cannot overflow.
     */
    function sub(uint256 a, uint256 b, uint256 errorCode) internal pure returns (uint256) {
        _require(b <= a, errorCode);
        uint256 c = a - b;

        return c;
    }
}

File 24 of 63 : ISignaturesValidator.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

/**
 * @dev Interface for the SignatureValidator helper, used to support meta-transactions.
 */
interface ISignaturesValidator {
    /**
     * @dev Returns the EIP712 domain separator.
     */
    function getDomainSeparator() external view returns (bytes32);

    /**
     * @dev Returns the next nonce used by an address to sign messages.
     */
    function getNextNonce(address user) external view returns (uint256);
}

File 25 of 63 : IWETH.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

import "../openzeppelin/IERC20.sol";

/**
 * @dev Interface for WETH9.
 * See https://github.com/gnosis/canonical-weth/blob/0dd1ea3e295eef916d0c6223ec63141137d22d67/contracts/WETH9.sol
 */
interface IWETH is IERC20 {
    function deposit() external payable;

    function withdraw(uint256 amount) external;
}

File 26 of 63 : IAsset.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

/**
 * @dev This is an empty interface used to represent either ERC20-conforming token contracts or ETH (using the zero
 * address sentinel value). We're just relying on the fact that `interface` can be used to declare new address-like
 * types.
 *
 * This concept is unrelated to a Pool's Asset Managers.
 */
interface IAsset {
    // solhint-disable-previous-line no-empty-blocks
}

File 27 of 63 : IAuthorizer.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

interface IAuthorizer {
    /**
     * @dev Returns true if `account` can perform the action described by `actionId` in the contract `where`.
     */
    function canPerform(
        bytes32 actionId,
        address account,
        address where
    ) external view returns (bool);
}

File 28 of 63 : IFlashLoanRecipient.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

// Inspired by Aave Protocol's IFlashLoanReceiver.

import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/IERC20.sol";

interface IFlashLoanRecipient {
    /**
     * @dev When `flashLoan` is called on the Vault, it invokes the `receiveFlashLoan` hook on the recipient.
     *
     * At the time of the call, the Vault will have transferred `amounts` for `tokens` to the recipient. Before this
     * call returns, the recipient must have transferred `amounts` plus `feeAmounts` for each token back to the
     * Vault, or else the entire flash loan will revert.
     *
     * `userData` is the same value passed in the `IVault.flashLoan` call.
     */
    function receiveFlashLoan(
        IERC20[] memory tokens,
        uint256[] memory amounts,
        uint256[] memory feeAmounts,
        bytes memory userData
    ) external;
}

File 29 of 63 : IProtocolFeesCollector.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;
pragma experimental ABIEncoderV2;

import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/IERC20.sol";

import "./IVault.sol";
import "./IAuthorizer.sol";

interface IProtocolFeesCollector {
    event SwapFeePercentageChanged(uint256 newSwapFeePercentage);
    event FlashLoanFeePercentageChanged(uint256 newFlashLoanFeePercentage);

    function withdrawCollectedFees(
        IERC20[] calldata tokens,
        uint256[] calldata amounts,
        address recipient
    ) external;

    function setSwapFeePercentage(uint256 newSwapFeePercentage) external;

    function setFlashLoanFeePercentage(uint256 newFlashLoanFeePercentage) external;

    function getSwapFeePercentage() external view returns (uint256);

    function getFlashLoanFeePercentage() external view returns (uint256);

    function getCollectedFeeAmounts(IERC20[] memory tokens) external view returns (uint256[] memory feeAmounts);

    function getAuthorizer() external view returns (IAuthorizer);

    function vault() external view returns (IVault);
}

File 30 of 63 : IPoolSwapStructs.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;
pragma experimental ABIEncoderV2;

import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/IERC20.sol";

import "./IVault.sol";

interface IPoolSwapStructs {
    // This is not really an interface - it just defines common structs used by other interfaces: IGeneralPool and
    // IMinimalSwapInfoPool.
    //
    // This data structure represents a request for a token swap, where `kind` indicates the swap type ('given in' or
    // 'given out') which indicates whether or not the amount sent by the pool is known.
    //
    // The pool receives `tokenIn` and sends `tokenOut`. `amount` is the number of `tokenIn` tokens the pool will take
    // in, or the number of `tokenOut` tokens the Pool will send out, depending on the given swap `kind`.
    //
    // All other fields are not strictly necessary for most swaps, but are provided to support advanced scenarios in
    // some Pools.
    //
    // `poolId` is the ID of the Pool involved in the swap - this is useful for Pool contracts that implement more than
    // one Pool.
    //
    // The meaning of `lastChangeBlock` depends on the Pool specialization:
    //  - Two Token or Minimal Swap Info: the last block in which either `tokenIn` or `tokenOut` changed its total
    //    balance.
    //  - General: the last block in which *any* of the Pool's registered tokens changed its total balance.
    //
    // `from` is the origin address for the funds the Pool receives, and `to` is the destination address
    // where the Pool sends the outgoing tokens.
    //
    // `userData` is extra data provided by the caller - typically a signature from a trusted party.
    struct SwapRequest {
        IVault.SwapKind kind;
        IERC20 tokenIn;
        IERC20 tokenOut;
        uint256 amount;
        // Misc data
        bytes32 poolId;
        uint256 lastChangeBlock;
        address from;
        address to;
        bytes userData;
    }
}

File 31 of 63 : ERC20Permit.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.7.0;

import "./ERC20.sol";
import "./IERC20Permit.sol";
import "./EIP712.sol";

/**
 * @dev Implementation of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on `{IERC20-approve}`, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 *
 * _Available since v3.4._
 */
abstract contract ERC20Permit is ERC20, IERC20Permit, EIP712 {
    mapping(address => uint256) private _nonces;

    // solhint-disable-next-line var-name-mixedcase
    bytes32 private immutable _PERMIT_TYPEHASH =
        keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)");

    /**
     * @dev Initializes the {EIP712} domain separator using the `name` parameter, and setting `version` to `"1"`.
     *
     * It's a good idea to use the same `name` that is defined as the ERC20 token name.
     */
    constructor(string memory name) EIP712(name, "1") {}

    /**
     * @dev See {IERC20Permit-permit}.
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) public virtual override {
        // solhint-disable-next-line not-rely-on-time
        _require(block.timestamp <= deadline, Errors.EXPIRED_PERMIT);

        uint256 nonce = _nonces[owner];
        bytes32 structHash = keccak256(abi.encode(_PERMIT_TYPEHASH, owner, spender, value, nonce, deadline));

        bytes32 hash = _hashTypedDataV4(structHash);

        address signer = ecrecover(hash, v, r, s);
        _require((signer != address(0)) && (signer == owner), Errors.INVALID_SIGNATURE);

        _nonces[owner] = nonce + 1;
        _approve(owner, spender, value);
    }

    /**
     * @dev See {IERC20Permit-nonces}.
     */
    function nonces(address owner) public view override returns (uint256) {
        return _nonces[owner];
    }

    /**
     * @dev See {IERC20Permit-DOMAIN_SEPARATOR}.
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view override returns (bytes32) {
        return _domainSeparatorV4();
    }
}

File 32 of 63 : IERC20Permit.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.7.0;

/**
 * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on `{IERC20-approve}`, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 */
interface IERC20Permit {
    /**
     * @dev Sets `value` as the allowance of `spender` over `owner`'s tokens,
     * given `owner`'s signed approval.
     *
     * IMPORTANT: The same issues {IERC20-approve} has related to transaction
     * ordering also apply here.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `deadline` must be a timestamp in the future.
     * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
     * over the EIP712-formatted function arguments.
     * - the signature must use ``owner``'s current nonce (see {nonces}).
     *
     * For more information on the signature format, see the
     * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
     * section].
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external;

    /**
     * @dev Returns the current nonce for `owner`. This value must be
     * included whenever a signature is generated for {permit}.
     *
     * Every successful call to {permit} increases ``owner``'s nonce by one. This
     * prevents a signature from being used multiple times.
     */
    function nonces(address owner) external view returns (uint256);

    /**
     * @dev Returns the domain separator used in the encoding of the signature for `permit`, as defined by {EIP712}.
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view returns (bytes32);
}

File 33 of 63 : EIP712.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.7.0;

/**
 * @dev https://eips.ethereum.org/EIPS/eip-712[EIP 712] is a standard for hashing and signing of typed structured data.
 *
 * The encoding specified in the EIP is very generic, and such a generic implementation in Solidity is not feasible,
 * thus this contract does not implement the encoding itself. Protocols need to implement the type-specific encoding
 * they need in their contracts using a combination of `abi.encode` and `keccak256`.
 *
 * This contract implements the EIP 712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding
 * scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA
 * ({_hashTypedDataV4}).
 *
 * The implementation of the domain separator was designed to be as efficient as possible while still properly updating
 * the chain id to protect against replay attacks on an eventual fork of the chain.
 *
 * NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method
 * https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask].
 *
 * _Available since v3.4._
 */
abstract contract EIP712 {
    /* solhint-disable var-name-mixedcase */
    bytes32 private immutable _HASHED_NAME;
    bytes32 private immutable _HASHED_VERSION;
    bytes32 private immutable _TYPE_HASH;

    /* solhint-enable var-name-mixedcase */

    /**
     * @dev Initializes the domain separator and parameter caches.
     *
     * The meaning of `name` and `version` is specified in
     * https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP 712]:
     *
     * - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol.
     * - `version`: the current major version of the signing domain.
     *
     * NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart
     * contract upgrade].
     */
    constructor(string memory name, string memory version) {
        _HASHED_NAME = keccak256(bytes(name));
        _HASHED_VERSION = keccak256(bytes(version));
        _TYPE_HASH = keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)");
    }

    /**
     * @dev Returns the domain separator for the current chain.
     */
    function _domainSeparatorV4() internal view virtual returns (bytes32) {
        return keccak256(abi.encode(_TYPE_HASH, _HASHED_NAME, _HASHED_VERSION, _getChainId(), address(this)));
    }

    /**
     * @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this
     * function returns the hash of the fully encoded EIP712 message for this domain.
     *
     * This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example:
     *
     * ```solidity
     * bytes32 digest = _hashTypedDataV4(keccak256(abi.encode(
     *     keccak256("Mail(address to,string contents)"),
     *     mailTo,
     *     keccak256(bytes(mailContents))
     * )));
     * address signer = ECDSA.recover(digest, signature);
     * ```
     */
    function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) {
        return keccak256(abi.encodePacked("\x19\x01", _domainSeparatorV4(), structHash));
    }

    function _getChainId() private view returns (uint256 chainId) {
        // Silence state mutability warning without generating bytecode.
        // See https://github.com/ethereum/solidity/issues/10090#issuecomment-741789128 and
        // https://github.com/ethereum/solidity/issues/2691
        this;

        // solhint-disable-next-line no-inline-assembly
        assembly {
            chainId := chainid()
        }
    }
}

File 34 of 63 : Authentication.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

import "./BalancerErrors.sol";
import "./IAuthentication.sol";

/**
 * @dev Building block for performing access control on external functions.
 *
 * This contract is used via the `authenticate` modifier (or the `_authenticateCaller` function), which can be applied
 * to external functions to only make them callable by authorized accounts.
 *
 * Derived contracts must implement the `_canPerform` function, which holds the actual access control logic.
 */
abstract contract Authentication is IAuthentication {
    bytes32 private immutable _actionIdDisambiguator;

    /**
     * @dev The main purpose of the `actionIdDisambiguator` is to prevent accidental function selector collisions in
     * multi contract systems.
     *
     * There are two main uses for it:
     *  - if the contract is a singleton, any unique identifier can be used to make the associated action identifiers
     *    unique. The contract's own address is a good option.
     *  - if the contract belongs to a family that shares action identifiers for the same functions, an identifier
     *    shared by the entire family (and no other contract) should be used instead.
     */
    constructor(bytes32 actionIdDisambiguator) {
        _actionIdDisambiguator = actionIdDisambiguator;
    }

    /**
     * @dev Reverts unless the caller is allowed to call this function. Should only be applied to external functions.
     */
    modifier authenticate() {
        _authenticateCaller();
        _;
    }

    /**
     * @dev Reverts unless the caller is allowed to call the entry point function.
     */
    function _authenticateCaller() internal view {
        bytes32 actionId = getActionId(msg.sig);
        _require(_canPerform(actionId, msg.sender), Errors.SENDER_NOT_ALLOWED);
    }

    function getActionId(bytes4 selector) public view override returns (bytes32) {
        // Each external function is dynamically assigned an action identifier as the hash of the disambiguator and the
        // function selector. Disambiguation is necessary to avoid potential collisions in the function selectors of
        // multiple contracts.
        return keccak256(abi.encodePacked(_actionIdDisambiguator, selector));
    }

    function _canPerform(bytes32 actionId, address user) internal view virtual returns (bool);
}

File 35 of 63 : IAuthentication.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

interface IAuthentication {
    /**
     * @dev Returns the action identifier associated with the external function described by `selector`.
     */
    function getActionId(bytes4 selector) external view returns (bytes32);
}

File 36 of 63 : WeightedPool.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;
pragma experimental ABIEncoderV2;

import "./BaseWeightedPool.sol";

/**
 * @dev Basic Weighted Pool with immutable weights.
 */
contract WeightedPool is BaseWeightedPool {
    using FixedPoint for uint256;

    uint256 private constant _MAX_TOKENS = 20;

    uint256 private immutable _totalTokens;

    IERC20 internal immutable _token0;
    IERC20 internal immutable _token1;
    IERC20 internal immutable _token2;
    IERC20 internal immutable _token3;
    IERC20 internal immutable _token4;
    IERC20 internal immutable _token5;
    IERC20 internal immutable _token6;
    IERC20 internal immutable _token7;
    IERC20 internal immutable _token8;
    IERC20 internal immutable _token9;
    IERC20 internal immutable _token10;
    IERC20 internal immutable _token11;
    IERC20 internal immutable _token12;
    IERC20 internal immutable _token13;
    IERC20 internal immutable _token14;
    IERC20 internal immutable _token15;
    IERC20 internal immutable _token16;
    IERC20 internal immutable _token17;
    IERC20 internal immutable _token18;
    IERC20 internal immutable _token19;

    // All token balances are normalized to behave as if the token had 18 decimals. We assume a token's decimals will
    // not change throughout its lifetime, and store the corresponding scaling factor for each at construction time.
    // These factors are always greater than or equal to one: tokens with more than 18 decimals are not supported.

    uint256 internal immutable _scalingFactor0;
    uint256 internal immutable _scalingFactor1;
    uint256 internal immutable _scalingFactor2;
    uint256 internal immutable _scalingFactor3;
    uint256 internal immutable _scalingFactor4;
    uint256 internal immutable _scalingFactor5;
    uint256 internal immutable _scalingFactor6;
    uint256 internal immutable _scalingFactor7;
    uint256 internal immutable _scalingFactor8;
    uint256 internal immutable _scalingFactor9;
    uint256 internal immutable _scalingFactor10;
    uint256 internal immutable _scalingFactor11;
    uint256 internal immutable _scalingFactor12;
    uint256 internal immutable _scalingFactor13;
    uint256 internal immutable _scalingFactor14;
    uint256 internal immutable _scalingFactor15;
    uint256 internal immutable _scalingFactor16;
    uint256 internal immutable _scalingFactor17;
    uint256 internal immutable _scalingFactor18;
    uint256 internal immutable _scalingFactor19;

    // The protocol fees will always be charged using the token associated with the max weight in the pool.
    // Since these Pools will register tokens only once, we can assume this index will be constant.
    uint256 internal immutable _maxWeightTokenIndex;

    uint256 internal immutable _normalizedWeight0;
    uint256 internal immutable _normalizedWeight1;
    uint256 internal immutable _normalizedWeight2;
    uint256 internal immutable _normalizedWeight3;
    uint256 internal immutable _normalizedWeight4;
    uint256 internal immutable _normalizedWeight5;
    uint256 internal immutable _normalizedWeight6;
    uint256 internal immutable _normalizedWeight7;
    uint256 internal immutable _normalizedWeight8;
    uint256 internal immutable _normalizedWeight9;
    uint256 internal immutable _normalizedWeight10;
    uint256 internal immutable _normalizedWeight11;
    uint256 internal immutable _normalizedWeight12;
    uint256 internal immutable _normalizedWeight13;
    uint256 internal immutable _normalizedWeight14;
    uint256 internal immutable _normalizedWeight15;
    uint256 internal immutable _normalizedWeight16;
    uint256 internal immutable _normalizedWeight17;
    uint256 internal immutable _normalizedWeight18;
    uint256 internal immutable _normalizedWeight19;

    constructor(
        IVault vault,
        string memory name,
        string memory symbol,
        IERC20[] memory tokens,
        uint256[] memory normalizedWeights,
        address[] memory assetManagers,
        uint256 swapFeePercentage,
        uint256 pauseWindowDuration,
        uint256 bufferPeriodDuration,
        address owner
    )
        BaseWeightedPool(
            vault,
            name,
            symbol,
            tokens,
            assetManagers,
            swapFeePercentage,
            pauseWindowDuration,
            bufferPeriodDuration,
            owner
        )
    {
        uint256 numTokens = tokens.length;
        InputHelpers.ensureInputLengthMatch(numTokens, normalizedWeights.length);

        _totalTokens = numTokens;

        // Ensure  each normalized weight is above them minimum and find the token index of the maximum weight
        uint256 normalizedSum = 0;
        uint256 maxWeightTokenIndex = 0;
        uint256 maxNormalizedWeight = 0;
        for (uint8 i = 0; i < numTokens; i++) {
            uint256 normalizedWeight = normalizedWeights[i];
            _require(normalizedWeight >= _MIN_WEIGHT, Errors.MIN_WEIGHT);

            normalizedSum = normalizedSum.add(normalizedWeight);
            if (normalizedWeight > maxNormalizedWeight) {
                maxWeightTokenIndex = i;
                maxNormalizedWeight = normalizedWeight;
            }
        }
        // Ensure that the normalized weights sum to ONE
        _require(normalizedSum == FixedPoint.ONE, Errors.NORMALIZED_WEIGHT_INVARIANT);

        _maxWeightTokenIndex = maxWeightTokenIndex;

        _normalizedWeight0 = normalizedWeights[0];
        _normalizedWeight1 = normalizedWeights[1];
        _normalizedWeight2 = numTokens > 2 ? normalizedWeights[2] : 0;
        _normalizedWeight3 = numTokens > 3 ? normalizedWeights[3] : 0;
        _normalizedWeight4 = numTokens > 4 ? normalizedWeights[4] : 0;
        _normalizedWeight5 = numTokens > 5 ? normalizedWeights[5] : 0;
        _normalizedWeight6 = numTokens > 6 ? normalizedWeights[6] : 0;
        _normalizedWeight7 = numTokens > 7 ? normalizedWeights[7] : 0;
        _normalizedWeight8 = numTokens > 8 ? normalizedWeights[8] : 0;
        _normalizedWeight9 = numTokens > 9 ? normalizedWeights[9] : 0;
        _normalizedWeight10 = numTokens > 10 ? normalizedWeights[10] : 0;
        _normalizedWeight11 = numTokens > 11 ? normalizedWeights[11] : 0;
        _normalizedWeight12 = numTokens > 12 ? normalizedWeights[12] : 0;
        _normalizedWeight13 = numTokens > 13 ? normalizedWeights[13] : 0;
        _normalizedWeight14 = numTokens > 14 ? normalizedWeights[14] : 0;
        _normalizedWeight15 = numTokens > 15 ? normalizedWeights[15] : 0;
        _normalizedWeight16 = numTokens > 16 ? normalizedWeights[16] : 0;
        _normalizedWeight17 = numTokens > 17 ? normalizedWeights[17] : 0;
        _normalizedWeight18 = numTokens > 18 ? normalizedWeights[18] : 0;
        _normalizedWeight19 = numTokens > 19 ? normalizedWeights[19] : 0;

        // Immutable variables cannot be initialized inside an if statement, so we must do conditional assignments
        _token0 = tokens[0];
        _token1 = tokens[1];
        _token2 = numTokens > 2 ? tokens[2] : IERC20(0);
        _token3 = numTokens > 3 ? tokens[3] : IERC20(0);
        _token4 = numTokens > 4 ? tokens[4] : IERC20(0);
        _token5 = numTokens > 5 ? tokens[5] : IERC20(0);
        _token6 = numTokens > 6 ? tokens[6] : IERC20(0);
        _token7 = numTokens > 7 ? tokens[7] : IERC20(0);
        _token8 = numTokens > 8 ? tokens[8] : IERC20(0);
        _token9 = numTokens > 9 ? tokens[9] : IERC20(0);
        _token10 = numTokens > 10 ? tokens[10] : IERC20(0);
        _token11 = numTokens > 11 ? tokens[11] : IERC20(0);
        _token12 = numTokens > 12 ? tokens[12] : IERC20(0);
        _token13 = numTokens > 13 ? tokens[13] : IERC20(0);
        _token14 = numTokens > 14 ? tokens[14] : IERC20(0);
        _token15 = numTokens > 15 ? tokens[15] : IERC20(0);
        _token16 = numTokens > 16 ? tokens[16] : IERC20(0);
        _token17 = numTokens > 17 ? tokens[17] : IERC20(0);
        _token18 = numTokens > 18 ? tokens[18] : IERC20(0);
        _token19 = numTokens > 19 ? tokens[19] : IERC20(0);

        _scalingFactor0 = _computeScalingFactor(tokens[0]);
        _scalingFactor1 = _computeScalingFactor(tokens[1]);
        _scalingFactor2 = numTokens > 2 ? _computeScalingFactor(tokens[2]) : 0;
        _scalingFactor3 = numTokens > 3 ? _computeScalingFactor(tokens[3]) : 0;
        _scalingFactor4 = numTokens > 4 ? _computeScalingFactor(tokens[4]) : 0;
        _scalingFactor5 = numTokens > 5 ? _computeScalingFactor(tokens[5]) : 0;
        _scalingFactor6 = numTokens > 6 ? _computeScalingFactor(tokens[6]) : 0;
        _scalingFactor7 = numTokens > 7 ? _computeScalingFactor(tokens[7]) : 0;
        _scalingFactor8 = numTokens > 8 ? _computeScalingFactor(tokens[8]) : 0;
        _scalingFactor9 = numTokens > 9 ? _computeScalingFactor(tokens[9]) : 0;
        _scalingFactor10 = numTokens > 10 ? _computeScalingFactor(tokens[10]) : 0;
        _scalingFactor11 = numTokens > 11 ? _computeScalingFactor(tokens[11]) : 0;
        _scalingFactor12 = numTokens > 12 ? _computeScalingFactor(tokens[12]) : 0;
        _scalingFactor13 = numTokens > 13 ? _computeScalingFactor(tokens[13]) : 0;
        _scalingFactor14 = numTokens > 14 ? _computeScalingFactor(tokens[14]) : 0;
        _scalingFactor15 = numTokens > 15 ? _computeScalingFactor(tokens[15]) : 0;
        _scalingFactor16 = numTokens > 16 ? _computeScalingFactor(tokens[16]) : 0;
        _scalingFactor17 = numTokens > 17 ? _computeScalingFactor(tokens[17]) : 0;
        _scalingFactor18 = numTokens > 18 ? _computeScalingFactor(tokens[18]) : 0;
        _scalingFactor19 = numTokens > 19 ? _computeScalingFactor(tokens[19]) : 0;
    }

    function _getNormalizedWeight(IERC20 token) internal view virtual override returns (uint256) {
        // prettier-ignore
        if (token == _token0) { return _normalizedWeight0; }
        else if (token == _token1) { return _normalizedWeight1; }
        else if (token == _token2) { return _normalizedWeight2; }
        else if (token == _token3) { return _normalizedWeight3; }
        else if (token == _token4) { return _normalizedWeight4; }
        else if (token == _token5) { return _normalizedWeight5; }
        else if (token == _token6) { return _normalizedWeight6; }
        else if (token == _token7) { return _normalizedWeight7; }
        else if (token == _token8) { return _normalizedWeight8; }
        else if (token == _token9) { return _normalizedWeight9; }
        else if (token == _token10) { return _normalizedWeight10; }
        else if (token == _token11) { return _normalizedWeight11; }
        else if (token == _token12) { return _normalizedWeight12; }
        else if (token == _token13) { return _normalizedWeight13; }
        else if (token == _token14) { return _normalizedWeight14; }
        else if (token == _token15) { return _normalizedWeight15; }
        else if (token == _token16) { return _normalizedWeight16; }
        else if (token == _token17) { return _normalizedWeight17; }
        else if (token == _token18) { return _normalizedWeight18; }
        else if (token == _token19) { return _normalizedWeight19; }
        else {
            _revert(Errors.INVALID_TOKEN);
        }
    }

    function _getNormalizedWeights() internal view virtual override returns (uint256[] memory) {
        uint256 totalTokens = _getTotalTokens();
        uint256[] memory normalizedWeights = new uint256[](totalTokens);

        // prettier-ignore
        {
            if (totalTokens > 0) { normalizedWeights[0] = _normalizedWeight0; } else { return normalizedWeights; }
            if (totalTokens > 1) { normalizedWeights[1] = _normalizedWeight1; } else { return normalizedWeights; }
            if (totalTokens > 2) { normalizedWeights[2] = _normalizedWeight2; } else { return normalizedWeights; }
            if (totalTokens > 3) { normalizedWeights[3] = _normalizedWeight3; } else { return normalizedWeights; }
            if (totalTokens > 4) { normalizedWeights[4] = _normalizedWeight4; } else { return normalizedWeights; }
            if (totalTokens > 5) { normalizedWeights[5] = _normalizedWeight5; } else { return normalizedWeights; }
            if (totalTokens > 6) { normalizedWeights[6] = _normalizedWeight6; } else { return normalizedWeights; }
            if (totalTokens > 7) { normalizedWeights[7] = _normalizedWeight7; } else { return normalizedWeights; }
            if (totalTokens > 8) { normalizedWeights[8] = _normalizedWeight8; } else { return normalizedWeights; }
            if (totalTokens > 9) { normalizedWeights[9] = _normalizedWeight9; } else { return normalizedWeights; }
            if (totalTokens > 10) { normalizedWeights[10] = _normalizedWeight10; } else { return normalizedWeights; }
            if (totalTokens > 11) { normalizedWeights[11] = _normalizedWeight11; } else { return normalizedWeights; }
            if (totalTokens > 12) { normalizedWeights[12] = _normalizedWeight12; } else { return normalizedWeights; }
            if (totalTokens > 13) { normalizedWeights[13] = _normalizedWeight13; } else { return normalizedWeights; }
            if (totalTokens > 14) { normalizedWeights[14] = _normalizedWeight14; } else { return normalizedWeights; }
            if (totalTokens > 15) { normalizedWeights[15] = _normalizedWeight15; } else { return normalizedWeights; }
            if (totalTokens > 16) { normalizedWeights[16] = _normalizedWeight16; } else { return normalizedWeights; }
            if (totalTokens > 17) { normalizedWeights[17] = _normalizedWeight17; } else { return normalizedWeights; }
            if (totalTokens > 18) { normalizedWeights[18] = _normalizedWeight18; } else { return normalizedWeights; }
            if (totalTokens > 19) { normalizedWeights[19] = _normalizedWeight19; } else { return normalizedWeights; }
        }

        return normalizedWeights;
    }

    function _getNormalizedWeightsAndMaxWeightIndex()
        internal
        view
        virtual
        override
        returns (uint256[] memory, uint256)
    {
        return (_getNormalizedWeights(), _maxWeightTokenIndex);
    }

    function _getMaxTokens() internal pure virtual override returns (uint256) {
        return _MAX_TOKENS;
    }

    function _getTotalTokens() internal view virtual override returns (uint256) {
        return _totalTokens;
    }

    /**
     * @dev Returns the scaling factor for one of the Pool's tokens. Reverts if `token` is not a token registered by the
     * Pool.
     */
    function _scalingFactor(IERC20 token) internal view virtual override returns (uint256) {
        // prettier-ignore
        if (token == _token0) { return _scalingFactor0; }
        else if (token == _token1) { return _scalingFactor1; }
        else if (token == _token2) { return _scalingFactor2; }
        else if (token == _token3) { return _scalingFactor3; }
        else if (token == _token4) { return _scalingFactor4; }
        else if (token == _token5) { return _scalingFactor5; }
        else if (token == _token6) { return _scalingFactor6; }
        else if (token == _token7) { return _scalingFactor7; }
        else if (token == _token8) { return _scalingFactor8; }
        else if (token == _token9) { return _scalingFactor9; }
        else if (token == _token10) { return _scalingFactor10; }
        else if (token == _token11) { return _scalingFactor11; }
        else if (token == _token12) { return _scalingFactor12; }
        else if (token == _token13) { return _scalingFactor13; }
        else if (token == _token14) { return _scalingFactor14; }
        else if (token == _token15) { return _scalingFactor15; }
        else if (token == _token16) { return _scalingFactor16; }
        else if (token == _token17) { return _scalingFactor17; }
        else if (token == _token18) { return _scalingFactor18; }
        else if (token == _token19) { return _scalingFactor19; }
        else {
            _revert(Errors.INVALID_TOKEN);
        }
    }

    function _scalingFactors() internal view virtual override returns (uint256[] memory) {
        uint256 totalTokens = _getTotalTokens();
        uint256[] memory scalingFactors = new uint256[](totalTokens);

        // prettier-ignore
        {
            if (totalTokens > 0) { scalingFactors[0] = _scalingFactor0; } else { return scalingFactors; }
            if (totalTokens > 1) { scalingFactors[1] = _scalingFactor1; } else { return scalingFactors; }
            if (totalTokens > 2) { scalingFactors[2] = _scalingFactor2; } else { return scalingFactors; }
            if (totalTokens > 3) { scalingFactors[3] = _scalingFactor3; } else { return scalingFactors; }
            if (totalTokens > 4) { scalingFactors[4] = _scalingFactor4; } else { return scalingFactors; }
            if (totalTokens > 5) { scalingFactors[5] = _scalingFactor5; } else { return scalingFactors; }
            if (totalTokens > 6) { scalingFactors[6] = _scalingFactor6; } else { return scalingFactors; }
            if (totalTokens > 7) { scalingFactors[7] = _scalingFactor7; } else { return scalingFactors; }
            if (totalTokens > 8) { scalingFactors[8] = _scalingFactor8; } else { return scalingFactors; }
            if (totalTokens > 9) { scalingFactors[9] = _scalingFactor9; } else { return scalingFactors; }
            if (totalTokens > 10) { scalingFactors[10] = _scalingFactor10; } else { return scalingFactors; }
            if (totalTokens > 11) { scalingFactors[11] = _scalingFactor11; } else { return scalingFactors; }
            if (totalTokens > 12) { scalingFactors[12] = _scalingFactor12; } else { return scalingFactors; }
            if (totalTokens > 13) { scalingFactors[13] = _scalingFactor13; } else { return scalingFactors; }
            if (totalTokens > 14) { scalingFactors[14] = _scalingFactor14; } else { return scalingFactors; }
            if (totalTokens > 15) { scalingFactors[15] = _scalingFactor15; } else { return scalingFactors; }
            if (totalTokens > 16) { scalingFactors[16] = _scalingFactor16; } else { return scalingFactors; }
            if (totalTokens > 17) { scalingFactors[17] = _scalingFactor17; } else { return scalingFactors; }       
            if (totalTokens > 18) { scalingFactors[18] = _scalingFactor18; } else { return scalingFactors; }
            if (totalTokens > 19) { scalingFactors[19] = _scalingFactor19; } else { return scalingFactors; }       
        }

        return scalingFactors;
    }
}

File 37 of 63 : WeightedPoolNoAMFactory.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;
pragma experimental ABIEncoderV2;

import "@balancer-labs/v2-vault/contracts/interfaces/IVault.sol";

import "@balancer-labs/v2-pool-utils/contracts/factories/BasePoolSplitCodeFactory.sol";
import "@balancer-labs/v2-pool-utils/contracts/factories/FactoryWidePauseWindow.sol";

import "./WeightedPool.sol";

contract WeightedPoolNoAMFactory is BasePoolSplitCodeFactory, FactoryWidePauseWindow {
    constructor(IVault vault) BasePoolSplitCodeFactory(vault, type(WeightedPool).creationCode) {
        // solhint-disable-previous-line no-empty-blocks
    }

    /**
     * @dev Deploys a new `WeightedPool` without asset managers.
     */
    function create(
        string memory name,
        string memory symbol,
        IERC20[] memory tokens,
        uint256[] memory weights,
        uint256 swapFeePercentage,
        address owner
    ) external returns (address) {
        (uint256 pauseWindowDuration, uint256 bufferPeriodDuration) = getPauseConfiguration();

        return
            _create(
                abi.encode(
                    getVault(),
                    name,
                    symbol,
                    tokens,
                    weights,
                    new address[](tokens.length), // Don't allow asset managers
                    swapFeePercentage,
                    pauseWindowDuration,
                    bufferPeriodDuration,
                    owner
                )
            );
    }
}

File 38 of 63 : BasePoolSplitCodeFactory.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;
pragma experimental ABIEncoderV2;

import "@balancer-labs/v2-solidity-utils/contracts/helpers/BaseSplitCodeFactory.sol";
import "@balancer-labs/v2-vault/contracts/interfaces/IVault.sol";

/**
 * @dev Same as `BasePoolFactory`, for Pools whose creation code is so large that the factory cannot hold it.
 */
abstract contract BasePoolSplitCodeFactory is BaseSplitCodeFactory {
    IVault private immutable _vault;
    mapping(address => bool) private _isPoolFromFactory;

    event PoolCreated(address indexed pool);

    constructor(IVault vault, bytes memory creationCode) BaseSplitCodeFactory(creationCode) {
        _vault = vault;
    }

    /**
     * @dev Returns the Vault's address.
     */
    function getVault() public view returns (IVault) {
        return _vault;
    }

    /**
     * @dev Returns true if `pool` was created by this factory.
     */
    function isPoolFromFactory(address pool) external view returns (bool) {
        return _isPoolFromFactory[pool];
    }

    function _create(bytes memory constructorArgs) internal override returns (address) {
        address pool = super._create(constructorArgs);

        _isPoolFromFactory[pool] = true;
        emit PoolCreated(pool);

        return pool;
    }
}

File 39 of 63 : FactoryWidePauseWindow.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;
pragma experimental ABIEncoderV2;

/**
 * @dev Utility to create Pool factories for Pools that use the `TemporarilyPausable` contract.
 *
 * By calling `TemporarilyPausable`'s constructor with the result of `getPauseConfiguration`, all Pools created by this
 * factory will share the same Pause Window end time, after which both old and new Pools will not be pausable.
 */
contract FactoryWidePauseWindow {
    // This contract relies on timestamps in a similar way as `TemporarilyPausable` does - the same caveats apply.
    // solhint-disable not-rely-on-time

    uint256 private constant _INITIAL_PAUSE_WINDOW_DURATION = 90 days;
    uint256 private constant _BUFFER_PERIOD_DURATION = 30 days;

    // Time when the pause window for all created Pools expires, and the pause window duration of new Pools becomes
    // zero.
    uint256 private immutable _poolsPauseWindowEndTime;

    constructor() {
        _poolsPauseWindowEndTime = block.timestamp + _INITIAL_PAUSE_WINDOW_DURATION;
    }

    /**
     * @dev Returns the current `TemporarilyPausable` configuration that will be applied to Pools created by this
     * factory.
     *
     * `pauseWindowDuration` will decrease over time until it reaches zero, at which point both it and
     * `bufferPeriodDuration` will be zero forever, meaning deployed Pools will not be pausable.
     */
    function getPauseConfiguration() public view returns (uint256 pauseWindowDuration, uint256 bufferPeriodDuration) {
        uint256 currentTime = block.timestamp;
        if (currentTime < _poolsPauseWindowEndTime) {
            // The buffer period is always the same since its duration is related to how much time is needed to respond
            // to a potential emergency. The Pause Window duration however decreases as the end time approaches.

            pauseWindowDuration = _poolsPauseWindowEndTime - currentTime; // No need for checked arithmetic.
            bufferPeriodDuration = _BUFFER_PERIOD_DURATION;
        } else {
            // After the end time, newly created Pools have no Pause Window, nor Buffer Period (since they are not
            // pausable in the first place).

            pauseWindowDuration = 0;
            bufferPeriodDuration = 0;
        }
    }
}

File 40 of 63 : BaseSplitCodeFactory.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;
pragma experimental ABIEncoderV2;

import "./BalancerErrors.sol";
import "./CodeDeployer.sol";

/**
 * @dev Base factory for contracts whose creation code is so large that the factory cannot hold it. This happens when
 * the contract's creation code grows close to 24kB.
 *
 * Note that this factory cannot help with contracts that have a *runtime* (deployed) bytecode larger than 24kB.
 */
abstract contract BaseSplitCodeFactory {
    // The contract's creation code is stored as code in two separate addresses, and retrieved via `extcodecopy`. This
    // means this factory supports contracts with creation code of up to 48kB.
    // We rely on inline-assembly to achieve this, both to make the entire operation highly gas efficient, and because
    // `extcodecopy` is not available in Solidity.

