ETH Price: $2,637.26 (+7.95%)
 

Overview

Max Total Supply

809.836268341141714284 iROBOT

Holders

33

Total Transfers

-

Market

Onchain Market Cap

$0.00

Circulating Supply Market Cap

-

Other Info

Token Contract (WITH 18 Decimals)

Loading...
Loading
Loading...
Loading
Loading...
Loading

Click here to update the token information / general information
# Exchange Pair Price  24H Volume % Volume

Contract Source Code Verified (Exact Match)

Contract Name:
InvestmentPool

Compiler Version
v0.7.1+commit.f4a555be

Optimization Enabled:
Yes with 9999 runs

Other Settings:
default evmVersion
File 1 of 63 : InvestmentPool.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;
pragma experimental ABIEncoderV2;

import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/EnumerableMap.sol";
import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/ReentrancyGuard.sol";
import "@balancer-labs/v2-solidity-utils/contracts/helpers/ERC20Helpers.sol";
import "@balancer-labs/v2-solidity-utils/contracts/helpers/WordCodec.sol";

import "../BaseWeightedPool.sol";
import "../WeightedPoolUserDataHelpers.sol";
import "./WeightCompression.sol";

/**
 * @dev Weighted Pool with mutable weights, designed to support investment use cases: large token counts,
 * rebalancing through gradual weight updates.
 */
contract InvestmentPool is BaseWeightedPool, ReentrancyGuard {
    // solhint-disable not-rely-on-time

    using FixedPoint for uint256;
    using WordCodec for bytes32;
    using WeightCompression for uint256;
    using WeightedPoolUserDataHelpers for bytes;
    using EnumerableMap for EnumerableMap.IERC20ToUint256Map;

    // State variables

    // The upper bound is WeightedMath.MAX_WEIGHTED_TOKENS, but this is constrained by other factors, such as Pool
    // creation gas consumption (which is linear).
    uint256 private constant _MAX_INVESTMENT_TOKENS = 50;

    // Percentage of swap fees that are allocated to the Pool owner.
    uint256 private immutable _managementSwapFeePercentage;
    uint256 private constant _MAX_MANAGEMENT_SWAP_FEE_PERCENTAGE = 1e18; // 100%

    // Use the _miscData slot in BasePool
    // First 64 bits are reserved for the swap fee
    //
    // Store non-token-based values:
    // Start/end timestamps for gradual weight update
    // Cache total tokens
    // [ 64 bits  |  120 bits |  32 bits  |   32 bits  |    7 bits    |    1 bit     ]
    // [ reserved |  unused   | end time  | start time | total tokens |   swap flag  ]
    // |MSB                                                                       LSB|
    uint256 private constant _SWAP_ENABLED_OFFSET = 0;
    uint256 private constant _TOTAL_TOKENS_OFFSET = 1;
    uint256 private constant _START_TIME_OFFSET = 8;
    uint256 private constant _END_TIME_OFFSET = 40;
    // 7 bits is enough for the token count, since _MAX_INVESTMENT_TOKENS is 50

    // Store scaling factor and start/end weights for each token
    // Mapping should be more efficient than trying to compress it further
    // [ 155 bits|   5 bits |  32 bits   |   64 bits    |
    // [ unused  | decimals | end weight | start weight |
    // |MSB                                          LSB|
    mapping(IERC20 => bytes32) private _tokenState;

    EnumerableMap.IERC20ToUint256Map private _tokenCollectedManagementFees;

    uint256 private constant _START_WEIGHT_OFFSET = 0;
    uint256 private constant _END_WEIGHT_OFFSET = 64;
    uint256 private constant _DECIMAL_DIFF_OFFSET = 96;

    uint256 private constant _MINIMUM_WEIGHT_CHANGE_DURATION = 1 days;

    // Event declarations

    event GradualWeightUpdateScheduled(
        uint256 startTime,
        uint256 endTime,
        uint256[] startWeights,
        uint256[] endWeights
    );
    event SwapEnabledSet(bool swapEnabled);
    event ManagementFeePercentageChanged(uint256 managementFeePercentage);
    event ManagementFeesCollected(IERC20[] tokens, uint256[] amounts);

    struct NewPoolParams {
        IVault vault;
        string name;
        string symbol;
        IERC20[] tokens;
        uint256[] normalizedWeights;
        address[] assetManagers;
        uint256 swapFeePercentage;
        uint256 pauseWindowDuration;
        uint256 bufferPeriodDuration;
        address owner;
        bool swapEnabledOnStart;
        uint256 managementSwapFeePercentage;
    }

    constructor(NewPoolParams memory params)
        BaseWeightedPool(
            params.vault,
            params.name,
            params.symbol,
            params.tokens,
            params.assetManagers,
            params.swapFeePercentage,
            params.pauseWindowDuration,
            params.bufferPeriodDuration,
            params.owner
        )
    {
        uint256 totalTokens = params.tokens.length;
        InputHelpers.ensureInputLengthMatch(totalTokens, params.normalizedWeights.length, params.assetManagers.length);

        _setMiscData(_getMiscData().insertUint7(totalTokens, _TOTAL_TOKENS_OFFSET));
        // Double check it fits in 7 bits
        _require(_getTotalTokens() == totalTokens, Errors.MAX_TOKENS);

        uint256 currentTime = block.timestamp;
        _startGradualWeightChange(
            currentTime,
            currentTime,
            params.normalizedWeights,
            params.normalizedWeights,
            params.tokens
        );

        // Initialize the accrued management fees map with the Pool's tokens and zero collected fees.
        for (uint256 i = 0; i < totalTokens; ++i) {
            _tokenCollectedManagementFees.set(params.tokens[i], 0);
        }

        // If false, the pool will start in the disabled state (prevents front-running the enable swaps transaction)
        _setSwapEnabled(params.swapEnabledOnStart);

        // This must be inlined in the constructor as we're setting an immutable variable.
        _require(
            params.managementSwapFeePercentage <= _MAX_MANAGEMENT_SWAP_FEE_PERCENTAGE,
            Errors.MAX_MANAGEMENT_SWAP_FEE_PERCENTAGE
        );
        _managementSwapFeePercentage = params.managementSwapFeePercentage;

        emit ManagementFeePercentageChanged(params.managementSwapFeePercentage);
    }

    /**
     * @dev Returns true if swaps are enabled.
     */
    function getSwapEnabled() public view returns (bool) {
        return _getMiscData().decodeBool(_SWAP_ENABLED_OFFSET);
    }

    /**
     * @dev Returns the management swap fee percentage as a 18-decimals fixed point number.
     */
    function getManagementSwapFeePercentage() public view returns (uint256) {
        return _managementSwapFeePercentage;
    }

    /**
     * @dev Returns the mimimum duration of a gradual weight change
     */
    function getMinimumWeightChangeDuration() external pure returns (uint256) {
        return _MINIMUM_WEIGHT_CHANGE_DURATION;
    }

    /**
     * @dev Return start time, end time, and endWeights as an array.
     * Current weights should be retrieved via `getNormalizedWeights()`.
     */
    function getGradualWeightUpdateParams()
        external
        view
        returns (
            uint256 startTime,
            uint256 endTime,
            uint256[] memory endWeights
        )
    {
        // Load current pool state from storage
        bytes32 poolState = _getMiscData();

        startTime = poolState.decodeUint32(_START_TIME_OFFSET);
        endTime = poolState.decodeUint32(_END_TIME_OFFSET);

        (IERC20[] memory tokens, , ) = getVault().getPoolTokens(getPoolId());
        uint256 totalTokens = tokens.length;

        endWeights = new uint256[](totalTokens);

        for (uint256 i = 0; i < totalTokens; i++) {
            endWeights[i] = _tokenState[tokens[i]].decodeUint32(_END_WEIGHT_OFFSET).uncompress32();
        }
    }

    function _getMaxTokens() internal pure virtual override returns (uint256) {
        return _MAX_INVESTMENT_TOKENS;
    }

    function _getTotalTokens() internal view virtual override returns (uint256) {
        return _getMiscData().decodeUint7(_TOTAL_TOKENS_OFFSET);
    }

    /**
     * @dev Schedule a gradual weight change, from the current weights to the given endWeights,
     * over startTime to endTime.
     */
    function updateWeightsGradually(
        uint256 startTime,
        uint256 endTime,
        uint256[] memory endWeights
    ) external authenticate whenNotPaused nonReentrant {
        InputHelpers.ensureInputLengthMatch(_getTotalTokens(), endWeights.length);

        // If the start time is in the past, "fast forward" to start now
        // This avoids discontinuities in the weight curve. Otherwise, if you set the start/end times with
        // only 10% of the period in the future, the weights would immediately jump 90%
        uint256 currentTime = block.timestamp;
        startTime = Math.max(currentTime, startTime);

        _require(startTime <= endTime, Errors.GRADUAL_UPDATE_TIME_TRAVEL);
        _require(endTime - startTime >= _MINIMUM_WEIGHT_CHANGE_DURATION, Errors.WEIGHT_CHANGE_TOO_FAST);

        (IERC20[] memory tokens, , ) = getVault().getPoolTokens(getPoolId());

        _startGradualWeightChange(startTime, endTime, _getNormalizedWeights(), endWeights, tokens);
    }

    function getCollectedManagementFees() public view returns (IERC20[] memory tokens, uint256[] memory collectedFees) {
        tokens = new IERC20[](_getTotalTokens());
        collectedFees = new uint256[](_getTotalTokens());

        for (uint256 i = 0; i < _getTotalTokens(); ++i) {
            // We can use unchecked getters as we know the map has the same size (and order!) as the Pool's tokens.
            (IERC20 token, uint256 fees) = _tokenCollectedManagementFees.unchecked_at(i);
            tokens[i] = token;
            collectedFees[i] = fees;
        }

        _downscaleDownArray(collectedFees, _scalingFactors());
    }

    function withdrawCollectedManagementFees(address recipient) external authenticate whenNotPaused nonReentrant {
        (IERC20[] memory tokens, uint256[] memory collectedFees) = getCollectedManagementFees();

        getVault().exitPool(
            getPoolId(),
            address(this),
            payable(recipient),
            IVault.ExitPoolRequest({
                assets: _asIAsset(tokens),
                minAmountsOut: collectedFees,
                userData: abi.encode(BaseWeightedPool.ExitKind.MANAGEMENT_FEE_TOKENS_OUT),
                toInternalBalance: false
            })
        );

        // Technically collectedFees is the minimum amount, not the actual amount. However, since no fees will be
        // collected during the exit, it will also be the actual amount.
        emit ManagementFeesCollected(tokens, collectedFees);
    }

    /*
     * @dev Can enable/disable trading
     */
    function setSwapEnabled(bool swapEnabled) external authenticate whenNotPaused nonReentrant {
        _setSwapEnabled(swapEnabled);
    }

    function _setSwapEnabled(bool swapEnabled) private {
        _setMiscData(_getMiscData().insertBool(swapEnabled, _SWAP_ENABLED_OFFSET));

        emit SwapEnabledSet(swapEnabled);
    }

    function _scalingFactor(IERC20 token) internal view virtual override returns (uint256) {
        return _readScalingFactor(_getTokenData(token));
    }

    function _scalingFactors() internal view virtual override returns (uint256[] memory scalingFactors) {
        (IERC20[] memory tokens, , ) = getVault().getPoolTokens(getPoolId());
        uint256 numTokens = tokens.length;

        scalingFactors = new uint256[](numTokens);

        for (uint256 i = 0; i < numTokens; i++) {
            scalingFactors[i] = _readScalingFactor(_tokenState[tokens[i]]);
        }
    }

    function _getNormalizedWeight(IERC20 token) internal view override returns (uint256) {
        uint256 pctProgress = _calculateWeightChangeProgress();
        bytes32 tokenData = _getTokenData(token);

        return _interpolateWeight(tokenData, pctProgress);
    }

    function _getNormalizedWeights() internal view override returns (uint256[] memory normalizedWeights) {
        (IERC20[] memory tokens, , ) = getVault().getPoolTokens(getPoolId());
        uint256 numTokens = tokens.length;

        normalizedWeights = new uint256[](numTokens);

        uint256 pctProgress = _calculateWeightChangeProgress();

        for (uint256 i = 0; i < numTokens; i++) {
            bytes32 tokenData = _tokenState[tokens[i]];

            normalizedWeights[i] = _interpolateWeight(tokenData, pctProgress);
        }
    }

    function _getNormalizedWeightsAndMaxWeightIndex()
        internal
        view
        override
        returns (uint256[] memory normalizedWeights, uint256 maxWeightTokenIndex)
    {
        normalizedWeights = _getNormalizedWeights();

        maxWeightTokenIndex = 0;
        uint256 maxNormalizedWeight = normalizedWeights[0];

        for (uint256 i = 1; i < normalizedWeights.length; i++) {
            if (normalizedWeights[i] > maxNormalizedWeight) {
                maxWeightTokenIndex = i;
                maxNormalizedWeight = normalizedWeights[i];
            }
        }
    }

    // Swap overrides - revert unless swaps are enabled

    function _onSwapGivenIn(
        SwapRequest memory swapRequest,
        uint256 currentBalanceTokenIn,
        uint256 currentBalanceTokenOut
    ) internal view override returns (uint256) {
        _require(getSwapEnabled(), Errors.SWAPS_DISABLED);

        return super._onSwapGivenIn(swapRequest, currentBalanceTokenIn, currentBalanceTokenOut);
    }

    function _onSwapGivenOut(
        SwapRequest memory swapRequest,
        uint256 currentBalanceTokenIn,
        uint256 currentBalanceTokenOut
    ) internal view override returns (uint256) {
        _require(getSwapEnabled(), Errors.SWAPS_DISABLED);

        return super._onSwapGivenOut(swapRequest, currentBalanceTokenIn, currentBalanceTokenOut);
    }

    /**
     * @dev Used to adjust balances by subtracting all collected fees from them, as if they had been withdrawn from the
     * Vault.
     */
    function _subtractCollectedFees(uint256[] memory balances) private view {
        for (uint256 i = 0; i < _getTotalTokens(); ++i) {
            // We can use unchecked getters as we know the map has the same size (and order!) as the Pool's tokens.
            balances[i] = balances[i].sub(_tokenCollectedManagementFees.unchecked_valueAt(i));
        }
    }

    // We override _onJoinPool and _onExitPool as we need to not compute the current invariant and calculate protocol
    // fees, since that mechanism does not work for Pools in which the weights change over time. Instead, this Pool
    // always pays zero protocol fees.
    // Additionally, we also check that only non-swap join and exit kinds are allowed while swaps are disabled.

    function getLastInvariant() public pure override returns (uint256) {
        _revert(Errors.UNHANDLED_BY_INVESTMENT_POOL);
    }

    function _onJoinPool(
        bytes32,
        address,
        address,
        uint256[] memory balances,
        uint256,
        uint256,
        uint256[] memory scalingFactors,
        bytes memory userData
    )
        internal
        virtual
        override
        whenNotPaused // All joins are disabled while the contract is paused.
        returns (
            uint256 bptAmountOut,
            uint256[] memory amountsIn,
            uint256[] memory dueProtocolFeeAmounts
        )
    {
        _subtractCollectedFees(balances);

        // If swaps are disabled, the only join kind that is allowed is the proportional one, as all others involve
        // implicit swaps and alter token prices.
        _require(
            getSwapEnabled() || userData.joinKind() == JoinKind.ALL_TOKENS_IN_FOR_EXACT_BPT_OUT,
            Errors.INVALID_JOIN_EXIT_KIND_WHILE_SWAPS_DISABLED
        );

        (bptAmountOut, amountsIn) = _doJoin(balances, _getNormalizedWeights(), scalingFactors, userData);
        dueProtocolFeeAmounts = new uint256[](_getTotalTokens());
    }

    function _onExitPool(
        bytes32,
        address sender,
        address,
        uint256[] memory balances,
        uint256,
        uint256,
        uint256[] memory scalingFactors,
        bytes memory userData
    )
        internal
        virtual
        override
        returns (
            uint256 bptAmountIn,
            uint256[] memory amountsOut,
            uint256[] memory dueProtocolFeeAmounts
        )
    {
        _subtractCollectedFees(balances);

        // Exits are not completely disabled while the contract is paused: proportional exits (exact BPT in for tokens
        // out) remain functional.

        // If swaps are disabled, the only exit kind that is allowed is the proportional one (as all others involve
        // implicit swaps and alter token prices) and management fee collection (as there's no point in restricting
        // that).
        ExitKind kind = userData.exitKind();
        _require(
            getSwapEnabled() ||
                kind == ExitKind.EXACT_BPT_IN_FOR_TOKENS_OUT ||
                kind == ExitKind.MANAGEMENT_FEE_TOKENS_OUT,
            Errors.INVALID_JOIN_EXIT_KIND_WHILE_SWAPS_DISABLED
        );

        (bptAmountIn, amountsOut) = _doInvestmentPoolExit(
            sender,
            balances,
            _getNormalizedWeights(),
            scalingFactors,
            userData
        );
        dueProtocolFeeAmounts = new uint256[](_getTotalTokens());
    }

    function _doInvestmentPoolExit(
        address sender,
        uint256[] memory balances,
        uint256[] memory normalizedWeights,
        uint256[] memory scalingFactors,
        bytes memory userData
    ) internal returns (uint256, uint256[] memory) {
        ExitKind kind = userData.exitKind();

        if (kind == ExitKind.MANAGEMENT_FEE_TOKENS_OUT) {
            return _exitManagerFeeTokensOut(sender);
        } else {
            return _doExit(balances, normalizedWeights, scalingFactors, userData);
        }
    }

    function _exitManagerFeeTokensOut(address sender)
        private
        whenNotPaused
        returns (uint256 bptAmountIn, uint256[] memory amountsOut)
    {
        // This exit function is disabled if the contract is paused.

        // This exit function can only be called by the Pool itself - the authorization logic that governs when that
        // call can be made resides in withdrawCollectedManagementFees.
        _require(sender == address(this), Errors.UNAUTHORIZED_EXIT);

        // Since what we're doing is sending out collected management fees, we don't require any BPT in exchange: we
        // simply send those funds over.
        bptAmountIn = 0;

        amountsOut = new uint256[](_getTotalTokens());
        for (uint256 i = 0; i < _getTotalTokens(); ++i) {
            // We can use unchecked getters and setters as we know the map has the same size (and order!) as the Pool's
            // tokens.
            amountsOut[i] = _tokenCollectedManagementFees.unchecked_valueAt(i);
            _tokenCollectedManagementFees.unchecked_setAt(i, 0);
        }
    }

    function _tokenAddressToIndex(IERC20 token) internal view override returns (uint256) {
        return _tokenCollectedManagementFees.indexOf(token, Errors.INVALID_TOKEN);
    }

    function _processSwapFeeAmount(uint256 index, uint256 amount) internal virtual override {
        if (amount > 0) {
            uint256 managementFeeAmount = amount.mulDown(_managementSwapFeePercentage);

            uint256 previousCollectedFees = _tokenCollectedManagementFees.unchecked_valueAt(index);
            _tokenCollectedManagementFees.unchecked_setAt(index, previousCollectedFees.add(managementFeeAmount));
        }

        super._processSwapFeeAmount(index, amount);
    }

    // Pool swap hook override - subtract collected fees from all token amounts. We do this here as the original
    // `onSwap` does quite a bit of work, including computing swap fees, so we need to intercept that.

    function onSwap(
        SwapRequest memory swapRequest,
        uint256 currentBalanceTokenIn,
        uint256 currentBalanceTokenOut
    ) public override returns (uint256) {
        uint256 tokenInUpscaledCollectedFees = _tokenCollectedManagementFees.get(
            swapRequest.tokenIn,
            Errors.INVALID_TOKEN
        );
        uint256 adjustedBalanceTokenIn = currentBalanceTokenIn.sub(
            _downscaleDown(tokenInUpscaledCollectedFees, _scalingFactor(swapRequest.tokenIn))
        );

        uint256 tokenOutUpscaledCollectedFees = _tokenCollectedManagementFees.get(
            swapRequest.tokenOut,
            Errors.INVALID_TOKEN
        );
        uint256 adjustedBalanceTokenOut = currentBalanceTokenOut.sub(
            _downscaleDown(tokenOutUpscaledCollectedFees, _scalingFactor(swapRequest.tokenOut))
        );

        return super.onSwap(swapRequest, adjustedBalanceTokenIn, adjustedBalanceTokenOut);
    }

    /**
     * @dev When calling updateWeightsGradually again during an update, reset the start weights to the current weights,
     * if necessary. Time travel elements commented out.
     */
    function _startGradualWeightChange(
        uint256 startTime,
        uint256 endTime,
        uint256[] memory startWeights,
        uint256[] memory endWeights,
        IERC20[] memory tokens
    ) internal virtual {
        uint256 normalizedSum = 0;
        bytes32 tokenState;

        for (uint256 i = 0; i < endWeights.length; i++) {
            uint256 endWeight = endWeights[i];
            _require(endWeight >= _MIN_WEIGHT, Errors.MIN_WEIGHT);

            IERC20 token = tokens[i];

            // Tokens with more than 18 decimals are not supported
            // Scaling calculations must be exact/lossless
            // Store decimal difference instead of actual scaling factor
            _tokenState[token] = tokenState
                .insertUint64(startWeights[i].compress64(), _START_WEIGHT_OFFSET)
                .insertUint32(endWeight.compress32(), _END_WEIGHT_OFFSET)
                .insertUint5(uint256(18).sub(ERC20(address(token)).decimals()), _DECIMAL_DIFF_OFFSET);

            normalizedSum = normalizedSum.add(endWeight);
        }
        // Ensure that the normalized weights sum to ONE
        _require(normalizedSum == FixedPoint.ONE, Errors.NORMALIZED_WEIGHT_INVARIANT);

        _setMiscData(
            _getMiscData().insertUint32(startTime, _START_TIME_OFFSET).insertUint32(endTime, _END_TIME_OFFSET)
        );

        emit GradualWeightUpdateScheduled(startTime, endTime, startWeights, endWeights);
    }

    function _readScalingFactor(bytes32 tokenState) private pure returns (uint256) {
        uint256 decimalsDifference = tokenState.decodeUint5(_DECIMAL_DIFF_OFFSET);

        return FixedPoint.ONE * 10**decimalsDifference;
    }

    /**
     * @dev Extend ownerOnly functions to include the Investment Pool control functions.
     */
    function _isOwnerOnlyAction(bytes32 actionId) internal view override returns (bool) {
        return
            (actionId == getActionId(InvestmentPool.updateWeightsGradually.selector)) ||
            (actionId == getActionId(InvestmentPool.setSwapEnabled.selector)) ||
            (actionId == getActionId(InvestmentPool.withdrawCollectedManagementFees.selector)) ||
            super._isOwnerOnlyAction(actionId);
    }

    /**
     * @dev Returns a fixed-point number representing how far along the current weight change is, where 0 means the
     * change has not yet started, and FixedPoint.ONE means it has fully completed.
     */
    function _calculateWeightChangeProgress() private view returns (uint256) {
        uint256 currentTime = block.timestamp;
        bytes32 poolState = _getMiscData();

        uint256 startTime = poolState.decodeUint32(_START_TIME_OFFSET);
        uint256 endTime = poolState.decodeUint32(_END_TIME_OFFSET);

        if (currentTime >= endTime) {
            return FixedPoint.ONE;
        } else if (currentTime <= startTime) {
            return 0;
        }

        uint256 totalSeconds = endTime - startTime;
        uint256 secondsElapsed = currentTime - startTime;

        // In the degenerate case of a zero duration change, consider it completed (and avoid division by zero)
        return secondsElapsed.divDown(totalSeconds);
    }

    function _interpolateWeight(bytes32 tokenData, uint256 pctProgress) private pure returns (uint256 finalWeight) {
        uint256 startWeight = tokenData.decodeUint64(_START_WEIGHT_OFFSET).uncompress64();
        uint256 endWeight = tokenData.decodeUint32(_END_WEIGHT_OFFSET).uncompress32();

        if (pctProgress == 0 || startWeight == endWeight) return startWeight;
        if (pctProgress >= FixedPoint.ONE) return endWeight;

        if (startWeight > endWeight) {
            uint256 weightDelta = pctProgress.mulDown(startWeight - endWeight);
            return startWeight - weightDelta;
        } else {
            uint256 weightDelta = pctProgress.mulDown(endWeight - startWeight);
            return startWeight + weightDelta;
        }
    }

    function _getTokenData(IERC20 token) private view returns (bytes32 tokenData) {
        tokenData = _tokenState[token];

        // A valid token can't be zero (must have non-zero weights)
        _require(tokenData != 0, Errors.INVALID_TOKEN);
    }
}

File 2 of 63 : BaseWeightedPool.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;
pragma experimental ABIEncoderV2;

import "@balancer-labs/v2-solidity-utils/contracts/math/FixedPoint.sol";
import "@balancer-labs/v2-solidity-utils/contracts/helpers/InputHelpers.sol";

import "@balancer-labs/v2-pool-utils/contracts/BaseMinimalSwapInfoPool.sol";

import "./WeightedMath.sol";
import "./WeightedPoolUserDataHelpers.sol";

/**
 * @dev Base class for WeightedPools containing swap, join and exit logic, but leaving storage and management of
 * the weights to subclasses. Derived contracts can choose to make weights immutable, mutable, or even dynamic
 *  based on local or external logic.
 */
abstract contract BaseWeightedPool is BaseMinimalSwapInfoPool, WeightedMath {
    using FixedPoint for uint256;
    using WeightedPoolUserDataHelpers for bytes;

    uint256 private _lastInvariant;

    // For backwards compatibility, make sure new join and exit kinds are added at the end of the enum.

    enum JoinKind { INIT, EXACT_TOKENS_IN_FOR_BPT_OUT, TOKEN_IN_FOR_EXACT_BPT_OUT, ALL_TOKENS_IN_FOR_EXACT_BPT_OUT }
    enum ExitKind {
        EXACT_BPT_IN_FOR_ONE_TOKEN_OUT,
        EXACT_BPT_IN_FOR_TOKENS_OUT,
        BPT_IN_FOR_EXACT_TOKENS_OUT,
        MANAGEMENT_FEE_TOKENS_OUT // for InvestmentPool
    }

    constructor(
        IVault vault,
        string memory name,
        string memory symbol,
        IERC20[] memory tokens,
        address[] memory assetManagers,
        uint256 swapFeePercentage,
        uint256 pauseWindowDuration,
        uint256 bufferPeriodDuration,
        address owner
    )
        BasePool(
            vault,
            // Given BaseMinimalSwapInfoPool supports both of these specializations, and this Pool never registers or
            // deregisters any tokens after construction, picking Two Token when the Pool only has two tokens is free
            // gas savings.
            tokens.length == 2 ? IVault.PoolSpecialization.TWO_TOKEN : IVault.PoolSpecialization.MINIMAL_SWAP_INFO,
            name,
            symbol,
            tokens,
            assetManagers,
            swapFeePercentage,
            pauseWindowDuration,
            bufferPeriodDuration,
            owner
        )
    {
        // solhint-disable-previous-line no-empty-blocks
    }

    // Virtual functions

    /**
     * @dev Returns the normalized weight of `token`. Weights are fixed point numbers that sum to FixedPoint.ONE.
     */
    function _getNormalizedWeight(IERC20 token) internal view virtual returns (uint256);

    /**
     * @dev Returns all normalized weights, in the same order as the Pool's tokens.
     */
    function _getNormalizedWeights() internal view virtual returns (uint256[] memory);

    /**
     * @dev Returns all normalized weights, in the same order as the Pool's tokens, along with the index of the token
     * with the highest weight.
     */
    function _getNormalizedWeightsAndMaxWeightIndex() internal view virtual returns (uint256[] memory, uint256);

    function getLastInvariant() public view virtual returns (uint256) {
        return _lastInvariant;
    }

    /**
     * @dev Returns the current value of the invariant.
     */
    function getInvariant() public view returns (uint256) {
        (, uint256[] memory balances, ) = getVault().getPoolTokens(getPoolId());

        // Since the Pool hooks always work with upscaled balances, we manually
        // upscale here for consistency
        _upscaleArray(balances, _scalingFactors());

        (uint256[] memory normalizedWeights, ) = _getNormalizedWeightsAndMaxWeightIndex();
        return WeightedMath._calculateInvariant(normalizedWeights, balances);
    }

    function getNormalizedWeights() external view returns (uint256[] memory) {
        return _getNormalizedWeights();
    }

    // Base Pool handlers

    // Swap

    function _onSwapGivenIn(
        SwapRequest memory swapRequest,
        uint256 currentBalanceTokenIn,
        uint256 currentBalanceTokenOut
    ) internal view virtual override whenNotPaused returns (uint256) {
        // Swaps are disabled while the contract is paused.

        return
            WeightedMath._calcOutGivenIn(
                currentBalanceTokenIn,
                _getNormalizedWeight(swapRequest.tokenIn),
                currentBalanceTokenOut,
                _getNormalizedWeight(swapRequest.tokenOut),
                swapRequest.amount
            );
    }

    function _onSwapGivenOut(
        SwapRequest memory swapRequest,
        uint256 currentBalanceTokenIn,
        uint256 currentBalanceTokenOut
    ) internal view virtual override whenNotPaused returns (uint256) {
        // Swaps are disabled while the contract is paused.

        return
            WeightedMath._calcInGivenOut(
                currentBalanceTokenIn,
                _getNormalizedWeight(swapRequest.tokenIn),
                currentBalanceTokenOut,
                _getNormalizedWeight(swapRequest.tokenOut),
                swapRequest.amount
            );
    }

    // Initialize

    function _onInitializePool(
        bytes32,
        address,
        address,
        uint256[] memory scalingFactors,
        bytes memory userData
    ) internal virtual override whenNotPaused returns (uint256, uint256[] memory) {
        // It would be strange for the Pool to be paused before it is initialized, but for consistency we prevent
        // initialization in this case.

        JoinKind kind = userData.joinKind();
        _require(kind == JoinKind.INIT, Errors.UNINITIALIZED);

        uint256[] memory amountsIn = userData.initialAmountsIn();
        InputHelpers.ensureInputLengthMatch(_getTotalTokens(), amountsIn.length);
        _upscaleArray(amountsIn, scalingFactors);

        (uint256[] memory normalizedWeights, ) = _getNormalizedWeightsAndMaxWeightIndex();

        uint256 invariantAfterJoin = WeightedMath._calculateInvariant(normalizedWeights, amountsIn);

        // Set the initial BPT to the value of the invariant times the number of tokens. This makes BPT supply more
        // consistent in Pools with similar compositions but different number of tokens.
        uint256 bptAmountOut = Math.mul(invariantAfterJoin, _getTotalTokens());

        _lastInvariant = invariantAfterJoin;

        return (bptAmountOut, amountsIn);
    }

    // Join

    function _onJoinPool(
        bytes32,
        address,
        address,
        uint256[] memory balances,
        uint256,
        uint256 protocolSwapFeePercentage,
        uint256[] memory scalingFactors,
        bytes memory userData
    )
        internal
        virtual
        override
        whenNotPaused
        returns (
            uint256,
            uint256[] memory,
            uint256[] memory
        )
    {
        // All joins are disabled while the contract is paused.

        (uint256[] memory normalizedWeights, uint256 maxWeightTokenIndex) = _getNormalizedWeightsAndMaxWeightIndex();

        // Due protocol swap fee amounts are computed by measuring the growth of the invariant between the previous join
        // or exit event and now - the invariant's growth is due exclusively to swap fees. This avoids spending gas
        // computing them on each individual swap
        uint256 invariantBeforeJoin = WeightedMath._calculateInvariant(normalizedWeights, balances);

        uint256[] memory dueProtocolFeeAmounts = _getDueProtocolFeeAmounts(
            balances,
            normalizedWeights,
            maxWeightTokenIndex,
            _lastInvariant,
            invariantBeforeJoin,
            protocolSwapFeePercentage
        );

        // Update current balances by subtracting the protocol fee amounts
        _mutateAmounts(balances, dueProtocolFeeAmounts, FixedPoint.sub);
        (uint256 bptAmountOut, uint256[] memory amountsIn) = _doJoin(
            balances,
            normalizedWeights,
            scalingFactors,
            userData
        );

        // Update the invariant with the balances the Pool will have after the join, in order to compute the
        // protocol swap fee amounts due in future joins and exits.
        _lastInvariant = _invariantAfterJoin(balances, amountsIn, normalizedWeights);

        return (bptAmountOut, amountsIn, dueProtocolFeeAmounts);
    }

    function _doJoin(
        uint256[] memory balances,
        uint256[] memory normalizedWeights,
        uint256[] memory scalingFactors,
        bytes memory userData
    ) internal returns (uint256, uint256[] memory) {
        JoinKind kind = userData.joinKind();

        if (kind == JoinKind.EXACT_TOKENS_IN_FOR_BPT_OUT) {
            return _joinExactTokensInForBPTOut(balances, normalizedWeights, scalingFactors, userData);
        } else if (kind == JoinKind.TOKEN_IN_FOR_EXACT_BPT_OUT) {
            return _joinTokenInForExactBPTOut(balances, normalizedWeights, userData);
        } else if (kind == JoinKind.ALL_TOKENS_IN_FOR_EXACT_BPT_OUT) {
            return _joinAllTokensInForExactBPTOut(balances, userData);
        } else {
            _revert(Errors.UNHANDLED_JOIN_KIND);
        }
    }

    function _joinExactTokensInForBPTOut(
        uint256[] memory balances,
        uint256[] memory normalizedWeights,
        uint256[] memory scalingFactors,
        bytes memory userData
    ) private returns (uint256, uint256[] memory) {
        (uint256[] memory amountsIn, uint256 minBPTAmountOut) = userData.exactTokensInForBptOut();
        InputHelpers.ensureInputLengthMatch(_getTotalTokens(), amountsIn.length);

        _upscaleArray(amountsIn, scalingFactors);

        (uint256 bptAmountOut, uint256[] memory swapFees) = WeightedMath._calcBptOutGivenExactTokensIn(
            balances,
            normalizedWeights,
            amountsIn,
            totalSupply(),
            getSwapFeePercentage()
        );

        // Note that swapFees is already upscaled
        _processSwapFeeAmounts(swapFees);

        _require(bptAmountOut >= minBPTAmountOut, Errors.BPT_OUT_MIN_AMOUNT);

        return (bptAmountOut, amountsIn);
    }

    function _joinTokenInForExactBPTOut(
        uint256[] memory balances,
        uint256[] memory normalizedWeights,
        bytes memory userData
    ) private returns (uint256, uint256[] memory) {
        (uint256 bptAmountOut, uint256 tokenIndex) = userData.tokenInForExactBptOut();
        // Note that there is no maximum amountIn parameter: this is handled by `IVault.joinPool`.

        _require(tokenIndex < _getTotalTokens(), Errors.OUT_OF_BOUNDS);

        (uint256 amountIn, uint256 swapFee) = WeightedMath._calcTokenInGivenExactBptOut(
            balances[tokenIndex],
            normalizedWeights[tokenIndex],
            bptAmountOut,
            totalSupply(),
            getSwapFeePercentage()
        );

        // Note that swapFee is already upscaled
        _processSwapFeeAmount(tokenIndex, swapFee);

        // We join in a single token, so we initialize amountsIn with zeros
        uint256[] memory amountsIn = new uint256[](_getTotalTokens());
        // And then assign the result to the selected token
        amountsIn[tokenIndex] = amountIn;

        return (bptAmountOut, amountsIn);
    }

    function _joinAllTokensInForExactBPTOut(uint256[] memory balances, bytes memory userData)
        private
        view
        returns (uint256, uint256[] memory)
    {
        uint256 bptAmountOut = userData.allTokensInForExactBptOut();
        // Note that there is no maximum amountsIn parameter: this is handled by `IVault.joinPool`.

        uint256[] memory amountsIn = WeightedMath._calcAllTokensInGivenExactBptOut(
            balances,
            bptAmountOut,
            totalSupply()
        );

        return (bptAmountOut, amountsIn);
    }

    // Exit

    function _onExitPool(
        bytes32,
        address,
        address,
        uint256[] memory balances,
        uint256,
        uint256 protocolSwapFeePercentage,
        uint256[] memory scalingFactors,
        bytes memory userData
    )
        internal
        virtual
        override
        returns (
            uint256 bptAmountIn,
            uint256[] memory amountsOut,
            uint256[] memory dueProtocolFeeAmounts
        )
    {
        (uint256[] memory normalizedWeights, uint256 maxWeightTokenIndex) = _getNormalizedWeightsAndMaxWeightIndex();

        // Exits are not completely disabled while the contract is paused: proportional exits (exact BPT in for tokens
        // out) remain functional.

        if (_isNotPaused()) {
            // Due protocol swap fee amounts are computed by measuring the growth of the invariant between the previous
            // join or exit event and now - the invariant's growth is due exclusively to swap fees. This avoids
            // spending gas calculating the fees on each individual swap.
            uint256 invariantBeforeExit = WeightedMath._calculateInvariant(normalizedWeights, balances);
            dueProtocolFeeAmounts = _getDueProtocolFeeAmounts(
                balances,
                normalizedWeights,
                maxWeightTokenIndex,
                _lastInvariant,
                invariantBeforeExit,
                protocolSwapFeePercentage
            );

            // Update current balances by subtracting the protocol fee amounts
            _mutateAmounts(balances, dueProtocolFeeAmounts, FixedPoint.sub);
        } else {
            // If the contract is paused, swap protocol fee amounts are not charged to avoid extra calculations and
            // reduce the potential for errors.
            dueProtocolFeeAmounts = new uint256[](_getTotalTokens());
        }

        (bptAmountIn, amountsOut) = _doExit(balances, normalizedWeights, scalingFactors, userData);

        // Update the invariant with the balances the Pool will have after the exit, in order to compute the
        // protocol swap fees due in future joins and exits.
        _lastInvariant = _invariantAfterExit(balances, amountsOut, normalizedWeights);

        return (bptAmountIn, amountsOut, dueProtocolFeeAmounts);
    }

    function _doExit(
        uint256[] memory balances,
        uint256[] memory normalizedWeights,
        uint256[] memory scalingFactors,
        bytes memory userData
    ) internal returns (uint256, uint256[] memory) {
        ExitKind kind = userData.exitKind();

        if (kind == ExitKind.EXACT_BPT_IN_FOR_ONE_TOKEN_OUT) {
            return _exitExactBPTInForTokenOut(balances, normalizedWeights, userData);
        } else if (kind == ExitKind.EXACT_BPT_IN_FOR_TOKENS_OUT) {
            return _exitExactBPTInForTokensOut(balances, userData);
        } else if (kind == ExitKind.BPT_IN_FOR_EXACT_TOKENS_OUT) {
            return _exitBPTInForExactTokensOut(balances, normalizedWeights, scalingFactors, userData);
        } else {
            _revert(Errors.UNHANDLED_EXIT_KIND);
        }
    }

    function _exitExactBPTInForTokenOut(
        uint256[] memory balances,
        uint256[] memory normalizedWeights,
        bytes memory userData
    ) private whenNotPaused returns (uint256, uint256[] memory) {
        // This exit function is disabled if the contract is paused.

        (uint256 bptAmountIn, uint256 tokenIndex) = userData.exactBptInForTokenOut();
        // Note that there is no minimum amountOut parameter: this is handled by `IVault.exitPool`.

        _require(tokenIndex < _getTotalTokens(), Errors.OUT_OF_BOUNDS);

        (uint256 amountOut, uint256 swapFee) = WeightedMath._calcTokenOutGivenExactBptIn(
            balances[tokenIndex],
            normalizedWeights[tokenIndex],
            bptAmountIn,
            totalSupply(),
            getSwapFeePercentage()
        );

        // This is an exceptional situation in which the fee is charged on a token out instead of a token in.
        // Note that swapFee is already upscaled.
        _processSwapFeeAmount(tokenIndex, swapFee);

        // We exit in a single token, so we initialize amountsOut with zeros
        uint256[] memory amountsOut = new uint256[](_getTotalTokens());
        // And then assign the result to the selected token
        amountsOut[tokenIndex] = amountOut;

        return (bptAmountIn, amountsOut);
    }

    function _exitExactBPTInForTokensOut(uint256[] memory balances, bytes memory userData)
        private
        view
        returns (uint256, uint256[] memory)
    {
        // This exit function is the only one that is not disabled if the contract is paused: it remains unrestricted
        // in an attempt to provide users with a mechanism to retrieve their tokens in case of an emergency.
        // This particular exit function is the only one that remains available because it is the simplest one, and
        // therefore the one with the lowest likelihood of errors.

        uint256 bptAmountIn = userData.exactBptInForTokensOut();
        // Note that there is no minimum amountOut parameter: this is handled by `IVault.exitPool`.

        uint256[] memory amountsOut = WeightedMath._calcTokensOutGivenExactBptIn(balances, bptAmountIn, totalSupply());
        return (bptAmountIn, amountsOut);
    }

    function _exitBPTInForExactTokensOut(
        uint256[] memory balances,
        uint256[] memory normalizedWeights,
        uint256[] memory scalingFactors,
        bytes memory userData
    ) private whenNotPaused returns (uint256, uint256[] memory) {
        // This exit function is disabled if the contract is paused.

        (uint256[] memory amountsOut, uint256 maxBPTAmountIn) = userData.bptInForExactTokensOut();
        InputHelpers.ensureInputLengthMatch(amountsOut.length, _getTotalTokens());
        _upscaleArray(amountsOut, scalingFactors);

        (uint256 bptAmountIn, uint256[] memory swapFees) = WeightedMath._calcBptInGivenExactTokensOut(
            balances,
            normalizedWeights,
            amountsOut,
            totalSupply(),
            getSwapFeePercentage()
        );
        _require(bptAmountIn <= maxBPTAmountIn, Errors.BPT_IN_MAX_AMOUNT);

        // This is an exceptional situation in which the fee is charged on a token out instead of a token in.
        // Note that swapFee is already upscaled.
        _processSwapFeeAmounts(swapFees);

        return (bptAmountIn, amountsOut);
    }

    // Helpers

    function _getDueProtocolFeeAmounts(
        uint256[] memory balances,
        uint256[] memory normalizedWeights,
        uint256 maxWeightTokenIndex,
        uint256 previousInvariant,
        uint256 currentInvariant,
        uint256 protocolSwapFeePercentage
    ) private view returns (uint256[] memory) {
        // Initialize with zeros
        uint256[] memory dueProtocolFeeAmounts = new uint256[](_getTotalTokens());

        // Early return if the protocol swap fee percentage is zero, saving gas.
        if (protocolSwapFeePercentage == 0) {
            return dueProtocolFeeAmounts;
        }

        // The protocol swap fees are always paid using the token with the largest weight in the Pool. As this is the
        // token that is expected to have the largest balance, using it to pay fees should not unbalance the Pool.
        dueProtocolFeeAmounts[maxWeightTokenIndex] = WeightedMath._calcDueTokenProtocolSwapFeeAmount(
            balances[maxWeightTokenIndex],
            normalizedWeights[maxWeightTokenIndex],
            previousInvariant,
            currentInvariant,
            protocolSwapFeePercentage
        );

        return dueProtocolFeeAmounts;
    }

    /**
     * @dev Returns the value of the invariant given `balances`, assuming they are increased by `amountsIn`. All
     * amounts are expected to be upscaled.
     */
    function _invariantAfterJoin(
        uint256[] memory balances,
        uint256[] memory amountsIn,
        uint256[] memory normalizedWeights
    ) private view returns (uint256) {
        _mutateAmounts(balances, amountsIn, FixedPoint.add);
        return WeightedMath._calculateInvariant(normalizedWeights, balances);
    }

    function _invariantAfterExit(
        uint256[] memory balances,
        uint256[] memory amountsOut,
        uint256[] memory normalizedWeights
    ) private view returns (uint256) {
        _mutateAmounts(balances, amountsOut, FixedPoint.sub);
        return WeightedMath._calculateInvariant(normalizedWeights, balances);
    }

    /**
     * @dev Mutates `amounts` by applying `mutation` with each entry in `arguments`.
     *
     * Equivalent to `amounts = amounts.map(mutation)`.
     */
    function _mutateAmounts(
        uint256[] memory toMutate,
        uint256[] memory arguments,
        function(uint256, uint256) pure returns (uint256) mutation
    ) private view {
        for (uint256 i = 0; i < _getTotalTokens(); ++i) {
            toMutate[i] = mutation(toMutate[i], arguments[i]);
        }
    }

    /**
     * @dev This function returns the appreciation of one BPT relative to the
     * underlying tokens. This starts at 1 when the pool is created and grows over time
     */
    function getRate() public view returns (uint256) {
        // The initial BPT supply is equal to the invariant times the number of tokens.
        return Math.mul(getInvariant(), _getTotalTokens()).divDown(totalSupply());
    }
}

File 3 of 63 : FixedPoint.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

import "./LogExpMath.sol";
import "../helpers/BalancerErrors.sol";

/* solhint-disable private-vars-leading-underscore */

library FixedPoint {
    uint256 internal constant ONE = 1e18; // 18 decimal places
    uint256 internal constant MAX_POW_RELATIVE_ERROR = 10000; // 10^(-14)

    // Minimum base for the power function when the exponent is 'free' (larger than ONE).
    uint256 internal constant MIN_POW_BASE_FREE_EXPONENT = 0.7e18;

    function add(uint256 a, uint256 b) internal pure returns (uint256) {
        // Fixed Point addition is the same as regular checked addition

        uint256 c = a + b;
        _require(c >= a, Errors.ADD_OVERFLOW);
        return c;
    }

    function sub(uint256 a, uint256 b) internal pure returns (uint256) {
        // Fixed Point addition is the same as regular checked addition

        _require(b <= a, Errors.SUB_OVERFLOW);
        uint256 c = a - b;
        return c;
    }

    function mulDown(uint256 a, uint256 b) internal pure returns (uint256) {
        uint256 product = a * b;
        _require(a == 0 || product / a == b, Errors.MUL_OVERFLOW);

        return product / ONE;
    }

    function mulUp(uint256 a, uint256 b) internal pure returns (uint256) {
        uint256 product = a * b;
        _require(a == 0 || product / a == b, Errors.MUL_OVERFLOW);

        if (product == 0) {
            return 0;
        } else {
            // The traditional divUp formula is:
            // divUp(x, y) := (x + y - 1) / y
            // To avoid intermediate overflow in the addition, we distribute the division and get:
            // divUp(x, y) := (x - 1) / y + 1
            // Note that this requires x != 0, which we already tested for.

            return ((product - 1) / ONE) + 1;
        }
    }

    function divDown(uint256 a, uint256 b) internal pure returns (uint256) {
        _require(b != 0, Errors.ZERO_DIVISION);

        if (a == 0) {
            return 0;
        } else {
            uint256 aInflated = a * ONE;
            _require(aInflated / a == ONE, Errors.DIV_INTERNAL); // mul overflow

            return aInflated / b;
        }
    }

    function divUp(uint256 a, uint256 b) internal pure returns (uint256) {
        _require(b != 0, Errors.ZERO_DIVISION);

        if (a == 0) {
            return 0;
        } else {
            uint256 aInflated = a * ONE;
            _require(aInflated / a == ONE, Errors.DIV_INTERNAL); // mul overflow

            // The traditional divUp formula is:
            // divUp(x, y) := (x + y - 1) / y
            // To avoid intermediate overflow in the addition, we distribute the division and get:
            // divUp(x, y) := (x - 1) / y + 1
            // Note that this requires x != 0, which we already tested for.

            return ((aInflated - 1) / b) + 1;
        }
    }

    /**
     * @dev Returns x^y, assuming both are fixed point numbers, rounding down. The result is guaranteed to not be above
     * the true value (that is, the error function expected - actual is always positive).
     */
    function powDown(uint256 x, uint256 y) internal pure returns (uint256) {
        uint256 raw = LogExpMath.pow(x, y);
        uint256 maxError = add(mulUp(raw, MAX_POW_RELATIVE_ERROR), 1);

        if (raw < maxError) {
            return 0;
        } else {
            return sub(raw, maxError);
        }
    }

    /**
     * @dev Returns x^y, assuming both are fixed point numbers, rounding up. The result is guaranteed to not be below
     * the true value (that is, the error function expected - actual is always negative).
     */
    function powUp(uint256 x, uint256 y) internal pure returns (uint256) {
        uint256 raw = LogExpMath.pow(x, y);
        uint256 maxError = add(mulUp(raw, MAX_POW_RELATIVE_ERROR), 1);

        return add(raw, maxError);
    }

    /**
     * @dev Returns the complement of a value (1 - x), capped to 0 if x is larger than 1.
     *
     * Useful when computing the complement for values with some level of relative error, as it strips this error and
     * prevents intermediate negative values.
     */
    function complement(uint256 x) internal pure returns (uint256) {
        return (x < ONE) ? (ONE - x) : 0;
    }
}

File 4 of 63 : InputHelpers.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

import "../openzeppelin/IERC20.sol";

import "./BalancerErrors.sol";

library InputHelpers {
    function ensureInputLengthMatch(uint256 a, uint256 b) internal pure {
        _require(a == b, Errors.INPUT_LENGTH_MISMATCH);
    }

    function ensureInputLengthMatch(
        uint256 a,
        uint256 b,
        uint256 c
    ) internal pure {
        _require(a == b && b == c, Errors.INPUT_LENGTH_MISMATCH);
    }

    function ensureArrayIsSorted(IERC20[] memory array) internal pure {
        address[] memory addressArray;
        // solhint-disable-next-line no-inline-assembly
        assembly {
            addressArray := array
        }
        ensureArrayIsSorted(addressArray);
    }

    function ensureArrayIsSorted(address[] memory array) internal pure {
        if (array.length < 2) {
            return;
        }

        address previous = array[0];
        for (uint256 i = 1; i < array.length; ++i) {
            address current = array[i];
            _require(previous < current, Errors.UNSORTED_ARRAY);
            previous = current;
        }
    }
}

File 5 of 63 : BaseMinimalSwapInfoPool.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;
pragma experimental ABIEncoderV2;

import "./BasePool.sol";
import "@balancer-labs/v2-vault/contracts/interfaces/IMinimalSwapInfoPool.sol";

/**
 * @dev Extension of `BasePool`, adding a handler for `IMinimalSwapInfoPool.onSwap`.
 *
 * Derived contracts must call `BasePool`'s constructor, and implement `_onSwapGivenIn` and `_onSwapGivenOut` along with
 * `BasePool`'s virtual functions. Inheriting from this contract lets derived contracts choose the Two Token or Minimal
 * Swap Info specialization settings.
 */
abstract contract BaseMinimalSwapInfoPool is IMinimalSwapInfoPool, BasePool {
    // Swap Hooks

    function onSwap(
        SwapRequest memory request,
        uint256 balanceTokenIn,
        uint256 balanceTokenOut
    ) public virtual override onlyVault(request.poolId) returns (uint256) {
        uint256 scalingFactorTokenIn = _scalingFactor(request.tokenIn);
        uint256 scalingFactorTokenOut = _scalingFactor(request.tokenOut);

        if (request.kind == IVault.SwapKind.GIVEN_IN) {
            // Fees are subtracted before scaling, to reduce the complexity of the rounding direction analysis.
            uint256 amountInMinusSwapFees = _subtractSwapFeeAmount(request.amount);

            // Process the (upscaled!) swap fee.
            uint256 swapFee = request.amount - amountInMinusSwapFees;
            _processSwapFeeAmount(request.tokenIn, _upscale(swapFee, scalingFactorTokenIn));

            request.amount = amountInMinusSwapFees;

            // All token amounts are upscaled.
            balanceTokenIn = _upscale(balanceTokenIn, scalingFactorTokenIn);
            balanceTokenOut = _upscale(balanceTokenOut, scalingFactorTokenOut);
            request.amount = _upscale(request.amount, scalingFactorTokenIn);

            uint256 amountOut = _onSwapGivenIn(request, balanceTokenIn, balanceTokenOut);

            // amountOut tokens are exiting the Pool, so we round down.
            return _downscaleDown(amountOut, scalingFactorTokenOut);
        } else {
            // All token amounts are upscaled.
            balanceTokenIn = _upscale(balanceTokenIn, scalingFactorTokenIn);
            balanceTokenOut = _upscale(balanceTokenOut, scalingFactorTokenOut);
            request.amount = _upscale(request.amount, scalingFactorTokenOut);

            uint256 amountIn = _onSwapGivenOut(request, balanceTokenIn, balanceTokenOut);

            // amountIn tokens are entering the Pool, so we round up.
            amountIn = _downscaleUp(amountIn, scalingFactorTokenIn);

            // Fees are added after scaling happens, to reduce the complexity of the rounding direction analysis.
            uint256 amountInPlusSwapFees = _addSwapFeeAmount(amountIn);

            // Process the (upscaled!) swap fee.
            uint256 swapFee = amountInPlusSwapFees - amountIn;
            _processSwapFeeAmount(request.tokenIn, _upscale(swapFee, scalingFactorTokenIn));

            return amountInPlusSwapFees;
        }
    }

    /*
     * @dev Called when a swap with the Pool occurs, where the amount of tokens entering the Pool is known.
     *
     * Returns the amount of tokens that will be taken from the Pool in return.
     *
     * All amounts inside `swapRequest`, `balanceTokenIn` and `balanceTokenOut` are upscaled. The swap fee has already
     * been deducted from `swapRequest.amount`.
     *
     * The return value is also considered upscaled, and will be downscaled (rounding down) before returning it to the
     * Vault.
     */
    function _onSwapGivenIn(
        SwapRequest memory swapRequest,
        uint256 balanceTokenIn,
        uint256 balanceTokenOut
    ) internal virtual returns (uint256);

    /*
     * @dev Called when a swap with the Pool occurs, where the amount of tokens exiting the Pool is known.
     *
     * Returns the amount of tokens that will be granted to the Pool in return.
     *
     * All amounts inside `swapRequest`, `balanceTokenIn` and `balanceTokenOut` are upscaled.
     *
     * The return value is also considered upscaled, and will be downscaled (rounding up) before applying the swap fee
     * and returning it to the Vault.
     */
    function _onSwapGivenOut(
        SwapRequest memory swapRequest,
        uint256 balanceTokenIn,
        uint256 balanceTokenOut
    ) internal virtual returns (uint256);

    /**
     * @dev Called whenever a swap fee is charged. Implementations should call their parents via super, to ensure all
     * implementations in the inheritance tree are called.
     *
     * Callers must call one of the three `_processSwapFeeAmount` functions when swap fees are computed,
     * and upscale `amount`.
     */
    function _processSwapFeeAmount(
        uint256, /*index*/
        uint256 /*amount*/
    ) internal virtual {}

    function _processSwapFeeAmount(IERC20 token, uint256 amount) internal {
        _processSwapFeeAmount(_tokenAddressToIndex(token), amount);
    }

    function _processSwapFeeAmounts(uint256[] memory amounts) internal {
        InputHelpers.ensureInputLengthMatch(amounts.length, _getTotalTokens());

        for (uint256 i = 0; i < _getTotalTokens(); ++i) {
            _processSwapFeeAmount(i, amounts[i]);
        }
    }

    /**
     * @dev Returns the index of `token` in the Pool's token array (i.e. the one `vault.getPoolTokens()` would return).
     *
     * A trivial (and incorrect!) implementation is already provided for Pools that don't override
     * `_processSwapFeeAmount` and skip the entire feature. However, Pools that do override `_processSwapFeeAmount`
     * *must* override this function with a meaningful implementation.
     */
    function _tokenAddressToIndex(
        IERC20 /*token*/
    ) internal view virtual returns (uint256) {
        return 0;
    }
}

File 6 of 63 : WeightedMath.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

import "@balancer-labs/v2-solidity-utils/contracts/math/FixedPoint.sol";
import "@balancer-labs/v2-solidity-utils/contracts/math/Math.sol";
import "@balancer-labs/v2-solidity-utils/contracts/helpers/InputHelpers.sol";

/* solhint-disable private-vars-leading-underscore */

contract WeightedMath {
    using FixedPoint for uint256;
    // A minimum normalized weight imposes a maximum weight ratio. We need this due to limitations in the
    // implementation of the power function, as these ratios are often exponents.
    uint256 internal constant _MIN_WEIGHT = 0.01e18;
    // Having a minimum normalized weight imposes a limit on the maximum number of tokens;
    // i.e., the largest possible pool is one where all tokens have exactly the minimum weight.
    uint256 internal constant _MAX_WEIGHTED_TOKENS = 100;

    // Pool limits that arise from limitations in the fixed point power function (and the imposed 1:100 maximum weight
    // ratio).