    // solhint-disable no-inline-assembly

    address private immutable _creationCodeContractA;
    uint256 private immutable _creationCodeSizeA;

    address private immutable _creationCodeContractB;
    uint256 private immutable _creationCodeSizeB;

    /**
     * @dev The creation code of a contract Foo can be obtained inside Solidity with `type(Foo).creationCode`.
     */
    constructor(bytes memory creationCode) {
        uint256 creationCodeSize = creationCode.length;

        // We are going to deploy two contracts: one with approximately the first half of `creationCode`'s contents
        // (A), and another with the remaining half (B).
        // We store the lengths in both immutable and stack variables, since immutable variables cannot be read during
        // construction.
        uint256 creationCodeSizeA = creationCodeSize / 2;
        _creationCodeSizeA = creationCodeSizeA;

        uint256 creationCodeSizeB = creationCodeSize - creationCodeSizeA;
        _creationCodeSizeB = creationCodeSizeB;

        // To deploy the contracts, we're going to use `CodeDeployer.deploy()`, which expects a memory array with
        // the code to deploy. Note that we cannot simply create arrays for A and B's code by copying or moving
        // `creationCode`'s contents as they are expected to be very large (> 24kB), so we must operate in-place.

        // Memory: [ code length ] [ A.data ] [ B.data ]

        // Creating A's array is simple: we simply replace `creationCode`'s length with A's length. We'll later restore
        // the original length.

        bytes memory creationCodeA;
        assembly {
            creationCodeA := creationCode
            mstore(creationCodeA, creationCodeSizeA)
        }

        // Memory: [ A.length ] [ A.data ] [ B.data ]
        //         ^ creationCodeA

        _creationCodeContractA = CodeDeployer.deploy(creationCodeA);

        // Creating B's array is a bit more involved: since we cannot move B's contents, we are going to create a 'new'
        // memory array starting at A's last 32 bytes, which will be replaced with B's length. We'll back-up this last
        // byte to later restore it.

        bytes memory creationCodeB;
        bytes32 lastByteA;

        assembly {
            // `creationCode` points to the array's length, not data, so by adding A's length to it we arrive at A's
            // last 32 bytes.
            creationCodeB := add(creationCode, creationCodeSizeA)
            lastByteA := mload(creationCodeB)
            mstore(creationCodeB, creationCodeSizeB)
        }

        // Memory: [ A.length ] [ A.data[ : -1] ] [ B.length ][ B.data ]
        //         ^ creationCodeA                ^ creationCodeB

        _creationCodeContractB = CodeDeployer.deploy(creationCodeB);

        // We now restore the original contents of `creationCode` by writing back the original length and A's last byte.
        assembly {
            mstore(creationCodeA, creationCodeSize)
            mstore(creationCodeB, lastByteA)
        }
    }

    /**
     * @dev Returns the two addresses where the creation code of the contract crated by this factory is stored.
     */
    function getCreationCodeContracts() public view returns (address contractA, address contractB) {
        return (_creationCodeContractA, _creationCodeContractB);
    }

    /**
     * @dev Returns the creation code of the contract this factory creates.
     */
    function getCreationCode() public view returns (bytes memory) {
        return _getCreationCodeWithArgs("");
    }

    /**
     * @dev Returns the creation code that will result in a contract being deployed with `constructorArgs`.
     */
    function _getCreationCodeWithArgs(bytes memory constructorArgs) private view returns (bytes memory code) {
        // This function exists because `abi.encode()` cannot be instructed to place its result at a specific address.
        // We need for the ABI-encoded constructor arguments to be located immediately after the creation code, but
        // cannot rely on `abi.encodePacked()` to perform concatenation as that would involve copying the creation code,
        // which would be prohibitively expensive.
        // Instead, we compute the creation code in a pre-allocated array that is large enough to hold *both* the
        // creation code and the constructor arguments, and then copy the ABI-encoded arguments (which should not be
        // overly long) right after the end of the creation code.

        // Immutable variables cannot be used in assembly, so we store them in the stack first.
        address creationCodeContractA = _creationCodeContractA;
        uint256 creationCodeSizeA = _creationCodeSizeA;
        address creationCodeContractB = _creationCodeContractB;
        uint256 creationCodeSizeB = _creationCodeSizeB;

        uint256 creationCodeSize = creationCodeSizeA + creationCodeSizeB;
        uint256 constructorArgsSize = constructorArgs.length;

        uint256 codeSize = creationCodeSize + constructorArgsSize;

        assembly {
            // First, we allocate memory for `code` by retrieving the free memory pointer and then moving it ahead of
            // `code` by the size of the creation code plus constructor arguments, and 32 bytes for the array length.
            code := mload(0x40)
            mstore(0x40, add(code, add(codeSize, 32)))

            // We now store the length of the code plus constructor arguments.
            mstore(code, codeSize)

            // Next, we concatenate the creation code stored in A and B.
            let dataStart := add(code, 32)
            extcodecopy(creationCodeContractA, dataStart, 0, creationCodeSizeA)
            extcodecopy(creationCodeContractB, add(dataStart, creationCodeSizeA), 0, creationCodeSizeB)
        }

        // Finally, we copy the constructorArgs to the end of the array. Unfortunately there is no way to avoid this
        // copy, as it is not possible to tell Solidity where to store the result of `abi.encode()`.
        uint256 constructorArgsDataPtr;
        uint256 constructorArgsCodeDataPtr;
        assembly {
            constructorArgsDataPtr := add(constructorArgs, 32)
            constructorArgsCodeDataPtr := add(add(code, 32), creationCodeSize)
        }

        _memcpy(constructorArgsCodeDataPtr, constructorArgsDataPtr, constructorArgsSize);
    }

    /**
     * @dev Deploys a contract with constructor arguments. To create `constructorArgs`, call `abi.encode()` with the
     * contract's constructor arguments, in order.
     */
    function _create(bytes memory constructorArgs) internal virtual returns (address) {
        bytes memory creationCode = _getCreationCodeWithArgs(constructorArgs);

        address destination;
        assembly {
            destination := create(0, add(creationCode, 32), mload(creationCode))
        }

        if (destination == address(0)) {
            // Bubble up inner revert reason
            // solhint-disable-next-line no-inline-assembly
            assembly {
                returndatacopy(0, 0, returndatasize())
                revert(0, returndatasize())
            }
        }

        return destination;
    }

    // From
    // https://github.com/Arachnid/solidity-stringutils/blob/b9a6f6615cf18a87a823cbc461ce9e140a61c305/src/strings.sol
    function _memcpy(
        uint256 dest,
        uint256 src,
        uint256 len
    ) private pure {
        // Copy word-length chunks while possible
        for (; len >= 32; len -= 32) {
            assembly {
                mstore(dest, mload(src))
            }
            dest += 32;
            src += 32;
        }

        // Copy remaining bytes
        uint256 mask = 256**(32 - len) - 1;
        assembly {
            let srcpart := and(mload(src), not(mask))
            let destpart := and(mload(dest), mask)
            mstore(dest, or(destpart, srcpart))
        }
    }
}

File 41 of 63 : CodeDeployer.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

import "./BalancerErrors.sol";

/**
 * @dev Library used to deploy contracts with specific code. This can be used for long-term storage of immutable data as
 * contract code, which can be retrieved via the `extcodecopy` opcode.
 */
library CodeDeployer {
    // During contract construction, the full code supplied exists as code, and can be accessed via `codesize` and
    // `codecopy`. This is not the contract's final code however: whatever the constructor returns is what will be
    // stored as its code.
    //
    // We use this mechanism to have a simple constructor that stores whatever is appended to it. The following opcode
    // sequence corresponds to the creation code of the following equivalent Solidity contract, plus padding to make the
    // full code 32 bytes long:
    //
    // contract CodeDeployer {
    //     constructor() payable {
    //         uint256 size;
    //         assembly {
    //             size := sub(codesize(), 32) // size of appended data, as constructor is 32 bytes long
    //             codecopy(0, 32, size) // copy all appended data to memory at position 0
    //             return(0, size) // return appended data for it to be stored as code
    //         }
    //     }
    // }
    //
    // More specifically, it is composed of the following opcodes (plus padding):
    //
    // [1] PUSH1 0x20
    // [2] CODESIZE
    // [3] SUB
    // [4] DUP1
    // [6] PUSH1 0x20
    // [8] PUSH1 0x00
    // [9] CODECOPY
    // [11] PUSH1 0x00
    // [12] RETURN
    //
    // The padding is just the 0xfe sequence (invalid opcode).
    bytes32
        private constant _DEPLOYER_CREATION_CODE = 0x602038038060206000396000f3fefefefefefefefefefefefefefefefefefefe;

    /**
     * @dev Deploys a contract with `code` as its code, returning the destination address.
     *
     * Reverts if deployment fails.
     */
    function deploy(bytes memory code) internal returns (address destination) {
        bytes32 deployerCreationCode = _DEPLOYER_CREATION_CODE;

        // solhint-disable-next-line no-inline-assembly
        assembly {
            let codeLength := mload(code)

            // `code` is composed of length and data. We've already stored its length in `codeLength`, so we simply
            // replace it with the deployer creation code (which is exactly 32 bytes long).
            mstore(code, deployerCreationCode)

            // At this point, `code` now points to the deployer creation code immediately followed by `code`'s data
            // contents. This is exactly what the deployer expects to receive when created.
            destination := create(0, code, add(codeLength, 32))

            // Finally, we restore the original length in order to not mutate `code`.
            mstore(code, codeLength)
        }

        // The create opcode returns the zero address when contract creation fails, so we revert if this happens.
        _require(destination != address(0), Errors.CODE_DEPLOYMENT_FAILED);
    }
}

File 42 of 63 : WeightedPoolFactory.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;
pragma experimental ABIEncoderV2;

import "@balancer-labs/v2-vault/contracts/interfaces/IVault.sol";

import "@balancer-labs/v2-pool-utils/contracts/factories/BasePoolSplitCodeFactory.sol";
import "@balancer-labs/v2-pool-utils/contracts/factories/FactoryWidePauseWindow.sol";

import "./WeightedPool.sol";

contract WeightedPoolFactory is BasePoolSplitCodeFactory, FactoryWidePauseWindow {
    constructor(IVault vault) BasePoolSplitCodeFactory(vault, type(WeightedPool).creationCode) {
        // solhint-disable-previous-line no-empty-blocks
    }

    /**
     * @dev Deploys a new `WeightedPool`.
     */
    function create(
        string memory name,
        string memory symbol,
        IERC20[] memory tokens,
        uint256[] memory weights,
        address[] memory assetManagers,
        uint256 swapFeePercentage,
        address owner
    ) external returns (address) {
        (uint256 pauseWindowDuration, uint256 bufferPeriodDuration) = getPauseConfiguration();

        return
            _create(
                abi.encode(
                    getVault(),
                    name,
                    symbol,
                    tokens,
                    weights,
                    assetManagers,
                    swapFeePercentage,
                    pauseWindowDuration,
                    bufferPeriodDuration,
                    owner
                )
            );
    }
}

File 43 of 63 : WeightedPool2Tokens.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;
pragma experimental ABIEncoderV2;

import "@balancer-labs/v2-solidity-utils/contracts/math/FixedPoint.sol";
import "@balancer-labs/v2-solidity-utils/contracts/helpers/InputHelpers.sol";
import "@balancer-labs/v2-solidity-utils/contracts/helpers/LogCompression.sol";
import "@balancer-labs/v2-solidity-utils/contracts/helpers/TemporarilyPausable.sol";
import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/ERC20.sol";

import "@balancer-labs/v2-vault/contracts/interfaces/IMinimalSwapInfoPool.sol";

import "@balancer-labs/v2-pool-utils/contracts/BasePoolAuthorization.sol";
import "@balancer-labs/v2-pool-utils/contracts/BalancerPoolToken.sol";
import "@balancer-labs/v2-pool-utils/contracts/oracle/PoolPriceOracle.sol";
import "@balancer-labs/v2-pool-utils/contracts/oracle/Buffer.sol";

import "./WeightedMath.sol";
import "./WeightedOracleMath.sol";
import "./WeightedPoolUserDataHelpers.sol";
import "./WeightedPool2TokensMiscData.sol";

contract WeightedPool2Tokens is
    IMinimalSwapInfoPool,
    BasePoolAuthorization,
    BalancerPoolToken,
    TemporarilyPausable,
    PoolPriceOracle,
    WeightedMath,
    WeightedOracleMath
{
    using FixedPoint for uint256;
    using WeightedPoolUserDataHelpers for bytes;
    using WeightedPool2TokensMiscData for bytes32;

    uint256 private constant _MINIMUM_BPT = 1e6;

    // 1e18 corresponds to 1.0, or a 100% fee
    uint256 private constant _MIN_SWAP_FEE_PERCENTAGE = 1e12; // 0.0001%
    uint256 private constant _MAX_SWAP_FEE_PERCENTAGE = 1e17; // 10%
    // The swap fee is internally stored using 64 bits, which is enough to represent _MAX_SWAP_FEE_PERCENTAGE.

    bytes32 internal _miscData;
    uint256 private _lastInvariant;

    IVault private immutable _vault;
    bytes32 private immutable _poolId;

    IERC20 internal immutable _token0;
    IERC20 internal immutable _token1;

    uint256 private immutable _normalizedWeight0;
    uint256 private immutable _normalizedWeight1;

    // The protocol fees will always be charged using the token associated with the max weight in the pool.
    // Since these Pools will register tokens only once, we can assume this index will be constant.
    uint256 private immutable _maxWeightTokenIndex;

    // All token balances are normalized to behave as if the token had 18 decimals. We assume a token's decimals will
    // not change throughout its lifetime, and store the corresponding scaling factor for each at construction time.
    // These factors are always greater than or equal to one: tokens with more than 18 decimals are not supported.
    uint256 internal immutable _scalingFactor0;
    uint256 internal immutable _scalingFactor1;

    event OracleEnabledChanged(bool enabled);
    event SwapFeePercentageChanged(uint256 swapFeePercentage);

    modifier onlyVault(bytes32 poolId) {
        _require(msg.sender == address(getVault()), Errors.CALLER_NOT_VAULT);
        _require(poolId == getPoolId(), Errors.INVALID_POOL_ID);
        _;
    }

    struct NewPoolParams {
        IVault vault;
        string name;
        string symbol;
        IERC20 token0;
        IERC20 token1;
        uint256 normalizedWeight0;
        uint256 normalizedWeight1;
        uint256 swapFeePercentage;
        uint256 pauseWindowDuration;
        uint256 bufferPeriodDuration;
        bool oracleEnabled;
        address owner;
    }

    constructor(NewPoolParams memory params)
        // Base Pools are expected to be deployed using factories. By using the factory address as the action
        // disambiguator, we make all Pools deployed by the same factory share action identifiers. This allows for
        // simpler management of permissions (such as being able to manage granting the 'set fee percentage' action in
        // any Pool created by the same factory), while still making action identifiers unique among different factories
        // if the selectors match, preventing accidental errors.
        Authentication(bytes32(uint256(msg.sender)))
        BalancerPoolToken(params.name, params.symbol)
        BasePoolAuthorization(params.owner)
        TemporarilyPausable(params.pauseWindowDuration, params.bufferPeriodDuration)
    {
        _setOracleEnabled(params.oracleEnabled);
        _setSwapFeePercentage(params.swapFeePercentage);

        bytes32 poolId = params.vault.registerPool(IVault.PoolSpecialization.TWO_TOKEN);

        // Pass in zero addresses for Asset Managers
        IERC20[] memory tokens = new IERC20[](2);
        tokens[0] = params.token0;
        tokens[1] = params.token1;
        params.vault.registerTokens(poolId, tokens, new address[](2));

        // Set immutable state variables - these cannot be read from during construction
        _vault = params.vault;
        _poolId = poolId;

        _token0 = params.token0;
        _token1 = params.token1;

        _scalingFactor0 = _computeScalingFactor(params.token0);
        _scalingFactor1 = _computeScalingFactor(params.token1);

        // Ensure each normalized weight is above them minimum and find the token index of the maximum weight
        _require(params.normalizedWeight0 >= _MIN_WEIGHT, Errors.MIN_WEIGHT);
        _require(params.normalizedWeight1 >= _MIN_WEIGHT, Errors.MIN_WEIGHT);

        // Ensure that the normalized weights sum to ONE
        uint256 normalizedSum = params.normalizedWeight0.add(params.normalizedWeight1);
        _require(normalizedSum == FixedPoint.ONE, Errors.NORMALIZED_WEIGHT_INVARIANT);

        _normalizedWeight0 = params.normalizedWeight0;
        _normalizedWeight1 = params.normalizedWeight1;
        _maxWeightTokenIndex = params.normalizedWeight0 >= params.normalizedWeight1 ? 0 : 1;
    }

    // Getters / Setters

    function getVault() public view returns (IVault) {
        return _vault;
    }

    function getPoolId() public view override returns (bytes32) {
        return _poolId;
    }

    function getMiscData()
        external
        view
        returns (
            int256 logInvariant,
            int256 logTotalSupply,
            uint256 oracleSampleCreationTimestamp,
            uint256 oracleIndex,
            bool oracleEnabled,
            uint256 swapFeePercentage
        )
    {
        bytes32 miscData = _miscData;
        logInvariant = miscData.logInvariant();
        logTotalSupply = miscData.logTotalSupply();
        oracleSampleCreationTimestamp = miscData.oracleSampleCreationTimestamp();
        oracleIndex = miscData.oracleIndex();
        oracleEnabled = miscData.oracleEnabled();
        swapFeePercentage = miscData.swapFeePercentage();
    }

    function getSwapFeePercentage() public view returns (uint256) {
        return _miscData.swapFeePercentage();
    }

    // Caller must be approved by the Vault's Authorizer
    function setSwapFeePercentage(uint256 swapFeePercentage) public virtual authenticate whenNotPaused {
        _setSwapFeePercentage(swapFeePercentage);
    }

    function _setSwapFeePercentage(uint256 swapFeePercentage) private {
        _require(swapFeePercentage >= _MIN_SWAP_FEE_PERCENTAGE, Errors.MIN_SWAP_FEE_PERCENTAGE);
        _require(swapFeePercentage <= _MAX_SWAP_FEE_PERCENTAGE, Errors.MAX_SWAP_FEE_PERCENTAGE);

        _miscData = _miscData.setSwapFeePercentage(swapFeePercentage);
        emit SwapFeePercentageChanged(swapFeePercentage);
    }

    function _isOwnerOnlyAction(bytes32 actionId) internal view virtual override returns (bool) {
        return
            (actionId == getActionId(BasePool.setSwapFeePercentage.selector)) ||
            (actionId == getActionId(BasePool.setAssetManagerPoolConfig.selector));
    }

    /**
     * @dev Balancer Governance can always enable the Oracle, even if it was originally not enabled. This allows for
     * Pools that unexpectedly drive much more volume and liquidity than expected to serve as Price Oracles.
     *
     * Note that the Oracle can only be enabled - it can never be disabled.
     */
    function enableOracle() external whenNotPaused authenticate {
        _setOracleEnabled(true);

        // Cache log invariant and supply only if the pool was initialized
        if (totalSupply() > 0) {
            _cacheInvariantAndSupply();
        }
    }

    function _setOracleEnabled(bool enabled) internal {
        _miscData = _miscData.setOracleEnabled(enabled);
        emit OracleEnabledChanged(enabled);
    }

    // Caller must be approved by the Vault's Authorizer
    function setPaused(bool paused) external authenticate {
        _setPaused(paused);
    }

    function getNormalizedWeights() external view returns (uint256[] memory) {
        return _normalizedWeights();
    }

    function _normalizedWeights() internal view virtual returns (uint256[] memory) {
        uint256[] memory normalizedWeights = new uint256[](2);
        normalizedWeights[0] = _normalizedWeights(true);
        normalizedWeights[1] = _normalizedWeights(false);
        return normalizedWeights;
    }

    function _normalizedWeights(bool token0) internal view virtual returns (uint256) {
        return token0 ? _normalizedWeight0 : _normalizedWeight1;
    }

    function getLastInvariant() external view returns (uint256) {
        return _lastInvariant;
    }

    /**
     * @dev Returns the current value of the invariant.
     */
    function getInvariant() public view returns (uint256) {
        (, uint256[] memory balances, ) = getVault().getPoolTokens(getPoolId());

        // Since the Pool hooks always work with upscaled balances, we manually
        // upscale here for consistency
        _upscaleArray(balances);

        uint256[] memory normalizedWeights = _normalizedWeights();
        return WeightedMath._calculateInvariant(normalizedWeights, balances);
    }

    // Swap Hooks

    function onSwap(
        SwapRequest memory request,
        uint256 balanceTokenIn,
        uint256 balanceTokenOut
    ) public virtual override whenNotPaused onlyVault(request.poolId) returns (uint256) {
        bool tokenInIsToken0 = request.tokenIn == _token0;

        uint256 scalingFactorTokenIn = _scalingFactor(tokenInIsToken0);
        uint256 scalingFactorTokenOut = _scalingFactor(!tokenInIsToken0);

        uint256 normalizedWeightIn = _normalizedWeights(tokenInIsToken0);
        uint256 normalizedWeightOut = _normalizedWeights(!tokenInIsToken0);

        // All token amounts are upscaled.
        balanceTokenIn = _upscale(balanceTokenIn, scalingFactorTokenIn);
        balanceTokenOut = _upscale(balanceTokenOut, scalingFactorTokenOut);

        // Update price oracle with the pre-swap balances
        _updateOracle(
            request.lastChangeBlock,
            tokenInIsToken0 ? balanceTokenIn : balanceTokenOut,
            tokenInIsToken0 ? balanceTokenOut : balanceTokenIn
        );

        if (request.kind == IVault.SwapKind.GIVEN_IN) {
            // Fees are subtracted before scaling, to reduce the complexity of the rounding direction analysis.
            // This is amount - fee amount, so we round up (favoring a higher fee amount).
            uint256 feeAmount = request.amount.mulUp(getSwapFeePercentage());
            request.amount = _upscale(request.amount.sub(feeAmount), scalingFactorTokenIn);

            uint256 amountOut = _onSwapGivenIn(
                request,
                balanceTokenIn,
                balanceTokenOut,
                normalizedWeightIn,
                normalizedWeightOut
            );

            // amountOut tokens are exiting the Pool, so we round down.
            return _downscaleDown(amountOut, scalingFactorTokenOut);
        } else {
            request.amount = _upscale(request.amount, scalingFactorTokenOut);

            uint256 amountIn = _onSwapGivenOut(
                request,
                balanceTokenIn,
                balanceTokenOut,
                normalizedWeightIn,
                normalizedWeightOut
            );

            // amountIn tokens are entering the Pool, so we round up.
            amountIn = _downscaleUp(amountIn, scalingFactorTokenIn);

            // Fees are added after scaling happens, to reduce the complexity of the rounding direction analysis.
            // This is amount + fee amount, so we round up (favoring a higher fee amount).
            return amountIn.divUp(getSwapFeePercentage().complement());
        }
    }

    function _onSwapGivenIn(
        SwapRequest memory swapRequest,
        uint256 currentBalanceTokenIn,
        uint256 currentBalanceTokenOut,
        uint256 normalizedWeightIn,
        uint256 normalizedWeightOut
    ) private pure returns (uint256) {
        // Swaps are disabled while the contract is paused.
        return
            WeightedMath._calcOutGivenIn(
                currentBalanceTokenIn,
                normalizedWeightIn,
                currentBalanceTokenOut,
                normalizedWeightOut,
                swapRequest.amount
            );
    }

    function _onSwapGivenOut(
        SwapRequest memory swapRequest,
        uint256 currentBalanceTokenIn,
        uint256 currentBalanceTokenOut,
        uint256 normalizedWeightIn,
        uint256 normalizedWeightOut
    ) private pure returns (uint256) {
        // Swaps are disabled while the contract is paused.
        return
            WeightedMath._calcInGivenOut(
                currentBalanceTokenIn,
                normalizedWeightIn,
                currentBalanceTokenOut,
                normalizedWeightOut,
                swapRequest.amount
            );
    }

    // Join Hook

    function onJoinPool(
        bytes32 poolId,
        address sender,
        address recipient,
        uint256[] memory balances,
        uint256 lastChangeBlock,
        uint256 protocolSwapFeePercentage,
        bytes memory userData
    )
        public
        virtual
        override
        onlyVault(poolId)
        whenNotPaused
        returns (uint256[] memory amountsIn, uint256[] memory dueProtocolFeeAmounts)
    {
        // All joins, including initializations, are disabled while the contract is paused.

        uint256 bptAmountOut;
        if (totalSupply() == 0) {
            (bptAmountOut, amountsIn) = _onInitializePool(poolId, sender, recipient, userData);

            // On initialization, we lock _MINIMUM_BPT by minting it for the zero address. This BPT acts as a minimum
            // as it will never be burned, which reduces potential issues with rounding, and also prevents the Pool from
            // ever being fully drained.
            _require(bptAmountOut >= _MINIMUM_BPT, Errors.MINIMUM_BPT);
            _mintPoolTokens(address(0), _MINIMUM_BPT);
            _mintPoolTokens(recipient, bptAmountOut - _MINIMUM_BPT);

            // amountsIn are amounts entering the Pool, so we round up.
            _downscaleUpArray(amountsIn);

            // There are no due protocol fee amounts during initialization
            dueProtocolFeeAmounts = new uint256[](2);
        } else {
            _upscaleArray(balances);

            // Update price oracle with the pre-join balances
            _updateOracle(lastChangeBlock, balances[0], balances[1]);

            (bptAmountOut, amountsIn, dueProtocolFeeAmounts) = _onJoinPool(
                poolId,
                sender,
                recipient,
                balances,
                lastChangeBlock,
                protocolSwapFeePercentage,
                userData
            );

            // Note we no longer use `balances` after calling `_onJoinPool`, which may mutate it.

            _mintPoolTokens(recipient, bptAmountOut);

            // amountsIn are amounts entering the Pool, so we round up.
            _downscaleUpArray(amountsIn);
            // dueProtocolFeeAmounts are amounts exiting the Pool, so we round down.
            _downscaleDownArray(dueProtocolFeeAmounts);
        }

        // Update cached total supply and invariant using the results after the join that will be used for future
        // oracle updates.
        _cacheInvariantAndSupply();
    }

    /**
     * @dev Called when the Pool is joined for the first time; that is, when the BPT total supply is zero.
     *
     * Returns the amount of BPT to mint, and the token amounts the Pool will receive in return.
     *
     * Minted BPT will be sent to `recipient`, except for _MINIMUM_BPT, which will be deducted from this amount and sent
     * to the zero address instead. This will cause that BPT to remain forever locked there, preventing total BTP from
     * ever dropping below that value, and ensuring `_onInitializePool` can only be called once in the entire Pool's
     * lifetime.
     *
     * The tokens granted to the Pool will be transferred from `sender`. These amounts are considered upscaled and will
     * be downscaled (rounding up) before being returned to the Vault.
     */
    function _onInitializePool(
        bytes32,
        address,
        address,
        bytes memory userData
    ) private returns (uint256, uint256[] memory) {
        BaseWeightedPool.JoinKind kind = userData.joinKind();
        _require(kind == BaseWeightedPool.JoinKind.INIT, Errors.UNINITIALIZED);

        uint256[] memory amountsIn = userData.initialAmountsIn();
        InputHelpers.ensureInputLengthMatch(amountsIn.length, 2);
        _upscaleArray(amountsIn);

        uint256[] memory normalizedWeights = _normalizedWeights();

        uint256 invariantAfterJoin = WeightedMath._calculateInvariant(normalizedWeights, amountsIn);

        // Set the initial BPT to the value of the invariant times the number of tokens. This makes BPT supply more
        // consistent in Pools with similar compositions but different number of tokens.
        uint256 bptAmountOut = Math.mul(invariantAfterJoin, 2);

        _lastInvariant = invariantAfterJoin;

        return (bptAmountOut, amountsIn);
    }

    /**
     * @dev Called whenever the Pool is joined after the first initialization join (see `_onInitializePool`).
     *
     * Returns the amount of BPT to mint, the token amounts that the Pool will receive in return, and the number of
     * tokens to pay in protocol swap fees.
     *
     * Implementations of this function might choose to mutate the `balances` array to save gas (e.g. when
     * performing intermediate calculations, such as subtraction of due protocol fees). This can be done safely.
     *
     * Minted BPT will be sent to `recipient`.
     *
     * The tokens granted to the Pool will be transferred from `sender`. These amounts are considered upscaled and will
     * be downscaled (rounding up) before being returned to the Vault.
     *
     * Due protocol swap fees will be taken from the Pool's balance in the Vault (see `IBasePool.onJoinPool`). These
     * amounts are considered upscaled and will be downscaled (rounding down) before being returned to the Vault.
     */
    function _onJoinPool(
        bytes32,
        address,
        address,
        uint256[] memory balances,
        uint256,
        uint256 protocolSwapFeePercentage,
        bytes memory userData
    )
        private
        returns (
            uint256,
            uint256[] memory,
            uint256[] memory
        )
    {
        uint256[] memory normalizedWeights = _normalizedWeights();

        // Due protocol swap fee amounts are computed by measuring the growth of the invariant between the previous join
        // or exit event and now - the invariant's growth is due exclusively to swap fees. This avoids spending gas
        // computing them on each individual swap
        uint256 invariantBeforeJoin = WeightedMath._calculateInvariant(normalizedWeights, balances);

        uint256[] memory dueProtocolFeeAmounts = _getDueProtocolFeeAmounts(
            balances,
            normalizedWeights,
            _lastInvariant,
            invariantBeforeJoin,
            protocolSwapFeePercentage
        );

        // Update current balances by subtracting the protocol fee amounts
        _mutateAmounts(balances, dueProtocolFeeAmounts, FixedPoint.sub);
        (uint256 bptAmountOut, uint256[] memory amountsIn) = _doJoin(balances, normalizedWeights, userData);

        // Update the invariant with the balances the Pool will have after the join, in order to compute the
        // protocol swap fee amounts due in future joins and exits.
        _mutateAmounts(balances, amountsIn, FixedPoint.add);
        _lastInvariant = WeightedMath._calculateInvariant(normalizedWeights, balances);

        return (bptAmountOut, amountsIn, dueProtocolFeeAmounts);
    }

    function _doJoin(
        uint256[] memory balances,
        uint256[] memory normalizedWeights,
        bytes memory userData
    ) private view returns (uint256, uint256[] memory) {
        BaseWeightedPool.JoinKind kind = userData.joinKind();

        if (kind == BaseWeightedPool.JoinKind.EXACT_TOKENS_IN_FOR_BPT_OUT) {
            return _joinExactTokensInForBPTOut(balances, normalizedWeights, userData);
        } else if (kind == BaseWeightedPool.JoinKind.TOKEN_IN_FOR_EXACT_BPT_OUT) {
            return _joinTokenInForExactBPTOut(balances, normalizedWeights, userData);
        } else if (kind == BaseWeightedPool.JoinKind.ALL_TOKENS_IN_FOR_EXACT_BPT_OUT) {
            return _joinAllTokensInForExactBPTOut(balances, userData);
        } else {
            _revert(Errors.UNHANDLED_JOIN_KIND);
        }
    }

    function _joinExactTokensInForBPTOut(
        uint256[] memory balances,
        uint256[] memory normalizedWeights,
        bytes memory userData
    ) private view returns (uint256, uint256[] memory) {
        (uint256[] memory amountsIn, uint256 minBPTAmountOut) = userData.exactTokensInForBptOut();
        InputHelpers.ensureInputLengthMatch(amountsIn.length, 2);

        _upscaleArray(amountsIn);

        (uint256 bptAmountOut, ) = WeightedMath._calcBptOutGivenExactTokensIn(
            balances,
            normalizedWeights,
            amountsIn,
            totalSupply(),
            getSwapFeePercentage()
        );

        _require(bptAmountOut >= minBPTAmountOut, Errors.BPT_OUT_MIN_AMOUNT);

        return (bptAmountOut, amountsIn);
    }

    function _joinTokenInForExactBPTOut(
        uint256[] memory balances,
        uint256[] memory normalizedWeights,
        bytes memory userData
    ) private view returns (uint256, uint256[] memory) {
        (uint256 bptAmountOut, uint256 tokenIndex) = userData.tokenInForExactBptOut();
        // Note that there is no maximum amountIn parameter: this is handled by `IVault.joinPool`.

        _require(tokenIndex < 2, Errors.OUT_OF_BOUNDS);

        uint256[] memory amountsIn = new uint256[](2);
        (amountsIn[tokenIndex], ) = WeightedMath._calcTokenInGivenExactBptOut(
            balances[tokenIndex],
            normalizedWeights[tokenIndex],
            bptAmountOut,
            totalSupply(),
            getSwapFeePercentage()
        );

        return (bptAmountOut, amountsIn);
    }

    function _joinAllTokensInForExactBPTOut(uint256[] memory balances, bytes memory userData)
        private
        view
        returns (uint256, uint256[] memory)
    {
        uint256 bptAmountOut = userData.allTokensInForExactBptOut();
        // Note that there is no maximum amountsIn parameter: this is handled by `IVault.joinPool`.

        uint256[] memory amountsIn = WeightedMath._calcAllTokensInGivenExactBptOut(
            balances,
            bptAmountOut,
            totalSupply()
        );

        return (bptAmountOut, amountsIn);
    }

    // Exit Hook

    function onExitPool(
        bytes32 poolId,
        address sender,
        address recipient,
        uint256[] memory balances,
        uint256 lastChangeBlock,
        uint256 protocolSwapFeePercentage,
        bytes memory userData
    ) public virtual override onlyVault(poolId) returns (uint256[] memory, uint256[] memory) {
        _upscaleArray(balances);

        (uint256 bptAmountIn, uint256[] memory amountsOut, uint256[] memory dueProtocolFeeAmounts) = _onExitPool(
            poolId,
            sender,
            recipient,
            balances,
            lastChangeBlock,
            protocolSwapFeePercentage,
            userData
        );

        // Note we no longer use `balances` after calling `_onExitPool`, which may mutate it.

        _burnPoolTokens(sender, bptAmountIn);

        // Both amountsOut and dueProtocolFeeAmounts are amounts exiting the Pool, so we round down.
        _downscaleDownArray(amountsOut);
        _downscaleDownArray(dueProtocolFeeAmounts);

        // Update cached total supply and invariant using the results after the exit that will be used for future
        // oracle updates, only if the pool was not paused (to minimize code paths taken while paused).
        if (_isNotPaused()) {
            _cacheInvariantAndSupply();
        }

        return (amountsOut, dueProtocolFeeAmounts);
    }

    /**
     * @dev Called whenever the Pool is exited.
     *
     * Returns the amount of BPT to burn, the token amounts for each Pool token that the Pool will grant in return, and
     * the number of tokens to pay in protocol swap fees.
     *
     * Implementations of this function might choose to mutate the `balances` array to save gas (e.g. when
     * performing intermediate calculations, such as subtraction of due protocol fees). This can be done safely.
     *
     * BPT will be burnt from `sender`.
     *
     * The Pool will grant tokens to `recipient`. These amounts are considered upscaled and will be downscaled
     * (rounding down) before being returned to the Vault.
     *
     * Due protocol swap fees will be taken from the Pool's balance in the Vault (see `IBasePool.onExitPool`). These
     * amounts are considered upscaled and will be downscaled (rounding down) before being returned to the Vault.
     */
    function _onExitPool(
        bytes32,
        address,
        address,
        uint256[] memory balances,
        uint256 lastChangeBlock,
        uint256 protocolSwapFeePercentage,
        bytes memory userData
    )
        private
        returns (
            uint256 bptAmountIn,
            uint256[] memory amountsOut,
            uint256[] memory dueProtocolFeeAmounts
        )
    {
        // Exits are not completely disabled while the contract is paused: proportional exits (exact BPT in for tokens
        // out) remain functional.

        uint256[] memory normalizedWeights = _normalizedWeights();

        if (_isNotPaused()) {
            // Update price oracle with the pre-exit balances
            _updateOracle(lastChangeBlock, balances[0], balances[1]);

            // Due protocol swap fee amounts are computed by measuring the growth of the invariant between the previous
            // join or exit event and now - the invariant's growth is due exclusively to swap fees. This avoids
            // spending gas calculating the fees on each individual swap.
            uint256 invariantBeforeExit = WeightedMath._calculateInvariant(normalizedWeights, balances);
            dueProtocolFeeAmounts = _getDueProtocolFeeAmounts(
                balances,
                normalizedWeights,
                _lastInvariant,
                invariantBeforeExit,
                protocolSwapFeePercentage
            );

            // Update current balances by subtracting the protocol fee amounts
            _mutateAmounts(balances, dueProtocolFeeAmounts, FixedPoint.sub);
        } else {
            // If the contract is paused, swap protocol fee amounts are not charged and the oracle is not updated
            // to avoid extra calculations and reduce the potential for errors.
            dueProtocolFeeAmounts = new uint256[](2);
        }

        (bptAmountIn, amountsOut) = _doExit(balances, normalizedWeights, userData);

        // Update the invariant with the balances the Pool will have after the exit, in order to compute the
        // protocol swap fees due in future joins and exits.
        _mutateAmounts(balances, amountsOut, FixedPoint.sub);
        _lastInvariant = WeightedMath._calculateInvariant(normalizedWeights, balances);

        return (bptAmountIn, amountsOut, dueProtocolFeeAmounts);
    }

    function _doExit(
        uint256[] memory balances,
        uint256[] memory normalizedWeights,
        bytes memory userData
    ) private view returns (uint256, uint256[] memory) {
        BaseWeightedPool.ExitKind kind = userData.exitKind();

        if (kind == BaseWeightedPool.ExitKind.EXACT_BPT_IN_FOR_ONE_TOKEN_OUT) {
            return _exitExactBPTInForTokenOut(balances, normalizedWeights, userData);
        } else if (kind == BaseWeightedPool.ExitKind.EXACT_BPT_IN_FOR_TOKENS_OUT) {
            return _exitExactBPTInForTokensOut(balances, userData);
        } else if (kind == BaseWeightedPool.ExitKind.BPT_IN_FOR_EXACT_TOKENS_OUT) {
            return _exitBPTInForExactTokensOut(balances, normalizedWeights, userData);
        } else {
            _revert(Errors.UNHANDLED_EXIT_KIND);
        }
    }

    function _exitExactBPTInForTokenOut(
        uint256[] memory balances,
        uint256[] memory normalizedWeights,
        bytes memory userData
    ) private view whenNotPaused returns (uint256, uint256[] memory) {
        // This exit function is disabled if the contract is paused.