    // Swap limits: amounts swapped may not be larger than this percentage of total balance.
    uint256 internal constant _MAX_IN_RATIO = 0.3e18;
    uint256 internal constant _MAX_OUT_RATIO = 0.3e18;

    // Invariant growth limit: non-proportional joins cannot cause the invariant to increase by more than this ratio.
    uint256 internal constant _MAX_INVARIANT_RATIO = 3e18;
    // Invariant shrink limit: non-proportional exits cannot cause the invariant to decrease by less than this ratio.
    uint256 internal constant _MIN_INVARIANT_RATIO = 0.7e18;

    // Invariant is used to collect protocol swap fees by comparing its value between two times.
    // So we can round always to the same direction. It is also used to initiate the BPT amount
    // and, because there is a minimum BPT, we round down the invariant.
    function _calculateInvariant(uint256[] memory normalizedWeights, uint256[] memory balances)
        internal
        pure
        returns (uint256 invariant)
    {
        /**********************************************************************************************
        // invariant               _____                                                             //
        // wi = weight index i      | |      wi                                                      //
        // bi = balance index i     | |  bi ^   = i                                                  //
        // i = invariant                                                                             //
        **********************************************************************************************/

        invariant = FixedPoint.ONE;
        for (uint256 i = 0; i < normalizedWeights.length; i++) {
            invariant = invariant.mulDown(balances[i].powDown(normalizedWeights[i]));
        }

        _require(invariant > 0, Errors.ZERO_INVARIANT);
    }

    // Computes how many tokens can be taken out of a pool if `amountIn` are sent, given the
    // current balances and weights.
    function _calcOutGivenIn(
        uint256 balanceIn,
        uint256 weightIn,
        uint256 balanceOut,
        uint256 weightOut,
        uint256 amountIn
    ) internal pure returns (uint256) {
        /**********************************************************************************************
        // outGivenIn                                                                                //
        // aO = amountOut                                                                            //
        // bO = balanceOut                                                                           //
        // bI = balanceIn              /      /            bI             \    (wI / wO) \           //
        // aI = amountIn    aO = bO * |  1 - | --------------------------  | ^            |          //
        // wI = weightIn               \      \       ( bI + aI )         /              /           //
        // wO = weightOut                                                                            //
        **********************************************************************************************/

        // Amount out, so we round down overall.

        // The multiplication rounds down, and the subtrahend (power) rounds up (so the base rounds up too).
        // Because bI / (bI + aI) <= 1, the exponent rounds down.

        // Cannot exceed maximum in ratio
        _require(amountIn <= balanceIn.mulDown(_MAX_IN_RATIO), Errors.MAX_IN_RATIO);

        uint256 denominator = balanceIn.add(amountIn);
        uint256 base = balanceIn.divUp(denominator);
        uint256 exponent = weightIn.divDown(weightOut);
        uint256 power = base.powUp(exponent);

        return balanceOut.mulDown(power.complement());
    }

    // Computes how many tokens must be sent to a pool in order to take `amountOut`, given the
    // current balances and weights.
    function _calcInGivenOut(
        uint256 balanceIn,
        uint256 weightIn,
        uint256 balanceOut,
        uint256 weightOut,
        uint256 amountOut
    ) internal pure returns (uint256) {
        /**********************************************************************************************
        // inGivenOut                                                                                //
        // aO = amountOut                                                                            //
        // bO = balanceOut                                                                           //
        // bI = balanceIn              /  /            bO             \    (wO / wI)      \          //
        // aI = amountIn    aI = bI * |  | --------------------------  | ^            - 1  |         //
        // wI = weightIn               \  \       ( bO - aO )         /                   /          //
        // wO = weightOut                                                                            //
        **********************************************************************************************/

        // Amount in, so we round up overall.

        // The multiplication rounds up, and the power rounds up (so the base rounds up too).
        // Because b0 / (b0 - a0) >= 1, the exponent rounds up.

        // Cannot exceed maximum out ratio
        _require(amountOut <= balanceOut.mulDown(_MAX_OUT_RATIO), Errors.MAX_OUT_RATIO);

        uint256 base = balanceOut.divUp(balanceOut.sub(amountOut));
        uint256 exponent = weightOut.divUp(weightIn);
        uint256 power = base.powUp(exponent);

        // Because the base is larger than one (and the power rounds up), the power should always be larger than one, so
        // the following subtraction should never revert.
        uint256 ratio = power.sub(FixedPoint.ONE);

        return balanceIn.mulUp(ratio);
    }

    function _calcBptOutGivenExactTokensIn(
        uint256[] memory balances,
        uint256[] memory normalizedWeights,
        uint256[] memory amountsIn,
        uint256 bptTotalSupply,
        uint256 swapFeePercentage
    ) internal pure returns (uint256, uint256[] memory) {
        // BPT out, so we round down overall.

        uint256[] memory balanceRatiosWithFee = new uint256[](amountsIn.length);

        uint256 invariantRatioWithFees = 0;
        for (uint256 i = 0; i < balances.length; i++) {
            balanceRatiosWithFee[i] = balances[i].add(amountsIn[i]).divDown(balances[i]);
            invariantRatioWithFees = invariantRatioWithFees.add(balanceRatiosWithFee[i].mulDown(normalizedWeights[i]));
        }

        (uint256 invariantRatio, uint256[] memory swapFees) = _computeJoinExactTokensInInvariantRatio(
            balances,
            normalizedWeights,
            amountsIn,
            balanceRatiosWithFee,
            invariantRatioWithFees,
            swapFeePercentage
        );

        uint256 bptOut = (invariantRatio > FixedPoint.ONE)
            ? bptTotalSupply.mulDown(invariantRatio.sub(FixedPoint.ONE))
            : 0;
        return (bptOut, swapFees);
    }

    /**
     * @dev Intermediate function to avoid stack-too-deep errors.
     */
    function _computeJoinExactTokensInInvariantRatio(
        uint256[] memory balances,
        uint256[] memory normalizedWeights,
        uint256[] memory amountsIn,
        uint256[] memory balanceRatiosWithFee,
        uint256 invariantRatioWithFees,
        uint256 swapFeePercentage
    ) private pure returns (uint256 invariantRatio, uint256[] memory swapFees) {
        // Swap fees are charged on all tokens that are being added in a larger proportion than the overall invariant
        // increase.
        swapFees = new uint256[](amountsIn.length);
        invariantRatio = FixedPoint.ONE;

        for (uint256 i = 0; i < balances.length; i++) {
            uint256 amountInWithoutFee;

            if (balanceRatiosWithFee[i] > invariantRatioWithFees) {
                uint256 nonTaxableAmount = balances[i].mulDown(invariantRatioWithFees.sub(FixedPoint.ONE));
                uint256 taxableAmount = amountsIn[i].sub(nonTaxableAmount);
                uint256 swapFee = taxableAmount.mulUp(swapFeePercentage);

                amountInWithoutFee = nonTaxableAmount.add(taxableAmount.sub(swapFee));
                swapFees[i] = swapFee;
            } else {
                amountInWithoutFee = amountsIn[i];
            }

            uint256 balanceRatio = balances[i].add(amountInWithoutFee).divDown(balances[i]);

            invariantRatio = invariantRatio.mulDown(balanceRatio.powDown(normalizedWeights[i]));
        }
    }

    function _calcTokenInGivenExactBptOut(
        uint256 balance,
        uint256 normalizedWeight,
        uint256 bptAmountOut,
        uint256 bptTotalSupply,
        uint256 swapFeePercentage
    ) internal pure returns (uint256 amountIn, uint256 swapFee) {
        /******************************************************************************************
        // tokenInForExactBPTOut                                                                 //
        // a = amountIn                                                                          //
        // b = balance                      /  /    totalBPT + bptOut      \    (1 / w)       \  //
        // bptOut = bptAmountOut   a = b * |  | --------------------------  | ^          - 1  |  //
        // bpt = totalBPT                   \  \       totalBPT            /                  /  //
        // w = weight                                                                            //
        ******************************************************************************************/

        // Token in, so we round up overall.

        // Calculate the factor by which the invariant will increase after minting BPTAmountOut
        uint256 invariantRatio = bptTotalSupply.add(bptAmountOut).divUp(bptTotalSupply);
        _require(invariantRatio <= _MAX_INVARIANT_RATIO, Errors.MAX_OUT_BPT_FOR_TOKEN_IN);

        // Calculate by how much the token balance has to increase to match the invariantRatio
        uint256 balanceRatio = invariantRatio.powUp(FixedPoint.ONE.divUp(normalizedWeight));

        uint256 amountInWithoutFee = balance.mulUp(balanceRatio.sub(FixedPoint.ONE));

        // We can now compute how much extra balance is being deposited and used in virtual swaps, and charge swap fees
        // accordingly.
        uint256 taxablePercentage = normalizedWeight.complement();
        uint256 taxableAmount = amountInWithoutFee.mulUp(taxablePercentage);
        uint256 nonTaxableAmount = amountInWithoutFee.sub(taxableAmount);

        uint256 taxableAmountPlusFees = taxableAmount.divUp(FixedPoint.ONE.sub(swapFeePercentage));

        swapFee = taxableAmountPlusFees - taxableAmount;
        amountIn = nonTaxableAmount.add(taxableAmountPlusFees);
    }

    function _calcAllTokensInGivenExactBptOut(
        uint256[] memory balances,
        uint256 bptAmountOut,
        uint256 totalBPT
    ) internal pure returns (uint256[] memory) {
        /************************************************************************************
        // tokensInForExactBptOut                                                          //
        // (per token)                                                                     //
        // aI = amountIn                   /   bptOut   \                                  //
        // b = balance           aI = b * | ------------ |                                 //
        // bptOut = bptAmountOut           \  totalBPT  /                                  //
        // bpt = totalBPT                                                                  //
        ************************************************************************************/

        // Tokens in, so we round up overall.
        uint256 bptRatio = bptAmountOut.divUp(totalBPT);

        uint256[] memory amountsIn = new uint256[](balances.length);
        for (uint256 i = 0; i < balances.length; i++) {
            amountsIn[i] = balances[i].mulUp(bptRatio);
        }

        return amountsIn;
    }

    function _calcBptInGivenExactTokensOut(
        uint256[] memory balances,
        uint256[] memory normalizedWeights,
        uint256[] memory amountsOut,
        uint256 bptTotalSupply,
        uint256 swapFeePercentage
    ) internal pure returns (uint256, uint256[] memory) {
        // BPT in, so we round up overall.

        uint256[] memory balanceRatiosWithoutFee = new uint256[](amountsOut.length);
        uint256 invariantRatioWithoutFees = 0;
        for (uint256 i = 0; i < balances.length; i++) {
            balanceRatiosWithoutFee[i] = balances[i].sub(amountsOut[i]).divUp(balances[i]);
            invariantRatioWithoutFees = invariantRatioWithoutFees.add(
                balanceRatiosWithoutFee[i].mulUp(normalizedWeights[i])
            );
        }

        (uint256 invariantRatio, uint256[] memory swapFees) = _computeExitExactTokensOutInvariantRatio(
            balances,
            normalizedWeights,
            amountsOut,
            balanceRatiosWithoutFee,
            invariantRatioWithoutFees,
            swapFeePercentage
        );

        uint256 bptIn = bptTotalSupply.mulUp(invariantRatio.complement());
        return (bptIn, swapFees);
    }

    /**
     * @dev Intermediate function to avoid stack-too-deep errors.
     */
    function _computeExitExactTokensOutInvariantRatio(
        uint256[] memory balances,
        uint256[] memory normalizedWeights,
        uint256[] memory amountsOut,
        uint256[] memory balanceRatiosWithoutFee,
        uint256 invariantRatioWithoutFees,
        uint256 swapFeePercentage
    ) private pure returns (uint256 invariantRatio, uint256[] memory swapFees) {
        swapFees = new uint256[](amountsOut.length);
        invariantRatio = FixedPoint.ONE;

        for (uint256 i = 0; i < balances.length; i++) {
            // Swap fees are typically charged on 'token in', but there is no 'token in' here, so we apply it to
            // 'token out'. This results in slightly larger price impact.

            uint256 amountOutWithFee;
            if (invariantRatioWithoutFees > balanceRatiosWithoutFee[i]) {
                uint256 nonTaxableAmount = balances[i].mulDown(invariantRatioWithoutFees.complement());
                uint256 taxableAmount = amountsOut[i].sub(nonTaxableAmount);
                uint256 taxableAmountPlusFees = taxableAmount.divUp(FixedPoint.ONE.sub(swapFeePercentage));

                swapFees[i] = taxableAmountPlusFees - taxableAmount;
                amountOutWithFee = nonTaxableAmount.add(taxableAmountPlusFees);
            } else {
                amountOutWithFee = amountsOut[i];
            }

            uint256 balanceRatio = balances[i].sub(amountOutWithFee).divDown(balances[i]);

            invariantRatio = invariantRatio.mulDown(balanceRatio.powDown(normalizedWeights[i]));
        }
    }

    function _calcTokenOutGivenExactBptIn(
        uint256 balance,
        uint256 normalizedWeight,
        uint256 bptAmountIn,
        uint256 bptTotalSupply,
        uint256 swapFeePercentage
    ) internal pure returns (uint256 amountOut, uint256 swapFee) {
        /*****************************************************************************************
        // exactBPTInForTokenOut                                                                //
        // a = amountOut                                                                        //
        // b = balance                     /      /    totalBPT - bptIn       \    (1 / w)  \   //
        // bptIn = bptAmountIn    a = b * |  1 - | --------------------------  | ^           |  //
        // bpt = totalBPT                  \      \       totalBPT            /             /   //
        // w = weight                                                                           //
        *****************************************************************************************/

        // Token out, so we round down overall. The multiplication rounds down, but the power rounds up (so the base
        // rounds up). Because (totalBPT - bptIn) / totalBPT <= 1, the exponent rounds down.

        // Calculate the factor by which the invariant will decrease after burning BPTAmountIn
        uint256 invariantRatio = bptTotalSupply.sub(bptAmountIn).divUp(bptTotalSupply);
        _require(invariantRatio >= _MIN_INVARIANT_RATIO, Errors.MIN_BPT_IN_FOR_TOKEN_OUT);

        // Calculate by how much the token balance has to decrease to match invariantRatio
        uint256 balanceRatio = invariantRatio.powUp(FixedPoint.ONE.divDown(normalizedWeight));

        // Because of rounding up, balanceRatio can be greater than one. Using complement prevents reverts.
        uint256 amountOutWithoutFee = balance.mulDown(balanceRatio.complement());

        // We can now compute how much excess balance is being withdrawn as a result of the virtual swaps, which result
        // in swap fees.
        uint256 taxablePercentage = normalizedWeight.complement();

        // Swap fees are typically charged on 'token in', but there is no 'token in' here, so we apply it
        // to 'token out'. This results in slightly larger price impact. Fees are rounded up.
        uint256 taxableAmount = amountOutWithoutFee.mulUp(taxablePercentage);
        uint256 nonTaxableAmount = amountOutWithoutFee.sub(taxableAmount);

        swapFee = taxableAmount.mulUp(swapFeePercentage);
        amountOut = nonTaxableAmount.add(taxableAmount.sub(swapFee));
    }

    function _calcTokensOutGivenExactBptIn(
        uint256[] memory balances,
        uint256 bptAmountIn,
        uint256 totalBPT
    ) internal pure returns (uint256[] memory) {
        /**********************************************************************************************
        // exactBPTInForTokensOut                                                                    //
        // (per token)                                                                               //
        // aO = amountOut                  /        bptIn         \                                  //
        // b = balance           a0 = b * | ---------------------  |                                 //
        // bptIn = bptAmountIn             \       totalBPT       /                                  //
        // bpt = totalBPT                                                                            //
        **********************************************************************************************/

        // Since we're computing an amount out, we round down overall. This means rounding down on both the
        // multiplication and division.

        uint256 bptRatio = bptAmountIn.divDown(totalBPT);

        uint256[] memory amountsOut = new uint256[](balances.length);
        for (uint256 i = 0; i < balances.length; i++) {
            amountsOut[i] = balances[i].mulDown(bptRatio);
        }

        return amountsOut;
    }

    function _calcDueTokenProtocolSwapFeeAmount(
        uint256 balance,
        uint256 normalizedWeight,
        uint256 previousInvariant,
        uint256 currentInvariant,
        uint256 protocolSwapFeePercentage
    ) internal pure returns (uint256) {
        /*********************************************************************************
        /*  protocolSwapFeePercentage * balanceToken * ( 1 - (previousInvariant / currentInvariant) ^ (1 / weightToken))
        *********************************************************************************/

        if (currentInvariant <= previousInvariant) {
            // This shouldn't happen outside of rounding errors, but have this safeguard nonetheless to prevent the Pool
            // from entering a locked state in which joins and exits revert while computing accumulated swap fees.
            return 0;
        }

        // We round down to prevent issues in the Pool's accounting, even if it means paying slightly less in protocol
        // fees to the Vault.

        // Fee percentage and balance multiplications round down, while the subtrahend (power) rounds up (as does the
        // base). Because previousInvariant / currentInvariant <= 1, the exponent rounds down.

        uint256 base = previousInvariant.divUp(currentInvariant);
        uint256 exponent = FixedPoint.ONE.divDown(normalizedWeight);

        // Because the exponent is larger than one, the base of the power function has a lower bound. We cap to this
        // value to avoid numeric issues, which means in the extreme case (where the invariant growth is larger than
        // 1 / min exponent) the Pool will pay less in protocol fees than it should.
        base = Math.max(base, FixedPoint.MIN_POW_BASE_FREE_EXPONENT);

        uint256 power = base.powUp(exponent);

        uint256 tokenAccruedFees = balance.mulDown(power.complement());
        return tokenAccruedFees.mulDown(protocolSwapFeePercentage);
    }
}

File 7 of 63 : WeightedPoolUserDataHelpers.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/IERC20.sol";

import "./BaseWeightedPool.sol";

library WeightedPoolUserDataHelpers {
    function joinKind(bytes memory self) internal pure returns (BaseWeightedPool.JoinKind) {
        return abi.decode(self, (BaseWeightedPool.JoinKind));
    }

    function exitKind(bytes memory self) internal pure returns (BaseWeightedPool.ExitKind) {
        return abi.decode(self, (BaseWeightedPool.ExitKind));
    }

    // Joins

    function initialAmountsIn(bytes memory self) internal pure returns (uint256[] memory amountsIn) {
        (, amountsIn) = abi.decode(self, (BaseWeightedPool.JoinKind, uint256[]));
    }

    function exactTokensInForBptOut(bytes memory self)
        internal
        pure
        returns (uint256[] memory amountsIn, uint256 minBPTAmountOut)
    {
        (, amountsIn, minBPTAmountOut) = abi.decode(self, (BaseWeightedPool.JoinKind, uint256[], uint256));
    }

    function tokenInForExactBptOut(bytes memory self) internal pure returns (uint256 bptAmountOut, uint256 tokenIndex) {
        (, bptAmountOut, tokenIndex) = abi.decode(self, (BaseWeightedPool.JoinKind, uint256, uint256));
    }

    function allTokensInForExactBptOut(bytes memory self) internal pure returns (uint256 bptAmountOut) {
        (, bptAmountOut) = abi.decode(self, (BaseWeightedPool.JoinKind, uint256));
    }

    // Exits

    function exactBptInForTokenOut(bytes memory self) internal pure returns (uint256 bptAmountIn, uint256 tokenIndex) {
        (, bptAmountIn, tokenIndex) = abi.decode(self, (BaseWeightedPool.ExitKind, uint256, uint256));
    }

    function exactBptInForTokensOut(bytes memory self) internal pure returns (uint256 bptAmountIn) {
        (, bptAmountIn) = abi.decode(self, (BaseWeightedPool.ExitKind, uint256));
    }

    function bptInForExactTokensOut(bytes memory self)
        internal
        pure
        returns (uint256[] memory amountsOut, uint256 maxBPTAmountIn)
    {
        (, amountsOut, maxBPTAmountIn) = abi.decode(self, (BaseWeightedPool.ExitKind, uint256[], uint256));
    }
}

File 8 of 63 : LogExpMath.sol
// SPDX-License-Identifier: MIT
// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
// documentation files (the “Software”), to deal in the Software without restriction, including without limitation the
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to
// permit persons to whom the Software is furnished to do so, subject to the following conditions:

// The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
// Software.

// THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
// WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
// OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

pragma solidity ^0.7.0;

import "../helpers/BalancerErrors.sol";

/* solhint-disable */

/**
 * @dev Exponentiation and logarithm functions for 18 decimal fixed point numbers (both base and exponent/argument).
 *
 * Exponentiation and logarithm with arbitrary bases (x^y and log_x(y)) are implemented by conversion to natural
 * exponentiation and logarithm (where the base is Euler's number).
 *
 * @author Fernando Martinelli - @fernandomartinelli
 * @author Sergio Yuhjtman - @sergioyuhjtman
 * @author Daniel Fernandez - @dmf7z
 */
library LogExpMath {
    // All fixed point multiplications and divisions are inlined. This means we need to divide by ONE when multiplying
    // two numbers, and multiply by ONE when dividing them.

    // All arguments and return values are 18 decimal fixed point numbers.
    int256 constant ONE_18 = 1e18;

    // Internally, intermediate values are computed with higher precision as 20 decimal fixed point numbers, and in the
    // case of ln36, 36 decimals.
    int256 constant ONE_20 = 1e20;
    int256 constant ONE_36 = 1e36;

    // The domain of natural exponentiation is bound by the word size and number of decimals used.
    //
    // Because internally the result will be stored using 20 decimals, the largest possible result is
    // (2^255 - 1) / 10^20, which makes the largest exponent ln((2^255 - 1) / 10^20) = 130.700829182905140221.
    // The smallest possible result is 10^(-18), which makes largest negative argument
    // ln(10^(-18)) = -41.446531673892822312.
    // We use 130.0 and -41.0 to have some safety margin.
    int256 constant MAX_NATURAL_EXPONENT = 130e18;
    int256 constant MIN_NATURAL_EXPONENT = -41e18;

    // Bounds for ln_36's argument. Both ln(0.9) and ln(1.1) can be represented with 36 decimal places in a fixed point
    // 256 bit integer.
    int256 constant LN_36_LOWER_BOUND = ONE_18 - 1e17;
    int256 constant LN_36_UPPER_BOUND = ONE_18 + 1e17;

    uint256 constant MILD_EXPONENT_BOUND = 2**254 / uint256(ONE_20);

    // 18 decimal constants
    int256 constant x0 = 128000000000000000000; // 2ˆ7
    int256 constant a0 = 38877084059945950922200000000000000000000000000000000000; // eˆ(x0) (no decimals)
    int256 constant x1 = 64000000000000000000; // 2ˆ6
    int256 constant a1 = 6235149080811616882910000000; // eˆ(x1) (no decimals)

    // 20 decimal constants
    int256 constant x2 = 3200000000000000000000; // 2ˆ5
    int256 constant a2 = 7896296018268069516100000000000000; // eˆ(x2)
    int256 constant x3 = 1600000000000000000000; // 2ˆ4
    int256 constant a3 = 888611052050787263676000000; // eˆ(x3)
    int256 constant x4 = 800000000000000000000; // 2ˆ3
    int256 constant a4 = 298095798704172827474000; // eˆ(x4)
    int256 constant x5 = 400000000000000000000; // 2ˆ2
    int256 constant a5 = 5459815003314423907810; // eˆ(x5)
    int256 constant x6 = 200000000000000000000; // 2ˆ1
    int256 constant a6 = 738905609893065022723; // eˆ(x6)
    int256 constant x7 = 100000000000000000000; // 2ˆ0
    int256 constant a7 = 271828182845904523536; // eˆ(x7)
    int256 constant x8 = 50000000000000000000; // 2ˆ-1
    int256 constant a8 = 164872127070012814685; // eˆ(x8)
    int256 constant x9 = 25000000000000000000; // 2ˆ-2
    int256 constant a9 = 128402541668774148407; // eˆ(x9)
    int256 constant x10 = 12500000000000000000; // 2ˆ-3
    int256 constant a10 = 113314845306682631683; // eˆ(x10)
    int256 constant x11 = 6250000000000000000; // 2ˆ-4
    int256 constant a11 = 106449445891785942956; // eˆ(x11)

    /**
     * @dev Exponentiation (x^y) with unsigned 18 decimal fixed point base and exponent.
     *
     * Reverts if ln(x) * y is smaller than `MIN_NATURAL_EXPONENT`, or larger than `MAX_NATURAL_EXPONENT`.
     */
    function pow(uint256 x, uint256 y) internal pure returns (uint256) {
        if (y == 0) {
            // We solve the 0^0 indetermination by making it equal one.
            return uint256(ONE_18);
        }

        if (x == 0) {
            return 0;
        }

        // Instead of computing x^y directly, we instead rely on the properties of logarithms and exponentiation to
        // arrive at that result. In particular, exp(ln(x)) = x, and ln(x^y) = y * ln(x). This means
        // x^y = exp(y * ln(x)).

        // The ln function takes a signed value, so we need to make sure x fits in the signed 256 bit range.
        _require(x < 2**255, Errors.X_OUT_OF_BOUNDS);
        int256 x_int256 = int256(x);

        // We will compute y * ln(x) in a single step. Depending on the value of x, we can either use ln or ln_36. In
        // both cases, we leave the division by ONE_18 (due to fixed point multiplication) to the end.

        // This prevents y * ln(x) from overflowing, and at the same time guarantees y fits in the signed 256 bit range.
        _require(y < MILD_EXPONENT_BOUND, Errors.Y_OUT_OF_BOUNDS);
        int256 y_int256 = int256(y);

        int256 logx_times_y;
        if (LN_36_LOWER_BOUND < x_int256 && x_int256 < LN_36_UPPER_BOUND) {
            int256 ln_36_x = _ln_36(x_int256);

            // ln_36_x has 36 decimal places, so multiplying by y_int256 isn't as straightforward, since we can't just
            // bring y_int256 to 36 decimal places, as it might overflow. Instead, we perform two 18 decimal
            // multiplications and add the results: one with the first 18 decimals of ln_36_x, and one with the
            // (downscaled) last 18 decimals.
            logx_times_y = ((ln_36_x / ONE_18) * y_int256 + ((ln_36_x % ONE_18) * y_int256) / ONE_18);
        } else {
            logx_times_y = _ln(x_int256) * y_int256;
        }
        logx_times_y /= ONE_18;

        // Finally, we compute exp(y * ln(x)) to arrive at x^y
        _require(
            MIN_NATURAL_EXPONENT <= logx_times_y && logx_times_y <= MAX_NATURAL_EXPONENT,
            Errors.PRODUCT_OUT_OF_BOUNDS
        );

        return uint256(exp(logx_times_y));
    }

    /**
     * @dev Natural exponentiation (e^x) with signed 18 decimal fixed point exponent.
     *
     * Reverts if `x` is smaller than MIN_NATURAL_EXPONENT, or larger than `MAX_NATURAL_EXPONENT`.
     */
    function exp(int256 x) internal pure returns (int256) {
        _require(x >= MIN_NATURAL_EXPONENT && x <= MAX_NATURAL_EXPONENT, Errors.INVALID_EXPONENT);

        if (x < 0) {
            // We only handle positive exponents: e^(-x) is computed as 1 / e^x. We can safely make x positive since it
            // fits in the signed 256 bit range (as it is larger than MIN_NATURAL_EXPONENT).
            // Fixed point division requires multiplying by ONE_18.
            return ((ONE_18 * ONE_18) / exp(-x));
        }

        // First, we use the fact that e^(x+y) = e^x * e^y to decompose x into a sum of powers of two, which we call x_n,
        // where x_n == 2^(7 - n), and e^x_n = a_n has been precomputed. We choose the first x_n, x0, to equal 2^7
        // because all larger powers are larger than MAX_NATURAL_EXPONENT, and therefore not present in the
        // decomposition.
        // At the end of this process we will have the product of all e^x_n = a_n that apply, and the remainder of this
        // decomposition, which will be lower than the smallest x_n.
        // exp(x) = k_0 * a_0 * k_1 * a_1 * ... + k_n * a_n * exp(remainder), where each k_n equals either 0 or 1.
        // We mutate x by subtracting x_n, making it the remainder of the decomposition.

        // The first two a_n (e^(2^7) and e^(2^6)) are too large if stored as 18 decimal numbers, and could cause
        // intermediate overflows. Instead we store them as plain integers, with 0 decimals.
        // Additionally, x0 + x1 is larger than MAX_NATURAL_EXPONENT, which means they will not both be present in the
        // decomposition.

        // For each x_n, we test if that term is present in the decomposition (if x is larger than it), and if so deduct
        // it and compute the accumulated product.

        int256 firstAN;
        if (x >= x0) {
            x -= x0;
            firstAN = a0;
        } else if (x >= x1) {
            x -= x1;
            firstAN = a1;
        } else {
            firstAN = 1; // One with no decimal places
        }

        // We now transform x into a 20 decimal fixed point number, to have enhanced precision when computing the
        // smaller terms.
        x *= 100;

        // `product` is the accumulated product of all a_n (except a0 and a1), which starts at 20 decimal fixed point
        // one. Recall that fixed point multiplication requires dividing by ONE_20.
        int256 product = ONE_20;

        if (x >= x2) {
            x -= x2;
            product = (product * a2) / ONE_20;
        }
        if (x >= x3) {
            x -= x3;
            product = (product * a3) / ONE_20;
        }
        if (x >= x4) {
            x -= x4;
            product = (product * a4) / ONE_20;
        }
        if (x >= x5) {
            x -= x5;
            product = (product * a5) / ONE_20;
        }
        if (x >= x6) {
            x -= x6;
            product = (product * a6) / ONE_20;
        }
        if (x >= x7) {
            x -= x7;
            product = (product * a7) / ONE_20;
        }
        if (x >= x8) {
            x -= x8;
            product = (product * a8) / ONE_20;
        }
        if (x >= x9) {
            x -= x9;
            product = (product * a9) / ONE_20;
        }

        // x10 and x11 are unnecessary here since we have high enough precision already.

        // Now we need to compute e^x, where x is small (in particular, it is smaller than x9). We use the Taylor series
        // expansion for e^x: 1 + x + (x^2 / 2!) + (x^3 / 3!) + ... + (x^n / n!).

        int256 seriesSum = ONE_20; // The initial one in the sum, with 20 decimal places.
        int256 term; // Each term in the sum, where the nth term is (x^n / n!).

        // The first term is simply x.
        term = x;
        seriesSum += term;

        // Each term (x^n / n!) equals the previous one times x, divided by n. Since x is a fixed point number,
        // multiplying by it requires dividing by ONE_20, but dividing by the non-fixed point n values does not.

        term = ((term * x) / ONE_20) / 2;
        seriesSum += term;

        term = ((term * x) / ONE_20) / 3;
        seriesSum += term;

        term = ((term * x) / ONE_20) / 4;
        seriesSum += term;

        term = ((term * x) / ONE_20) / 5;
        seriesSum += term;

        term = ((term * x) / ONE_20) / 6;
        seriesSum += term;

        term = ((term * x) / ONE_20) / 7;
        seriesSum += term;

        term = ((term * x) / ONE_20) / 8;
        seriesSum += term;

        term = ((term * x) / ONE_20) / 9;
        seriesSum += term;

        term = ((term * x) / ONE_20) / 10;
        seriesSum += term;

        term = ((term * x) / ONE_20) / 11;
        seriesSum += term;

        term = ((term * x) / ONE_20) / 12;
        seriesSum += term;

        // 12 Taylor terms are sufficient for 18 decimal precision.

        // We now have the first a_n (with no decimals), and the product of all other a_n present, and the Taylor
        // approximation of the exponentiation of the remainder (both with 20 decimals). All that remains is to multiply
        // all three (one 20 decimal fixed point multiplication, dividing by ONE_20, and one integer multiplication),
        // and then drop two digits to return an 18 decimal value.

        return (((product * seriesSum) / ONE_20) * firstAN) / 100;
    }

    /**
     * @dev Logarithm (log(arg, base), with signed 18 decimal fixed point base and argument.
     */
    function log(int256 arg, int256 base) internal pure returns (int256) {
        // This performs a simple base change: log(arg, base) = ln(arg) / ln(base).

        // Both logBase and logArg are computed as 36 decimal fixed point numbers, either by using ln_36, or by
        // upscaling.

        int256 logBase;
        if (LN_36_LOWER_BOUND < base && base < LN_36_UPPER_BOUND) {
            logBase = _ln_36(base);
        } else {
            logBase = _ln(base) * ONE_18;
        }

        int256 logArg;
        if (LN_36_LOWER_BOUND < arg && arg < LN_36_UPPER_BOUND) {
            logArg = _ln_36(arg);
        } else {
            logArg = _ln(arg) * ONE_18;
        }

        // When dividing, we multiply by ONE_18 to arrive at a result with 18 decimal places
        return (logArg * ONE_18) / logBase;
    }

    /**
     * @dev Natural logarithm (ln(a)) with signed 18 decimal fixed point argument.
     */
    function ln(int256 a) internal pure returns (int256) {
        // The real natural logarithm is not defined for negative numbers or zero.
        _require(a > 0, Errors.OUT_OF_BOUNDS);
        if (LN_36_LOWER_BOUND < a && a < LN_36_UPPER_BOUND) {
            return _ln_36(a) / ONE_18;
        } else {
            return _ln(a);
        }
    }

    /**
     * @dev Internal natural logarithm (ln(a)) with signed 18 decimal fixed point argument.
     */
    function _ln(int256 a) private pure returns (int256) {
        if (a < ONE_18) {
            // Since ln(a^k) = k * ln(a), we can compute ln(a) as ln(a) = ln((1/a)^(-1)) = - ln((1/a)). If a is less
            // than one, 1/a will be greater than one, and this if statement will not be entered in the recursive call.
            // Fixed point division requires multiplying by ONE_18.
            return (-_ln((ONE_18 * ONE_18) / a));
        }

        // First, we use the fact that ln^(a * b) = ln(a) + ln(b) to decompose ln(a) into a sum of powers of two, which
        // we call x_n, where x_n == 2^(7 - n), which are the natural logarithm of precomputed quantities a_n (that is,
        // ln(a_n) = x_n). We choose the first x_n, x0, to equal 2^7 because the exponential of all larger powers cannot
        // be represented as 18 fixed point decimal numbers in 256 bits, and are therefore larger than a.
        // At the end of this process we will have the sum of all x_n = ln(a_n) that apply, and the remainder of this
        // decomposition, which will be lower than the smallest a_n.
        // ln(a) = k_0 * x_0 + k_1 * x_1 + ... + k_n * x_n + ln(remainder), where each k_n equals either 0 or 1.
        // We mutate a by subtracting a_n, making it the remainder of the decomposition.

        // For reasons related to how `exp` works, the first two a_n (e^(2^7) and e^(2^6)) are not stored as fixed point
        // numbers with 18 decimals, but instead as plain integers with 0 decimals, so we need to multiply them by
        // ONE_18 to convert them to fixed point.
        // For each a_n, we test if that term is present in the decomposition (if a is larger than it), and if so divide
        // by it and compute the accumulated sum.

        int256 sum = 0;
        if (a >= a0 * ONE_18) {
            a /= a0; // Integer, not fixed point division
            sum += x0;
        }

        if (a >= a1 * ONE_18) {
            a /= a1; // Integer, not fixed point division
            sum += x1;
        }

        // All other a_n and x_n are stored as 20 digit fixed point numbers, so we convert the sum and a to this format.
        sum *= 100;
        a *= 100;

        // Because further a_n are  20 digit fixed point numbers, we multiply by ONE_20 when dividing by them.

        if (a >= a2) {
            a = (a * ONE_20) / a2;
            sum += x2;
        }

        if (a >= a3) {
            a = (a * ONE_20) / a3;
            sum += x3;
        }

        if (a >= a4) {
            a = (a * ONE_20) / a4;
            sum += x4;
        }

        if (a >= a5) {
            a = (a * ONE_20) / a5;
            sum += x5;
        }

        if (a >= a6) {
            a = (a * ONE_20) / a6;
            sum += x6;
        }

        if (a >= a7) {
            a = (a * ONE_20) / a7;
            sum += x7;
        }

        if (a >= a8) {
            a = (a * ONE_20) / a8;
            sum += x8;
        }

        if (a >= a9) {
            a = (a * ONE_20) / a9;
            sum += x9;
        }

        if (a >= a10) {
            a = (a * ONE_20) / a10;
            sum += x10;
        }

        if (a >= a11) {
            a = (a * ONE_20) / a11;
            sum += x11;
        }

        // a is now a small number (smaller than a_11, which roughly equals 1.06). This means we can use a Taylor series
        // that converges rapidly for values of `a` close to one - the same one used in ln_36.
        // Let z = (a - 1) / (a + 1).
        // ln(a) = 2 * (z + z^3 / 3 + z^5 / 5 + z^7 / 7 + ... + z^(2 * n + 1) / (2 * n + 1))

        // Recall that 20 digit fixed point division requires multiplying by ONE_20, and multiplication requires
        // division by ONE_20.
        int256 z = ((a - ONE_20) * ONE_20) / (a + ONE_20);
        int256 z_squared = (z * z) / ONE_20;

        // num is the numerator of the series: the z^(2 * n + 1) term
        int256 num = z;

        // seriesSum holds the accumulated sum of each term in the series, starting with the initial z
        int256 seriesSum = num;

        // In each step, the numerator is multiplied by z^2
        num = (num * z_squared) / ONE_20;
        seriesSum += num / 3;

        num = (num * z_squared) / ONE_20;
        seriesSum += num / 5;

        num = (num * z_squared) / ONE_20;
        seriesSum += num / 7;

        num = (num * z_squared) / ONE_20;
        seriesSum += num / 9;

        num = (num * z_squared) / ONE_20;
        seriesSum += num / 11;

        // 6 Taylor terms are sufficient for 36 decimal precision.

        // Finally, we multiply by 2 (non fixed point) to compute ln(remainder)
        seriesSum *= 2;

        // We now have the sum of all x_n present, and the Taylor approximation of the logarithm of the remainder (both
        // with 20 decimals). All that remains is to sum these two, and then drop two digits to return a 18 decimal
        // value.

        return (sum + seriesSum) / 100;
    }

    /**
     * @dev Intrnal high precision (36 decimal places) natural logarithm (ln(x)) with signed 18 decimal fixed point argument,
     * for x close to one.
     *
     * Should only be used if x is between LN_36_LOWER_BOUND and LN_36_UPPER_BOUND.
     */
    function _ln_36(int256 x) private pure returns (int256) {
        // Since ln(1) = 0, a value of x close to one will yield a very small result, which makes using 36 digits
        // worthwhile.

        // First, we transform x to a 36 digit fixed point value.
        x *= ONE_18;

        // We will use the following Taylor expansion, which converges very rapidly. Let z = (x - 1) / (x + 1).
        // ln(x) = 2 * (z + z^3 / 3 + z^5 / 5 + z^7 / 7 + ... + z^(2 * n + 1) / (2 * n + 1))

        // Recall that 36 digit fixed point division requires multiplying by ONE_36, and multiplication requires
        // division by ONE_36.
        int256 z = ((x - ONE_36) * ONE_36) / (x + ONE_36);
        int256 z_squared = (z * z) / ONE_36;

        // num is the numerator of the series: the z^(2 * n + 1) term
        int256 num = z;

        // seriesSum holds the accumulated sum of each term in the series, starting with the initial z
        int256 seriesSum = num;

        // In each step, the numerator is multiplied by z^2
        num = (num * z_squared) / ONE_36;
        seriesSum += num / 3;

        num = (num * z_squared) / ONE_36;
        seriesSum += num / 5;

        num = (num * z_squared) / ONE_36;
        seriesSum += num / 7;

        num = (num * z_squared) / ONE_36;
        seriesSum += num / 9;

        num = (num * z_squared) / ONE_36;
        seriesSum += num / 11;

        num = (num * z_squared) / ONE_36;
        seriesSum += num / 13;

        num = (num * z_squared) / ONE_36;
        seriesSum += num / 15;

        // 8 Taylor terms are sufficient for 36 decimal precision.

        // All that remains is multiplying by 2 (non fixed point).
        return seriesSum * 2;
    }
}

File 9 of 63 : BalancerErrors.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

// solhint-disable

/**
 * @dev Reverts if `condition` is false, with a revert reason containing `errorCode`. Only codes up to 999 are
 * supported.
 */
function _require(bool condition, uint256 errorCode) pure {
    if (!condition) _revert(errorCode);
}

/**
 * @dev Reverts with a revert reason containing `errorCode`. Only codes up to 999 are supported.
 */
function _revert(uint256 errorCode) pure {
    // We're going to dynamically create a revert string based on the error code, with the following format:
    // 'BAL#{errorCode}'
    // where the code is left-padded with zeroes to three digits (so they range from 000 to 999).
    //
    // We don't have revert strings embedded in the contract to save bytecode size: it takes much less space to store a
    // number (8 to 16 bits) than the individual string characters.
    //
    // The dynamic string creation algorithm that follows could be implemented in Solidity, but assembly allows for a
    // much denser implementation, again saving bytecode size. Given this function unconditionally reverts, this is a
    // safe place to rely on it without worrying about how its usage might affect e.g. memory contents.
    assembly {
        // First, we need to compute the ASCII representation of the error code. We assume that it is in the 0-999
        // range, so we only need to convert three digits. To convert the digits to ASCII, we add 0x30, the value for
        // the '0' character.

        let units := add(mod(errorCode, 10), 0x30)

        errorCode := div(errorCode, 10)
        let tenths := add(mod(errorCode, 10), 0x30)

        errorCode := div(errorCode, 10)
        let hundreds := add(mod(errorCode, 10), 0x30)

        // With the individual characters, we can now construct the full string. The "BAL#" part is a known constant
        // (0x42414c23): we simply shift this by 24 (to provide space for the 3 bytes of the error code), and add the
        // characters to it, each shifted by a multiple of 8.
        // The revert reason is then shifted left by 200 bits (256 minus the length of the string, 7 characters * 8 bits
        // per character = 56) to locate it in the most significant part of the 256 slot (the beginning of a byte
        // array).

        let revertReason := shl(200, add(0x42414c23000000, add(add(units, shl(8, tenths)), shl(16, hundreds))))

        // We can now encode the reason in memory, which can be safely overwritten as we're about to revert. The encoded
        // message will have the following layout:
        // [ revert reason identifier ] [ string location offset ] [ string length ] [ string contents ]

        // The Solidity revert reason identifier is 0x08c739a0, the function selector of the Error(string) function. We
        // also write zeroes to the next 28 bytes of memory, but those are about to be overwritten.
        mstore(0x0, 0x08c379a000000000000000000000000000000000000000000000000000000000)
        // Next is the offset to the location of the string, which will be placed immediately after (20 bytes away).
        mstore(0x04, 0x0000000000000000000000000000000000000000000000000000000000000020)
        // The string length is fixed: 7 characters.
        mstore(0x24, 7)
        // Finally, the string itself is stored.
        mstore(0x44, revertReason)

        // Even if the string is only 7 bytes long, we need to return a full 32 byte slot containing it. The length of
        // the encoded message is therefore 4 + 32 + 32 + 32 = 100.
        revert(0, 100)
    }
}

library Errors {
    // Math
    uint256 internal constant ADD_OVERFLOW = 0;
    uint256 internal constant SUB_OVERFLOW = 1;
    uint256 internal constant SUB_UNDERFLOW = 2;
    uint256 internal constant MUL_OVERFLOW = 3;
    uint256 internal constant ZERO_DIVISION = 4;
    uint256 internal constant DIV_INTERNAL = 5;
    uint256 internal constant X_OUT_OF_BOUNDS = 6;
    uint256 internal constant Y_OUT_OF_BOUNDS = 7;
    uint256 internal constant PRODUCT_OUT_OF_BOUNDS = 8;
    uint256 internal constant INVALID_EXPONENT = 9;

    // Input
    uint256 internal constant OUT_OF_BOUNDS = 100;
    uint256 internal constant UNSORTED_ARRAY = 101;
    uint256 internal constant UNSORTED_TOKENS = 102;
    uint256 internal constant INPUT_LENGTH_MISMATCH = 103;
    uint256 internal constant ZERO_TOKEN = 104;

    // Shared pools
    uint256 internal constant MIN_TOKENS = 200;
    uint256 internal constant MAX_TOKENS = 201;
    uint256 internal constant MAX_SWAP_FEE_PERCENTAGE = 202;
    uint256 internal constant MIN_SWAP_FEE_PERCENTAGE = 203;
    uint256 internal constant MINIMUM_BPT = 204;
    uint256 internal constant CALLER_NOT_VAULT = 205;
    uint256 internal constant UNINITIALIZED = 206;
    uint256 internal constant BPT_IN_MAX_AMOUNT = 207;
    uint256 internal constant BPT_OUT_MIN_AMOUNT = 208;
    uint256 internal constant EXPIRED_PERMIT = 209;
    uint256 internal constant NOT_TWO_TOKENS = 210;

    // Pools
    uint256 internal constant MIN_AMP = 300;
    uint256 internal constant MAX_AMP = 301;
    uint256 internal constant MIN_WEIGHT = 302;
    uint256 internal constant MAX_STABLE_TOKENS = 303;
    uint256 internal constant MAX_IN_RATIO = 304;
    uint256 internal constant MAX_OUT_RATIO = 305;
    uint256 internal constant MIN_BPT_IN_FOR_TOKEN_OUT = 306;
    uint256 internal constant MAX_OUT_BPT_FOR_TOKEN_IN = 307;
    uint256 internal constant NORMALIZED_WEIGHT_INVARIANT = 308;
    uint256 internal constant INVALID_TOKEN = 309;
    uint256 internal constant UNHANDLED_JOIN_KIND = 310;
    uint256 internal constant ZERO_INVARIANT = 311;
    uint256 internal constant ORACLE_INVALID_SECONDS_QUERY = 312;
    uint256 internal constant ORACLE_NOT_INITIALIZED = 313;
    uint256 internal constant ORACLE_QUERY_TOO_OLD = 314;
    uint256 internal constant ORACLE_INVALID_INDEX = 315;
    uint256 internal constant ORACLE_BAD_SECS = 316;
    uint256 internal constant AMP_END_TIME_TOO_CLOSE = 317;
    uint256 internal constant AMP_ONGOING_UPDATE = 318;
    uint256 internal constant AMP_RATE_TOO_HIGH = 319;
    uint256 internal constant AMP_NO_ONGOING_UPDATE = 320;
    uint256 internal constant STABLE_INVARIANT_DIDNT_CONVERGE = 321;
    uint256 internal constant STABLE_GET_BALANCE_DIDNT_CONVERGE = 322;
    uint256 internal constant RELAYER_NOT_CONTRACT = 323;
    uint256 internal constant BASE_POOL_RELAYER_NOT_CALLED = 324;
    uint256 internal constant REBALANCING_RELAYER_REENTERED = 325;
    uint256 internal constant GRADUAL_UPDATE_TIME_TRAVEL = 326;
    uint256 internal constant SWAPS_DISABLED = 327;
    uint256 internal constant CALLER_IS_NOT_LBP_OWNER = 328;
    uint256 internal constant PRICE_RATE_OVERFLOW = 329;
    uint256 internal constant INVALID_JOIN_EXIT_KIND_WHILE_SWAPS_DISABLED = 330;
    uint256 internal constant WEIGHT_CHANGE_TOO_FAST = 331;
    uint256 internal constant LOWER_GREATER_THAN_UPPER_TARGET = 332;
    uint256 internal constant UPPER_TARGET_TOO_HIGH = 333;
    uint256 internal constant UNHANDLED_BY_LINEAR_POOL = 334;
    uint256 internal constant OUT_OF_TARGET_RANGE = 335;
    uint256 internal constant UNHANDLED_EXIT_KIND = 336;
    uint256 internal constant UNAUTHORIZED_EXIT = 337;
    uint256 internal constant MAX_MANAGEMENT_SWAP_FEE_PERCENTAGE = 338;
    uint256 internal constant UNHANDLED_BY_INVESTMENT_POOL = 339;

    // Lib
    uint256 internal constant REENTRANCY = 400;
    uint256 internal constant SENDER_NOT_ALLOWED = 401;
    uint256 internal constant PAUSED = 402;
    uint256 internal constant PAUSE_WINDOW_EXPIRED = 403;
    uint256 internal constant MAX_PAUSE_WINDOW_DURATION = 404;
    uint256 internal constant MAX_BUFFER_PERIOD_DURATION = 405;
    uint256 internal constant INSUFFICIENT_BALANCE = 406;
    uint256 internal constant INSUFFICIENT_ALLOWANCE = 407;
    uint256 internal constant ERC20_TRANSFER_FROM_ZERO_ADDRESS = 408;
    uint256 internal constant ERC20_TRANSFER_TO_ZERO_ADDRESS = 409;
    uint256 internal constant ERC20_MINT_TO_ZERO_ADDRESS = 410;
    uint256 internal constant ERC20_BURN_FROM_ZERO_ADDRESS = 411;
    uint256 internal constant ERC20_APPROVE_FROM_ZERO_ADDRESS = 412;
    uint256 internal constant ERC20_APPROVE_TO_ZERO_ADDRESS = 413;
    uint256 internal constant ERC20_TRANSFER_EXCEEDS_ALLOWANCE = 414;
    uint256 internal constant ERC20_DECREASED_ALLOWANCE_BELOW_ZERO = 415;
    uint256 internal constant ERC20_TRANSFER_EXCEEDS_BALANCE = 416;
    uint256 internal constant ERC20_BURN_EXCEEDS_ALLOWANCE = 417;
    uint256 internal constant SAFE_ERC20_CALL_FAILED = 418;
    uint256 internal constant ADDRESS_INSUFFICIENT_BALANCE = 419;
    uint256 internal constant ADDRESS_CANNOT_SEND_VALUE = 420;
    uint256 internal constant SAFE_CAST_VALUE_CANT_FIT_INT256 = 421;
    uint256 internal constant GRANT_SENDER_NOT_ADMIN = 422;
    uint256 internal constant REVOKE_SENDER_NOT_ADMIN = 423;
    uint256 internal constant RENOUNCE_SENDER_NOT_ALLOWED = 424;
    uint256 internal constant BUFFER_PERIOD_EXPIRED = 425;
    uint256 internal constant CALLER_IS_NOT_OWNER = 426;
    uint256 internal constant NEW_OWNER_IS_ZERO = 427;
    uint256 internal constant CODE_DEPLOYMENT_FAILED = 428;
    uint256 internal constant CALL_TO_NON_CONTRACT = 429;
    uint256 internal constant LOW_LEVEL_CALL_FAILED = 430;

    // Vault
    uint256 internal constant INVALID_POOL_ID = 500;
    uint256 internal constant CALLER_NOT_POOL = 501;
    uint256 internal constant SENDER_NOT_ASSET_MANAGER = 502;
    uint256 internal constant USER_DOESNT_ALLOW_RELAYER = 503;
    uint256 internal constant INVALID_SIGNATURE = 504;
    uint256 internal constant EXIT_BELOW_MIN = 505;
    uint256 internal constant JOIN_ABOVE_MAX = 506;
    uint256 internal constant SWAP_LIMIT = 507;
    uint256 internal constant SWAP_DEADLINE = 508;
    uint256 internal constant CANNOT_SWAP_SAME_TOKEN = 509;
    uint256 internal constant UNKNOWN_AMOUNT_IN_FIRST_SWAP = 510;
    uint256 internal constant MALCONSTRUCTED_MULTIHOP_SWAP = 511;
    uint256 internal constant INTERNAL_BALANCE_OVERFLOW = 512;
    uint256 internal constant INSUFFICIENT_INTERNAL_BALANCE = 513;
    uint256 internal constant INVALID_ETH_INTERNAL_BALANCE = 514;
    uint256 internal constant INVALID_POST_LOAN_BALANCE = 515;
    uint256 internal constant INSUFFICIENT_ETH = 516;
    uint256 internal constant UNALLOCATED_ETH = 517;
    uint256 internal constant ETH_TRANSFER = 518;
    uint256 internal constant CANNOT_USE_ETH_SENTINEL = 519;
    uint256 internal constant TOKENS_MISMATCH = 520;
    uint256 internal constant TOKEN_NOT_REGISTERED = 521;
    uint256 internal constant TOKEN_ALREADY_REGISTERED = 522;
    uint256 internal constant TOKENS_ALREADY_SET = 523;
    uint256 internal constant TOKENS_LENGTH_MUST_BE_2 = 524;
    uint256 internal constant NONZERO_TOKEN_BALANCE = 525;
    uint256 internal constant BALANCE_TOTAL_OVERFLOW = 526;
    uint256 internal constant POOL_NO_TOKENS = 527;
    uint256 internal constant INSUFFICIENT_FLASH_LOAN_BALANCE = 528;

    // Fees
    uint256 internal constant SWAP_FEE_PERCENTAGE_TOO_HIGH = 600;
    uint256 internal constant FLASH_LOAN_FEE_PERCENTAGE_TOO_HIGH = 601;
    uint256 internal constant INSUFFICIENT_FLASH_LOAN_FEE_AMOUNT = 602;
}

File 10 of 63 : IERC20.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.7.0;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Returns the amount of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the amount of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves `amount` tokens from the caller's account to `recipient`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address recipient, uint256 amount) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 amount) external returns (bool);

    /**
     * @dev Moves `amount` tokens from `sender` to `recipient` using the
     * allowance mechanism. `amount` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(
        address sender,
        address recipient,
        uint256 amount
    ) external returns (bool);

    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);
}

File 11 of 63 : BasePool.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;
pragma experimental ABIEncoderV2;

import "@balancer-labs/v2-solidity-utils/contracts/math/Math.sol";
import "@balancer-labs/v2-solidity-utils/contracts/math/FixedPoint.sol";
import "@balancer-labs/v2-solidity-utils/contracts/helpers/InputHelpers.sol";
import "@balancer-labs/v2-solidity-utils/contracts/helpers/TemporarilyPausable.sol";
import "@balancer-labs/v2-solidity-utils/contracts/helpers/WordCodec.sol";
import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/ERC20.sol";

import "@balancer-labs/v2-vault/contracts/interfaces/IVault.sol";
import "@balancer-labs/v2-vault/contracts/interfaces/IBasePool.sol";

import "@balancer-labs/v2-asset-manager-utils/contracts/IAssetManager.sol";

import "./BalancerPoolToken.sol";
import "./BasePoolAuthorization.sol";

// solhint-disable max-states-count

/**
 * @dev Reference implementation for the base layer of a Pool contract that manages a single Pool with optional
 * Asset Managers, an admin-controlled swap fee percentage, and an emergency pause mechanism.
 *
 * Note that neither swap fees nor the pause mechanism are used by this contract. They are passed through so that
 * derived contracts can use them via the `_addSwapFeeAmount` and `_subtractSwapFeeAmount` functions, and the
 * `whenNotPaused` modifier.
 *
 * No admin permissions are checked here: instead, this contract delegates that to the Vault's own Authorizer.
 *
 * Because this contract doesn't implement the swap hooks, derived contracts should generally inherit from
 * BaseGeneralPool or BaseMinimalSwapInfoPool. Otherwise, subclasses must inherit from the corresponding interfaces
 * and implement the swap callbacks themselves.
 */
abstract contract BasePool is IBasePool, BasePoolAuthorization, BalancerPoolToken, TemporarilyPausable {
    using WordCodec for bytes32;
    using FixedPoint for uint256;

    uint256 private constant _MIN_TOKENS = 2;

    uint256 private constant _MINIMUM_BPT = 1e6;

    // 1e18 corresponds to 1.0, or a 100% fee
    uint256 private constant _MIN_SWAP_FEE_PERCENTAGE = 1e12; // 0.0001%
    uint256 private constant _MAX_SWAP_FEE_PERCENTAGE = 1e17; // 10% - this fits in 64 bits

    // Storage slot that can be used to store unrelated pieces of information. In particular, by default is used
    // to store only the swap fee percentage of a pool. But it can be extended to store some more pieces of information.
    // The swap fee percentage is stored in the most-significant 64 bits, therefore the remaining 192 bits can be
    // used to store any other piece of information.
    bytes32 private _miscData;
    uint256 private constant _SWAP_FEE_PERCENTAGE_OFFSET = 192;

    IVault private immutable _vault;
    bytes32 private immutable _poolId;

    event SwapFeePercentageChanged(uint256 swapFeePercentage);

    constructor(
        IVault vault,
        IVault.PoolSpecialization specialization,
        string memory name,
        string memory symbol,
        IERC20[] memory tokens,
        address[] memory assetManagers,
        uint256 swapFeePercentage,
        uint256 pauseWindowDuration,
        uint256 bufferPeriodDuration,
        address owner
    )
        // Base Pools are expected to be deployed using factories. By using the factory address as the action
        // disambiguator, we make all Pools deployed by the same factory share action identifiers. This allows for
        // simpler management of permissions (such as being able to manage granting the 'set fee percentage' action in
        // any Pool created by the same factory), while still making action identifiers unique among different factories
        // if the selectors match, preventing accidental errors.
        Authentication(bytes32(uint256(msg.sender)))
        BalancerPoolToken(name, symbol)
        BasePoolAuthorization(owner)
        TemporarilyPausable(pauseWindowDuration, bufferPeriodDuration)
    {
        _require(tokens.length >= _MIN_TOKENS, Errors.MIN_TOKENS);
        _require(tokens.length <= _getMaxTokens(), Errors.MAX_TOKENS);

        // The Vault only requires the token list to be ordered for the Two Token Pools specialization. However,
        // to make the developer experience consistent, we are requiring this condition for all the native pools.
        // Also, since these Pools will register tokens only once, we can ensure the Pool tokens will follow the same
        // order. We rely on this property to make Pools simpler to write, as it lets us assume that the
        // order of token-specific parameters (such as token weights) will not change.
        InputHelpers.ensureArrayIsSorted(tokens);

        _setSwapFeePercentage(swapFeePercentage);

        bytes32 poolId = vault.registerPool(specialization);

        vault.registerTokens(poolId, tokens, assetManagers);

        // Set immutable state variables - these cannot be read from during construction
        _vault = vault;
        _poolId = poolId;
    }

    // Getters / Setters

    function getVault() public view returns (IVault) {
        return _vault;
    }

    function getPoolId() public view override returns (bytes32) {
        return _poolId;
    }

    function _getTotalTokens() internal view virtual returns (uint256);

    function _getMaxTokens() internal pure virtual returns (uint256);

    function _getMinimumBpt() internal pure virtual returns (uint256) {
        return _MINIMUM_BPT;
    }

    function getSwapFeePercentage() public view returns (uint256) {
        return _miscData.decodeUint64(_SWAP_FEE_PERCENTAGE_OFFSET);
    }

    function setSwapFeePercentage(uint256 swapFeePercentage) external virtual authenticate whenNotPaused {
        _setSwapFeePercentage(swapFeePercentage);
    }

    function _setSwapFeePercentage(uint256 swapFeePercentage) private {
        _require(swapFeePercentage >= _MIN_SWAP_FEE_PERCENTAGE, Errors.MIN_SWAP_FEE_PERCENTAGE);
        _require(swapFeePercentage <= _MAX_SWAP_FEE_PERCENTAGE, Errors.MAX_SWAP_FEE_PERCENTAGE);

        _miscData = _miscData.insertUint64(swapFeePercentage, _SWAP_FEE_PERCENTAGE_OFFSET);
        emit SwapFeePercentageChanged(swapFeePercentage);
    }

    function setAssetManagerPoolConfig(IERC20 token, bytes memory poolConfig)
        public
        virtual
        authenticate
        whenNotPaused
    {
        _setAssetManagerPoolConfig(token, poolConfig);
    }

    function _setAssetManagerPoolConfig(IERC20 token, bytes memory poolConfig) private {
        bytes32 poolId = getPoolId();
        (, , , address assetManager) = getVault().getPoolTokenInfo(poolId, token);

        IAssetManager(assetManager).setConfig(poolId, poolConfig);
    }

    function setPaused(bool paused) external authenticate {
        _setPaused(paused);
    }

    function _isOwnerOnlyAction(bytes32 actionId) internal view virtual override returns (bool) {
        return
            (actionId == getActionId(this.setSwapFeePercentage.selector)) ||
            (actionId == getActionId(this.setAssetManagerPoolConfig.selector));
    }

    function _getMiscData() internal view returns (bytes32) {
        return _miscData;
    }

    /**
     * Inserts data into the least-significant 192 bits of the misc data storage slot.
     * Note that the remaining 64 bits are used for the swap fee percentage and cannot be overloaded.
     */
    function _setMiscData(bytes32 newData) internal {
        _miscData = _miscData.insertBits192(newData, 0);
    }

    // Join / Exit Hooks

    modifier onlyVault(bytes32 poolId) {
        _require(msg.sender == address(getVault()), Errors.CALLER_NOT_VAULT);
        _require(poolId == getPoolId(), Errors.INVALID_POOL_ID);
        _;
    }

    function onJoinPool(
        bytes32 poolId,
        address sender,
        address recipient,
        uint256[] memory balances,
        uint256 lastChangeBlock,
        uint256 protocolSwapFeePercentage,
        bytes memory userData
    ) public virtual override onlyVault(poolId) returns (uint256[] memory, uint256[] memory) {
        uint256[] memory scalingFactors = _scalingFactors();

        if (totalSupply() == 0) {
            (uint256 bptAmountOut, uint256[] memory amountsIn) = _onInitializePool(
                poolId,
                sender,
                recipient,
                scalingFactors,
                userData
            );

            // On initialization, we lock _getMinimumBpt() by minting it for the zero address. This BPT acts as a
            // minimum as it will never be burned, which reduces potential issues with rounding, and also prevents the
            // Pool from ever being fully drained.
            _require(bptAmountOut >= _getMinimumBpt(), Errors.MINIMUM_BPT);
            _mintPoolTokens(address(0), _getMinimumBpt());
            _mintPoolTokens(recipient, bptAmountOut - _getMinimumBpt());

            // amountsIn are amounts entering the Pool, so we round up.
            _downscaleUpArray(amountsIn, scalingFactors);

            return (amountsIn, new uint256[](_getTotalTokens()));
        } else {
            _upscaleArray(balances, scalingFactors);
            (uint256 bptAmountOut, uint256[] memory amountsIn, uint256[] memory dueProtocolFeeAmounts) = _onJoinPool(
                poolId,
                sender,
                recipient,
                balances,
                lastChangeBlock,
                protocolSwapFeePercentage,
                scalingFactors,
                userData
            );

            // Note we no longer use `balances` after calling `_onJoinPool`, which may mutate it.

            _mintPoolTokens(recipient, bptAmountOut);

            // amountsIn are amounts entering the Pool, so we round up.
            _downscaleUpArray(amountsIn, scalingFactors);
            // dueProtocolFeeAmounts are amounts exiting the Pool, so we round down.
            _downscaleDownArray(dueProtocolFeeAmounts, scalingFactors);

            return (amountsIn, dueProtocolFeeAmounts);
        }
    }

    function onExitPool(
        bytes32 poolId,
        address sender,
        address recipient,
        uint256[] memory balances,
        uint256 lastChangeBlock,
        uint256 protocolSwapFeePercentage,
        bytes memory userData
    ) public virtual override onlyVault(poolId) returns (uint256[] memory, uint256[] memory) {
        uint256[] memory scalingFactors = _scalingFactors();
        _upscaleArray(balances, scalingFactors);

        (uint256 bptAmountIn, uint256[] memory amountsOut, uint256[] memory dueProtocolFeeAmounts) = _onExitPool(
            poolId,
            sender,
            recipient,
            balances,
            lastChangeBlock,
            protocolSwapFeePercentage,
            scalingFactors,
            userData
        );

        // Note we no longer use `balances` after calling `_onExitPool`, which may mutate it.

        _burnPoolTokens(sender, bptAmountIn);

        // Both amountsOut and dueProtocolFeeAmounts are amounts exiting the Pool, so we round down.
        _downscaleDownArray(amountsOut, scalingFactors);
        _downscaleDownArray(dueProtocolFeeAmounts, scalingFactors);

        return (amountsOut, dueProtocolFeeAmounts);
    }

    // Query functions

    /**
     * @dev Returns the amount of BPT that would be granted to `recipient` if the `onJoinPool` hook were called by the
     * Vault with the same arguments, along with the number of tokens `sender` would have to supply.
     *
     * This function is not meant to be called directly, but rather from a helper contract that fetches current Vault
     * data, such as the protocol swap fee percentage and Pool balances.
     *
     * Like `IVault.queryBatchSwap`, this function is not view due to internal implementation details: the caller must
     * explicitly use eth_call instead of eth_sendTransaction.
     */
    function queryJoin(
        bytes32 poolId,
        address sender,
        address recipient,
        uint256[] memory balances,
        uint256 lastChangeBlock,
        uint256 protocolSwapFeePercentage,
        bytes memory userData
    ) external returns (uint256 bptOut, uint256[] memory amountsIn) {
        InputHelpers.ensureInputLengthMatch(balances.length, _getTotalTokens());

        _queryAction(
            poolId,
            sender,
            recipient,
            balances,
            lastChangeBlock,
            protocolSwapFeePercentage,
            userData,
            _onJoinPool,
            _downscaleUpArray
        );

        // The `return` opcode is executed directly inside `_queryAction`, so execution never reaches this statement,
        // and we don't need to return anything here - it just silences compiler warnings.
        return (bptOut, amountsIn);
    }

    /**
     * @dev Returns the amount of BPT that would be burned from `sender` if the `onExitPool` hook were called by the
     * Vault with the same arguments, along with the number of tokens `recipient` would receive.
     *
     * This function is not meant to be called directly, but rather from a helper contract that fetches current Vault
     * data, such as the protocol swap fee percentage and Pool balances.
     *
     * Like `IVault.queryBatchSwap`, this function is not view due to internal implementation details: the caller must
     * explicitly use eth_call instead of eth_sendTransaction.
     */
    function queryExit(
        bytes32 poolId,
        address sender,
        address recipient,
        uint256[] memory balances,
        uint256 lastChangeBlock,
        uint256 protocolSwapFeePercentage,
        bytes memory userData
    ) external returns (uint256 bptIn, uint256[] memory amountsOut) {
        InputHelpers.ensureInputLengthMatch(balances.length, _getTotalTokens());

        _queryAction(
            poolId,
            sender,
            recipient,
            balances,
            lastChangeBlock,
            protocolSwapFeePercentage,
            userData,
            _onExitPool,
            _downscaleDownArray
        );

        // The `return` opcode is executed directly inside `_queryAction`, so execution never reaches this statement,
        // and we don't need to return anything here - it just silences compiler warnings.
        return (bptIn, amountsOut);
    }

    // Internal hooks to be overridden by derived contracts - all token amounts (except BPT) in these interfaces are
    // upscaled.

    /**
     * @dev Called when the Pool is joined for the first time; that is, when the BPT total supply is zero.
     *
     * Returns the amount of BPT to mint, and the token amounts the Pool will receive in return.
     *
     * Minted BPT will be sent to `recipient`, except for _getMinimumBpt(), which will be deducted from this amount and
     * sent to the zero address instead. This will cause that BPT to remain forever locked there, preventing total BTP
     * from ever dropping below that value, and ensuring `_onInitializePool` can only be called once in the entire
     * Pool's lifetime.
     *
     * The tokens granted to the Pool will be transferred from `sender`. These amounts are considered upscaled and will
     * be downscaled (rounding up) before being returned to the Vault.
     */
    function _onInitializePool(
        bytes32 poolId,
        address sender,
        address recipient,
        uint256[] memory scalingFactors,
        bytes memory userData
    ) internal virtual returns (uint256 bptAmountOut, uint256[] memory amountsIn);

    /**
     * @dev Called whenever the Pool is joined after the first initialization join (see `_onInitializePool`).
     *
     * Returns the amount of BPT to mint, the token amounts that the Pool will receive in return, and the number of
     * tokens to pay in protocol swap fees.
     *
     * Implementations of this function might choose to mutate the `balances` array to save gas (e.g. when
     * performing intermediate calculations, such as subtraction of due protocol fees). This can be done safely.
     *
     * Minted BPT will be sent to `recipient`.
     *
     * The tokens granted to the Pool will be transferred from `sender`. These amounts are considered upscaled and will
     * be downscaled (rounding up) before being returned to the Vault.
     *
     * Due protocol swap fees will be taken from the Pool's balance in the Vault (see `IBasePool.onJoinPool`). These
     * amounts are considered upscaled and will be downscaled (rounding down) before being returned to the Vault.
     */
    function _onJoinPool(
        bytes32 poolId,
        address sender,
        address recipient,
        uint256[] memory balances,
        uint256 lastChangeBlock,
        uint256 protocolSwapFeePercentage,
        uint256[] memory scalingFactors,
        bytes memory userData
    )
        internal
        virtual
        returns (
            uint256 bptAmountOut,
            uint256[] memory amountsIn,
            uint256[] memory dueProtocolFeeAmounts
        );

    /**
     * @dev Called whenever the Pool is exited.
     *
     * Returns the amount of BPT to burn, the token amounts for each Pool token that the Pool will grant in return, and
     * the number of tokens to pay in protocol swap fees.
     *
     * Implementations of this function might choose to mutate the `balances` array to save gas (e.g. when
     * performing intermediate calculations, such as subtraction of due protocol fees). This can be done safely.
     *
     * BPT will be burnt from `sender`.
     *
     * The Pool will grant tokens to `recipient`. These amounts are considered upscaled and will be downscaled
     * (rounding down) before being returned to the Vault.
     *
     * Due protocol swap fees will be taken from the Pool's balance in the Vault (see `IBasePool.onExitPool`). These
     * amounts are considered upscaled and will be downscaled (rounding down) before being returned to the Vault.
     */
    function _onExitPool(
        bytes32 poolId,
        address sender,
        address recipient,
        uint256[] memory balances,
        uint256 lastChangeBlock,
        uint256 protocolSwapFeePercentage,
        uint256[] memory scalingFactors,
        bytes memory userData
    )
        internal
        virtual
        returns (
            uint256 bptAmountIn,
            uint256[] memory amountsOut,
            uint256[] memory dueProtocolFeeAmounts
        );

    // Internal functions

    /**
     * @dev Adds swap fee amount to `amount`, returning a higher value.
     */
    function _addSwapFeeAmount(uint256 amount) internal view returns (uint256) {
        // This returns amount + fee amount, so we round up (favoring a higher fee amount).
        return amount.divUp(FixedPoint.ONE.sub(getSwapFeePercentage()));
    }

    /**
     * @dev Subtracts swap fee amount from `amount`, returning a lower value.
     */
    function _subtractSwapFeeAmount(uint256 amount) internal view returns (uint256) {
        // This returns amount - fee amount, so we round up (favoring a higher fee amount).
        uint256 feeAmount = amount.mulUp(getSwapFeePercentage());
        return amount.sub(feeAmount);
    }

    // Scaling

    /**
     * @dev Returns a scaling factor that, when multiplied to a token amount for `token`, normalizes its balance as if
     * it had 18 decimals.
     */
    function _computeScalingFactor(IERC20 token) internal view returns (uint256) {
        // Tokens that don't implement the `decimals` method are not supported.
        uint256 tokenDecimals = ERC20(address(token)).decimals();

        // Tokens with more than 18 decimals are not supported.
        uint256 decimalsDifference = Math.sub(18, tokenDecimals);
        return FixedPoint.ONE * 10**decimalsDifference;
    }

    /**
     * @dev Returns the scaling factor for one of the Pool's tokens. Reverts if `token` is not a token registered by the
     * Pool.
     *
     * All scaling factors are fixed-point values with 18 decimals, to allow for this function to be overridden by
     * derived contracts that need to apply further scaling, making these factors potentially non-integer.
     *
     * The largest 'base' scaling factor (i.e. in tokens with less than 18 decimals) is 10**18, which in fixed-point is
     * 10**36. This value can be multiplied with a 112 bit Vault balance with no overflow by a factor of ~1e7, making
     * even relatively 'large' factors safe to use.
     *
     * The 1e7 figure is the result of 2**256 / (1e18 * 1e18 * 2**112).
     */
    function _scalingFactor(IERC20 token) internal view virtual returns (uint256);

    /**
     * @dev Same as `_scalingFactor()`, except for all registered tokens (in the same order as registered). The Vault
     * will always pass balances in this order when calling any of the Pool hooks.
     */
    function _scalingFactors() internal view virtual returns (uint256[] memory);

    function getScalingFactors() external view returns (uint256[] memory) {
        return _scalingFactors();
    }

    /**
     * @dev Applies `scalingFactor` to `amount`, resulting in a larger or equal value depending on whether it needed
     * scaling or not.
     */
    function _upscale(uint256 amount, uint256 scalingFactor) internal pure returns (uint256) {
        // Upscale rounding wouldn't necessarily always go in the same direction: in a swap for example the balance of
        // token in should be rounded up, and that of token out rounded down. This is the only place where we round in
        // the same direction for all amounts, as the impact of this rounding is expected to be minimal (and there's no
        // rounding error unless `_scalingFactor()` is overriden).
        return FixedPoint.mulDown(amount, scalingFactor);
    }

    /**
     * @dev Same as `_upscale`, but for an entire array. This function does not return anything, but instead *mutates*
     * the `amounts` array.
     */
    function _upscaleArray(uint256[] memory amounts, uint256[] memory scalingFactors) internal view {
        for (uint256 i = 0; i < _getTotalTokens(); ++i) {
            amounts[i] = FixedPoint.mulDown(amounts[i], scalingFactors[i]);
        }
    }

    /**
     * @dev Reverses the `scalingFactor` applied to `amount`, resulting in a smaller or equal value depending on
     * whether it needed scaling or not. The result is rounded down.
     */
    function _downscaleDown(uint256 amount, uint256 scalingFactor) internal pure returns (uint256) {
        return FixedPoint.divDown(amount, scalingFactor);
    }

    /**
     * @dev Same as `_downscaleDown`, but for an entire array. This function does not return anything, but instead
     * *mutates* the `amounts` array.
     */
    function _downscaleDownArray(uint256[] memory amounts, uint256[] memory scalingFactors) internal view {
        for (uint256 i = 0; i < _getTotalTokens(); ++i) {
            amounts[i] = FixedPoint.divDown(amounts[i], scalingFactors[i]);
        }
    }

    /**
     * @dev Reverses the `scalingFactor` applied to `amount`, resulting in a smaller or equal value depending on
     * whether it needed scaling or not. The result is rounded up.
     */
    function _downscaleUp(uint256 amount, uint256 scalingFactor) internal pure returns (uint256) {
        return FixedPoint.divUp(amount, scalingFactor);
    }

    /**
     * @dev Same as `_downscaleUp`, but for an entire array. This function does not return anything, but instead
     * *mutates* the `amounts` array.
     */
    function _downscaleUpArray(uint256[] memory amounts, uint256[] memory scalingFactors) internal view {
        for (uint256 i = 0; i < _getTotalTokens(); ++i) {
            amounts[i] = FixedPoint.divUp(amounts[i], scalingFactors[i]);
        }
    }

    function _getAuthorizer() internal view override returns (IAuthorizer) {
        // Access control management is delegated to the Vault's Authorizer. This lets Balancer Governance manage which
        // accounts can call permissioned functions: for example, to perform emergency pauses.
        // If the owner is delegated, then *all* permissioned functions, including `setSwapFeePercentage`, will be under
        // Governance control.
        return getVault().getAuthorizer();
    }

    function _queryAction(
        bytes32 poolId,
        address sender,
        address recipient,
        uint256[] memory balances,
        uint256 lastChangeBlock,
        uint256 protocolSwapFeePercentage,
        bytes memory userData,
        function(bytes32, address, address, uint256[] memory, uint256, uint256, uint256[] memory, bytes memory)
            internal
            returns (uint256, uint256[] memory, uint256[] memory) _action,
        function(uint256[] memory, uint256[] memory) internal view _downscaleArray
    ) private {
        // This uses the same technique used by the Vault in queryBatchSwap. Refer to that function for a detailed
        // explanation.

        if (msg.sender != address(this)) {
            // We perform an external call to ourselves, forwarding the same calldata. In this call, the else clause of
            // the preceding if statement will be executed instead.

            // solhint-disable-next-line avoid-low-level-calls
            (bool success, ) = address(this).call(msg.data);

            // solhint-disable-next-line no-inline-assembly
            assembly {
                // This call should always revert to decode the bpt and token amounts from the revert reason
                switch success
                    case 0 {
                        // Note we are manually writing the memory slot 0. We can safely overwrite whatever is
                        // stored there as we take full control of the execution and then immediately return.

                        // We copy the first 4 bytes to check if it matches with the expected signature, otherwise
                        // there was another revert reason and we should forward it.
                        returndatacopy(0, 0, 0x04)
                        let error := and(mload(0), 0xffffffff00000000000000000000000000000000000000000000000000000000)

                        // If the first 4 bytes don't match with the expected signature, we forward the revert reason.
                        if eq(eq(error, 0x43adbafb00000000000000000000000000000000000000000000000000000000), 0) {
                            returndatacopy(0, 0, returndatasize())
                            revert(0, returndatasize())
                        }

                        // The returndata contains the signature, followed by the raw memory representation of the
                        // `bptAmount` and `tokenAmounts` (array: length + data). We need to return an ABI-encoded
                        // representation of these.
                        // An ABI-encoded response will include one additional field to indicate the starting offset of
                        // the `tokenAmounts` array. The `bptAmount` will be laid out in the first word of the
                        // returndata.
                        //
                        // In returndata:
                        // [ signature ][ bptAmount ][ tokenAmounts length ][ tokenAmounts values ]
                        // [  4 bytes  ][  32 bytes ][       32 bytes      ][ (32 * length) bytes ]
                        //
                        // We now need to return (ABI-encoded values):
                        // [ bptAmount ][ tokeAmounts offset ][ tokenAmounts length ][ tokenAmounts values ]
                        // [  32 bytes ][       32 bytes     ][       32 bytes      ][ (32 * length) bytes ]

                        // We copy 32 bytes for the `bptAmount` from returndata into memory.
                        // Note that we skip the first 4 bytes for the error signature
                        returndatacopy(0, 0x04, 32)

                        // The offsets are 32-bytes long, so the array of `tokenAmounts` will start after
                        // the initial 64 bytes.
                        mstore(0x20, 64)

                        // We now copy the raw memory array for the `tokenAmounts` from returndata into memory.
                        // Since bpt amount and offset take up 64 bytes, we start copying at address 0x40. We also
                        // skip the first 36 bytes from returndata, which correspond to the signature plus bpt amount.
                        returndatacopy(0x40, 0x24, sub(returndatasize(), 36))

                        // We finally return the ABI-encoded uint256 and the array, which has a total length equal to
                        // the size of returndata, plus the 32 bytes of the offset but without the 4 bytes of the
                        // error signature.
                        return(0, add(returndatasize(), 28))
                    }
                    default {
                        // This call should always revert, but we fail nonetheless if that didn't happen
                        invalid()
                    }
            }
        } else {
            uint256[] memory scalingFactors = _scalingFactors();
            _upscaleArray(balances, scalingFactors);

            (uint256 bptAmount, uint256[] memory tokenAmounts, ) = _action(
                poolId,
                sender,
                recipient,
                balances,
                lastChangeBlock,
                protocolSwapFeePercentage,
                scalingFactors,
                userData
            );

            _downscaleArray(tokenAmounts, scalingFactors);

            // solhint-disable-next-line no-inline-assembly
            assembly {
                // We will return a raw representation of `bptAmount` and `tokenAmounts` in memory, which is composed of
                // a 32-byte uint256, followed by a 32-byte for the array length, and finally the 32-byte uint256 values
                // Because revert expects a size in bytes, we multiply the array length (stored at `tokenAmounts`) by 32
                let size := mul(mload(tokenAmounts), 32)

                // We store the `bptAmount` in the previous slot to the `tokenAmounts` array. We can make sure there
                // will be at least one available slot due to how the memory scratch space works.
                // We can safely overwrite whatever is stored in this slot as we will revert immediately after that.
                let start := sub(tokenAmounts, 0x20)
                mstore(start, bptAmount)

                // We send one extra value for the error signature "QueryError(uint256,uint256[])" which is 0x43adbafb
                // We use the previous slot to `bptAmount`.
                mstore(sub(start, 0x20), 0x0000000000000000000000000000000000000000000000000000000043adbafb)
                start := sub(start, 0x04)

                // When copying from `tokenAmounts` into returndata, we copy the additional 68 bytes to also return
                // the `bptAmount`, the array 's length, and the error signature.
                revert(start, add(size, 68))
            }
        }
    }
}

File 12 of 63 : IMinimalSwapInfoPool.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;
pragma experimental ABIEncoderV2;

import "./IBasePool.sol";

/**
 * @dev Pool contracts with the MinimalSwapInfo or TwoToken specialization settings should implement this interface.
 *
 * This is called by the Vault when a user calls `IVault.swap` or `IVault.batchSwap` to swap with this Pool.
 * Returns the number of tokens the Pool will grant to the user in a 'given in' swap, or that the user will grant
 * to the pool in a 'given out' swap.
 *
 * This can often be implemented by a `view` function, since many pricing algorithms don't need to track state
 * changes in swaps. However, contracts implementing this in non-view functions should check that the caller is
 * indeed the Vault.
 */
interface IMinimalSwapInfoPool is IBasePool {
    function onSwap(
        SwapRequest memory swapRequest,
        uint256 currentBalanceTokenIn,
        uint256 currentBalanceTokenOut
    ) external returns (uint256 amount);
}

File 13 of 63 : Math.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.7.0;

import "../helpers/BalancerErrors.sol";

/**
 * @dev Wrappers over Solidity's arithmetic operations with added overflow checks.
 * Adapted from OpenZeppelin's SafeMath library
 */
library Math {
    /**
     * @dev Returns the addition of two unsigned integers of 256 bits, reverting on overflow.
     */
    function add(uint256 a, uint256 b) internal pure returns (uint256) {
        uint256 c = a + b;
        _require(c >= a, Errors.ADD_OVERFLOW);
        return c;
    }

    /**
     * @dev Returns the addition of two signed integers, reverting on overflow.
     */
    function add(int256 a, int256 b) internal pure returns (int256) {
        int256 c = a + b;
        _require((b >= 0 && c >= a) || (b < 0 && c < a), Errors.ADD_OVERFLOW);
        return c;
    }

    /**
     * @dev Returns the subtraction of two unsigned integers of 256 bits, reverting on overflow.
     */
    function sub(uint256 a, uint256 b) internal pure returns (uint256) {
        _require(b <= a, Errors.SUB_OVERFLOW);
        uint256 c = a - b;
        return c;
    }

    /**
     * @dev Returns the subtraction of two signed integers, reverting on overflow.
     */
    function sub(int256 a, int256 b) internal pure returns (int256) {
        int256 c = a - b;
        _require((b >= 0 && c <= a) || (b < 0 && c > a), Errors.SUB_OVERFLOW);
        return c;
    }

    /**
     * @dev Returns the largest of two numbers of 256 bits.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a >= b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers of 256 bits.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    function mul(uint256 a, uint256 b) internal pure returns (uint256) {
        uint256 c = a * b;
        _require(a == 0 || c / a == b, Errors.MUL_OVERFLOW);
        return c;
    }

    function div(
        uint256 a,
        uint256 b,
        bool roundUp
    ) internal pure returns (uint256) {
        return roundUp ? divUp(a, b) : divDown(a, b);
    }

    function divDown(uint256 a, uint256 b) internal pure returns (uint256) {
        _require(b != 0, Errors.ZERO_DIVISION);
        return a / b;
    }

    function divUp(uint256 a, uint256 b) internal pure returns (uint256) {
        _require(b != 0, Errors.ZERO_DIVISION);

        if (a == 0) {
            return 0;
        } else {
            return 1 + (a - 1) / b;
        }
    }
}

File 14 of 63 : TemporarilyPausable.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

import "./BalancerErrors.sol";
import "./ITemporarilyPausable.sol";

/**
 * @dev Allows for a contract to be paused during an initial period after deployment, disabling functionality. Can be
 * used as an emergency switch in case a security vulnerability or threat is identified.
 *
 * The contract can only be paused during the Pause Window, a period that starts at deployment. It can also be
 * unpaused and repaused any number of times during this period. This is intended to serve as a safety measure: it lets
 * system managers react quickly to potentially dangerous situations, knowing that this action is reversible if careful
 * analysis later determines there was a false alarm.
 *
 * If the contract is paused when the Pause Window finishes, it will remain in the paused state through an additional
 * Buffer Period, after which it will be automatically unpaused forever. This is to ensure there is always enough time
 * to react to an emergency, even if the threat is discovered shortly before the Pause Window expires.
 *
 * Note that since the contract can only be paused within the Pause Window, unpausing during the Buffer Period is
 * irreversible.
 */
abstract contract TemporarilyPausable is ITemporarilyPausable {
    // The Pause Window and Buffer Period are timestamp-based: they should not be relied upon for sub-minute accuracy.
    // solhint-disable not-rely-on-time

    uint256 private constant _MAX_PAUSE_WINDOW_DURATION = 90 days;
    uint256 private constant _MAX_BUFFER_PERIOD_DURATION = 30 days;

    uint256 private immutable _pauseWindowEndTime;
    uint256 private immutable _bufferPeriodEndTime;

    bool private _paused;

    constructor(uint256 pauseWindowDuration, uint256 bufferPeriodDuration) {
        _require(pauseWindowDuration <= _MAX_PAUSE_WINDOW_DURATION, Errors.MAX_PAUSE_WINDOW_DURATION);
        _require(bufferPeriodDuration <= _MAX_BUFFER_PERIOD_DURATION, Errors.MAX_BUFFER_PERIOD_DURATION);

        uint256 pauseWindowEndTime = block.timestamp + pauseWindowDuration;

        _pauseWindowEndTime = pauseWindowEndTime;
        _bufferPeriodEndTime = pauseWindowEndTime + bufferPeriodDuration;
    }

    /**
     * @dev Reverts if the contract is paused.
     */
    modifier whenNotPaused() {
        _ensureNotPaused();
        _;
    }

    /**
     * @dev Returns the current contract pause status, as well as the end times of the Pause Window and Buffer
     * Period.
     */
    function getPausedState()
        external
        view
        override
        returns (
            bool paused,
            uint256 pauseWindowEndTime,
            uint256 bufferPeriodEndTime
        )
    {
        paused = !_isNotPaused();
        pauseWindowEndTime = _getPauseWindowEndTime();
        bufferPeriodEndTime = _getBufferPeriodEndTime();
    }

    /**
     * @dev Sets the pause state to `paused`. The contract can only be paused until the end of the Pause Window, and
     * unpaused until the end of the Buffer Period.
     *
     * Once the Buffer Period expires, this function reverts unconditionally.
     */
    function _setPaused(bool paused) internal {
        if (paused) {
            _require(block.timestamp < _getPauseWindowEndTime(), Errors.PAUSE_WINDOW_EXPIRED);
        } else {
            _require(block.timestamp < _getBufferPeriodEndTime(), Errors.BUFFER_PERIOD_EXPIRED);
        }

        _paused = paused;
        emit PausedStateChanged(paused);
    }

    /**
     * @dev Reverts if the contract is paused.
     */
    function _ensureNotPaused() internal view {
        _require(_isNotPaused(), Errors.PAUSED);
    }

    /**
     * @dev Returns true if the contract is unpaused.
     *
     * Once the Buffer Period expires, the gas cost of calling this function is reduced dramatically, as storage is no
     * longer accessed.
     */
    function _isNotPaused() internal view returns (bool) {
        // After the Buffer Period, the (inexpensive) timestamp check short-circuits the storage access.
        return block.timestamp > _getBufferPeriodEndTime() || !_paused;
    }

    // These getters lead to reduced bytecode size by inlining the immutable variables in a single place.

    function _getPauseWindowEndTime() private view returns (uint256) {
        return _pauseWindowEndTime;
    }

    function _getBufferPeriodEndTime() private view returns (uint256) {
        return _bufferPeriodEndTime;
    }
}

File 15 of 63 : WordCodec.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

/**
 * @dev Library for encoding and decoding values stored inside a 256 bit word. Typically used to pack multiple values in
 * a single storage slot, saving gas by performing less storage accesses.
 *
 * Each value is defined by its size and the least significant bit in the word, also known as offset. For example, two
 * 128 bit values may be encoded in a word by assigning one an offset of 0, and the other an offset of 128.
 */
library WordCodec {
    // Masks are values with the least significant N bits set. They can be used to extract an encoded value from a word,
    // or to insert a new one replacing the old.
    uint256 private constant _MASK_1 = 2**(1) - 1;
    uint256 private constant _MASK_5 = 2**(5) - 1;
    uint256 private constant _MASK_7 = 2**(7) - 1;
    uint256 private constant _MASK_10 = 2**(10) - 1;
    uint256 private constant _MASK_16 = 2**(16) - 1;
    uint256 private constant _MASK_22 = 2**(22) - 1;
    uint256 private constant _MASK_31 = 2**(31) - 1;
    uint256 private constant _MASK_32 = 2**(32) - 1;
    uint256 private constant _MASK_53 = 2**(53) - 1;
    uint256 private constant _MASK_64 = 2**(64) - 1;
    uint256 private constant _MASK_128 = 2**(128) - 1;
    uint256 private constant _MASK_192 = 2**(192) - 1;

    // Largest positive values that can be represented as N bits signed integers.
    int256 private constant _MAX_INT_22 = 2**(21) - 1;
    int256 private constant _MAX_INT_53 = 2**(52) - 1;

    // In-place insertion

    /**
     * @dev Inserts a boolean value shifted by an offset into a 256 bit word, replacing the old value. Returns the new
     * word.
     */
    function insertBool(
        bytes32 word,
        bool value,
        uint256 offset
    ) internal pure returns (bytes32) {
        bytes32 clearedWord = bytes32(uint256(word) & ~(_MASK_1 << offset));
        return clearedWord | bytes32(uint256(value ? 1 : 0) << offset);
    }

    // Unsigned

    /**
     * @dev Inserts a 5 bit unsigned integer shifted by an offset into a 256 bit word, replacing the old value. Returns
     * the new word.
     *
     * Assumes `value` only uses its least significant 5 bits, otherwise it may overwrite sibling bytes.
     */
    function insertUint5(
        bytes32 word,
        uint256 value,
        uint256 offset
    ) internal pure returns (bytes32) {
        bytes32 clearedWord = bytes32(uint256(word) & ~(_MASK_5 << offset));
        return clearedWord | bytes32(value << offset);
    }

    /**
     * @dev Inserts a 7 bit unsigned integer shifted by an offset into a 256 bit word, replacing the old value. Returns
     * the new word.
     *
     * Assumes `value` only uses its least significant 7 bits, otherwise it may overwrite sibling bytes.
     */
    function insertUint7(
        bytes32 word,
        uint256 value,
        uint256 offset
    ) internal pure returns (bytes32) {
        bytes32 clearedWord = bytes32(uint256(word) & ~(_MASK_7 << offset));
        return clearedWord | bytes32(value << offset);
    }

    /**
     * @dev Inserts a 10 bit unsigned integer shifted by an offset into a 256 bit word, replacing the old value. Returns
     * the new word.
     *
     * Assumes `value` only uses its least significant 10 bits, otherwise it may overwrite sibling bytes.
     */
    function insertUint10(
        bytes32 word,
        uint256 value,
        uint256 offset
    ) internal pure returns (bytes32) {
        bytes32 clearedWord = bytes32(uint256(word) & ~(_MASK_10 << offset));
        return clearedWord | bytes32(value << offset);
    }

    /**
     * @dev Inserts a 16 bit unsigned integer shifted by an offset into a 256 bit word, replacing the old value.
     * Returns the new word.
     *
     * Assumes `value` only uses its least significant 16 bits, otherwise it may overwrite sibling bytes.
     */
    function insertUint16(
        bytes32 word,
        uint256 value,
        uint256 offset
    ) internal pure returns (bytes32) {
        bytes32 clearedWord = bytes32(uint256(word) & ~(_MASK_16 << offset));
        return clearedWord | bytes32(value << offset);
    }

    /**
     * @dev Inserts a 31 bit unsigned integer shifted by an offset into a 256 bit word, replacing the old value. Returns
     * the new word.
     *
     * Assumes `value` can be represented using 31 bits.
     */
    function insertUint31(
        bytes32 word,
        uint256 value,
        uint256 offset
    ) internal pure returns (bytes32) {
        bytes32 clearedWord = bytes32(uint256(word) & ~(_MASK_31 << offset));
        return clearedWord | bytes32(value << offset);
    }

    /**
     * @dev Inserts a 32 bit unsigned integer shifted by an offset into a 256 bit word, replacing the old value. Returns
     * the new word.
     *
     * Assumes `value` only uses its least significant 32 bits, otherwise it may overwrite sibling bytes.
     */
    function insertUint32(
        bytes32 word,
        uint256 value,
        uint256 offset
    ) internal pure returns (bytes32) {
        bytes32 clearedWord = bytes32(uint256(word) & ~(_MASK_32 << offset));
        return clearedWord | bytes32(value << offset);
    }

    /**
     * @dev Inserts a 64 bit unsigned integer shifted by an offset into a 256 bit word, replacing the old value. Returns
     * the new word.
     *
     * Assumes `value` only uses its least significant 64 bits, otherwise it may overwrite sibling bytes.
     */
    function insertUint64(
        bytes32 word,
        uint256 value,
        uint256 offset
    ) internal pure returns (bytes32) {
        bytes32 clearedWord = bytes32(uint256(word) & ~(_MASK_64 << offset));
        return clearedWord | bytes32(value << offset);
    }

    // Signed

    /**
     * @dev Inserts a 22 bits signed integer shifted by an offset into a 256 bit word, replacing the old value. Returns
     * the new word.
     *
     * Assumes `value` can be represented using 22 bits.
     */
    function insertInt22(
        bytes32 word,
        int256 value,
        uint256 offset
    ) internal pure returns (bytes32) {
        bytes32 clearedWord = bytes32(uint256(word) & ~(_MASK_22 << offset));
        // Integer values need masking to remove the upper bits of negative values.
        return clearedWord | bytes32((uint256(value) & _MASK_22) << offset);
    }

    // Bytes

    /**
     * @dev Inserts 192 bit shifted by an offset into a 256 bit word, replacing the old value. Returns the new word.
     *
     * Assumes `value` can be represented using 192 bits.
     */
    function insertBits192(
        bytes32 word,
        bytes32 value,
        uint256 offset
    ) internal pure returns (bytes32) {
        bytes32 clearedWord = bytes32(uint256(word) & ~(_MASK_192 << offset));
        return clearedWord | bytes32((uint256(value) & _MASK_192) << offset);
    }

    // Encoding

    // Unsigned

    /**
     * @dev Encodes an unsigned integer shifted by an offset. This performs no size checks: it is up to the caller to
     * ensure that the values are bounded.
     *
     * The return value can be logically ORed with other encoded values to form a 256 bit word.
     */
    function encodeUint(uint256 value, uint256 offset) internal pure returns (bytes32) {
        return bytes32(value << offset);
    }

    // Signed

    /**
     * @dev Encodes a 22 bits signed integer shifted by an offset.
     *
     * The return value can be logically ORed with other encoded values to form a 256 bit word.
     */
    function encodeInt22(int256 value, uint256 offset) internal pure returns (bytes32) {
        // Integer values need masking to remove the upper bits of negative values.
        return bytes32((uint256(value) & _MASK_22) << offset);
    }

    /**
     * @dev Encodes a 53 bits signed integer shifted by an offset.
     *
     * The return value can be logically ORed with other encoded values to form a 256 bit word.
     */
    function encodeInt53(int256 value, uint256 offset) internal pure returns (bytes32) {
        // Integer values need masking to remove the upper bits of negative values.
        return bytes32((uint256(value) & _MASK_53) << offset);
    }

    // Decoding

    /**
     * @dev Decodes and returns a boolean shifted by an offset from a 256 bit word.
     */
    function decodeBool(bytes32 word, uint256 offset) internal pure returns (bool) {
        return (uint256(word >> offset) & _MASK_1) == 1;
    }

    // Unsigned

    /**
     * @dev Decodes and returns a 5 bit unsigned integer shifted by an offset from a 256 bit word.
     */
    function decodeUint5(bytes32 word, uint256 offset) internal pure returns (uint256) {
        return uint256(word >> offset) & _MASK_5;
    }

    /**
     * @dev Decodes and returns a 7 bit unsigned integer shifted by an offset from a 256 bit word.
     */
    function decodeUint7(bytes32 word, uint256 offset) internal pure returns (uint256) {
        return uint256(word >> offset) & _MASK_7;
    }

    /**
     * @dev Decodes and returns a 10 bit unsigned integer shifted by an offset from a 256 bit word.
     */
    function decodeUint10(bytes32 word, uint256 offset) internal pure returns (uint256) {
        return uint256(word >> offset) & _MASK_10;
    }

    /**
     * @dev Decodes and returns a 16 bit unsigned integer shifted by an offset from a 256 bit word.
     */
    function decodeUint16(bytes32 word, uint256 offset) internal pure returns (uint256) {
        return uint256(word >> offset) & _MASK_16;
    }

    /**
     * @dev Decodes and returns a 31 bit unsigned integer shifted by an offset from a 256 bit word.
     */
    function decodeUint31(bytes32 word, uint256 offset) internal pure returns (uint256) {
        return uint256(word >> offset) & _MASK_31;
    }

    /**
     * @dev Decodes and returns a 32 bit unsigned integer shifted by an offset from a 256 bit word.
     */
    function decodeUint32(bytes32 word, uint256 offset) internal pure returns (uint256) {
        return uint256(word >> offset) & _MASK_32;
    }

    /**
     * @dev Decodes and returns a 64 bit unsigned integer shifted by an offset from a 256 bit word.
     */
    function decodeUint64(bytes32 word, uint256 offset) internal pure returns (uint256) {
        return uint256(word >> offset) & _MASK_64;
    }

    /**
     * @dev Decodes and returns a 128 bit unsigned integer shifted by an offset from a 256 bit word.
     */
    function decodeUint128(bytes32 word, uint256 offset) internal pure returns (uint256) {
        return uint256(word >> offset) & _MASK_128;
    }

    // Signed

    /**
     * @dev Decodes and returns a 22 bits signed integer shifted by an offset from a 256 bit word.
     */
    function decodeInt22(bytes32 word, uint256 offset) internal pure returns (int256) {
        int256 value = int256(uint256(word >> offset) & _MASK_22);
        // In case the decoded value is greater than the max positive integer that can be represented with 22 bits,
        // we know it was originally a negative integer. Therefore, we mask it to restore the sign in the 256 bit
        // representation.
        return value > _MAX_INT_22 ? (value | int256(~_MASK_22)) : value;
    }

    /**
     * @dev Decodes and returns a 53 bits signed integer shifted by an offset from a 256 bit word.
     */
    function decodeInt53(bytes32 word, uint256 offset) internal pure returns (int256) {
        int256 value = int256(uint256(word >> offset) & _MASK_53);
        // In case the decoded value is greater than the max positive integer that can be represented with 53 bits,
        // we know it was originally a negative integer. Therefore, we mask it to restore the sign in the 256 bit
        // representation.

        return value > _MAX_INT_53 ? (value | int256(~_MASK_53)) : value;
    }
}

File 16 of 63 : ERC20.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.7.0;

import "../helpers/BalancerErrors.sol";

import "./IERC20.sol";
import "./SafeMath.sol";

/**
 * @dev Implementation of the {IERC20} interface.
 *
 * This implementation is agnostic to the way tokens are created. This means
 * that a supply mechanism has to be added in a derived contract using {_mint}.
 * For a generic mechanism see {ERC20PresetMinterPauser}.
 *
 * TIP: For a detailed writeup see our guide
 * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How
 * to implement supply mechanisms].
 *
 * We have followed general OpenZeppelin guidelines: functions revert instead
 * of returning `false` on failure. This behavior is nonetheless conventional
 * and does not conflict with the expectations of ERC20 applications.
 *
 * Additionally, an {Approval} event is emitted on calls to {transferFrom}.
 * This allows applications to reconstruct the allowance for all accounts just
 * by listening to said events. Other implementations of the EIP may not emit
 * these events, as it isn't required by the specification.
 *
 * Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
 * functions have been added to mitigate the well-known issues around setting
 * allowances. See {IERC20-approve}.
 */
contract ERC20 is IERC20 {
    using SafeMath for uint256;

    mapping(address => uint256) private _balances;

    mapping(address => mapping(address => uint256)) private _allowances;

    uint256 private _totalSupply;

    string private _name;
    string private _symbol;
    uint8 private _decimals;

    /**
     * @dev Sets the values for {name} and {symbol}, initializes {decimals} with
     * a default value of 18.
     *
     * To select a different value for {decimals}, use {_setupDecimals}.
     *
     * All three of these values are immutable: they can only be set once during
     * construction.
     */
    constructor(string memory name_, string memory symbol_) {
        _name = name_;
        _symbol = symbol_;
        _decimals = 18;
    }

    /**
     * @dev Returns the name of the token.
     */
    function name() public view returns (string memory) {
        return _name;
    }

    /**
     * @dev Returns the symbol of the token, usually a shorter version of the
     * name.
     */
    function symbol() public view returns (string memory) {
        return _symbol;
    }