        (uint256 bptAmountIn, uint256 tokenIndex) = userData.exactBptInForTokenOut();
        // Note that there is no minimum amountOut parameter: this is handled by `IVault.exitPool`.

        _require(tokenIndex < 2, Errors.OUT_OF_BOUNDS);

        // We exit in a single token, so we initialize amountsOut with zeros
        uint256[] memory amountsOut = new uint256[](2);

        // And then assign the result to the selected token
        (amountsOut[tokenIndex], ) = WeightedMath._calcTokenOutGivenExactBptIn(
            balances[tokenIndex],
            normalizedWeights[tokenIndex],
            bptAmountIn,
            totalSupply(),
            getSwapFeePercentage()
        );

        return (bptAmountIn, amountsOut);
    }

    function _exitExactBPTInForTokensOut(uint256[] memory balances, bytes memory userData)
        private
        view
        returns (uint256, uint256[] memory)
    {
        // This exit function is the only one that is not disabled if the contract is paused: it remains unrestricted
        // in an attempt to provide users with a mechanism to retrieve their tokens in case of an emergency.
        // This particular exit function is the only one that remains available because it is the simplest one, and
        // therefore the one with the lowest likelihood of errors.

        uint256 bptAmountIn = userData.exactBptInForTokensOut();
        // Note that there is no minimum amountOut parameter: this is handled by `IVault.exitPool`.

        uint256[] memory amountsOut = WeightedMath._calcTokensOutGivenExactBptIn(balances, bptAmountIn, totalSupply());
        return (bptAmountIn, amountsOut);
    }

    function _exitBPTInForExactTokensOut(
        uint256[] memory balances,
        uint256[] memory normalizedWeights,
        bytes memory userData
    ) private view whenNotPaused returns (uint256, uint256[] memory) {
        // This exit function is disabled if the contract is paused.

        (uint256[] memory amountsOut, uint256 maxBPTAmountIn) = userData.bptInForExactTokensOut();
        InputHelpers.ensureInputLengthMatch(amountsOut.length, 2);
        _upscaleArray(amountsOut);

        (uint256 bptAmountIn, ) = WeightedMath._calcBptInGivenExactTokensOut(
            balances,
            normalizedWeights,
            amountsOut,
            totalSupply(),
            getSwapFeePercentage()
        );
        _require(bptAmountIn <= maxBPTAmountIn, Errors.BPT_IN_MAX_AMOUNT);

        return (bptAmountIn, amountsOut);
    }

    // Oracle functions

    /**
     * @dev Updates the Price Oracle based on the Pool's current state (balances, BPT supply and invariant). Must be
     * called on *all* state-changing functions with the balances *before* the state change happens, and with
     * `lastChangeBlock` as the number of the block in which any of the balances last changed.
     */
    function _updateOracle(
        uint256 lastChangeBlock,
        uint256 balanceToken0,
        uint256 balanceToken1
    ) internal {
        bytes32 miscData = _miscData;
        if (miscData.oracleEnabled() && block.number > lastChangeBlock) {
            int256 logSpotPrice = WeightedOracleMath._calcLogSpotPrice(
                _normalizedWeight0,
                balanceToken0,
                _normalizedWeight1,
                balanceToken1
            );

            int256 logBPTPrice = WeightedOracleMath._calcLogBPTPrice(
                _normalizedWeight0,
                balanceToken0,
                miscData.logTotalSupply()
            );

            uint256 oracleCurrentIndex = miscData.oracleIndex();
            uint256 oracleCurrentSampleInitialTimestamp = miscData.oracleSampleCreationTimestamp();
            uint256 oracleUpdatedIndex = _processPriceData(
                oracleCurrentSampleInitialTimestamp,
                oracleCurrentIndex,
                logSpotPrice,
                logBPTPrice,
                miscData.logInvariant()
            );

            if (oracleCurrentIndex != oracleUpdatedIndex) {
                // solhint-disable not-rely-on-time
                miscData = miscData.setOracleIndex(oracleUpdatedIndex);
                miscData = miscData.setOracleSampleCreationTimestamp(block.timestamp);
                _miscData = miscData;
            }
        }
    }

    /**
     * @dev Stores the logarithm of the invariant and BPT total supply, to be later used in each oracle update. Because
     * it is stored in miscData, which is read in all operations (including swaps), this saves gas by not requiring to
     * compute or read these values when updating the oracle.
     *
     * This function must be called by all actions that update the invariant and BPT supply (joins and exits). Swaps
     * also alter the invariant due to collected swap fees, but this growth is considered negligible and not accounted
     * for.
     */
    function _cacheInvariantAndSupply() internal {
        bytes32 miscData = _miscData;
        if (miscData.oracleEnabled()) {
            miscData = miscData.setLogInvariant(LogCompression.toLowResLog(_lastInvariant));
            miscData = miscData.setLogTotalSupply(LogCompression.toLowResLog(totalSupply()));
            _miscData = miscData;
        }
    }

    function _getOracleIndex() internal view override returns (uint256) {
        return _miscData.oracleIndex();
    }

    // Query functions

    /**
     * @dev Returns the amount of BPT that would be granted to `recipient` if the `onJoinPool` hook were called by the
     * Vault with the same arguments, along with the number of tokens `sender` would have to supply.
     *
     * This function is not meant to be called directly, but rather from a helper contract that fetches current Vault
     * data, such as the protocol swap fee percentage and Pool balances.
     *
     * Like `IVault.queryBatchSwap`, this function is not view due to internal implementation details: the caller must
     * explicitly use eth_call instead of eth_sendTransaction.
     */
    function queryJoin(
        bytes32 poolId,
        address sender,
        address recipient,
        uint256[] memory balances,
        uint256 lastChangeBlock,
        uint256 protocolSwapFeePercentage,
        bytes memory userData
    ) external returns (uint256 bptOut, uint256[] memory amountsIn) {
        InputHelpers.ensureInputLengthMatch(balances.length, 2);

        _queryAction(
            poolId,
            sender,
            recipient,
            balances,
            lastChangeBlock,
            protocolSwapFeePercentage,
            userData,
            _onJoinPool,
            _downscaleUpArray
        );

        // The `return` opcode is executed directly inside `_queryAction`, so execution never reaches this statement,
        // and we don't need to return anything here - it just silences compiler warnings.
        return (bptOut, amountsIn);
    }

    /**
     * @dev Returns the amount of BPT that would be burned from `sender` if the `onExitPool` hook were called by the
     * Vault with the same arguments, along with the number of tokens `recipient` would receive.
     *
     * This function is not meant to be called directly, but rather from a helper contract that fetches current Vault
     * data, such as the protocol swap fee percentage and Pool balances.
     *
     * Like `IVault.queryBatchSwap`, this function is not view due to internal implementation details: the caller must
     * explicitly use eth_call instead of eth_sendTransaction.
     */
    function queryExit(
        bytes32 poolId,
        address sender,
        address recipient,
        uint256[] memory balances,
        uint256 lastChangeBlock,
        uint256 protocolSwapFeePercentage,
        bytes memory userData
    ) external returns (uint256 bptIn, uint256[] memory amountsOut) {
        InputHelpers.ensureInputLengthMatch(balances.length, 2);

        _queryAction(
            poolId,
            sender,
            recipient,
            balances,
            lastChangeBlock,
            protocolSwapFeePercentage,
            userData,
            _onExitPool,
            _downscaleDownArray
        );

        // The `return` opcode is executed directly inside `_queryAction`, so execution never reaches this statement,
        // and we don't need to return anything here - it just silences compiler warnings.
        return (bptIn, amountsOut);
    }

    // Helpers

    function _getDueProtocolFeeAmounts(
        uint256[] memory balances,
        uint256[] memory normalizedWeights,
        uint256 previousInvariant,
        uint256 currentInvariant,
        uint256 protocolSwapFeePercentage
    ) private view returns (uint256[] memory) {
        // Initialize with zeros
        uint256[] memory dueProtocolFeeAmounts = new uint256[](2);

        // Early return if the protocol swap fee percentage is zero, saving gas.
        if (protocolSwapFeePercentage == 0) {
            return dueProtocolFeeAmounts;
        }

        // The protocol swap fees are always paid using the token with the largest weight in the Pool. As this is the
        // token that is expected to have the largest balance, using it to pay fees should not unbalance the Pool.
        dueProtocolFeeAmounts[_maxWeightTokenIndex] = WeightedMath._calcDueTokenProtocolSwapFeeAmount(
            balances[_maxWeightTokenIndex],
            normalizedWeights[_maxWeightTokenIndex],
            previousInvariant,
            currentInvariant,
            protocolSwapFeePercentage
        );

        return dueProtocolFeeAmounts;
    }

    /**
     * @dev Mutates `amounts` by applying `mutation` with each entry in `arguments`.
     *
     * Equivalent to `amounts = amounts.map(mutation)`.
     */
    function _mutateAmounts(
        uint256[] memory toMutate,
        uint256[] memory arguments,
        function(uint256, uint256) pure returns (uint256) mutation
    ) private pure {
        toMutate[0] = mutation(toMutate[0], arguments[0]);
        toMutate[1] = mutation(toMutate[1], arguments[1]);
    }

    /**
     * @dev This function returns the appreciation of one BPT relative to the
     * underlying tokens. This starts at 1 when the pool is created and grows over time
     */
    function getRate() public view returns (uint256) {
        // The initial BPT supply is equal to the invariant times the number of tokens.
        return Math.mul(getInvariant(), 2).divDown(totalSupply());
    }

    // Scaling

    /**
     * @dev Returns a scaling factor that, when multiplied to a token amount for `token`, normalizes its balance as if
     * it had 18 decimals.
     */
    function _computeScalingFactor(IERC20 token) private view returns (uint256) {
        // Tokens that don't implement the `decimals` method are not supported.
        uint256 tokenDecimals = ERC20(address(token)).decimals();

        // Tokens with more than 18 decimals are not supported.
        uint256 decimalsDifference = Math.sub(18, tokenDecimals);
        return 10**decimalsDifference;
    }

    /**
     * @dev Returns the scaling factor for one of the Pool's tokens. Reverts if `token` is not a token registered by the
     * Pool.
     */
    function _scalingFactor(bool token0) internal view returns (uint256) {
        return token0 ? _scalingFactor0 : _scalingFactor1;
    }

    /**
     * @dev Applies `scalingFactor` to `amount`, resulting in a larger or equal value depending on whether it needed
     * scaling or not.
     */
    function _upscale(uint256 amount, uint256 scalingFactor) internal pure returns (uint256) {
        return Math.mul(amount, scalingFactor);
    }

    /**
     * @dev Same as `_upscale`, but for an entire array (of two elements). This function does not return anything, but
     * instead *mutates* the `amounts` array.
     */
    function _upscaleArray(uint256[] memory amounts) internal view {
        amounts[0] = Math.mul(amounts[0], _scalingFactor(true));
        amounts[1] = Math.mul(amounts[1], _scalingFactor(false));
    }

    /**
     * @dev Reverses the `scalingFactor` applied to `amount`, resulting in a smaller or equal value depending on
     * whether it needed scaling or not. The result is rounded down.
     */
    function _downscaleDown(uint256 amount, uint256 scalingFactor) internal pure returns (uint256) {
        return Math.divDown(amount, scalingFactor);
    }

    /**
     * @dev Same as `_downscaleDown`, but for an entire array (of two elements). This function does not return anything,
     * but instead *mutates* the `amounts` array.
     */
    function _downscaleDownArray(uint256[] memory amounts) internal view {
        amounts[0] = Math.divDown(amounts[0], _scalingFactor(true));
        amounts[1] = Math.divDown(amounts[1], _scalingFactor(false));
    }

    /**
     * @dev Reverses the `scalingFactor` applied to `amount`, resulting in a smaller or equal value depending on
     * whether it needed scaling or not. The result is rounded up.
     */
    function _downscaleUp(uint256 amount, uint256 scalingFactor) internal pure returns (uint256) {
        return Math.divUp(amount, scalingFactor);
    }

    /**
     * @dev Same as `_downscaleUp`, but for an entire array (of two elements). This function does not return anything,
     * but instead *mutates* the `amounts` array.
     */
    function _downscaleUpArray(uint256[] memory amounts) internal view {
        amounts[0] = Math.divUp(amounts[0], _scalingFactor(true));
        amounts[1] = Math.divUp(amounts[1], _scalingFactor(false));
    }

    function _getAuthorizer() internal view override returns (IAuthorizer) {
        // Access control management is delegated to the Vault's Authorizer. This lets Balancer Governance manage which
        // accounts can call permissioned functions: for example, to perform emergency pauses.
        // If the owner is delegated, then *all* permissioned functions, including `setSwapFeePercentage`, will be under
        // Governance control.
        return getVault().getAuthorizer();
    }

    function _queryAction(
        bytes32 poolId,
        address sender,
        address recipient,
        uint256[] memory balances,
        uint256 lastChangeBlock,
        uint256 protocolSwapFeePercentage,
        bytes memory userData,
        function(bytes32, address, address, uint256[] memory, uint256, uint256, bytes memory)
            internal
            returns (uint256, uint256[] memory, uint256[] memory) _action,
        function(uint256[] memory) internal view _downscaleArray
    ) private {
        // This uses the same technique used by the Vault in queryBatchSwap. Refer to that function for a detailed
        // explanation.

        if (msg.sender != address(this)) {
            // We perform an external call to ourselves, forwarding the same calldata. In this call, the else clause of
            // the preceding if statement will be executed instead.

            // solhint-disable-next-line avoid-low-level-calls
            (bool success, ) = address(this).call(msg.data);

            // solhint-disable-next-line no-inline-assembly
            assembly {
                // This call should always revert to decode the bpt and token amounts from the revert reason
                switch success
                    case 0 {
                        // Note we are manually writing the memory slot 0. We can safely overwrite whatever is
                        // stored there as we take full control of the execution and then immediately return.

                        // We copy the first 4 bytes to check if it matches with the expected signature, otherwise
                        // there was another revert reason and we should forward it.
                        returndatacopy(0, 0, 0x04)
                        let error := and(mload(0), 0xffffffff00000000000000000000000000000000000000000000000000000000)

                        // If the first 4 bytes don't match with the expected signature, we forward the revert reason.
                        if eq(eq(error, 0x43adbafb00000000000000000000000000000000000000000000000000000000), 0) {
                            returndatacopy(0, 0, returndatasize())
                            revert(0, returndatasize())
                        }

                        // The returndata contains the signature, followed by the raw memory representation of the
                        // `bptAmount` and `tokenAmounts` (array: length + data). We need to return an ABI-encoded
                        // representation of these.
                        // An ABI-encoded response will include one additional field to indicate the starting offset of
                        // the `tokenAmounts` array. The `bptAmount` will be laid out in the first word of the
                        // returndata.
                        //
                        // In returndata:
                        // [ signature ][ bptAmount ][ tokenAmounts length ][ tokenAmounts values ]
                        // [  4 bytes  ][  32 bytes ][       32 bytes      ][ (32 * length) bytes ]
                        //
                        // We now need to return (ABI-encoded values):
                        // [ bptAmount ][ tokeAmounts offset ][ tokenAmounts length ][ tokenAmounts values ]
                        // [  32 bytes ][       32 bytes     ][       32 bytes      ][ (32 * length) bytes ]

                        // We copy 32 bytes for the `bptAmount` from returndata into memory.
                        // Note that we skip the first 4 bytes for the error signature
                        returndatacopy(0, 0x04, 32)

                        // The offsets are 32-bytes long, so the array of `tokenAmounts` will start after
                        // the initial 64 bytes.
                        mstore(0x20, 64)

                        // We now copy the raw memory array for the `tokenAmounts` from returndata into memory.
                        // Since bpt amount and offset take up 64 bytes, we start copying at address 0x40. We also
                        // skip the first 36 bytes from returndata, which correspond to the signature plus bpt amount.
                        returndatacopy(0x40, 0x24, sub(returndatasize(), 36))

                        // We finally return the ABI-encoded uint256 and the array, which has a total length equal to
                        // the size of returndata, plus the 32 bytes of the offset but without the 4 bytes of the
                        // error signature.
                        return(0, add(returndatasize(), 28))
                    }
                    default {
                        // This call should always revert, but we fail nonetheless if that didn't happen
                        invalid()
                    }
            }
        } else {
            _upscaleArray(balances);

            (uint256 bptAmount, uint256[] memory tokenAmounts, ) = _action(
                poolId,
                sender,
                recipient,
                balances,
                lastChangeBlock,
                protocolSwapFeePercentage,
                userData
            );

            _downscaleArray(tokenAmounts);

            // solhint-disable-next-line no-inline-assembly
            assembly {
                // We will return a raw representation of `bptAmount` and `tokenAmounts` in memory, which is composed of
                // a 32-byte uint256, followed by a 32-byte for the array length, and finally the 32-byte uint256 values
                // Because revert expects a size in bytes, we multiply the array length (stored at `tokenAmounts`) by 32
                let size := mul(mload(tokenAmounts), 32)

                // We store the `bptAmount` in the previous slot to the `tokenAmounts` array. We can make sure there
                // will be at least one available slot due to how the memory scratch space works.
                // We can safely overwrite whatever is stored in this slot as we will revert immediately after that.
                let start := sub(tokenAmounts, 0x20)
                mstore(start, bptAmount)

                // We send one extra value for the error signature "QueryError(uint256,uint256[])" which is 0x43adbafb
                // We use the previous slot to `bptAmount`.
                mstore(sub(start, 0x20), 0x0000000000000000000000000000000000000000000000000000000043adbafb)
                start := sub(start, 0x04)

                // When copying from `tokenAmounts` into returndata, we copy the additional 68 bytes to also return
                // the `bptAmount`, the array length, and the error signature.
                revert(start, add(size, 68))
            }
        }
    }
}

File 44 of 63 : LogCompression.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

import "../math/LogExpMath.sol";

/**
 * @dev Library for encoding and decoding values stored inside a 256 bit word. Typically used to pack multiple values in
 * a single storage slot, saving gas by performing less storage accesses.
 *
 * Each value is defined by its size and the least significant bit in the word, also known as offset. For example, two
 * 128 bit values may be encoded in a word by assigning one an offset of 0, and the other an offset of 128.
 */
library LogCompression {
    int256 private constant _LOG_COMPRESSION_FACTOR = 1e14;
    int256 private constant _HALF_LOG_COMPRESSION_FACTOR = 0.5e14;

    /**
     * @dev Returns the natural logarithm of `value`, dropping most of the decimal places to arrive at a value that,
     * when passed to `fromLowResLog`, will have a maximum relative error of ~0.05% compared to `value`.
     *
     * Values returned from this function should not be mixed with other fixed-point values (as they have a different
     * number of digits), but can be added or subtracted. Use `fromLowResLog` to undo this process and return to an
     * 18 decimal places fixed point value.
     *
     * Because so much precision is lost, the logarithmic values can be stored using much fewer bits than the original
     * value required.
     */
    function toLowResLog(uint256 value) internal pure returns (int256) {
        int256 ln = LogExpMath.ln(int256(value));

        // Rounding division for signed numerator
        int256 lnWithError = (ln > 0 ? ln + _HALF_LOG_COMPRESSION_FACTOR : ln - _HALF_LOG_COMPRESSION_FACTOR);
        return lnWithError / _LOG_COMPRESSION_FACTOR;
    }

    /**
     * @dev Restores `value` from logarithmic space. `value` is expected to be the result of a call to `toLowResLog`,
     * any other function that returns 4 decimals fixed point logarithms, or the sum of such values.
     */
    function fromLowResLog(int256 value) internal pure returns (uint256) {
        return uint256(LogExpMath.exp(value * _LOG_COMPRESSION_FACTOR));
    }
}

File 45 of 63 : PoolPriceOracle.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;
pragma experimental ABIEncoderV2;

import "@balancer-labs/v2-solidity-utils/contracts/helpers/BalancerErrors.sol";

import "../interfaces/IPriceOracle.sol";
import "../interfaces/IPoolPriceOracle.sol";

import "./Buffer.sol";
import "./Samples.sol";
import "./QueryProcessor.sol";

/**
 * @dev This module allows Pools to access historical pricing information.
 *
 * It uses a 1024 long circular buffer to store past data, where the data within each sample is the result of
 * accumulating live data for no more than two minutes. Therefore, assuming the worst case scenario where new data is
 * updated in every single block, the oldest samples in the buffer (and therefore largest queryable period) will
 * be slightly over 34 hours old.
 *
 * Usage of this module requires the caller to keep track of two variables: the latest circular buffer index, and the
 * timestamp when the index last changed. Aditionally, access to the latest circular buffer index must be exposed by
 * implementing `_getOracleIndex`.
 *
 * This contract relies on the `QueryProcessor` linked library to reduce bytecode size.
 */
abstract contract PoolPriceOracle is IPoolPriceOracle, IPriceOracle {
    using Buffer for uint256;
    using Samples for bytes32;

    // Each sample in the buffer accumulates information for up to 2 minutes. This is simply to reduce the size of the
    // buffer: small time deviations will not have any significant effect.
    // solhint-disable not-rely-on-time
    uint256 private constant _MAX_SAMPLE_DURATION = 2 minutes;

    // We use a mapping to simulate an array: the buffer won't grow or shrink, and since we will always use valid
    // indexes using a mapping saves gas by skipping the bounds checks.
    mapping(uint256 => bytes32) internal _samples;

    // IPoolPriceOracle

    function getSample(uint256 index)
        external
        view
        override
        returns (
            int256 logPairPrice,
            int256 accLogPairPrice,
            int256 logBptPrice,
            int256 accLogBptPrice,
            int256 logInvariant,
            int256 accLogInvariant,
            uint256 timestamp
        )
    {
        _require(index < Buffer.SIZE, Errors.ORACLE_INVALID_INDEX);

        bytes32 sample = _getSample(index);
        return sample.unpack();
    }

    function getTotalSamples() external pure override returns (uint256) {
        return Buffer.SIZE;
    }

    /**
     * @dev Manually dirty oracle sample storage slots with dummy data, to reduce the gas cost of the future swaps
     * that will initialize them. This function is only useful before the oracle has been fully initialized.
     *
     * `endIndex` is non-inclusive.
     */
    function dirtyUninitializedOracleSamples(uint256 startIndex, uint256 endIndex) external {
        _require(startIndex < endIndex && endIndex <= Buffer.SIZE, Errors.OUT_OF_BOUNDS);

        // Uninitialized samples are identified by a zero timestamp -- all other fields are ignored,
        // so any non-zero value with a zero timestamp suffices.
        bytes32 initSample = Samples.pack(1, 0, 0, 0, 0, 0, 0);
        for (uint256 i = startIndex; i < endIndex; i++) {
            if (_samples[i].timestamp() == 0) {
                _samples[i] = initSample;
            }
        }
    }

    // IPriceOracle

    function getLargestSafeQueryWindow() external pure override returns (uint256) {
        return 34 hours;
    }

    function getLatest(Variable variable) external view override returns (uint256) {
        return QueryProcessor.getInstantValue(_samples, variable, _getOracleIndex());
    }

    function getTimeWeightedAverage(OracleAverageQuery[] memory queries)
        external
        view
        override
        returns (uint256[] memory results)
    {
        results = new uint256[](queries.length);
        uint256 latestIndex = _getOracleIndex();

        for (uint256 i = 0; i < queries.length; ++i) {
            results[i] = QueryProcessor.getTimeWeightedAverage(_samples, queries[i], latestIndex);
        }
    }

    function getPastAccumulators(OracleAccumulatorQuery[] memory queries)
        external
        view
        override
        returns (int256[] memory results)
    {
        results = new int256[](queries.length);
        uint256 latestIndex = _getOracleIndex();

        OracleAccumulatorQuery memory query;
        for (uint256 i = 0; i < queries.length; ++i) {
            query = queries[i];
            results[i] = _getPastAccumulator(query.variable, latestIndex, query.ago);
        }
    }

    // Internal functions

    /**
     * @dev Processes new price and invariant data, updating the latest sample or creating a new one.
     *
     * Receives the new logarithms of values to store: `logPairPrice`, `logBptPrice` and `logInvariant`, as well the
     * index of the latest sample and the timestamp of its creation.
     *
     * Returns the index of the latest sample. If different from `latestIndex`, the caller should also store the
     * timestamp, and pass it on future calls to this function.
     */
    function _processPriceData(
        uint256 latestSampleCreationTimestamp,
        uint256 latestIndex,
        int256 logPairPrice,
        int256 logBptPrice,
        int256 logInvariant
    ) internal returns (uint256) {
        // Read latest sample, and compute the next one by updating it with the newly received data.
        bytes32 sample = _getSample(latestIndex).update(logPairPrice, logBptPrice, logInvariant, block.timestamp);

        // We create a new sample if more than _MAX_SAMPLE_DURATION seconds have elapsed since the creation of the
        // latest one. In other words, no sample accumulates data over a period larger than _MAX_SAMPLE_DURATION.
        bool newSample = block.timestamp - latestSampleCreationTimestamp >= _MAX_SAMPLE_DURATION;
        latestIndex = newSample ? latestIndex.next() : latestIndex;

        // Store the updated or new sample.
        _samples[latestIndex] = sample;

        return latestIndex;
    }

    function _getPastAccumulator(
        IPriceOracle.Variable variable,
        uint256 latestIndex,
        uint256 ago
    ) internal view returns (int256) {
        return QueryProcessor.getPastAccumulator(_samples, variable, latestIndex, ago);
    }

    function _findNearestSample(
        uint256 lookUpDate,
        uint256 offset,
        uint256 length
    ) internal view returns (bytes32 prev, bytes32 next) {
        return QueryProcessor.findNearestSample(_samples, lookUpDate, offset, length);
    }

    /**
     * @dev Returns the sample that corresponds to a given `index`.
     *
     * Using this function instead of accessing storage directly results in denser bytecode (since the storage slot is
     * only computed here).
     */
    function _getSample(uint256 index) internal view returns (bytes32) {
        return _samples[index];
    }

    /**
     * @dev Virtual function to be implemented by derived contracts. Must return the current index of the oracle
     * circular buffer.
     */
    function _getOracleIndex() internal view virtual returns (uint256);
}

File 46 of 63 : Buffer.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

library Buffer {
    // The buffer is a circular storage structure with 1024 slots.
    // solhint-disable-next-line private-vars-leading-underscore
    uint256 internal constant SIZE = 1024;

    /**
     * @dev Returns the index of the element before the one pointed by `index`.
     */
    function prev(uint256 index) internal pure returns (uint256) {
        return sub(index, 1);
    }

    /**
     * @dev Returns the index of the element after the one pointed by `index`.
     */
    function next(uint256 index) internal pure returns (uint256) {
        return add(index, 1);
    }

    /**
     * @dev Returns the index of an element `offset` slots after the one pointed by `index`.
     */
    function add(uint256 index, uint256 offset) internal pure returns (uint256) {
        return (index + offset) % SIZE;
    }

    /**
     * @dev Returns the index of an element `offset` slots before the one pointed by `index`.
     */
    function sub(uint256 index, uint256 offset) internal pure returns (uint256) {
        return (index + SIZE - offset) % SIZE;
    }
}

File 47 of 63 : WeightedOracleMath.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

import "@balancer-labs/v2-solidity-utils/contracts/math/FixedPoint.sol";
import "@balancer-labs/v2-solidity-utils/contracts/helpers/LogCompression.sol";

contract WeightedOracleMath {
    using FixedPoint for uint256;

    /**
     * @dev Calculates the logarithm of the spot price of token B in token A.
     *
     * The return value is a 4 decimal fixed-point number: use `LogCompression.fromLowResLog`
     * to recover the original value.
     */
    function _calcLogSpotPrice(
        uint256 normalizedWeightA,
        uint256 balanceA,
        uint256 normalizedWeightB,
        uint256 balanceB
    ) internal pure returns (int256) {
        // Max balances are 2^112 and min weights are 0.01, so the division never overflows.

        // The rounding direction is irrelevant as we're about to introduce a much larger error when converting to log
        // space. We use `divUp` as it prevents the result from being zero, which would make the logarithm revert. A
        // result of zero is therefore only possible with zero balances, which are prevented via other means.
        uint256 spotPrice = balanceA.divUp(normalizedWeightA).divUp(balanceB.divUp(normalizedWeightB));
        return LogCompression.toLowResLog(spotPrice);
    }

    /**
     * @dev Calculates the price of BPT in a token. `logBptTotalSupply` should be the result of calling `toLowResLog`
     * with the current BPT supply.
     *
     * The return value is a 4 decimal fixed-point number: use `LogCompression.fromLowResLog`
     * to recover the original value.
     */
    function _calcLogBPTPrice(
        uint256 normalizedWeight,
        uint256 balance,
        int256 logBptTotalSupply
    ) internal pure returns (int256) {
        // BPT price = (balance / weight) / total supply
        // Since we already have ln(total supply) and want to compute ln(BPT price), we perform the computation in log
        // space directly: ln(BPT price) = ln(balance / weight) - ln(total supply)

        // The rounding direction is irrelevant as we're about to introduce a much larger error when converting to log
        // space. We use `divUp` as it prevents the result from being zero, which would make the logarithm revert. A
        // result of zero is therefore only possible with zero balances, which are prevented via other means.
        uint256 balanceOverWeight = balance.divUp(normalizedWeight);
        int256 logBalanceOverWeight = LogCompression.toLowResLog(balanceOverWeight);

        // Because we're subtracting two values in log space, this value has a larger error (+-0.0001 instead of
        // +-0.00005), which results in a final larger relative error of around 0.1%.
        return logBalanceOverWeight - logBptTotalSupply;
    }
}

File 48 of 63 : WeightedPool2TokensMiscData.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

import "@balancer-labs/v2-solidity-utils/contracts/helpers/WordCodec.sol";

/**
 * @dev This module provides an interface to store seemingly unrelated pieces of information, in particular used by
 * pools with a price oracle.
 *
 * These pieces of information are all kept together in a single storage slot to reduce the number of storage reads. In
 * particular, we not only store configuration values (such as the swap fee percentage), but also cache
 * reduced-precision versions of the total BPT supply and invariant, which lets us not access nor compute these values
 * when producing oracle updates during a swap.
 *
 * Data is stored with the following structure:
 *
 * [ swap fee pct | oracle enabled | oracle index | oracle sample initial timestamp | log supply | log invariant ]
 * [    uint64    |      bool      |    uint10    |              uint31             |    int22   |     int22     ]
 *
 * Note that we are not using the most-significant 106 bits.
 */
library WeightedPool2TokensMiscData {
    using WordCodec for bytes32;
    using WordCodec for uint256;

    uint256 private constant _LOG_INVARIANT_OFFSET = 0;
    uint256 private constant _LOG_TOTAL_SUPPLY_OFFSET = 22;
    uint256 private constant _ORACLE_SAMPLE_CREATION_TIMESTAMP_OFFSET = 44;
    uint256 private constant _ORACLE_INDEX_OFFSET = 75;
    uint256 private constant _ORACLE_ENABLED_OFFSET = 85;
    uint256 private constant _SWAP_FEE_PERCENTAGE_OFFSET = 86;

    /**
     * @dev Returns the cached logarithm of the invariant.
     */
    function logInvariant(bytes32 data) internal pure returns (int256) {
        return data.decodeInt22(_LOG_INVARIANT_OFFSET);
    }

    /**
     * @dev Returns the cached logarithm of the total supply.
     */
    function logTotalSupply(bytes32 data) internal pure returns (int256) {
        return data.decodeInt22(_LOG_TOTAL_SUPPLY_OFFSET);
    }

    /**
     * @dev Returns the timestamp of the creation of the oracle's latest sample.
     */
    function oracleSampleCreationTimestamp(bytes32 data) internal pure returns (uint256) {
        return data.decodeUint31(_ORACLE_SAMPLE_CREATION_TIMESTAMP_OFFSET);
    }

    /**
     * @dev Returns the index of the oracle's latest sample.
     */
    function oracleIndex(bytes32 data) internal pure returns (uint256) {
        return data.decodeUint10(_ORACLE_INDEX_OFFSET);
    }

    /**
     * @dev Returns true if the oracle is enabled.
     */
    function oracleEnabled(bytes32 data) internal pure returns (bool) {
        return data.decodeBool(_ORACLE_ENABLED_OFFSET);
    }

    /**
     * @dev Returns the swap fee percentage.
     */
    function swapFeePercentage(bytes32 data) internal pure returns (uint256) {
        return data.decodeUint64(_SWAP_FEE_PERCENTAGE_OFFSET);
    }

    /**
     * @dev Sets the logarithm of the invariant in `data`, returning the updated value.
     */
    function setLogInvariant(bytes32 data, int256 _logInvariant) internal pure returns (bytes32) {
        return data.insertInt22(_logInvariant, _LOG_INVARIANT_OFFSET);
    }

    /**
     * @dev Sets the logarithm of the total supply in `data`, returning the updated value.
     */
    function setLogTotalSupply(bytes32 data, int256 _logTotalSupply) internal pure returns (bytes32) {
        return data.insertInt22(_logTotalSupply, _LOG_TOTAL_SUPPLY_OFFSET);
    }

    /**
     * @dev Sets the timestamp of the creation of the oracle's latest sample in `data`, returning the updated value.
     */
    function setOracleSampleCreationTimestamp(bytes32 data, uint256 _initialTimestamp) internal pure returns (bytes32) {
        return data.insertUint31(_initialTimestamp, _ORACLE_SAMPLE_CREATION_TIMESTAMP_OFFSET);
    }

    /**
     * @dev Sets the index of the  oracle's latest sample in `data`, returning the updated value.
     */
    function setOracleIndex(bytes32 data, uint256 _oracleIndex) internal pure returns (bytes32) {
        return data.insertUint10(_oracleIndex, _ORACLE_INDEX_OFFSET);
    }

    /**
     * @dev Enables or disables the oracle in `data`, returning the updated value.
     */
    function setOracleEnabled(bytes32 data, bool _oracleEnabled) internal pure returns (bytes32) {
        return data.insertBool(_oracleEnabled, _ORACLE_ENABLED_OFFSET);
    }

    /**
     * @dev Sets the swap fee percentage in `data`, returning the updated value.
     */
    function setSwapFeePercentage(bytes32 data, uint256 _swapFeePercentage) internal pure returns (bytes32) {
        return data.insertUint64(_swapFeePercentage, _SWAP_FEE_PERCENTAGE_OFFSET);
    }
}

File 49 of 63 : IPriceOracle.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;
pragma experimental ABIEncoderV2;