    /**
     * @dev Returns the number of decimals used to get its user representation.
     * For example, if `decimals` equals `2`, a balance of `505` tokens should
     * be displayed to a user as `5,05` (`505 / 10 ** 2`).
     *
     * Tokens usually opt for a value of 18, imitating the relationship between
     * Ether and Wei. This is the value {ERC20} uses, unless {_setupDecimals} is
     * called.
     *
     * NOTE: This information is only used for _display_ purposes: it in
     * no way affects any of the arithmetic of the contract, including
     * {IERC20-balanceOf} and {IERC20-transfer}.
     */
    function decimals() public view returns (uint8) {
        return _decimals;
    }

    /**
     * @dev See {IERC20-totalSupply}.
     */
    function totalSupply() public view override returns (uint256) {
        return _totalSupply;
    }

    /**
     * @dev See {IERC20-balanceOf}.
     */
    function balanceOf(address account) public view override returns (uint256) {
        return _balances[account];
    }

    /**
     * @dev See {IERC20-transfer}.
     *
     * Requirements:
     *
     * - `recipient` cannot be the zero address.
     * - the caller must have a balance of at least `amount`.
     */
    function transfer(address recipient, uint256 amount) public virtual override returns (bool) {
        _transfer(msg.sender, recipient, amount);
        return true;
    }

    /**
     * @dev See {IERC20-allowance}.
     */
    function allowance(address owner, address spender) public view virtual override returns (uint256) {
        return _allowances[owner][spender];
    }

    /**
     * @dev See {IERC20-approve}.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function approve(address spender, uint256 amount) public virtual override returns (bool) {
        _approve(msg.sender, spender, amount);
        return true;
    }

    /**
     * @dev See {IERC20-transferFrom}.
     *
     * Emits an {Approval} event indicating the updated allowance. This is not
     * required by the EIP. See the note at the beginning of {ERC20}.
     *
     * Requirements:
     *
     * - `sender` and `recipient` cannot be the zero address.
     * - `sender` must have a balance of at least `amount`.
     * - the caller must have allowance for ``sender``'s tokens of at least
     * `amount`.
     */
    function transferFrom(
        address sender,
        address recipient,
        uint256 amount
    ) public virtual override returns (bool) {
        _transfer(sender, recipient, amount);
        _approve(
            sender,
            msg.sender,
            _allowances[sender][msg.sender].sub(amount, Errors.ERC20_TRANSFER_EXCEEDS_ALLOWANCE)
        );
        return true;
    }

    /**
     * @dev Atomically increases the allowance granted to `spender` by the caller.
     *
     * This is an alternative to {approve} that can be used as a mitigation for
     * problems described in {IERC20-approve}.
     *
     * Emits an {Approval} event indicating the updated allowance.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
        _approve(msg.sender, spender, _allowances[msg.sender][spender].add(addedValue));
        return true;
    }

    /**
     * @dev Atomically decreases the allowance granted to `spender` by the caller.
     *
     * This is an alternative to {approve} that can be used as a mitigation for
     * problems described in {IERC20-approve}.
     *
     * Emits an {Approval} event indicating the updated allowance.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `spender` must have allowance for the caller of at least
     * `subtractedValue`.
     */
    function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
        _approve(
            msg.sender,
            spender,
            _allowances[msg.sender][spender].sub(subtractedValue, Errors.ERC20_DECREASED_ALLOWANCE_BELOW_ZERO)
        );
        return true;
    }

    /**
     * @dev Moves tokens `amount` from `sender` to `recipient`.
     *
     * This is internal function is equivalent to {transfer}, and can be used to
     * e.g. implement automatic token fees, slashing mechanisms, etc.
     *
     * Emits a {Transfer} event.
     *
     * Requirements:
     *
     * - `sender` cannot be the zero address.
     * - `recipient` cannot be the zero address.
     * - `sender` must have a balance of at least `amount`.
     */
    function _transfer(
        address sender,
        address recipient,
        uint256 amount
    ) internal virtual {
        _require(sender != address(0), Errors.ERC20_TRANSFER_FROM_ZERO_ADDRESS);
        _require(recipient != address(0), Errors.ERC20_TRANSFER_TO_ZERO_ADDRESS);

        _beforeTokenTransfer(sender, recipient, amount);

        _balances[sender] = _balances[sender].sub(amount, Errors.ERC20_TRANSFER_EXCEEDS_BALANCE);
        _balances[recipient] = _balances[recipient].add(amount);
        emit Transfer(sender, recipient, amount);
    }

    /** @dev Creates `amount` tokens and assigns them to `account`, increasing
     * the total supply.
     *
     * Emits a {Transfer} event with `from` set to the zero address.
     *
     * Requirements:
     *
     * - `to` cannot be the zero address.
     */
    function _mint(address account, uint256 amount) internal virtual {
        _beforeTokenTransfer(address(0), account, amount);

        _totalSupply = _totalSupply.add(amount);
        _balances[account] = _balances[account].add(amount);
        emit Transfer(address(0), account, amount);
    }

    /**
     * @dev Destroys `amount` tokens from `account`, reducing the
     * total supply.
     *
     * Emits a {Transfer} event with `to` set to the zero address.
     *
     * Requirements:
     *
     * - `account` cannot be the zero address.
     * - `account` must have at least `amount` tokens.
     */
    function _burn(address account, uint256 amount) internal virtual {
        _require(account != address(0), Errors.ERC20_BURN_FROM_ZERO_ADDRESS);

        _beforeTokenTransfer(account, address(0), amount);

        _balances[account] = _balances[account].sub(amount, Errors.ERC20_BURN_EXCEEDS_ALLOWANCE);
        _totalSupply = _totalSupply.sub(amount);
        emit Transfer(account, address(0), amount);
    }

    /**
     * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
     *
     * This internal function is equivalent to `approve`, and can be used to
     * e.g. set automatic allowances for certain subsystems, etc.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `owner` cannot be the zero address.
     * - `spender` cannot be the zero address.
     */
    function _approve(
        address owner,
        address spender,
        uint256 amount
    ) internal virtual {
        _allowances[owner][spender] = amount;
        emit Approval(owner, spender, amount);
    }

    /**
     * @dev Sets {decimals} to a value other than the default one of 18.
     *
     * WARNING: This function should only be called from the constructor. Most
     * applications that interact with token contracts will not expect
     * {decimals} to ever change, and may work incorrectly if it does.
     */
    function _setupDecimals(uint8 decimals_) internal {
        _decimals = decimals_;
    }

    /**
     * @dev Hook that is called before any transfer of tokens. This includes
     * minting and burning.
     *
     * Calling conditions:
     *
     * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
     * will be to transferred to `to`.
     * - when `from` is zero, `amount` tokens will be minted for `to`.
     * - when `to` is zero, `amount` of ``from``'s tokens will be burned.
     * - `from` and `to` are never both zero.
     *
     * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
     */
    function _beforeTokenTransfer(
        address from,
        address to,
        uint256 amount
    ) internal virtual {}
}

File 17 of 63 : IVault.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma experimental ABIEncoderV2;

import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/IERC20.sol";
import "@balancer-labs/v2-solidity-utils/contracts/helpers/ISignaturesValidator.sol";
import "@balancer-labs/v2-solidity-utils/contracts/helpers/ITemporarilyPausable.sol";
import "@balancer-labs/v2-solidity-utils/contracts/misc/IWETH.sol";

import "./IAsset.sol";
import "./IAuthorizer.sol";
import "./IFlashLoanRecipient.sol";
import "./IProtocolFeesCollector.sol";

pragma solidity ^0.7.0;

/**
 * @dev Full external interface for the Vault core contract - no external or public methods exist in the contract that
 * don't override one of these declarations.
 */
interface IVault is ISignaturesValidator, ITemporarilyPausable {
    // Generalities about the Vault:
    //
    // - Whenever documentation refers to 'tokens', it strictly refers to ERC20-compliant token contracts. Tokens are
    // transferred out of the Vault by calling the `IERC20.transfer` function, and transferred in by calling
    // `IERC20.transferFrom`. In these cases, the sender must have previously allowed the Vault to use their tokens by
    // calling `IERC20.approve`. The only deviation from the ERC20 standard that is supported is functions not returning
    // a boolean value: in these scenarios, a non-reverting call is assumed to be successful.
    //
    // - All non-view functions in the Vault are non-reentrant: calling them while another one is mid-execution (e.g.
    // while execution control is transferred to a token contract during a swap) will result in a revert. View
    // functions can be called in a re-reentrant way, but doing so might cause them to return inconsistent results.
    // Contracts calling view functions in the Vault must make sure the Vault has not already been entered.
    //
    // - View functions revert if referring to either unregistered Pools, or unregistered tokens for registered Pools.

    // Authorizer
    //
    // Some system actions are permissioned, like setting and collecting protocol fees. This permissioning system exists
    // outside of the Vault in the Authorizer contract: the Vault simply calls the Authorizer to check if the caller
    // can perform a given action.

    /**
     * @dev Returns the Vault's Authorizer.
     */
    function getAuthorizer() external view returns (IAuthorizer);

    /**
     * @dev Sets a new Authorizer for the Vault. The caller must be allowed by the current Authorizer to do this.
     *
     * Emits an `AuthorizerChanged` event.
     */
    function setAuthorizer(IAuthorizer newAuthorizer) external;

    /**
     * @dev Emitted when a new authorizer is set by `setAuthorizer`.
     */
    event AuthorizerChanged(IAuthorizer indexed newAuthorizer);

    // Relayers
    //
    // Additionally, it is possible for an account to perform certain actions on behalf of another one, using their
    // Vault ERC20 allowance and Internal Balance. These accounts are said to be 'relayers' for these Vault functions,
    // and are expected to be smart contracts with sound authentication mechanisms. For an account to be able to wield
    // this power, two things must occur:
    //  - The Authorizer must grant the account the permission to be a relayer for the relevant Vault function. This
    //    means that Balancer governance must approve each individual contract to act as a relayer for the intended
    //    functions.
    //  - Each user must approve the relayer to act on their behalf.
    // This double protection means users cannot be tricked into approving malicious relayers (because they will not
    // have been allowed by the Authorizer via governance), nor can malicious relayers approved by a compromised
    // Authorizer or governance drain user funds, since they would also need to be approved by each individual user.

    /**
     * @dev Returns true if `user` has approved `relayer` to act as a relayer for them.
     */
    function hasApprovedRelayer(address user, address relayer) external view returns (bool);

    /**
     * @dev Allows `relayer` to act as a relayer for `sender` if `approved` is true, and disallows it otherwise.
     *
     * Emits a `RelayerApprovalChanged` event.
     */
    function setRelayerApproval(
        address sender,
        address relayer,
        bool approved
    ) external;

    /**
     * @dev Emitted every time a relayer is approved or disapproved by `setRelayerApproval`.
     */
    event RelayerApprovalChanged(address indexed relayer, address indexed sender, bool approved);

    // Internal Balance
    //
    // Users can deposit tokens into the Vault, where they are allocated to their Internal Balance, and later
    // transferred or withdrawn. It can also be used as a source of tokens when joining Pools, as a destination
    // when exiting them, and as either when performing swaps. This usage of Internal Balance results in greatly reduced
    // gas costs when compared to relying on plain ERC20 transfers, leading to large savings for frequent users.
    //
    // Internal Balance management features batching, which means a single contract call can be used to perform multiple
    // operations of different kinds, with different senders and recipients, at once.

    /**
     * @dev Returns `user`'s Internal Balance for a set of tokens.
     */
    function getInternalBalance(address user, IERC20[] memory tokens) external view returns (uint256[] memory);

    /**
     * @dev Performs a set of user balance operations, which involve Internal Balance (deposit, withdraw or transfer)
     * and plain ERC20 transfers using the Vault's allowance. This last feature is particularly useful for relayers, as
     * it lets integrators reuse a user's Vault allowance.
     *
     * For each operation, if the caller is not `sender`, it must be an authorized relayer for them.
     */
    function manageUserBalance(UserBalanceOp[] memory ops) external payable;

    /**
     * @dev Data for `manageUserBalance` operations, which include the possibility for ETH to be sent and received
     without manual WETH wrapping or unwrapping.
     */
    struct UserBalanceOp {
        UserBalanceOpKind kind;
        IAsset asset;
        uint256 amount;
        address sender;
        address payable recipient;
    }

    // There are four possible operations in `manageUserBalance`:
    //
    // - DEPOSIT_INTERNAL
    // Increases the Internal Balance of the `recipient` account by transferring tokens from the corresponding
    // `sender`. The sender must have allowed the Vault to use their tokens via `IERC20.approve()`.
    //
    // ETH can be used by passing the ETH sentinel value as the asset and forwarding ETH in the call: it will be wrapped
    // and deposited as WETH. Any ETH amount remaining will be sent back to the caller (not the sender, which is
    // relevant for relayers).
    //
    // Emits an `InternalBalanceChanged` event.
    //
    //
    // - WITHDRAW_INTERNAL
    // Decreases the Internal Balance of the `sender` account by transferring tokens to the `recipient`.
    //
    // ETH can be used by passing the ETH sentinel value as the asset. This will deduct WETH instead, unwrap it and send
    // it to the recipient as ETH.
    //
    // Emits an `InternalBalanceChanged` event.
    //
    //
    // - TRANSFER_INTERNAL
    // Transfers tokens from the Internal Balance of the `sender` account to the Internal Balance of `recipient`.
    //
    // Reverts if the ETH sentinel value is passed.
    //
    // Emits an `InternalBalanceChanged` event.
    //
    //
    // - TRANSFER_EXTERNAL
    // Transfers tokens from `sender` to `recipient`, using the Vault's ERC20 allowance. This is typically used by
    // relayers, as it lets them reuse a user's Vault allowance.
    //
    // Reverts if the ETH sentinel value is passed.
    //
    // Emits an `ExternalBalanceTransfer` event.

    enum UserBalanceOpKind { DEPOSIT_INTERNAL, WITHDRAW_INTERNAL, TRANSFER_INTERNAL, TRANSFER_EXTERNAL }

    /**
     * @dev Emitted when a user's Internal Balance changes, either from calls to `manageUserBalance`, or through
     * interacting with Pools using Internal Balance.
     *
     * Because Internal Balance works exclusively with ERC20 tokens, ETH deposits and withdrawals will use the WETH
     * address.
     */
    event InternalBalanceChanged(address indexed user, IERC20 indexed token, int256 delta);

    /**
     * @dev Emitted when a user's Vault ERC20 allowance is used by the Vault to transfer tokens to an external account.
     */
    event ExternalBalanceTransfer(IERC20 indexed token, address indexed sender, address recipient, uint256 amount);

    // Pools
    //
    // There are three specialization settings for Pools, which allow for cheaper swaps at the cost of reduced
    // functionality:
    //
    //  - General: no specialization, suited for all Pools. IGeneralPool is used for swap request callbacks, passing the
    // balance of all tokens in the Pool. These Pools have the largest swap costs (because of the extra storage reads),
    // which increase with the number of registered tokens.
    //
    //  - Minimal Swap Info: IMinimalSwapInfoPool is used instead of IGeneralPool, which saves gas by only passing the
    // balance of the two tokens involved in the swap. This is suitable for some pricing algorithms, like the weighted
    // constant product one popularized by Balancer V1. Swap costs are smaller compared to general Pools, and are
    // independent of the number of registered tokens.
    //
    //  - Two Token: only allows two tokens to be registered. This achieves the lowest possible swap gas cost. Like
    // minimal swap info Pools, these are called via IMinimalSwapInfoPool.

    enum PoolSpecialization { GENERAL, MINIMAL_SWAP_INFO, TWO_TOKEN }

    /**
     * @dev Registers the caller account as a Pool with a given specialization setting. Returns the Pool's ID, which
     * is used in all Pool-related functions. Pools cannot be deregistered, nor can the Pool's specialization be
     * changed.
     *
     * The caller is expected to be a smart contract that implements either `IGeneralPool` or `IMinimalSwapInfoPool`,
     * depending on the chosen specialization setting. This contract is known as the Pool's contract.
     *
     * Note that the same contract may register itself as multiple Pools with unique Pool IDs, or in other words,
     * multiple Pools may share the same contract.
     *
     * Emits a `PoolRegistered` event.
     */
    function registerPool(PoolSpecialization specialization) external returns (bytes32);

    /**
     * @dev Emitted when a Pool is registered by calling `registerPool`.
     */
    event PoolRegistered(bytes32 indexed poolId, address indexed poolAddress, PoolSpecialization specialization);

    /**
     * @dev Returns a Pool's contract address and specialization setting.
     */
    function getPool(bytes32 poolId) external view returns (address, PoolSpecialization);

    /**
     * @dev Registers `tokens` for the `poolId` Pool. Must be called by the Pool's contract.
     *
     * Pools can only interact with tokens they have registered. Users join a Pool by transferring registered tokens,
     * exit by receiving registered tokens, and can only swap registered tokens.
     *
     * Each token can only be registered once. For Pools with the Two Token specialization, `tokens` must have a length
     * of two, that is, both tokens must be registered in the same `registerTokens` call, and they must be sorted in
     * ascending order.
     *
     * The `tokens` and `assetManagers` arrays must have the same length, and each entry in these indicates the Asset
     * Manager for the corresponding token. Asset Managers can manage a Pool's tokens via `managePoolBalance`,
     * depositing and withdrawing them directly, and can even set their balance to arbitrary amounts. They are therefore
     * expected to be highly secured smart contracts with sound design principles, and the decision to register an
     * Asset Manager should not be made lightly.
     *
     * Pools can choose not to assign an Asset Manager to a given token by passing in the zero address. Once an Asset
     * Manager is set, it cannot be changed except by deregistering the associated token and registering again with a
     * different Asset Manager.
     *
     * Emits a `TokensRegistered` event.
     */
    function registerTokens(
        bytes32 poolId,
        IERC20[] memory tokens,
        address[] memory assetManagers
    ) external;

    /**
     * @dev Emitted when a Pool registers tokens by calling `registerTokens`.
     */
    event TokensRegistered(bytes32 indexed poolId, IERC20[] tokens, address[] assetManagers);

    /**
     * @dev Deregisters `tokens` for the `poolId` Pool. Must be called by the Pool's contract.
     *
     * Only registered tokens (via `registerTokens`) can be deregistered. Additionally, they must have zero total
     * balance. For Pools with the Two Token specialization, `tokens` must have a length of two, that is, both tokens
     * must be deregistered in the same `deregisterTokens` call.
     *
     * A deregistered token can be re-registered later on, possibly with a different Asset Manager.
     *
     * Emits a `TokensDeregistered` event.
     */
    function deregisterTokens(bytes32 poolId, IERC20[] memory tokens) external;

    /**
     * @dev Emitted when a Pool deregisters tokens by calling `deregisterTokens`.
     */
    event TokensDeregistered(bytes32 indexed poolId, IERC20[] tokens);

    /**
     * @dev Returns detailed information for a Pool's registered token.
     *
     * `cash` is the number of tokens the Vault currently holds for the Pool. `managed` is the number of tokens
     * withdrawn and held outside the Vault by the Pool's token Asset Manager. The Pool's total balance for `token`
     * equals the sum of `cash` and `managed`.
     *
     * Internally, `cash` and `managed` are stored using 112 bits. No action can ever cause a Pool's token `cash`,
     * `managed` or `total` balance to be greater than 2^112 - 1.
     *
     * `lastChangeBlock` is the number of the block in which `token`'s total balance was last modified (via either a
     * join, exit, swap, or Asset Manager update). This value is useful to avoid so-called 'sandwich attacks', for
     * example when developing price oracles. A change of zero (e.g. caused by a swap with amount zero) is considered a
     * change for this purpose, and will update `lastChangeBlock`.
     *
     * `assetManager` is the Pool's token Asset Manager.
     */
    function getPoolTokenInfo(bytes32 poolId, IERC20 token)
        external
        view
        returns (
            uint256 cash,
            uint256 managed,
            uint256 lastChangeBlock,
            address assetManager
        );

    /**
     * @dev Returns a Pool's registered tokens, the total balance for each, and the latest block when *any* of
     * the tokens' `balances` changed.
     *
     * The order of the `tokens` array is the same order that will be used in `joinPool`, `exitPool`, as well as in all
     * Pool hooks (where applicable). Calls to `registerTokens` and `deregisterTokens` may change this order.
     *
     * If a Pool only registers tokens once, and these are sorted in ascending order, they will be stored in the same
     * order as passed to `registerTokens`.
     *
     * Total balances include both tokens held by the Vault and those withdrawn by the Pool's Asset Managers. These are
     * the amounts used by joins, exits and swaps. For a detailed breakdown of token balances, use `getPoolTokenInfo`
     * instead.
     */
    function getPoolTokens(bytes32 poolId)
        external
        view
        returns (
            IERC20[] memory tokens,
            uint256[] memory balances,
            uint256 lastChangeBlock
        );

    /**
     * @dev Called by users to join a Pool, which transfers tokens from `sender` into the Pool's balance. This will
     * trigger custom Pool behavior, which will typically grant something in return to `recipient` - often tokenized
     * Pool shares.
     *
     * If the caller is not `sender`, it must be an authorized relayer for them.
     *
     * The `assets` and `maxAmountsIn` arrays must have the same length, and each entry indicates the maximum amount
     * to send for each asset. The amounts to send are decided by the Pool and not the Vault: it just enforces
     * these maximums.
     *
     * If joining a Pool that holds WETH, it is possible to send ETH directly: the Vault will do the wrapping. To enable
     * this mechanism, the IAsset sentinel value (the zero address) must be passed in the `assets` array instead of the
     * WETH address. Note that it is not possible to combine ETH and WETH in the same join. Any excess ETH will be sent
     * back to the caller (not the sender, which is important for relayers).
     *
     * `assets` must have the same length and order as the array returned by `getPoolTokens`. This prevents issues when
     * interacting with Pools that register and deregister tokens frequently. If sending ETH however, the array must be
     * sorted *before* replacing the WETH address with the ETH sentinel value (the zero address), which means the final
     * `assets` array might not be sorted. Pools with no registered tokens cannot be joined.
     *
     * If `fromInternalBalance` is true, the caller's Internal Balance will be preferred: ERC20 transfers will only
     * be made for the difference between the requested amount and Internal Balance (if any). Note that ETH cannot be
     * withdrawn from Internal Balance: attempting to do so will trigger a revert.
     *
     * This causes the Vault to call the `IBasePool.onJoinPool` hook on the Pool's contract, where Pools implement
     * their own custom logic. This typically requires additional information from the user (such as the expected number
     * of Pool shares). This can be encoded in the `userData` argument, which is ignored by the Vault and passed
     * directly to the Pool's contract, as is `recipient`.
     *
     * Emits a `PoolBalanceChanged` event.
     */
    function joinPool(
        bytes32 poolId,
        address sender,
        address recipient,
        JoinPoolRequest memory request
    ) external payable;

    struct JoinPoolRequest {
        IAsset[] assets;
        uint256[] maxAmountsIn;
        bytes userData;
        bool fromInternalBalance;
    }

    /**
     * @dev Called by users to exit a Pool, which transfers tokens from the Pool's balance to `recipient`. This will
     * trigger custom Pool behavior, which will typically ask for something in return from `sender` - often tokenized
     * Pool shares. The amount of tokens that can be withdrawn is limited by the Pool's `cash` balance (see
     * `getPoolTokenInfo`).
     *
     * If the caller is not `sender`, it must be an authorized relayer for them.
     *
     * The `tokens` and `minAmountsOut` arrays must have the same length, and each entry in these indicates the minimum
     * token amount to receive for each token contract. The amounts to send are decided by the Pool and not the Vault:
     * it just enforces these minimums.
     *
     * If exiting a Pool that holds WETH, it is possible to receive ETH directly: the Vault will do the unwrapping. To
     * enable this mechanism, the IAsset sentinel value (the zero address) must be passed in the `assets` array instead
     * of the WETH address. Note that it is not possible to combine ETH and WETH in the same exit.
     *
     * `assets` must have the same length and order as the array returned by `getPoolTokens`. This prevents issues when
     * interacting with Pools that register and deregister tokens frequently. If receiving ETH however, the array must
     * be sorted *before* replacing the WETH address with the ETH sentinel value (the zero address), which means the
     * final `assets` array might not be sorted. Pools with no registered tokens cannot be exited.
     *
     * If `toInternalBalance` is true, the tokens will be deposited to `recipient`'s Internal Balance. Otherwise,
     * an ERC20 transfer will be performed. Note that ETH cannot be deposited to Internal Balance: attempting to
     * do so will trigger a revert.
     *
     * `minAmountsOut` is the minimum amount of tokens the user expects to get out of the Pool, for each token in the
     * `tokens` array. This array must match the Pool's registered tokens.
     *
     * This causes the Vault to call the `IBasePool.onExitPool` hook on the Pool's contract, where Pools implement
     * their own custom logic. This typically requires additional information from the user (such as the expected number
     * of Pool shares to return). This can be encoded in the `userData` argument, which is ignored by the Vault and
     * passed directly to the Pool's contract.
     *
     * Emits a `PoolBalanceChanged` event.
     */
    function exitPool(
        bytes32 poolId,
        address sender,
        address payable recipient,
        ExitPoolRequest memory request
    ) external;

    struct ExitPoolRequest {
        IAsset[] assets;
        uint256[] minAmountsOut;
        bytes userData;
        bool toInternalBalance;
    }

    /**
     * @dev Emitted when a user joins or exits a Pool by calling `joinPool` or `exitPool`, respectively.
     */
    event PoolBalanceChanged(
        bytes32 indexed poolId,
        address indexed liquidityProvider,
        IERC20[] tokens,
        int256[] deltas,
        uint256[] protocolFeeAmounts
    );

    enum PoolBalanceChangeKind { JOIN, EXIT }

    // Swaps
    //
    // Users can swap tokens with Pools by calling the `swap` and `batchSwap` functions. To do this,
    // they need not trust Pool contracts in any way: all security checks are made by the Vault. They must however be
    // aware of the Pools' pricing algorithms in order to estimate the prices Pools will quote.
    //
    // The `swap` function executes a single swap, while `batchSwap` can perform multiple swaps in sequence.
    // In each individual swap, tokens of one kind are sent from the sender to the Pool (this is the 'token in'),
    // and tokens of another kind are sent from the Pool to the recipient in exchange (this is the 'token out').
    // More complex swaps, such as one token in to multiple tokens out can be achieved by batching together
    // individual swaps.
    //
    // There are two swap kinds:
    //  - 'given in' swaps, where the amount of tokens in (sent to the Pool) is known, and the Pool determines (via the
    // `onSwap` hook) the amount of tokens out (to send to the recipient).
    //  - 'given out' swaps, where the amount of tokens out (received from the Pool) is known, and the Pool determines
    // (via the `onSwap` hook) the amount of tokens in (to receive from the sender).
    //
    // Additionally, it is possible to chain swaps using a placeholder input amount, which the Vault replaces with
    // the calculated output of the previous swap. If the previous swap was 'given in', this will be the calculated
    // tokenOut amount. If the previous swap was 'given out', it will use the calculated tokenIn amount. These extended
    // swaps are known as 'multihop' swaps, since they 'hop' through a number of intermediate tokens before arriving at
    // the final intended token.
    //
    // In all cases, tokens are only transferred in and out of the Vault (or withdrawn from and deposited into Internal
    // Balance) after all individual swaps have been completed, and the net token balance change computed. This makes
    // certain swap patterns, such as multihops, or swaps that interact with the same token pair in multiple Pools, cost
    // much less gas than they would otherwise.
    //
    // It also means that under certain conditions it is possible to perform arbitrage by swapping with multiple
    // Pools in a way that results in net token movement out of the Vault (profit), with no tokens being sent in (only
    // updating the Pool's internal accounting).
    //
    // To protect users from front-running or the market changing rapidly, they supply a list of 'limits' for each token
    // involved in the swap, where either the maximum number of tokens to send (by passing a positive value) or the
    // minimum amount of tokens to receive (by passing a negative value) is specified.
    //
    // Additionally, a 'deadline' timestamp can also be provided, forcing the swap to fail if it occurs after
    // this point in time (e.g. if the transaction failed to be included in a block promptly).
    //
    // If interacting with Pools that hold WETH, it is possible to both send and receive ETH directly: the Vault will do
    // the wrapping and unwrapping. To enable this mechanism, the IAsset sentinel value (the zero address) must be
    // passed in the `assets` array instead of the WETH address. Note that it is possible to combine ETH and WETH in the
    // same swap. Any excess ETH will be sent back to the caller (not the sender, which is relevant for relayers).
    //
    // Finally, Internal Balance can be used when either sending or receiving tokens.

    enum SwapKind { GIVEN_IN, GIVEN_OUT }

    /**
     * @dev Performs a swap with a single Pool.
     *
     * If the swap is 'given in' (the number of tokens to send to the Pool is known), it returns the amount of tokens
     * taken from the Pool, which must be greater than or equal to `limit`.
     *
     * If the swap is 'given out' (the number of tokens to take from the Pool is known), it returns the amount of tokens
     * sent to the Pool, which must be less than or equal to `limit`.
     *
     * Internal Balance usage and the recipient are determined by the `funds` struct.
     *
     * Emits a `Swap` event.
     */
    function swap(
        SingleSwap memory singleSwap,
        FundManagement memory funds,
        uint256 limit,
        uint256 deadline
    ) external payable returns (uint256);

    /**
     * @dev Data for a single swap executed by `swap`. `amount` is either `amountIn` or `amountOut` depending on
     * the `kind` value.
     *
     * `assetIn` and `assetOut` are either token addresses, or the IAsset sentinel value for ETH (the zero address).
     * Note that Pools never interact with ETH directly: it will be wrapped to or unwrapped from WETH by the Vault.
     *
     * The `userData` field is ignored by the Vault, but forwarded to the Pool in the `onSwap` hook, and may be
     * used to extend swap behavior.
     */
    struct SingleSwap {
        bytes32 poolId;
        SwapKind kind;
        IAsset assetIn;
        IAsset assetOut;
        uint256 amount;
        bytes userData;
    }

    /**
     * @dev Performs a series of swaps with one or multiple Pools. In each individual swap, the caller determines either
     * the amount of tokens sent to or received from the Pool, depending on the `kind` value.
     *
     * Returns an array with the net Vault asset balance deltas. Positive amounts represent tokens (or ETH) sent to the
     * Vault, and negative amounts represent tokens (or ETH) sent by the Vault. Each delta corresponds to the asset at
     * the same index in the `assets` array.
     *
     * Swaps are executed sequentially, in the order specified by the `swaps` array. Each array element describes a
     * Pool, the token to be sent to this Pool, the token to receive from it, and an amount that is either `amountIn` or
     * `amountOut` depending on the swap kind.
     *
     * Multihop swaps can be executed by passing an `amount` value of zero for a swap. This will cause the amount in/out
     * of the previous swap to be used as the amount in for the current one. In a 'given in' swap, 'tokenIn' must equal
     * the previous swap's `tokenOut`. For a 'given out' swap, `tokenOut` must equal the previous swap's `tokenIn`.
     *
     * The `assets` array contains the addresses of all assets involved in the swaps. These are either token addresses,
     * or the IAsset sentinel value for ETH (the zero address). Each entry in the `swaps` array specifies tokens in and
     * out by referencing an index in `assets`. Note that Pools never interact with ETH directly: it will be wrapped to
     * or unwrapped from WETH by the Vault.
     *
     * Internal Balance usage, sender, and recipient are determined by the `funds` struct. The `limits` array specifies
     * the minimum or maximum amount of each token the vault is allowed to transfer.
     *
     * `batchSwap` can be used to make a single swap, like `swap` does, but doing so requires more gas than the
     * equivalent `swap` call.
     *
     * Emits `Swap` events.
     */
    function batchSwap(
        SwapKind kind,
        BatchSwapStep[] memory swaps,
        IAsset[] memory assets,
        FundManagement memory funds,
        int256[] memory limits,
        uint256 deadline
    ) external payable returns (int256[] memory);

    /**
     * @dev Data for each individual swap executed by `batchSwap`. The asset in and out fields are indexes into the
     * `assets` array passed to that function, and ETH assets are converted to WETH.
     *
     * If `amount` is zero, the multihop mechanism is used to determine the actual amount based on the amount in/out
     * from the previous swap, depending on the swap kind.
     *
     * The `userData` field is ignored by the Vault, but forwarded to the Pool in the `onSwap` hook, and may be
     * used to extend swap behavior.
     */
    struct BatchSwapStep {
        bytes32 poolId;
        uint256 assetInIndex;
        uint256 assetOutIndex;
        uint256 amount;
        bytes userData;
    }

    /**
     * @dev Emitted for each individual swap performed by `swap` or `batchSwap`.
     */
    event Swap(
        bytes32 indexed poolId,
        IERC20 indexed tokenIn,
        IERC20 indexed tokenOut,
        uint256 amountIn,
        uint256 amountOut
    );

    /**
     * @dev All tokens in a swap are either sent from the `sender` account to the Vault, or from the Vault to the
     * `recipient` account.
     *
     * If the caller is not `sender`, it must be an authorized relayer for them.
     *
     * If `fromInternalBalance` is true, the `sender`'s Internal Balance will be preferred, performing an ERC20
     * transfer for the difference between the requested amount and the User's Internal Balance (if any). The `sender`
     * must have allowed the Vault to use their tokens via `IERC20.approve()`. This matches the behavior of
     * `joinPool`.
     *
     * If `toInternalBalance` is true, tokens will be deposited to `recipient`'s internal balance instead of
     * transferred. This matches the behavior of `exitPool`.
     *
     * Note that ETH cannot be deposited to or withdrawn from Internal Balance: attempting to do so will trigger a
     * revert.
     */
    struct FundManagement {
        address sender;
        bool fromInternalBalance;
        address payable recipient;
        bool toInternalBalance;
    }

    /**
     * @dev Simulates a call to `batchSwap`, returning an array of Vault asset deltas. Calls to `swap` cannot be
     * simulated directly, but an equivalent `batchSwap` call can and will yield the exact same result.
     *
     * Each element in the array corresponds to the asset at the same index, and indicates the number of tokens (or ETH)
     * the Vault would take from the sender (if positive) or send to the recipient (if negative). The arguments it
     * receives are the same that an equivalent `batchSwap` call would receive.
     *
     * Unlike `batchSwap`, this function performs no checks on the sender or recipient field in the `funds` struct.
     * This makes it suitable to be called by off-chain applications via eth_call without needing to hold tokens,
     * approve them for the Vault, or even know a user's address.
     *
     * Note that this function is not 'view' (due to implementation details): the client code must explicitly execute
     * eth_call instead of eth_sendTransaction.
     */
    function queryBatchSwap(
        SwapKind kind,
        BatchSwapStep[] memory swaps,
        IAsset[] memory assets,
        FundManagement memory funds
    ) external returns (int256[] memory assetDeltas);

    // Flash Loans

    /**
     * @dev Performs a 'flash loan', sending tokens to `recipient`, executing the `receiveFlashLoan` hook on it,
     * and then reverting unless the tokens plus a proportional protocol fee have been returned.
     *
     * The `tokens` and `amounts` arrays must have the same length, and each entry in these indicates the loan amount
     * for each token contract. `tokens` must be sorted in ascending order.
     *
     * The 'userData' field is ignored by the Vault, and forwarded as-is to `recipient` as part of the
     * `receiveFlashLoan` call.
     *
     * Emits `FlashLoan` events.
     */
    function flashLoan(
        IFlashLoanRecipient recipient,
        IERC20[] memory tokens,
        uint256[] memory amounts,
        bytes memory userData
    ) external;

    /**
     * @dev Emitted for each individual flash loan performed by `flashLoan`.
     */
    event FlashLoan(IFlashLoanRecipient indexed recipient, IERC20 indexed token, uint256 amount, uint256 feeAmount);

    // Asset Management
    //
    // Each token registered for a Pool can be assigned an Asset Manager, which is able to freely withdraw the Pool's
    // tokens from the Vault, deposit them, or assign arbitrary values to its `managed` balance (see
    // `getPoolTokenInfo`). This makes them extremely powerful and dangerous. Even if an Asset Manager only directly
    // controls one of the tokens in a Pool, a malicious manager could set that token's balance to manipulate the
    // prices of the other tokens, and then drain the Pool with swaps. The risk of using Asset Managers is therefore
    // not constrained to the tokens they are managing, but extends to the entire Pool's holdings.
    //
    // However, a properly designed Asset Manager smart contract can be safely used for the Pool's benefit,
    // for example by lending unused tokens out for interest, or using them to participate in voting protocols.
    //
    // This concept is unrelated to the IAsset interface.

    /**
     * @dev Performs a set of Pool balance operations, which may be either withdrawals, deposits or updates.
     *
     * Pool Balance management features batching, which means a single contract call can be used to perform multiple
     * operations of different kinds, with different Pools and tokens, at once.
     *
     * For each operation, the caller must be registered as the Asset Manager for `token` in `poolId`.
     */
    function managePoolBalance(PoolBalanceOp[] memory ops) external;

    struct PoolBalanceOp {
        PoolBalanceOpKind kind;
        bytes32 poolId;
        IERC20 token;
        uint256 amount;
    }

    /**
     * Withdrawals decrease the Pool's cash, but increase its managed balance, leaving the total balance unchanged.
     *
     * Deposits increase the Pool's cash, but decrease its managed balance, leaving the total balance unchanged.
     *
     * Updates don't affect the Pool's cash balance, but because the managed balance changes, it does alter the total.
     * The external amount can be either increased or decreased by this call (i.e., reporting a gain or a loss).
     */
    enum PoolBalanceOpKind { WITHDRAW, DEPOSIT, UPDATE }

    /**
     * @dev Emitted when a Pool's token Asset Manager alters its balance via `managePoolBalance`.
     */
    event PoolBalanceManaged(
        bytes32 indexed poolId,
        address indexed assetManager,
        IERC20 indexed token,
        int256 cashDelta,
        int256 managedDelta
    );

    // Protocol Fees
    //
    // Some operations cause the Vault to collect tokens in the form of protocol fees, which can then be withdrawn by
    // permissioned accounts.
    //
    // There are two kinds of protocol fees:
    //
    //  - flash loan fees: charged on all flash loans, as a percentage of the amounts lent.
    //
    //  - swap fees: a percentage of the fees charged by Pools when performing swaps. For a number of reasons, including
    // swap gas costs and interface simplicity, protocol swap fees are not charged on each individual swap. Rather,
    // Pools are expected to keep track of how much they have charged in swap fees, and pay any outstanding debts to the
    // Vault when they are joined or exited. This prevents users from joining a Pool with unpaid debt, as well as
    // exiting a Pool in debt without first paying their share.

    /**
     * @dev Returns the current protocol fee module.
     */
    function getProtocolFeesCollector() external view returns (IProtocolFeesCollector);

    /**
     * @dev Safety mechanism to pause most Vault operations in the event of an emergency - typically detection of an
     * error in some part of the system.
     *
     * The Vault can only be paused during an initial time period, after which pausing is forever disabled.
     *
     * While the contract is paused, the following features are disabled:
     * - depositing and transferring internal balance
     * - transferring external balance (using the Vault's allowance)
     * - swaps
     * - joining Pools
     * - Asset Manager interactions
     *
     * Internal Balance can still be withdrawn, and Pools exited.
     */
    function setPaused(bool paused) external;

    /**
     * @dev Returns the Vault's WETH instance.
     */
    function WETH() external view returns (IWETH);
    // solhint-disable-previous-line func-name-mixedcase
}

File 18 of 63 : IBasePool.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;
pragma experimental ABIEncoderV2;

import "./IVault.sol";
import "./IPoolSwapStructs.sol";

/**
 * @dev Interface for adding and removing liquidity that all Pool contracts should implement. Note that this is not
 * the complete Pool contract interface, as it is missing the swap hooks. Pool contracts should also inherit from
 * either IGeneralPool or IMinimalSwapInfoPool
 */
interface IBasePool is IPoolSwapStructs {
    /**
     * @dev Called by the Vault when a user calls `IVault.joinPool` to add liquidity to this Pool. Returns how many of
     * each registered token the user should provide, as well as the amount of protocol fees the Pool owes to the Vault.
     * The Vault will then take tokens from `sender` and add them to the Pool's balances, as well as collect
     * the reported amount in protocol fees, which the pool should calculate based on `protocolSwapFeePercentage`.
     *
     * Protocol fees are reported and charged on join events so that the Pool is free of debt whenever new users join.
     *
     * `sender` is the account performing the join (from which tokens will be withdrawn), and `recipient` is the account
     * designated to receive any benefits (typically pool shares). `balances` contains the total balances
     * for each token the Pool registered in the Vault, in the same order that `IVault.getPoolTokens` would return.
     *
     * `lastChangeBlock` is the last block in which *any* of the Pool's registered tokens last changed its total
     * balance.
     *
     * `userData` contains any pool-specific instructions needed to perform the calculations, such as the type of
     * join (e.g., proportional given an amount of pool shares, single-asset, multi-asset, etc.)
     *
     * Contracts implementing this function should check that the caller is indeed the Vault before performing any
     * state-changing operations, such as minting pool shares.
     */
    function onJoinPool(
        bytes32 poolId,
        address sender,
        address recipient,
        uint256[] memory balances,
        uint256 lastChangeBlock,
        uint256 protocolSwapFeePercentage,
        bytes memory userData
    ) external returns (uint256[] memory amountsIn, uint256[] memory dueProtocolFeeAmounts);

    /**
     * @dev Called by the Vault when a user calls `IVault.exitPool` to remove liquidity from this Pool. Returns how many
     * tokens the Vault should deduct from the Pool's balances, as well as the amount of protocol fees the Pool owes
     * to the Vault. The Vault will then take tokens from the Pool's balances and send them to `recipient`,
     * as well as collect the reported amount in protocol fees, which the Pool should calculate based on
     * `protocolSwapFeePercentage`.
     *
     * Protocol fees are charged on exit events to guarantee that users exiting the Pool have paid their share.
     *
     * `sender` is the account performing the exit (typically the pool shareholder), and `recipient` is the account
     * to which the Vault will send the proceeds. `balances` contains the total token balances for each token
     * the Pool registered in the Vault, in the same order that `IVault.getPoolTokens` would return.
     *
     * `lastChangeBlock` is the last block in which *any* of the Pool's registered tokens last changed its total
     * balance.
     *
     * `userData` contains any pool-specific instructions needed to perform the calculations, such as the type of
     * exit (e.g., proportional given an amount of pool shares, single-asset, multi-asset, etc.)
     *
     * Contracts implementing this function should check that the caller is indeed the Vault before performing any
     * state-changing operations, such as burning pool shares.
     */
    function onExitPool(
        bytes32 poolId,
        address sender,
        address recipient,
        uint256[] memory balances,
        uint256 lastChangeBlock,
        uint256 protocolSwapFeePercentage,
        bytes memory userData
    ) external returns (uint256[] memory amountsOut, uint256[] memory dueProtocolFeeAmounts);

    function getPoolId() external view returns (bytes32);
}

File 19 of 63 : IAssetManager.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;
pragma experimental ABIEncoderV2;

import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/IERC20.sol";

interface IAssetManager {
    /**
     * @notice Emitted when asset manager is rebalanced
     */
    event Rebalance(bytes32 poolId);

    /**
     * @notice Sets the config
     */
    function setConfig(bytes32 poolId, bytes calldata config) external;

    /**
     * Note: No function to read the asset manager config is included in IAssetManager
     * as the signature is expected to vary between asset manager implementations
     */

    /**
     * @notice Returns the asset manager's token
     */
    function getToken() external view returns (IERC20);

    /**
     * @return the current assets under management of this asset manager
     */
    function getAUM(bytes32 poolId) external view returns (uint256);

    /**
     * @return poolCash - The up-to-date cash balance of the pool
     * @return poolManaged - The up-to-date managed balance of the pool
     */
    function getPoolBalances(bytes32 poolId) external view returns (uint256 poolCash, uint256 poolManaged);

    /**
     * @return The difference in tokens between the target investment
     * and the currently invested amount (i.e. the amount that can be invested)
     */
    function maxInvestableBalance(bytes32 poolId) external view returns (int256);

    /**
     * @notice Updates the Vault on the value of the pool's investment returns
     */
    function updateBalanceOfPool(bytes32 poolId) external;

    /**
     * @notice Determines whether the pool should rebalance given the provided balances
     */
    function shouldRebalance(uint256 cash, uint256 managed) external view returns (bool);

    /**
     * @notice Rebalances funds between the pool and the asset manager to maintain target investment percentage.
     * @param poolId - the poolId of the pool to be rebalanced
     * @param force - a boolean representing whether a rebalance should be forced even when the pool is near balance
     */
    function rebalance(bytes32 poolId, bool force) external;

    /**
     * @notice allows an authorized rebalancer to remove capital to facilitate large withdrawals
     * @param poolId - the poolId of the pool to withdraw funds back to
     * @param amount - the amount of tokens to withdraw back to the pool
     */
    function capitalOut(bytes32 poolId, uint256 amount) external;
}

File 20 of 63 : BalancerPoolToken.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/ERC20.sol";
import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/ERC20Permit.sol";

/**
 * @title Highly opinionated token implementation
 * @author Balancer Labs
 * @dev
 * - Includes functions to increase and decrease allowance as a workaround
 *   for the well-known issue with `approve`:
 *   https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
 * - Allows for 'infinite allowance', where an allowance of 0xff..ff is not
 *   decreased by calls to transferFrom
 * - Lets a token holder use `transferFrom` to send their own tokens,
 *   without first setting allowance
 * - Emits 'Approval' events whenever allowance is changed by `transferFrom`
 */
contract BalancerPoolToken is ERC20, ERC20Permit {
    constructor(string memory tokenName, string memory tokenSymbol)
        ERC20(tokenName, tokenSymbol)
        ERC20Permit(tokenName)
    {
        // solhint-disable-previous-line no-empty-blocks
    }

    // Overrides

    /**
     * @dev Override to allow for 'infinite allowance' and let the token owner use `transferFrom` with no self-allowance
     */
    function transferFrom(
        address sender,
        address recipient,
        uint256 amount
    ) public override returns (bool) {
        uint256 currentAllowance = allowance(sender, msg.sender);
        _require(msg.sender == sender || currentAllowance >= amount, Errors.ERC20_TRANSFER_EXCEEDS_ALLOWANCE);

        _transfer(sender, recipient, amount);

        if (msg.sender != sender && currentAllowance != uint256(-1)) {
            // Because of the previous require, we know that if msg.sender != sender then currentAllowance >= amount
            _approve(sender, msg.sender, currentAllowance - amount);
        }

        return true;
    }

    /**
     * @dev Override to allow decreasing allowance by more than the current amount (setting it to zero)
     */
    function decreaseAllowance(address spender, uint256 amount) public override returns (bool) {
        uint256 currentAllowance = allowance(msg.sender, spender);

        if (amount >= currentAllowance) {
            _approve(msg.sender, spender, 0);
        } else {
            // No risk of underflow due to if condition
            _approve(msg.sender, spender, currentAllowance - amount);
        }

        return true;
    }

    // Internal functions

    function _mintPoolTokens(address recipient, uint256 amount) internal {
        _mint(recipient, amount);
    }

    function _burnPoolTokens(address sender, uint256 amount) internal {
        _burn(sender, amount);
    }
}

File 21 of 63 : BasePoolAuthorization.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

import "@balancer-labs/v2-solidity-utils/contracts/helpers/Authentication.sol";
import "@balancer-labs/v2-vault/contracts/interfaces/IAuthorizer.sol";

import "./BasePool.sol";

/**
 * @dev Base authorization layer implementation for Pools.
 *
 * The owner account can call some of the permissioned functions - access control of the rest is delegated to the
 * Authorizer. Note that this owner is immutable: more sophisticated permission schemes, such as multiple ownership,
 * granular roles, etc., could be built on top of this by making the owner a smart contract.
 *
 * Access control of all other permissioned functions is delegated to an Authorizer. It is also possible to delegate
 * control of *all* permissioned functions to the Authorizer by setting the owner address to `_DELEGATE_OWNER`.
 */
abstract contract BasePoolAuthorization is Authentication {
    address private immutable _owner;

    address private constant _DELEGATE_OWNER = 0xBA1BA1ba1BA1bA1bA1Ba1BA1ba1BA1bA1ba1ba1B;

    constructor(address owner) {
        _owner = owner;
    }

    function getOwner() public view returns (address) {
        return _owner;
    }

    function getAuthorizer() external view returns (IAuthorizer) {
        return _getAuthorizer();
    }

    function _canPerform(bytes32 actionId, address account) internal view override returns (bool) {
        if ((getOwner() != _DELEGATE_OWNER) && _isOwnerOnlyAction(actionId)) {
            // Only the owner can perform "owner only" actions, unless the owner is delegated.
            return msg.sender == getOwner();
        } else {
            // Non-owner actions are always processed via the Authorizer, as "owner only" ones are when delegated.
            return _getAuthorizer().canPerform(actionId, account, address(this));
        }
    }

    function _isOwnerOnlyAction(bytes32 actionId) internal view virtual returns (bool);

    function _getAuthorizer() internal view virtual returns (IAuthorizer);
}

File 22 of 63 : ITemporarilyPausable.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

/**
 * @dev Interface for the TemporarilyPausable helper.
 */
interface ITemporarilyPausable {
    /**
     * @dev Emitted every time the pause state changes by `_setPaused`.
     */
    event PausedStateChanged(bool paused);

    /**
     * @dev Returns the current paused state.
     */
    function getPausedState()
        external
        view
        returns (
            bool paused,
            uint256 pauseWindowEndTime,
            uint256 bufferPeriodEndTime
        );
}

File 23 of 63 : SafeMath.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.7.0;

import "../helpers/BalancerErrors.sol";

/**
 * @dev Wrappers over Solidity's arithmetic operations with added overflow
 * checks.
 *
 * Arithmetic operations in Solidity wrap on overflow. This can easily result
 * in bugs, because programmers usually assume that an overflow raises an
 * error, which is the standard behavior in high level programming languages.
 * `SafeMath` restores this intuition by reverting the transaction when an
 * operation overflows.
 *
 * Using this library instead of the unchecked operations eliminates an entire
 * class of bugs, so it's recommended to use it always.
 */
library SafeMath {
    /**
     * @dev Returns the addition of two unsigned integers, reverting on
     * overflow.
     *
     * Counterpart to Solidity's `+` operator.
     *
     * Requirements:
     *
     * - Addition cannot overflow.
     */
    function add(uint256 a, uint256 b) internal pure returns (uint256) {
        uint256 c = a + b;
        _require(c >= a, Errors.ADD_OVERFLOW);

        return c;
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, reverting on
     * overflow (when the result is negative).
     *
     * Counterpart to Solidity's `-` operator.
     *
     * Requirements:
     *
     * - Subtraction cannot overflow.
     */
    function sub(uint256 a, uint256 b) internal pure returns (uint256) {
        return sub(a, b, Errors.SUB_OVERFLOW);
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, reverting with custom message on
     * overflow (when the result is negative).
     *
     * Counterpart to Solidity's `-` operator.
     *
     * Requirements:
     *
     * - Subtraction cannot overflow.
     */
    function sub(uint256 a, uint256 b, uint256 errorCode) internal pure returns (uint256) {
        _require(b <= a, errorCode);
        uint256 c = a - b;

        return c;
    }
}

File 24 of 63 : ISignaturesValidator.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

/**
 * @dev Interface for the SignatureValidator helper, used to support meta-transactions.
 */
interface ISignaturesValidator {
    /**
     * @dev Returns the EIP712 domain separator.
     */
    function getDomainSeparator() external view returns (bytes32);

    /**
     * @dev Returns the next nonce used by an address to sign messages.
     */
    function getNextNonce(address user) external view returns (uint256);
}

File 25 of 63 : IWETH.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

import "../openzeppelin/IERC20.sol";

/**
 * @dev Interface for WETH9.
 * See https://github.com/gnosis/canonical-weth/blob/0dd1ea3e295eef916d0c6223ec63141137d22d67/contracts/WETH9.sol
 */
interface IWETH is IERC20 {
    function deposit() external payable;

    function withdraw(uint256 amount) external;
}

File 26 of 63 : IAsset.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

/**
 * @dev This is an empty interface used to represent either ERC20-conforming token contracts or ETH (using the zero
 * address sentinel value). We're just relying on the fact that `interface` can be used to declare new address-like
 * types.
 *
 * This concept is unrelated to a Pool's Asset Managers.
 */
interface IAsset {
    // solhint-disable-previous-line no-empty-blocks
}

File 27 of 63 : IAuthorizer.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

interface IAuthorizer {
    /**
     * @dev Returns true if `account` can perform the action described by `actionId` in the contract `where`.
     */
    function canPerform(
        bytes32 actionId,
        address account,
        address where
    ) external view returns (bool);
}

File 28 of 63 : IFlashLoanRecipient.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

// Inspired by Aave Protocol's IFlashLoanReceiver.

import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/IERC20.sol";

interface IFlashLoanRecipient {
    /**
     * @dev When `flashLoan` is called on the Vault, it invokes the `receiveFlashLoan` hook on the recipient.
     *
     * At the time of the call, the Vault will have transferred `amounts` for `tokens` to the recipient. Before this
     * call returns, the recipient must have transferred `amounts` plus `feeAmounts` for each token back to the
     * Vault, or else the entire flash loan will revert.
     *
     * `userData` is the same value passed in the `IVault.flashLoan` call.
     */
    function receiveFlashLoan(
        IERC20[] memory tokens,
        uint256[] memory amounts,
        uint256[] memory feeAmounts,
        bytes memory userData
    ) external;
}

File 29 of 63 : IProtocolFeesCollector.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;
pragma experimental ABIEncoderV2;

import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/IERC20.sol";

import "./IVault.sol";
import "./IAuthorizer.sol";

interface IProtocolFeesCollector {
    event SwapFeePercentageChanged(uint256 newSwapFeePercentage);
    event FlashLoanFeePercentageChanged(uint256 newFlashLoanFeePercentage);

    function withdrawCollectedFees(
        IERC20[] calldata tokens,
        uint256[] calldata amounts,
        address recipient
    ) external;

    function setSwapFeePercentage(uint256 newSwapFeePercentage) external;

    function setFlashLoanFeePercentage(uint256 newFlashLoanFeePercentage) external;

    function getSwapFeePercentage() external view returns (uint256);

    function getFlashLoanFeePercentage() external view returns (uint256);

    function getCollectedFeeAmounts(IERC20[] memory tokens) external view returns (uint256[] memory feeAmounts);

    function getAuthorizer() external view returns (IAuthorizer);

    function vault() external view returns (IVault);
}

File 30 of 63 : IPoolSwapStructs.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;
pragma experimental ABIEncoderV2;

import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/IERC20.sol";

import "./IVault.sol";

interface IPoolSwapStructs {
    // This is not really an interface - it just defines common structs used by other interfaces: IGeneralPool and
    // IMinimalSwapInfoPool.
    //
    // This data structure represents a request for a token swap, where `kind` indicates the swap type ('given in' or
    // 'given out') which indicates whether or not the amount sent by the pool is known.
    //
    // The pool receives `tokenIn` and sends `tokenOut`. `amount` is the number of `tokenIn` tokens the pool will take
    // in, or the number of `tokenOut` tokens the Pool will send out, depending on the given swap `kind`.
    //
    // All other fields are not strictly necessary for most swaps, but are provided to support advanced scenarios in
    // some Pools.
    //
    // `poolId` is the ID of the Pool involved in the swap - this is useful for Pool contracts that implement more than
    // one Pool.
    //
    // The meaning of `lastChangeBlock` depends on the Pool specialization:
    //  - Two Token or Minimal Swap Info: the last block in which either `tokenIn` or `tokenOut` changed its total
    //    balance.
    //  - General: the last block in which *any* of the Pool's registered tokens changed its total balance.
    //
    // `from` is the origin address for the funds the Pool receives, and `to` is the destination address
    // where the Pool sends the outgoing tokens.
    //
    // `userData` is extra data provided by the caller - typically a signature from a trusted party.
    struct SwapRequest {
        IVault.SwapKind kind;
        IERC20 tokenIn;
        IERC20 tokenOut;
        uint256 amount;
        // Misc data
        bytes32 poolId;
        uint256 lastChangeBlock;
        address from;
        address to;
        bytes userData;
    }
}

File 31 of 63 : ERC20Permit.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.7.0;

import "./ERC20.sol";
import "./IERC20Permit.sol";
import "./EIP712.sol";

/**
 * @dev Implementation of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on `{IERC20-approve}`, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 *
 * _Available since v3.4._
 */
abstract contract ERC20Permit is ERC20, IERC20Permit, EIP712 {
    mapping(address => uint256) private _nonces;

    // solhint-disable-next-line var-name-mixedcase
    bytes32 private immutable _PERMIT_TYPEHASH =
        keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)");

    /**
     * @dev Initializes the {EIP712} domain separator using the `name` parameter, and setting `version` to `"1"`.
     *
     * It's a good idea to use the same `name` that is defined as the ERC20 token name.
     */
    constructor(string memory name) EIP712(name, "1") {}

    /**
     * @dev See {IERC20Permit-permit}.
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) public virtual override {
        // solhint-disable-next-line not-rely-on-time
        _require(block.timestamp <= deadline, Errors.EXPIRED_PERMIT);

        uint256 nonce = _nonces[owner];
        bytes32 structHash = keccak256(abi.encode(_PERMIT_TYPEHASH, owner, spender, value, nonce, deadline));

        bytes32 hash = _hashTypedDataV4(structHash);

        address signer = ecrecover(hash, v, r, s);
        _require((signer != address(0)) && (signer == owner), Errors.INVALID_SIGNATURE);

        _nonces[owner] = nonce + 1;
        _approve(owner, spender, value);
    }

    /**
     * @dev See {IERC20Permit-nonces}.
     */
    function nonces(address owner) public view override returns (uint256) {
        return _nonces[owner];
    }

    /**
     * @dev See {IERC20Permit-DOMAIN_SEPARATOR}.
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view override returns (bytes32) {
        return _domainSeparatorV4();
    }
}

File 32 of 63 : IERC20Permit.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.7.0;

/**
 * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on `{IERC20-approve}`, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 */
interface IERC20Permit {
    /**
     * @dev Sets `value` as the allowance of `spender` over `owner`'s tokens,
     * given `owner`'s signed approval.
     *
     * IMPORTANT: The same issues {IERC20-approve} has related to transaction
     * ordering also apply here.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `deadline` must be a timestamp in the future.
     * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
     * over the EIP712-formatted function arguments.
     * - the signature must use ``owner``'s current nonce (see {nonces}).
     *
     * For more information on the signature format, see the
     * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
     * section].
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external;

    /**
     * @dev Returns the current nonce for `owner`. This value must be
     * included whenever a signature is generated for {permit}.
     *
     * Every successful call to {permit} increases ``owner``'s nonce by one. This
     * prevents a signature from being used multiple times.
     */
    function nonces(address owner) external view returns (uint256);

    /**
     * @dev Returns the domain separator used in the encoding of the signature for `permit`, as defined by {EIP712}.
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view returns (bytes32);
}

File 33 of 63 : EIP712.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.7.0;

/**
 * @dev https://eips.ethereum.org/EIPS/eip-712[EIP 712] is a standard for hashing and signing of typed structured data.
 *
 * The encoding specified in the EIP is very generic, and such a generic implementation in Solidity is not feasible,
 * thus this contract does not implement the encoding itself. Protocols need to implement the type-specific encoding
 * they need in their contracts using a combination of `abi.encode` and `keccak256`.
 *
 * This contract implements the EIP 712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding
 * scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA
 * ({_hashTypedDataV4}).
 *
 * The implementation of the domain separator was designed to be as efficient as possible while still properly updating
 * the chain id to protect against replay attacks on an eventual fork of the chain.
 *
 * NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method
 * https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask].
 *
 * _Available since v3.4._
 */
abstract contract EIP712 {
    /* solhint-disable var-name-mixedcase */
    bytes32 private immutable _HASHED_NAME;
    bytes32 private immutable _HASHED_VERSION;
    bytes32 private immutable _TYPE_HASH;

    /* solhint-enable var-name-mixedcase */

    /**
     * @dev Initializes the domain separator and parameter caches.
     *
     * The meaning of `name` and `version` is specified in
     * https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP 712]:
     *
     * - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol.
     * - `version`: the current major version of the signing domain.
     *
     * NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart
     * contract upgrade].
     */
    constructor(string memory name, string memory version) {
        _HASHED_NAME = keccak256(bytes(name));
        _HASHED_VERSION = keccak256(bytes(version));
        _TYPE_HASH = keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)");
    }

    /**
     * @dev Returns the domain separator for the current chain.
     */
    function _domainSeparatorV4() internal view virtual returns (bytes32) {
        return keccak256(abi.encode(_TYPE_HASH, _HASHED_NAME, _HASHED_VERSION, _getChainId(), address(this)));
    }

    /**
     * @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this
     * function returns the hash of the fully encoded EIP712 message for this domain.
     *
     * This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example:
     *
     * ```solidity
     * bytes32 digest = _hashTypedDataV4(keccak256(abi.encode(
     *     keccak256("Mail(address to,string contents)"),
     *     mailTo,
     *     keccak256(bytes(mailContents))
     * )));
     * address signer = ECDSA.recover(digest, signature);
     * ```
     */
    function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) {
        return keccak256(abi.encodePacked("\x19\x01", _domainSeparatorV4(), structHash));
    }

    function _getChainId() private view returns (uint256 chainId) {
        // Silence state mutability warning without generating bytecode.
        // See https://github.com/ethereum/solidity/issues/10090#issuecomment-741789128 and
        // https://github.com/ethereum/solidity/issues/2691
        this;

        // solhint-disable-next-line no-inline-assembly
        assembly {
            chainId := chainid()
        }
    }
}

File 34 of 63 : Authentication.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

import "./BalancerErrors.sol";
import "./IAuthentication.sol";

/**
 * @dev Building block for performing access control on external functions.
 *
 * This contract is used via the `authenticate` modifier (or the `_authenticateCaller` function), which can be applied
 * to external functions to only make them callable by authorized accounts.
 *
 * Derived contracts must implement the `_canPerform` function, which holds the actual access control logic.
 */
abstract contract Authentication is IAuthentication {
    bytes32 private immutable _actionIdDisambiguator;

    /**
     * @dev The main purpose of the `actionIdDisambiguator` is to prevent accidental function selector collisions in
     * multi contract systems.
     *
     * There are two main uses for it:
     *  - if the contract is a singleton, any unique identifier can be used to make the associated action identifiers
     *    unique. The contract's own address is a good option.
     *  - if the contract belongs to a family that shares action identifiers for the same functions, an identifier
     *    shared by the entire family (and no other contract) should be used instead.
     */
    constructor(bytes32 actionIdDisambiguator) {
        _actionIdDisambiguator = actionIdDisambiguator;
    }

    /**
     * @dev Reverts unless the caller is allowed to call this function. Should only be applied to external functions.
     */
    modifier authenticate() {
        _authenticateCaller();
        _;
    }

    /**
     * @dev Reverts unless the caller is allowed to call the entry point function.
     */
    function _authenticateCaller() internal view {
        bytes32 actionId = getActionId(msg.sig);
        _require(_canPerform(actionId, msg.sender), Errors.SENDER_NOT_ALLOWED);
    }

    function getActionId(bytes4 selector) public view override returns (bytes32) {
        // Each external function is dynamically assigned an action identifier as the hash of the disambiguator and the
        // function selector. Disambiguation is necessary to avoid potential collisions in the function selectors of
        // multiple contracts.
        return keccak256(abi.encodePacked(_actionIdDisambiguator, selector));
    }

    function _canPerform(bytes32 actionId, address user) internal view virtual returns (bool);
}

File 35 of 63 : IAuthentication.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

interface IAuthentication {
    /**
     * @dev Returns the action identifier associated with the external function described by `selector`.
     */
    function getActionId(bytes4 selector) external view returns (bytes32);
}

File 36 of 63 : WeightedPool.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;
pragma experimental ABIEncoderV2;

import "./BaseWeightedPool.sol";

/**
 * @dev Basic Weighted Pool with immutable weights.
 */
contract WeightedPool is BaseWeightedPool {
    using FixedPoint for uint256;

    uint256 private constant _MAX_TOKENS = 20;

    uint256 private immutable _totalTokens;

    IERC20 internal immutable _token0;
    IERC20 internal immutable _token1;
    IERC20 internal immutable _token2;
    IERC20 internal immutable _token3;
    IERC20 internal immutable _token4;
    IERC20 internal immutable _token5;
    IERC20 internal immutable _token6;
    IERC20 internal immutable _token7;
    IERC20 internal immutable _token8;
    IERC20 internal immutable _token9;
    IERC20 internal immutable _token10;
    IERC20 internal immutable _token11;
    IERC20 internal immutable _token12;
    IERC20 internal immutable _token13;
    IERC20 internal immutable _token14;
    IERC20 internal immutable _token15;
    IERC20 internal immutable _token16;
    IERC20 internal immutable _token17;
    IERC20 internal immutable _token18;
    IERC20 internal immutable _token19;

    // All token balances are normalized to behave as if the token had 18 decimals. We assume a token's decimals will
    // not change throughout its lifetime, and store the corresponding scaling factor for each at construction time.
    // These factors are always greater than or equal to one: tokens with more than 18 decimals are not supported.

    uint256 internal immutable _scalingFactor0;
    uint256 internal immutable _scalingFactor1;
    uint256 internal immutable _scalingFactor2;
    uint256 internal immutable _scalingFactor3;
    uint256 internal immutable _scalingFactor4;
    uint256 internal immutable _scalingFactor5;
    uint256 internal immutable _scalingFactor6;
    uint256 internal immutable _scalingFactor7;
    uint256 internal immutable _scalingFactor8;
    uint256 internal immutable _scalingFactor9;
    uint256 internal immutable _scalingFactor10;
    uint256 internal immutable _scalingFactor11;
    uint256 internal immutable _scalingFactor12;
    uint256 internal immutable _scalingFactor13;
    uint256 internal immutable _scalingFactor14;
    uint256 internal immutable _scalingFactor15;
    uint256 internal immutable _scalingFactor16;
    uint256 internal immutable _scalingFactor17;
    uint256 internal immutable _scalingFactor18;
    uint256 internal immutable _scalingFactor19;

    // The protocol fees will always be charged using the token associated with the max weight in the pool.
    // Since these Pools will register tokens only once, we can assume this index will be constant.
    uint256 internal immutable _maxWeightTokenIndex;

    uint256 internal immutable _normalizedWeight0;
    uint256 internal immutable _normalizedWeight1;
    uint256 internal immutable _normalizedWeight2;
    uint256 internal immutable _normalizedWeight3;
    uint256 internal immutable _normalizedWeight4;
    uint256 internal immutable _normalizedWeight5;
    uint256 internal immutable _normalizedWeight6;
    uint256 internal immutable _normalizedWeight7;
    uint256 internal immutable _normalizedWeight8;
    uint256 internal immutable _normalizedWeight9;
    uint256 internal immutable _normalizedWeight10;
    uint256 internal immutable _normalizedWeight11;
    uint256 internal immutable _normalizedWeight12;
    uint256 internal immutable _normalizedWeight13;
    uint256 internal immutable _normalizedWeight14;
    uint256 internal immutable _normalizedWeight15;
    uint256 internal immutable _normalizedWeight16;
    uint256 internal immutable _normalizedWeight17;
    uint256 internal immutable _normalizedWeight18;
    uint256 internal immutable _normalizedWeight19;

    constructor(
        IVault vault,
        string memory name,
        string memory symbol,
        IERC20[] memory tokens,
        uint256[] memory normalizedWeights,
        address[] memory assetManagers,
        uint256 swapFeePercentage,
        uint256 pauseWindowDuration,
        uint256 bufferPeriodDuration,
        address owner
    )
        BaseWeightedPool(
            vault,
            name,
            symbol,
            tokens,
            assetManagers,
            swapFeePercentage,
            pauseWindowDuration,
            bufferPeriodDuration,
            owner
        )
    {
        uint256 numTokens = tokens.length;
        InputHelpers.ensureInputLengthMatch(numTokens, normalizedWeights.length);

        _totalTokens = numTokens;

        // Ensure  each normalized weight is above them minimum and find the token index of the maximum weight
        uint256 normalizedSum = 0;
        uint256 maxWeightTokenIndex = 0;
        uint256 maxNormalizedWeight = 0;
        for (uint8 i = 0; i < numTokens; i++) {
            uint256 normalizedWeight = normalizedWeights[i];
            _require(normalizedWeight >= _MIN_WEIGHT, Errors.MIN_WEIGHT);

            normalizedSum = normalizedSum.add(normalizedWeight);
            if (normalizedWeight > maxNormalizedWeight) {
                maxWeightTokenIndex = i;
                maxNormalizedWeight = normalizedWeight;
            }
        }
        // Ensure that the normalized weights sum to ONE
        _require(normalizedSum == FixedPoint.ONE, Errors.NORMALIZED_WEIGHT_INVARIANT);

        _maxWeightTokenIndex = maxWeightTokenIndex;

        _normalizedWeight0 = normalizedWeights[0];
        _normalizedWeight1 = normalizedWeights[1];
        _normalizedWeight2 = numTokens > 2 ? normalizedWeights[2] : 0;
        _normalizedWeight3 = numTokens > 3 ? normalizedWeights[3] : 0;
        _normalizedWeight4 = numTokens > 4 ? normalizedWeights[4] : 0;
        _normalizedWeight5 = numTokens > 5 ? normalizedWeights[5] : 0;
        _normalizedWeight6 = numTokens > 6 ? normalizedWeights[6] : 0;
        _normalizedWeight7 = numTokens > 7 ? normalizedWeights[7] : 0;
        _normalizedWeight8 = numTokens > 8 ? normalizedWeights[8] : 0;
        _normalizedWeight9 = numTokens > 9 ? normalizedWeights[9] : 0;
        _normalizedWeight10 = numTokens > 10 ? normalizedWeights[10] : 0;
        _normalizedWeight11 = numTokens > 11 ? normalizedWeights[11] : 0;
        _normalizedWeight12 = numTokens > 12 ? normalizedWeights[12] : 0;
        _normalizedWeight13 = numTokens > 13 ? normalizedWeights[13] : 0;
        _normalizedWeight14 = numTokens > 14 ? normalizedWeights[14] : 0;
        _normalizedWeight15 = numTokens > 15 ? normalizedWeights[15] : 0;
        _normalizedWeight16 = numTokens > 16 ? normalizedWeights[16] : 0;
        _normalizedWeight17 = numTokens > 17 ? normalizedWeights[17] : 0;
        _normalizedWeight18 = numTokens > 18 ? normalizedWeights[18] : 0;
        _normalizedWeight19 = numTokens > 19 ? normalizedWeights[19] : 0;

        // Immutable variables cannot be initialized inside an if statement, so we must do conditional assignments
        _token0 = tokens[0];
        _token1 = tokens[1];
        _token2 = numTokens > 2 ? tokens[2] : IERC20(0);
        _token3 = numTokens > 3 ? tokens[3] : IERC20(0);
        _token4 = numTokens > 4 ? tokens[4] : IERC20(0);
        _token5 = numTokens > 5 ? tokens[5] : IERC20(0);
        _token6 = numTokens > 6 ? tokens[6] : IERC20(0);
        _token7 = numTokens > 7 ? tokens[7] : IERC20(0);
        _token8 = numTokens > 8 ? tokens[8] : IERC20(0);
        _token9 = numTokens > 9 ? tokens[9] : IERC20(0);
        _token10 = numTokens > 10 ? tokens[10] : IERC20(0);
        _token11 = numTokens > 11 ? tokens[11] : IERC20(0);
        _token12 = numTokens > 12 ? tokens[12] : IERC20(0);
        _token13 = numTokens > 13 ? tokens[13] : IERC20(0);
        _token14 = numTokens > 14 ? tokens[14] : IERC20(0);
        _token15 = numTokens > 15 ? tokens[15] : IERC20(0);
        _token16 = numTokens > 16 ? tokens[16] : IERC20(0);
        _token17 = numTokens > 17 ? tokens[17] : IERC20(0);
        _token18 = numTokens > 18 ? tokens[18] : IERC20(0);
        _token19 = numTokens > 19 ? tokens[19] : IERC20(0);

        _scalingFactor0 = _computeScalingFactor(tokens[0]);
        _scalingFactor1 = _computeScalingFactor(tokens[1]);
        _scalingFactor2 = numTokens > 2 ? _computeScalingFactor(tokens[2]) : 0;
        _scalingFactor3 = numTokens > 3 ? _computeScalingFactor(tokens[3]) : 0;
        _scalingFactor4 = numTokens > 4 ? _computeScalingFactor(tokens[4]) : 0;
        _scalingFactor5 = numTokens > 5 ? _computeScalingFactor(tokens[5]) : 0;
        _scalingFactor6 = numTokens > 6 ? _computeScalingFactor(tokens[6]) : 0;
        _scalingFactor7 = numTokens > 7 ? _computeScalingFactor(tokens[7]) : 0;
        _scalingFactor8 = numTokens > 8 ? _computeScalingFactor(tokens[8]) : 0;
        _scalingFactor9 = numTokens > 9 ? _computeScalingFactor(tokens[9]) : 0;
        _scalingFactor10 = numTokens > 10 ? _computeScalingFactor(tokens[10]) : 0;
        _scalingFactor11 = numTokens > 11 ? _computeScalingFactor(tokens[11]) : 0;
        _scalingFactor12 = numTokens > 12 ? _computeScalingFactor(tokens[12]) : 0;
        _scalingFactor13 = numTokens > 13 ? _computeScalingFactor(tokens[13]) : 0;
        _scalingFactor14 = numTokens > 14 ? _computeScalingFactor(tokens[14]) : 0;
        _scalingFactor15 = numTokens > 15 ? _computeScalingFactor(tokens[15]) : 0;
        _scalingFactor16 = numTokens > 16 ? _computeScalingFactor(tokens[16]) : 0;
        _scalingFactor17 = numTokens > 17 ? _computeScalingFactor(tokens[17]) : 0;
        _scalingFactor18 = numTokens > 18 ? _computeScalingFactor(tokens[18]) : 0;
        _scalingFactor19 = numTokens > 19 ? _computeScalingFactor(tokens[19]) : 0;
    }

    function _getNormalizedWeight(IERC20 token) internal view virtual override returns (uint256) {
        // prettier-ignore
        if (token == _token0) { return _normalizedWeight0; }
        else if (token == _token1) { return _normalizedWeight1; }
        else if (token == _token2) { return _normalizedWeight2; }
        else if (token == _token3) { return _normalizedWeight3; }
        else if (token == _token4) { return _normalizedWeight4; }
        else if (token == _token5) { return _normalizedWeight5; }
        else if (token == _token6) { return _normalizedWeight6; }
        else if (token == _token7) { return _normalizedWeight7; }
        else if (token == _token8) { return _normalizedWeight8; }
        else if (token == _token9) { return _normalizedWeight9; }
        else if (token == _token10) { return _normalizedWeight10; }
        else if (token == _token11) { return _normalizedWeight11; }
        else if (token == _token12) { return _normalizedWeight12; }
        else if (token == _token13) { return _normalizedWeight13; }
        else if (token == _token14) { return _normalizedWeight14; }
        else if (token == _token15) { return _normalizedWeight15; }
        else if (token == _token16) { return _normalizedWeight16; }
        else if (token == _token17) { return _normalizedWeight17; }
        else if (token == _token18) { return _normalizedWeight18; }
        else if (token == _token19) { return _normalizedWeight19; }
        else {
            _revert(Errors.INVALID_TOKEN);
        }
    }

    function _getNormalizedWeights() internal view virtual override returns (uint256[] memory) {
        uint256 totalTokens = _getTotalTokens();
        uint256[] memory normalizedWeights = new uint256[](totalTokens);

        // prettier-ignore
        {
            if (totalTokens > 0) { normalizedWeights[0] = _normalizedWeight0; } else { return normalizedWeights; }
            if (totalTokens > 1) { normalizedWeights[1] = _normalizedWeight1; } else { return normalizedWeights; }
            if (totalTokens > 2) { normalizedWeights[2] = _normalizedWeight2; } else { return normalizedWeights; }
            if (totalTokens > 3) { normalizedWeights[3] = _normalizedWeight3; } else { return normalizedWeights; }
            if (totalTokens > 4) { normalizedWeights[4] = _normalizedWeight4; } else { return normalizedWeights; }
            if (totalTokens > 5) { normalizedWeights[5] = _normalizedWeight5; } else { return normalizedWeights; }
            if (totalTokens > 6) { normalizedWeights[6] = _normalizedWeight6; } else { return normalizedWeights; }
            if (totalTokens > 7) { normalizedWeights[7] = _normalizedWeight7; } else { return normalizedWeights; }
            if (totalTokens > 8) { normalizedWeights[8] = _normalizedWeight8; } else { return normalizedWeights; }
            if (totalTokens > 9) { normalizedWeights[9] = _normalizedWeight9; } else { return normalizedWeights; }
            if (totalTokens > 10) { normalizedWeights[10] = _normalizedWeight10; } else { return normalizedWeights; }
            if (totalTokens > 11) { normalizedWeights[11] = _normalizedWeight11; } else { return normalizedWeights; }
            if (totalTokens > 12) { normalizedWeights[12] = _normalizedWeight12; } else { return normalizedWeights; }
            if (totalTokens > 13) { normalizedWeights[13] = _normalizedWeight13; } else { return normalizedWeights; }
            if (totalTokens > 14) { normalizedWeights[14] = _normalizedWeight14; } else { return normalizedWeights; }
            if (totalTokens > 15) { normalizedWeights[15] = _normalizedWeight15; } else { return normalizedWeights; }
            if (totalTokens > 16) { normalizedWeights[16] = _normalizedWeight16; } else { return normalizedWeights; }
            if (totalTokens > 17) { normalizedWeights[17] = _normalizedWeight17; } else { return normalizedWeights; }
            if (totalTokens > 18) { normalizedWeights[18] = _normalizedWeight18; } else { return normalizedWeights; }
            if (totalTokens > 19) { normalizedWeights[19] = _normalizedWeight19; } else { return normalizedWeights; }
        }

        return normalizedWeights;
    }

    function _getNormalizedWeightsAndMaxWeightIndex()
        internal
        view
        virtual
        override
        returns (uint256[] memory, uint256)
    {
        return (_getNormalizedWeights(), _maxWeightTokenIndex);
    }

    function _getMaxTokens() internal pure virtual override returns (uint256) {
        return _MAX_TOKENS;
    }

    function _getTotalTokens() internal view virtual override returns (uint256) {
        return _totalTokens;
    }

    /**
     * @dev Returns the scaling factor for one of the Pool's tokens. Reverts if `token` is not a token registered by the
     * Pool.
     */
    function _scalingFactor(IERC20 token) internal view virtual override returns (uint256) {
        // prettier-ignore
        if (token == _token0) { return _scalingFactor0; }
        else if (token == _token1) { return _scalingFactor1; }
        else if (token == _token2) { return _scalingFactor2; }
        else if (token == _token3) { return _scalingFactor3; }
        else if (token == _token4) { return _scalingFactor4; }
        else if (token == _token5) { return _scalingFactor5; }
        else if (token == _token6) { return _scalingFactor6; }
        else if (token == _token7) { return _scalingFactor7; }
        else if (token == _token8) { return _scalingFactor8; }
        else if (token == _token9) { return _scalingFactor9; }
        else if (token == _token10) { return _scalingFactor10; }
        else if (token == _token11) { return _scalingFactor11; }
        else if (token == _token12) { return _scalingFactor12; }
        else if (token == _token13) { return _scalingFactor13; }
        else if (token == _token14) { return _scalingFactor14; }
        else if (token == _token15) { return _scalingFactor15; }
        else if (token == _token16) { return _scalingFactor16; }
        else if (token == _token17) { return _scalingFactor17; }
        else if (token == _token18) { return _scalingFactor18; }
        else if (token == _token19) { return _scalingFactor19; }
        else {
            _revert(Errors.INVALID_TOKEN);
        }
    }

    function _scalingFactors() internal view virtual override returns (uint256[] memory) {
        uint256 totalTokens = _getTotalTokens();
        uint256[] memory scalingFactors = new uint256[](totalTokens);

        // prettier-ignore
        {
            if (totalTokens > 0) { scalingFactors[0] = _scalingFactor0; } else { return scalingFactors; }
            if (totalTokens > 1) { scalingFactors[1] = _scalingFactor1; } else { return scalingFactors; }
            if (totalTokens > 2) { scalingFactors[2] = _scalingFactor2; } else { return scalingFactors; }
            if (totalTokens > 3) { scalingFactors[3] = _scalingFactor3; } else { return scalingFactors; }
            if (totalTokens > 4) { scalingFactors[4] = _scalingFactor4; } else { return scalingFactors; }
            if (totalTokens > 5) { scalingFactors[5] = _scalingFactor5; } else { return scalingFactors; }
            if (totalTokens > 6) { scalingFactors[6] = _scalingFactor6; } else { return scalingFactors; }
            if (totalTokens > 7) { scalingFactors[7] = _scalingFactor7; } else { return scalingFactors; }
            if (totalTokens > 8) { scalingFactors[8] = _scalingFactor8; } else { return scalingFactors; }
            if (totalTokens > 9) { scalingFactors[9] = _scalingFactor9; } else { return scalingFactors; }
            if (totalTokens > 10) { scalingFactors[10] = _scalingFactor10; } else { return scalingFactors; }
            if (totalTokens > 11) { scalingFactors[11] = _scalingFactor11; } else { return scalingFactors; }
            if (totalTokens > 12) { scalingFactors[12] = _scalingFactor12; } else { return scalingFactors; }
            if (totalTokens > 13) { scalingFactors[13] = _scalingFactor13; } else { return scalingFactors; }
            if (totalTokens > 14) { scalingFactors[14] = _scalingFactor14; } else { return scalingFactors; }
            if (totalTokens > 15) { scalingFactors[15] = _scalingFactor15; } else { return scalingFactors; }
            if (totalTokens > 16) { scalingFactors[16] = _scalingFactor16; } else { return scalingFactors; }
            if (totalTokens > 17) { scalingFactors[17] = _scalingFactor17; } else { return scalingFactors; }       
            if (totalTokens > 18) { scalingFactors[18] = _scalingFactor18; } else { return scalingFactors; }
            if (totalTokens > 19) { scalingFactors[19] = _scalingFactor19; } else { return scalingFactors; }       
        }

        return scalingFactors;
    }
}

File 37 of 63 : WeightedPoolNoAMFactory.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;
pragma experimental ABIEncoderV2;

import "@balancer-labs/v2-vault/contracts/interfaces/IVault.sol";

import "@balancer-labs/v2-pool-utils/contracts/factories/BasePoolSplitCodeFactory.sol";
import "@balancer-labs/v2-pool-utils/contracts/factories/FactoryWidePauseWindow.sol";

import "./WeightedPool.sol";

contract WeightedPoolNoAMFactory is BasePoolSplitCodeFactory, FactoryWidePauseWindow {
    constructor(IVault vault) BasePoolSplitCodeFactory(vault, type(WeightedPool).creationCode) {
        // solhint-disable-previous-line no-empty-blocks
    }

    /**
     * @dev Deploys a new `WeightedPool` without asset managers.
     */
    function create(
        string memory name,
        string memory symbol,
        IERC20[] memory tokens,
        uint256[] memory weights,
        uint256 swapFeePercentage,
        address owner
    ) external returns (address) {
        (uint256 pauseWindowDuration, uint256 bufferPeriodDuration) = getPauseConfiguration();

        return
            _create(
                abi.encode(
                    getVault(),
                    name,
                    symbol,
                    tokens,
                    weights,
                    new address[](tokens.length), // Don't allow asset managers
                    swapFeePercentage,
                    pauseWindowDuration,
                    bufferPeriodDuration,
                    owner
                )
            );
    }
}

File 38 of 63 : BasePoolSplitCodeFactory.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;
pragma experimental ABIEncoderV2;

import "@balancer-labs/v2-solidity-utils/contracts/helpers/BaseSplitCodeFactory.sol";
import "@balancer-labs/v2-vault/contracts/interfaces/IVault.sol";

/**
 * @dev Same as `BasePoolFactory`, for Pools whose creation code is so large that the factory cannot hold it.
 */
abstract contract BasePoolSplitCodeFactory is BaseSplitCodeFactory {
    IVault private immutable _vault;
    mapping(address => bool) private _isPoolFromFactory;

    event PoolCreated(address indexed pool);

    constructor(IVault vault, bytes memory creationCode) BaseSplitCodeFactory(creationCode) {
        _vault = vault;
    }

    /**
     * @dev Returns the Vault's address.
     */
    function getVault() public view returns (IVault) {
        return _vault;
    }

    /**
     * @dev Returns true if `pool` was created by this factory.
     */
    function isPoolFromFactory(address pool) external view returns (bool) {
        return _isPoolFromFactory[pool];
    }

    function _create(bytes memory constructorArgs) internal override returns (address) {
        address pool = super._create(constructorArgs);

        _isPoolFromFactory[pool] = true;
        emit PoolCreated(pool);

        return pool;
    }
}

File 39 of 63 : FactoryWidePauseWindow.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;
pragma experimental ABIEncoderV2;

/**
 * @dev Utility to create Pool factories for Pools that use the `TemporarilyPausable` contract.
 *
 * By calling `TemporarilyPausable`'s constructor with the result of `getPauseConfiguration`, all Pools created by this
 * factory will share the same Pause Window end time, after which both old and new Pools will not be pausable.
 */
contract FactoryWidePauseWindow {
    // This contract relies on timestamps in a similar way as `TemporarilyPausable` does - the same caveats apply.
    // solhint-disable not-rely-on-time

    uint256 private constant _INITIAL_PAUSE_WINDOW_DURATION = 90 days;
    uint256 private constant _BUFFER_PERIOD_DURATION = 30 days;

    // Time when the pause window for all created Pools expires, and the pause window duration of new Pools becomes
    // zero.
    uint256 private immutable _poolsPauseWindowEndTime;

    constructor() {
        _poolsPauseWindowEndTime = block.timestamp + _INITIAL_PAUSE_WINDOW_DURATION;
    }

    /**
     * @dev Returns the current `TemporarilyPausable` configuration that will be applied to Pools created by this
     * factory.
     *
     * `pauseWindowDuration` will decrease over time until it reaches zero, at which point both it and
     * `bufferPeriodDuration` will be zero forever, meaning deployed Pools will not be pausable.
     */
    function getPauseConfiguration() public view returns (uint256 pauseWindowDuration, uint256 bufferPeriodDuration) {
        uint256 currentTime = block.timestamp;
        if (currentTime < _poolsPauseWindowEndTime) {
            // The buffer period is always the same since its duration is related to how much time is needed to respond
            // to a potential emergency. The Pause Window duration however decreases as the end time approaches.

            pauseWindowDuration = _poolsPauseWindowEndTime - currentTime; // No need for checked arithmetic.
            bufferPeriodDuration = _BUFFER_PERIOD_DURATION;
        } else {
            // After the end time, newly created Pools have no Pause Window, nor Buffer Period (since they are not
            // pausable in the first place).

            pauseWindowDuration = 0;
            bufferPeriodDuration = 0;
        }
    }
}

File 40 of 63 : BaseSplitCodeFactory.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;
pragma experimental ABIEncoderV2;

import "./BalancerErrors.sol";
import "./CodeDeployer.sol";

/**
 * @dev Base factory for contracts whose creation code is so large that the factory cannot hold it. This happens when
 * the contract's creation code grows close to 24kB.
 *
 * Note that this factory cannot help with contracts that have a *runtime* (deployed) bytecode larger than 24kB.
 */
abstract contract BaseSplitCodeFactory {
    // The contract's creation code is stored as code in two separate addresses, and retrieved via `extcodecopy`. This
    // means this factory supports contracts with creation code of up to 48kB.
    // We rely on inline-assembly to achieve this, both to make the entire operation highly gas efficient, and because
    // `extcodecopy` is not available in Solidity.

    // solhint-disable no-inline-assembly

    address private immutable _creationCodeContractA;
    uint256 private immutable _creationCodeSizeA;

    address private immutable _creationCodeContractB;
    uint256 private immutable _creationCodeSizeB;

    /**
     * @dev The creation code of a contract Foo can be obtained inside Solidity with `type(Foo).creationCode`.
     */
    constructor(bytes memory creationCode) {
        uint256 creationCodeSize = creationCode.length;

        // We are going to deploy two contracts: one with approximately the first half of `creationCode`'s contents
        // (A), and another with the remaining half (B).
        // We store the lengths in both immutable and stack variables, since immutable variables cannot be read during
        // construction.
        uint256 creationCodeSizeA = creationCodeSize / 2;
        _creationCodeSizeA = creationCodeSizeA;

        uint256 creationCodeSizeB = creationCodeSize - creationCodeSizeA;
        _creationCodeSizeB = creationCodeSizeB;

        // To deploy the contracts, we're going to use `CodeDeployer.deploy()`, which expects a memory array with
        // the code to deploy. Note that we cannot simply create arrays for A and B's code by copying or moving
        // `creationCode`'s contents as they are expected to be very large (> 24kB), so we must operate in-place.

        // Memory: [ code length ] [ A.data ] [ B.data ]

        // Creating A's array is simple: we simply replace `creationCode`'s length with A's length. We'll later restore
        // the original length.

        bytes memory creationCodeA;
        assembly {
            creationCodeA := creationCode
            mstore(creationCodeA, creationCodeSizeA)
        }

        // Memory: [ A.length ] [ A.data ] [ B.data ]
        //         ^ creationCodeA

        _creationCodeContractA = CodeDeployer.deploy(creationCodeA);

        // Creating B's array is a bit more involved: since we cannot move B's contents, we are going to create a 'new'
        // memory array starting at A's last 32 bytes, which will be replaced with B's length. We'll back-up this last
        // byte to later restore it.

        bytes memory creationCodeB;
        bytes32 lastByteA;

        assembly {
            // `creationCode` points to the array's length, not data, so by adding A's length to it we arrive at A's
            // last 32 bytes.
            creationCodeB := add(creationCode, creationCodeSizeA)
            lastByteA := mload(creationCodeB)
            mstore(creationCodeB, creationCodeSizeB)
        }

        // Memory: [ A.length ] [ A.data[ : -1] ] [ B.length ][ B.data ]
        //         ^ creationCodeA                ^ creationCodeB

        _creationCodeContractB = CodeDeployer.deploy(creationCodeB);

        // We now restore the original contents of `creationCode` by writing back the original length and A's last byte.
        assembly {
            mstore(creationCodeA, creationCodeSize)
            mstore(creationCodeB, lastByteA)
        }
    }

    /**
     * @dev Returns the two addresses where the creation code of the contract crated by this factory is stored.
     */
    function getCreationCodeContracts() public view returns (address contractA, address contractB) {
        return (_creationCodeContractA, _creationCodeContractB);
    }

    /**
     * @dev Returns the creation code of the contract this factory creates.
     */
    function getCreationCode() public view returns (bytes memory) {
        return _getCreationCodeWithArgs("");
    }

    /**
     * @dev Returns the creation code that will result in a contract being deployed with `constructorArgs`.
     */
    function _getCreationCodeWithArgs(bytes memory constructorArgs) private view returns (bytes memory code) {
        // This function exists because `abi.encode()` cannot be instructed to place its result at a specific address.
        // We need for the ABI-encoded constructor arguments to be located immediately after the creation code, but
        // cannot rely on `abi.encodePacked()` to perform concatenation as that would involve copying the creation code,
        // which would be prohibitively expensive.
        // Instead, we compute the creation code in a pre-allocated array that is large enough to hold *both* the
        // creation code and the constructor arguments, and then copy the ABI-encoded arguments (which should not be
        // overly long) right after the end of the creation code.

        // Immutable variables cannot be used in assembly, so we store them in the stack first.
        address creationCodeContractA = _creationCodeContractA;
        uint256 creationCodeSizeA = _creationCodeSizeA;
        address creationCodeContractB = _creationCodeContractB;
        uint256 creationCodeSizeB = _creationCodeSizeB;

        uint256 creationCodeSize = creationCodeSizeA + creationCodeSizeB;
        uint256 constructorArgsSize = constructorArgs.length;

        uint256 codeSize = creationCodeSize + constructorArgsSize;

        assembly {
            // First, we allocate memory for `code` by retrieving the free memory pointer and then moving it ahead of
            // `code` by the size of the creation code plus constructor arguments, and 32 bytes for the array length.
            code := mload(0x40)
            mstore(0x40, add(code, add(codeSize, 32)))

            // We now store the length of the code plus constructor arguments.
            mstore(code, codeSize)

            // Next, we concatenate the creation code stored in A and B.
            let dataStart := add(code, 32)
            extcodecopy(creationCodeContractA, dataStart, 0, creationCodeSizeA)
            extcodecopy(creationCodeContractB, add(dataStart, creationCodeSizeA), 0, creationCodeSizeB)
        }

        // Finally, we copy the constructorArgs to the end of the array. Unfortunately there is no way to avoid this
        // copy, as it is not possible to tell Solidity where to store the result of `abi.encode()`.
        uint256 constructorArgsDataPtr;
        uint256 constructorArgsCodeDataPtr;
        assembly {
            constructorArgsDataPtr := add(constructorArgs, 32)
            constructorArgsCodeDataPtr := add(add(code, 32), creationCodeSize)
        }

        _memcpy(constructorArgsCodeDataPtr, constructorArgsDataPtr, constructorArgsSize);
    }

    /**
     * @dev Deploys a contract with constructor arguments. To create `constructorArgs`, call `abi.encode()` with the
     * contract's constructor arguments, in order.
     */
    function _create(bytes memory constructorArgs) internal virtual returns (address) {
        bytes memory creationCode = _getCreationCodeWithArgs(constructorArgs);

        address destination;
        assembly {
            destination := create(0, add(creationCode, 32), mload(creationCode))
        }

        if (destination == address(0)) {
            // Bubble up inner revert reason
            // solhint-disable-next-line no-inline-assembly
            assembly {
                returndatacopy(0, 0, returndatasize())
                revert(0, returndatasize())
            }
        }

        return destination;
    }

    // From
    // https://github.com/Arachnid/solidity-stringutils/blob/b9a6f6615cf18a87a823cbc461ce9e140a61c305/src/strings.sol
    function _memcpy(
        uint256 dest,
        uint256 src,
        uint256 len
    ) private pure {
        // Copy word-length chunks while possible
        for (; len >= 32; len -= 32) {
            assembly {
                mstore(dest, mload(src))
            }
            dest += 32;
            src += 32;
        }

        // Copy remaining bytes
        uint256 mask = 256**(32 - len) - 1;
        assembly {
            let srcpart := and(mload(src), not(mask))
            let destpart := and(mload(dest), mask)
            mstore(dest, or(destpart, srcpart))
        }
    }
}

File 41 of 63 : CodeDeployer.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

import "./BalancerErrors.sol";

/**
 * @dev Library used to deploy contracts with specific code. This can be used for long-term storage of immutable data as
 * contract code, which can be retrieved via the `extcodecopy` opcode.
 */
library CodeDeployer {
    // During contract construction, the full code supplied exists as code, and can be accessed via `codesize` and
    // `codecopy`. This is not the contract's final code however: whatever the constructor returns is what will be
    // stored as its code.
    //
    // We use this mechanism to have a simple constructor that stores whatever is appended to it. The following opcode
    // sequence corresponds to the creation code of the following equivalent Solidity contract, plus padding to make the
    // full code 32 bytes long:
    //
    // contract CodeDeployer {
    //     constructor() payable {
    //         uint256 size;
    //         assembly {
    //             size := sub(codesize(), 32) // size of appended data, as constructor is 32 bytes long
    //             codecopy(0, 32, size) // copy all appended data to memory at position 0
    //             return(0, size) // return appended data for it to be stored as code
    //         }
    //     }
    // }
    //
    // More specifically, it is composed of the following opcodes (plus padding):
    //
    // [1] PUSH1 0x20
    // [2] CODESIZE
    // [3] SUB
    // [4] DUP1
    // [6] PUSH1 0x20
    // [8] PUSH1 0x00
    // [9] CODECOPY
    // [11] PUSH1 0x00
    // [12] RETURN
    //
    // The padding is just the 0xfe sequence (invalid opcode).
    bytes32
        private constant _DEPLOYER_CREATION_CODE = 0x602038038060206000396000f3fefefefefefefefefefefefefefefefefefefe;

    /**
     * @dev Deploys a contract with `code` as its code, returning the destination address.
     *
     * Reverts if deployment fails.
     */
    function deploy(bytes memory code) internal returns (address destination) {
        bytes32 deployerCreationCode = _DEPLOYER_CREATION_CODE;

        // solhint-disable-next-line no-inline-assembly
        assembly {
            let codeLength := mload(code)

            // `code` is composed of length and data. We've already stored its length in `codeLength`, so we simply
            // replace it with the deployer creation code (which is exactly 32 bytes long).
            mstore(code, deployerCreationCode)

            // At this point, `code` now points to the deployer creation code immediately followed by `code`'s data
            // contents. This is exactly what the deployer expects to receive when created.
            destination := create(0, code, add(codeLength, 32))

            // Finally, we restore the original length in order to not mutate `code`.
            mstore(code, codeLength)
        }

        // The create opcode returns the zero address when contract creation fails, so we revert if this happens.
        _require(destination != address(0), Errors.CODE_DEPLOYMENT_FAILED);
    }
}

File 42 of 63 : WeightedPoolFactory.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;
pragma experimental ABIEncoderV2;

import "@balancer-labs/v2-vault/contracts/interfaces/IVault.sol";

import "@balancer-labs/v2-pool-utils/contracts/factories/BasePoolSplitCodeFactory.sol";
import "@balancer-labs/v2-pool-utils/contracts/factories/FactoryWidePauseWindow.sol";

import "./WeightedPool.sol";

contract WeightedPoolFactory is BasePoolSplitCodeFactory, FactoryWidePauseWindow {
    constructor(IVault vault) BasePoolSplitCodeFactory(vault, type(WeightedPool).creationCode) {
        // solhint-disable-previous-line no-empty-blocks
    }

    /**
     * @dev Deploys a new `WeightedPool`.
     */
    function create(
        string memory name,
        string memory symbol,
        IERC20[] memory tokens,
        uint256[] memory weights,
        address[] memory assetManagers,
        uint256 swapFeePercentage,
        address owner
    ) external returns (address) {
        (uint256 pauseWindowDuration, uint256 bufferPeriodDuration) = getPauseConfiguration();

        return
            _create(
                abi.encode(
                    getVault(),
                    name,
                    symbol,
                    tokens,
                    weights,
                    assetManagers,
                    swapFeePercentage,
                    pauseWindowDuration,
                    bufferPeriodDuration,
                    owner
                )
            );
    }
}

File 43 of 63 : WeightedPool2Tokens.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;
pragma experimental ABIEncoderV2;

import "@balancer-labs/v2-solidity-utils/contracts/math/FixedPoint.sol";
import "@balancer-labs/v2-solidity-utils/contracts/helpers/InputHelpers.sol";
import "@balancer-labs/v2-solidity-utils/contracts/helpers/LogCompression.sol";
import "@balancer-labs/v2-solidity-utils/contracts/helpers/TemporarilyPausable.sol";
import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/ERC20.sol";

import "@balancer-labs/v2-vault/contracts/interfaces/IMinimalSwapInfoPool.sol";

import "@balancer-labs/v2-pool-utils/contracts/BasePoolAuthorization.sol";
import "@balancer-labs/v2-pool-utils/contracts/BalancerPoolToken.sol";
import "@balancer-labs/v2-pool-utils/contracts/oracle/PoolPriceOracle.sol";
import "@balancer-labs/v2-pool-utils/contracts/oracle/Buffer.sol";

import "./WeightedMath.sol";
import "./WeightedOracleMath.sol";
import "./WeightedPoolUserDataHelpers.sol";
import "./WeightedPool2TokensMiscData.sol";

contract WeightedPool2Tokens is
    IMinimalSwapInfoPool,
    BasePoolAuthorization,
    BalancerPoolToken,
    TemporarilyPausable,
    PoolPriceOracle,
    WeightedMath,
    WeightedOracleMath
{
    using FixedPoint for uint256;
    using WeightedPoolUserDataHelpers for bytes;
    using WeightedPool2TokensMiscData for bytes32;

    uint256 private constant _MINIMUM_BPT = 1e6;

    // 1e18 corresponds to 1.0, or a 100% fee
    uint256 private constant _MIN_SWAP_FEE_PERCENTAGE = 1e12; // 0.0001%
    uint256 private constant _MAX_SWAP_FEE_PERCENTAGE = 1e17; // 10%
    // The swap fee is internally stored using 64 bits, which is enough to represent _MAX_SWAP_FEE_PERCENTAGE.

    bytes32 internal _miscData;
    uint256 private _lastInvariant;

    IVault private immutable _vault;
    bytes32 private immutable _poolId;

    IERC20 internal immutable _token0;
    IERC20 internal immutable _token1;

    uint256 private immutable _normalizedWeight0;
    uint256 private immutable _normalizedWeight1;

    // The protocol fees will always be charged using the token associated with the max weight in the pool.
    // Since these Pools will register tokens only once, we can assume this index will be constant.
    uint256 private immutable _maxWeightTokenIndex;

    // All token balances are normalized to behave as if the token had 18 decimals. We assume a token's decimals will
    // not change throughout its lifetime, and store the corresponding scaling factor for each at construction time.
    // These factors are always greater than or equal to one: tokens with more than 18 decimals are not supported.
    uint256 internal immutable _scalingFactor0;
    uint256 internal immutable _scalingFactor1;

    event OracleEnabledChanged(bool enabled);
    event SwapFeePercentageChanged(uint256 swapFeePercentage);

    modifier onlyVault(bytes32 poolId) {
        _require(msg.sender == address(getVault()), Errors.CALLER_NOT_VAULT);
        _require(poolId == getPoolId(), Errors.INVALID_POOL_ID);
        _;
    }

    struct NewPoolParams {
        IVault vault;
        string name;
        string symbol;
        IERC20 token0;
        IERC20 token1;
        uint256 normalizedWeight0;
        uint256 normalizedWeight1;
        uint256 swapFeePercentage;
        uint256 pauseWindowDuration;
        uint256 bufferPeriodDuration;
        bool oracleEnabled;
        address owner;
    }

    constructor(NewPoolParams memory params)
        // Base Pools are expected to be deployed using factories. By using the factory address as the action
        // disambiguator, we make all Pools deployed by the same factory share action identifiers. This allows for
        // simpler management of permissions (such as being able to manage granting the 'set fee percentage' action in
        // any Pool created by the same factory), while still making action identifiers unique among different factories
        // if the selectors match, preventing accidental errors.
        Authentication(bytes32(uint256(msg.sender)))
        BalancerPoolToken(params.name, params.symbol)
        BasePoolAuthorization(params.owner)
        TemporarilyPausable(params.pauseWindowDuration, params.bufferPeriodDuration)
    {
        _setOracleEnabled(params.oracleEnabled);
        _setSwapFeePercentage(params.swapFeePercentage);

        bytes32 poolId = params.vault.registerPool(IVault.PoolSpecialization.TWO_TOKEN);

        // Pass in zero addresses for Asset Managers
        IERC20[] memory tokens = new IERC20[](2);
        tokens[0] = params.token0;
        tokens[1] = params.token1;
        params.vault.registerTokens(poolId, tokens, new address[](2));

        // Set immutable state variables - these cannot be read from during construction
        _vault = params.vault;
        _poolId = poolId;

        _token0 = params.token0;
        _token1 = params.token1;

        _scalingFactor0 = _computeScalingFactor(params.token0);
        _scalingFactor1 = _computeScalingFactor(params.token1);

        // Ensure each normalized weight is above them minimum and find the token index of the maximum weight
        _require(params.normalizedWeight0 >= _MIN_WEIGHT, Errors.MIN_WEIGHT);
        _require(params.normalizedWeight1 >= _MIN_WEIGHT, Errors.MIN_WEIGHT);

        // Ensure that the normalized weights sum to ONE
        uint256 normalizedSum = params.normalizedWeight0.add(params.normalizedWeight1);
        _require(normalizedSum == FixedPoint.ONE, Errors.NORMALIZED_WEIGHT_INVARIANT);

        _normalizedWeight0 = params.normalizedWeight0;
        _normalizedWeight1 = params.normalizedWeight1;
        _maxWeightTokenIndex = params.normalizedWeight0 >= params.normalizedWeight1 ? 0 : 1;
    }

    // Getters / Setters

    function getVault() public view returns (IVault) {
        return _vault;
    }

    function getPoolId() public view override returns (bytes32) {
        return _poolId;
    }

    function getMiscData()
        external
        view
        returns (
            int256 logInvariant,
            int256 logTotalSupply,
            uint256 oracleSampleCreationTimestamp,
            uint256 oracleIndex,
            bool oracleEnabled,
            uint256 swapFeePercentage
        )
    {
        bytes32 miscData = _miscData;
        logInvariant = miscData.logInvariant();
        logTotalSupply = miscData.logTotalSupply();
        oracleSampleCreationTimestamp = miscData.oracleSampleCreationTimestamp();
        oracleIndex = miscData.oracleIndex();
        oracleEnabled = miscData.oracleEnabled();
        swapFeePercentage = miscData.swapFeePercentage();
    }

    function getSwapFeePercentage() public view returns (uint256) {
        return _miscData.swapFeePercentage();
    }