/**
 * @dev Interface for querying historical data from a Pool that can be used as a Price Oracle.
 *
 * This lets third parties retrieve average prices of tokens held by a Pool over a given period of time, as well as the
 * price of the Pool share token (BPT) and invariant. Since the invariant is a sensible measure of Pool liquidity, it
 * can be used to compare two different price sources, and choose the most liquid one.
 *
 * Once the oracle is fully initialized, all queries are guaranteed to succeed as long as they require no data that
 * is not older than the largest safe query window.
 */
interface IPriceOracle {
    // The three values that can be queried:
    //
    // - PAIR_PRICE: the price of the tokens in the Pool, expressed as the price of the second token in units of the
    //   first token. For example, if token A is worth $2, and token B is worth $4, the pair price will be 2.0.
    //   Note that the price is computed *including* the tokens decimals. This means that the pair price of a Pool with
    //   DAI and USDC will be close to 1.0, despite DAI having 18 decimals and USDC 6.
    //
    // - BPT_PRICE: the price of the Pool share token (BPT), in units of the first token.
    //   Note that the price is computed *including* the tokens decimals. This means that the BPT price of a Pool with
    //   USDC in which BPT is worth $5 will be 5.0, despite the BPT having 18 decimals and USDC 6.
    //
    // - INVARIANT: the value of the Pool's invariant, which serves as a measure of its liquidity.
    enum Variable { PAIR_PRICE, BPT_PRICE, INVARIANT }

    /**
     * @dev Returns the time average weighted price corresponding to each of `queries`. Prices are represented as 18
     * decimal fixed point values.
     */
    function getTimeWeightedAverage(OracleAverageQuery[] memory queries)
        external
        view
        returns (uint256[] memory results);

    /**
     * @dev Returns latest sample of `variable`. Prices are represented as 18 decimal fixed point values.
     */
    function getLatest(Variable variable) external view returns (uint256);

    /**
     * @dev Information for a Time Weighted Average query.
     *
     * Each query computes the average over a window of duration `secs` seconds that ended `ago` seconds ago. For
     * example, the average over the past 30 minutes is computed by settings secs to 1800 and ago to 0. If secs is 1800
     * and ago is 1800 as well, the average between 60 and 30 minutes ago is computed instead.
     */
    struct OracleAverageQuery {
        Variable variable;
        uint256 secs;
        uint256 ago;
    }

    /**
     * @dev Returns largest time window that can be safely queried, where 'safely' means the Oracle is guaranteed to be
     * able to produce a result and not revert.
     *
     * If a query has a non-zero `ago` value, then `secs + ago` (the oldest point in time) must be smaller than this
     * value for 'safe' queries.
     */
    function getLargestSafeQueryWindow() external view returns (uint256);

    /**
     * @dev Returns the accumulators corresponding to each of `queries`.
     */
    function getPastAccumulators(OracleAccumulatorQuery[] memory queries)
        external
        view
        returns (int256[] memory results);

    /**
     * @dev Information for an Accumulator query.
     *
     * Each query estimates the accumulator at a time `ago` seconds ago.
     */
    struct OracleAccumulatorQuery {
        Variable variable;
        uint256 ago;
    }
}

File 50 of 63 : IPoolPriceOracle.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

interface IPoolPriceOracle {
    /**
     * @dev Returns the raw data of the sample at `index`.
     */
    function getSample(uint256 index)
        external
        view
        returns (
            int256 logPairPrice,
            int256 accLogPairPrice,
            int256 logBptPrice,
            int256 accLogBptPrice,
            int256 logInvariant,
            int256 accLogInvariant,
            uint256 timestamp
        );

    /**
     * @dev Returns the total number of samples.
     */
    function getTotalSamples() external view returns (uint256);
}

File 51 of 63 : Samples.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

import "@balancer-labs/v2-solidity-utils/contracts/helpers/WordCodec.sol";

import "../interfaces/IPriceOracle.sol";

/**
 * @dev This library provides functions to help manipulating samples for Pool Price Oracles. It handles updates,
 * encoding, and decoding of samples.
 *
 * Each sample holds the timestamp of its last update, plus information about three pieces of data: the price pair, the
 * price of BPT (the associated Pool token), and the invariant.
 *
 * Prices and invariant are not stored directly: instead, we store their logarithm. These are known as the 'instant'
 * values: the exact value at that timestamp.
 *
 * Additionally, for each value we keep an accumulator with the sum of all past values, each weighted by the time
 * elapsed since the previous update. This lets us later subtract accumulators at different points in time and divide by
 * the time elapsed between them, arriving at the geometric mean of the values (also known as log-average).
 *
 * All samples are stored in a single 256 bit word with the following structure:
 *
 * [    log pair price     |        bpt price      |       invariant       |  timestamp ]
 * [ instant | accumulator | instant | accumulator | instant | accumulator |            ]
 * [  int22  |    int53    |  int22  |    int53    |  int22  |    int53    |    uint31  ]
 * MSB                                                                                LSB
 *
 * Assuming the timestamp doesn't overflow (which holds until the year 2038), the largest elapsed time is 2^31, which
 * means the largest possible accumulator value is 2^21 * 2^31, which can be represented using a signed 53 bit integer.
 */
library Samples {
    using WordCodec for int256;
    using WordCodec for uint256;
    using WordCodec for bytes32;

    uint256 internal constant _TIMESTAMP_OFFSET = 0;
    uint256 internal constant _ACC_LOG_INVARIANT_OFFSET = 31;
    uint256 internal constant _INST_LOG_INVARIANT_OFFSET = 84;
    uint256 internal constant _ACC_LOG_BPT_PRICE_OFFSET = 106;
    uint256 internal constant _INST_LOG_BPT_PRICE_OFFSET = 159;
    uint256 internal constant _ACC_LOG_PAIR_PRICE_OFFSET = 181;
    uint256 internal constant _INST_LOG_PAIR_PRICE_OFFSET = 234;

    /**
     * @dev Updates a sample, accumulating the new data based on the elapsed time since the previous update. Returns the
     * updated sample.
     *
     * IMPORTANT: This function does not perform any arithmetic checks. In particular, it assumes the caller will never
     * pass values that cannot be represented as 22 bit signed integers. Additionally, it also assumes
     * `currentTimestamp` is greater than `sample`'s timestamp.
     */
    function update(
        bytes32 sample,
        int256 instLogPairPrice,
        int256 instLogBptPrice,
        int256 instLogInvariant,
        uint256 currentTimestamp
    ) internal pure returns (bytes32) {
        // Because elapsed can be represented as a 31 bit unsigned integer, and the received values can be represented
        // as 22 bit signed integers, we don't need to perform checked arithmetic.

        int256 elapsed = int256(currentTimestamp - timestamp(sample));
        int256 accLogPairPrice = _accLogPairPrice(sample) + instLogPairPrice * elapsed;
        int256 accLogBptPrice = _accLogBptPrice(sample) + instLogBptPrice * elapsed;
        int256 accLogInvariant = _accLogInvariant(sample) + instLogInvariant * elapsed;

        return
            pack(
                instLogPairPrice,
                accLogPairPrice,
                instLogBptPrice,
                accLogBptPrice,
                instLogInvariant,
                accLogInvariant,
                currentTimestamp
            );
    }

    /**
     * @dev Returns the instant value stored in `sample` for `variable`.
     */
    function instant(bytes32 sample, IPriceOracle.Variable variable) internal pure returns (int256) {
        if (variable == IPriceOracle.Variable.PAIR_PRICE) {
            return _instLogPairPrice(sample);
        } else if (variable == IPriceOracle.Variable.BPT_PRICE) {
            return _instLogBptPrice(sample);
        } else {
            // variable == IPriceOracle.Variable.INVARIANT
            return _instLogInvariant(sample);
        }
    }

    /**
     * @dev Returns the accumulator value stored in `sample` for `variable`.
     */
    function accumulator(bytes32 sample, IPriceOracle.Variable variable) internal pure returns (int256) {
        if (variable == IPriceOracle.Variable.PAIR_PRICE) {
            return _accLogPairPrice(sample);
        } else if (variable == IPriceOracle.Variable.BPT_PRICE) {
            return _accLogBptPrice(sample);
        } else {
            // variable == IPriceOracle.Variable.INVARIANT
            return _accLogInvariant(sample);
        }
    }

    /**
     * @dev Returns `sample`'s timestamp.
     */
    function timestamp(bytes32 sample) internal pure returns (uint256) {
        return sample.decodeUint31(_TIMESTAMP_OFFSET);
    }

    /**
     * @dev Returns `sample`'s instant value for the logarithm of the pair price.
     */
    function _instLogPairPrice(bytes32 sample) private pure returns (int256) {
        return sample.decodeInt22(_INST_LOG_PAIR_PRICE_OFFSET);
    }

    /**
     * @dev Returns `sample`'s accumulator of the logarithm of the pair price.
     */
    function _accLogPairPrice(bytes32 sample) private pure returns (int256) {
        return sample.decodeInt53(_ACC_LOG_PAIR_PRICE_OFFSET);
    }

    /**
     * @dev Returns `sample`'s instant value for the logarithm of the BPT price.
     */
    function _instLogBptPrice(bytes32 sample) private pure returns (int256) {
        return sample.decodeInt22(_INST_LOG_BPT_PRICE_OFFSET);
    }

    /**
     * @dev Returns `sample`'s accumulator of the logarithm of the BPT price.
     */
    function _accLogBptPrice(bytes32 sample) private pure returns (int256) {
        return sample.decodeInt53(_ACC_LOG_BPT_PRICE_OFFSET);
    }

    /**
     * @dev Returns `sample`'s instant value for the logarithm of the invariant.
     */
    function _instLogInvariant(bytes32 sample) private pure returns (int256) {
        return sample.decodeInt22(_INST_LOG_INVARIANT_OFFSET);
    }

    /**
     * @dev Returns `sample`'s accumulator of the logarithm of the invariant.
     */
    function _accLogInvariant(bytes32 sample) private pure returns (int256) {
        return sample.decodeInt53(_ACC_LOG_INVARIANT_OFFSET);
    }

    /**
     * @dev Returns a sample created by packing together its components.
     */
    function pack(
        int256 instLogPairPrice,
        int256 accLogPairPrice,
        int256 instLogBptPrice,
        int256 accLogBptPrice,
        int256 instLogInvariant,
        int256 accLogInvariant,
        uint256 _timestamp
    ) internal pure returns (bytes32) {
        return
            instLogPairPrice.encodeInt22(_INST_LOG_PAIR_PRICE_OFFSET) |
            accLogPairPrice.encodeInt53(_ACC_LOG_PAIR_PRICE_OFFSET) |
            instLogBptPrice.encodeInt22(_INST_LOG_BPT_PRICE_OFFSET) |
            accLogBptPrice.encodeInt53(_ACC_LOG_BPT_PRICE_OFFSET) |
            instLogInvariant.encodeInt22(_INST_LOG_INVARIANT_OFFSET) |
            accLogInvariant.encodeInt53(_ACC_LOG_INVARIANT_OFFSET) |
            _timestamp.encodeUint(_TIMESTAMP_OFFSET); // Using 31 bits
    }

    /**
     * @dev Unpacks a sample into its components.
     */
    function unpack(bytes32 sample)
        internal
        pure
        returns (
            int256 logPairPrice,
            int256 accLogPairPrice,
            int256 logBptPrice,
            int256 accLogBptPrice,
            int256 logInvariant,
            int256 accLogInvariant,
            uint256 _timestamp
        )
    {
        logPairPrice = _instLogPairPrice(sample);
        accLogPairPrice = _accLogPairPrice(sample);
        logBptPrice = _instLogBptPrice(sample);
        accLogBptPrice = _accLogBptPrice(sample);
        logInvariant = _instLogInvariant(sample);
        accLogInvariant = _accLogInvariant(sample);
        _timestamp = timestamp(sample);
    }
}

File 52 of 63 : QueryProcessor.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;
pragma experimental ABIEncoderV2;

import "@balancer-labs/v2-solidity-utils/contracts/helpers/BalancerErrors.sol";
import "@balancer-labs/v2-solidity-utils/contracts/helpers/LogCompression.sol";

import "../interfaces/IPriceOracle.sol";

import "./Buffer.sol";
import "./Samples.sol";

/**
 * @dev Auxiliary library for PoolPriceOracle, offloading most of the query code to reduce bytecode size by using this
 * as a linked library. The downside is an extra DELEGATECALL is added (2600 gas as of the Berlin hardfork), but the
 * bytecode size gains are so big (specially of the oracle contract does not use `LogCompression.fromLowResLog`) that
 * it is worth it.
 */
library QueryProcessor {
    using Buffer for uint256;
    using Samples for bytes32;
    using LogCompression for int256;

    /**
     * @dev Returns the value for `variable` at the indexed sample.
     */
    function getInstantValue(
        mapping(uint256 => bytes32) storage samples,
        IPriceOracle.Variable variable,
        uint256 index
    ) external view returns (uint256) {
        bytes32 sample = samples[index];
        _require(sample.timestamp() > 0, Errors.ORACLE_NOT_INITIALIZED);

        int256 rawInstantValue = sample.instant(variable);
        return LogCompression.fromLowResLog(rawInstantValue);
    }

    /**
     * @dev Returns the time average weighted price corresponding to `query`.
     */
    function getTimeWeightedAverage(
        mapping(uint256 => bytes32) storage samples,
        IPriceOracle.OracleAverageQuery memory query,
        uint256 latestIndex
    ) external view returns (uint256) {
        _require(query.secs != 0, Errors.ORACLE_BAD_SECS);

        int256 beginAccumulator = getPastAccumulator(samples, query.variable, latestIndex, query.ago + query.secs);
        int256 endAccumulator = getPastAccumulator(samples, query.variable, latestIndex, query.ago);
        return LogCompression.fromLowResLog((endAccumulator - beginAccumulator) / int256(query.secs));
    }

    /**
     * @dev Returns the value of the accumulator for `variable` `ago` seconds ago. `latestIndex` must be the index of
     * the latest sample in the buffer.
     *
     * Reverts under the following conditions:
     *  - if the buffer is empty.
     *  - if querying past information and the buffer has not been fully initialized.
     *  - if querying older information than available in the buffer. Note that a full buffer guarantees queries for the
     *    past 34 hours will not revert.
     *
     * If requesting information for a timestamp later than the latest one, it is extrapolated using the latest
     * available data.
     *
     * When no exact information is available for the requested past timestamp (as usually happens, since at most one
     * timestamp is stored every two minutes), it is estimated by performing linear interpolation using the closest
     * values. This process is guaranteed to complete performing at most 10 storage reads.
     */
    function getPastAccumulator(
        mapping(uint256 => bytes32) storage samples,
        IPriceOracle.Variable variable,
        uint256 latestIndex,
        uint256 ago
    ) public view returns (int256) {
        // solhint-disable not-rely-on-time
        // `ago` must not be before the epoch.
        _require(block.timestamp >= ago, Errors.ORACLE_INVALID_SECONDS_QUERY);
        uint256 lookUpTime = block.timestamp - ago;

        bytes32 latestSample = samples[latestIndex];
        uint256 latestTimestamp = latestSample.timestamp();

        // The latest sample only has a non-zero timestamp if no data was ever processed and stored in the buffer.
        _require(latestTimestamp > 0, Errors.ORACLE_NOT_INITIALIZED);

        if (latestTimestamp <= lookUpTime) {
            // The accumulator at times ahead of the latest one are computed by extrapolating the latest data. This is
            // equivalent to the instant value not changing between the last timestamp and the look up time.

            // We can use unchecked arithmetic since the accumulator can be represented in 53 bits, timestamps in 31
            // bits, and the instant value in 22 bits.
            uint256 elapsed = lookUpTime - latestTimestamp;
            return latestSample.accumulator(variable) + (latestSample.instant(variable) * int256(elapsed));
        } else {
            // The look up time is before the latest sample, but we need to make sure that it is not before the oldest
            // sample as well.

            // Since we use a circular buffer, the oldest sample is simply the next one.
            uint256 bufferLength;
            uint256 oldestIndex = latestIndex.next();
            {
                // Local scope used to prevent stack-too-deep errors.
                bytes32 oldestSample = samples[oldestIndex];
                uint256 oldestTimestamp = oldestSample.timestamp();

                if (oldestTimestamp > 0) {
                    // If the oldest timestamp is not zero, it means the buffer was fully initialized.
                    bufferLength = Buffer.SIZE;
                } else {
                    // If the buffer was not fully initialized, we haven't wrapped around it yet,
                    // and can treat it as a regular array where the oldest index is the first one,
                    // and the length the number of samples.
                    bufferLength = oldestIndex; // Equal to latestIndex.next()
                    oldestIndex = 0;
                    oldestTimestamp = samples[0].timestamp();
                }

                // Finally check that the look up time is not previous to the oldest timestamp.
                _require(oldestTimestamp <= lookUpTime, Errors.ORACLE_QUERY_TOO_OLD);
            }

            // Perform binary search to find nearest samples to the desired timestamp.
            (bytes32 prev, bytes32 next) = findNearestSample(samples, lookUpTime, oldestIndex, bufferLength);

            // `next`'s timestamp is guaranteed to be larger than `prev`'s, so we can skip checked arithmetic.
            uint256 samplesTimeDiff = next.timestamp() - prev.timestamp();

            if (samplesTimeDiff > 0) {
                // We estimate the accumulator at the requested look up time by interpolating linearly between the
                // previous and next accumulators.

                // We can use unchecked arithmetic since the accumulators can be represented in 53 bits, and timestamps
                // in 31 bits.
                int256 samplesAccDiff = next.accumulator(variable) - prev.accumulator(variable);
                uint256 elapsed = lookUpTime - prev.timestamp();
                return prev.accumulator(variable) + ((samplesAccDiff * int256(elapsed)) / int256(samplesTimeDiff));
            } else {
                // Rarely, one of the samples will have the exact requested look up time, which is indicated by `prev`
                // and `next` being the same. In this case, we simply return the accumulator at that point in time.
                return prev.accumulator(variable);
            }
        }
    }

    /**
     * @dev Finds the two samples with timestamps before and after `lookUpDate`. If one of the samples matches exactly,
     * both `prev` and `next` will be it. `offset` is the index of the oldest sample in the buffer. `length` is the size
     * of the samples list.
     *
     * Assumes `lookUpDate` is greater or equal than the timestamp of the oldest sample, and less or equal than the
     * timestamp of the latest sample.
     */
    function findNearestSample(
        mapping(uint256 => bytes32) storage samples,
        uint256 lookUpDate,
        uint256 offset,
        uint256 length
    ) public view returns (bytes32 prev, bytes32 next) {
        // We're going to perform a binary search in the circular buffer, which requires it to be sorted. To achieve
        // this, we offset all buffer accesses by `offset`, making the first element the oldest one.

        // Auxiliary variables in a typical binary search: we will look at some value `mid` between `low` and `high`,
        // periodically increasing `low` or decreasing `high` until we either find a match or determine the element is
        // not in the array.
        uint256 low = 0;
        uint256 high = length - 1;
        uint256 mid;

        // If the search fails and no sample has a timestamp of `lookUpDate` (as is the most common scenario), `sample`
        // will be either the sample with the largest timestamp smaller than `lookUpDate`, or the one with the smallest
        // timestamp larger than `lookUpDate`.
        bytes32 sample;
        uint256 sampleTimestamp;

        while (low <= high) {
            // Mid is the floor of the average.
            uint256 midWithoutOffset = (high + low) / 2;

            // Recall that the buffer is not actually sorted: we need to apply the offset to access it in a sorted way.
            mid = midWithoutOffset.add(offset);
            sample = samples[mid];
            sampleTimestamp = sample.timestamp();

            if (sampleTimestamp < lookUpDate) {
                // If the mid sample is bellow the look up date, then increase the low index to start from there.
                low = midWithoutOffset + 1;
            } else if (sampleTimestamp > lookUpDate) {
                // If the mid sample is above the look up date, then decrease the high index to start from there.

                // We can skip checked arithmetic: it is impossible for `high` to ever be 0, as a scenario where `low`
                // equals 0 and `high` equals 1 would result in `low` increasing to 1 in the previous `if` clause.
                high = midWithoutOffset - 1;
            } else {
                // sampleTimestamp == lookUpDate
                // If we have an exact match, return the sample as both `prev` and `next`.
                return (sample, sample);
            }
        }

        // In case we reach here, it means we didn't find exactly the sample we where looking for.
        return sampleTimestamp < lookUpDate ? (sample, samples[mid.next()]) : (samples[mid.prev()], sample);
    }
}

File 53 of 63 : ReentrancyGuard.sol
// SPDX-License-Identifier: MIT

// Based on the ReentrancyGuard library from OpenZeppelin Contracts, altered to reduce bytecode size.
// Modifier code is inlined by the compiler, which causes its code to appear multiple times in the codebase. By using
// private functions, we achieve the same end result with slightly higher runtime gas costs, but reduced bytecode size.

pragma solidity ^0.7.0;

import "../helpers/BalancerErrors.sol";

/**
 * @dev Contract module that helps prevent reentrant calls to a function.
 *
 * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
 * available, which can be applied to functions to make sure there are no nested
 * (reentrant) calls to them.
 *
 * Note that because there is a single `nonReentrant` guard, functions marked as
 * `nonReentrant` may not call one another. This can be worked around by making
 * those functions `private`, and then adding `external` `nonReentrant` entry
 * points to them.
 *
 * TIP: If you would like to learn more about reentrancy and alternative ways
 * to protect against it, check out our blog post
 * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
 */
abstract contract ReentrancyGuard {
    // Booleans are more expensive than uint256 or any type that takes up a full
    // word because each write operation emits an extra SLOAD to first read the
    // slot's contents, replace the bits taken up by the boolean, and then write
    // back. This is the compiler's defense against contract upgrades and
    // pointer aliasing, and it cannot be disabled.

    // The values being non-zero value makes deployment a bit more expensive,
    // but in exchange the refund on every call to nonReentrant will be lower in
    // amount. Since refunds are capped to a percentage of the total
    // transaction's gas, it is best to keep them low in cases like this one, to
    // increase the likelihood of the full refund coming into effect.
    uint256 private constant _NOT_ENTERED = 1;
    uint256 private constant _ENTERED = 2;

    uint256 private _status;

    constructor() {
        _status = _NOT_ENTERED;
    }

    /**
     * @dev Prevents a contract from calling itself, directly or indirectly.
     * Calling a `nonReentrant` function from another `nonReentrant`
     * function is not supported. It is possible to prevent this from happening
     * by making the `nonReentrant` function external, and make it call a
     * `private` function that does the actual work.
     */
    modifier nonReentrant() {
        _enterNonReentrant();
        _;
        _exitNonReentrant();
    }

    function _enterNonReentrant() private {
        // On the first call to nonReentrant, _status will be _NOT_ENTERED
        _require(_status != _ENTERED, Errors.REENTRANCY);

        // Any calls to nonReentrant after this point will fail
        _status = _ENTERED;
    }

    function _exitNonReentrant() private {
        // By storing the original value once again, a refund is triggered (see
        // https://eips.ethereum.org/EIPS/eip-2200)
        _status = _NOT_ENTERED;
    }
}

File 54 of 63 : LiquidityBootstrappingPool.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;
pragma experimental ABIEncoderV2;

import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/ReentrancyGuard.sol";
import "@balancer-labs/v2-solidity-utils/contracts/helpers/WordCodec.sol";
import "@balancer-labs/v2-solidity-utils/contracts/math/Math.sol";

import "../BaseWeightedPool.sol";
import "./WeightCompression.sol";

/**
 * @dev Weighted Pool with mutable weights, designed to support V2 Liquidity Bootstrapping
 */
contract LiquidityBootstrappingPool is BaseWeightedPool, ReentrancyGuard {
    // The Pause Window and Buffer Period are timestamp-based: they should not be relied upon for sub-minute accuracy.
    // solhint-disable not-rely-on-time

    using FixedPoint for uint256;
    using WordCodec for bytes32;
    using WeightCompression for uint256;

    // LBPs often involve only two tokens - we support up to four since we're able to pack the entire config in a single
    // storage slot.
    uint256 private constant _MAX_LBP_TOKENS = 4;

    // State variables

    uint256 private immutable _totalTokens;

    IERC20 internal immutable _token0;
    IERC20 internal immutable _token1;
    IERC20 internal immutable _token2;
    IERC20 internal immutable _token3;

    // All token balances are normalized to behave as if the token had 18 decimals. We assume a token's decimals will
    // not change throughout its lifetime, and store the corresponding scaling factor for each at construction time.
    // These factors are always greater than or equal to one: tokens with more than 18 decimals are not supported.

    uint256 internal immutable _scalingFactor0;
    uint256 internal immutable _scalingFactor1;
    uint256 internal immutable _scalingFactor2;
    uint256 internal immutable _scalingFactor3;

    // For gas optimization, store start/end weights and timestamps in one bytes32
    // Start weights need to be high precision, since restarting the update resets them to "spot"
    // values. Target end weights do not need as much precision.
    // [     32 bits   |     32 bits     |      64 bits     |      124 bits      |    3 bits    |     1 bit    ]
    // [ end timestamp | start timestamp | 4x16 end weights | 4x31 start weights |   not used   | swap enabled ]
    // |MSB                                                                                                 LSB|

    bytes32 private _poolState;

    // Offsets for data elements in _poolState
    uint256 private constant _SWAP_ENABLED_OFFSET = 0;
    uint256 private constant _START_WEIGHT_OFFSET = 4;
    uint256 private constant _END_WEIGHT_OFFSET = 128;
    uint256 private constant _START_TIME_OFFSET = 192;
    uint256 private constant _END_TIME_OFFSET = 224;

    // Event declarations

    event SwapEnabledSet(bool swapEnabled);
    event GradualWeightUpdateScheduled(
        uint256 startTime,
        uint256 endTime,
        uint256[] startWeights,
        uint256[] endWeights
    );

    constructor(
        IVault vault,
        string memory name,
        string memory symbol,
        IERC20[] memory tokens,
        uint256[] memory normalizedWeights,
        uint256 swapFeePercentage,
        uint256 pauseWindowDuration,
        uint256 bufferPeriodDuration,
        address owner,
        bool swapEnabledOnStart
    )
        BaseWeightedPool(
            vault,
            name,
            symbol,
            tokens,
            new address[](tokens.length), // Pass the zero address: LBPs can't have asset managers
            swapFeePercentage,
            pauseWindowDuration,
            bufferPeriodDuration,
            owner
        )
    {
        uint256 totalTokens = tokens.length;
        InputHelpers.ensureInputLengthMatch(totalTokens, normalizedWeights.length);

        _totalTokens = totalTokens;

        // Immutable variables cannot be initialized inside an if statement, so we must do conditional assignments
        _token0 = tokens[0];
        _token1 = tokens[1];
        _token2 = totalTokens > 2 ? tokens[2] : IERC20(0);
        _token3 = totalTokens > 3 ? tokens[3] : IERC20(0);

        _scalingFactor0 = _computeScalingFactor(tokens[0]);
        _scalingFactor1 = _computeScalingFactor(tokens[1]);
        _scalingFactor2 = totalTokens > 2 ? _computeScalingFactor(tokens[2]) : 0;
        _scalingFactor3 = totalTokens > 3 ? _computeScalingFactor(tokens[3]) : 0;

        uint256 currentTime = block.timestamp;

        _startGradualWeightChange(currentTime, currentTime, normalizedWeights, normalizedWeights);

        // If false, the pool will start in the disabled state (prevents front-running the enable swaps transaction)
        _setSwapEnabled(swapEnabledOnStart);
    }

    // External functions

    /**
     * @dev Tells whether swaps are enabled or not for the given pool.
     */
    function getSwapEnabled() public view returns (bool) {
        return _poolState.decodeBool(_SWAP_ENABLED_OFFSET);
    }

    /**
     * @dev Return start time, end time, and endWeights as an array.
     * Current weights should be retrieved via `getNormalizedWeights()`.
     */
    function getGradualWeightUpdateParams()
        external
        view
        returns (
            uint256 startTime,
            uint256 endTime,
            uint256[] memory endWeights
        )
    {
        // Load current pool state from storage
        bytes32 poolState = _poolState;

        startTime = poolState.decodeUint32(_START_TIME_OFFSET);
        endTime = poolState.decodeUint32(_END_TIME_OFFSET);
        uint256 totalTokens = _getTotalTokens();
        endWeights = new uint256[](totalTokens);

        for (uint256 i = 0; i < totalTokens; i++) {
            endWeights[i] = poolState.decodeUint16(_END_WEIGHT_OFFSET + i * 16).uncompress16();
        }
    }

    /**
     * @dev Can pause/unpause trading
     */
    function setSwapEnabled(bool swapEnabled) external authenticate whenNotPaused nonReentrant {
        _setSwapEnabled(swapEnabled);
    }

    /**
     * @dev Schedule a gradual weight change, from the current weights to the given endWeights,
     * over startTime to endTime
     */
    function updateWeightsGradually(
        uint256 startTime,
        uint256 endTime,
        uint256[] memory endWeights
    ) external authenticate whenNotPaused nonReentrant {
        InputHelpers.ensureInputLengthMatch(_getTotalTokens(), endWeights.length);

        // If the start time is in the past, "fast forward" to start now
        // This avoids discontinuities in the weight curve. Otherwise, if you set the start/end times with
        // only 10% of the period in the future, the weights would immediately jump 90%
        uint256 currentTime = block.timestamp;
        startTime = Math.max(currentTime, startTime);

        _require(startTime <= endTime, Errors.GRADUAL_UPDATE_TIME_TRAVEL);

        _startGradualWeightChange(startTime, endTime, _getNormalizedWeights(), endWeights);
    }

    // Internal functions

    function _getNormalizedWeight(IERC20 token) internal view override returns (uint256) {
        uint256 i;

        // First, convert token address to a token index

        // prettier-ignore
        if (token == _token0) { i = 0; }
        else if (token == _token1) { i = 1; }
        else if (token == _token2) { i = 2; }
        else if (token == _token3) { i = 3; }
        else {
            _revert(Errors.INVALID_TOKEN);
        }

        return _getNormalizedWeightByIndex(i, _poolState);
    }

    function _getNormalizedWeightByIndex(uint256 i, bytes32 poolState) internal view returns (uint256) {
        uint256 startWeight = poolState.decodeUint31(_START_WEIGHT_OFFSET + i * 31).uncompress31();
        uint256 endWeight = poolState.decodeUint16(_END_WEIGHT_OFFSET + i * 16).uncompress16();

        uint256 pctProgress = _calculateWeightChangeProgress(poolState);

        return _interpolateWeight(startWeight, endWeight, pctProgress);
    }

    function _getNormalizedWeights() internal view override returns (uint256[] memory) {
        uint256 totalTokens = _getTotalTokens();
        uint256[] memory normalizedWeights = new uint256[](totalTokens);

        bytes32 poolState = _poolState;

        // prettier-ignore
        {
            normalizedWeights[0] = _getNormalizedWeightByIndex(0, poolState);
            normalizedWeights[1] = _getNormalizedWeightByIndex(1, poolState);
            if (totalTokens == 2) return normalizedWeights;
            normalizedWeights[2] = _getNormalizedWeightByIndex(2, poolState);
            if (totalTokens == 3) return normalizedWeights;
            normalizedWeights[3] = _getNormalizedWeightByIndex(3, poolState);
        }

        return normalizedWeights;
    }

    function _getNormalizedWeightsAndMaxWeightIndex()
        internal
        view
        override
        returns (uint256[] memory normalizedWeights, uint256 maxWeightTokenIndex)
    {
        normalizedWeights = _getNormalizedWeights();

        maxWeightTokenIndex = 0;
        uint256 maxNormalizedWeight = normalizedWeights[0];

        for (uint256 i = 1; i < normalizedWeights.length; i++) {
            if (normalizedWeights[i] > maxNormalizedWeight) {
                maxWeightTokenIndex = i;
                maxNormalizedWeight = normalizedWeights[i];
            }
        }
    }

    // Pool callback functions

    // Prevent any account other than the owner from joining the pool

    function _onInitializePool(
        bytes32 poolId,
        address sender,
        address recipient,
        uint256[] memory scalingFactors,
        bytes memory userData
    ) internal override returns (uint256, uint256[] memory) {
        // Only the owner can initialize the pool
        _require(sender == getOwner(), Errors.CALLER_IS_NOT_LBP_OWNER);

        return super._onInitializePool(poolId, sender, recipient, scalingFactors, userData);
    }

    function _onJoinPool(
        bytes32 poolId,
        address sender,
        address recipient,
        uint256[] memory balances,
        uint256 lastChangeBlock,
        uint256 protocolSwapFeePercentage,
        uint256[] memory scalingFactors,
        bytes memory userData
    )
        internal
        override
        returns (
            uint256,
            uint256[] memory,
            uint256[] memory
        )
    {
        // Only the owner can add liquidity; block public LPs
        _require(sender == getOwner(), Errors.CALLER_IS_NOT_LBP_OWNER);

        return
            super._onJoinPool(
                poolId,
                sender,
                recipient,
                balances,
                lastChangeBlock,
                protocolSwapFeePercentage,
                scalingFactors,
                userData
            );
    }

    // Swap overrides - revert unless swaps are enabled

    function _onSwapGivenIn(
        SwapRequest memory swapRequest,
        uint256 currentBalanceTokenIn,
        uint256 currentBalanceTokenOut
    ) internal view override returns (uint256) {
        _require(getSwapEnabled(), Errors.SWAPS_DISABLED);

        return super._onSwapGivenIn(swapRequest, currentBalanceTokenIn, currentBalanceTokenOut);
    }

    function _onSwapGivenOut(
        SwapRequest memory swapRequest,
        uint256 currentBalanceTokenIn,
        uint256 currentBalanceTokenOut
    ) internal view override returns (uint256) {
        _require(getSwapEnabled(), Errors.SWAPS_DISABLED);

        return super._onSwapGivenOut(swapRequest, currentBalanceTokenIn, currentBalanceTokenOut);
    }

    /**
     * @dev Extend ownerOnly functions to include the LBP control functions
     */
    function _isOwnerOnlyAction(bytes32 actionId) internal view override returns (bool) {
        return
            (actionId == getActionId(LiquidityBootstrappingPool.setSwapEnabled.selector)) ||
            (actionId == getActionId(LiquidityBootstrappingPool.updateWeightsGradually.selector)) ||
            super._isOwnerOnlyAction(actionId);
    }

    // Private functions

    /**
     * @dev Returns a fixed-point number representing how far along the current weight change is, where 0 means the
     * change has not yet started, and FixedPoint.ONE means it has fully completed.
     */
    function _calculateWeightChangeProgress(bytes32 poolState) private view returns (uint256) {
        uint256 currentTime = block.timestamp;
        uint256 startTime = poolState.decodeUint32(_START_TIME_OFFSET);
        uint256 endTime = poolState.decodeUint32(_END_TIME_OFFSET);

        if (currentTime > endTime) {
            return FixedPoint.ONE;
        } else if (currentTime < startTime) {
            return 0;
        }

        // No need for SafeMath as it was checked right above: endTime >= currentTime >= startTime
        uint256 totalSeconds = endTime - startTime;
        uint256 secondsElapsed = currentTime - startTime;

        // In the degenerate case of a zero duration change, consider it completed (and avoid division by zero)
        return totalSeconds == 0 ? FixedPoint.ONE : secondsElapsed.divDown(totalSeconds);
    }

    /**
     * @dev When calling updateWeightsGradually again during an update, reset the start weights to the current weights,
     * if necessary.
     */
    function _startGradualWeightChange(
        uint256 startTime,
        uint256 endTime,
        uint256[] memory startWeights,
        uint256[] memory endWeights
    ) internal virtual {
        bytes32 newPoolState = _poolState;

        uint256 normalizedSum = 0;
        for (uint256 i = 0; i < endWeights.length; i++) {
            uint256 endWeight = endWeights[i];
            _require(endWeight >= _MIN_WEIGHT, Errors.MIN_WEIGHT);

            newPoolState = newPoolState
                .insertUint31(startWeights[i].compress31(), _START_WEIGHT_OFFSET + i * 31)
                .insertUint16(endWeight.compress16(), _END_WEIGHT_OFFSET + i * 16);

            normalizedSum = normalizedSum.add(endWeight);
        }
        // Ensure that the normalized weights sum to ONE
        _require(normalizedSum == FixedPoint.ONE, Errors.NORMALIZED_WEIGHT_INVARIANT);

        _poolState = newPoolState.insertUint32(startTime, _START_TIME_OFFSET).insertUint32(endTime, _END_TIME_OFFSET);

        emit GradualWeightUpdateScheduled(startTime, endTime, startWeights, endWeights);
    }

    function _interpolateWeight(
        uint256 startWeight,
        uint256 endWeight,
        uint256 pctProgress
    ) private pure returns (uint256) {
        if (pctProgress == 0 || startWeight == endWeight) return startWeight;
        if (pctProgress >= FixedPoint.ONE) return endWeight;

        if (startWeight > endWeight) {
            uint256 weightDelta = pctProgress.mulDown(startWeight - endWeight);
            return startWeight.sub(weightDelta);
        } else {
            uint256 weightDelta = pctProgress.mulDown(endWeight - startWeight);
            return startWeight.add(weightDelta);
        }
    }

    function _setSwapEnabled(bool swapEnabled) private {
        _poolState = _poolState.insertBool(swapEnabled, _SWAP_ENABLED_OFFSET);
        emit SwapEnabledSet(swapEnabled);
    }

    function _getMaxTokens() internal pure override returns (uint256) {
        return _MAX_LBP_TOKENS;
    }

    function _getTotalTokens() internal view virtual override returns (uint256) {
        return _totalTokens;
    }

    function _scalingFactor(IERC20 token) internal view virtual override returns (uint256) {
        // prettier-ignore
        if (token == _token0) { return _scalingFactor0; }
        else if (token == _token1) { return _scalingFactor1; }
        else if (token == _token2) { return _scalingFactor2; }
        else if (token == _token3) { return _scalingFactor3; }
        else {
            _revert(Errors.INVALID_TOKEN);
        }
    }

    function _scalingFactors() internal view virtual override returns (uint256[] memory) {
        uint256 totalTokens = _getTotalTokens();
        uint256[] memory scalingFactors = new uint256[](totalTokens);