    // Caller must be approved by the Vault's Authorizer
    function setSwapFeePercentage(uint256 swapFeePercentage) public virtual authenticate whenNotPaused {
        _setSwapFeePercentage(swapFeePercentage);
    }

    function _setSwapFeePercentage(uint256 swapFeePercentage) private {
        _require(swapFeePercentage >= _MIN_SWAP_FEE_PERCENTAGE, Errors.MIN_SWAP_FEE_PERCENTAGE);
        _require(swapFeePercentage <= _MAX_SWAP_FEE_PERCENTAGE, Errors.MAX_SWAP_FEE_PERCENTAGE);

        _miscData = _miscData.setSwapFeePercentage(swapFeePercentage);
        emit SwapFeePercentageChanged(swapFeePercentage);
    }

    function _isOwnerOnlyAction(bytes32 actionId) internal view virtual override returns (bool) {
        return
            (actionId == getActionId(BasePool.setSwapFeePercentage.selector)) ||
            (actionId == getActionId(BasePool.setAssetManagerPoolConfig.selector));
    }

    /**
     * @dev Balancer Governance can always enable the Oracle, even if it was originally not enabled. This allows for
     * Pools that unexpectedly drive much more volume and liquidity than expected to serve as Price Oracles.
     *
     * Note that the Oracle can only be enabled - it can never be disabled.
     */
    function enableOracle() external whenNotPaused authenticate {
        _setOracleEnabled(true);

        // Cache log invariant and supply only if the pool was initialized
        if (totalSupply() > 0) {
            _cacheInvariantAndSupply();
        }
    }

    function _setOracleEnabled(bool enabled) internal {
        _miscData = _miscData.setOracleEnabled(enabled);
        emit OracleEnabledChanged(enabled);
    }

    // Caller must be approved by the Vault's Authorizer
    function setPaused(bool paused) external authenticate {
        _setPaused(paused);
    }

    function getNormalizedWeights() external view returns (uint256[] memory) {
        return _normalizedWeights();
    }

    function _normalizedWeights() internal view virtual returns (uint256[] memory) {
        uint256[] memory normalizedWeights = new uint256[](2);
        normalizedWeights[0] = _normalizedWeights(true);
        normalizedWeights[1] = _normalizedWeights(false);
        return normalizedWeights;
    }

    function _normalizedWeights(bool token0) internal view virtual returns (uint256) {
        return token0 ? _normalizedWeight0 : _normalizedWeight1;
    }

    function getLastInvariant() external view returns (uint256) {
        return _lastInvariant;
    }

    /**
     * @dev Returns the current value of the invariant.
     */
    function getInvariant() public view returns (uint256) {
        (, uint256[] memory balances, ) = getVault().getPoolTokens(getPoolId());

        // Since the Pool hooks always work with upscaled balances, we manually
        // upscale here for consistency
        _upscaleArray(balances);

        uint256[] memory normalizedWeights = _normalizedWeights();
        return WeightedMath._calculateInvariant(normalizedWeights, balances);
    }

    // Swap Hooks

    function onSwap(
        SwapRequest memory request,
        uint256 balanceTokenIn,
        uint256 balanceTokenOut
    ) public virtual override whenNotPaused onlyVault(request.poolId) returns (uint256) {
        bool tokenInIsToken0 = request.tokenIn == _token0;

        uint256 scalingFactorTokenIn = _scalingFactor(tokenInIsToken0);
        uint256 scalingFactorTokenOut = _scalingFactor(!tokenInIsToken0);

        uint256 normalizedWeightIn = _normalizedWeights(tokenInIsToken0);
        uint256 normalizedWeightOut = _normalizedWeights(!tokenInIsToken0);

        // All token amounts are upscaled.
        balanceTokenIn = _upscale(balanceTokenIn, scalingFactorTokenIn);
        balanceTokenOut = _upscale(balanceTokenOut, scalingFactorTokenOut);

        // Update price oracle with the pre-swap balances
        _updateOracle(
            request.lastChangeBlock,
            tokenInIsToken0 ? balanceTokenIn : balanceTokenOut,
            tokenInIsToken0 ? balanceTokenOut : balanceTokenIn
        );

        if (request.kind == IVault.SwapKind.GIVEN_IN) {
            // Fees are subtracted before scaling, to reduce the complexity of the rounding direction analysis.
            // This is amount - fee amount, so we round up (favoring a higher fee amount).
            uint256 feeAmount = request.amount.mulUp(getSwapFeePercentage());
            request.amount = _upscale(request.amount.sub(feeAmount), scalingFactorTokenIn);

            uint256 amountOut = _onSwapGivenIn(
                request,
                balanceTokenIn,
                balanceTokenOut,
                normalizedWeightIn,
                normalizedWeightOut
            );

            // amountOut tokens are exiting the Pool, so we round down.
            return _downscaleDown(amountOut, scalingFactorTokenOut);
        } else {
            request.amount = _upscale(request.amount, scalingFactorTokenOut);

            uint256 amountIn = _onSwapGivenOut(
                request,
                balanceTokenIn,
                balanceTokenOut,
                normalizedWeightIn,
                normalizedWeightOut
            );

            // amountIn tokens are entering the Pool, so we round up.
            amountIn = _downscaleUp(amountIn, scalingFactorTokenIn);

            // Fees are added after scaling happens, to reduce the complexity of the rounding direction analysis.
            // This is amount + fee amount, so we round up (favoring a higher fee amount).
            return amountIn.divUp(getSwapFeePercentage().complement());
        }
    }

    function _onSwapGivenIn(
        SwapRequest memory swapRequest,
        uint256 currentBalanceTokenIn,
        uint256 currentBalanceTokenOut,
        uint256 normalizedWeightIn,
        uint256 normalizedWeightOut
    ) private pure returns (uint256) {
        // Swaps are disabled while the contract is paused.
        return
            WeightedMath._calcOutGivenIn(
                currentBalanceTokenIn,
                normalizedWeightIn,
                currentBalanceTokenOut,
                normalizedWeightOut,
                swapRequest.amount
            );
    }

    function _onSwapGivenOut(
        SwapRequest memory swapRequest,
        uint256 currentBalanceTokenIn,
        uint256 currentBalanceTokenOut,
        uint256 normalizedWeightIn,
        uint256 normalizedWeightOut
    ) private pure returns (uint256) {
        // Swaps are disabled while the contract is paused.
        return
            WeightedMath._calcInGivenOut(
                currentBalanceTokenIn,
                normalizedWeightIn,
                currentBalanceTokenOut,
                normalizedWeightOut,
                swapRequest.amount
            );
    }

    // Join Hook

    function onJoinPool(
        bytes32 poolId,
        address sender,
        address recipient,
        uint256[] memory balances,
        uint256 lastChangeBlock,
        uint256 protocolSwapFeePercentage,
        bytes memory userData
    )
        public
        virtual
        override
        onlyVault(poolId)
        whenNotPaused
        returns (uint256[] memory amountsIn, uint256[] memory dueProtocolFeeAmounts)
    {
        // All joins, including initializations, are disabled while the contract is paused.

        uint256 bptAmountOut;
        if (totalSupply() == 0) {
            (bptAmountOut, amountsIn) = _onInitializePool(poolId, sender, recipient, userData);

            // On initialization, we lock _MINIMUM_BPT by minting it for the zero address. This BPT acts as a minimum
            // as it will never be burned, which reduces potential issues with rounding, and also prevents the Pool from
            // ever being fully drained.
            _require(bptAmountOut >= _MINIMUM_BPT, Errors.MINIMUM_BPT);
            _mintPoolTokens(address(0), _MINIMUM_BPT);
            _mintPoolTokens(recipient, bptAmountOut - _MINIMUM_BPT);

            // amountsIn are amounts entering the Pool, so we round up.
            _downscaleUpArray(amountsIn);

            // There are no due protocol fee amounts during initialization
            dueProtocolFeeAmounts = new uint256[](2);
        } else {
            _upscaleArray(balances);

            // Update price oracle with the pre-join balances
            _updateOracle(lastChangeBlock, balances[0], balances[1]);

            (bptAmountOut, amountsIn, dueProtocolFeeAmounts) = _onJoinPool(
                poolId,
                sender,
                recipient,
                balances,
                lastChangeBlock,
                protocolSwapFeePercentage,
                userData
            );

            // Note we no longer use `balances` after calling `_onJoinPool`, which may mutate it.

            _mintPoolTokens(recipient, bptAmountOut);

            // amountsIn are amounts entering the Pool, so we round up.
            _downscaleUpArray(amountsIn);
            // dueProtocolFeeAmounts are amounts exiting the Pool, so we round down.
            _downscaleDownArray(dueProtocolFeeAmounts);
        }

        // Update cached total supply and invariant using the results after the join that will be used for future
        // oracle updates.
        _cacheInvariantAndSupply();
    }

    /**
     * @dev Called when the Pool is joined for the first time; that is, when the BPT total supply is zero.
     *
     * Returns the amount of BPT to mint, and the token amounts the Pool will receive in return.
     *
     * Minted BPT will be sent to `recipient`, except for _MINIMUM_BPT, which will be deducted from this amount and sent
     * to the zero address instead. This will cause that BPT to remain forever locked there, preventing total BTP from
     * ever dropping below that value, and ensuring `_onInitializePool` can only be called once in the entire Pool's
     * lifetime.
     *
     * The tokens granted to the Pool will be transferred from `sender`. These amounts are considered upscaled and will
     * be downscaled (rounding up) before being returned to the Vault.
     */
    function _onInitializePool(
        bytes32,
        address,
        address,
        bytes memory userData
    ) private returns (uint256, uint256[] memory) {
        BaseWeightedPool.JoinKind kind = userData.joinKind();
        _require(kind == BaseWeightedPool.JoinKind.INIT, Errors.UNINITIALIZED);

        uint256[] memory amountsIn = userData.initialAmountsIn();
        InputHelpers.ensureInputLengthMatch(amountsIn.length, 2);
        _upscaleArray(amountsIn);

        uint256[] memory normalizedWeights = _normalizedWeights();

        uint256 invariantAfterJoin = WeightedMath._calculateInvariant(normalizedWeights, amountsIn);

        // Set the initial BPT to the value of the invariant times the number of tokens. This makes BPT supply more
        // consistent in Pools with similar compositions but different number of tokens.
        uint256 bptAmountOut = Math.mul(invariantAfterJoin, 2);

        _lastInvariant = invariantAfterJoin;

        return (bptAmountOut, amountsIn);
    }

    /**
     * @dev Called whenever the Pool is joined after the first initialization join (see `_onInitializePool`).
     *
     * Returns the amount of BPT to mint, the token amounts that the Pool will receive in return, and the number of
     * tokens to pay in protocol swap fees.
     *
     * Implementations of this function might choose to mutate the `balances` array to save gas (e.g. when
     * performing intermediate calculations, such as subtraction of due protocol fees). This can be done safely.
     *
     * Minted BPT will be sent to `recipient`.
     *
     * The tokens granted to the Pool will be transferred from `sender`. These amounts are considered upscaled and will
     * be downscaled (rounding up) before being returned to the Vault.
     *
     * Due protocol swap fees will be taken from the Pool's balance in the Vault (see `IBasePool.onJoinPool`). These
     * amounts are considered upscaled and will be downscaled (rounding down) before being returned to the Vault.
     */
    function _onJoinPool(
        bytes32,
        address,
        address,
        uint256[] memory balances,
        uint256,
        uint256 protocolSwapFeePercentage,
        bytes memory userData
    )
        private
        returns (
            uint256,
            uint256[] memory,
            uint256[] memory
        )
    {
        uint256[] memory normalizedWeights = _normalizedWeights();

        // Due protocol swap fee amounts are computed by measuring the growth of the invariant between the previous join
        // or exit event and now - the invariant's growth is due exclusively to swap fees. This avoids spending gas
        // computing them on each individual swap
        uint256 invariantBeforeJoin = WeightedMath._calculateInvariant(normalizedWeights, balances);

        uint256[] memory dueProtocolFeeAmounts = _getDueProtocolFeeAmounts(
            balances,
            normalizedWeights,
            _lastInvariant,
            invariantBeforeJoin,
            protocolSwapFeePercentage
        );

        // Update current balances by subtracting the protocol fee amounts
        _mutateAmounts(balances, dueProtocolFeeAmounts, FixedPoint.sub);
        (uint256 bptAmountOut, uint256[] memory amountsIn) = _doJoin(balances, normalizedWeights, userData);

        // Update the invariant with the balances the Pool will have after the join, in order to compute the
        // protocol swap fee amounts due in future joins and exits.
        _mutateAmounts(balances, amountsIn, FixedPoint.add);
        _lastInvariant = WeightedMath._calculateInvariant(normalizedWeights, balances);

        return (bptAmountOut, amountsIn, dueProtocolFeeAmounts);
    }

    function _doJoin(
        uint256[] memory balances,
        uint256[] memory normalizedWeights,
        bytes memory userData
    ) private view returns (uint256, uint256[] memory) {
        BaseWeightedPool.JoinKind kind = userData.joinKind();

        if (kind == BaseWeightedPool.JoinKind.EXACT_TOKENS_IN_FOR_BPT_OUT) {
            return _joinExactTokensInForBPTOut(balances, normalizedWeights, userData);
        } else if (kind == BaseWeightedPool.JoinKind.TOKEN_IN_FOR_EXACT_BPT_OUT) {
            return _joinTokenInForExactBPTOut(balances, normalizedWeights, userData);
        } else if (kind == BaseWeightedPool.JoinKind.ALL_TOKENS_IN_FOR_EXACT_BPT_OUT) {
            return _joinAllTokensInForExactBPTOut(balances, userData);
        } else {
            _revert(Errors.UNHANDLED_JOIN_KIND);
        }
    }

    function _joinExactTokensInForBPTOut(
        uint256[] memory balances,
        uint256[] memory normalizedWeights,
        bytes memory userData
    ) private view returns (uint256, uint256[] memory) {
        (uint256[] memory amountsIn, uint256 minBPTAmountOut) = userData.exactTokensInForBptOut();
        InputHelpers.ensureInputLengthMatch(amountsIn.length, 2);

        _upscaleArray(amountsIn);

        (uint256 bptAmountOut, ) = WeightedMath._calcBptOutGivenExactTokensIn(
            balances,
            normalizedWeights,
            amountsIn,
            totalSupply(),
            getSwapFeePercentage()
        );

        _require(bptAmountOut >= minBPTAmountOut, Errors.BPT_OUT_MIN_AMOUNT);

        return (bptAmountOut, amountsIn);
    }

    function _joinTokenInForExactBPTOut(
        uint256[] memory balances,
        uint256[] memory normalizedWeights,
        bytes memory userData
    ) private view returns (uint256, uint256[] memory) {
        (uint256 bptAmountOut, uint256 tokenIndex) = userData.tokenInForExactBptOut();
        // Note that there is no maximum amountIn parameter: this is handled by `IVault.joinPool`.

        _require(tokenIndex < 2, Errors.OUT_OF_BOUNDS);

        uint256[] memory amountsIn = new uint256[](2);
        (amountsIn[tokenIndex], ) = WeightedMath._calcTokenInGivenExactBptOut(
            balances[tokenIndex],
            normalizedWeights[tokenIndex],
            bptAmountOut,
            totalSupply(),
            getSwapFeePercentage()
        );

        return (bptAmountOut, amountsIn);
    }

    function _joinAllTokensInForExactBPTOut(uint256[] memory balances, bytes memory userData)
        private
        view
        returns (uint256, uint256[] memory)
    {
        uint256 bptAmountOut = userData.allTokensInForExactBptOut();
        // Note that there is no maximum amountsIn parameter: this is handled by `IVault.joinPool`.

        uint256[] memory amountsIn = WeightedMath._calcAllTokensInGivenExactBptOut(
            balances,
            bptAmountOut,
            totalSupply()
        );

        return (bptAmountOut, amountsIn);
    }

    // Exit Hook

    function onExitPool(
        bytes32 poolId,
        address sender,
        address recipient,
        uint256[] memory balances,
        uint256 lastChangeBlock,
        uint256 protocolSwapFeePercentage,
        bytes memory userData
    ) public virtual override onlyVault(poolId) returns (uint256[] memory, uint256[] memory) {
        _upscaleArray(balances);

        (uint256 bptAmountIn, uint256[] memory amountsOut, uint256[] memory dueProtocolFeeAmounts) = _onExitPool(
            poolId,
            sender,
            recipient,
            balances,
            lastChangeBlock,
            protocolSwapFeePercentage,
            userData
        );

        // Note we no longer use `balances` after calling `_onExitPool`, which may mutate it.

        _burnPoolTokens(sender, bptAmountIn);

        // Both amountsOut and dueProtocolFeeAmounts are amounts exiting the Pool, so we round down.
        _downscaleDownArray(amountsOut);
        _downscaleDownArray(dueProtocolFeeAmounts);

        // Update cached total supply and invariant using the results after the exit that will be used for future
        // oracle updates, only if the pool was not paused (to minimize code paths taken while paused).
        if (_isNotPaused()) {
            _cacheInvariantAndSupply();
        }

        return (amountsOut, dueProtocolFeeAmounts);
    }

    /**
     * @dev Called whenever the Pool is exited.
     *
     * Returns the amount of BPT to burn, the token amounts for each Pool token that the Pool will grant in return, and
     * the number of tokens to pay in protocol swap fees.
     *
     * Implementations of this function might choose to mutate the `balances` array to save gas (e.g. when
     * performing intermediate calculations, such as subtraction of due protocol fees). This can be done safely.
     *
     * BPT will be burnt from `sender`.
     *
     * The Pool will grant tokens to `recipient`. These amounts are considered upscaled and will be downscaled
     * (rounding down) before being returned to the Vault.
     *
     * Due protocol swap fees will be taken from the Pool's balance in the Vault (see `IBasePool.onExitPool`). These
     * amounts are considered upscaled and will be downscaled (rounding down) before being returned to the Vault.
     */
    function _onExitPool(
        bytes32,
        address,
        address,
        uint256[] memory balances,
        uint256 lastChangeBlock,
        uint256 protocolSwapFeePercentage,
        bytes memory userData
    )
        private
        returns (
            uint256 bptAmountIn,
            uint256[] memory amountsOut,
            uint256[] memory dueProtocolFeeAmounts
        )
    {
        // Exits are not completely disabled while the contract is paused: proportional exits (exact BPT in for tokens
        // out) remain functional.

        uint256[] memory normalizedWeights = _normalizedWeights();

        if (_isNotPaused()) {
            // Update price oracle with the pre-exit balances
            _updateOracle(lastChangeBlock, balances[0], balances[1]);

            // Due protocol swap fee amounts are computed by measuring the growth of the invariant between the previous
            // join or exit event and now - the invariant's growth is due exclusively to swap fees. This avoids
            // spending gas calculating the fees on each individual swap.
            uint256 invariantBeforeExit = WeightedMath._calculateInvariant(normalizedWeights, balances);
            dueProtocolFeeAmounts = _getDueProtocolFeeAmounts(
                balances,
                normalizedWeights,
                _lastInvariant,
                invariantBeforeExit,
                protocolSwapFeePercentage
            );

            // Update current balances by subtracting the protocol fee amounts
            _mutateAmounts(balances, dueProtocolFeeAmounts, FixedPoint.sub);
        } else {
            // If the contract is paused, swap protocol fee amounts are not charged and the oracle is not updated
            // to avoid extra calculations and reduce the potential for errors.
            dueProtocolFeeAmounts = new uint256[](2);
        }

        (bptAmountIn, amountsOut) = _doExit(balances, normalizedWeights, userData);

        // Update the invariant with the balances the Pool will have after the exit, in order to compute the
        // protocol swap fees due in future joins and exits.
        _mutateAmounts(balances, amountsOut, FixedPoint.sub);
        _lastInvariant = WeightedMath._calculateInvariant(normalizedWeights, balances);

        return (bptAmountIn, amountsOut, dueProtocolFeeAmounts);
    }

    function _doExit(
        uint256[] memory balances,
        uint256[] memory normalizedWeights,
        bytes memory userData
    ) private view returns (uint256, uint256[] memory) {
        BaseWeightedPool.ExitKind kind = userData.exitKind();

        if (kind == BaseWeightedPool.ExitKind.EXACT_BPT_IN_FOR_ONE_TOKEN_OUT) {
            return _exitExactBPTInForTokenOut(balances, normalizedWeights, userData);
        } else if (kind == BaseWeightedPool.ExitKind.EXACT_BPT_IN_FOR_TOKENS_OUT) {
            return _exitExactBPTInForTokensOut(balances, userData);
        } else if (kind == BaseWeightedPool.ExitKind.BPT_IN_FOR_EXACT_TOKENS_OUT) {
            return _exitBPTInForExactTokensOut(balances, normalizedWeights, userData);
        } else {
            _revert(Errors.UNHANDLED_EXIT_KIND);
        }
    }

    function _exitExactBPTInForTokenOut(
        uint256[] memory balances,
        uint256[] memory normalizedWeights,
        bytes memory userData
    ) private view whenNotPaused returns (uint256, uint256[] memory) {
        // This exit function is disabled if the contract is paused.

        (uint256 bptAmountIn, uint256 tokenIndex) = userData.exactBptInForTokenOut();
        // Note that there is no minimum amountOut parameter: this is handled by `IVault.exitPool`.

        _require(tokenIndex < 2, Errors.OUT_OF_BOUNDS);

        // We exit in a single token, so we initialize amountsOut with zeros
        uint256[] memory amountsOut = new uint256[](2);

        // And then assign the result to the selected token
        (amountsOut[tokenIndex], ) = WeightedMath._calcTokenOutGivenExactBptIn(
            balances[tokenIndex],
            normalizedWeights[tokenIndex],
            bptAmountIn,
            totalSupply(),
            getSwapFeePercentage()
        );

        return (bptAmountIn, amountsOut);
    }

    function _exitExactBPTInForTokensOut(uint256[] memory balances, bytes memory userData)
        private
        view
        returns (uint256, uint256[] memory)
    {
        // This exit function is the only one that is not disabled if the contract is paused: it remains unrestricted
        // in an attempt to provide users with a mechanism to retrieve their tokens in case of an emergency.
        // This particular exit function is the only one that remains available because it is the simplest one, and
        // therefore the one with the lowest likelihood of errors.

        uint256 bptAmountIn = userData.exactBptInForTokensOut();
        // Note that there is no minimum amountOut parameter: this is handled by `IVault.exitPool`.

        uint256[] memory amountsOut = WeightedMath._calcTokensOutGivenExactBptIn(balances, bptAmountIn, totalSupply());
        return (bptAmountIn, amountsOut);
    }

    function _exitBPTInForExactTokensOut(
        uint256[] memory balances,
        uint256[] memory normalizedWeights,
        bytes memory userData
    ) private view whenNotPaused returns (uint256, uint256[] memory) {
        // This exit function is disabled if the contract is paused.

        (uint256[] memory amountsOut, uint256 maxBPTAmountIn) = userData.bptInForExactTokensOut();
        InputHelpers.ensureInputLengthMatch(amountsOut.length, 2);
        _upscaleArray(amountsOut);

        (uint256 bptAmountIn, ) = WeightedMath._calcBptInGivenExactTokensOut(
            balances,
            normalizedWeights,
            amountsOut,
            totalSupply(),
            getSwapFeePercentage()
        );
        _require(bptAmountIn <= maxBPTAmountIn, Errors.BPT_IN_MAX_AMOUNT);

        return (bptAmountIn, amountsOut);
    }

    // Oracle functions

    /**
     * @dev Updates the Price Oracle based on the Pool's current state (balances, BPT supply and invariant). Must be
     * called on *all* state-changing functions with the balances *before* the state change happens, and with
     * `lastChangeBlock` as the number of the block in which any of the balances last changed.
     */
    function _updateOracle(
        uint256 lastChangeBlock,
        uint256 balanceToken0,
        uint256 balanceToken1
    ) internal {
        bytes32 miscData = _miscData;
        if (miscData.oracleEnabled() && block.number > lastChangeBlock) {
            int256 logSpotPrice = WeightedOracleMath._calcLogSpotPrice(
                _normalizedWeight0,
                balanceToken0,
                _normalizedWeight1,
                balanceToken1
            );

            int256 logBPTPrice = WeightedOracleMath._calcLogBPTPrice(
                _normalizedWeight0,
                balanceToken0,
                miscData.logTotalSupply()
            );

            uint256 oracleCurrentIndex = miscData.oracleIndex();
            uint256 oracleCurrentSampleInitialTimestamp = miscData.oracleSampleCreationTimestamp();
            uint256 oracleUpdatedIndex = _processPriceData(
                oracleCurrentSampleInitialTimestamp,
                oracleCurrentIndex,
                logSpotPrice,
                logBPTPrice,
                miscData.logInvariant()
            );

            if (oracleCurrentIndex != oracleUpdatedIndex) {
                // solhint-disable not-rely-on-time
                miscData = miscData.setOracleIndex(oracleUpdatedIndex);
                miscData = miscData.setOracleSampleCreationTimestamp(block.timestamp);
                _miscData = miscData;
            }
        }
    }

    /**
     * @dev Stores the logarithm of the invariant and BPT total supply, to be later used in each oracle update. Because
     * it is stored in miscData, which is read in all operations (including swaps), this saves gas by not requiring to
     * compute or read these values when updating the oracle.
     *
     * This function must be called by all actions that update the invariant and BPT supply (joins and exits). Swaps
     * also alter the invariant due to collected swap fees, but this growth is considered negligible and not accounted
     * for.
     */
    function _cacheInvariantAndSupply() internal {
        bytes32 miscData = _miscData;
        if (miscData.oracleEnabled()) {
            miscData = miscData.setLogInvariant(LogCompression.toLowResLog(_lastInvariant));
            miscData = miscData.setLogTotalSupply(LogCompression.toLowResLog(totalSupply()));
            _miscData = miscData;
        }
    }

    function _getOracleIndex() internal view override returns (uint256) {
        return _miscData.oracleIndex();
    }

    // Query functions

    /**
     * @dev Returns the amount of BPT that would be granted to `recipient` if the `onJoinPool` hook were called by the
     * Vault with the same arguments, along with the number of tokens `sender` would have to supply.
     *
     * This function is not meant to be called directly, but rather from a helper contract that fetches current Vault
     * data, such as the protocol swap fee percentage and Pool balances.
     *
     * Like `IVault.queryBatchSwap`, this function is not view due to internal implementation details: the caller must
     * explicitly use eth_call instead of eth_sendTransaction.
     */
    function queryJoin(
        bytes32 poolId,
        address sender,
        address recipient,
        uint256[] memory balances,
        uint256 lastChangeBlock,
        uint256 protocolSwapFeePercentage,
        bytes memory userData
    ) external returns (uint256 bptOut, uint256[] memory amountsIn) {
        InputHelpers.ensureInputLengthMatch(balances.length, 2);

        _queryAction(
            poolId,
            sender,
            recipient,
            balances,
            lastChangeBlock,
            protocolSwapFeePercentage,
            userData,
            _onJoinPool,
            _downscaleUpArray
        );

        // The `return` opcode is executed directly inside `_queryAction`, so execution never reaches this statement,
        // and we don't need to return anything here - it just silences compiler warnings.
        return (bptOut, amountsIn);
    }

    /**
     * @dev Returns the amount of BPT that would be burned from `sender` if the `onExitPool` hook were called by the
     * Vault with the same arguments, along with the number of tokens `recipient` would receive.
     *
     * This function is not meant to be called directly, but rather from a helper contract that fetches current Vault
     * data, such as the protocol swap fee percentage and Pool balances.
     *
     * Like `IVault.queryBatchSwap`, this function is not view due to internal implementation details: the caller must
     * explicitly use eth_call instead of eth_sendTransaction.
     */
    function queryExit(
        bytes32 poolId,
        address sender,
        address recipient,
        uint256[] memory balances,
        uint256 lastChangeBlock,
        uint256 protocolSwapFeePercentage,
        bytes memory userData
    ) external returns (uint256 bptIn, uint256[] memory amountsOut) {
        InputHelpers.ensureInputLengthMatch(balances.length, 2);

        _queryAction(
            poolId,
            sender,
            recipient,
            balances,
            lastChangeBlock,
            protocolSwapFeePercentage,
            userData,
            _onExitPool,
            _downscaleDownArray
        );

        // The `return` opcode is executed directly inside `_queryAction`, so execution never reaches this statement,
        // and we don't need to return anything here - it just silences compiler warnings.
        return (bptIn, amountsOut);
    }

    // Helpers

    function _getDueProtocolFeeAmounts(
        uint256[] memory balances,
        uint256[] memory normalizedWeights,
        uint256 previousInvariant,
        uint256 currentInvariant,
        uint256 protocolSwapFeePercentage
    ) private view returns (uint256[] memory) {
        // Initialize with zeros
        uint256[] memory dueProtocolFeeAmounts = new uint256[](2);

        // Early return if the protocol swap fee percentage is zero, saving gas.
        if (protocolSwapFeePercentage == 0) {
            return dueProtocolFeeAmounts;
        }

        // The protocol swap fees are always paid using the token with the largest weight in the Pool. As this is the
        // token that is expected to have the largest balance, using it to pay fees should not unbalance the Pool.
        dueProtocolFeeAmounts[_maxWeightTokenIndex] = WeightedMath._calcDueTokenProtocolSwapFeeAmount(
            balances[_maxWeightTokenIndex],
            normalizedWeights[_maxWeightTokenIndex],
            previousInvariant,
            currentInvariant,
            protocolSwapFeePercentage
        );

        return dueProtocolFeeAmounts;
    }

    /**
     * @dev Mutates `amounts` by applying `mutation` with each entry in `arguments`.
     *
     * Equivalent to `amounts = amounts.map(mutation)`.
     */
    function _mutateAmounts(
        uint256[] memory toMutate,
        uint256[] memory arguments,
        function(uint256, uint256) pure returns (uint256) mutation
    ) private pure {
        toMutate[0] = mutation(toMutate[0], arguments[0]);
        toMutate[1] = mutation(toMutate[1], arguments[1]);
    }

    /**
     * @dev This function returns the appreciation of one BPT relative to the
     * underlying tokens. This starts at 1 when the pool is created and grows over time
     */
    function getRate() public view returns (uint256) {
        // The initial BPT supply is equal to the invariant times the number of tokens.
        return Math.mul(getInvariant(), 2).divDown(totalSupply());
    }

    // Scaling

    /**
     * @dev Returns a scaling factor that, when multiplied to a token amount for `token`, normalizes its balance as if
     * it had 18 decimals.
     */
    function _computeScalingFactor(IERC20 token) private view returns (uint256) {
        // Tokens that don't implement the `decimals` method are not supported.
        uint256 tokenDecimals = ERC20(address(token)).decimals();

        // Tokens with more than 18 decimals are not supported.
        uint256 decimalsDifference = Math.sub(18, tokenDecimals);
        return 10**decimalsDifference;
    }

    /**
     * @dev Returns the scaling factor for one of the Pool's tokens. Reverts if `token` is not a token registered by the
     * Pool.
     */
    function _scalingFactor(bool token0) internal view returns (uint256) {
        return token0 ? _scalingFactor0 : _scalingFactor1;
    }

    /**
     * @dev Applies `scalingFactor` to `amount`, resulting in a larger or equal value depending on whether it needed
     * scaling or not.
     */
    function _upscale(uint256 amount, uint256 scalingFactor) internal pure returns (uint256) {
        return Math.mul(amount, scalingFactor);
    }

    /**
     * @dev Same as `_upscale`, but for an entire array (of two elements). This function does not return anything, but
     * instead *mutates* the `amounts` array.
     */
    function _upscaleArray(uint256[] memory amounts) internal view {
        amounts[0] = Math.mul(amounts[0], _scalingFactor(true));
        amounts[1] = Math.mul(amounts[1], _scalingFactor(false));
    }

    /**
     * @dev Reverses the `scalingFactor` applied to `amount`, resulting in a smaller or equal value depending on
     * whether it needed scaling or not. The result is rounded down.
     */
    function _downscaleDown(uint256 amount, uint256 scalingFactor) internal pure returns (uint256) {
        return Math.divDown(amount, scalingFactor);
    }

    /**
     * @dev Same as `_downscaleDown`, but for an entire array (of two elements). This function does not return anything,
     * but instead *mutates* the `amounts` array.
     */
    function _downscaleDownArray(uint256[] memory amounts) internal view {
        amounts[0] = Math.divDown(amounts[0], _scalingFactor(true));
        amounts[1] = Math.divDown(amounts[1], _scalingFactor(false));
    }

    /**
     * @dev Reverses the `scalingFactor` applied to `amount`, resulting in a smaller or equal value depending on
     * whether it needed scaling or not. The result is rounded up.
     */
    function _downscaleUp(uint256 amount, uint256 scalingFactor) internal pure returns (uint256) {
        return Math.divUp(amount, scalingFactor);
    }

    /**
     * @dev Same as `_downscaleUp`, but for an entire array (of two elements). This function does not return anything,
     * but instead *mutates* the `amounts` array.
     */
    function _downscaleUpArray(uint256[] memory amounts) internal view {
        amounts[0] = Math.divUp(amounts[0], _scalingFactor(true));
        amounts[1] = Math.divUp(amounts[1], _scalingFactor(false));
    }

    function _getAuthorizer() internal view override returns (IAuthorizer) {
        // Access control management is delegated to the Vault's Authorizer. This lets Balancer Governance manage which
        // accounts can call permissioned functions: for example, to perform emergency pauses.
        // If the owner is delegated, then *all* permissioned functions, including `setSwapFeePercentage`, will be under
        // Governance control.
        return getVault().getAuthorizer();
    }

    function _queryAction(
        bytes32 poolId,
        address sender,
        address recipient,
        uint256[] memory balances,
        uint256 lastChangeBlock,
        uint256 protocolSwapFeePercentage,
        bytes memory userData,
        function(bytes32, address, address, uint256[] memory, uint256, uint256, bytes memory)
            internal
            returns (uint256, uint256[] memory, uint256[] memory) _action,
        function(uint256[] memory) internal view _downscaleArray
    ) private {
        // This uses the same technique used by the Vault in queryBatchSwap. Refer to that function for a detailed
        // explanation.

        if (msg.sender != address(this)) {
            // We perform an external call to ourselves, forwarding the same calldata. In this call, the else clause of
            // the preceding if statement will be executed instead.

            // solhint-disable-next-line avoid-low-level-calls
            (bool success, ) = address(this).call(msg.data);

            // solhint-disable-next-line no-inline-assembly
            assembly {
                // This call should always revert to decode the bpt and token amounts from the revert reason
                switch success
                    case 0 {
                        // Note we are manually writing the memory slot 0. We can safely overwrite whatever is
                        // stored there as we take full control of the execution and then immediately return.

                        // We copy the first 4 bytes to check if it matches with the expected signature, otherwise
                        // there was another revert reason and we should forward it.
                        returndatacopy(0, 0, 0x04)
                        let error := and(mload(0), 0xffffffff00000000000000000000000000000000000000000000000000000000)

                        // If the first 4 bytes don't match with the expected signature, we forward the revert reason.
                        if eq(eq(error, 0x43adbafb00000000000000000000000000000000000000000000000000000000), 0) {
                            returndatacopy(0, 0, returndatasize())
                            revert(0, returndatasize())
                        }

                        // The returndata contains the signature, followed by the raw memory representation of the
                        // `bptAmount` and `tokenAmounts` (array: length + data). We need to return an ABI-encoded
                        // representation of these.
                        // An ABI-encoded response will include one additional field to indicate the starting offset of
                        // the `tokenAmounts` array. The `bptAmount` will be laid out in the first word of the
                        // returndata.
                        //
                        // In returndata:
                        // [ signature ][ bptAmount ][ tokenAmounts length ][ tokenAmounts values ]
                        // [  4 bytes  ][  32 bytes ][       32 bytes      ][ (32 * length) bytes ]
                        //
                        // We now need to return (ABI-encoded values):
                        // [ bptAmount ][ tokeAmounts offset ][ tokenAmounts length ][ tokenAmounts values ]
                        // [  32 bytes ][       32 bytes     ][       32 bytes      ][ (32 * length) bytes ]

                        // We copy 32 bytes for the `bptAmount` from returndata into memory.
                        // Note that we skip the first 4 bytes for the error signature
                        returndatacopy(0, 0x04, 32)

                        // The offsets are 32-bytes long, so the array of `tokenAmounts` will start after
                        // the initial 64 bytes.
                        mstore(0x20, 64)

                        // We now copy the raw memory array for the `tokenAmounts` from returndata into memory.
                        // Since bpt amount and offset take up 64 bytes, we start copying at address 0x40. We also
                        // skip the first 36 bytes from returndata, which correspond to the signature plus bpt amount.
                        returndatacopy(0x40, 0x24, sub(returndatasize(), 36))

                        // We finally return the ABI-encoded uint256 and the array, which has a total length equal to
                        // the size of returndata, plus the 32 bytes of the offset but without the 4 bytes of the
                        // error signature.
                        return(0, add(returndatasize(), 28))
                    }
                    default {
                        // This call should always revert, but we fail nonetheless if that didn't happen
                        invalid()
                    }
            }
        } else {
            _upscaleArray(balances);

            (uint256 bptAmount, uint256[] memory tokenAmounts, ) = _action(
                poolId,
                sender,
                recipient,
                balances,
                lastChangeBlock,
                protocolSwapFeePercentage,
                userData
            );

            _downscaleArray(tokenAmounts);

            // solhint-disable-next-line no-inline-assembly
            assembly {
                // We will return a raw representation of `bptAmount` and `tokenAmounts` in memory, which is composed of
                // a 32-byte uint256, followed by a 32-byte for the array length, and finally the 32-byte uint256 values
                // Because revert expects a size in bytes, we multiply the array length (stored at `tokenAmounts`) by 32
                let size := mul(mload(tokenAmounts), 32)

                // We store the `bptAmount` in the previous slot to the `tokenAmounts` array. We can make sure there
                // will be at least one available slot due to how the memory scratch space works.
                // We can safely overwrite whatever is stored in this slot as we will revert immediately after that.
                let start := sub(tokenAmounts, 0x20)
                mstore(start, bptAmount)

                // We send one extra value for the error signature "QueryError(uint256,uint256[])" which is 0x43adbafb
                // We use the previous slot to `bptAmount`.
                mstore(sub(start, 0x20), 0x0000000000000000000000000000000000000000000000000000000043adbafb)
                start := sub(start, 0x04)

                // When copying from `tokenAmounts` into returndata, we copy the additional 68 bytes to also return
                // the `bptAmount`, the array length, and the error signature.
                revert(start, add(size, 68))
            }
        }
    }
}

File 44 of 63 : LogCompression.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

import "../math/LogExpMath.sol";

/**
 * @dev Library for encoding and decoding values stored inside a 256 bit word. Typically used to pack multiple values in
 * a single storage slot, saving gas by performing less storage accesses.
 *
 * Each value is defined by its size and the least significant bit in the word, also known as offset. For example, two
 * 128 bit values may be encoded in a word by assigning one an offset of 0, and the other an offset of 128.
 */
library LogCompression {
    int256 private constant _LOG_COMPRESSION_FACTOR = 1e14;
    int256 private constant _HALF_LOG_COMPRESSION_FACTOR = 0.5e14;

    /**
     * @dev Returns the natural logarithm of `value`, dropping most of the decimal places to arrive at a value that,
     * when passed to `fromLowResLog`, will have a maximum relative error of ~0.05% compared to `value`.
     *
     * Values returned from this function should not be mixed with other fixed-point values (as they have a different
     * number of digits), but can be added or subtracted. Use `fromLowResLog` to undo this process and return to an
     * 18 decimal places fixed point value.
     *
     * Because so much precision is lost, the logarithmic values can be stored using much fewer bits than the original
     * value required.
     */
    function toLowResLog(uint256 value) internal pure returns (int256) {
        int256 ln = LogExpMath.ln(int256(value));

        // Rounding division for signed numerator
        int256 lnWithError = (ln > 0 ? ln + _HALF_LOG_COMPRESSION_FACTOR : ln - _HALF_LOG_COMPRESSION_FACTOR);
        return lnWithError / _LOG_COMPRESSION_FACTOR;
    }

    /**
     * @dev Restores `value` from logarithmic space. `value` is expected to be the result of a call to `toLowResLog`,
     * any other function that returns 4 decimals fixed point logarithms, or the sum of such values.
     */
    function fromLowResLog(int256 value) internal pure returns (uint256) {
        return uint256(LogExpMath.exp(value * _LOG_COMPRESSION_FACTOR));
    }
}

File 45 of 63 : PoolPriceOracle.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;
pragma experimental ABIEncoderV2;

import "@balancer-labs/v2-solidity-utils/contracts/helpers/BalancerErrors.sol";

import "../interfaces/IPriceOracle.sol";
import "../interfaces/IPoolPriceOracle.sol";

import "./Buffer.sol";
import "./Samples.sol";
import "./QueryProcessor.sol";

/**
 * @dev This module allows Pools to access historical pricing information.
 *
 * It uses a 1024 long circular buffer to store past data, where the data within each sample is the result of
 * accumulating live data for no more than two minutes. Therefore, assuming the worst case scenario where new data is
 * updated in every single block, the oldest samples in the buffer (and therefore largest queryable period) will
 * be slightly over 34 hours old.
 *
 * Usage of this module requires the caller to keep track of two variables: the latest circular buffer index, and the
 * timestamp when the index last changed. Aditionally, access to the latest circular buffer index must be exposed by
 * implementing `_getOracleIndex`.
 *
 * This contract relies on the `QueryProcessor` linked library to reduce bytecode size.
 */
abstract contract PoolPriceOracle is IPoolPriceOracle, IPriceOracle {
    using Buffer for uint256;
    using Samples for bytes32;

    // Each sample in the buffer accumulates information for up to 2 minutes. This is simply to reduce the size of the
    // buffer: small time deviations will not have any significant effect.
    // solhint-disable not-rely-on-time
    uint256 private constant _MAX_SAMPLE_DURATION = 2 minutes;

    // We use a mapping to simulate an array: the buffer won't grow or shrink, and since we will always use valid
    // indexes using a mapping saves gas by skipping the bounds checks.
    mapping(uint256 => bytes32) internal _samples;

    // IPoolPriceOracle

    function getSample(uint256 index)
        external
        view
        override
        returns (
            int256 logPairPrice,
            int256 accLogPairPrice,
            int256 logBptPrice,
            int256 accLogBptPrice,
            int256 logInvariant,
            int256 accLogInvariant,
            uint256 timestamp
        )
    {
        _require(index < Buffer.SIZE, Errors.ORACLE_INVALID_INDEX);

        bytes32 sample = _getSample(index);
        return sample.unpack();
    }

    function getTotalSamples() external pure override returns (uint256) {
        return Buffer.SIZE;
    }

    /**
     * @dev Manually dirty oracle sample storage slots with dummy data, to reduce the gas cost of the future swaps
     * that will initialize them. This function is only useful before the oracle has been fully initialized.
     *
     * `endIndex` is non-inclusive.
     */
    function dirtyUninitializedOracleSamples(uint256 startIndex, uint256 endIndex) external {
        _require(startIndex < endIndex && endIndex <= Buffer.SIZE, Errors.OUT_OF_BOUNDS);

        // Uninitialized samples are identified by a zero timestamp -- all other fields are ignored,
        // so any non-zero value with a zero timestamp suffices.
        bytes32 initSample = Samples.pack(1, 0, 0, 0, 0, 0, 0);
        for (uint256 i = startIndex; i < endIndex; i++) {
            if (_samples[i].timestamp() == 0) {
                _samples[i] = initSample;
            }
        }
    }

    // IPriceOracle

    function getLargestSafeQueryWindow() external pure override returns (uint256) {
        return 34 hours;
    }

    function getLatest(Variable variable) external view override returns (uint256) {
        return QueryProcessor.getInstantValue(_samples, variable, _getOracleIndex());
    }

    function getTimeWeightedAverage(OracleAverageQuery[] memory queries)
        external
        view
        override
        returns (uint256[] memory results)
    {
        results = new uint256[](queries.length);
        uint256 latestIndex = _getOracleIndex();

        for (uint256 i = 0; i < queries.length; ++i) {
            results[i] = QueryProcessor.getTimeWeightedAverage(_samples, queries[i], latestIndex);
        }
    }

    function getPastAccumulators(OracleAccumulatorQuery[] memory queries)
        external
        view
        override
        returns (int256[] memory results)
    {
        results = new int256[](queries.length);
        uint256 latestIndex = _getOracleIndex();

        OracleAccumulatorQuery memory query;
        for (uint256 i = 0; i < queries.length; ++i) {
            query = queries[i];
            results[i] = _getPastAccumulator(query.variable, latestIndex, query.ago);
        }
    }

    // Internal functions

    /**
     * @dev Processes new price and invariant data, updating the latest sample or creating a new one.
     *
     * Receives the new logarithms of values to store: `logPairPrice`, `logBptPrice` and `logInvariant`, as well the
     * index of the latest sample and the timestamp of its creation.
     *
     * Returns the index of the latest sample. If different from `latestIndex`, the caller should also store the
     * timestamp, and pass it on future calls to this function.
     */
    function _processPriceData(
        uint256 latestSampleCreationTimestamp,
        uint256 latestIndex,
        int256 logPairPrice,
        int256 logBptPrice,
        int256 logInvariant
    ) internal returns (uint256) {
        // Read latest sample, and compute the next one by updating it with the newly received data.
        bytes32 sample = _getSample(latestIndex).update(logPairPrice, logBptPrice, logInvariant, block.timestamp);

        // We create a new sample if more than _MAX_SAMPLE_DURATION seconds have elapsed since the creation of the
        // latest one. In other words, no sample accumulates data over a period larger than _MAX_SAMPLE_DURATION.
        bool newSample = block.timestamp - latestSampleCreationTimestamp >= _MAX_SAMPLE_DURATION;
        latestIndex = newSample ? latestIndex.next() : latestIndex;

        // Store the updated or new sample.
        _samples[latestIndex] = sample;

        return latestIndex;
    }

    function _getPastAccumulator(
        IPriceOracle.Variable variable,
        uint256 latestIndex,
        uint256 ago
    ) internal view returns (int256) {
        return QueryProcessor.getPastAccumulator(_samples, variable, latestIndex, ago);
    }

    function _findNearestSample(
        uint256 lookUpDate,
        uint256 offset,
        uint256 length
    ) internal view returns (bytes32 prev, bytes32 next) {
        return QueryProcessor.findNearestSample(_samples, lookUpDate, offset, length);
    }

    /**
     * @dev Returns the sample that corresponds to a given `index`.
     *
     * Using this function instead of accessing storage directly results in denser bytecode (since the storage slot is
     * only computed here).
     */
    function _getSample(uint256 index) internal view returns (bytes32) {
        return _samples[index];
    }

    /**
     * @dev Virtual function to be implemented by derived contracts. Must return the current index of the oracle
     * circular buffer.
     */
    function _getOracleIndex() internal view virtual returns (uint256);
}

File 46 of 63 : Buffer.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

library Buffer {
    // The buffer is a circular storage structure with 1024 slots.
    // solhint-disable-next-line private-vars-leading-underscore
    uint256 internal constant SIZE = 1024;

    /**
     * @dev Returns the index of the element before the one pointed by `index`.
     */
    function prev(uint256 index) internal pure returns (uint256) {
        return sub(index, 1);
    }

    /**
     * @dev Returns the index of the element after the one pointed by `index`.
     */
    function next(uint256 index) internal pure returns (uint256) {
        return add(index, 1);
    }

    /**
     * @dev Returns the index of an element `offset` slots after the one pointed by `index`.
     */
    function add(uint256 index, uint256 offset) internal pure returns (uint256) {
        return (index + offset) % SIZE;
    }

    /**
     * @dev Returns the index of an element `offset` slots before the one pointed by `index`.
     */
    function sub(uint256 index, uint256 offset) internal pure returns (uint256) {
        return (index + SIZE - offset) % SIZE;
    }
}

File 47 of 63 : WeightedOracleMath.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

import "@balancer-labs/v2-solidity-utils/contracts/math/FixedPoint.sol";
import "@balancer-labs/v2-solidity-utils/contracts/helpers/LogCompression.sol";

contract WeightedOracleMath {
    using FixedPoint for uint256;

    /**
     * @dev Calculates the logarithm of the spot price of token B in token A.
     *
     * The return value is a 4 decimal fixed-point number: use `LogCompression.fromLowResLog`
     * to recover the original value.
     */
    function _calcLogSpotPrice(
        uint256 normalizedWeightA,
        uint256 balanceA,
        uint256 normalizedWeightB,
        uint256 balanceB
    ) internal pure returns (int256) {
        // Max balances are 2^112 and min weights are 0.01, so the division never overflows.