        // prettier-ignore
        {
            if (totalTokens > 0) { scalingFactors[0] = _scalingFactor0; } else { return scalingFactors; }
            if (totalTokens > 1) { scalingFactors[1] = _scalingFactor1; } else { return scalingFactors; }
            if (totalTokens > 2) { scalingFactors[2] = _scalingFactor2; } else { return scalingFactors; }
            if (totalTokens > 3) { scalingFactors[3] = _scalingFactor3; } else { return scalingFactors; }
        }

        return scalingFactors;
    }
}

File 55 of 63 : WeightCompression.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

import "@balancer-labs/v2-solidity-utils/contracts/math/FixedPoint.sol";

/**
 * @dev Library for compressing and uncompresing numbers by using smaller types.
 * All values are 18 decimal fixed-point numbers in the [0.0, 1.0] range,
 * so heavier compression (fewer bits) results in fewer decimals.
 */
library WeightCompression {
    uint256 private constant _UINT31_MAX = 2**(31) - 1;

    using FixedPoint for uint256;

    /**
     * @dev Convert a 16-bit value to full FixedPoint
     */
    function uncompress16(uint256 value) internal pure returns (uint256) {
        return value.mulUp(FixedPoint.ONE).divUp(type(uint16).max);
    }

    /**
     * @dev Compress a FixedPoint value to 16 bits
     */
    function compress16(uint256 value) internal pure returns (uint256) {
        return value.mulUp(type(uint16).max).divUp(FixedPoint.ONE);
    }

    /**
     * @dev Convert a 31-bit value to full FixedPoint
     */
    function uncompress31(uint256 value) internal pure returns (uint256) {
        return value.mulUp(FixedPoint.ONE).divUp(_UINT31_MAX);
    }

    /**
     * @dev Compress a FixedPoint value to 31 bits
     */
    function compress31(uint256 value) internal pure returns (uint256) {
        return value.mulUp(_UINT31_MAX).divUp(FixedPoint.ONE);
    }

    /**
     * @dev Convert a 32-bit value to full FixedPoint
     */
    function uncompress32(uint256 value) internal pure returns (uint256) {
        return value.mulUp(FixedPoint.ONE).divUp(type(uint32).max);
    }

    /**
     * @dev Compress a FixedPoint value to 32 bits
     */
    function compress32(uint256 value) internal pure returns (uint256) {
        return value.mulUp(type(uint32).max).divUp(FixedPoint.ONE);
    }

    /**
     * @dev Convert a 64-bit value to full FixedPoint
     */
    function uncompress64(uint256 value) internal pure returns (uint256) {
        return value.mulUp(FixedPoint.ONE).divUp(type(uint64).max);
    }

    /**
     * @dev Compress a FixedPoint value to 64 bits
     */
    function compress64(uint256 value) internal pure returns (uint256) {
        return value.mulUp(type(uint64).max).divUp(FixedPoint.ONE);
    }
}

File 56 of 63 : LiquidityBootstrappingPoolFactory.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;
pragma experimental ABIEncoderV2;

import "@balancer-labs/v2-vault/contracts/interfaces/IVault.sol";

import "@balancer-labs/v2-pool-utils/contracts/factories/BasePoolSplitCodeFactory.sol";
import "@balancer-labs/v2-pool-utils/contracts/factories/FactoryWidePauseWindow.sol";

import "./LiquidityBootstrappingPool.sol";

contract LiquidityBootstrappingPoolFactory is BasePoolSplitCodeFactory, FactoryWidePauseWindow {
    constructor(IVault vault) BasePoolSplitCodeFactory(vault, type(LiquidityBootstrappingPool).creationCode) {
        // solhint-disable-previous-line no-empty-blocks
    }

    /**
     * @dev Deploys a new `LiquidityBootstrappingPool`.
     */
    function create(
        string memory name,
        string memory symbol,
        IERC20[] memory tokens,
        uint256[] memory weights,
        uint256 swapFeePercentage,
        address owner,
        bool swapEnabledOnStart
    ) external returns (address) {
        (uint256 pauseWindowDuration, uint256 bufferPeriodDuration) = getPauseConfiguration();

        return
            _create(
                abi.encode(
                    getVault(),
                    name,
                    symbol,
                    tokens,
                    weights,
                    swapFeePercentage,
                    pauseWindowDuration,
                    bufferPeriodDuration,
                    owner,
                    swapEnabledOnStart
                )
            );
    }
}

File 57 of 63 : InvestmentPoolFactory.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;
pragma experimental ABIEncoderV2;

import "@balancer-labs/v2-vault/contracts/interfaces/IVault.sol";

import "@balancer-labs/v2-pool-utils/contracts/factories/BasePoolSplitCodeFactory.sol";
import "@balancer-labs/v2-pool-utils/contracts/factories/FactoryWidePauseWindow.sol";

import "./InvestmentPool.sol";

contract InvestmentPoolFactory is BasePoolSplitCodeFactory, FactoryWidePauseWindow {
    constructor(IVault vault) BasePoolSplitCodeFactory(vault, type(InvestmentPool).creationCode) {
        // solhint-disable-previous-line no-empty-blocks
    }

    /**
     * @dev Deploys a new `InvestmentPool`.
     */
    function create(
        string memory name,
        string memory symbol,
        IERC20[] memory tokens,
        uint256[] memory weights,
        uint256 swapFeePercentage,
        address owner,
        bool swapEnabledOnStart,
        uint256 managementSwapFeePercentage
    ) external returns (address) {
        (uint256 pauseWindowDuration, uint256 bufferPeriodDuration) = getPauseConfiguration();

        return
            _create(
                abi.encode(
                    InvestmentPool.NewPoolParams({
                        vault: getVault(),
                        name: name,
                        symbol: symbol,
                        tokens: tokens,
                        normalizedWeights: weights,
                        assetManagers: new address[](tokens.length),
                        swapFeePercentage: swapFeePercentage,
                        pauseWindowDuration: pauseWindowDuration,
                        bufferPeriodDuration: bufferPeriodDuration,
                        owner: owner,
                        swapEnabledOnStart: swapEnabledOnStart,
                        managementSwapFeePercentage: managementSwapFeePercentage
                    })
                )
            );
    }
}

File 58 of 63 : EnumerableMap.sol
// SPDX-License-Identifier: MIT

// Based on the EnumerableMap library from OpenZeppelin Contracts, altered to include the following:
//  * a map from IERC20 to bytes32
//  * entries are stored in mappings instead of arrays, reducing implicit storage reads for out-of-bounds checks
//  * unchecked_at and unchecked_valueAt, which allow for more gas efficient data reads in some scenarios
//  * indexOf, unchecked_indexOf and unchecked_setAt, which allow for more gas efficient data writes in some scenarios
//
// Additionally, the base private functions that work on bytes32 were removed and replaced with a native implementation
// for IERC20 keys, to reduce bytecode size and runtime costs.

pragma solidity ^0.7.0;

import "./IERC20.sol";

import "../helpers/BalancerErrors.sol";

/**
 * @dev Library for managing an enumerable variant of Solidity's
 * https://solidity.readthedocs.io/en/latest/types.html#mapping-types[`mapping`]
 * type.
 *
 * Maps have the following properties:
 *
 * - Entries are added, removed, and checked for existence in constant time
 * (O(1)).
 * - Entries are enumerated in O(n). No guarantees are made on the ordering.
 *
 * ```
 * contract Example {
 *     // Add the library methods
 *     using EnumerableMap for EnumerableMap.UintToAddressMap;
 *
 *     // Declare a set state variable
 *     EnumerableMap.UintToAddressMap private myMap;
 * }
 * ```
 */
library EnumerableMap {
    // The original OpenZeppelin implementation uses a generic Map type with bytes32 keys: this was replaced with
    // IERC20ToBytes32Map and IERC20ToUint256Map, resulting in more dense bytecode (as long as each contract only uses
    // one of these - there'll otherwise be duplicated code).

    // IERC20ToBytes32Map

    struct IERC20ToBytes32MapEntry {
        IERC20 _key;
        bytes32 _value;
    }

    struct IERC20ToBytes32Map {
        // Number of entries in the map
        uint256 _length;
        // Storage of map keys and values
        mapping(uint256 => IERC20ToBytes32MapEntry) _entries;
        // Position of the entry defined by a key in the `entries` array, plus 1
        // because index 0 means a key is not in the map.
        mapping(IERC20 => uint256) _indexes;
    }

    /**
     * @dev Adds a key-value pair to a map, or updates the value for an existing
     * key. O(1).
     *
     * Returns true if the key was added to the map, that is if it was not
     * already present.
     */
    function set(
        IERC20ToBytes32Map storage map,
        IERC20 key,
        bytes32 value
    ) internal returns (bool) {
        // We read and store the key's index to prevent multiple reads from the same storage slot
        uint256 keyIndex = map._indexes[key];

        // Equivalent to !contains(map, key)
        if (keyIndex == 0) {
            uint256 previousLength = map._length;
            map._entries[previousLength] = IERC20ToBytes32MapEntry({ _key: key, _value: value });
            map._length = previousLength + 1;

            // The entry is stored at previousLength, but we add 1 to all indexes
            // and use 0 as a sentinel value
            map._indexes[key] = previousLength + 1;
            return true;
        } else {
            map._entries[keyIndex - 1]._value = value;
            return false;
        }
    }

    /**
     * @dev Updates the value for an entry, given its key's index. The key index can be retrieved via
     * {unchecked_indexOf}, and it should be noted that key indices may change when calling {set} or {remove}. O(1).
     *
     * This function performs one less storage read than {set}, but it should only be used when `index` is known to be
     * within bounds.
     */
    function unchecked_setAt(
        IERC20ToBytes32Map storage map,
        uint256 index,
        bytes32 value
    ) internal {
        map._entries[index]._value = value;
    }

    /**
     * @dev Removes a key-value pair from a map. O(1).
     *
     * Returns true if the key was removed from the map, that is if it was present.
     */
    function remove(IERC20ToBytes32Map storage map, IERC20 key) internal returns (bool) {
        // We read and store the key's index to prevent multiple reads from the same storage slot
        uint256 keyIndex = map._indexes[key];

        // Equivalent to contains(map, key)
        if (keyIndex != 0) {
            // To delete a key-value pair from the _entries pseudo-array in O(1), we swap the entry to delete with the
            // one at the highest index, and then remove this last entry (sometimes called as 'swap and pop').
            // This modifies the order of the pseudo-array, as noted in {at}.

            uint256 toDeleteIndex = keyIndex - 1;
            uint256 lastIndex = map._length - 1;

            // The swap is only necessary if we're not removing the last element
            if (toDeleteIndex != lastIndex) {
                IERC20ToBytes32MapEntry storage lastEntry = map._entries[lastIndex];

                // Move the last entry to the index where the entry to delete is
                map._entries[toDeleteIndex] = lastEntry;
                // Update the index for the moved entry
                map._indexes[lastEntry._key] = toDeleteIndex + 1; // All indexes are 1-based
            }

            // Delete the slot where the moved entry was stored
            delete map._entries[lastIndex];
            map._length = lastIndex;

            // Delete the index for the deleted slot
            delete map._indexes[key];

            return true;
        } else {
            return false;
        }
    }

    /**
     * @dev Returns true if the key is in the map. O(1).
     */
    function contains(IERC20ToBytes32Map storage map, IERC20 key) internal view returns (bool) {
        return map._indexes[key] != 0;
    }

    /**
     * @dev Returns the number of key-value pairs in the map. O(1).
     */
    function length(IERC20ToBytes32Map storage map) internal view returns (uint256) {
        return map._length;
    }

    /**
     * @dev Returns the key-value pair stored at position `index` in the map. O(1).
     *
     * Note that there are no guarantees on the ordering of entries inside the
     * array, and it may change when more entries are added or removed.
     *
     * Requirements:
     *
     * - `index` must be strictly less than {length}.
     */
    function at(IERC20ToBytes32Map storage map, uint256 index) internal view returns (IERC20, bytes32) {
        _require(map._length > index, Errors.OUT_OF_BOUNDS);
        return unchecked_at(map, index);
    }

    /**
     * @dev Same as {at}, except this doesn't revert if `index` it outside of the map (i.e. if it is equal or larger
     * than {length}). O(1).
     *
     * This function performs one less storage read than {at}, but should only be used when `index` is known to be
     * within bounds.
     */
    function unchecked_at(IERC20ToBytes32Map storage map, uint256 index) internal view returns (IERC20, bytes32) {
        IERC20ToBytes32MapEntry storage entry = map._entries[index];
        return (entry._key, entry._value);
    }

    /**
     * @dev Same as {unchecked_At}, except it only returns the value and not the key (performing one less storage
     * read). O(1).
     */
    function unchecked_valueAt(IERC20ToBytes32Map storage map, uint256 index) internal view returns (bytes32) {
        return map._entries[index]._value;
    }

    /**
     * @dev Returns the value associated with `key`. O(1).
     *
     * Requirements:
     *
     * - `key` must be in the map. Reverts with `errorCode` otherwise.
     */
    function get(
        IERC20ToBytes32Map storage map,
        IERC20 key,
        uint256 errorCode
    ) internal view returns (bytes32) {
        uint256 index = map._indexes[key];
        _require(index > 0, errorCode);
        return unchecked_valueAt(map, index - 1);
    }

    /**
     * @dev Returns the index for `key`.
     *
     * Requirements:
     *
     * - `key` must be in the map.
     */
    function indexOf(
        IERC20ToBytes32Map storage map,
        IERC20 key,
        uint256 errorCode
    ) internal view returns (uint256) {
        uint256 uncheckedIndex = unchecked_indexOf(map, key);
        _require(uncheckedIndex != 0, errorCode);
        return uncheckedIndex - 1;
    }

    /**
     * @dev Returns the index for `key` **plus one**. Does not revert if the key is not in the map, and returns 0
     * instead.
     */
    function unchecked_indexOf(IERC20ToBytes32Map storage map, IERC20 key) internal view returns (uint256) {
        return map._indexes[key];
    }

    // IERC20ToUint256Map

    struct IERC20ToUint256MapEntry {
        IERC20 _key;
        uint256 _value;
    }

    struct IERC20ToUint256Map {
        // Number of entries in the map
        uint256 _length;
        // Storage of map keys and values
        mapping(uint256 => IERC20ToUint256MapEntry) _entries;
        // Position of the entry defined by a key in the `entries` array, plus 1
        // because index 0 means a key is not in the map.
        mapping(IERC20 => uint256) _indexes;
    }

    /**
     * @dev Adds a key-value pair to a map, or updates the value for an existing
     * key. O(1).
     *
     * Returns true if the key was added to the map, that is if it was not
     * already present.
     */
    function set(
        IERC20ToUint256Map storage map,
        IERC20 key,
        uint256 value
    ) internal returns (bool) {
        // We read and store the key's index to prevent multiple reads from the same storage slot
        uint256 keyIndex = map._indexes[key];

        // Equivalent to !contains(map, key)
        if (keyIndex == 0) {
            uint256 previousLength = map._length;
            map._entries[previousLength] = IERC20ToUint256MapEntry({ _key: key, _value: value });
            map._length = previousLength + 1;

            // The entry is stored at previousLength, but we add 1 to all indexes
            // and use 0 as a sentinel value
            map._indexes[key] = previousLength + 1;
            return true;
        } else {
            map._entries[keyIndex - 1]._value = value;
            return false;
        }
    }

    /**
     * @dev Updates the value for an entry, given its key's index. The key index can be retrieved via
     * {unchecked_indexOf}, and it should be noted that key indices may change when calling {set} or {remove}. O(1).
     *
     * This function performs one less storage read than {set}, but it should only be used when `index` is known to be
     * within bounds.
     */
    function unchecked_setAt(
        IERC20ToUint256Map storage map,
        uint256 index,
        uint256 value
    ) internal {
        map._entries[index]._value = value;
    }

    /**
     * @dev Removes a key-value pair from a map. O(1).
     *
     * Returns true if the key was removed from the map, that is if it was present.
     */
    function remove(IERC20ToUint256Map storage map, IERC20 key) internal returns (bool) {
        // We read and store the key's index to prevent multiple reads from the same storage slot
        uint256 keyIndex = map._indexes[key];

        // Equivalent to contains(map, key)
        if (keyIndex != 0) {
            // To delete a key-value pair from the _entries pseudo-array in O(1), we swap the entry to delete with the
            // one at the highest index, and then remove this last entry (sometimes called as 'swap and pop').
            // This modifies the order of the pseudo-array, as noted in {at}.

            uint256 toDeleteIndex = keyIndex - 1;
            uint256 lastIndex = map._length - 1;

            // The swap is only necessary if we're not removing the last element
            if (toDeleteIndex != lastIndex) {
                IERC20ToUint256MapEntry storage lastEntry = map._entries[lastIndex];

                // Move the last entry to the index where the entry to delete is
                map._entries[toDeleteIndex] = lastEntry;
                // Update the index for the moved entry
                map._indexes[lastEntry._key] = toDeleteIndex + 1; // All indexes are 1-based
            }

            // Delete the slot where the moved entry was stored
            delete map._entries[lastIndex];
            map._length = lastIndex;

            // Delete the index for the deleted slot
            delete map._indexes[key];

            return true;
        } else {
            return false;
        }
    }

    /**
     * @dev Returns true if the key is in the map. O(1).
     */
    function contains(IERC20ToUint256Map storage map, IERC20 key) internal view returns (bool) {
        return map._indexes[key] != 0;
    }

    /**
     * @dev Returns the number of key-value pairs in the map. O(1).
     */
    function length(IERC20ToUint256Map storage map) internal view returns (uint256) {
        return map._length;
    }

    /**
     * @dev Returns the key-value pair stored at position `index` in the map. O(1).
     *
     * Note that there are no guarantees on the ordering of entries inside the
     * array, and it may change when more entries are added or removed.
     *
     * Requirements:
     *
     * - `index` must be strictly less than {length}.
     */
    function at(IERC20ToUint256Map storage map, uint256 index) internal view returns (IERC20, uint256) {
        _require(map._length > index, Errors.OUT_OF_BOUNDS);
        return unchecked_at(map, index);
    }

    /**
     * @dev Same as {at}, except this doesn't revert if `index` it outside of the map (i.e. if it is equal or larger
     * than {length}). O(1).
     *
     * This function performs one less storage read than {at}, but should only be used when `index` is known to be
     * within bounds.
     */
    function unchecked_at(IERC20ToUint256Map storage map, uint256 index) internal view returns (IERC20, uint256) {
        IERC20ToUint256MapEntry storage entry = map._entries[index];
        return (entry._key, entry._value);
    }

    /**
     * @dev Same as {unchecked_At}, except it only returns the value and not the key (performing one less storage
     * read). O(1).
     */
    function unchecked_valueAt(IERC20ToUint256Map storage map, uint256 index) internal view returns (uint256) {
        return map._entries[index]._value;
    }

    /**
     * @dev Returns the value associated with `key`. O(1).
     *
     * Requirements:
     *
     * - `key` must be in the map. Reverts with `errorCode` otherwise.
     */
    function get(
        IERC20ToUint256Map storage map,
        IERC20 key,
        uint256 errorCode
    ) internal view returns (uint256) {
        uint256 index = map._indexes[key];
        _require(index > 0, errorCode);
        return unchecked_valueAt(map, index - 1);
    }

    /**
     * @dev Returns the index for `key`.
     *
     * Requirements:
     *
     * - `key` must be in the map.
     */
    function indexOf(
        IERC20ToUint256Map storage map,
        IERC20 key,
        uint256 errorCode
    ) internal view returns (uint256) {
        uint256 uncheckedIndex = unchecked_indexOf(map, key);
        _require(uncheckedIndex != 0, errorCode);
        return uncheckedIndex - 1;
    }

    /**
     * @dev Returns the index for `key` **plus one**. Does not revert if the key is not in the map, and returns 0
     * instead.
     */
    function unchecked_indexOf(IERC20ToUint256Map storage map, IERC20 key) internal view returns (uint256) {
        return map._indexes[key];
    }
}

File 59 of 63 : ERC20Helpers.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

import "@balancer-labs/v2-vault/contracts/interfaces/IAsset.sol";

import "../openzeppelin/IERC20.sol";

// solhint-disable

function _asIAsset(IERC20[] memory tokens) pure returns (IAsset[] memory assets) {
    // solhint-disable-next-line no-inline-assembly
    assembly {
        assets := tokens
    }
}

function _sortTokens(
    IERC20 tokenA,
    IERC20 tokenB,
    IERC20 tokenC
) pure returns (IERC20[] memory tokens) {
    (uint256 indexTokenA, uint256 indexTokenB, uint256 indexTokenC) = _getSortedTokenIndexes(tokenA, tokenB, tokenC);
    tokens = new IERC20[](3);
    tokens[indexTokenA] = tokenA;
    tokens[indexTokenB] = tokenB;
    tokens[indexTokenC] = tokenC;
}

function _getSortedTokenIndexes(
    IERC20 tokenA,
    IERC20 tokenB,
    IERC20 tokenC
)
    pure
    returns (
        uint256 indexTokenA,
        uint256 indexTokenB,
        uint256 indexTokenC
    )
{
    if (tokenA < tokenB) {
        if (tokenB < tokenC) {
            // (tokenA, tokenB, tokenC)
            return (0, 1, 2);
        } else if (tokenA < tokenC) {
            // (tokenA, tokenC, tokenB)
            return (0, 2, 1);
        } else {
            // (tokenC, tokenA, tokenB)
            return (1, 2, 0);
        }
    } else {
        // tokenB < tokenA
        if (tokenC < tokenB) {
            // (tokenC, tokenB, tokenA)
            return (2, 1, 0);
        } else if (tokenC < tokenA) {
            // (tokenB, tokenC, tokenA)
            return (2, 0, 1);
        } else {
            // (tokenB, tokenA, tokenC)
            return (1, 0, 2);
        }
    }
}

File 60 of 63 : MockLogCompression.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

import "../helpers/LogCompression.sol";

contract MockLogCompression {
    function toLowResLog(uint256 value) external pure returns (int256) {
        return LogCompression.toLowResLog(value);
    }

    function fromLowResLog(int256 value) external pure returns (uint256) {
        return LogCompression.fromLowResLog(value);
    }
}

File 61 of 63 : MockWeightedOracleMath.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

import "@balancer-labs/v2-solidity-utils/contracts/test/MockLogCompression.sol";

import "../WeightedOracleMath.sol";

contract MockWeightedOracleMath is WeightedOracleMath, MockLogCompression {
    function calcLogSpotPrice(
        uint256 normalizedWeightA,
        uint256 balanceA,
        uint256 normalizedWeightB,
        uint256 balanceB
    ) external pure returns (int256) {
        return WeightedOracleMath._calcLogSpotPrice(normalizedWeightA, balanceA, normalizedWeightB, balanceB);
    }

    function calcLogBPTPrice(
        uint256 normalizedWeight,
        uint256 balance,
        int256 bptTotalSupplyLn
    ) external pure returns (int256) {
        return WeightedOracleMath._calcLogBPTPrice(normalizedWeight, balance, bptTotalSupplyLn);
    }
}

File 62 of 63 : MockWeightedPool2Tokens.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;
pragma experimental ABIEncoderV2;

import "./MockWeightedOracleMath.sol";
import "../WeightedPool2Tokens.sol";

contract MockWeightedPool2Tokens is WeightedPool2Tokens, MockWeightedOracleMath {
    using WeightedPool2TokensMiscData for bytes32;

    struct MiscData {
        int256 logInvariant;
        int256 logTotalSupply;
        uint256 oracleSampleCreationTimestamp;
        uint256 oracleIndex;
        bool oracleEnabled;
        uint256 swapFeePercentage;
    }

    constructor(NewPoolParams memory params) WeightedPool2Tokens(params) {}

    function mockOracleDisabled() external {
        _setOracleEnabled(false);
    }

    function mockOracleIndex(uint256 index) external {
        _miscData = _miscData.setOracleIndex(index);
    }

    function mockMiscData(MiscData memory miscData) external {
        _miscData = encode(miscData);
    }

    /**
     * @dev Encodes a misc data object into a bytes32
     */
    function encode(MiscData memory _data) private pure returns (bytes32 data) {
        data = data.setSwapFeePercentage(_data.swapFeePercentage);
        data = data.setOracleEnabled(_data.oracleEnabled);
        data = data.setOracleIndex(_data.oracleIndex);
        data = data.setOracleSampleCreationTimestamp(_data.oracleSampleCreationTimestamp);
        data = data.setLogTotalSupply(_data.logTotalSupply);
        data = data.setLogInvariant(_data.logInvariant);
    }
}

File 63 of 63 : MockWeightedMath.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

import "../WeightedMath.sol";

contract MockWeightedMath is WeightedMath {
    function invariant(uint256[] memory normalizedWeights, uint256[] memory balances) external pure returns (uint256) {
        return _calculateInvariant(normalizedWeights, balances);
    }

    function outGivenIn(
        uint256 tokenBalanceIn,
        uint256 tokenWeightIn,
        uint256 tokenBalanceOut,
        uint256 tokenWeightOut,
        uint256 tokenAmountIn
    ) external pure returns (uint256) {
        return _calcOutGivenIn(tokenBalanceIn, tokenWeightIn, tokenBalanceOut, tokenWeightOut, tokenAmountIn);
    }

    function inGivenOut(
        uint256 tokenBalanceIn,
        uint256 tokenWeightIn,
        uint256 tokenBalanceOut,
        uint256 tokenWeightOut,
        uint256 tokenAmountOut
    ) external pure returns (uint256) {
        return _calcInGivenOut(tokenBalanceIn, tokenWeightIn, tokenBalanceOut, tokenWeightOut, tokenAmountOut);
    }

    function exactTokensInForBPTOut(
        uint256[] memory balances,
        uint256[] memory normalizedWeights,
        uint256[] memory amountsIn,
        uint256 bptTotalSupply,
        uint256 swapFee
    ) external pure returns (uint256) {
        (uint256 bptOut, ) = _calcBptOutGivenExactTokensIn(
            balances,
            normalizedWeights,
            amountsIn,
            bptTotalSupply,
            swapFee
        );
        return bptOut;
    }

    function tokenInForExactBPTOut(
        uint256 tokenBalance,
        uint256 tokenNormalizedWeight,
        uint256 bptAmountOut,
        uint256 bptTotalSupply,
        uint256 swapFee
    ) external pure returns (uint256) {
        (uint256 amountIn, ) = _calcTokenInGivenExactBptOut(
            tokenBalance,
            tokenNormalizedWeight,
            bptAmountOut,
            bptTotalSupply,
            swapFee
        );
        return amountIn;
    }

    function exactBPTInForTokenOut(
        uint256 tokenBalance,
        uint256 tokenNormalizedWeight,
        uint256 bptAmountIn,
        uint256 bptTotalSupply,
        uint256 swapFee
    ) external pure returns (uint256) {
        (uint256 amountOut, ) = _calcTokenOutGivenExactBptIn(
            tokenBalance,
            tokenNormalizedWeight,
            bptAmountIn,
            bptTotalSupply,
            swapFee
        );
        return amountOut;
    }

    function exactBPTInForTokensOut(
        uint256[] memory currentBalances,
        uint256 bptAmountIn,
        uint256 totalBPT
    ) external pure returns (uint256[] memory) {
        return _calcTokensOutGivenExactBptIn(currentBalances, bptAmountIn, totalBPT);
    }

    function bptInForExactTokensOut(
        uint256[] memory balances,
        uint256[] memory normalizedWeights,
        uint256[] memory amountsOut,
        uint256 bptTotalSupply,
        uint256 swapFee
    ) external pure returns (uint256) {
        (uint256 bptIn, ) = _calcBptInGivenExactTokensOut(
            balances,
            normalizedWeights,
            amountsOut,
            bptTotalSupply,
            swapFee
        );
        return bptIn;
    }

    function calculateDueTokenProtocolSwapFeeAmount(
        uint256 balance,
        uint256 normalizedWeight,
        uint256 previousInvariant,
        uint256 currentInvariant,
        uint256 protocolSwapFeePercentage
    ) external pure returns (uint256) {
        return
            _calcDueTokenProtocolSwapFeeAmount(
                balance,
                normalizedWeight,
                previousInvariant,
                currentInvariant,
                protocolSwapFeePercentage
            );
    }
}

Settings
{
  "optimizer": {
    "enabled": true,
    "runs": 9999
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "libraries": {}
}

Contract Security Audit

Contract ABI

[{"inputs":[{"components":[{"internalType":"contract IVault","name":"vault","type":"address"},{"internalType":"string","name":"name","type":"string"},{"internalType":"string","name":"symbol","type":"string"},{"internalType":"contract IERC20[]","name":"tokens","type":"address[]"},{"internalType":"uint256[]","name":"normalizedWeights","type":"uint256[]"},{"internalType":"address[]","name":"assetManagers","type":"address[]"},{"internalType":"uint256","name":"swapFeePercentage","type":"uint256"},{"internalType":"uint256","name":"pauseWindowDuration","type":"uint256"},{"internalType":"uint256","name":"bufferPeriodDuration","type":"uint256"},{"internalType":"address","name":"owner","type":"address"},{"internalType":"bool","name":"swapEnabledOnStart","type":"bool"},{"internalType":"uint256","name":"managementSwapFeePercentage","type":"uint256"}],"internalType":"struct InvestmentPool.NewPoolParams","name":"params","type":"tuple"}],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"spender","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"startTime","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"endTime","type":"uint256"},{"indexed":false,"internalType":"uint256[]","name":"startWeights","type":"uint256[]"},{"indexed":false,"internalType":"uint256[]","name":"endWeights","type":"uint256[]"}],"name":"GradualWeightUpdateScheduled","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"managementFeePercentage","type":"uint256"}],"name":"ManagementFeePercentageChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"contract IERC20[]","name":"tokens","type":"address[]"},{"indexed":false,"internalType":"uint256[]","name":"amounts","type":"uint256[]"}],"name":"ManagementFeesCollected","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"bool","name":"paused","type":"bool"}],"name":"PausedStateChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"bool","name":"swapEnabled","type":"bool"}],"name":"SwapEnabledSet","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"swapFeePercentage","type":"uint256"}],"name":"SwapFeePercentageChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Transfer","type":"event"},{"inputs":[],"name":"DOMAIN_SEPARATOR","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"}],"name":"allowance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"approve","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"decimals","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"decreaseAllowance","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes4","name":"selector","type":"bytes4"}],"name":"getActionId","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getAuthorizer","outputs":[{"internalType":"contract IAuthorizer","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getCollectedManagementFees","outputs":[{"internalType":"contract IERC20[]","name":"tokens","type":"address[]"},{"internalType":"uint256[]","name":"collectedFees","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getGradualWeightUpdateParams","outputs":[{"internalType":"uint256","name":"startTime","type":"uint256"},{"internalType":"uint256","name":"endTime","type":"uint256"},{"internalType":"uint256[]","name":"endWeights","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getInvariant","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getLastInvariant","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"getManagementSwapFeePercentage","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getMinimumWeightChangeDuration","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"getNormalizedWeights","outputs":[{"internalType":"uint256[]","name":"","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getOwner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getPausedState","outputs":[{"internalType":"bool","name":"paused","type":"bool"},{"internalType":"uint256","name":"pauseWindowEndTime","type":"uint256"},{"internalType":"uint256","name":"bufferPeriodEndTime","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getPoolId","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getRate","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getScalingFactors","outputs":[{"internalType":"uint256[]","name":"","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getSwapEnabled","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getSwapFeePercentage","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getVault","outputs":[{"internalType":"contract IVault","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"addedValue","type":"uint256"}],"name":"increaseAllowance","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"nonces","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"poolId","type":"bytes32"},{"internalType":"address","name":"sender","type":"address"},{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256[]","name":"balances","type":"uint256[]"},{"internalType":"uint256","name":"lastChangeBlock","type":"uint256"},{"internalType":"uint256","name":"protocolSwapFeePercentage","type":"uint256"},{"internalType":"bytes","name":"userData","type":"bytes"}],"name":"onExitPool","outputs":[{"internalType":"uint256[]","name":"","type":"uint256[]"},{"internalType":"uint256[]","name":"","type":"uint256[]"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"poolId","type":"bytes32"},{"internalType":"address","name":"sender","type":"address"},{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256[]","name":"balances","type":"uint256[]"},{"internalType":"uint256","name":"lastChangeBlock","type":"uint256"},{"internalType":"uint256","name":"protocolSwapFeePercentage","type":"uint256"},{"internalType":"bytes","name":"userData","type":"bytes"}],"name":"onJoinPool","outputs":[{"internalType":"uint256[]","name":"","type":"uint256[]"},{"internalType":"uint256[]","name":"","type":"uint256[]"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"internalType":"enum IVault.SwapKind","name":"kind","type":"uint8"},{"internalType":"contract IERC20","name":"tokenIn","type":"address"},{"internalType":"contract IERC20","name":"tokenOut","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"bytes32","name":"poolId","type":"bytes32"},{"internalType":"uint256","name":"lastChangeBlock","type":"uint256"},{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"bytes","name":"userData","type":"bytes"}],"internalType":"struct IPoolSwapStructs.SwapRequest","name":"swapRequest","type":"tuple"},{"internalType":"uint256","name":"currentBalanceTokenIn","type":"uint256"},{"internalType":"uint256","name":"currentBalanceTokenOut","type":"uint256"}],"name":"onSwap","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"},{"internalType":"uint256","name":"deadline","type":"uint256"},{"internalType":"uint8","name":"v","type":"uint8"},{"internalType":"bytes32","name":"r","type":"bytes32"},{"internalType":"bytes32","name":"s","type":"bytes32"}],"name":"permit","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"poolId","type":"bytes32"},{"internalType":"address","name":"sender","type":"address"},{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256[]","name":"balances","type":"uint256[]"},{"internalType":"uint256","name":"lastChangeBlock","type":"uint256"},{"internalType":"uint256","name":"protocolSwapFeePercentage","type":"uint256"},{"internalType":"bytes","name":"userData","type":"bytes"}],"name":"queryExit","outputs":[{"internalType":"uint256","name":"bptIn","type":"uint256"},{"internalType":"uint256[]","name":"amountsOut","type":"uint256[]"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"poolId","type":"bytes32"},{"internalType":"address","name":"sender","type":"address"},{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256[]","name":"balances","type":"uint256[]"},{"internalType":"uint256","name":"lastChangeBlock","type":"uint256"},{"internalType":"uint256","name":"protocolSwapFeePercentage","type":"uint256"},{"internalType":"bytes","name":"userData","type":"bytes"}],"name":"queryJoin","outputs":[{"internalType":"uint256","name":"bptOut","type":"uint256"},{"internalType":"uint256[]","name":"amountsIn","type":"uint256[]"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"contract IERC20","name":"token","type":"address"},{"internalType":"bytes","name":"poolConfig","type":"bytes"}],"name":"setAssetManagerPoolConfig","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bool","name":"paused","type":"bool"}],"name":"setPaused","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bool","name":"swapEnabled","type":"bool"}],"name":"setSwapEnabled","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"swapFeePercentage","type":"uint256"}],"name":"setSwapFeePercentage","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transfer","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"sender","type":"address"},{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transferFrom","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"startTime","type":"uint256"},{"internalType":"uint256","name":"endTime","type":"uint256"},{"internalType":"uint256[]","name":"endWeights","type":"uint256[]"}],"name":"updateWeightsGradually","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"recipient","type":"address"}],"name":"withdrawCollectedManagementFees","outputs":[],"stateMutability":"nonpayable","type":"function"}]

6101e06040527f6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c9610120523480156200003757600080fd5b5060405162006aac38038062006aac8339810160408190526200005a9162000e67565b805160208201516040830151606084015160a085015160c086015160e0870151610100880151610120890151855189906002146200009a5760016200009d565b60025b8989898989898989828289898180604051806040016040528060018152602001603160f81b815250848489336001600160a01b031660001b806080818152505050806001600160a01b031660a0816001600160a01b031660601b815250505081600390805190602001906200011492919062000baf565b5080516200012a90600490602084019062000baf565b50506005805460ff1916601217905550815160209283012060c052805191012060e05250507f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f6101005250620001896276a7008311156101946200047b565b6200019d62278d008211156101956200047b565b4290910161014081905201610160528551620001bf906002111560c86200047b565b620001d9620001cd62000490565b8751111560c96200047b565b620001ef866200049560201b6200140c1760201c565b620001fa84620004a1565b6040516309b2760f60e01b81526000906001600160a01b038c16906309b2760f906200022b908d90600401620010ed565b602060405180830381600087803b1580156200024657600080fd5b505af11580156200025b573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019062000281919062000e4e565b604051633354e3e960e11b81529091506001600160a01b038c16906366a9c7d290620002b69084908b908b9060040162001051565b600060405180830381600087803b158015620002d157600080fd5b505af1158015620002e6573d6000803e3d6000fd5b5050505060609a8b1b6001600160601b031916610180526101a05250506001600a5550505050928d01515160808e01515160a08f015151919d50620003479c508d9b50995097505050506200052d602090811b6200141617901c9350505050565b62000377620003718260016200035c6200054d565b6200055360201b6200142e179092919060201c565b62000566565b6200038f81620003866200058b565b1460c96200047b565b608082015160608301514291620003ac91839182918190620005b6565b60005b82811015620003f857620003ee84606001518281518110620003cd57fe5b60200260200101516000600c620007f760201b6200143d179092919060201c565b50600101620003af565b506101408301516200040a90620008a7565b6200042e670de0b6b3a764000084610160015111156101526200047b60201b60201c565b610160830180516101c052516040517feba99e9e36df79031493efd8473cfce5475d3a135878665490df8b0140693210916200046a9162001102565b60405180910390a1505050620011b4565b816200048c576200048c8162000902565b5050565b603290565b806200048c8162000955565b620004b664e8d4a5100082101560cb6200047b565b620004ce67016345785d8a000082111560ca6200047b565b620004ed8160c0600854620009df60201b6200150a179092919060201c565b6008556040517fa9ba3ffe0b6c366b81232caab38605a0699ad5398d6cce76f91ee809e322dafc906200052290839062001102565b60405180910390a150565b6200054882841480156200054057508183145b60676200047b565b505050565b60085490565b81811b607f821b198416175b9392505050565b62000585816000600854620009f460201b62001520179092919060201c565b60085550565b6000620005b160016200059d6200054d565b62000a0f60201b6200154c1790919060201c565b905090565b600080805b84518110156200077d576000858281518110620005d457fe5b60200260200101519050620005fc662386f26fc1000082101561012e6200047b60201b60201c565b60008583815181106200060b57fe5b6020026020010151905062000739620006ab826001600160a01b031663313ce5676040518163ffffffff1660e01b815260040160206040518083038186803b1580156200065757600080fd5b505afa1580156200066c573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019062000692919062000fe7565b60ff16601262000a1c60201b620015531790919060201c565b606062000724620006c78662000a3460201b620015691760201c565b60406200070f620006f78f8b81518110620006de57fe5b602002602001015162000a7760201b6200158d1760201c565b60008c620009df60201b6200150a179092919060201c565b62000aa960201b620015ad179092919060201c565b62000abb60201b620015bf179092919060201c565b6001600160a01b0382166000908152600b6020908152604090912091909155620007709086908490620015ce62000aca821b17901c565b94505050600101620005bb565b5062000796670de0b6b3a764000083146101346200047b565b620007af620003718760286200070f8b6008826200054d565b7f0f3631f9dab08169d1db21c6dc5f32536fb2b0a6b9bb5330d71c52132f968be087878787604051620007e694939291906200110b565b60405180910390a150505050505050565b6001600160a01b0382166000908152600284016020526040812054806200088657505082546040805180820182526001600160a01b03858116808352602080840187815260008781526001808c018452878220965187546001600160a01b031916961695909517865590519484019490945594820180895590835260028801909452919020919091556200055f565b6000190160009081526001808601602052604082200183905590506200055f565b620008d162000371826000620008bc6200054d565b62000ade60201b620015e0179092919060201c565b7f5a9e84f78f7957cb4ed7478eb0fcad35ee4ecbe2e0f298420b28a3955392573f8160405162000522919062001046565b62461bcd60e51b6000908152602060045260076024526642414c23000030600a808404818106603090810160081b95839006959095019082900491820690940160101b939093010160c81b604452606490fd5b6002815110156200096657620009dc565b6000816000815181106200097657fe5b602002602001015190506000600190505b825181101562000548576000838281518110620009a057fe5b60200260200101519050620009d1816001600160a01b0316846001600160a01b03161060656200047b60201b60201c565b915060010162000987565b50565b6001600160401b03811b1992909216911b1790565b6001600160c01b03828116821b90821b198416179392505050565b81811c607f165b92915050565b600062000a2e8383111560016200047b565b50900390565b600062000a16670de0b6b3a764000062000a6363ffffffff80168562000b0760201b620016071790919060201c565b62000b5c60201b620016551790919060201c565b600062000a16670de0b6b3a764000062000a636001600160401b0380168562000b0760201b620016071790919060201c565b63ffffffff811b1992909216911b1790565b601f811b1992909216911b1790565b60008282016200055f84821015836200047b565b60006001821b198416828462000af657600062000af9565b60015b60ff16901b17949350505050565b600082820262000b2f84158062000b2757508385838162000b2457fe5b04145b60036200047b565b8062000b4057600091505062000a16565b670de0b6b3a764000060001982015b0460010191505062000a16565b600062000b6d82151560046200047b565b8262000b7c5750600062000a16565b670de0b6b3a76400008381029062000ba29085838162000b9857fe5b041460056200047b565b82600182038162000b4f57fe5b828054600181600116156101000203166002900490600052602060002090601f016020900481019282601f1062000bf257805160ff191683800117855562000c22565b8280016001018555821562000c22579182015b8281111562000c2257825182559160200191906001019062000c05565b5062000c3092915062000c34565b5090565b5b8082111562000c30576000815560010162000c35565b805162000a16816200119e565b600082601f83011262000c69578081fd5b815162000c8062000c7a8262001172565b6200114b565b81815291506020808301908481018184028601820187101562000ca257600080fd5b60005b8481101562000cce57815162000cbb816200119e565b8452928201929082019060010162000ca5565b505050505092915050565b600082601f83011262000cea578081fd5b815162000cfb62000c7a8262001172565b81815291506020808301908481018184028601820187101562000d1d57600080fd5b60005b8481101562000cce57815162000d36816200119e565b8452928201929082019060010162000d20565b600082601f83011262000d5a578081fd5b815162000d6b62000c7a8262001172565b81815291506020808301908481018184028601820187101562000d8d57600080fd5b60005b8481101562000cce5781518452928201929082019060010162000d90565b8051801515811462000a1657600080fd5b600082601f83011262000dd0578081fd5b81516001600160401b0381111562000de6578182fd5b602062000dfc601f8301601f191682016200114b565b9250818352848183860101111562000e1357600080fd5b60005b8281101562000e3357848101820151848201830152810162000e16565b8281111562000e455760008284860101525b50505092915050565b60006020828403121562000e60578081fd5b5051919050565b60006020828403121562000e79578081fd5b81516001600160401b038082111562000e90578283fd5b818401915061018080838703121562000ea7578384fd5b62000eb2816200114b565b905062000ec0868462000c4b565b815260208301518281111562000ed4578485fd5b62000ee28782860162000dbf565b60208301525060408301518281111562000efa578485fd5b62000f088782860162000dbf565b60408301525060608301518281111562000f20578485fd5b62000f2e8782860162000cd9565b60608301525060808301518281111562000f46578485fd5b62000f548782860162000d49565b60808301525060a08301518281111562000f6c578485fd5b62000f7a8782860162000c58565b60a08301525060c083015160c082015260e083015160e082015261010091508183015182820152610120915062000fb48683850162000c4b565b82820152610140915062000fcb8683850162000dae565b9181019190915261016091820151918101919091529392505050565b60006020828403121562000ff9578081fd5b815160ff811681146200055f578182fd5b6000815180845260208085019450808401835b838110156200103b578151875295820195908201906001016200101d565b509495945050505050565b901515815260200190565b60006060820185835260206060818501528186518084526080860191508288019350845b818110156200109d576200108a855162001192565b8352938301939183019160010162001075565b505084810360408601528551808252908201925081860190845b81811015620010df57620010cc835162001192565b85529383019391830191600101620010b7565b509298975050505050505050565b6020810160038310620010fc57fe5b91905290565b90815260200190565b6000858252846020830152608060408301526200112c60808301856200100a565b82810360608401526200114081856200100a565b979650505050505050565b6040518181016001600160401b03811182821017156200116a57600080fd5b604052919050565b60006001600160401b0382111562001188578081fd5b5060209081020190565b6001600160a01b031690565b6001600160a01b0381168114620009dc57600080fd5b60805160a05160601c60c05160e051610100516101205161014051610160516101805160601c6101a0516101c0516158716200123b60003980610ee85280613476525080610881525080610ec452508061182d525080611809525080611169525080611b28525080611b6a525080611b49525080610ea0525080610e2a52506158716000f3fe608060405234801561001057600080fd5b50600436106102de5760003560e01c806374f3b009116101865780639d2c110c116100e3578063c0ff1a1511610097578063dd62ed3e11610071578063dd62ed3e1461058d578063e01af92c146105a0578063f89f27ed146105b3576102de565b8063c0ff1a151461055f578063d505accf14610567578063d5c096c41461057a576102de565b8063a9059cbb116100c8578063a9059cbb1461053c578063aaabadc51461054f578063b322c79b14610557576102de565b80639d2c110c14610516578063a457c2d714610529576102de565b8063893d20e81161013a57806390605f3a1161011f57806390605f3a146104fe57806395d89b41146105065780639b02cdde1461050e576102de565b8063893d20e8146104e15780638d928af8146104f6576102de565b80637ecebe001161016b5780637ecebe00146104a8578063851c1bb3146104bb57806387ec6817146104ce576102de565b806374f3b009146104705780637beed22014610491576102de565b806338e9922e1161023f57806350dd6ed9116101f35780636028bfd4116101cd5780636028bfd414610434578063679aefce1461045557806370a082311461045d576102de565b806350dd6ed91461040657806355c67628146104195780635b77155e14610421576102de565b8063395093511161022457806339509351146103d85780633e569205146103eb57806347bc4d92146103fe576102de565b806338e9922e146103bd57806338fff2d0146103d0576102de565b80631dd746ea11610296578063313ce5671161027b578063313ce5671461038a57806332f144f51461039f5780633644e515146103b5576102de565b80631dd746ea1461036257806323b872dd14610377576102de565b806316c38b3c116102c757806316c38b3c1461032157806318160ddd146103365780631c0de0511461034b576102de565b806306fdde03146102e3578063095ea7b314610301575b600080fd5b6102eb6105bb565b6040516102f89190615714565b60405180910390f35b61031461030f366004614e32565b610652565b6040516102f8919061551a565b61033461032f366004614f29565b610669565b005b61033e61067d565b6040516102f8919061553d565b610353610683565b6040516102f893929190615525565b61036a6106ac565b6040516102f891906154e2565b610314610385366004614d82565b6106bb565b610392610731565b6040516102f8919061579b565b6103a761073a565b6040516102f892919061548c565b61033e61085c565b6103346103cb3660046152b5565b610866565b61033e61087f565b6103146103e6366004614e32565b6108a3565b6103346103f93660046152cd565b6108de565b6103146109ef565b610334610414366004615060565b610a04565b61033e610a22565b61033461042f366004614d2e565b610a33565b610447610442366004614f61565b610b5a565b6040516102f8929190615727565b61033e610b91565b61033e61046b366004614d2e565b610bbc565b61048361047e366004614f61565b610bdb565b6040516102f89291906154f5565b610499610c7e565b6040516102f893929190615740565b61033e6104b6366004614d2e565b610e0b565b61033e6104c9366004615004565b610e26565b6104476104dc366004614f61565b610e78565b6104e9610e9e565b6040516102f89190615478565b6104e9610ec2565b61033e610ee6565b6102eb610f0a565b61033e610f6b565b61033e6105243660046151b9565b610f78565b610314610537366004614e32565b611013565b61031461054a366004614e32565b611051565b6104e961105e565b61033e611068565b61033e61106f565b610334610575366004614dc2565b611134565b610483610588366004614f61565b61127d565b61033e61059b366004614d4a565b6113ae565b6103346105ae366004614f29565b6113d9565b61036a611402565b60038054604080516020601f60026000196101006001881615020190951694909404938401819004810282018101909252828152606093909290918301828280156106475780601f1061061c57610100808354040283529160200191610647565b820191906000526020600020905b81548152906001019060200180831161062a57829003601f168201915b505050505090505b90565b600061065f3384846116a0565b5060015b92915050565b610671611708565b61067a8161174e565b50565b60025490565b60008060006106906117ea565b15925061069b611807565b91506106a561182b565b9050909192565b60606106b661184f565b905090565b6000806106c885336113ae565b90506106ec336001600160a01b03871614806106e45750838210155b61019e61199c565b6106f78585856119aa565b336001600160a01b0386161480159061071257506000198114155b156107245761072485338584036116a0565b60019150505b9392505050565b60055460ff1690565b606080610745611a8a565b67ffffffffffffffff8111801561075b57600080fd5b50604051908082528060200260200182016040528015610785578160200160208202803683370190505b509150610790611a8a565b67ffffffffffffffff811180156107a657600080fd5b506040519080825280602002602001820160405280156107d0578160200160208202803683370190505b50905060005b6107de611a8a565b811015610846576000806107f3600c84611a9f565b915091508185848151811061080457fe5b60200260200101906001600160a01b031690816001600160a01b0316815250508084848151811061083157fe5b602090810291909101015250506001016107d6565b506108588161085361184f565b611ac3565b9091565b60006106b6611b24565b61086e611708565b610876611bc1565b61067a81611bd6565b7f000000000000000000000000000000000000000000000000000000000000000090565b3360008181526001602090815260408083206001600160a01b0387168452909152812054909161065f9185906108d990866115ce565b6116a0565b6108e6611708565b6108ee611bc1565b6108f6611c41565b610908610901611a8a565b8251611c5a565b426109138185611c67565b93506109248385111561014661199c565b61093862015180858503101561014b61199c565b6060610942610ec2565b6001600160a01b031663f94d466861095861087f565b6040518263ffffffff1660e01b8152600401610974919061553d565b60006040518083038186803b15801561098c57600080fd5b505afa1580156109a0573d6000803e3d6000fd5b505050506040513d6000823e601f3d908101601f191682016040526109c89190810190614e5d565b505090506109e085856109d9611c7e565b8685611ddf565b50506109ea611fa3565b505050565b60006106b660006109fe611faa565b90611fb0565b610a0c611708565b610a14611bc1565b610a1e8282611fba565b5050565b6008546000906106b69060c06120d2565b610a3b611708565b610a43611bc1565b610a4b611c41565b606080610a5661073a565b91509150610a62610ec2565b6001600160a01b0316638bdb3913610a7861087f565b30866040518060800160405280610a8e8961064f565b81526020018781526020016003604051602001610aab9190615700565b6040516020818303038152906040528152602001600015158152506040518563ffffffff1660e01b8152600401610ae59493929190615565565b600060405180830381600087803b158015610aff57600080fd5b505af1158015610b13573d6000803e3d6000fd5b505050507f5cf8dd4ddeaded21c5e3dc4043073fa7659089e0d11d8480344663008dff060f8282604051610b4892919061548c565b60405180910390a1505061067a611fa3565b60006060610b708651610b6b611a8a565b611c5a565b610b85898989898989896120e0611ac36121ad565b97509795505050505050565b60006106b6610b9e61067d565b610bb6610ba961106f565b610bb1611a8a565b61233d565b90612357565b6001600160a01b0381166000908152602081905260409020545b919050565b60608088610c05610bea610ec2565b6001600160a01b0316336001600160a01b03161460cd61199c565b610c1a610c1061087f565b82146101f461199c565b6060610c2461184f565b9050610c30888261239f565b6000606080610c458e8e8e8e8e8e8a8f6120e0565b925092509250610c558d84612400565b610c5f8285611ac3565b610c698185611ac3565b909550935050505b5097509795505050505050565b60008060606000610c8d611faa565b9050610c9a81600861240a565b9350610ca781602861240a565b92506060610cb3610ec2565b6001600160a01b031663f94d4668610cc961087f565b6040518263ffffffff1660e01b8152600401610ce5919061553d565b60006040518083038186803b158015610cfd57600080fd5b505afa158015610d11573d6000803e3d6000fd5b505050506040513d6000823e601f3d908101601f19168201604052610d399190810190614e5d565b505080519091508067ffffffffffffffff81118015610d5757600080fd5b50604051908082528060200260200182016040528015610d81578160200160208202803683370190505b50935060005b81811015610e0257610de3610dde6040600b6000878681518110610da757fe5b60200260200101516001600160a01b03166001600160a01b031681526020019081526020016000205461240a90919063ffffffff16565b612414565b858281518110610def57fe5b6020908102919091010152600101610d87565b50505050909192565b6001600160a01b031660009081526006602052604090205490565b60007f000000000000000000000000000000000000000000000000000000000000000082604051602001610e5b929190615402565b604051602081830303815290604052805190602001209050919050565b60006060610e898651610b6b611a8a565b610b85898989898989896124326124e06121ad565b7f000000000000000000000000000000000000000000000000000000000000000090565b7f000000000000000000000000000000000000000000000000000000000000000090565b7f000000000000000000000000000000000000000000000000000000000000000090565b60048054604080516020601f60026000196101006001881615020190951694909404938401819004810282018101909252828152606093909290918301828280156106475780601f1061061c57610100808354040283529160200191610647565b600061064f610153612541565b600080610f978560200151610135600c6125ae9092919063ffffffff16565b90506000610fbb610fb483610faf89602001516125eb565b6125fe565b8690611553565b90506000610fdb8760400151610135600c6125ae9092919063ffffffff16565b90506000610ffa610ff383610faf8b604001516125eb565b8790611553565b905061100788848361260a565b98975050505050505050565b60008061102033856113ae565b905080831061103a57611035338560006116a0565b611047565b61104733858584036116a0565b5060019392505050565b600061065f3384846119aa565b60006106b6612760565b6201518090565b6000606061107b610ec2565b6001600160a01b031663f94d466861109161087f565b6040518263ffffffff1660e01b81526004016110ad919061553d565b60006040518083038186803b1580156110c557600080fd5b505afa1580156110d9573d6000803e3d6000fd5b505050506040513d6000823e601f3d908101601f191682016040526111019190810190614e5d565b509150506111168161111161184f565b61239f565b60606111206127da565b50905061112d8183612858565b9250505090565b6111428442111560d161199c565b6001600160a01b0387166000908152600660209081526040808320549051909291611199917f0000000000000000000000000000000000000000000000000000000000000000918c918c918c9188918d9101615652565b60405160208183030381529060405280519060200120905060006111bc826128ca565b90506000600182888888604051600081526020016040526040516111e394939291906156e2565b6020604051602081039080840390855afa158015611205573d6000803e3d6000fd5b5050604051601f190151915061124790506001600160a01b0382161580159061123f57508b6001600160a01b0316826001600160a01b0316145b6101f861199c565b6001600160a01b038b1660009081526006602052604090206001850190556112708b8b8b6116a0565b5050505050505050505050565b6060808861128c610bea610ec2565b611297610c1061087f565b60606112a161184f565b90506112ab61067d565b61135e57600060606112c08d8d8d868b6128e6565b915091506112d96112cf61297c565b83101560cc61199c565b6112eb60006112e661297c565b612983565b6112fe8b6112f761297c565b8403612983565b61130881846124e0565b80611311611a8a565b67ffffffffffffffff8111801561132757600080fd5b50604051908082528060200260200182016040528015611351578160200160208202803683370190505b5095509550505050610c71565b611368888261239f565b600060608061137d8e8e8e8e8e8e8a8f612432565b92509250925061138d8c84612983565b61139782856124e0565b6113a18185611ac3565b9095509350610c71915050565b6001600160a01b03918216600090815260016020908152604080832093909416825291909152205490565b6113e1611708565b6113e9611bc1565b6113f1611c41565b6113fa8161298d565b61067a611fa3565b60606106b6611c7e565b80610a1e816129d4565b6109ea828414801561142757508183145b606761199c565b607f811b1992909216911b1790565b6001600160a01b0382166000908152600284016020526040812054806114e257505082546040805180820182526001600160a01b03858116808352602080840187815260008781526001808c018452878220965187547fffffffffffffffffffffffff0000000000000000000000000000000000000000169616959095178655905194840194909455948201808955908352600288019094529190209190915561072a565b60001901600090815260018086016020526040822001839055905061072a565b509392505050565b67ffffffffffffffff811b1992909216911b1790565b77ffffffffffffffffffffffffffffffffffffffffffffffff828116821b90821b198416179392505050565b1c607f1690565b600061156383831115600161199c565b50900390565b6000610663670de0b6b3a76400006115878463ffffffff6116078116565b90611655565b6000610663670de0b6b3a76400006115878467ffffffffffffffff611607565b63ffffffff811b1992909216911b1790565b601f811b1992909216911b1790565b600082820161072a848210158361199c565b60006001821b19841682846115f65760006115f9565b60015b60ff16901b17949350505050565b600082820261162b84158061162457508385838161162157fe5b04145b600361199c565b8061163a576000915050610663565b670de0b6b3a764000060001982015b04600101915050610663565b6000611664821515600461199c565b8261167157506000610663565b670de0b6b3a7640000838102906116949085838161168b57fe5b0414600561199c565b82600182038161164957fe5b6001600160a01b0380841660008181526001602090815260408083209487168084529490915290819020849055517f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b925906116fb90859061553d565b60405180910390a3505050565b60006117376000357fffffffff0000000000000000000000000000000000000000000000000000000016610e26565b905061067a6117468233612a4d565b61019161199c565b801561176e5761176961175f611807565b421061019361199c565b611783565b61178361177961182b565b42106101a961199c565b600780547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00168215151790556040517f9e3a5e37224532dea67b89face185703738a228a6e8a23dee546960180d3be64906117df90839061551a565b60405180910390a150565b60006117f461182b565b4211806106b657505060075460ff161590565b7f000000000000000000000000000000000000000000000000000000000000000090565b7f000000000000000000000000000000000000000000000000000000000000000090565b60608061185a610ec2565b6001600160a01b031663f94d466861187061087f565b6040518263ffffffff1660e01b815260040161188c919061553d565b60006040518083038186803b1580156118a457600080fd5b505afa1580156118b8573d6000803e3d6000fd5b505050506040513d6000823e601f3d908101601f191682016040526118e09190810190614e5d565b505080519091508067ffffffffffffffff811180156118fe57600080fd5b50604051908082528060200260200182016040528015611928578160200160208202803683370190505b50925060005b8181101561199657611977600b600085848151811061194957fe5b60200260200101516001600160a01b03166001600160a01b0316815260200190815260200160002054612b3d565b84828151811061198357fe5b602090810291909101015260010161192e565b50505090565b81610a1e57610a1e81612541565b6119c16001600160a01b038416151561019861199c565b6119d86001600160a01b038316151561019961199c565b6119e38383836109ea565b6001600160a01b038316600090815260208190526040902054611a0990826101a0612b5f565b6001600160a01b038085166000908152602081905260408082209390935590841681522054611a3890826115ce565b6001600160a01b0380841660008181526020819052604090819020939093559151908516907fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef906116fb90859061553d565b60006106b66001611a99611faa565b9061154c565b600090815260019182016020526040902080549101546001600160a01b0390911691565b60005b611ace611a8a565b8110156109ea57611b05838281518110611ae457fe5b6020026020010151838381518110611af857fe5b6020026020010151612357565b838281518110611b1157fe5b6020908102919091010152600101611ac6565b60007f00000000000000000000000000000000000000000000000000000000000000007f00000000000000000000000000000000000000000000000000000000000000007f0000000000000000000000000000000000000000000000000000000000000000611b91612b75565b30604051602001611ba6959493929190615686565b60405160208183030381529060405280519060200120905090565b611bd4611bcc6117ea565b61019261199c565b565b611be964e8d4a5100082101560cb61199c565b611bff67016345785d8a000082111560ca61199c565b600854611c0e908260c061150a565b6008556040517fa9ba3ffe0b6c366b81232caab38605a0699ad5398d6cce76f91ee809e322dafc906117df90839061553d565b611c536002600a54141561019061199c565b6002600a55565b610a1e818314606761199c565b600081831015611c77578161072a565b5090919050565b606080611c89610ec2565b6001600160a01b031663f94d4668611c9f61087f565b6040518263ffffffff1660e01b8152600401611cbb919061553d565b60006040518083038186803b158015611cd357600080fd5b505afa158015611ce7573d6000803e3d6000fd5b505050506040513d6000823e601f3d908101601f19168201604052611d0f9190810190614e5d565b505080519091508067ffffffffffffffff81118015611d2d57600080fd5b50604051908082528060200260200182016040528015611d57578160200160208202803683370190505b5092506000611d64612b79565b905060005b82811015611dd8576000600b6000868481518110611d8357fe5b60200260200101516001600160a01b03166001600160a01b03168152602001908152602001600020549050611db88184612bef565b868381518110611dc457fe5b602090810291909101015250600101611d69565b5050505090565b600080805b8451811015611f2a576000858281518110611dfb57fe5b60200260200101519050611e1b662386f26fc1000082101561012e61199c565b6000858381518110611e2957fe5b60200260200101519050611efb611eb5826001600160a01b031663313ce5676040518163ffffffff1660e01b815260040160206040518083038186803b158015611e7257600080fd5b505afa158015611e86573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190611eaa919061535b565b60129060ff16611553565b6060611ef4611ec386611569565b6040611eed611ee48f8b81518110611ed757fe5b602002602001015161158d565b8b90600061150a565b91906115ad565b91906115bf565b6001600160a01b0382166000908152600b6020526040902055611f1e85836115ce565b94505050600101611de4565b50611f41670de0b6b3a7640000831461013461199c565b611f5d611f58876028611eed8b6008611eed611faa565b612c88565b7f0f3631f9dab08169d1db21c6dc5f32536fb2b0a6b9bb5330d71c52132f968be087878787604051611f92949392919061575f565b60405180910390a150505050505050565b6001600a55565b60085490565b1c60019081161490565b6000611fc461087f565b90506000611fd0610ec2565b6001600160a01b031663b05f8e4883866040518363ffffffff1660e01b8152600401611ffd9291906156cb565b60806040518083038186803b15801561201557600080fd5b505afa158015612029573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061204d919061531b565b6040517f18e736d40000000000000000000000000000000000000000000000000000000081529094506001600160a01b03851693506318e736d4925061209a9150859087906004016156b2565b600060405180830381600087803b1580156120b457600080fd5b505af11580156120c8573d6000803e3d6000fd5b5050505050505050565b1c67ffffffffffffffff1690565b60006060806120ee88612c9d565b60006120f985612cfe565b905061213a6121066109ef565b8061211c5750600182600381111561211a57fe5b145b806121325750600382600381111561213057fe5b145b61014a61199c565b61214e8b8a612147611c7e565b8989612d14565b909450925061215b611a8a565b67ffffffffffffffff8111801561217157600080fd5b5060405190808252806020026020018201604052801561219b578160200160208202803683370190505b50915050985098509895505050505050565b33301461229c576000306001600160a01b03166000366040516121d1929190615432565b6000604051808303816000865af19150503d806000811461220e576040519150601f19603f3d011682016040523d82523d6000602084013e612213565b606091505b50509050806000811461222257fe5b60046000803e6000517fffffffff00000000000000000000000000000000000000000000000000000000167f43adbafb00000000000000000000000000000000000000000000000000000000811461227e573d6000803e3d6000fd5b506020600460003e604060205260243d03602460403e601c3d016000f35b60606122a661184f565b90506122b2878261239f565b600060606122ca8c8c8c8c8c8c898d8d63ffffffff16565b50915091506122dd81848663ffffffff16565b8051601f1982018390526343adbafb7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc08301526020027fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffdc82016044820181fd5b600082820261072a84158061162457508385838161162157fe5b6000612366821515600461199c565b8261237357506000610663565b670de0b6b3a76400008381029061238d9085838161168b57fe5b82818161239657fe5b04915050610663565b60005b6123aa611a8a565b8110156109ea576123e18382815181106123c057fe5b60200260200101518383815181106123d457fe5b6020026020010151612d58565b8382815181106123ed57fe5b60209081029190910101526001016123a2565b610a1e8282612d84565b1c63ffffffff1690565b600061066363ffffffff61158784670de0b6b3a76400006116078416565b600060608061243f611bc1565b61244888612c9d565b61246f6124536109ef565b806121325750600361246486612cfe565b600381111561213057fe5b6124828861247b611c7e565b8787612e40565b909350915061248f611a8a565b67ffffffffffffffff811180156124a557