        // The rounding direction is irrelevant as we're about to introduce a much larger error when converting to log
        // space. We use `divUp` as it prevents the result from being zero, which would make the logarithm revert. A
        // result of zero is therefore only possible with zero balances, which are prevented via other means.
        uint256 spotPrice = balanceA.divUp(normalizedWeightA).divUp(balanceB.divUp(normalizedWeightB));
        return LogCompression.toLowResLog(spotPrice);
    }

    /**
     * @dev Calculates the price of BPT in a token. `logBptTotalSupply` should be the result of calling `toLowResLog`
     * with the current BPT supply.
     *
     * The return value is a 4 decimal fixed-point number: use `LogCompression.fromLowResLog`
     * to recover the original value.
     */
    function _calcLogBPTPrice(
        uint256 normalizedWeight,
        uint256 balance,
        int256 logBptTotalSupply
    ) internal pure returns (int256) {
        // BPT price = (balance / weight) / total supply
        // Since we already have ln(total supply) and want to compute ln(BPT price), we perform the computation in log
        // space directly: ln(BPT price) = ln(balance / weight) - ln(total supply)

        // The rounding direction is irrelevant as we're about to introduce a much larger error when converting to log
        // space. We use `divUp` as it prevents the result from being zero, which would make the logarithm revert. A
        // result of zero is therefore only possible with zero balances, which are prevented via other means.
        uint256 balanceOverWeight = balance.divUp(normalizedWeight);
        int256 logBalanceOverWeight = LogCompression.toLowResLog(balanceOverWeight);

        // Because we're subtracting two values in log space, this value has a larger error (+-0.0001 instead of
        // +-0.00005), which results in a final larger relative error of around 0.1%.
        return logBalanceOverWeight - logBptTotalSupply;
    }
}

File 48 of 63 : WeightedPool2TokensMiscData.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

import "@balancer-labs/v2-solidity-utils/contracts/helpers/WordCodec.sol";

/**
 * @dev This module provides an interface to store seemingly unrelated pieces of information, in particular used by
 * pools with a price oracle.
 *
 * These pieces of information are all kept together in a single storage slot to reduce the number of storage reads. In
 * particular, we not only store configuration values (such as the swap fee percentage), but also cache
 * reduced-precision versions of the total BPT supply and invariant, which lets us not access nor compute these values
 * when producing oracle updates during a swap.
 *
 * Data is stored with the following structure:
 *
 * [ swap fee pct | oracle enabled | oracle index | oracle sample initial timestamp | log supply | log invariant ]
 * [    uint64    |      bool      |    uint10    |              uint31             |    int22   |     int22     ]
 *
 * Note that we are not using the most-significant 106 bits.
 */
library WeightedPool2TokensMiscData {
    using WordCodec for bytes32;
    using WordCodec for uint256;

    uint256 private constant _LOG_INVARIANT_OFFSET = 0;
    uint256 private constant _LOG_TOTAL_SUPPLY_OFFSET = 22;
    uint256 private constant _ORACLE_SAMPLE_CREATION_TIMESTAMP_OFFSET = 44;
    uint256 private constant _ORACLE_INDEX_OFFSET = 75;
    uint256 private constant _ORACLE_ENABLED_OFFSET = 85;
    uint256 private constant _SWAP_FEE_PERCENTAGE_OFFSET = 86;

    /**
     * @dev Returns the cached logarithm of the invariant.
     */
    function logInvariant(bytes32 data) internal pure returns (int256) {
        return data.decodeInt22(_LOG_INVARIANT_OFFSET);
    }

    /**
     * @dev Returns the cached logarithm of the total supply.
     */
    function logTotalSupply(bytes32 data) internal pure returns (int256) {
        return data.decodeInt22(_LOG_TOTAL_SUPPLY_OFFSET);
    }

    /**
     * @dev Returns the timestamp of the creation of the oracle's latest sample.
     */
    function oracleSampleCreationTimestamp(bytes32 data) internal pure returns (uint256) {
        return data.decodeUint31(_ORACLE_SAMPLE_CREATION_TIMESTAMP_OFFSET);
    }

    /**
     * @dev Returns the index of the oracle's latest sample.
     */
    function oracleIndex(bytes32 data) internal pure returns (uint256) {
        return data.decodeUint10(_ORACLE_INDEX_OFFSET);
    }

    /**
     * @dev Returns true if the oracle is enabled.
     */
    function oracleEnabled(bytes32 data) internal pure returns (bool) {
        return data.decodeBool(_ORACLE_ENABLED_OFFSET);
    }

    /**
     * @dev Returns the swap fee percentage.
     */
    function swapFeePercentage(bytes32 data) internal pure returns (uint256) {
        return data.decodeUint64(_SWAP_FEE_PERCENTAGE_OFFSET);
    }

    /**
     * @dev Sets the logarithm of the invariant in `data`, returning the updated value.
     */
    function setLogInvariant(bytes32 data, int256 _logInvariant) internal pure returns (bytes32) {
        return data.insertInt22(_logInvariant, _LOG_INVARIANT_OFFSET);
    }

    /**
     * @dev Sets the logarithm of the total supply in `data`, returning the updated value.
     */
    function setLogTotalSupply(bytes32 data, int256 _logTotalSupply) internal pure returns (bytes32) {
        return data.insertInt22(_logTotalSupply, _LOG_TOTAL_SUPPLY_OFFSET);
    }

    /**
     * @dev Sets the timestamp of the creation of the oracle's latest sample in `data`, returning the updated value.
     */
    function setOracleSampleCreationTimestamp(bytes32 data, uint256 _initialTimestamp) internal pure returns (bytes32) {
        return data.insertUint31(_initialTimestamp, _ORACLE_SAMPLE_CREATION_TIMESTAMP_OFFSET);
    }

    /**
     * @dev Sets the index of the  oracle's latest sample in `data`, returning the updated value.
     */
    function setOracleIndex(bytes32 data, uint256 _oracleIndex) internal pure returns (bytes32) {
        return data.insertUint10(_oracleIndex, _ORACLE_INDEX_OFFSET);
    }

    /**
     * @dev Enables or disables the oracle in `data`, returning the updated value.
     */
    function setOracleEnabled(bytes32 data, bool _oracleEnabled) internal pure returns (bytes32) {
        return data.insertBool(_oracleEnabled, _ORACLE_ENABLED_OFFSET);
    }

    /**
     * @dev Sets the swap fee percentage in `data`, returning the updated value.
     */
    function setSwapFeePercentage(bytes32 data, uint256 _swapFeePercentage) internal pure returns (bytes32) {
        return data.insertUint64(_swapFeePercentage, _SWAP_FEE_PERCENTAGE_OFFSET);
    }
}

File 49 of 63 : IPriceOracle.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;
pragma experimental ABIEncoderV2;

/**
 * @dev Interface for querying historical data from a Pool that can be used as a Price Oracle.
 *
 * This lets third parties retrieve average prices of tokens held by a Pool over a given period of time, as well as the
 * price of the Pool share token (BPT) and invariant. Since the invariant is a sensible measure of Pool liquidity, it
 * can be used to compare two different price sources, and choose the most liquid one.
 *
 * Once the oracle is fully initialized, all queries are guaranteed to succeed as long as they require no data that
 * is not older than the largest safe query window.
 */
interface IPriceOracle {
    // The three values that can be queried:
    //
    // - PAIR_PRICE: the price of the tokens in the Pool, expressed as the price of the second token in units of the
    //   first token. For example, if token A is worth $2, and token B is worth $4, the pair price will be 2.0.
    //   Note that the price is computed *including* the tokens decimals. This means that the pair price of a Pool with
    //   DAI and USDC will be close to 1.0, despite DAI having 18 decimals and USDC 6.
    //
    // - BPT_PRICE: the price of the Pool share token (BPT), in units of the first token.
    //   Note that the price is computed *including* the tokens decimals. This means that the BPT price of a Pool with
    //   USDC in which BPT is worth $5 will be 5.0, despite the BPT having 18 decimals and USDC 6.
    //
    // - INVARIANT: the value of the Pool's invariant, which serves as a measure of its liquidity.
    enum Variable { PAIR_PRICE, BPT_PRICE, INVARIANT }

    /**
     * @dev Returns the time average weighted price corresponding to each of `queries`. Prices are represented as 18
     * decimal fixed point values.
     */
    function getTimeWeightedAverage(OracleAverageQuery[] memory queries)
        external
        view
        returns (uint256[] memory results);

    /**
     * @dev Returns latest sample of `variable`. Prices are represented as 18 decimal fixed point values.
     */
    function getLatest(Variable variable) external view returns (uint256);

    /**
     * @dev Information for a Time Weighted Average query.
     *
     * Each query computes the average over a window of duration `secs` seconds that ended `ago` seconds ago. For
     * example, the average over the past 30 minutes is computed by settings secs to 1800 and ago to 0. If secs is 1800
     * and ago is 1800 as well, the average between 60 and 30 minutes ago is computed instead.
     */
    struct OracleAverageQuery {
        Variable variable;
        uint256 secs;
        uint256 ago;
    }

    /**
     * @dev Returns largest time window that can be safely queried, where 'safely' means the Oracle is guaranteed to be
     * able to produce a result and not revert.
     *
     * If a query has a non-zero `ago` value, then `secs + ago` (the oldest point in time) must be smaller than this
     * value for 'safe' queries.
     */
    function getLargestSafeQueryWindow() external view returns (uint256);

    /**
     * @dev Returns the accumulators corresponding to each of `queries`.
     */
    function getPastAccumulators(OracleAccumulatorQuery[] memory queries)
        external
        view
        returns (int256[] memory results);

    /**
     * @dev Information for an Accumulator query.
     *
     * Each query estimates the accumulator at a time `ago` seconds ago.
     */
    struct OracleAccumulatorQuery {
        Variable variable;
        uint256 ago;
    }
}

File 50 of 63 : IPoolPriceOracle.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

interface IPoolPriceOracle {
    /**
     * @dev Returns the raw data of the sample at `index`.
     */
    function getSample(uint256 index)
        external
        view
        returns (
            int256 logPairPrice,
            int256 accLogPairPrice,
            int256 logBptPrice,
            int256 accLogBptPrice,
            int256 logInvariant,
            int256 accLogInvariant,
            uint256 timestamp
        );

    /**
     * @dev Returns the total number of samples.
     */
    function getTotalSamples() external view returns (uint256);
}

File 51 of 63 : Samples.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

import "@balancer-labs/v2-solidity-utils/contracts/helpers/WordCodec.sol";

import "../interfaces/IPriceOracle.sol";

/**
 * @dev This library provides functions to help manipulating samples for Pool Price Oracles. It handles updates,
 * encoding, and decoding of samples.
 *
 * Each sample holds the timestamp of its last update, plus information about three pieces of data: the price pair, the
 * price of BPT (the associated Pool token), and the invariant.
 *
 * Prices and invariant are not stored directly: instead, we store their logarithm. These are known as the 'instant'
 * values: the exact value at that timestamp.
 *
 * Additionally, for each value we keep an accumulator with the sum of all past values, each weighted by the time
 * elapsed since the previous update. This lets us later subtract accumulators at different points in time and divide by
 * the time elapsed between them, arriving at the geometric mean of the values (also known as log-average).
 *
 * All samples are stored in a single 256 bit word with the following structure:
 *
 * [    log pair price     |        bpt price      |       invariant       |  timestamp ]
 * [ instant | accumulator | instant | accumulator | instant | accumulator |            ]
 * [  int22  |    int53    |  int22  |    int53    |  int22  |    int53    |    uint31  ]
 * MSB                                                                                LSB
 *
 * Assuming the timestamp doesn't overflow (which holds until the year 2038), the largest elapsed time is 2^31, which
 * means the largest possible accumulator value is 2^21 * 2^31, which can be represented using a signed 53 bit integer.
 */
library Samples {
    using WordCodec for int256;
    using WordCodec for uint256;
    using WordCodec for bytes32;

    uint256 internal constant _TIMESTAMP_OFFSET = 0;
    uint256 internal constant _ACC_LOG_INVARIANT_OFFSET = 31;
    uint256 internal constant _INST_LOG_INVARIANT_OFFSET = 84;
    uint256 internal constant _ACC_LOG_BPT_PRICE_OFFSET = 106;
    uint256 internal constant _INST_LOG_BPT_PRICE_OFFSET = 159;
    uint256 internal constant _ACC_LOG_PAIR_PRICE_OFFSET = 181;
    uint256 internal constant _INST_LOG_PAIR_PRICE_OFFSET = 234;

    /**
     * @dev Updates a sample, accumulating the new data based on the elapsed time since the previous update. Returns the
     * updated sample.
     *
     * IMPORTANT: This function does not perform any arithmetic checks. In particular, it assumes the caller will never
     * pass values that cannot be represented as 22 bit signed integers. Additionally, it also assumes
     * `currentTimestamp` is greater than `sample`'s timestamp.
     */
    function update(
        bytes32 sample,
        int256 instLogPairPrice,
        int256 instLogBptPrice,
        int256 instLogInvariant,
        uint256 currentTimestamp
    ) internal pure returns (bytes32) {
        // Because elapsed can be represented as a 31 bit unsigned integer, and the received values can be represented
        // as 22 bit signed integers, we don't need to perform checked arithmetic.

        int256 elapsed = int256(currentTimestamp - timestamp(sample));
        int256 accLogPairPrice = _accLogPairPrice(sample) + instLogPairPrice * elapsed;
        int256 accLogBptPrice = _accLogBptPrice(sample) + instLogBptPrice * elapsed;
        int256 accLogInvariant = _accLogInvariant(sample) + instLogInvariant * elapsed;

        return
            pack(
                instLogPairPrice,
                accLogPairPrice,
                instLogBptPrice,
                accLogBptPrice,
                instLogInvariant,
                accLogInvariant,
                currentTimestamp
            );
    }

    /**
     * @dev Returns the instant value stored in `sample` for `variable`.
     */
    function instant(bytes32 sample, IPriceOracle.Variable variable) internal pure returns (int256) {
        if (variable == IPriceOracle.Variable.PAIR_PRICE) {
            return _instLogPairPrice(sample);
        } else if (variable == IPriceOracle.Variable.BPT_PRICE) {
            return _instLogBptPrice(sample);
        } else {
            // variable == IPriceOracle.Variable.INVARIANT
            return _instLogInvariant(sample);
        }
    }

    /**
     * @dev Returns the accumulator value stored in `sample` for `variable`.
     */
    function accumulator(bytes32 sample, IPriceOracle.Variable variable) internal pure returns (int256) {
        if (variable == IPriceOracle.Variable.PAIR_PRICE) {
            return _accLogPairPrice(sample);
        } else if (variable == IPriceOracle.Variable.BPT_PRICE) {
            return _accLogBptPrice(sample);
        } else {
            // variable == IPriceOracle.Variable.INVARIANT
            return _accLogInvariant(sample);
        }
    }

    /**
     * @dev Returns `sample`'s timestamp.
     */
    function timestamp(bytes32 sample) internal pure returns (uint256) {
        return sample.decodeUint31(_TIMESTAMP_OFFSET);
    }

    /**
     * @dev Returns `sample`'s instant value for the logarithm of the pair price.
     */
    function _instLogPairPrice(bytes32 sample) private pure returns (int256) {
        return sample.decodeInt22(_INST_LOG_PAIR_PRICE_OFFSET);
    }

    /**
     * @dev Returns `sample`'s accumulator of the logarithm of the pair price.
     */
    function _accLogPairPrice(bytes32 sample) private pure returns (int256) {
        return sample.decodeInt53(_ACC_LOG_PAIR_PRICE_OFFSET);
    }

    /**
     * @dev Returns `sample`'s instant value for the logarithm of the BPT price.
     */
    function _instLogBptPrice(bytes32 sample) private pure returns (int256) {
        return sample.decodeInt22(_INST_LOG_BPT_PRICE_OFFSET);
    }

    /**
     * @dev Returns `sample`'s accumulator of the logarithm of the BPT price.
     */
    function _accLogBptPrice(bytes32 sample) private pure returns (int256) {
        return sample.decodeInt53(_ACC_LOG_BPT_PRICE_OFFSET);
    }

    /**
     * @dev Returns `sample`'s instant value for the logarithm of the invariant.
     */
    function _instLogInvariant(bytes32 sample) private pure returns (int256) {
        return sample.decodeInt22(_INST_LOG_INVARIANT_OFFSET);
    }

    /**
     * @dev Returns `sample`'s accumulator of the logarithm of the invariant.
     */
    function _accLogInvariant(bytes32 sample) private pure returns (int256) {
        return sample.decodeInt53(_ACC_LOG_INVARIANT_OFFSET);
    }

    /**
     * @dev Returns a sample created by packing together its components.
     */
    function pack(
        int256 instLogPairPrice,
        int256 accLogPairPrice,
        int256 instLogBptPrice,
        int256 accLogBptPrice,
        int256 instLogInvariant,
        int256 accLogInvariant,
        uint256 _timestamp
    ) internal pure returns (bytes32) {
        return
            instLogPairPrice.encodeInt22(_INST_LOG_PAIR_PRICE_OFFSET) |
            accLogPairPrice.encodeInt53(_ACC_LOG_PAIR_PRICE_OFFSET) |
            instLogBptPrice.encodeInt22(_INST_LOG_BPT_PRICE_OFFSET) |
            accLogBptPrice.encodeInt53(_ACC_LOG_BPT_PRICE_OFFSET) |
            instLogInvariant.encodeInt22(_INST_LOG_INVARIANT_OFFSET) |
            accLogInvariant.encodeInt53(_ACC_LOG_INVARIANT_OFFSET) |
            _timestamp.encodeUint(_TIMESTAMP_OFFSET); // Using 31 bits
    }

    /**
     * @dev Unpacks a sample into its components.
     */
    function unpack(bytes32 sample)
        internal
        pure
        returns (
            int256 logPairPrice,
            int256 accLogPairPrice,
            int256 logBptPrice,
            int256 accLogBptPrice,
            int256 logInvariant,
            int256 accLogInvariant,
            uint256 _timestamp
        )
    {
        logPairPrice = _instLogPairPrice(sample);
        accLogPairPrice = _accLogPairPrice(sample);
        logBptPrice = _instLogBptPrice(sample);
        accLogBptPrice = _accLogBptPrice(sample);
        logInvariant = _instLogInvariant(sample);
        accLogInvariant = _accLogInvariant(sample);
        _timestamp = timestamp(sample);
    }
}

File 52 of 63 : QueryProcessor.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;
pragma experimental ABIEncoderV2;

import "@balancer-labs/v2-solidity-utils/contracts/helpers/BalancerErrors.sol";
import "@balancer-labs/v2-solidity-utils/contracts/helpers/LogCompression.sol";

import "../interfaces/IPriceOracle.sol";

import "./Buffer.sol";
import "./Samples.sol";

/**
 * @dev Auxiliary library for PoolPriceOracle, offloading most of the query code to reduce bytecode size by using this
 * as a linked library. The downside is an extra DELEGATECALL is added (2600 gas as of the Berlin hardfork), but the
 * bytecode size gains are so big (specially of the oracle contract does not use `LogCompression.fromLowResLog`) that
 * it is worth it.
 */
library QueryProcessor {
    using Buffer for uint256;
    using Samples for bytes32;
    using LogCompression for int256;

    /**
     * @dev Returns the value for `variable` at the indexed sample.
     */
    function getInstantValue(
        mapping(uint256 => bytes32) storage samples,
        IPriceOracle.Variable variable,
        uint256 index
    ) external view returns (uint256) {
        bytes32 sample = samples[index];
        _require(sample.timestamp() > 0, Errors.ORACLE_NOT_INITIALIZED);

        int256 rawInstantValue = sample.instant(variable);
        return LogCompression.fromLowResLog(rawInstantValue);
    }

    /**
     * @dev Returns the time average weighted price corresponding to `query`.
     */
    function getTimeWeightedAverage(
        mapping(uint256 => bytes32) storage samples,
        IPriceOracle.OracleAverageQuery memory query,
        uint256 latestIndex
    ) external view returns (uint256) {
        _require(query.secs != 0, Errors.ORACLE_BAD_SECS);

        int256 beginAccumulator = getPastAccumulator(samples, query.variable, latestIndex, query.ago + query.secs);
        int256 endAccumulator = getPastAccumulator(samples, query.variable, latestIndex, query.ago);
        return LogCompression.fromLowResLog((endAccumulator - beginAccumulator) / int256(query.secs));
    }

    /**
     * @dev Returns the value of the accumulator for `variable` `ago` seconds ago. `latestIndex` must be the index of
     * the latest sample in the buffer.
     *
     * Reverts under the following conditions:
     *  - if the buffer is empty.
     *  - if querying past information and the buffer has not been fully initialized.
     *  - if querying older information than available in the buffer. Note that a full buffer guarantees queries for the
     *    past 34 hours will not revert.
     *
     * If requesting information for a timestamp later than the latest one, it is extrapolated using the latest
     * available data.
     *
     * When no exact information is available for the requested past timestamp (as usually happens, since at most one
     * timestamp is stored every two minutes), it is estimated by performing linear interpolation using the closest
     * values. This process is guaranteed to complete performing at most 10 storage reads.
     */
    function getPastAccumulator(
        mapping(uint256 => bytes32) storage samples,
        IPriceOracle.Variable variable,
        uint256 latestIndex,
        uint256 ago
    ) public view returns (int256) {
        // solhint-disable not-rely-on-time
        // `ago` must not be before the epoch.
        _require(block.timestamp >= ago, Errors.ORACLE_INVALID_SECONDS_QUERY);
        uint256 lookUpTime = block.timestamp - ago;

        bytes32 latestSample = samples[latestIndex];
        uint256 latestTimestamp = latestSample.timestamp();

        // The latest sample only has a non-zero timestamp if no data was ever processed and stored in the buffer.
        _require(latestTimestamp > 0, Errors.ORACLE_NOT_INITIALIZED);

        if (latestTimestamp <= lookUpTime) {
            // The accumulator at times ahead of the latest one are computed by extrapolating the latest data. This is
            // equivalent to the instant value not changing between the last timestamp and the look up time.

            // We can use unchecked arithmetic since the accumulator can be represented in 53 bits, timestamps in 31
            // bits, and the instant value in 22 bits.
            uint256 elapsed = lookUpTime - latestTimestamp;
            return latestSample.accumulator(variable) + (latestSample.instant(variable) * int256(elapsed));
        } else {
            // The look up time is before the latest sample, but we need to make sure that it is not before the oldest
            // sample as well.

            // Since we use a circular buffer, the oldest sample is simply the next one.
            uint256 bufferLength;
            uint256 oldestIndex = latestIndex.next();
            {
                // Local scope used to prevent stack-too-deep errors.
                bytes32 oldestSample = samples[oldestIndex];
                uint256 oldestTimestamp = oldestSample.timestamp();

                if (oldestTimestamp > 0) {
                    // If the oldest timestamp is not zero, it means the buffer was fully initialized.
                    bufferLength = Buffer.SIZE;
                } else {
                    // If the buffer was not fully initialized, we haven't wrapped around it yet,
                    // and can treat it as a regular array where the oldest index is the first one,
                    // and the length the number of samples.
                    bufferLength = oldestIndex; // Equal to latestIndex.next()
                    oldestIndex = 0;
                    oldestTimestamp = samples[0].timestamp();
                }

                // Finally check that the look up time is not previous to the oldest timestamp.
                _require(oldestTimestamp <= lookUpTime, Errors.ORACLE_QUERY_TOO_OLD);
            }

            // Perform binary search to find nearest samples to the desired timestamp.
            (bytes32 prev, bytes32 next) = findNearestSample(samples, lookUpTime, oldestIndex, bufferLength);

            // `next`'s timestamp is guaranteed to be larger than `prev`'s, so we can skip checked arithmetic.
            uint256 samplesTimeDiff = next.timestamp() - prev.timestamp();

            if (samplesTimeDiff > 0) {
                // We estimate the accumulator at the requested look up time by interpolating linearly between the
                // previous and next accumulators.

                // We can use unchecked arithmetic since the accumulators can be represented in 53 bits, and timestamps
                // in 31 bits.
                int256 samplesAccDiff = next.accumulator(variable) - prev.accumulator(variable);
                uint256 elapsed = lookUpTime - prev.timestamp();
                return prev.accumulator(variable) + ((samplesAccDiff * int256(elapsed)) / int256(samplesTimeDiff));
            } else {
                // Rarely, one of the samples will have the exact requested look up time, which is indicated by `prev`
                // and `next` being the same. In this case, we simply return the accumulator at that point in time.
                return prev.accumulator(variable);
            }
        }
    }

    /**
     * @dev Finds the two samples with timestamps before and after `lookUpDate`. If one of the samples matches exactly,
     * both `prev` and `next` will be it. `offset` is the index of the oldest sample in the buffer. `length` is the size
     * of the samples list.
     *
     * Assumes `lookUpDate` is greater or equal than the timestamp of the oldest sample, and less or equal than the
     * timestamp of the latest sample.
     */
    function findNearestSample(
        mapping(uint256 => bytes32) storage samples,
        uint256 lookUpDate,
        uint256 offset,
        uint256 length
    ) public view returns (bytes32 prev, bytes32 next) {
        // We're going to perform a binary search in the circular buffer, which requires it to be sorted. To achieve
        // this, we offset all buffer accesses by `offset`, making the first element the oldest one.

        // Auxiliary variables in a typical binary search: we will look at some value `mid` between `low` and `high`,
        // periodically increasing `low` or decreasing `high` until we either find a match or determine the element is
        // not in the array.
        uint256 low = 0;
        uint256 high = length - 1;
        uint256 mid;

        // If the search fails and no sample has a timestamp of `lookUpDate` (as is the most common scenario), `sample`
        // will be either the sample with the largest timestamp smaller than `lookUpDate`, or the one with the smallest
        // timestamp larger than `lookUpDate`.
        bytes32 sample;
        uint256 sampleTimestamp;

        while (low <= high) {
            // Mid is the floor of the average.
            uint256 midWithoutOffset = (high + low) / 2;

            // Recall that the buffer is not actually sorted: we need to apply the offset to access it in a sorted way.
            mid = midWithoutOffset.add(offset);
            sample = samples[mid];
            sampleTimestamp = sample.timestamp();

            if (sampleTimestamp < lookUpDate) {
                // If the mid sample is bellow the look up date, then increase the low index to start from there.
                low = midWithoutOffset + 1;
            } else if (sampleTimestamp > lookUpDate) {
                // If the mid sample is above the look up date, then decrease the high index to start from there.

                // We can skip checked arithmetic: it is impossible for `high` to ever be 0, as a scenario where `low`
                // equals 0 and `high` equals 1 would result in `low` increasing to 1 in the previous `if` clause.
                high = midWithoutOffset - 1;
            } else {
                // sampleTimestamp == lookUpDate
                // If we have an exact match, return the sample as both `prev` and `next`.
                return (sample, sample);
            }
        }

        // In case we reach here, it means we didn't find exactly the sample we where looking for.
        return sampleTimestamp < lookUpDate ? (sample, samples[mid.next()]) : (samples[mid.prev()], sample);
    }
}

File 53 of 63 : ReentrancyGuard.sol
// SPDX-License-Identifier: MIT

// Based on the ReentrancyGuard library from OpenZeppelin Contracts, altered to reduce bytecode size.
// Modifier code is inlined by the compiler, which causes its code to appear multiple times in the codebase. By using
// private functions, we achieve the same end result with slightly higher runtime gas costs, but reduced bytecode size.

pragma solidity ^0.7.0;

import "../helpers/BalancerErrors.sol";

/**
 * @dev Contract module that helps prevent reentrant calls to a function.
 *
 * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
 * available, which can be applied to functions to make sure there are no nested
 * (reentrant) calls to them.
 *
 * Note that because there is a single `nonReentrant` guard, functions marked as
 * `nonReentrant` may not call one another. This can be worked around by making
 * those functions `private`, and then adding `external` `nonReentrant` entry
 * points to them.
 *
 * TIP: If you would like to learn more about reentrancy and alternative ways
 * to protect against it, check out our blog post
 * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
 */
abstract contract ReentrancyGuard {
    // Booleans are more expensive than uint256 or any type that takes up a full
    // word because each write operation emits an extra SLOAD to first read the
    // slot's contents, replace the bits taken up by the boolean, and then write
    // back. This is the compiler's defense against contract upgrades and
    // pointer aliasing, and it cannot be disabled.

    // The values being non-zero value makes deployment a bit more expensive,
    // but in exchange the refund on every call to nonReentrant will be lower in
    // amount. Since refunds are capped to a percentage of the total
    // transaction's gas, it is best to keep them low in cases like this one, to
    // increase the likelihood of the full refund coming into effect.
    uint256 private constant _NOT_ENTERED = 1;
    uint256 private constant _ENTERED = 2;

    uint256 private _status;

    constructor() {
        _status = _NOT_ENTERED;
    }

    /**
     * @dev Prevents a contract from calling itself, directly or indirectly.
     * Calling a `nonReentrant` function from another `nonReentrant`
     * function is not supported. It is possible to prevent this from happening
     * by making the `nonReentrant` function external, and make it call a
     * `private` function that does the actual work.
     */
    modifier nonReentrant() {
        _enterNonReentrant();
        _;
        _exitNonReentrant();
    }

    function _enterNonReentrant() private {
        // On the first call to nonReentrant, _status will be _NOT_ENTERED
        _require(_status != _ENTERED, Errors.REENTRANCY);

        // Any calls to nonReentrant after this point will fail
        _status = _ENTERED;
    }

    function _exitNonReentrant() private {
        // By storing the original value once again, a refund is triggered (see
        // https://eips.ethereum.org/EIPS/eip-2200)
        _status = _NOT_ENTERED;
    }
}

File 54 of 63 : LiquidityBootstrappingPool.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;
pragma experimental ABIEncoderV2;

import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/ReentrancyGuard.sol";
import "@balancer-labs/v2-solidity-utils/contracts/helpers/WordCodec.sol";
import "@balancer-labs/v2-solidity-utils/contracts/math/Math.sol";

import "../BaseWeightedPool.sol";
import "./WeightCompression.sol";

/**
 * @dev Weighted Pool with mutable weights, designed to support V2 Liquidity Bootstrapping
 */
contract LiquidityBootstrappingPool is BaseWeightedPool, ReentrancyGuard {
    // The Pause Window and Buffer Period are timestamp-based: they should not be relied upon for sub-minute accuracy.
    // solhint-disable not-rely-on-time

    using FixedPoint for uint256;
    using WordCodec for bytes32;
    using WeightCompression for uint256;

    // LBPs often involve only two tokens - we support up to four since we're able to pack the entire config in a single
    // storage slot.
    uint256 private constant _MAX_LBP_TOKENS = 4;

    // State variables

    uint256 private immutable _totalTokens;

    IERC20 internal immutable _token0;
    IERC20 internal immutable _token1;
    IERC20 internal immutable _token2;
    IERC20 internal immutable _token3;

    // All token balances are normalized to behave as if the token had 18 decimals. We assume a token's decimals will
    // not change throughout its lifetime, and store the corresponding scaling factor for each at construction time.
    // These factors are always greater than or equal to one: tokens with more than 18 decimals are not supported.

    uint256 internal immutable _scalingFactor0;
    uint256 internal immutable _scalingFactor1;
    uint256 internal immutable _scalingFactor2;
    uint256 internal immutable _scalingFactor3;

    // For gas optimization, store start/end weights and timestamps in one bytes32
    // Start weights need to be high precision, since restarting the update resets them to "spot"
    // values. Target end weights do not need as much precision.
    // [     32 bits   |     32 bits     |      64 bits     |      124 bits      |    3 bits    |     1 bit    ]
    // [ end timestamp | start timestamp | 4x16 end weights | 4x31 start weights |   not used   | swap enabled ]
    // |MSB                                                                                                 LSB|

    bytes32 private _poolState;

    // Offsets for data elements in _poolState
    uint256 private constant _SWAP_ENABLED_OFFSET = 0;
    uint256 private constant _START_WEIGHT_OFFSET = 4;
    uint256 private constant _END_WEIGHT_OFFSET = 128;
    uint256 private constant _START_TIME_OFFSET = 192;
    uint256 private constant _END_TIME_OFFSET = 224;

    // Event declarations

    event SwapEnabledSet(bool swapEnabled);
    event GradualWeightUpdateScheduled(
        uint256 startTime,
        uint256 endTime,
        uint256[] startWeights,
        uint256[] endWeights
    );

    constructor(
        IVault vault,
        string memory name,
        string memory symbol,
        IERC20[] memory tokens,
        uint256[] memory normalizedWeights,
        uint256 swapFeePercentage,
        uint256 pauseWindowDuration,
        uint256 bufferPeriodDuration,
        address owner,
        bool swapEnabledOnStart
    )
        BaseWeightedPool(
            vault,
            name,
            symbol,
            tokens,
            new address[](tokens.length), // Pass the zero address: LBPs can't have asset managers
            swapFeePercentage,
            pauseWindowDuration,
            bufferPeriodDuration,
            owner
        )
    {
        uint256 totalTokens = tokens.length;
        InputHelpers.ensureInputLengthMatch(totalTokens, normalizedWeights.length);

        _totalTokens = totalTokens;

        // Immutable variables cannot be initialized inside an if statement, so we must do conditional assignments
        _token0 = tokens[0];
        _token1 = tokens[1];
        _token2 = totalTokens > 2 ? tokens[2] : IERC20(0);
        _token3 = totalTokens > 3 ? tokens[3] : IERC20(0);

        _scalingFactor0 = _computeScalingFactor(tokens[0]);
        _scalingFactor1 = _computeScalingFactor(tokens[1]);
        _scalingFactor2 = totalTokens > 2 ? _computeScalingFactor(tokens[2]) : 0;
        _scalingFactor3 = totalTokens > 3 ? _computeScalingFactor(tokens[3]) : 0;

        uint256 currentTime = block.timestamp;

        _startGradualWeightChange(currentTime, currentTime, normalizedWeights, normalizedWeights);

        // If false, the pool will start in the disabled state (prevents front-running the enable swaps transaction)
        _setSwapEnabled(swapEnabledOnStart);
    }

    // External functions

    /**
     * @dev Tells whether swaps are enabled or not for the given pool.
     */
    function getSwapEnabled() public view returns (bool) {
        return _poolState.decodeBool(_SWAP_ENABLED_OFFSET);
    }

    /**
     * @dev Return start time, end time, and endWeights as an array.
     * Current weights should be retrieved via `getNormalizedWeights()`.
     */
    function getGradualWeightUpdateParams()
        external
        view
        returns (
            uint256 startTime,
            uint256 endTime,
            uint256[] memory endWeights
        )
    {
        // Load current pool state from storage
        bytes32 poolState = _poolState;

        startTime = poolState.decodeUint32(_START_TIME_OFFSET);
        endTime = poolState.decodeUint32(_END_TIME_OFFSET);
        uint256 totalTokens = _getTotalTokens();
        endWeights = new uint256[](totalTokens);

        for (uint256 i = 0; i < totalTokens; i++) {
            endWeights[i] = poolState.decodeUint16(_END_WEIGHT_OFFSET + i * 16).uncompress16();
        }
    }

    /**
     * @dev Can pause/unpause trading
     */
    function setSwapEnabled(bool swapEnabled) external authenticate whenNotPaused nonReentrant {
        _setSwapEnabled(swapEnabled);
    }

    /**
     * @dev Schedule a gradual weight change, from the current weights to the given endWeights,
     * over startTime to endTime
     */
    function updateWeightsGradually(
        uint256 startTime,
        uint256 endTime,
        uint256[] memory endWeights
    ) external authenticate whenNotPaused nonReentrant {
        InputHelpers.ensureInputLengthMatch(_getTotalTokens(), endWeights.length);

        // If the start time is in the past, "fast forward" to start now
        // This avoids discontinuities in the weight curve. Otherwise, if you set the start/end times with
        // only 10% of the period in the future, the weights would immediately jump 90%
        uint256 currentTime = block.timestamp;
        startTime = Math.max(currentTime, startTime);

        _require(startTime <= endTime, Errors.GRADUAL_UPDATE_TIME_TRAVEL);

        _startGradualWeightChange(startTime, endTime, _getNormalizedWeights(), endWeights);
    }

    // Internal functions

    function _getNormalizedWeight(IERC20 token) internal view override returns (uint256) {
        uint256 i;

        // First, convert token address to a token index

        // prettier-ignore
        if (token == _token0) { i = 0; }
        else if (token == _token1) { i = 1; }
        else if (token == _token2) { i = 2; }
        else if (token == _token3) { i = 3; }
        else {
            _revert(Errors.INVALID_TOKEN);
        }

        return _getNormalizedWeightByIndex(i, _poolState);
    }

    function _getNormalizedWeightByIndex(uint256 i, bytes32 poolState) internal view returns (uint256) {
        uint256 startWeight = poolState.decodeUint31(_START_WEIGHT_OFFSET + i * 31).uncompress31();
        uint256 endWeight = poolState.decodeUint16(_END_WEIGHT_OFFSET + i * 16).uncompress16();

        uint256 pctProgress = _calculateWeightChangeProgress(poolState);

        return _interpolateWeight(startWeight, endWeight, pctProgress);
    }

    function _getNormalizedWeights() internal view override returns (uint256[] memory) {
        uint256 totalTokens = _getTotalTokens();
        uint256[] memory normalizedWeights = new uint256[](totalTokens);

        bytes32 poolState = _poolState;

        // prettier-ignore
        {
            normalizedWeights[0] = _getNormalizedWeightByIndex(0, poolState);
            normalizedWeights[1] = _getNormalizedWeightByIndex(1, poolState);
            if (totalTokens == 2) return normalizedWeights;
            normalizedWeights[2] = _getNormalizedWeightByIndex(2, poolState);
            if (totalTokens == 3) return normalizedWeights;
            normalizedWeights[3] = _getNormalizedWeightByIndex(3, poolState);
        }

        return normalizedWeights;
    }

    function _getNormalizedWeightsAndMaxWeightIndex()
        internal
        view
        override
        returns (uint256[] memory normalizedWeights, uint256 maxWeightTokenIndex)
    {
        normalizedWeights = _getNormalizedWeights();

        maxWeightTokenIndex = 0;
        uint256 maxNormalizedWeight = normalizedWeights[0];

        for (uint256 i = 1; i < normalizedWeights.length; i++) {
            if (normalizedWeights[i] > maxNormalizedWeight) {
                maxWeightTokenIndex = i;
                maxNormalizedWeight = normalizedWeights[i];
            }
        }
    }

    // Pool callback functions

    // Prevent any account other than the owner from joining the pool

    function _onInitializePool(
        bytes32 poolId,
        address sender,
        address recipient,
        uint256[] memory scalingFactors,
        bytes memory userData
    ) internal override returns (uint256, uint256[] memory) {
        // Only the owner can initialize the pool
        _require(sender == getOwner(), Errors.CALLER_IS_NOT_LBP_OWNER);

        return super._onInitializePool(poolId, sender, recipient, scalingFactors, userData);
    }

    function _onJoinPool(
        bytes32 poolId,
        address sender,
        address recipient,
        uint256[] memory balances,
        uint256 lastChangeBlock,
        uint256 protocolSwapFeePercentage,
        uint256[] memory scalingFactors,
        bytes memory userData
    )
        internal
        override
        returns (
            uint256,
            uint256[] memory,
            uint256[] memory
        )
    {
        // Only the owner can add liquidity; block public LPs
        _require(sender == getOwner(), Errors.CALLER_IS_NOT_LBP_OWNER);

        return
            super._onJoinPool(
                poolId,
                sender,
                recipient,
                balances,
                lastChangeBlock,
                protocolSwapFeePercentage,
                scalingFactors,
                userData
            );
    }

    // Swap overrides - revert unless swaps are enabled

    function _onSwapGivenIn(
        SwapRequest memory swapRequest,
        uint256 currentBalanceTokenIn,
        uint256 currentBalanceTokenOut
    ) internal view override returns (uint256) {
        _require(getSwapEnabled(), Errors.SWAPS_DISABLED);

        return super._onSwapGivenIn(swapRequest, currentBalanceTokenIn, currentBalanceTokenOut);
    }

    function _onSwapGivenOut(
        SwapRequest memory swapRequest,
        uint256 currentBalanceTokenIn,
        uint256 currentBalanceTokenOut
    ) internal view override returns (uint256) {
        _require(getSwapEnabled(), Errors.SWAPS_DISABLED);

        return super._onSwapGivenOut(swapRequest, currentBalanceTokenIn, currentBalanceTokenOut);
    }

    /**
     * @dev Extend ownerOnly functions to include the LBP control functions
     */
    function _isOwnerOnlyAction(bytes32 actionId) internal view override returns (bool) {
        return
            (actionId == getActionId(LiquidityBootstrappingPool.setSwapEnabled.selector)) ||
            (actionId == getActionId(LiquidityBootstrappingPool.updateWeightsGradually.selector)) ||
            super._isOwnerOnlyAction(actionId);
    }

    // Private functions

    /**
     * @dev Returns a fixed-point number representing how far along the current weight change is, where 0 means the
     * change has not yet started, and FixedPoint.ONE means it has fully completed.
     */
    function _calculateWeightChangeProgress(bytes32 poolState) private view returns (uint256) {
        uint256 currentTime = block.timestamp;
        uint256 startTime = poolState.decodeUint32(_START_TIME_OFFSET);
        uint256 endTime = poolState.decodeUint32(_END_TIME_OFFSET);

        if (currentTime > endTime) {
            return FixedPoint.ONE;
        } else if (currentTime < startTime) {
            return 0;
        }

        // No need for SafeMath as it was checked right above: endTime >= currentTime >= startTime
        uint256 totalSeconds = endTime - startTime;
        uint256 secondsElapsed = currentTime - startTime;

        // In the degenerate case of a zero duration change, consider it completed (and avoid division by zero)
        return totalSeconds == 0 ? FixedPoint.ONE : secondsElapsed.divDown(totalSeconds);
    }

    /**
     * @dev When calling updateWeightsGradually again during an update, reset the start weights to the current weights,
     * if necessary.
     */
    function _startGradualWeightChange(
        uint256 startTime,
        uint256 endTime,
        uint256[] memory startWeights,
        uint256[] memory endWeights
    ) internal virtual {
        bytes32 newPoolState = _poolState;

        uint256 normalizedSum = 0;
        for (uint256 i = 0; i < endWeights.length; i++) {
            uint256 endWeight = endWeights[i];
            _require(endWeight >= _MIN_WEIGHT, Errors.MIN_WEIGHT);

            newPoolState = newPoolState
                .insertUint31(startWeights[i].compress31(), _START_WEIGHT_OFFSET + i * 31)
                .insertUint16(endWeight.compress16(), _END_WEIGHT_OFFSET + i * 16);

            normalizedSum = normalizedSum.add(endWeight);
        }
        // Ensure that the normalized weights sum to ONE
        _require(normalizedSum == FixedPoint.ONE, Errors.NORMALIZED_WEIGHT_INVARIANT);

        _poolState = newPoolState.insertUint32(startTime, _START_TIME_OFFSET).insertUint32(endTime, _END_TIME_OFFSET);

        emit GradualWeightUpdateScheduled(startTime, endTime, startWeights, endWeights);
    }

    function _interpolateWeight(
        uint256 startWeight,
        uint256 endWeight,
        uint256 pctProgress
    ) private pure returns (uint256) {
        if (pctProgress == 0 || startWeight == endWeight) return startWeight;
        if (pctProgress >= FixedPoint.ONE) return endWeight;

        if (startWeight > endWeight) {
            uint256 weightDelta = pctProgress.mulDown(startWeight - endWeight);
            return startWeight.sub(weightDelta);
        } else {
            uint256 weightDelta = pctProgress.mulDown(endWeight - startWeight);
            return startWeight.add(weightDelta);
        }
    }

    function _setSwapEnabled(bool swapEnabled) private {
        _poolState = _poolState.insertBool(swapEnabled, _SWAP_ENABLED_OFFSET);
        emit SwapEnabledSet(swapEnabled);
    }

    function _getMaxTokens() internal pure override returns (uint256) {
        return _MAX_LBP_TOKENS;
    }

    function _getTotalTokens() internal view virtual override returns (uint256) {
        return _totalTokens;
    }

    function _scalingFactor(IERC20 token) internal view virtual override returns (uint256) {
        // prettier-ignore
        if (token == _token0) { return _scalingFactor0; }
        else if (token == _token1) { return _scalingFactor1; }
        else if (token == _token2) { return _scalingFactor2; }
        else if (token == _token3) { return _scalingFactor3; }
        else {
            _revert(Errors.INVALID_TOKEN);
        }
    }

    function _scalingFactors() internal view virtual override returns (uint256[] memory) {
        uint256 totalTokens = _getTotalTokens();
        uint256[] memory scalingFactors = new uint256[](totalTokens);

        // prettier-ignore
        {
            if (totalTokens > 0) { scalingFactors[0] = _scalingFactor0; } else { return scalingFactors; }
            if (totalTokens > 1) { scalingFactors[1] = _scalingFactor1; } else { return scalingFactors; }
            if (totalTokens > 2) { scalingFactors[2] = _scalingFactor2; } else { return scalingFactors; }
            if (totalTokens > 3) { scalingFactors[3] = _scalingFactor3; } else { return scalingFactors; }
        }

        return scalingFactors;
    }
}

File 55 of 63 : WeightCompression.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

import "@balancer-labs/v2-solidity-utils/contracts/math/FixedPoint.sol";

/**
 * @dev Library for compressing and uncompresing numbers by using smaller types.
 * All values are 18 decimal fixed-point numbers in the [0.0, 1.0] range,
 * so heavier compression (fewer bits) results in fewer decimals.
 */
library WeightCompression {
    uint256 private constant _UINT31_MAX = 2**(31) - 1;

    using FixedPoint for uint256;

    /**
     * @dev Convert a 16-bit value to full FixedPoint
     */
    function uncompress16(uint256 value) internal pure returns (uint256) {
        return value.mulUp(FixedPoint.ONE).divUp(type(uint16).max);
    }

    /**
     * @dev Compress a FixedPoint value to 16 bits
     */
    function compress16(uint256 value) internal pure returns (uint256) {
        return value.mulUp(type(uint16).max).divUp(FixedPoint.ONE);
    }

    /**
     * @dev Convert a 31-bit value to full FixedPoint
     */
    function uncompress31(uint256 value) internal pure returns (uint256) {
        return value.mulUp(FixedPoint.ONE).divUp(_UINT31_MAX);
    }

    /**
     * @dev Compress a FixedPoint value to 31 bits
     */
    function compress31(uint256 value) internal pure returns (uint256) {
        return value.mulUp(_UINT31_MAX).divUp(FixedPoint.ONE);
    }

    /**
     * @dev Convert a 32-bit value to full FixedPoint
     */
    function uncompress32(uint256 value) internal pure returns (uint256) {
        return value.mulUp(FixedPoint.ONE).divUp(type(uint32).max);
    }

    /**
     * @dev Compress a FixedPoint value to 32 bits
     */
    function compress32(uint256 value) internal pure returns (uint256) {
        return value.mulUp(type(uint32).max).divUp(FixedPoint.ONE);
    }

    /**
     * @dev Convert a 64-bit value to full FixedPoint
     */
    function uncompress64(uint256 value) internal pure returns (uint256) {
        return value.mulUp(FixedPoint.ONE).divUp(type(uint64).max);
    }

    /**
     * @dev Compress a FixedPoint value to 64 bits
     */
    function compress64(uint256 value) internal pure returns (uint256) {
        return value.mulUp(type(uint64).max).divUp(FixedPoint.ONE);
    }
}

File 56 of 63 : LiquidityBootstrappingPoolFactory.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;
pragma experimental ABIEncoderV2;

import "@balancer-labs/v2-vault/contracts/interfaces/IVault.sol";

import "@balancer-labs/v2-pool-utils/contracts/factories/BasePoolSplitCodeFactory.sol";
import "@balancer-labs/v2-pool-utils/contracts/factories/FactoryWidePauseWindow.sol";

import "./LiquidityBootstrappingPool.sol";

contract LiquidityBootstrappingPoolFactory is BasePoolSplitCodeFactory, FactoryWidePauseWindow {
    constructor(IVault vault) BasePoolSplitCodeFactory(vault, type(LiquidityBootstrappingPool).creationCode) {
        // solhint-disable-previous-line no-empty-blocks
    }

    /**
     * @dev Deploys a new `LiquidityBootstrappingPool`.
     */
    function create(
        string memory name,
        string memory symbol,
        IERC20[] memory tokens,
        uint256[] memory weights,
        uint256 swapFeePercentage,
        address owner,
        bool swapEnabledOnStart
    ) external returns (address) {
        (uint256 pauseWindowDuration, uint256 bufferPeriodDuration) = getPauseConfiguration();

        return
            _create(
                abi.encode(
                    getVault(),
                    name,
                    symbol,
                    tokens,
                    weights,
                    swapFeePercentage,
                    pauseWindowDuration,
                    bufferPeriodDuration,
                    owner,
                    swapEnabledOnStart
                )
            );
    }
}

File 57 of 63 : InvestmentPoolFactory.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;
pragma experimental ABIEncoderV2;

import "@balancer-labs/v2-vault/contracts/interfaces/IVault.sol";

import "@balancer-labs/v2-pool-utils/contracts/factories/BasePoolSplitCodeFactory.sol";
import "@balancer-labs/v2-pool-utils/contracts/factories/FactoryWidePauseWindow.sol";

import "./InvestmentPool.sol";

contract InvestmentPoolFactory is BasePoolSplitCodeFactory, FactoryWidePauseWindow {
    constructor(IVault vault) BasePoolSplitCodeFactory(vault, type(InvestmentPool).creationCode) {
        // solhint-disable-previous-line no-empty-blocks
    }

    /**
     * @dev Deploys a new `InvestmentPool`.
     */
    function create(
        string memory name,
        string memory symbol,
        IERC20[] memory tokens,
        uint256[] memory weights,
        uint256 swapFeePercentage,
        address owner,
        bool swapEnabledOnStart,
        uint256 managementSwapFeePercentage
    ) external returns (address) {
        (uint256 pauseWindowDuration, uint256 bufferPeriodDuration) = getPauseConfiguration();

        return
            _create(
                abi.encode(
                    InvestmentPool.NewPoolParams({
                        vault: getVault(),
                        name: name,
                        symbol: symbol,
                        tokens: tokens,
                        normalizedWeights: weights,
                        assetManagers: new address[](tokens.length),
                        swapFeePercentage: swapFeePercentage,
                        pauseWindowDuration: pauseWindowDuration,
                        bufferPeriodDuration: bufferPeriodDuration,
                        owner: owner,
                        swapEnabledOnStart: swapEnabledOnStart,
                        managementSwapFeePercentage: managementSwapFeePercentage
                    })
                )
            );
    }
}

File 58 of 63 : EnumerableMap.sol
// SPDX-License-Identifier: MIT

// Based on the EnumerableMap library from OpenZeppelin Contracts, altered to include the following:
//  * a map from IERC20 to bytes32
//  * entries are stored in mappings instead of arrays, reducing implicit storage reads for out-of-bounds checks
//  * unchecked_at and unchecked_valueAt, which allow for more gas efficient data reads in some scenarios
//  * indexOf, unchecked_indexOf and unchecked_setAt, which allow for more gas efficient data writes in some scenarios
//
// Additionally, the base private functions that work on bytes32 were removed and replaced with a native implementation
// for IERC20 keys, to reduce bytecode size and runtime costs.

pragma solidity ^0.7.0;

import "./IERC20.sol";

import "../helpers/BalancerErrors.sol";

/**
 * @dev Library for managing an enumerable variant of Solidity's
 * https://solidity.readthedocs.io/en/latest/types.html#mapping-types[`mapping`]
 * type.
 *
 * Maps have the following properties:
 *
 * - Entries are added, removed, and checked for existence in constant time
 * (O(1)).
 * - Entries are enumerated in O(n). No guarantees are made on the ordering.
 *
 * ```
 * contract Example {
 *     // Add the library methods
 *     using EnumerableMap for EnumerableMap.UintToAddressMap;
 *
 *     // Declare a set state variable
 *     EnumerableMap.UintToAddressMap private myMap;
 * }
 * ```
 */
library EnumerableMap {
    // The original OpenZeppelin implementation uses a generic Map type with bytes32 keys: this was replaced with
    // IERC20ToBytes32Map and IERC20ToUint256Map, resulting in more dense bytecode (as long as each contract only uses
    // one of these - there'll otherwise be duplicated code).