600080fd5b506040519080825280602002602001820160405280156124cf578160200160208202803683370190505b509050985098509895505050505050565b60005b6124eb611a8a565b8110156109ea5761252283828151811061250157fe5b602002602001015183838151811061251557fe5b6020026020010151611655565b83828151811061252e57fe5b60209081029190910101526001016124e3565b7f08c379a0000000000000000000000000000000000000000000000000000000006000908152602060045260076024526642414c23000030600a808404818106603090810160081b95839006959095019082900491820690940160101b939093010160c81b604452606490fd5b6001600160a01b03821660009081526002840160205260408120546125d58115158461199c565b6125e28560018303612ece565b95945050505050565b60006106636125f983612ee4565b612b3d565b600061072a8383612357565b6000836080015161261c610bea610ec2565b612627610c1061087f565b600061263686602001516125eb565b9050600061264787604001516125eb565b905060008751600181111561265857fe5b14156126e857600061266d8860600151612f0b565b90506000818960600151039050612691896020015161268c8387612f2c565b612f38565b606089018290526126a28885612f2c565b97506126ae8784612f2c565b96506126be896060015185612f2c565b60608a015260006126d08a8a8a612f4a565b90506126dc81856125fe565b96505050505050611502565b6126f28683612f2c565b95506126fe8582612f2c565b945061270e876060015182612f2c565b60608801526000612720888888612f72565b905061272c8184612f8a565b9050600061273982612f96565b9050600082820390506127548a6020015161268c8388612f2c565b50945061150292505050565b600061276a610ec2565b6001600160a01b031663aaabadc56040518163ffffffff1660e01b815260040160206040518083038186803b1580156127a257600080fd5b505afa1580156127b6573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906106b69190615044565b606060006127e6611c7e565b9150600090506000826000815181106127fb57fe5b602002602001015190506000600190505b8351811015612852578184828151811061282257fe5b6020026020010151111561284a5780925083818151811061283f57fe5b602002602001015191505b60010161280c565b50509091565b670de0b6b3a764000060005b83518110156128ba576128b06128a985838151811061287f57fe5b602002602001015185848151811061289357fe5b6020026020010151612fbc90919063ffffffff16565b8390612d58565b9150600101612864565b506106636000821161013761199c565b60006128d4611b24565b82604051602001610e5b929190615442565b600060606128f2611bc1565b60006128fd84612cfe565b9050612918600082600381111561291057fe5b1460ce61199c565b60606129238561300b565b9050612930610901611a8a565b61293a818761239f565b60606129446127da565b50905060006129538284612858565b9050600061296382610bb1611a8a565b60099290925550945090925050505b9550959350505050565b620f424090565b610a1e8282613021565b6129a5611f5882600061299e611faa565b91906115e0565b7f5a9e84f78f7957cb4ed7478eb0fcad35ee4ecbe2e0f298420b28a3955392573f816040516117df919061551a565b6002815110156129e35761067a565b6000816000815181106129f257fe5b602002602001015190506000600190505b82518110156109ea576000838281518110612a1a57fe5b60200260200101519050612a43816001600160a01b0316846001600160a01b031610606561199c565b9150600101612a03565b600073ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1b612a6c610e9e565b6001600160a01b031614158015612a875750612a87836130af565b15612aaf57612a94610e9e565b6001600160a01b0316336001600160a01b0316149050610663565b612ab7612760565b6001600160a01b0316639be2a8848484306040518463ffffffff1660e01b8152600401612ae693929190615546565b60206040518083038186803b158015612afe57600080fd5b505afa158015612b12573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190612b369190614f45565b9050610663565b600080612b4b83606061314f565b600a0a670de0b6b3a7640000029392505050565b6000612b6e848411158361199c565b5050900390565b4690565b60004281612b85611faa565b90506000612b9482600861240a565b90506000612ba383602861240a565b9050808410612bc057670de0b6b3a764000094505050505061064f565b818411612bd457600094505050505061064f565b818103828503612be48183612357565b965050505050505090565b600080612c04612bff85836120d2565b613156565b90506000612c16610dde86604061240a565b9050831580612c2457508082145b15612c3157509050610663565b670de0b6b3a76400008410612c495791506106639050565b80821115612c6c576000612c5f85838503612d58565b9092039250610663915050565b6000612c7a85848403612d58565b929092019250610663915050565b600854612c9790826000611520565b60085550565b60005b612ca8611a8a565b811015610a1e57612cdf612cbd600c83612ece565b838381518110612cc957fe5b602002602001015161155390919063ffffffff16565b828281518110612ceb57fe5b6020908102919091010152600101612ca0565b60008180602001905181019061066391906150ae565b600060606000612d2384612cfe565b90506003816003811115612d3357fe5b1415612d4c57612d4288613176565b9250925050612972565b612d4287878787613237565b6000828202612d7284158061162457508385838161162157fe5b670de0b6b3a764000090049392505050565b612d9b6001600160a01b038316151561019b61199c565b612da7826000836109ea565b6001600160a01b038216600090815260208190526040902054612dcd90826101a1612b5f565b6001600160a01b038316600090815260208190526040902055600254612df390826132b0565b6002556040516000906001600160a01b038416907fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef90612e3490859061553d565b60405180910390a35050565b600060606000612e4f84612cfe565b90506001816003811115612e5f57fe5b1415612e7b57612e71878787876132be565b9250925050612ec5565b6002816003811115612e8957fe5b1415612e9a57612e71878786613337565b6003816003811115612ea857fe5b1415612eb857612e718785613426565b612ec3610136612541565b505b94509492505050565b6000908152600191820160205260409020015490565b6001600160a01b0381166000908152600b6020526040902054610bd681151561013561199c565b600080612f20612f19610a22565b8490611607565b905061072a8382611553565b600061072a8383612d58565b610a1e612f4483613458565b82613468565b6000612f5f612f576109ef565b61014761199c565b612f6a8484846134cf565b949350505050565b6000612f7f612f576109ef565b612f6a848484613502565b600061072a8383611655565b6000610663612fb5612fa6610a22565b670de0b6b3a764000090611553565b8390611655565b600080612fc98484613535565b90506000612fe3612fdc83612710611607565b60016115ce565b905080821015612ff857600092505050610663565b6130028282611553565b92505050610663565b60608180602001905181019061072a9190615174565b61302d600083836109ea565b60025461303a90826115ce565b6002556001600160a01b03821660009081526020819052604090205461306090826115ce565b6001600160a01b0383166000818152602081905260408082209390935591519091907fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef90612e3490859061553d565b60006130da7f3e56920500000000000000000000000000000000000000000000000000000000610e26565b82148061310e575061310b7fe01af92c00000000000000000000000000000000000000000000000000000000610e26565b82145b80613140575061313d7f5b77155e00000000000000000000000000000000000000000000000000000000610e26565b82145b80610663575061066382613672565b1c601f1690565b600061066367ffffffffffffffff61158784670de0b6b3a7640000611607565b60006060613182611bc1565b6131996001600160a01b038416301461015161199c565b600091506131a5611a8a565b67ffffffffffffffff811180156131bb57600080fd5b506040519080825280602002602001820160405280156131e5578160200160208202803683370190505b50905060005b6131f3611a8a565b81101561323157613205600c82612ece565b82828151811061321157fe5b6020908102919091010152613229600c8260006136d6565b6001016131eb565b50915091565b60006060600061324684612cfe565b9050600081600381111561325657fe5b141561326757612e718787866136ee565b600181600381111561327557fe5b141561328557612e718785613759565b600281600381111561329357fe5b14156132a557612e718787878761377e565b612ec3610150612541565b600061072a83836001612b5f565b600060608060006132ce856137ec565b915091506132e46132dd611a8a565b8351611c5a565b6132ee828761239f565b6000606061330d8a8a8661330061067d565b613308610a22565b61380f565b9150915061331a81613978565b6133288383101560d061199c565b50989197509095505050505050565b60006060600080613347856139bc565b9150915061335f613356611a8a565b8210606461199c565b6000806133a389848151811061337157fe5b602002602001015189858151811061338557fe5b60200260200101518661339661067d565b61339e610a22565b6139d3565b915091506133b18382613468565b60606133bb611a8a565b67ffffffffffffffff811180156133d157600080fd5b506040519080825280602002602001820160405280156133fb578160200160208202803683370190505b5090508281858151811061340b57fe5b60209081029190910101529399939850929650505050505050565b60006060600061343584613aa9565b9050606061344b868361344661067d565b613abf565b9196919550909350505050565b6000610663600c83610135613b71565b80156134c557600061349a827f0000000000000000000000000000000000000000000000000000000000000000612d58565b905060006134a9600c85612ece565b90506134c2846134b983856115ce565b600c91906136d6565b50505b610a1e8282610a1e565b60006134d9611bc1565b612f6a836134ea8660200151613b98565b846134f88860400151613b98565b8860600151613bbc565b600061350c611bc1565b612f6a8361351d8660200151613b98565b8461352b8860400151613b98565b8860600151613c37565b60008161354b5750670de0b6b3a7640000610663565b8261355857506000610663565b6135857f80000000000000000000000000000000000000000000000000000000000000008410600661199c565b826135ab770bce5086492111aea88f4bb1ca6bcf584181ea8059f765328410600761199c565b826000670c7d713b49da0000831380156135cc5750670f43fc2c04ee000083125b156136035760006135dc84613cad565b9050670de0b6b3a764000080820784020583670de0b6b3a764000083050201915050613611565b8161360d84613de4565b0290505b670de0b6b3a7640000900561365f7ffffffffffffffffffffffffffffffffffffffffffffffffdc702bd3a30fc00008212801590613658575068070c1cc73b00c800008213155b600861199c565b61366881614184565b9695505050505050565b600061369d7f38e9922e00000000000000000000000000000000000000000000000000000000610e26565b82148061066357506136ce7f50dd6ed900000000000000000000000000000000000000000000000000000000610e26565b909114919050565b60009182526001928301602052604090912090910155565b600060606136fa611bc1565b600080613706856139bc565b91509150613715613356611a8a565b6000806133a389848151811061372757fe5b602002602001015189858151811061373b57fe5b60200260200101518661374c61067d565b613754610a22565b614654565b60006060600061376884613aa9565b9050606061344b868361377961067d565b61470a565b6000606061378a611bc1565b60606000613797856137ec565b915091506137a88251610b6b611a8a565b6137b2828761239f565b600060606137d18a8a866137c461067d565b6137cc610a22565b61479c565b915091506137e38383111560cf61199c565b61332881613978565b606060008280602001905181019061380491906150ca565b909590945092505050565b6000606080855167ffffffffffffffff8111801561382c57600080fd5b50604051908082528060200260200182016040528015613856578160200160208202803683370190505b5090506000805b895181101561391b576138b68a828151811061387557fe5b6020026020010151610bb68a848151811061388c57fe5b60200260200101518d85815181106138a057fe5b60200260200101516115ce90919063ffffffff16565b8382815181106138c257fe5b60200260200101818152505061391161390a8a83815181106138e057fe5b60200260200101518584815181106138f457fe5b6020026020010151612d5890919063ffffffff16565b83906115ce565b915060010161385d565b506000606061392e8b8b8b87878c6148a1565b915091506000670de0b6b3a7640000831161394a576000613966565b61396661395f84670de0b6b3a7640000611553565b8a90612d58565b9c919b50909950505050505050505050565b6139858151610b6b611a8a565b60005b613990611a8a565b811015610a1e576139b4818383815181106139a757fe5b6020026020010151613468565b600101613988565b60008082806020019051810190613804919061513e565b600080806139e58561158781896115ce565b90506139fe6729a2241af62c000082111561013361199c565b6000613a1c613a15670de0b6b3a76400008a611655565b8390614a26565b90506000613a3c613a3583670de0b6b3a7640000611553565b8b90611607565b90506000613a498a614a52565b90506000613a578383611607565b90506000613a658483611553565b90506000613a85613a7e670de0b6b3a76400008c611553565b8490611655565b83810398509050613a9682826115ce565b9850505050505050509550959350505050565b60008180602001905181019061072a9190615111565b60606000613acd8484611655565b90506060855167ffffffffffffffff81118015613ae957600080fd5b50604051908082528060200260200182016040528015613b13578160200160208202803683370190505b50905060005b8651811015613b6757613b4883888381518110613b3257fe5b602002602001015161160790919063ffffffff16565b828281518110613b5457fe5b6020908102919091010152600101613b19565b5095945050505050565b600080613b7e8585614a78565b9050613b8c8115158461199c565b60001901949350505050565b600080613ba3612b79565b90506000613bb084612ee4565b9050612f6a8183612bef565b6000613bde613bd387670429d069189e0000612d58565b83111561013061199c565b6000613bea87846115ce565b90506000613bf88883611655565b90506000613c068887612357565b90506000613c148383614a26565b9050613c29613c2282614a52565b8990612d58565b9a9950505050505050505050565b6000613c59613c4e85670429d069189e0000612d58565b83111561013161199c565b6000613c6f613c688685611553565b8690611655565b90506000613c7d8588611655565b90506000613c8b8383614a26565b90506000613ca182670de0b6b3a7640000611553565b9050613c298a82611607565b670de0b6b3a7640000026000806ec097ce7bc90715b34b9f1000000000808401907fffffffffffffffffffffffffffffffffff3f68318436f8ea4cb460f00000000085010281613cf957fe5b05905060006ec097ce7bc90715b34b9f100000000082800205905081806ec097ce7bc90715b34b9f100000000081840205915060038205016ec097ce7bc90715b34b9f100000000082840205915060058205016ec097ce7bc90715b34b9f100000000082840205915060078205016ec097ce7bc90715b34b9f100000000082840205915060098205016ec097ce7bc90715b34b9f1000000000828402059150600b8205016ec097ce7bc90715b34b9f1000000000828402059150600d8205016ec097ce7bc90715b34b9f1000000000828402059150600f826002919005919091010295945050505050565b6000670de0b6b3a7640000821215613e2157613e17826ec097ce7bc90715b34b9f100000000081613e1157fe5b05613de4565b6000039050610bd6565b60007e1600ef3172e58d2e933ec884fde10064c63b5372d805e203c00000000000008312613e7257770195e54c5dd42177f53a27172fa9ec630262827000000000830592506806f05b59d3b2000000015b73011798004d755d3c8bc8e03204cf44619e0000008312613eaa576b1425982cf597cd205cef7380830592506803782dace9d9000000015b606492830292026e01855144814a7ff805980ff00840008312613ef2576e01855144814a7ff805980ff008400068056bc75e2d63100000840205925068ad78ebc5ac62000000015b6b02df0ab5a80a22c61ab5a7008312613f2d576b02df0ab5a80a22c61ab5a70068056bc75e2d6310000084020592506856bc75e2d631000000015b693f1fce3da636ea5cf8508312613f6457693f1fce3da636ea5cf85068056bc75e2d631000008402059250682b5e3af16b18800000015b690127fa27722cc06cc5e28312613f9b57690127fa27722cc06cc5e268056bc75e2d6310000084020592506815af1d78b58c400000015b68280e60114edb805d038312613fd05768280e60114edb805d0368056bc75e2d631000008402059250680ad78ebc5ac6200000015b680ebc5fb417461211108312613ffb57680ebc5fb4174612111068056bc75e2d631000009384020592015b6808f00f760a4b2db55d8312614030576808f00f760a4b2db55d68056bc75e2d6310000084020592506802b5e3af16b1880000015b6806f5f17757889379378312614065576806f5f177578893793768056bc75e2d63100000840205925068015af1d78b58c40000015b6806248f33704b2866038312614099576806248f33704b28660368056bc75e2d63100000840205925067ad78ebc5ac620000015b6805c548670b9510e7ac83126140cd576805c548670b9510e7ac68056bc75e2d6310000084020592506756bc75e2d6310000015b600068056bc75e2d63100000840168056bc75e2d6310000080860302816140f057fe5b059050600068056bc75e2d63100000828002059050818068056bc75e2d63100000818402059150600382050168056bc75e2d63100000828402059150600582050168056bc75e2d63100000828402059150600782050168056bc75e2d63100000828402059150600982050168056bc75e2d63100000828402059150600b820501600202606485820105979650505050505050565b60006141c97ffffffffffffffffffffffffffffffffffffffffffffffffdc702bd3a30fc000083121580156141c2575068070c1cc73b00c800008313155b600961199c565b60008212156141fd576141de82600003614184565b6ec097ce7bc90715b34b9f1000000000816141f557fe5b059050610bd6565b60006806f05b59d3b2000000831261425357507ffffffffffffffffffffffffffffffffffffffffffffffff90fa4a62c4e00000090910190770195e54c5dd42177f53a27172fa9ec63026282700000000061429f565b6803782dace9d9000000831261429b57507ffffffffffffffffffffffffffffffffffffffffffffffffc87d2531627000000909101906b1425982cf597cd205cef738061429f565b5060015b6064929092029168056bc75e2d6310000068ad78ebc5ac620000008412614305577fffffffffffffffffffffffffffffffffffffffffffffff5287143a539e0000009093019268056bc75e2d631000006e01855144814a7ff805980ff008400082020590505b6856bc75e2d6310000008412614357577fffffffffffffffffffffffffffffffffffffffffffffffa9438a1d29cf0000009093019268056bc75e2d631000006b02df0ab5a80a22c61ab5a70082020590505b682b5e3af16b1880000084126143a7577fffffffffffffffffffffffffffffffffffffffffffffffd4a1c50e94e78000009093019268056bc75e2d63100000693f1fce3da636ea5cf85082020590505b6815af1d78b58c40000084126143f7577fffffffffffffffffffffffffffffffffffffffffffffffea50e2874a73c000009093019268056bc75e2d63100000690127fa27722cc06cc5e282020590505b680ad78ebc5ac62000008412614446577ffffffffffffffffffffffffffffffffffffffffffffffff5287143a539e000009093019268056bc75e2d6310000068280e60114edb805d0382020590505b68056bc75e2d631000008412614495577ffffffffffffffffffffffffffffffffffffffffffffffffa9438a1d29cf000009093019268056bc75e2d63100000680ebc5fb4174612111082020590505b6802b5e3af16b188000084126144e4577ffffffffffffffffffffffffffffffffffffffffffffffffd4a1c50e94e7800009093019268056bc75e2d631000006808f00f760a4b2db55d82020590505b68015af1d78b58c400008412614533577ffffffffffffffffffffffffffffffffffffffffffffffffea50e2874a73c00009093019268056bc75e2d631000006806f5f177578893793782020590505b68056bc75e2d631000008481019085906002908280020505918201919050600368056bc75e2d631000008783020505918201919050600468056bc75e2d631000008783020505918201919050600568056bc75e2d631000008783020505918201919050600668056bc75e2d631000008783020505918201919050600768056bc75e2d631000008783020505918201919050600868056bc75e2d631000008783020505918201919050600968056bc75e2d631000008783020505918201919050600a68056bc75e2d631000008783020505918201919050600b68056bc75e2d631000008783020505918201919050600c68056bc75e2d631000008783020505918201919050606468056bc75e2d63100000848402058502059695505050505050565b60008080614666856115878189611553565b905061467f6709b6e64a8ec6000082101561013261199c565b6000614696613a15670de0b6b3a76400008a612357565b905060006146ad6146a683614a52565b8b90612d58565b905060006146ba8a614a52565b905060006146c88383611607565b905060006146d68483611553565b90506146e2828a611607565b96506146f86146f18389611553565b82906115ce565b97505050505050509550959350505050565b606060006147188484612357565b90506060855167ffffffffffffffff8111801561473457600080fd5b5060405190808252806020026020018201604052801561475e578160200160208202803683370190505b50905060005b8651811015613b675761477d838883815181106138f457fe5b82828151811061478957fe5b6020908102919091010152600101614764565b6000606080855167ffffffffffffffff811180156147b957600080fd5b506040519080825280602002602001820160405280156147e3578160200160208202803683370190505b5090506000805b89518110156148755761482d8a828151811061480257fe5b60200260200101516115878a848151811061481957fe5b60200260200101518d8581518110612cc957fe5b83828151811061483957fe5b60200260200101818152505061486b61390a8a838151811061485757fe5b6020026020010151858481518110613b3257fe5b91506001016147ea565b50600060606148888b8b8b87878c614a97565b91509150600061396661489a84614a52565b8a90611607565b60006060855167ffffffffffffffff811180156148bd57600080fd5b506040519080825280602002602001820160405280156148e7578160200160208202803683370190505b509050670de0b6b3a7640000915060005b8851811015614a1a5760008587838151811061491057fe5b6020026020010151111561499c57600061494161493588670de0b6b3a7640000611553565b8c85815181106138f457fe5b90506000614955828b8681518110612cc957fe5b905060006149638289611607565b90506149796149728383611553565b84906115ce565b93508086868151811061498857fe5b6020026020010181815250505050506149b3565b8782815181106149a857fe5b602002602001015190505b60006149dc8b84815181106149c457fe5b6020026020010151610bb6848e87815181106138a057fe5b9050614a0e614a078b85815181106149f057fe5b602002602001015183612fbc90919063ffffffff16565b8690612d58565b945050506001016148f8565b50965096945050505050565b600080614a338484613535565b90506000614a46612fdc83612710611607565b90506125e282826115ce565b6000670de0b6b3a76400008210614a6a576000610663565b50670de0b6b3a76400000390565b6001600160a01b03166000908152600291909101602052604090205490565b60006060855167ffffffffffffffff81118015614ab357600080fd5b50604051908082528060200260200182016040528015614add578160200160208202803683370190505b509050670de0b6b3a7640000915060005b8851811015614a1a576000868281518110614b0557fe5b6020026020010151861115614b7f576000614b2261493588614a52565b90506000614b36828b8681518110612cc957fe5b90506000614b4f612fb5670de0b6b3a76400008a611553565b9050818103868681518110614b6057fe5b6020908102919091010152614b7583826115ce565b9350505050614b96565b878281518110614b8b57fe5b602002602001015190505b6000614bbf8b8481518110614ba757fe5b6020026020010151610bb6848e8781518110612cc957fe5b9050614bd3614a078b85815181106149f057fe5b94505050600101614aee565b8035610663816157fc565b600082601f830112614bfa578081fd5b8135614c0d614c08826157d0565b6157a9565b818152915060208083019084810181840286018201871015614c2e57600080fd5b60005b84811015614c4d57813584529282019290820190600101614c31565b505050505092915050565b600082601f830112614c68578081fd5b8151614c76614c08826157d0565b818152915060208083019084810181840286018201871015614c9757600080fd5b60005b84811015614c4d57815184529282019290820190600101614c9a565b600082601f830112614cc6578081fd5b813567ffffffffffffffff811115614cdc578182fd5b614cef6020601f19601f840116016157a9565b9150808252836020828501011115614d0657600080fd5b8060208401602084013760009082016020015292915050565b80356002811061066357600080fd5b600060208284031215614d3f578081fd5b813561072a816157fc565b60008060408385031215614d5c578081fd5b8235614d67816157fc565b91506020830135614d77816157fc565b809150509250929050565b600080600060608486031215614d96578081fd5b8335614da1816157fc565b92506020840135614db1816157fc565b929592945050506040919091013590565b600080600080600080600060e0888a031215614ddc578283fd5b8735614de7816157fc565b96506020880135614df7816157fc565b955060408801359450606088013593506080880135614e158161582c565b9699959850939692959460a0840135945060c09093013592915050565b60008060408385031215614e44578182fd5b8235614e4f816157fc565b946020939093013593505050565b600080600060608486031215614e71578081fd5b835167ffffffffffffffff80821115614e88578283fd5b818601915086601f830112614e9b578283fd5b8151614ea9614c08826157d0565b80828252602080830192508086018b828387028901011115614ec9578788fd5b8796505b84871015614ef4578051614ee0816157fc565b845260019690960195928101928101614ecd565b508901519097509350505080821115614f0b578283fd5b50614f1886828701614c58565b925050604084015190509250925092565b600060208284031215614f3a578081fd5b813561072a81615811565b600060208284031215614f56578081fd5b815161072a81615811565b600080600080600080600060e0888a031215614f7b578081fd5b873596506020880135614f8d816157fc565b95506040880135614f9d816157fc565b9450606088013567ffffffffffffffff80821115614fb9578283fd5b614fc58b838c01614bea565b955060808a0135945060a08a0135935060c08a0135915080821115614fe8578283fd5b50614ff58a828b01614cb6565b91505092959891949750929550565b600060208284031215615015578081fd5b81357fffffffff000000000000000000000000000000000000000000000000000000008116811461072a578182fd5b600060208284031215615055578081fd5b815161072a816157fc565b60008060408385031215615072578182fd5b823561507d816157fc565b9150602083013567ffffffffffffffff811115615098578182fd5b6150a485828601614cb6565b9150509250929050565b6000602082840312156150bf578081fd5b815161072a8161581f565b6000806000606084860312156150de578081fd5b83516150e98161581f565b602085015190935067ffffffffffffffff811115615105578182fd5b614f1886828701614c58565b60008060408385031215615123578182fd5b825161512e8161581f565b6020939093015192949293505050565b600080600060608486031215615152578081fd5b835161515d8161581f565b602085015160409095015190969495509392505050565b60008060408385031215615186578182fd5b82516151918161581f565b602084015190925067ffffffffffffffff8111156151ad578182fd5b6150a485828601614c58565b6000806000606084860312156151cd578081fd5b833567ffffffffffffffff808211156151e4578283fd5b81860191506101208083890312156151fa578384fd5b615203816157a9565b905061520f8884614d1f565b815261521e8860208501614bdf565b60208201526152308860408501614bdf565b6040820152606083013560608201526080830135608082015260a083013560a08201526152608860c08501614bdf565b60c08201526152728860e08501614bdf565b60e0820152610100808401358381111561528a578586fd5b6152968a828701614cb6565b9183019190915250976020870135975060409096013595945050505050565b6000602082840312156152c6578081fd5b5035919050565b6000806000606084860312156152e1578081fd5b8335925060208401359150604084013567ffffffffffffffff811115615305578182fd5b61531186828701614bea565b9150509250925092565b60008060008060808587031215615330578182fd5b8451935060208501519250604085015191506060850151615350816157fc565b939692955090935050565b60006020828403121561536c578081fd5b815161072a8161582c565b6000815180845260208085019450808401835b838110156153a65781518752958201959082019060010161538a565b509495945050505050565b15159052565b60008151808452815b818110156153dc576020818501810151868301820152016153c0565b818111156153ed5782602083870101525b50601f01601f19169290920160200192915050565b9182527fffffffff0000000000000000000000000000000000000000000000000000000016602082015260240190565b6000828483379101908152919050565b7f190100000000000000000000000000000000000000000000000000000000000081526002810192909252602282015260420190565b6001600160a01b0391909116815260200190565b604080825283519082018190526000906020906060840190828701845b828110156154ce5781516001600160a01b0316845292840192908401906001016154a9565b505050838103828501526136688186615377565b60006020825261072a6020830184615377565b6000604082526155086040830185615377565b82810360208401526125e28185615377565b901515815260200190565b92151583526020830191909152604082015260600190565b90815260200190565b9283526001600160a01b03918216602084015216604082015260600190565b600085825260206001600160a01b038087168285015280861660408501525060806060840152610100830184516080808601528181518084526101208701915084830193508592505b808310156155d6576155c084516157f0565b82529284019260019290920191908401906155ae565b508387015193507fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff809250828682030160a08701526156148185615377565b935050506040850151818584030160c086015261563183826153b7565b92505050606084015161564760e08501826153b1565b509695505050505050565b9586526001600160a01b0394851660208701529290931660408501526060840152608083019190915260a082015260c00190565b9485526020850193909352604084019190915260608301526001600160a01b0316608082015260a00190565b600083825260406020830152612f6a60408301846153b7565b9182526001600160a01b0316602082015260400190565b93845260ff9290921660208401526040830152606082015260800190565b602081016004831061570e57fe5b91905290565b60006020825261072a60208301846153b7565b600083825260406020830152612f6a6040830184615377565b6000848252836020830152606060408301526125e26060830184615377565b60008582528460208301526080604083015261577e6080830185615377565b82810360608401526157908185615377565b979650505050505050565b60ff91909116815260200190565b60405181810167ffffffffffffffff811182821017156157c857600080fd5b604052919050565b600067ffffffffffffffff8211156157e6578081fd5b5060209081020190565b6001600160a01b031690565b6001600160a01b038116811461067a57600080fd5b801515811461067a57600080fd5b6004811061067a57600080fd5b60ff8116811461067a57600080fdfea264697066735822122028ca628d97b6143340c071ae5b0d0c83a983b003d9aa3e14d77bf00b613b7ba064736f6c634300070100330000000000000000000000000000000000000000000000000000000000000020000000000000000000000000ba12222222228d8ba445958a75a0704d566bf2c8000000000000000000000000000000000000000000000000000000000000018000000000000000000000000000000000000000000000000000000000000001c00000000000000000000000000000000000000000000000000000000000000200000000000000000000000000000000000000000000000000000000000000026000000000000000000000000000000000000000000000000000000000000002c00000000000000000000000000000000000000000000000000018838370f33fff00000000000000000000000000000000000000000000000000000000004bd2550000000000000000000000000000000000000000000000000000000000278d00000000000000000000000000aeca461405dd2892fba8bd03efe6ab89749d4b390000000000000000000000000000000000000000000000000000000000000001000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000164d657461466163746f727920506f6f6c20546f6b656e00000000000000000000000000000000000000000000000000000000000000000000000000000000000669524f424f5400000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000002000000000000000000000000c02aaa39b223fe8d0a0e5c4f27ead9083c756cc2000000000000000000000000fb5453340c03db5ade474b27e68b6a9c6b2823eb00000000000000000000000000000000000000000000000000000000000000020000000000000000000000000000000000000000000000000dbd2fc137a30000000000000000000000000000000000000000000000000000002386f26fc10000000000000000000000000000000000000000000000000000000000000000000200000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

Deployed Bytecode

0x608060405234801561001057600080fd5b50600436106102de5760003560e01c806374f3b009116101865780639d2c110c116100e3578063c0ff1a1511610097578063dd62ed3e11610071578063dd62ed3e1461058d578063e01af92c146105a0578063f89f27ed146105b3576102de565b8063c0ff1a151461055f578063d505accf14610567578063d5c096c41461057a576102de565b8063a9059cbb116100c8578063a9059cbb1461053c578063aaabadc51461054f578063b322c79b14610557576102de565b80639d2c110c14610516578063a457c2d714610529576102de565b8063893d20e81161013a57806390605f3a1161011f57806390605f3a146104fe57806395d89b41146105065780639b02cdde1461050e576102de565b8063893d20e8146104e15780638d928af8146104f6576102de565b80637ecebe001161016b5780637ecebe00146104a8578063851c1bb3146104bb57806387ec6817146104ce576102de565b806374f3b009146104705780637beed22014610491576102de565b806338e9922e1161023f57806350dd6ed9116101f35780636028bfd4116101cd5780636028bfd414610434578063679aefce1461045557806370a082311461045d576102de565b806350dd6ed91461040657806355c67628146104195780635b77155e14610421576102de565b8063395093511161022457806339509351146103d85780633e569205146103eb57806347bc4d92146103fe576102de565b806338e9922e146103bd57806338fff2d0146103d0576102de565b80631dd746ea11610296578063313ce5671161027b578063313ce5671461038a57806332f144f51461039f5780633644e515146103b5576102de565b80631dd746ea1461036257806323b872dd14610377576102de565b806316c38b3c116102c757806316c38b3c1461032157806318160ddd146103365780631c0de0511461034b576102de565b806306fdde03146102e3578063095ea7b314610301575b600080fd5b6102eb6105bb565b6040516102f89190615714565b60405180910390f35b61031461030f366004614e32565b610652565b6040516102f8919061551a565b61033461032f366004614f29565b610669565b005b61033e61067d565b6040516102f8919061553d565b610353610683565b6040516102f893929190615525565b61036a6106ac565b6040516102f891906154e2565b610314610385366004614d82565b6106bb565b610392610731565b6040516102f8919061579b565b6103a761073a565b6040516102f892919061548c565b61033e61085c565b6103346103cb3660046152b5565b610866565b61033e61087f565b6103146103e6366004614e32565b6108a3565b6103346103f93660046152cd565b6108de565b6103146109ef565b610334610414366004615060565b610a04565b61033e610a22565b61033461042f366004614d2e565b610a33565b610447610442366004614f61565b610b5a565b6040516102f8929190615727565b61033e610b91565b61033e61046b366004614d2e565b610bbc565b61048361047e366004614f61565b610bdb565b6040516102f89291906154f5565b610499610c7e565b6040516102f893929190615740565b61033e6104b6366004614d2e565b610e0b565b61033e6104c9366004615004565b610e26565b6104476104dc366004614f61565b610e78565b6104e9610e9e565b6040516102f89190615478565b6104e9610ec2565b61033e610ee6565b6102eb610f0a565b61033e610f6b565b61033e6105243660046151b9565b610f78565b610314610537366004614e32565b611013565b61031461054a366004614e32565b611051565b6104e961105e565b61033e611068565b61033e61106f565b610334610575366004614dc2565b611134565b610483610588366004614f61565b61127d565b61033e61059b366004614d4a565b6113ae565b6103346105ae366004614f29565b6113d9565b61036a611402565b60038054604080516020601f60026000196101006001881615020190951694909404938401819004810282018101909252828152606093909290918301828280156106475780601f1061061c57610100808354040283529160200191610647565b820191906000526020600020905b81548152906001019060200180831161062a57829003601f168201915b505050505090505b90565b600061065f3384846116a0565b5060015b92915050565b610671611708565b61067a8161174e565b50565b60025490565b60008060006106906117ea565b15925061069b611807565b91506106a561182b565b9050909192565b60606106b661184f565b905090565b6000806106c885336113ae565b90506106ec336001600160a01b03871614806106e45750838210155b61019e61199c565b6106f78585856119aa565b336001600160a01b0386161480159061071257506000198114155b156107245761072485338584036116a0565b60019150505b9392505050565b60055460ff1690565b606080610745611a8a565b67ffffffffffffffff8111801561075b57600080fd5b50604051908082528060200260200182016040528015610785578160200160208202803683370190505b509150610790611a8a565b67ffffffffffffffff811180156107a657600080fd5b506040519080825280602002602001820160405280156107d0578160200160208202803683370190505b50905060005b6107de611a8a565b811015610846576000806107f3600c84611a9f565b915091508185848151811061080457fe5b60200260200101906001600160a01b031690816001600160a01b0316815250508084848151811061083157fe5b602090810291909101015250506001016107d6565b506108588161085361184f565b611ac3565b9091565b60006106b6611b24565b61086e611708565b610876611bc1565b61067a81611bd6565b7fccf5575570fac94cec733a58ff91bb3d073085c70002000000000000000000af90565b3360008181526001602090815260408083206001600160a01b0387168452909152812054909161065f9185906108d990866115ce565b6116a0565b6108e6611708565b6108ee611bc1565b6108f6611c41565b610908610901611a8a565b8251611c5a565b426109138185611c67565b93506109248385111561014661199c565b61093862015180858503101561014b61199c565b6060610942610ec2565b6001600160a01b031663f94d466861095861087f565b6040518263ffffffff1660e01b8152600401610974919061553d565b60006040518083038186803b15801561098c57600080fd5b505afa1580156109a0573d6000803e3d6000fd5b505050506040513d6000823e601f3d908101601f191682016040526109c89190810190614e5d565b505090506109e085856109d9611c7e565b8685611ddf565b50506109ea611fa3565b505050565b60006106b660006109fe611faa565b90611fb0565b610a0c611708565b610a14611bc1565b610a1e8282611fba565b5050565b6008546000906106b69060c06120d2565b610a3b611708565b610a43611bc1565b610a4b611c41565b606080610a5661073a565b91509150610a62610ec2565b6001600160a01b0316638bdb3913610a7861087f565b30866040518060800160405280610a8e8961064f565b81526020018781526020016003604051602001610aab9190615700565b6040516020818303038152906040528152602001600015158152506040518563ffffffff1660e01b8152600401610ae59493929190615565565b600060405180830381600087803b158015610aff57600080fd5b505af1158015610b13573d6000803e3d6000fd5b505050507f5cf8dd4ddeaded21c5e3dc4043073fa7659089e0d11d8480344663008dff060f8282604051610b4892919061548c565b60405180910390a1505061067a611fa3565b60006060610b708651610b6b611a8a565b611c5a565b610b85898989898989896120e0611ac36121ad565b97509795505050505050565b60006106b6610b9e61067d565b610bb6610ba961106f565b610bb1611a8a565b61233d565b90612357565b6001600160a01b0381166000908152602081905260409020545b919050565b60608088610c05610bea610ec2565b6001600160a01b0316336001600160a01b03161460cd61199c565b610c1a610c1061087f565b82146101f461199c565b6060610c2461184f565b9050610c30888261239f565b6000606080610c458e8e8e8e8e8e8a8f6120e0565b925092509250610c558d84612400565b610c5f8285611ac3565b610c698185611ac3565b909550935050505b5097509795505050505050565b60008060606000610c8d611faa565b9050610c9a81600861240a565b9350610ca781602861240a565b92506060610cb3610ec2565b6001600160a01b031663f94d4668610cc961087f565b6040518263ffffffff1660e01b8152600401610ce5919061553d565b60006040518083038186803b158015610cfd57600080fd5b505afa158015610d11573d6000803e3d6000fd5b505050506040513d6000823e601f3d908101601f19168201604052610d399190810190614e5d565b505080519091508067ffffffffffffffff81118015610d5757600080fd5b50604051908082528060200260200182016040528015610d81578160200160208202803683370190505b50935060005b81811015610e0257610de3610dde6040600b6000878681518110610da757fe5b60200260200101516001600160a01b03166001600160a01b031681526020019081526020016000205461240a90919063ffffffff16565b612414565b858281518110610def57fe5b6020908102919091010152600101610d87565b50505050909192565b6001600160a01b031660009081526006602052604090205490565b60007f00000000000000000000000048767f9f868a4a7b86a90736632f6e44c2df7fa982604051602001610e5b929190615402565b604051602081830303815290604052805190602001209050919050565b60006060610e898651610b6b611a8a565b610b85898989898989896124326124e06121ad565b7f000000000000000000000000aeca461405dd2892fba8bd03efe6ab89749d4b3990565b7f000000000000000000000000ba12222222228d8ba445958a75a0704d566bf2c890565b7f000000000000000000000000000000000000000000000000000000000000000090565b60048054604080516020601f60026000196101006001881615020190951694909404938401819004810282018101909252828152606093909290918301828280156106475780601f1061061c57610100808354040283529160200191610647565b600061064f610153612541565b600080610f978560200151610135600c6125ae9092919063ffffffff16565b90506000610fbb610fb483610faf89602001516125eb565b6125fe565b8690611553565b90506000610fdb8760400151610135600c6125ae9092919063ffffffff16565b90506000610ffa610ff383610faf8b604001516125eb565b8790611553565b905061100788848361260a565b98975050505050505050565b60008061102033856113ae565b905080831061103a57611035338560006116a0565b611047565b61104733858584036116a0565b5060019392505050565b600061065f3384846119aa565b60006106b6612760565b6201518090565b6000606061107b610ec2565b6001600160a01b031663f94d466861109161087f565b6040518263ffffffff1660e01b81526004016110ad919061553d565b60006040518083038186803b1580156110c557600080fd5b505afa1580156110d9573d6000803e3d6000fd5b505050506040513d6000823e601f3d908101601f191682016040526111019190810190614e5d565b509150506111168161111161184f565b61239f565b60606111206127da565b50905061112d8183612858565b9250505090565b6111428442111560d161199c565b6001600160a01b0387166000908152600660209081526040808320549051909291611199917f6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c9918c918c918c9188918d9101615652565b60405160208183030381529060405280519060200120905060006111bc826128ca565b90506000600182888888604051600081526020016040526040516111e394939291906156e2565b6020604051602081039080840390855afa158015611205573d6000803e3d6000fd5b5050604051601f190151915061124790506001600160a01b0382161580159061123f57508b6001600160a01b0316826001600160a01b0316145b6101f861199c565b6001600160a01b038b1660009081526006602052604090206001850190556112708b8b8b6116a0565b5050505050505050505050565b6060808861128c610bea610ec2565b611297610c1061087f565b60606112a161184f565b90506112ab61067d565b61135e57600060606112c08d8d8d868b6128e6565b915091506112d96112cf61297c565b83101560cc61199c565b6112eb60006112e661297c565b612983565b6112fe8b6112f761297c565b8403612983565b61130881846124e0565b80611311611a8a565b67ffffffffffffffff8111801561132757600080fd5b50604051908082528060200260200182016040528015611351578160200160208202803683370190505b5095509550505050610c71565b611368888261239f565b600060608061137d8e8e8e8e8e8e8a8f612432565b92509250925061138d8c84612983565b61139782856124e0565b6113a18185611ac3565b9095509350610c71915050565b6001600160a01b03918216600090815260016020908152604080832093909416825291909152205490565b6113e1611708565b6113e9611bc1565b6113f1611c41565b6113fa8161298d565b61067a611fa3565b60606106b6611c7e565b80610a1e816129d4565b6109ea828414801561142757508183145b606761199c565b607f811b1992909216911b1790565b6001600160a01b0382166000908152600284016020526040812054806114e257505082546040805180820182526001600160a01b03858116808352602080840187815260008781526001808c018452878220965187547fffffffffffffffffffffffff0000000000000000000000000000000000000000169616959095178655905194840194909455948201808955908352600288019094529190209190915561072a565b60001901600090815260018086016020526040822001839055905061072a565b509392505050565b67ffffffffffffffff811b1992909216911b1790565b77ffffffffffffffffffffffffffffffffffffffffffffffff828116821b90821b198416179392505050565b1c607f1690565b600061156383831115600161199c565b50900390565b6000610663670de0b6b3a76400006115878463ffffffff6116078116565b90611655565b6000610663670de0b6b3a76400006115878467ffffffffffffffff611607565b63ffffffff811b1992909216911b1790565b601f811b1992909216911b1790565b600082820161072a848210158361199c565b60006001821b19841682846115f65760006115f9565b60015b60ff16901b17949350505050565b600082820261162b84158061162457508385838161162157fe5b04145b600361199c565b8061163a576000915050610663565b670de0b6b3a764000060001982015b04600101915050610663565b6000611664821515600461199c565b8261167157506000610663565b670de0b6b3a7640000838102906116949085838161168b57fe5b0414600561199c565b82600182038161164957fe5b6001600160a01b0380841660008181526001602090815260408083209487168084529490915290819020849055517f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b925906116fb90859061553d565b60405180910390a3505050565b60006117376000357fffffffff0000000000000000000000000000000000000000000000000000000016610e26565b905061067a6117468233612a4d565b61019161199c565b801561176e5761176961175f611807565b421061019361199c565b611783565b61178361177961182b565b42106101a961199c565b600780547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00168215151790556040517f9e3a5e37224532dea67b89face185703738a228a6e8a23dee546960180d3be64906117df90839061551a565b60405180910390a150565b60006117f461182b565b4211806106b657505060075460ff161590565b7f0000000000000000000000000000000000000000000000000000000061c2804b90565b7f0000000000000000000000000000000000000000000000000000000061ea0d4b90565b60608061185a610ec2565b6001600160a01b031663f94d466861187061087f565b6040518263ffffffff1660e01b815260040161188c919061553d565b60006040518083038186803b1580156118a457600080fd5b505afa1580156118b8573d6000803e3d6000fd5b505050506040513d6000823e601f3d908101601f191682016040526118e09190810190614e5d565b505080519091508067ffffffffffffffff811180156118fe57600080fd5b50604051908082528060200260200182016040528015611928578160200160208202803683370190505b50925060005b8181101561199657611977600b600085848151811061194957fe5b60200260200101516001600160a01b03166001600160a01b0316815260200190815260200160002054612b3d565b84828151811061198357fe5b602090810291909101015260010161192e565b50505090565b81610a1e57610a1e81612541565b6119c16001600160a01b038416151561019861199c565b6119d86001600160a01b038316151561019961199c565b6119e38383836109ea565b6001600160a01b038316600090815260208190526040902054611a0990826101a0612b5f565b6001600160a01b038085166000908152602081905260408082209390935590841681522054611a3890826115ce565b6001600160a01b0380841660008181526020819052604090819020939093559151908516907fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef906116fb90859061553d565b60006106b66001611a99611faa565b9061154c565b600090815260019182016020526040902080549101546001600160a01b0390911691565b60005b611ace611a8a565b8110156109ea57611b05838281518110611ae457fe5b6020026020010151838381518110611af857fe5b6020026020010151612357565b838281518110611b1157fe5b6020908102919091010152600101611ac6565b60007f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f7f3544b6accc9112e9c9b1729fa123ed71bb4483d3d61850a4e057457711fd5ff37fc89efdaa54c0f20c7adf612882df0950f5a951637e0307cdcb4c672f298b8bc6611b91612b75565b30604051602001611ba6959493929190615686565b60405160208183030381529060405280519060200120905090565b611bd4611bcc6117ea565b61019261199c565b565b611be964e8d4a5100082101560cb61199c565b611bff67016345785d8a000082111560ca61199c565b600854611c0e908260c061150a565b6008556040517fa9ba3ffe0b6c366b81232caab38605a0699ad5398d6cce76f91ee809e322dafc906117df90839061553d565b611c536002600a54141561019061199c565b6002600a55565b610a1e818314606761199c565b600081831015611c77578161072a565b5090919050565b606080611c89610ec2565b6001600160a01b031663f94d4668611c9f61087f565b6040518263ffffffff1660e01b8152600401611cbb919061553d565b60006040518083038186803b158015611cd357600080fd5b505afa158015611ce7573d6000803e3d6000fd5b505050506040513d6000823e601f3d908101601f19168201604052611d0f9190810190614e5d565b505080519091508067ffffffffffffffff81118015611d2d57600080fd5b50604051908082528060200260200182016040528015611d57578160200160208202803683370190505b5092506000611d64612b79565b905060005b82811015611dd8576000600b6000868481518110611d8357fe5b60200260200101516001600160a01b03166001600160a01b03168152602001908152602001600020549050611db88184612bef565b868381518110611dc457fe5b602090810291909101015250600101611d69565b5050505090565b600080805b8451811015611f2a576000858281518110611dfb57fe5b60200260200101519050611e1b662386f26fc1000082101561012e61199c565b6000858381518110611e2957fe5b60200260200101519050611efb611eb5826001600160a01b031663313ce5676040518163ffffffff1660e01b815260040160206040518083038186803b158015611e7257600080fd5b505afa158015611e86573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190611eaa919061535b565b60129060ff16611553565b6060611ef4611ec386611569565b6040611eed611ee48f8b81518110611ed757fe5b602002602001015161158d565b8b90600061150a565b91906115ad565b91906115bf565b6001600160a01b0382166000908152600b6020526040902055611f1e85836115ce565b94505050600101611de4565b50611f41670de0b6b3a7640000831461013461199c565b611f5d611f58876028611eed8b6008611eed611faa565b612c88565b7f0f3631f9dab08169d1db21c6dc5f32536fb2b0a6b9bb5330d71c52132f968be087878787604051611f92949392919061575f565b60405180910390a150505050505050565b6001600a55565b60085490565b1c60019081161490565b6000611fc461087f565b90506000611fd0610ec2565b6001600160a01b031663b05f8e4883866040518363ffffffff1660e01b8152600401611ffd9291906156cb565b60806040518083038186803b15801561201557600080fd5b505afa158015612029573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061204d919061531b565b6040517f18e736d40000000000000000000000000000000000000000000000000000000081529094506001600160a01b03851693506318e736d4925061209a9150859087906004016156b2565b600060405180830381600087803b1580156120b457600080fd5b505af11580156120c8573d6000803e3d6000fd5b5050505050505050565b1c67ffffffffffffffff1690565b60006060806120ee88612c9d565b60006120f985612cfe565b905061213a6121066109ef565b8061211c5750600182600381111561211a57fe5b145b806121325750600382600381111561213057fe5b145b61014a61199c565b61214e8b8a612147611c7e565b8989612d14565b909450925061215b611a8a565b67ffffffffffffffff8111801561217157600080fd5b5060405190808252806020026020018201604052801561219b578160200160208202803683370190505b50915050985098509895505050505050565b33301461229c576000306001600160a01b03166000366040516121d1929190615432565b6000604051808303816000865af19150503d806000811461220e576040519150601f19603f3d011682016040523d82523d6000602084013e612213565b606091505b50509050806000811461222257fe5b60046000803e6000517fffffffff00000000000000000000000000000000000000000000000000000000167f43adbafb00000000000000000000000000000000000000000000000000000000811461227e573d6000803e3d6000fd5b506020600460003e604060205260243d03602460403e601c3d016000f35b60606122a661184f565b90506122b2878261239f565b600060606122ca8c8c8c8c8c8c898d8d63ffffffff16565b50915091506122dd81848663ffffffff16565b8051601f1982018390526343adbafb7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc08301526020027fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffdc82016044820181fd5b600082820261072a84158061162457508385838161162157fe5b6000612366821515600461199c565b8261237357506000610663565b670de0b6b3a76400008381029061238d9085838161168b57fe5b82818161239657fe5b04915050610663565b60005b6123aa611a8a565b8110156109ea576123e18382815181106123c057fe5b60200260200101518383815181106123d457fe5b6020026020010151612d58565b8382815181106123ed57fe5b60209081029190910101526001016123a2565b610a1e8282612d84565b1c63ffffffff1690565b600061066363ffffffff61158784670de0b6b3a76400006116078416565b600060608061243f611bc1565b61244888612c9d565b61246f6124536109ef565b806121325750600361246486612cfe565b600381111561213057fe5b6124828861247b611c7e565b8787612e40565b909350915061248f611a8a565b67ffffffffffffffff811180156124a557600080fd5b506040519080825280602002602001820160405280156124cf578160200160208202803683370190505b509050985098509895505050505050565b60005b6124eb611a8a565b8110156109ea5761252283828151811061250157fe5b602002602001015183838151811061251557fe5b6020026020010151611655565b83828151811061252e57fe5b60209081029190910101526001016124e3565b7f08c379a0000000000000000000000000000000000000000000000000000000006000908152602060045260076024526642414c23000030600a808404818106603090810160081b95839006959095019082900491820690940160101b939093010160c81b604452606490fd5b6001600160a01b03821660009081526002840160205260408120546125d58115158461199c565b6125e28560018303612ece565b95945050505050565b60006106636125f983612ee4565b612b3d565b600061072a8383612357565b6000836080015161261c610bea610ec2565b612627610c1061087f565b600061263686602001516125eb565b9050600061264787604001516125eb565b905060008751600181111561265857fe5b14156126e857600061266d8860600151612f0b565b90506000818960600151039050612691896020015161268c8387612f2c565b612f38565b606089018290526126a28885612f2c565b97506126ae8784612f2c565b96506126be896060015185612f2c565b60608a015260006126d08a8a8a612f4a565b90506126dc81856125fe565b96505050505050611502565b6126f28683612f2c565b95506126fe8582612f2c565b945061270e876060015182612f2c565b60608801526000612720888888612f72565b905061272c8184612f8a565b9050600061273982612f96565b9050600082820390506127548a6020015161268c8388612f2c565b50945061150292505050565b600061276a610ec2565b6001600160a01b031663aaabadc56040518163ffffffff1660e01b815260040160206040518083038186803b1580156127a257600080fd5b505afa1580156127b6573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906106b69190615044565b606060006127e6611c7e565b9150600090506000826000815181106127fb57fe5b602002602001015190506000600190505b8351811015612852578184828151811061282257fe5b6020026020010151111561284a5780925083818151811061283f57fe5b602002602001015191505b60010161280c565b50509091565b670de0b6b3a764000060005b83518110156128ba576128b06128a985838151811061287f57fe5b602002602001015185848151811061289357fe5b6020026020010151612fbc90919063ffffffff16565b8390612d58565b9150600101612864565b506106636000821161013761199c565b60006128d4611b24565b82604051602001610e5b929190615442565b600060606128f2611bc1565b60006128fd84612cfe565b9050612918600082600381111561291057fe5b1460ce61199c565b60606129238561300b565b9050612930610901611a8a565b61293a818761239f565b60606129446127da565b50905060006129538284612858565b9050600061296382610bb1611a8a565b60099290925550945090925050505b9550959350505050565b620f424090565b610a1e8282613021565b6129a5611f5882600061299e611faa565b91906115e0565b7f5a9e84f78f7957cb4ed7478eb0fcad35ee4ecbe2e0f298420b28a3955392573f816040516117df919061551a565b6002815110156129e35761067a565b6000816000815181106129f257fe5b602002602001015190506000600190505b82518110156109ea576000838281518110612a1a57fe5b60200260200101519050612a43816001600160a01b0316846001600160a01b031610606561199c565b9150600101612a03565b600073ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1b612a6c610e9e565b6001600160a01b031614158015612a875750612a87836130af565b15612aaf57612a94610e9e565b6001600160a01b0316336001600160a01b0316149050610663565b612ab7612760565b6001600160a01b0316639be2a8848484306040518463ffffffff1660e01b8152600401612ae693929190615546565b60206040518083038186803b158015612afe57600080fd5b505afa158015612b12573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190612b369190614f45565b9050610663565b600080612b4b83606061314f565b600a0a670de0b6b3a7640000029392505050565b6000612b6e848411158361199c565b5050900390565b4690565b60004281612b85611faa565b90506000612b9482600861240a565b90506000612ba383602861240a565b9050808410612bc057670de0b6b3a764000094505050505061064f565b818411612bd457600094505050505061064f565b818103828503612be48183612357565b965050505050505090565b600080612c04612bff85836120d2565b613156565b90506000612c16610dde86604061240a565b9050831580612c2457508082145b15612c3157509050610663565b670de0b6b3a76400008410612c495791506106639050565b80821115612c6c576000612c5f85838503612d58565b9092039250610663915050565b6000612c7a85848403612d58565b929092019250610663915050565b600854612c9790826000611520565b60085550565b60005b612ca8611a8a565b811015610a1e57612cdf612cbd600c83612ece565b838381518110612cc957fe5b602002602001015161155390919063ffffffff16565b828281518110612ceb57fe5b6020908102919091010152600101612ca0565b60008180602001905181019061066391906150ae565b600060606000612d2384612cfe565b90506003816003811115612d3357fe5b1415612d4c57612d4288613176565b9250925050612972565b612d4287878787613237565b6000828202612d7284158061162457508385838161162157fe5b670de0b6b3a764000090049392505050565b612d9b6001600160a01b038316151561019b61199c565b612da7826000836109ea565b6001600160a01b038216600090815260208190526040902054612dcd90826101a1612b5f565b6001600160a01b038316600090815260208190526040902055600254612df390826132b0565b6002556040516000906001600160a01b038416907fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef90612e3490859061553d565b60405180910390a35050565b600060606000612e4f84612cfe565b90506001816003811115612e5f57fe5b1415612e7b57612e71878787876132be565b9250925050612ec5565b6002816003811115612e8957fe5b1415612e9a57612e71878786613337565b6003816003811115612ea857fe5b1415612eb857612e718785613426565b612ec3610136612541565b505b94509492505050565b6000908152600191820160205260409020015490565b6001600160a01b0381166000908152600b6020526040902054610bd681151561013561199c565b600080612f20612f19610a22565b8490611607565b905061072a8382611553565b600061072a8383612d58565b610a1e612f4483613458565b82613468565b6000612f5f612f576109ef565b61014761199c565b612f6a8484846134cf565b949350505050565b6000612f7f612f576109ef565b612f6a848484613502565b600061072a8383611655565b6000610663612fb5612fa6610a22565b670de0b6b3a764000090611553565b8390611655565b600080612fc98484613535565b90506000612fe3612fdc83612710611607565b60016115ce565b905080821015612ff857600092505050610663565b6130028282611553565b92505050610663565b60608180602001905181019061072a9190615174565b61302d600083836109ea565b60025461303a90826115ce565b6002556001600160a01b03821660009081526020819052604090205461306090826115ce565b6001600160a01b0383166000818152602081905260408082209390935591519091907fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef90612e3490859061553d565b60006130da7f3e56920500000000000000000000000000000000000000000000000000000000610e26565b82148061310e575061310b7fe01af92c00000000000000000000000000000000000000000000000000000000610e26565b82145b80613140575061313d7f5b77155e00000000000000000000000000000000000000000000000000000000610e26565b82145b80610663575061066382613672565b1c601f1690565b600061066367ffffffffffffffff61158784670de0b6b3a7640000611607565b60006060613182611bc1565b6131996001600160a01b038416301461015161199c565b600091506131a5611a8a565b67ffffffffffffffff811180156131bb57600080fd5b506040519080825280602002602001820160405280156131e5578160200160208202803683370190505b50905060005b6131f3611a8a565b81101561323157613205600c82612ece565b82828151811061321157fe5b6020908102919091010152613229600c8260006136d6565b6001016131eb565b50915091565b60006060600061324684612cfe565b9050600081600381111561325657fe5b141561326757612e718787866136ee565b600181600381111561327557fe5b141561328557612e718785613759565b600281600381111561329357fe5b14156132a557612e718787878761377e565b612ec3610150612541565b600061072a83836001612b5f565b600060608060006132ce856137ec565b915091506132e46132dd611a8a565b8351611c5a565b6132ee828761239f565b6000606061330d8a8a8661330061067d565b613308610a22565b61380f565b9150915061331a81613978565b6133288383101560d061199c565b50989197509095505050505050565b60006060600080613347856139bc565b9150915061335f613356611a8a565b8210606461199c565b6000806133a389848151811061337157fe5b602002602001015189858151811061338557fe5b60200260200101518661339661067d565b61339e610a22565b6139d3565b915091506133b18382613468565b60606133bb611a8a565b67ffffffffffffffff811180156133d157600080fd5b506040519080825280602002602001820160405280156133fb578160200160208202803683370190505b5090508281858151811061340b57fe5b60209081029190910101529399939850929650505050505050565b60006060600061343584613aa9565b9050606061344b868361344661067d565b613abf565b9196919550909350505050565b6000610663600c83610135613b71565b80156134c557600061349a827f0000000000000000000000000000000000000000000000000000000000000000612d58565b905060006134a9600c85612ece565b90506134c2846134b983856115ce565b600c91906136d6565b50505b610a1e8282610a1e565b60006134d9611bc1565b612f6a836134ea8660200151613b98565b846134f88860400151613b98565b8860600151613bbc565b600061350c611bc1565b612f6a8361351d8660200151613b98565b8461352b8860400151613b98565b8860600151613c37565b60008161354b5750670de0b6b3a7640000610663565b8261355857506000610663565b6135857f80000000000000000000000000000000000000000000000000000000000000008410600661199c565b826135ab770bce5086492111aea88f4bb1ca6bcf584181ea8059f765328410600761199c565b826000670c7d713b49da0000831380156135cc5750670f43fc2c04ee000083125b156136035760006135dc84613cad565b9050670de0b6b3a764000080820784020583670de0b6b3a764000083050201915050613611565b8161360d84613de4565b0290505b670de0b6b3a7640000900561365f7ffffffffffffffffffffffffffffffffffffffffffffffffdc702bd3a30fc00008212801590613658575068070c1cc73b00c800008213155b600861199c565b61366881614184565b9695505050505050565b600061369d7f38e9922e00000000000000000000000000000000000000000000000000000000610e26565b82148061066357506136ce7f50dd6ed900000000000000000000000000000000000000000000000000000000610e26565b909114919050565b60009182526001928301602052604090912090910155565b600060606136fa611bc1565b600080613706856139bc565b91509150613715613356611a8a565b6000806133a389848151811061372757fe5b602002602001015189858151811061373b57fe5b60200260200101518661374c61067d565b613754610a22565b614654565b60006060600061376884613aa9565b9050606061344b868361377961067d565b61470a565b6000606061378a611bc1565b60606000613797856137ec565b915091506137a88251610b6b611a8a565b6137b2828761239f565b600060606137d18a8a866137c461067d565b6137cc610a22565b61479c565b915091506137e38383111560cf61199c565b61332881613978565b606060008280602001905181019061380491906150ca565b909590945092505050565b6000606080855167ffffffffffffffff8111801561382c57600080fd5b50604051908082528060200260200182016040528015613856578160200160208202803683370190505b5090506000805b895181101561391b576138b68a828151811061387557fe5b6020026020010151610bb68a848151811061388c57fe5b60200260200101518d85815181106138a057fe5b60200260200101516115ce90919063ffffffff16565b8382815181106138c257fe5b60200260200101818152505061391161390a8a83815181106138e057fe5b60200260200101518584815181106138f457fe5b6020026020010151612d5890919063ffffffff16565b83906115ce565b915060010161385d565b506000606061392e8b8b8b87878c6148a1565b915091506000670de0b6b3a7640000831161394a576000613966565b61396661395f84670de0b6b3a7640000611553565b8a90612d58565b9c919b50909950505050505050505050565b6139858151610b6b611a8a565b60005b613990611a8a565b811015610a1e576139b4818383815181106139a757fe5b6020026020010151613468565b600101613988565b60008082806020019051810190613804919061513e565b600080806139e58561158781896115ce565b90506139fe6729a2241af62c000082111561013361199c565b6000613a1c613a15670de0b6b3a76400008a611655565b8390614a26565b90506000613a3c613a3583670de0b6b3a7640000611553565b8b90611607565b90506000613a498a614a52565b90506000613a578383611607565b90506000613a658483611553565b90506000613a85613a7e670de0b6b3a76400008c611553565b8490611655565b83810398509050613a9682826115ce565b9850505050505050509550959350505050565b60008180602001905181019061072a9190615111565b60606000613acd8484611655565b90506060855167ffffffffffffffff81118015613ae957600080fd5b50604051908082528060200260200182016040528015613b13578160200160208202803683370190505b50905060005b8651811015613b6757613b4883888381518110613b3257fe5b602002602001015161160790919063ffffffff16565b828281518110613b5457fe5b6020908102919091010152600101613b19565b5095945050505050565b600080613b7e8585614a78565b9050613b8c8115158461199c565b60001901949350505050565b600080613ba3612b79565b90506000613bb084612ee4565b9050612f6a8183612bef565b6000613bde613bd387670429d069189e0000612d58565b83111561013061199c565b6000613bea87846115ce565b90506000613bf88883611655565b90506000613c068887612357565b90506000613c148383614a26565b9050613c29613c2282614a52565b8990612d58565b9a9950505050505050505050565b6000613c59613c4e85670429d069189e0000612d58565b83111561013161199c565b6000613c6f613c688685611553565b8690611655565b90506000613c7d8588611655565b90506000613c8b8383614a26565b90506000613ca182670de0b6b3a7640000611553565b9050613c298a82611607565b670de0b6b3a7640000026000806ec097ce7bc90715b34b9f1000000000808401907fffffffffffffffffffffffffffffffffff3f68318436f8ea4cb460f00000000085010281613cf957fe5b05905060006ec097ce7bc90715b34b9f100000000082800205905081806ec097ce7bc90715b34b9f100000000081840205915060038205016ec097ce7bc90715b34b9f100000000082840205915060058205016ec097ce7bc90715b34b9f100000000082840205915060078205016ec097ce7bc90715b34b9f100000000082840205915060098205016ec097ce7bc90715b34b9f1000000000828402059150600b8205016ec097ce7bc90715b34b9f1000000000828402059150600d8205016ec097ce7bc90715b34b9f1000000000828402059150600f826002919005919091010295945050505050565b6000670de0b6b3a7640000821215613e2157613e17826ec097ce7bc90715b34b9f100000000081613e1157fe5b05613de4565b6000039050610bd6565b60007e1600ef3172e58d2e933ec884fde10064c63b5372d805e203c00000000000008312613e7257770195e54c5dd42177f53a27172fa9ec630262827000000000830592506806f05b59d3b2000000015b73011798004d755d3c8bc8e03204cf44619e0000008312613eaa576b1425982cf597cd205cef7380830592506803782dace9d9000000015b606492830292026e01855144814a7ff805980ff00840008312613ef2576e01855144814a7ff805980ff008400068056bc75e2d63100000840205925068ad78ebc5ac62000000015b6b02df0ab5a80a22c61ab5a7008312613f2d576b02df0ab5a80a22c61ab5a70068056bc75e2d6310000084020592506856bc75e2d631000000015b693f1fce3da636ea5cf8508312613f6457693f1fce3da636ea5cf85068056bc75e2d631000008402059250682b5e3af16b18800000015b690127fa27722cc06cc5e28312613f9b57690127fa27722cc06cc5e268056bc75e2d6310000084020592506815af1d78b58c400000015b68280e60114edb805d038312613fd05768280e60114edb805d0368056bc75e2d631000008402059250680ad78ebc5ac6200000015b680ebc5fb417461211108312613ffb57680ebc5fb4174612111068056bc75e2d631000009384020592015b6808f00f760a4b2db55d8312614030576808f00f760a4b2db55d68056bc75e2d6310000084020592506802b5e3af16b1880000015b6806f5f17757889379378312614065576806f5f177578893793768056bc75e2d63100000840205925068015af1d78b58c40000015b6806248f33704b2866038312614099576806248f33704b28660368056bc75e2d63100000840205925067ad78ebc5ac620000015b6805c548670b9510e7ac83126140cd576805c548670b9510e7ac68056bc75e2d6310000084020592506756bc75e2d6310000015b600068056bc75e2d63100000840168056bc75e2d6310000080860302816140f057fe5b059050600068056bc75e2d63100000828002059050818068056bc75e2d63100000818402059150600382050168056bc75e2d63100000828402059150600582050168056bc75e2d63100000828402059150600782050168056bc75e2d63100000828402059150600982050168056bc75e2d63100000828402059150600b820501600202606485820105979650505050505050565b60006141c97ffffffffffffffffffffffffffffffffffffffffffffffffdc702bd3a30fc000083121580156141c2575068070c1cc73b00c800008313155b600961199c565b60008212156141fd576141de82600003614184565b6ec097ce7bc90715b34b9f1000000000816141f557fe5b059050610bd6565b60006806f05b59d3b2000000831261425357507ffffffffffffffffffffffffffffffffffffffffffffffff90fa4a62c4e00000090910190770195e54c5dd42177f53a27172fa9ec63026282700000000061429f565b6803782dace9d9000000831261429b57507ffffffffffffffffffffffffffffffffffffffffffffffffc87d2531627000000909101906b1425982cf597cd205cef738061429f565b5060015b6064929092029168056bc75e2d6310000068ad78ebc5ac620000008412614305577fffffffffffffffffffffffffffffffffffffffffffffff5287143a539e0000009093019268056bc75e2d631000006e01855144814a7ff805980ff008400082020590505b6856bc75e2d6310000008412614357577fffffffffffffffffffffffffffffffffffffffffffffffa9438a1d29cf0000009093019268056bc75e2d631000006b02df0ab5a80a22c61ab5a70082020590505b682b5e3af16b1880000084126143a7577fffffffffffffffffffffffffffffffffffffffffffffffd4a1c50e94e78000009093019268056bc75e2d63100000693f1fce3da636ea5cf85082020590505b6815af1d78b58c40000084126143f7577fffffffffffffffffffffffffffffffffffffffffffffffea50e2874a73c000009093019268056bc75e2d63100000690127fa27722cc06cc5e282020590505b680ad78ebc5ac62000008412614446577ffffffffffffffffffffffffffffffffffffffffffffffff5287143a539e000009093019268056bc75e2d6310000068280e60114edb805d0382020590505b68056bc75e2d631000008412614495577ffffffffffffffffffffffffffffffffffffffffffffffffa9438a1d29cf000009093019268056bc75e2d63100000680ebc5fb4174612111082020590505b6802b5e3af16b188000084126144e4577ffffffffffffffffffffffffffffffffffffffffffffffffd4a1c50e94e7800009093019268056bc75e2d631000006808f00f760a4b2db55d82020590505b68015af1d78b58c400008412614533577ffffffffffffffffffffffffffffffffffffffffffffffffea50e2874a73c00009093019268056bc75e2d631000006806f5f177578893793782020590505b68056bc75e2d631000008481019085906002908280020505918201919050600368056bc75e2d631000008783020505918201919050600468056bc75e2d631000008783020505918201919050600568056bc75e2d631000008783020505918201919050600668056bc75e2d631000008783020505918201919050600768056bc75e2d631000008783020505918201919050600868056bc75e2d631000008783020505918201919050600968056bc75e2d631000008783020505918201919050600a68056bc75e2d631000008783020505918201919050600b68056bc75e2d631000008783020505918201919050600c68056bc75e2d631000008783020505918201919050606468056bc75e2d63100000848402058502059695505050505050565b60008080614666856115878189611553565b905061467f6709b6e64a8ec6000082101561013261199c565b6000614696613a15670de0b6b3a76400008a612357565b905060006146ad6146a683614a52565b8b90612d58565b905060006146ba8a614a52565b905060006146c88383611607565b905060006146d68483611553565b90506146e2828a611607565b96506146f86146f18389611553565b82906115ce565b97505050505050509550959350505050565b606060006147188484612357565b90506060855167ffffffffffffffff8111801561473457600080fd5b5060405190808252806020026020018201604052801561475e578160200160208202803683370190505b50905060005b8651811015613b675761477d838883815181106138f457fe5b82828151811061478957fe5b6020908102919091010152600101614764565b6000606080855167ffffffffffffffff811180156147b957600080fd5b506040519080825280602002602001820160405280156147e3578160200160208202803683370190505b5090506000805b89518110156148755761482d8a828151811061480257fe5b60200260200101516115878a848151811061481957fe5b60200260200101518d8581518110612cc957fe5b83828151811061483957fe5b60200260200101818152505061486b61390a8a838151811061485757fe5b6020026020010151858481518110613b3257fe5b91506001016147ea565b50600060606148888b8b8b87878c614a97565b91509150600061396661489a84614a52565b8a90611607565b60006060855167ffffffffffffffff811180156148bd57600080fd5b506040519080825280602002602001820160405280156148e7578160200160208202803683370190505b509050670de0b6b3a7640000915060005b8851811015614a1a5760008587838151811061491057fe5b6020026020010151111561499c57600061494161493588670de0b6b3a7640000611553565b8c85815181106138f457fe5b90506000614955828b8681518110612cc957fe5b905060006149638289611607565b90506149796149728383611553565b84906115ce565b93508086868151811061498857fe5b6020026020010181815250505050506149b3565b8782815181106149a857fe5b602002602001015190505b60006149dc8b84815181106149c457fe5b6020026020010151610bb6848e87815181106138a057fe5b9050614a0e614a078b85815181106149f057fe5b602002602001015183612fbc90919063ffffffff16565b8690612d58565b945050506001016148f8565b50965096945050505050565b600080614a338484613535565b90506000614a46612fdc83612710611607565b90506125e282826115ce565b6000670de0b6b3a76400008210614a6a576000610663565b50670de0b6b3a76400000390565b6001600160a01b03166000908152600291909101602052604090205490565b60006060855167ffffffffffffffff81118015614ab357600080fd5b50604051908082528060200260200182016040528015614add578160200160208202803683370190505b509050670de0b6b3a7640000915060005b8851811015614a1a576000868281518110614b0557fe5b6020026020010151861115614b7f576000614b2261493588614a52565b90506000614b36828b8681518110612cc957fe5b90506000614b4f612fb5670de0b6b3a76400008a611553565b9050818103868681518110614b6057fe5b6020908102919091010152614b7583826115ce565b9350505050614b96565b878281518110614b8b57fe5b602002602001015190505b6000614bbf8b8481518110614ba757fe5b6020026020010151610bb6848e8781518110612cc957fe5b9050614bd3614a078b85815181106149f057fe5b94505050600101614aee565b8035610663816157fc565b600082601f830112614bfa578081fd5b8135614c0d614c08826157d0565b6157a9565b818152915060208083019084810181840286018201871015614c2e57600080fd5b60005b84811015614c4d57813584529282019290820190600101614c31565b505050505092915050565b600082601f830112614c68578081fd5b8151614c76614c08826157d0565b818152915060208083019084810181840286018201871015614c9757600080fd5b60005b84811015614c4d57815184529282019290820190600101614c9a565b600082601f830112614cc6578081fd5b813567ffffffffffffffff811115614cdc578182fd5b614cef6020601f19601f840116016157a9565b9150808252836020828501011115614d0657600080fd5b8060208401602084013760009082016020015292915050565b80356002811061066357600080fd5b600060208284031215614d3f578081fd5b813561072a816157fc565b60008060408385031215614d5c578081fd5b8235614d67816157fc565b91506020830135614d77816157fc565b809150509250929050565b600080600060608486031215614d96578081fd5b8335614da1816157fc565b92506020840135614db1816157fc565b929592945050506040919091013590565b600080600080600080600060e0888a031215614ddc578283fd5b8735614de7816157fc565b96506020880135614df7816157fc565b955060408801359450606088013593506080880135614e158161582c565b9699959850939692959460a0840135945060c09093013592915050565b60008060408385031215614e44578182fd5b8235614e4f816157fc565b946020939093013593505050565b600080600060608486031215614e71578081fd5b835167ffffffffffffffff80821115614e88578283fd5b818601915086601f830112614e9b578283fd5b8151614ea9614c08826157d0565b80828252602080830192508086018b828387028901011115614ec9578788fd5b8796505b84871015614ef4578051614ee0816157fc565b845260019690960195928101928101614ecd565b508901519097509350505080821115614f0b578283fd5b50614f1886828701614c58565b925050604084015190509250925092565b600060208284031215614f3a578081fd5b813561072a81615811565b600060208284031215614f56578081fd5b815161072a81615811565b600080600080600080600060e0888a031215614f7b578081fd5b873596506020880135614f8d816157fc565b95506040880135614f9d816157fc565b9450606088013567ffffffffffffffff80821115614fb9578283fd5b614fc58b838c01614bea565b955060808a0135945060a08a0135935060c08a0135915080821115614fe8578283fd5b50614ff58a828b01614cb6565b91505092959891949750929550565b600060208284031215615015578081fd5b81357fffffffff000000000000000000000000000000000000000000000000000000008116811461072a578182fd5b600060208284031215615055578081fd5b815161072a816157fc565b60008060408385031215615072578182fd5b823561507d816157fc565b9150602083013567ffffffffffffffff811115615098578182fd5b6150a485828601614cb6565b9150509250929050565b6000602082840312156150bf578081fd5b815161072a8161581f565b6000806000606084860312156150de578081fd5b83516150e98161581f565b602085015190935067ffffffffffffffff811115615105578182fd5b614f1886828701614c58565b60008060408385031215615123578182fd5b825161512e8161581f565b6020939093015192949293505050565b600080600060608486031215615152578081fd5b835161515d8161581f565b602085015160409095015190969495509392505050565b60008060408385031215615186578182fd5b82516151918161581f565b602084015190925067ffffffffffffffff8111156151ad578182fd5b6150a485828601614c58565b6000806000606084860312156151cd578081fd5b833567ffffffffffffffff808211156151e4578283fd5b81860191506101208083890312156151fa578384fd5b615203816157a9565b905061520f8884614d1f565b815261521e8860208501614bdf565b60208201526152308860408501614bdf565b6040820152606083013560608201526080830135608082015260a083013560a08201526152608860c08501614bdf565b60c08201526152728860e08501614bdf565b60e0820152610100808401358381111561528a578586fd5b6152968a828701614cb6565b9183019190915250976020870135975060409096013595945050505050565b6000602082840312156152c6578081fd5b5035919050565b6000806000606084860312156152e1578081fd5b8335925060208401359150604084013567ffffffffffffffff811115615305578182fd5b61531186828701614bea565b9150509250925092565b60008060008060808587031215615330578182fd5b8451935060208501519250604085015191506060850151615350816157fc565b939692955090935050565b60006020828403121561536c578081fd5b815161072a8161582c565b6000815180845260208085019450808401835b838110156153a65781518752958201959082019060010161538a565b509495945050505050565b15159052565b60008151808452815b818110156153dc576020818501810151868301820152016153c0565b818111156153ed5782602083870101525b50601f01601f19169290920160200192915050565b9182527fffffffff0000000000000000000000000000000000000000000000000000000016602082015260240190565b6000828483379101908152919050565b7f190100000000000000000000000000000000000000000000000000000000000081526002810192909252602282015260420190565b6001600160a01b0391909116815260200190565b604080825283519082018190526000906020906060840190828701845b828110156154ce5781516001600160a01b0316845292840192908401906001016154a9565b505050838103828501526136688186615377565b60006020825261072a6020830184615377565b6000604082526155086040830185615377565b82810360208401526125e28185615377565b901515815260200190565b92151583526020830191909152604082015260600190565b90815260200190565b9283526001600160a01b03918216602084015216604082015260600190565b600085825260206001600160a01b038087168285015280861660408501525060806060840152610100830184516080808601528181518084526101208701915084830193508592505b808310156155d6576155c084516157f0565b82529284019260019290920191908401906155ae565b508387015193507fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff809250828682030160a08701526156148185615377565b935050506040850151818584030160c086015261563183826153b7565b92505050606084015161564760e08501826153b1565b509695505050505050565b9586526001600160a01b0394851660208701529290931660408501526060840152608083019190915260a082015260c00190565b9485526020850193909352604084019190915260608301526001600160a01b0316608082015260a00190565b600083825260406020830152612f6a60408301846153b7565b9182526001600160a01b0316602082015260400190565b93845260ff9290921660208401526040830152606082015260800190565b602081016004831061570e57fe5b91905290565b60006020825261072a60208301846153b7565b600083825260406020830152612f6a6040830184615377565b6000848252836020830152606060408301526125e26060830184615377565b60008582528460208301526080604083015261577e6080830185615377565b82810360608401526157908185615377565b979650505050505050565b60ff91909116815260200190565b60405181810167ffffffffffffffff811182821017156157c857600080fd5b604052919050565b600067ffffffffffffffff8211156157e6578081fd5b5060209081020190565b6001600160a01b031690565b6001600160a01b038116811461067a57600080fd5b801515811461067a57600080fd5b6004811061067a57600080fd5b60ff8116811461067a57600080fdfea264697066735822122028ca628d97b6143340c071ae5b0d0c83a983b003d9aa3e14d77bf00b613b7ba064736f6c63430007010033

Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)

0000000000000000000000000000000000000000000000000000000000000020000000000000000000000000ba12222222228d8ba445958a75a0704d566bf2c8000000000000000000000000000000000000000000000000000000000000018000000000000000000000000000000000000000000000000000000000000001c00000000000000000000000000000000000000000000000000000000000000200000000000000000000000000000000000000000000000000000000000000026000000000000000000000000000000000000000000000000000000000000002c00000000000000000000000000000000000000000000000000018838370f33fff00000000000000000000000000000000000000000000000000000000004bd2550000000000000000000000000000000000000000000000000000000000278d00000000000000000000000000aeca461405dd2892fba8bd03efe6ab89749d4b390000000000000000000000000000000000000000000000000000000000000001000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000164d657461466163746f727920506f6f6c20546f6b656e00000000000000000000000000000000000000000000000000000000000000000000000000000000000669524f424f5400000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000002000000000000000000000000c02aaa39b223fe8d0a0e5c4f27ead9083c756cc2000000000000000000000000fb5453340c03db5ade474b27e68b6a9c6b2823eb00000000000000000000000000000000000000000000000000000000000000020000000000000000000000000000000000000000000000000dbd2fc137a30000000000000000000000000000000000000000000000000000002386f26fc10000000000000000000000000000000000000000000000000000000000000000000200000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

-----Decoded View---------------
Arg [0] : params (tuple): System.Collections.Generic.List`1[Nethereum.ABI.FunctionEncoding.ParameterOutput]

-----Encoded View---------------
26 Constructor Arguments found :
Arg [0] : 0000000000000000000000000000000000000000000000000000000000000020
Arg [1] : 000000000000000000000000ba12222222228d8ba445958a75a0704d566bf2c8
Arg [2] : 0000000000000000000000000000000000000000000000000000000000000180
Arg [3] : 00000000000000000000000000000000000000000000000000000000000001c0
Arg [4] : 0000000000000000000000000000000000000000000000000000000000000200
Arg [5] : 0000000000000000000000000000000000000000000000000000000000000260
Arg [6] : 00000000000000000000000000000000000000000000000000000000000002c0
Arg [7] : 0000000000000000000000000000000000000000000000000018838370f33fff
Arg [8] : 00000000000000000000000000000000000000000000000000000000004bd255
Arg [9] : 0000000000000000000000000000000000000000000000000000000000278d00
Arg [10] : 000000000000000000000000aeca461405dd2892fba8bd03efe6ab89749d4b39
Arg [11] : 0000000000000000000000000000000000000000000000000000000000000001
Arg [12] : 0000000000000000000000000000000000000000000000000000000000000000
Arg [13] : 0000000000000000000000000000000000000000000000000000000000000016
Arg [14] : 4d657461466163746f727920506f6f6c20546f6b656e00000000000000000000
Arg [15] : 0000000000000000000000000000000000000000000000000000000000000006
Arg [16] : 69524f424f540000000000000000000000000000000000000000000000000000
Arg [17] : 0000000000000000000000000000000000000000000000000000000000000002
Arg [18] : 000000000000000000000000c02aaa39b223fe8d0a0e5c4f27ead9083c756cc2
Arg [19] : 000000000000000000000000fb5453340c03db5ade474b27e68b6a9c6b2823eb
Arg [20] : 0000000000000000000000000000000000000000000000000000000000000002
Arg [21] : 0000000000000000000000000000000000000000000000000dbd2fc137a30000
Arg [22] : 000000000000000000000000000000000000000000000000002386f26fc10000
Arg [23] : 0000000000000000000000000000000000000000000000000000000000000002
Arg [24] : 0000000000000000000000000000000000000000000000000000000000000000
Arg [25] : 0000000000000000000000000000000000000000000000000000000000000000


Block Transaction Difficulty Gas Used Reward
View All Blocks Produced

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
Loading...
Loading
[ Download: CSV Export  ]
[ Download: CSV Export  ]

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.