    // IERC20ToBytes32Map

    struct IERC20ToBytes32MapEntry {
        IERC20 _key;
        bytes32 _value;
    }

    struct IERC20ToBytes32Map {
        // Number of entries in the map
        uint256 _length;
        // Storage of map keys and values
        mapping(uint256 => IERC20ToBytes32MapEntry) _entries;
        // Position of the entry defined by a key in the `entries` array, plus 1
        // because index 0 means a key is not in the map.
        mapping(IERC20 => uint256) _indexes;
    }

    /**
     * @dev Adds a key-value pair to a map, or updates the value for an existing
     * key. O(1).
     *
     * Returns true if the key was added to the map, that is if it was not
     * already present.
     */
    function set(
        IERC20ToBytes32Map storage map,
        IERC20 key,
        bytes32 value
    ) internal returns (bool) {
        // We read and store the key's index to prevent multiple reads from the same storage slot
        uint256 keyIndex = map._indexes[key];

        // Equivalent to !contains(map, key)
        if (keyIndex == 0) {
            uint256 previousLength = map._length;
            map._entries[previousLength] = IERC20ToBytes32MapEntry({ _key: key, _value: value });
            map._length = previousLength + 1;

            // The entry is stored at previousLength, but we add 1 to all indexes
            // and use 0 as a sentinel value
            map._indexes[key] = previousLength + 1;
            return true;
        } else {
            map._entries[keyIndex - 1]._value = value;
            return false;
        }
    }

    /**
     * @dev Updates the value for an entry, given its key's index. The key index can be retrieved via
     * {unchecked_indexOf}, and it should be noted that key indices may change when calling {set} or {remove}. O(1).
     *
     * This function performs one less storage read than {set}, but it should only be used when `index` is known to be
     * within bounds.
     */
    function unchecked_setAt(
        IERC20ToBytes32Map storage map,
        uint256 index,
        bytes32 value
    ) internal {
        map._entries[index]._value = value;
    }

    /**
     * @dev Removes a key-value pair from a map. O(1).
     *
     * Returns true if the key was removed from the map, that is if it was present.
     */
    function remove(IERC20ToBytes32Map storage map, IERC20 key) internal returns (bool) {
        // We read and store the key's index to prevent multiple reads from the same storage slot
        uint256 keyIndex = map._indexes[key];

        // Equivalent to contains(map, key)
        if (keyIndex != 0) {
            // To delete a key-value pair from the _entries pseudo-array in O(1), we swap the entry to delete with the
            // one at the highest index, and then remove this last entry (sometimes called as 'swap and pop').
            // This modifies the order of the pseudo-array, as noted in {at}.

            uint256 toDeleteIndex = keyIndex - 1;
            uint256 lastIndex = map._length - 1;

            // The swap is only necessary if we're not removing the last element
            if (toDeleteIndex != lastIndex) {
                IERC20ToBytes32MapEntry storage lastEntry = map._entries[lastIndex];

                // Move the last entry to the index where the entry to delete is
                map._entries[toDeleteIndex] = lastEntry;
                // Update the index for the moved entry
                map._indexes[lastEntry._key] = toDeleteIndex + 1; // All indexes are 1-based
            }

            // Delete the slot where the moved entry was stored
            delete map._entries[lastIndex];
            map._length = lastIndex;

            // Delete the index for the deleted slot
            delete map._indexes[key];

            return true;
        } else {
            return false;
        }
    }

    /**
     * @dev Returns true if the key is in the map. O(1).
     */
    function contains(IERC20ToBytes32Map storage map, IERC20 key) internal view returns (bool) {
        return map._indexes[key] != 0;
    }

    /**
     * @dev Returns the number of key-value pairs in the map. O(1).
     */
    function length(IERC20ToBytes32Map storage map) internal view returns (uint256) {
        return map._length;
    }

    /**
     * @dev Returns the key-value pair stored at position `index` in the map. O(1).
     *
     * Note that there are no guarantees on the ordering of entries inside the
     * array, and it may change when more entries are added or removed.
     *
     * Requirements:
     *
     * - `index` must be strictly less than {length}.
     */
    function at(IERC20ToBytes32Map storage map, uint256 index) internal view returns (IERC20, bytes32) {
        _require(map._length > index, Errors.OUT_OF_BOUNDS);
        return unchecked_at(map, index);
    }

    /**
     * @dev Same as {at}, except this doesn't revert if `index` it outside of the map (i.e. if it is equal or larger
     * than {length}). O(1).
     *
     * This function performs one less storage read than {at}, but should only be used when `index` is known to be
     * within bounds.
     */
    function unchecked_at(IERC20ToBytes32Map storage map, uint256 index) internal view returns (IERC20, bytes32) {
        IERC20ToBytes32MapEntry storage entry = map._entries[index];
        return (entry._key, entry._value);
    }

    /**
     * @dev Same as {unchecked_At}, except it only returns the value and not the key (performing one less storage
     * read). O(1).
     */
    function unchecked_valueAt(IERC20ToBytes32Map storage map, uint256 index) internal view returns (bytes32) {
        return map._entries[index]._value;
    }

    /**
     * @dev Returns the value associated with `key`. O(1).
     *
     * Requirements:
     *
     * - `key` must be in the map. Reverts with `errorCode` otherwise.
     */
    function get(
        IERC20ToBytes32Map storage map,
        IERC20 key,
        uint256 errorCode
    ) internal view returns (bytes32) {
        uint256 index = map._indexes[key];
        _require(index > 0, errorCode);
        return unchecked_valueAt(map, index - 1);
    }

    /**
     * @dev Returns the index for `key`.
     *
     * Requirements:
     *
     * - `key` must be in the map.
     */
    function indexOf(
        IERC20ToBytes32Map storage map,
        IERC20 key,
        uint256 errorCode
    ) internal view returns (uint256) {
        uint256 uncheckedIndex = unchecked_indexOf(map, key);
        _require(uncheckedIndex != 0, errorCode);
        return uncheckedIndex - 1;
    }

    /**
     * @dev Returns the index for `key` **plus one**. Does not revert if the key is not in the map, and returns 0
     * instead.
     */
    function unchecked_indexOf(IERC20ToBytes32Map storage map, IERC20 key) internal view returns (uint256) {
        return map._indexes[key];
    }

    // IERC20ToUint256Map

    struct IERC20ToUint256MapEntry {
        IERC20 _key;
        uint256 _value;
    }

    struct IERC20ToUint256Map {
        // Number of entries in the map
        uint256 _length;
        // Storage of map keys and values
        mapping(uint256 => IERC20ToUint256MapEntry) _entries;
        // Position of the entry defined by a key in the `entries` array, plus 1
        // because index 0 means a key is not in the map.
        mapping(IERC20 => uint256) _indexes;
    }

    /**
     * @dev Adds a key-value pair to a map, or updates the value for an existing
     * key. O(1).
     *
     * Returns true if the key was added to the map, that is if it was not
     * already present.
     */
    function set(
        IERC20ToUint256Map storage map,
        IERC20 key,
        uint256 value
    ) internal returns (bool) {
        // We read and store the key's index to prevent multiple reads from the same storage slot
        uint256 keyIndex = map._indexes[key];

        // Equivalent to !contains(map, key)
        if (keyIndex == 0) {
            uint256 previousLength = map._length;
            map._entries[previousLength] = IERC20ToUint256MapEntry({ _key: key, _value: value });
            map._length = previousLength + 1;

            // The entry is stored at previousLength, but we add 1 to all indexes
            // and use 0 as a sentinel value
            map._indexes[key] = previousLength + 1;
            return true;
        } else {
            map._entries[keyIndex - 1]._value = value;
            return false;
        }
    }

    /**
     * @dev Updates the value for an entry, given its key's index. The key index can be retrieved via
     * {unchecked_indexOf}, and it should be noted that key indices may change when calling {set} or {remove}. O(1).
     *
     * This function performs one less storage read than {set}, but it should only be used when `index` is known to be
     * within bounds.
     */
    function unchecked_setAt(
        IERC20ToUint256Map storage map,
        uint256 index,
        uint256 value
    ) internal {
        map._entries[index]._value = value;
    }

    /**
     * @dev Removes a key-value pair from a map. O(1).
     *
     * Returns true if the key was removed from the map, that is if it was present.
     */
    function remove(IERC20ToUint256Map storage map, IERC20 key) internal returns (bool) {
        // We read and store the key's index to prevent multiple reads from the same storage slot
        uint256 keyIndex = map._indexes[key];

        // Equivalent to contains(map, key)
        if (keyIndex != 0) {
            // To delete a key-value pair from the _entries pseudo-array in O(1), we swap the entry to delete with the
            // one at the highest index, and then remove this last entry (sometimes called as 'swap and pop').
            // This modifies the order of the pseudo-array, as noted in {at}.

            uint256 toDeleteIndex = keyIndex - 1;
            uint256 lastIndex = map._length - 1;

            // The swap is only necessary if we're not removing the last element
            if (toDeleteIndex != lastIndex) {
                IERC20ToUint256MapEntry storage lastEntry = map._entries[lastIndex];

                // Move the last entry to the index where the entry to delete is
                map._entries[toDeleteIndex] = lastEntry;
                // Update the index for the moved entry
                map._indexes[lastEntry._key] = toDeleteIndex + 1; // All indexes are 1-based
            }

            // Delete the slot where the moved entry was stored
            delete map._entries[lastIndex];
            map._length = lastIndex;

            // Delete the index for the deleted slot
            delete map._indexes[key];

            return true;
        } else {
            return false;
        }
    }

    /**
     * @dev Returns true if the key is in the map. O(1).
     */
    function contains(IERC20ToUint256Map storage map, IERC20 key) internal view returns (bool) {
        return map._indexes[key] != 0;
    }

    /**
     * @dev Returns the number of key-value pairs in the map. O(1).
     */
    function length(IERC20ToUint256Map storage map) internal view returns (uint256) {
        return map._length;
    }

    /**
     * @dev Returns the key-value pair stored at position `index` in the map. O(1).
     *
     * Note that there are no guarantees on the ordering of entries inside the
     * array, and it may change when more entries are added or removed.
     *
     * Requirements:
     *
     * - `index` must be strictly less than {length}.
     */
    function at(IERC20ToUint256Map storage map, uint256 index) internal view returns (IERC20, uint256) {
        _require(map._length > index, Errors.OUT_OF_BOUNDS);
        return unchecked_at(map, index);
    }

    /**
     * @dev Same as {at}, except this doesn't revert if `index` it outside of the map (i.e. if it is equal or larger
     * than {length}). O(1).
     *
     * This function performs one less storage read than {at}, but should only be used when `index` is known to be
     * within bounds.
     */
    function unchecked_at(IERC20ToUint256Map storage map, uint256 index) internal view returns (IERC20, uint256) {
        IERC20ToUint256MapEntry storage entry = map._entries[index];
        return (entry._key, entry._value);
    }

    /**
     * @dev Same as {unchecked_At}, except it only returns the value and not the key (performing one less storage
     * read). O(1).
     */
    function unchecked_valueAt(IERC20ToUint256Map storage map, uint256 index) internal view returns (uint256) {
        return map._entries[index]._value;
    }

    /**
     * @dev Returns the value associated with `key`. O(1).
     *
     * Requirements:
     *
     * - `key` must be in the map. Reverts with `errorCode` otherwise.
     */
    function get(
        IERC20ToUint256Map storage map,
        IERC20 key,
        uint256 errorCode
    ) internal view returns (uint256) {
        uint256 index = map._indexes[key];
        _require(index > 0, errorCode);
        return unchecked_valueAt(map, index - 1);
    }

    /**
     * @dev Returns the index for `key`.
     *
     * Requirements:
     *
     * - `key` must be in the map.
     */
    function indexOf(
        IERC20ToUint256Map storage map,
        IERC20 key,
        uint256 errorCode
    ) internal view returns (uint256) {
        uint256 uncheckedIndex = unchecked_indexOf(map, key);
        _require(uncheckedIndex != 0, errorCode);
        return uncheckedIndex - 1;
    }

    /**
     * @dev Returns the index for `key` **plus one**. Does not revert if the key is not in the map, and returns 0
     * instead.
     */
    function unchecked_indexOf(IERC20ToUint256Map storage map, IERC20 key) internal view returns (uint256) {
        return map._indexes[key];
    }
}

File 59 of 63 : ERC20Helpers.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

import "@balancer-labs/v2-vault/contracts/interfaces/IAsset.sol";

import "../openzeppelin/IERC20.sol";

// solhint-disable

function _asIAsset(IERC20[] memory tokens) pure returns (IAsset[] memory assets) {
    // solhint-disable-next-line no-inline-assembly
    assembly {
        assets := tokens
    }
}

function _sortTokens(
    IERC20 tokenA,
    IERC20 tokenB,
    IERC20 tokenC
) pure returns (IERC20[] memory tokens) {
    (uint256 indexTokenA, uint256 indexTokenB, uint256 indexTokenC) = _getSortedTokenIndexes(tokenA, tokenB, tokenC);
    tokens = new IERC20[](3);
    tokens[indexTokenA] = tokenA;
    tokens[indexTokenB] = tokenB;
    tokens[indexTokenC] = tokenC;
}

function _getSortedTokenIndexes(
    IERC20 tokenA,
    IERC20 tokenB,
    IERC20 tokenC
)
    pure
    returns (
        uint256 indexTokenA,
        uint256 indexTokenB,
        uint256 indexTokenC
    )
{
    if (tokenA < tokenB) {
        if (tokenB < tokenC) {
            // (tokenA, tokenB, tokenC)
            return (0, 1, 2);
        } else if (tokenA < tokenC) {
            // (tokenA, tokenC, tokenB)
            return (0, 2, 1);
        } else {
            // (tokenC, tokenA, tokenB)
            return (1, 2, 0);
        }
    } else {
        // tokenB < tokenA
        if (tokenC < tokenB) {
            // (tokenC, tokenB, tokenA)
            return (2, 1, 0);
        } else if (tokenC < tokenA) {
            // (tokenB, tokenC, tokenA)
            return (2, 0, 1);
        } else {
            // (tokenB, tokenA, tokenC)
            return (1, 0, 2);
        }
    }
}

File 60 of 63 : MockLogCompression.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

import "../helpers/LogCompression.sol";

contract MockLogCompression {
    function toLowResLog(uint256 value) external pure returns (int256) {
        return LogCompression.toLowResLog(value);
    }

    function fromLowResLog(int256 value) external pure returns (uint256) {
        return LogCompression.fromLowResLog(value);
    }
}

File 61 of 63 : MockWeightedOracleMath.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

import "@balancer-labs/v2-solidity-utils/contracts/test/MockLogCompression.sol";

import "../WeightedOracleMath.sol";

contract MockWeightedOracleMath is WeightedOracleMath, MockLogCompression {
    function calcLogSpotPrice(
        uint256 normalizedWeightA,
        uint256 balanceA,
        uint256 normalizedWeightB,
        uint256 balanceB
    ) external pure returns (int256) {
        return WeightedOracleMath._calcLogSpotPrice(normalizedWeightA, balanceA, normalizedWeightB, balanceB);
    }

    function calcLogBPTPrice(
        uint256 normalizedWeight,
        uint256 balance,
        int256 bptTotalSupplyLn
    ) external pure returns (int256) {
        return WeightedOracleMath._calcLogBPTPrice(normalizedWeight, balance, bptTotalSupplyLn);
    }
}

File 62 of 63 : MockWeightedPool2Tokens.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;
pragma experimental ABIEncoderV2;

import "./MockWeightedOracleMath.sol";
import "../WeightedPool2Tokens.sol";

contract MockWeightedPool2Tokens is WeightedPool2Tokens, MockWeightedOracleMath {
    using WeightedPool2TokensMiscData for bytes32;

    struct MiscData {
        int256 logInvariant;
        int256 logTotalSupply;
        uint256 oracleSampleCreationTimestamp;
        uint256 oracleIndex;
        bool oracleEnabled;
        uint256 swapFeePercentage;
    }

    constructor(NewPoolParams memory params) WeightedPool2Tokens(params) {}

    function mockOracleDisabled() external {
        _setOracleEnabled(false);
    }

    function mockOracleIndex(uint256 index) external {
        _miscData = _miscData.setOracleIndex(index);
    }

    function mockMiscData(MiscData memory miscData) external {
        _miscData = encode(miscData);
    }

    /**
     * @dev Encodes a misc data object into a bytes32
     */
    function encode(MiscData memory _data) private pure returns (bytes32 data) {
        data = data.setSwapFeePercentage(_data.swapFeePercentage);
        data = data.setOracleEnabled(_data.oracleEnabled);
        data = data.setOracleIndex(_data.oracleIndex);
        data = data.setOracleSampleCreationTimestamp(_data.oracleSampleCreationTimestamp);
        data = data.setLogTotalSupply(_data.logTotalSupply);
        data = data.setLogInvariant(_data.logInvariant);
    }
}

File 63 of 63 : MockWeightedMath.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

import "../WeightedMath.sol";

contract MockWeightedMath is WeightedMath {
    function invariant(uint256[] memory normalizedWeights, uint256[] memory balances) external pure returns (uint256) {
        return _calculateInvariant(normalizedWeights, balances);
    }

    function outGivenIn(
        uint256 tokenBalanceIn,
        uint256 tokenWeightIn,
        uint256 tokenBalanceOut,
        uint256 tokenWeightOut,
        uint256 tokenAmountIn
    ) external pure returns (uint256) {
        return _calcOutGivenIn(tokenBalanceIn, tokenWeightIn, tokenBalanceOut, tokenWeightOut, tokenAmountIn);
    }

    function inGivenOut(
        uint256 tokenBalanceIn,
        uint256 tokenWeightIn,
        uint256 tokenBalanceOut,
        uint256 tokenWeightOut,
        uint256 tokenAmountOut
    ) external pure returns (uint256) {
        return _calcInGivenOut(tokenBalanceIn, tokenWeightIn, tokenBalanceOut, tokenWeightOut, tokenAmountOut);
    }

    function exactTokensInForBPTOut(
        uint256[] memory balances,
        uint256[] memory normalizedWeights,
        uint256[] memory amountsIn,
        uint256 bptTotalSupply,
        uint256 swapFee
    ) external pure returns (uint256) {
        (uint256 bptOut, ) = _calcBptOutGivenExactTokensIn(
            balances,
            normalizedWeights,
            amountsIn,
            bptTotalSupply,
            swapFee
        );
        return bptOut;
    }

    function tokenInForExactBPTOut(
        uint256 tokenBalance,
        uint256 tokenNormalizedWeight,
        uint256 bptAmountOut,
        uint256 bptTotalSupply,
        uint256 swapFee
    ) external pure returns (uint256) {
        (uint256 amountIn, ) = _calcTokenInGivenExactBptOut(
            tokenBalance,
            tokenNormalizedWeight,
            bptAmountOut,
            bptTotalSupply,
            swapFee
        );
        return amountIn;
    }

    function exactBPTInForTokenOut(
        uint256 tokenBalance,
        uint256 tokenNormalizedWeight,
        uint256 bptAmountIn,
        uint256 bptTotalSupply,
        uint256 swapFee
    ) external pure returns (uint256) {
        (uint256 amountOut, ) = _calcTokenOutGivenExactBptIn(
            tokenBalance,
            tokenNormalizedWeight,
            bptAmountIn,
            bptTotalSupply,
            swapFee
        );
        return amountOut;
    }

    function exactBPTInForTokensOut(
        uint256[] memory currentBalances,
        uint256 bptAmountIn,
        uint256 totalBPT
    ) external pure returns (uint256[] memory) {
        return _calcTokensOutGivenExactBptIn(currentBalances, bptAmountIn, totalBPT);
    }

    function bptInForExactTokensOut(
        uint256[] memory balances,
        uint256[] memory normalizedWeights,
        uint256[] memory amountsOut,
        uint256 bptTotalSupply,
        uint256 swapFee
    ) external pure returns (uint256) {
        (uint256 bptIn, ) = _calcBptInGivenExactTokensOut(
            balances,
            normalizedWeights,
            amountsOut,
            bptTotalSupply,
            swapFee
        );
        return bptIn;
    }

    function calculateDueTokenProtocolSwapFeeAmount(
        uint256 balance,
        uint256 normalizedWeight,
        uint256 previousInvariant,
        uint256 currentInvariant,
        uint256 protocolSwapFeePercentage
    ) external pure returns (uint256) {
        return
            _calcDueTokenProtocolSwapFeeAmount(
                balance,
                normalizedWeight,
                previousInvariant,
                currentInvariant,
                protocolSwapFeePercentage
            );
    }
}

Settings
{
  "optimizer": {
    "enabled": true,
    "runs": 9999
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "libraries": {}
}

Contract Security Audit

Contract ABI

[{"inputs":[{"components":[{"internalType":"contract IVault","name":"vault","type":"address"},{"internalType":"string","name":"name","type":"string"},{"internalType":"string","name":"symbol","type":"string"},{"internalType":"contract IERC20[]","name":"tokens","type":"address[]"},{"internalType":"uint256[]","name":"normalizedWeights","type":"uint256[]"},{"internalType":"address[]","name":"assetManagers","type":"address[]"},{"internalType":"uint256","name":"swapFeePercentage","type":"uint256"},{"internalType":"uint256","name":"pauseWindowDuration","type":"uint256"},{"internalType":"uint256","name":"bufferPeriodDuration","type":"uint256"},{"internalType":"address","name":"owner","type":"address"},{"internalType":"bool","name":"swapEnabledOnStart","type":"bool"},{"internalType":"uint256","name":"managementSwapFeePercentage","type":"uint256"}],"internalType":"struct InvestmentPool.NewPoolParams","name":"params","type":"tuple"}],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"spender","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"startTime","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"endTime","type":"uint256"},{"indexed":false,"internalType":"uint256[]","name":"startWeights","type":"uint256[]"},{"indexed":false,"internalType":"uint256[]","name":"endWeights","type":"uint256[]"}],"name":"GradualWeightUpdateScheduled","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"managementFeePercentage","type":"uint256"}],"name":"ManagementFeePercentageChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"contract IERC20[]","name":"tokens","type":"address[]"},{"indexed":false,"internalType":"uint256[]","name":"amounts","type":"uint256[]"}],"name":"ManagementFeesCollected","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"bool","name":"paused","type":"bool"}],"name":"PausedStateChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"bool","name":"swapEnabled","type":"bool"}],"name":"SwapEnabledSet","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"swapFeePercentage","type":"uint256"}],"name":"SwapFeePercentageChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Transfer","type":"event"},{"inputs":[],"name":"DOMAIN_SEPARATOR","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"}],"name":"allowance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"approve","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"decimals","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"decreaseAllowance","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes4","name":"selector","type":"bytes4"}],"name":"getActionId","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getAuthorizer","outputs":[{"internalType":"contract IAuthorizer","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getCollectedManagementFees","outputs":[{"internalType":"contract IERC20[]","name":"tokens","type":"address[]"},{"internalType":"uint256[]","name":"collectedFees","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getGradualWeightUpdateParams","outputs":[{"internalType":"uint256","name":"startTime","type":"uint256"},{"internalType":"uint256","name":"endTime","type":"uint256"},{"internalType":"uint256[]","name":"endWeights","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getInvariant","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getLastInvariant","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"getManagementSwapFeePercentage","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getMinimumWeightChangeDuration","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"getNormalizedWeights","outputs":[{"internalType":"uint256[]","name":"","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getOwner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getPausedState","outputs":[{"internalType":"bool","name":"paused","type":"bool"},{"internalType":"uint256","name":"pauseWindowEndTime","type":"uint256"},{"internalType":"uint256","name":"bufferPeriodEndTime","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getPoolId","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getRate","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getScalingFactors","outputs":[{"internalType":"uint256[]","name":"","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getSwapEnabled","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getSwapFeePercentage","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getVault","outputs":[{"internalType":"contract IVault","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"addedValue","type":"uint256"}],"name":"increaseAllowance","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"nonces","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"poolId","type":"bytes32"},{"internalType":"address","name":"sender","type":"address"},{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256[]","name":"balances","type":"uint256[]"},{"internalType":"uint256","name":"lastChangeBlock","type":"uint256"},{"internalType":"uint256","name":"protocolSwapFeePercentage","type":"uint256"},{"internalType":"bytes","name":"userData","type":"bytes"}],"name":"onExitPool","outputs":[{"internalType":"uint256[]","name":"","type":"uint256[]"},{"internalType":"uint256[]","name":"","type":"uint256[]"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"poolId","type":"bytes32"},{"internalType":"address","name":"sender","type":"address"},{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256[]","name":"balances","type":"uint256[]"},{"internalType":"uint256","name":"lastChangeBlock","type":"uint256"},{"internalType":"uint256","name":"protocolSwapFeePercentage","type":"uint256"},{"internalType":"bytes","name":"userData","type":"bytes"}],"name":"onJoinPool","outputs":[{"internalType":"uint256[]","name":"","type":"uint256[]"},{"internalType":"uint256[]","name":"","type":"uint256[]"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"internalType":"enum IVault.SwapKind","name":"kind","type":"uint8"},{"internalType":"contract IERC20","name":"tokenIn","type":"address"},{"internalType":"contract IERC20","name":"tokenOut","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"bytes32","name":"poolId","type":"bytes32"},{"internalType":"uint256","name":"lastChangeBlock","type":"uint256"},{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"bytes","name":"userData","type":"bytes"}],"internalType":"struct IPoolSwapStructs.SwapRequest","name":"swapRequest","type":"tuple"},{"internalType":"uint256","name":"currentBalanceTokenIn","type":"uint256"},{"internalType":"uint256","name":"currentBalanceTokenOut","type":"uint256"}],"name":"onSwap","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"},{"internalType":"uint256","name":"deadline","type":"uint256"},{"internalType":"uint8","name":"v","type":"uint8"},{"internalType":"bytes32","name":"r","type":"bytes32"},{"internalType":"bytes32","name":"s","type":"bytes32"}],"name":"permit","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"poolId","type":"bytes32"},{"internalType":"address","name":"sender","type":"address"},{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256[]","name":"balances","type":"uint256[]"},{"internalType":"uint256","name":"lastChangeBlock","type":"uint256"},{"internalType":"uint256","name":"protocolSwapFeePercentage","type":"uint256"},{"internalType":"bytes","name":"userData","type":"bytes"}],"name":"queryExit","outputs":[{"internalType":"uint256","name":"bptIn","type":"uint256"},{"internalType":"uint256[]","name":"amountsOut","type":"uint256[]"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"poolId","type":"bytes32"},{"internalType":"address","name":"sender","type":"address"},{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256[]","name":"balances","type":"uint256[]"},{"internalType":"uint256","name":"lastChangeBlock","type":"uint256"},{"internalType":"uint256","name":"protocolSwapFeePercentage","type":"uint256"},{"internalType":"bytes","name":"userData","type":"bytes"}],"name":"queryJoin","outputs":[{"internalType":"uint256","name":"bptOut","type":"uint256"},{"internalType":"uint256[]","name":"amountsIn","type":"uint256[]"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"contract IERC20","name":"token","type":"address"},{"internalType":"bytes","name":"poolConfig","type":"bytes"}],"name":"setAssetManagerPoolConfig","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bool","name":"paused","type":"bool"}],"name":"setPaused","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bool","name":"swapEnabled","type":"bool"}],"name":"setSwapEnabled","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"swapFeePercentage","type":"uint256"}],"name":"setSwapFeePercentage","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transfer","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"sender","type":"address"},{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transferFrom","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"startTime","type":"uint256"},{"internalType":"uint256","name":"endTime","type":"uint256"},{"internalType":"uint256[]","name":"endWeights","type":"uint256[]"}],"name":"updateWeightsGradually","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"recipient","type":"address"}],"name":"withdrawCollectedManagementFees","outputs":[],"stateMutability":"nonpayable","type":"function"}]

6101e06040527f6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c9610120523480156200003757600080fd5b5060405162006aac38038062006aac8339810160408190526200005a9162000e67565b805160208201516040830151606084015160a085015160c086015160e0870151610100880151610120890151855189906002146200009a5760016200009d565b60025b8989898989898989828289898180604051806040016040528060018152602001603160f81b815250848489336001600160a01b031660001b806080818152505050806001600160a01b031660a0816001600160a01b031660601b815250505081600390805190602001906200011492919062000baf565b5080516200012a90600490602084019062000baf565b50506005805460ff1916601217905550815160209283012060c052805191012060e05250507f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f6101005250620001896276a7008311156101946200047b565b6200019d62278d008211156101956200047b565b4290910161014081905201610160528551620001bf906002111560c86200047b565b620001d9620001cd62000490565b8751111560c96200047b565b620001ef866200049560201b6200140c1760201c565b620001fa84620004a1565b6040516309b2760f60e01b81526000906001600160a01b038c16906309b2760f906200022b908d90600401620010ed565b602060405180830381600087803b1580156200024657600080fd5b505af11580156200025b573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019062000281919062000e4e565b604051633354e3e960e11b81529091506001600160a01b038c16906366a9c7d290620002b69084908b908b9060040162001051565b600060405180830381600087803b158015620002d157600080fd5b505af1158015620002e6573d6000803e3d6000fd5b5050505060609a8b1b6001600160601b031916610180526101a05250506001600a5550505050928d01515160808e01515160a08f015151919d50620003479c508d9b50995097505050506200052d602090811b6200141617901c9350505050565b62000377620003718260016200035c6200054d565b6200055360201b6200142e179092919060201c565b62000566565b6200038f81620003866200058b565b1460c96200047b565b608082015160608301514291620003ac91839182918190620005b6565b60005b82811015620003f857620003ee84606001518281518110620003cd57fe5b60200260200101516000600c620007f760201b6200143d179092919060201c565b50600101620003af565b506101408301516200040a90620008a7565b6200042e670de0b6b3a764000084610160015111156101526200047b60201b60201c565b610160830180516101c052516040517feba99e9e36df79031493efd8473cfce5475d3a135878665490df8b0140693210916200046a9162001102565b60405180910390a1505050620011b4565b816200048c576200048c8162000902565b5050565b603290565b806200048c8162000955565b620004b664e8d4a5100082101560cb6200047b565b620004ce67016345785d8a000082111560ca6200047b565b620004ed8160c0600854620009df60201b6200150a179092919060201c565b6008556040517fa9ba3ffe0b6c366b81232caab38605a0699ad5398d6cce76f91ee809e322dafc906200052290839062001102565b60405180910390a150565b6200054882841480156200054057508183145b60676200047b565b505050565b60085490565b81811b607f821b198416175b9392505050565b62000585816000600854620009f460201b62001520179092919060201c565b60085550565b6000620005b160016200059d6200054d565b62000a0f60201b6200154c1790919060201c565b905090565b600080805b84518110156200077d576000858281518110620005d457fe5b60200260200101519050620005fc662386f26fc1000082101561012e6200047b60201b60201c565b60008583815181106200060b57fe5b6020026020010151905062000739620006ab826001600160a01b031663313ce5676040518163ffffffff1660e01b815260040160206040518083038186803b1580156200065757600080fd5b505afa1580156200066c573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019062000692919062000fe7565b60ff16601262000a1c60201b620015531790919060201c565b606062000724620006c78662000a3460201b620015691760201c565b60406200070f620006f78f8b81518110620006de57fe5b602002602001015162000a7760201b6200158d1760201c565b60008c620009df60201b6200150a179092919060201c565b62000aa960201b620015ad179092919060201c565b62000abb60201b620015bf179092919060201c565b6001600160a01b0382166000908152600b6020908152604090912091909155620007709086908490620015ce62000aca821b17901c565b94505050600101620005bb565b5062000796670de0b6b3a764000083146101346200047b565b620007af620003718760286200070f8b6008826200054d565b7f0f3631f9dab08169d1db21c6dc5f32536fb2b0a6b9bb5330d71c52132f968be087878787604051620007e694939291906200110b565b60405180910390a150505050505050565b6001600160a01b0382166000908152600284016020526040812054806200088657505082546040805180820182526001600160a01b03858116808352602080840187815260008781526001808c018452878220965187546001600160a01b031916961695909517865590519484019490945594820180895590835260028801909452919020919091556200055f565b6000190160009081526001808601602052604082200183905590506200055f565b620008d162000371826000620008bc6200054d565b62000ade60201b620015e0179092919060201c565b7f5a9e84f78f7957cb4ed7478eb0fcad35ee4ecbe2e0f298420b28a3955392573f8160405162000522919062001046565b62461bcd60e51b6000908152602060045260076024526642414c23000030600a808404818106603090810160081b95839006959095019082900491820690940160101b939093010160c81b604452606490fd5b6002815110156200096657620009dc565b6000816000815181106200097657fe5b602002602001015190506000600190505b825181101562000548576000838281518110620009a057fe5b60200260200101519050620009d1816001600160a01b0316846001600160a01b03161060656200047b60201b60201c565b915060010162000987565b50565b6001600160401b03811b1992909216911b1790565b6001600160c01b03828116821b90821b198416179392505050565b81811c607f165b92915050565b600062000a2e8383111560016200047b565b50900390565b600062000a16670de0b6b3a764000062000a6363ffffffff80168562000b0760201b620016071790919060201c565b62000b5c60201b620016551790919060201c565b600062000a16670de0b6b3a764000062000a636001600160401b0380168562000b0760201b620016071790919060201c565b63ffffffff811b1992909216911b1790565b601f811b1992909216911b1790565b60008282016200055f84821015836200047b565b60006001821b198416828462000af657600062000af9565b60015b60ff16901b17949350505050565b600082820262000b2f84158062000b2757508385838162000b2457fe5b04145b60036200047b565b8062000b4057600091505062000a16565b670de0b6b3a764000060001982015b0460010191505062000a16565b600062000b6d82151560046200047b565b8262000b7c5750600062000a16565b670de0b6b3a76400008381029062000ba29085838162000b9857fe5b041460056200047b565b82600182038162000b4f57fe5b828054600181600116156101000203166002900490600052602060002090601f016020900481019282601f1062000bf257805160ff191683800117855562000c22565b8280016001018555821562000c22579182015b8281111562000c2257825182559160200191906001019062000c05565b5062000c3092915062000c34565b5090565b5b8082111562000c30576000815560010162000c35565b805162000a16816200119e565b600082601f83011262000c69578081fd5b815162000c8062000c7a8262001172565b6200114b565b81815291506020808301908481018184028601820187101562000ca257600080fd5b60005b8481101562000cce57815162000cbb816200119e565b8452928201929082019060010162000ca5565b505050505092915050565b600082601f83011262000cea578081fd5b815162000cfb62000c7a8262001172565b81815291506020808301908481018184028601820187101562000d1d57600080fd5b60005b8481101562000cce57815162000d36816200119e565b8452928201929082019060010162000d20565b600082601f83011262000d5a578081fd5b815162000d6b62000c7a8262001172565b81815291506020808301908481018184028601820187101562000d8d57600080fd5b60005b8481101562000cce5781518452928201929082019060010162000d90565b8051801515811462000a1657600080fd5b600082601f83011262000dd0578081fd5b81516001600160401b0381111562000de6578182fd5b602062000dfc601f8301601f191682016200114b565b9250818352848183860101111562000e1357600080fd5b60005b8281101562000e3357848101820151848201830152810162000e16565b8281111562000e455760008284860101525b50505092915050565b60006020828403121562000e60578081fd5b5051919050565b60006020828403121562000e79578081fd5b81516001600160401b038082111562000e90578283fd5b818401915061018080838703121562000ea7578384fd5b62000eb2816200114b565b905062000ec0868462000c4b565b815260208301518281111562000ed4578485fd5b62000ee28782860162000dbf565b60208301525060408301518281111562000efa578485fd5b62000f088782860162000dbf565b60408301525060608301518281111562000f20578485fd5b62000f2e8782860162000cd9565b60608301525060808301518281111562000f46578485fd5b62000f548782860162000d49565b60808301525060a08301518281111562000f6c578485fd5b62000f7a8782860162000c58565b60a08301525060c083015160c082015260e083015160e082015261010091508183015182820152610120915062000fb48683850162000c4b565b82820152610140915062000fcb8683850162000dae565b9181019190915261016091820151918101919091529392505050565b60006020828403121562000ff9578081fd5b815160ff811681146200055f578182fd5b6000815180845260208085019450808401835b838110156200103b578151875295820195908201906001016200101d565b509495945050505050565b901515815260200190565b60006060820185835260206060818501528186518084526080860191508288019350845b818110156200109d576200108a855162001192565b8352938301939183019160010162001075565b505084810360408601528551808252908201925081860190845b81811015620010df57620010cc835162001192565b85529383019391830191600101620010b7565b509298975050505050505050565b6020810160038310620010fc57fe5b91905290565b90815260200190565b6000858252846020830152608060408301526200112c60808301856200100a565b82810360608401526200114081856200100a565b979650505050505050565b6040518181016001600160401b03811182821017156200116a57600080fd5b604052919050565b60006001600160401b0382111562001188578081fd5b5060209081020190565b6001600160a01b031690565b6001600160a01b0381168114620009dc57600080fd5b60805160a05160601c60c05160e051610100516101205161014051610160516101805160601c6101a0516101c0516158716200123b60003980610ee85280613476525080610881525080610ec452508061182d525080611809525080611169525080611b28525080611b6a525080611b49525080610ea0525080610e2a52506158716000f3fe608060405234801561001057600080fd5b50600436106102de5760003560e01c806374f3b009116101865780639d2c110c116100e3578063c0ff1a1511610097578063dd62ed3e11610071578063dd62ed3e1461058d578063e01af92c146105a0578063f89f27ed146105b3576102de565b8063c0ff1a151461055f578063d505accf14610567578063d5c096c41461057a576102de565b8063a9059cbb116100c8578063a9059cbb1461053c578063aaabadc51461054f578063b322c79b14610557576102de565b80639d2c110c14610516578063a457c2d714610529576102de565b8063893d20e81161013a57806390605f3a1161011f57806390605f3a146104fe57806395d89b41146105065780639b02cdde1461050e576102de565b8063893d20e8146104e15780638d928af8146104f6576102de565b80637ecebe001161016b5780637ecebe00146104a8578063851c1bb3146104bb57806387ec6817146104ce576102de565b806374f3b009146104705780637beed22014610491576102de565b806338e9922e1161023f57806350dd6ed9116101f35780636028bfd4116101cd5780636028bfd414610434578063679aefce1461045557806370a082311461045d576102de565b806350dd6ed91461040657806355c67628146104195780635b77155e14610421576102de565b8063395093511161022457806339509351146103d85780633e569205146103eb57806347bc4d92146103fe576102de565b806338e9922e146103bd57806338fff2d0146103d0576102de565b80631dd746ea11610296578063313ce5671161027b578063313ce5671461038a57806332f144f51461039f5780633644e515146103b5576102de565b80631dd746ea1461036257806323b872dd14610377576102de565b806316c38b3c116102c757806316c38b3c1461032157806318160ddd146103365780631c0de0511461034b576102de565b806306fdde03146102e3578063095ea7b314610301575b600080fd5b6102eb6105bb565b6040516102f89190615714565b60405180910390f35b61031461030f366004614e32565b610652565b6040516102f8919061551a565b61033461032f366004614f29565b610669565b005b61033e61067d565b6040516102f8919061553d565b610353610683565b6040516102f893929190615525565b61036a6106ac565b6040516102f891906154e2565b610314610385366004614d82565b6106bb565b610392610731565b6040516102f8919061579b565b6103a761073a565b6040516102f892919061548c565b61033e61085c565b6103346103cb3660046152b5565b610866565b61033e61087f565b6103146103e6366004614e32565b6108a3565b6103346103f93660046152cd565b6108de565b6103146109ef565b610334610414366004615060565b610a04565b61033e610a22565b61033461042f366004614d2e565b610a33565b610447610442366004614f61565b610b5a565b6040516102f8929190615727565b61033e610b91565b61033e61046b366004614d2e565b610bbc565b61048361047e366004614f61565b610bdb565b6040516102f89291906154f5565b610499610c7e565b6040516102f893929190615740565b61033e6104b6366004614d2e565b610e0b565b61033e6104c9366004615004565b610e26565b6104476104dc366004614f61565b610e78565b6104e9610e9e565b6040516102f89190615478565b6104e9610ec2565b61033e610ee6565b6102eb610f0a565b61033e610f6b565b61033e6105243660046151b9565b610f78565b610314610537366004614e32565b611013565b61031461054a366004614e32565b611051565b6104e961105e565b61033e611068565b61033e61106f565b610334610575366004614dc2565b611134565b610483610588366004614f61565b61127d565b61033e61059b366004614d4a565b6113ae565b6103346105ae366004614f29565b6113d9565b61036a611402565b60038054604080516020601f60026000196101006001881615020190951694909404938401819004810282018101909252828152606093909290918301828280156106475780601f1061061c57610100808354040283529160200191610647565b820191906000526020600020905b81548152906001019060200180831161062a57829003601f168201915b505050505090505b90565b600061065f3384846116a0565b5060015b92915050565b610671611708565b61067a8161174e565b50565b60025490565b60008060006106906117ea565b15925061069b611807565b91506106a561182b565b9050909192565b60606106b661184f565b905090565b6000806106c885336113ae565b90506106ec336001600160a01b03871614806106e45750838210155b61019e61199c565b6106f78585856119aa565b336001600160a01b0386161480159061071257506000198114155b156107245761072485338584036116a0565b60019150505b9392505050565b60055460ff1690565b606080610745611a8a565b67ffffffffffffffff8111801561075b57600080fd5b50604051908082528060200260200182016040528015610785578160200160208202803683370190505b509150610790611a8a565b67ffffffffffffffff811180156107a657600080fd5b506040519080825280602002602001820160405280156107d0578160200160208202803683370190505b50905060005b6107de611a8a565b811015610846576000806107f3600c84611a9f565b915091508185848151811061080457fe5b60200260200101906001600160a01b031690816001600160a01b0316815250508084848151811061083157fe5b602090810291909101015250506001016107d6565b506108588161085361184f565b611ac3565b9091565b60006106b6611b24565b61086e611708565b610876611bc1565b61067a81611bd6565b7f000000000000000000000000000000000000000000000000000000000000000090565b3360008181526001602090815260408083206001600160a01b0387168452909152812054909161065f9185906108d990866115ce565b6116a0565b6108e6611708565b6108ee611bc1565b6108f6611c41565b610908610901611a8a565b8251611c5a565b426109138185611c67565b93506109248385111561014661199c565b61093862015180858503101561014b61199c565b6060610942610ec2565b6001600160a01b031663f94d466861095861087f565b6040518263ffffffff1660e01b8152600401610974919061553d565b60006040518083038186803b15801561098c57600080fd5b505afa1580156109a0573d6000803e3d6000fd5b505050506040513d6000823e601f3d908101601f191682016040526109c89190810190614e5d565b505090506109e085856109d9611c7e565b8685611ddf565b50506109ea611fa3565b505050565b60006106b660006109fe611faa565b90611fb0565b610a0c611708565b610a14611bc1565b610a1e8282611fba565b5050565b6008546000906106b69060c06120d2565b610a3b611708565b610a43611bc1565b610a4b611c41565b606080610a5661073a565b91509150610a62610ec2565b6001600160a01b0316638bdb3913610a7861087f565b30866040518060800160405280610a8e8961064f565b81526020018781526020016003604051602001610aab9190615700565b6040516020818303038152906040528152602001600015158152506040518563ffffffff1660e01b8152600401610ae59493929190615565565b600060405180830381600087803b158015610aff57600080fd5b505af1158015610b13573d6000803e3d6000fd5b505050507f5cf8dd4ddeaded21c5e3dc4043073fa7659089e0d11d8480344663008dff060f8282604051610b4892919061548c565b60405180910390a1505061067a611fa3565b60006060610b708651610b6b611a8a565b611c5a565b610b85898989898989896120e0611ac36121ad565b97509795505050505050565b60006106b6610b9e61067d565b610bb6610ba961106f565b610bb1611a8a565b61233d565b90612357565b6001600160a01b0381166000908152602081905260409020545b919050565b60608088610c05610bea610ec2565b6001600160a01b0316336001600160a01b03161460cd61199c565b610c1a610c1061087f565b82146101f461199c565b6060610c2461184f565b9050610c30888261239f565b6000606080610c458e8e8e8e8e8e8a8f6120e0565b925092509250610c558d84612400565b610c5f8285611ac3565b610c698185611ac3565b909550935050505b5097509795505050505050565b60008060606000610c8d611faa565b9050610c9a81600861240a565b9350610ca781602861240a565b92506060610cb3610ec2565b6001600160a01b031663f94d4668610cc961087f565b6040518263ffffffff1660e01b8152600401610ce5919061553d565b60006040518083038186803b158015610cfd57600080fd5b505afa158015610d11573d6000803e3d6000fd5b505050506040513d6000823e601f3d908101601f19168201604052610d399190810190614e5d565b505080519091508067ffffffffffffffff81118015610d5757600080fd5b50604051908082528060200260200182016040528015610d81578160200160208202803683370190505b50935060005b81811015610e0257610de3610dde6040600b6000878681518110610da757fe5b60200260200101516001600160a01b03166001600160a01b031681526020019081526020016000205461240a90919063ffffffff16565b612414565b858281518110610def57fe5b6020908102919091010152600101610d87565b50505050909192565b6001600160a01b031660009081526006602052604090205490565b60007f000000000000000000000000000000000000000000000000000000000000000082604051602001610e5b929190615402565b604051602081830303815290604052805190602001209050919050565b60006060610e898651610b6b611a8a565b610b85898989898989896124326124e06121ad565b7f000000000000000000000000000000000000000000000000000000000000000090565b7f000000000000000000000000000000000000000000000000000000000000000090565b7f000000000000000000000000000000000000000000000000000000000000000090565b60048054604080516020601f60026000196101006001881615020190951694909404938401819004810282018101909252828152606093909290918301828280156106475780601f1061061c57610100808354040283529160200191610647565b600061064f610153612541565b600080610f978560200151610135600c6125ae9092919063ffffffff16565b90506000610fbb610fb483610faf89602001516125eb565b6125fe565b8690611553565b90506000610fdb8760400151610135600c6125ae9092919063ffffffff16565b90506000610ffa610ff383610faf8b604001516125eb565b8790611553565b905061100788848361260a565b98975050505050505050565b60008061102033856113ae565b905080831061103a57611035338560006116a0565b611047565b61104733858584036116a0565b5060019392505050565b600061065f3384846119aa565b60006106b6612760565b6201518090565b6000606061107b610ec2565b6001600160a01b031663f94d466861109161087f565b6040518263ffffffff1660e01b81526004016110ad919061553d565b60006040518083038186803b1580156110c557600080fd5b505afa1580156110d9573d6000803e3d6000fd5b505050506040513d6000823e601f3d908101601f191682016040526111019190810190614e5d565b509150506111168161111161184f565b61239f565b60606111206127da565b50905061112d8183612858565b9250505090565b6111428442111560d161199c565b6001600160a01b0387166000908152600660209081526040808320549051909291611199917f0000000000000000000000000000000000000000000000000000000000000000918c918c918c9188918d9101615652565b60405160208183030381529060405280519060200120905060006111bc826128ca565b90506000600182888888604051600081526020016040526040516111e394939291906156e2565b6020604051602081039080840390855afa158015611205573d6000803e3d6000fd5b5050604051601f190151915061124790506001600160a01b0382161580159061123f57508b6001600160a01b0316826001600160a01b0316145b6101f861199c565b6001600160a01b038b1660009081526006602052604090206001850190556112708b8b8b6116a0565b5050505050505050505050565b6060808861128c610bea610ec2565b611297610c1061087f565b60606112a161184f565b90506112ab61067d565b61135e57600060606112c08d8d8d868b6128e6565b915091506112d96112cf61297c565b83101560cc61199c565b6112eb60006112e661297c565b612983565b6112fe8b6112f761297c565b8403612983565b61130881846124e0565b80611311611a8a565b67ffffffffffffffff8111801561132757600080fd5b50604051908082528060200260200182016040528015611351578160200160208202803683370190505b5095509550505050610c71565b611368888261239f565b600060608061137d8e8e8e8e8e8e8a8f612432565b92509250925061138d8c84612983565b61139782856124e0565b6113a18185611ac3565b9095509350610c71915050565b6001600160a01b03918216600090815260016020908152604080832093909416825291909152205490565b6113e1611708565b6113e9611bc1565b6113f1611c41565b6113fa8161298d565b61067a611fa3565b60606106b6611c7e565b80610a1e816129d4565b6109ea828414801561142757508183145b606761199c565b607f811b1992909216911b1790565b6001600160a01b0382166000908152600284016020526040812054806114e257505082546040805180820182526001600160a01b03858116808352602080840187815260008781526001808c018452878220965187547fffffffffffffffffffffffff0000000000000000000000000000000000000000169616959095178655905194840194909455948201808955908352600288019094529190209190915561072a565b60001901600090815260018086016020526040822001839055905061072a565b509392505050565b67ffffffffffffffff811b1992909216911b1790565b77ffffffffffffffffffffffffffffffffffffffffffffffff828116821b90821b198416179392505050565b1c607f1690565b600061156383831115600161199c565b50900390565b6000610663670de0b6b3a76400006115878463ffffffff6116078116565b90611655565b6000610663670de0b6b3a76400006115878467ffffffffffffffff611607565b63ffffffff811b1992909216911b1790565b601f811b1992909216911b1790565b600082820161072a848210158361199c565b60006001821b19841682846115f65760006115f9565b60015b60ff16901b17949350505050565b600082820261162b84158061162457508385838161162157fe5b04145b600361199c565b8061163a576000915050610663565b670de0b6b3a764000060001982015b04600101915050610663565b6000611664821515600461199c565b8261167157506000610663565b670de0b6b3a7640000838102906116949085838161168b57fe5b0414600561199c565b82600182038161164957fe5b6001600160a01b0380841660008181526001602090815260408083209487168084529490915290819020849055517f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b925906116fb90859061553d565b60405180910390a3505050565b60006117376000357fffffffff0000000000000000000000000000000000000000000000000000000016610e26565b905061067a6117468233612a4d565b61019161199c565b801561176e5761176961175f611807565b421061019361199c565b611783565b61178361177961182b565b42106101a961199c565b600780547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00168215151790556040517f9e3a5e37224532dea67b89face185703738a228a6e8a23dee546960180d3be64906117df90839061551a565b60405180910390a150565b60006117f461182b565b4211806106b657505060075460ff161590565b7f000000000000000000000000000000000000000000000000000000000000000090565b7f000000000000000000000000000000000000000000000000000000000000000090565b60608061185a610ec2565b6001600160a01b031663f94d466861187061087f565b6040518263ffffffff1660e01b815260040161188c919061553d565b60006040518083038186803b1580156118a457600080fd5b505afa1580156118b8573d6000803e3d6000fd5b505050506040513d6000823e601f3d908101601f191682016040526118e09190810190614e5d565b505080519091508067ffffffffffffffff811180156118fe57600080fd5b50604051908082528060200260200182016040528015611928578160200160208202803683370190505b50925060005b8181101561199657611977600b600085848151811061194957fe5b60200260200101516001600160a01b03166001600160a01b0316815260200190815260200160002054612b3d565b84828151811061198357fe5b602090810291909101015260010161192e565b50505090565b81610a1e57610a1e81612541565b6119c16001600160a01b038416151561019861199c565b6119d86001600160a01b038316151561019961199c565b6119e38383836109ea565b6001600160a01b038316600090815260208190526040902054611a0990826101a0612b5f565b6001600160a01b038085166000908152602081905260408082209390935590841681522054611a3890826115ce565b6001600160a01b0380841660008181526020819052604090819020939093559151908516907fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef906116fb90859061553d565b60006106b66001611a99611faa565b9061154c565b600090815260019182016020526040902080549101546001600160a01b0390911691565b60005b611ace611a8a565b8110156109ea57611b05838281518110611ae457fe5b6020026020010151838381518110611af857fe5b6020026020010151612357565b838281518110611b1157fe5b6020908102919091010152600101611ac6565b60007f00000000000000000000000000000000000000000000000000000000000000007f00000000000000000000000000000000000000000000000000000000000000007f0000000000000000000000000000000000000000000000000000000000000000611b91612b75565b30604051602001611ba6959493929190615686565b60405160208183030381529060405280519060200120905090565b611bd4611bcc6117ea565b61019261199c565b565b611be964e8d4a5100082101560cb61199c565b611bff67016345785d8a000082111560ca61199c565b600854611c0e908260c061150a565b6008556040517fa9ba3ffe0b6c366b81232caab38605a0699ad5398d6cce76f91ee809e322dafc906117df90839061553d565b611c536002600a54141561019061199c565b6002600a55565b610a1e818314606761199c565b600081831015611c77578161072a565b5090919050565b606080611c89610ec2565b6001600160a01b031663f94d4668611c9f61087f565b6040518263ffffffff1660e01b8152600401611cbb919061553d565b60006040518083038186803b158015611cd357600080fd5b505afa158015611ce7573d6000803e3d6000fd5b505050506040513d6000823e601f3d908101601f19168201604052611d0f9190810190614e5d565b505080519091508067ffffffffffffffff81118015611d2d57600080fd5b50604051908082528060200260200182016040528015611d57578160200160208202803683370190505b5092506000611d64612b79565b905060005b82811015611dd8576000600b6000868481518110611d8357fe5b60200260200101516001600160a01b03166001600160a01b03168152602001908152602001600020549050611db88184612bef565b868381518110611dc457fe5b602090810291909101015250600101611d69565b5050505090565b600080805b8451811015611f2a576000858281518110611dfb57fe5b60200260200101519050611e1b662386f26fc1000082101561012e61199c565b6000858381518110611e2957fe5b60200260200101519050611efb611eb5826001600160a01b031663313ce5676040518163ffffffff1660e01b815260040160206040518083038186803b158015611e7257600080fd5b505afa158015611e86573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190611eaa919061535b565b60129060ff16611553565b6060611ef4611ec386611569565b6040611eed611ee48f8b81518110611ed757fe5b602002602001015161158d565b8b90600061150a565b91906115ad565b91906115bf565b6001600160a01b0382166000908152600b6020526040902055611f1e85836115ce565b94505050600101611de4565b50611f41670de0b6b3a7640000831461013461199c565b611f5d611f58876028611eed8b6008611eed611faa565b612c88565b7f0f3631f9dab08169d1db21c6dc5f32536fb2b0a6b9bb5330d71c52132f968be087878787604051611f92949392919061575f565b60405180910390a150505050505050565b6001600a55565b60085490565b1c60019081161490565b6000611fc461087f565b90506000611fd0610ec2565b6001600160a01b031663b05f8e4883866040518363ffffffff1660e01b8152600401611ffd9291906156cb565b60806040518083038186803b15801561201557600080fd5b505afa158015612029573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061204d919061531b565b6040517f18e736d40000000000000000000000000000000000000000000000000000000081529094506001600160a01b03851693506318e736d4925061209a9150859087906004016156b2565b600060405180830381600087803b1580156120b457600080fd5b505af11580156120c8573d6000803e3d6000fd5b5050505050505050565b1c67ffffffffffffffff1690565b60006060806120ee88612c9d565b60006120f985612cfe565b905061213a6121066109ef565b8061211c5750600182600381111561211a57fe5b145b806121325750600382600381111561213057fe5b145b61014a61199c565b61214e8b8a612147611c7e565b8989612d14565b909450925061215b611a8a565b67ffffffffffffffff8111801561217157600080fd5b5060405190808252806020026020018201604052801561219b578160200160208202803683370190505b50915050985098509895505050505050565b33301461229c576000306001600160a01b03166000366040516121d1929190615432565b6000604051808303816000865af19150503d806000811461220e576040519150601f19603f3d011682016040523d82523d6000602084013e612213565b606091505b50509050806000811461222257fe5b60046000803e6000517fffffffff00000000000000000000000000000000000000000000000000000000167f43adbafb00000000000000000000000000000000000000000000000000000000811461227e573d6000803e3d6000fd5b506020600460003e604060205260243d03602460403e601c3d016000f35b60606122a661184f565b90506122b2878261239f565b600060606122ca8c8c8c8c8c8c898d8d63ffffffff16565b50915091506122dd81848663ffffffff16565b8051601f1982018390526343adbafb7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc08301526020027fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffdc82016044820181fd5b600082820261072a84158061162457508385838161162157fe5b6000612366821515600461199c565b8261237357506000610663565b670de0b6b3a76400008381029061238d9085838161168b57fe5b82818161239657fe5b04915050610663565b60005b6123aa611a8a565b8110156109ea576123e18382815181106123c057fe5b60200260200101518383815181106123d457fe5b6020026020010151612d58565b8382815181106123ed57fe5b60209081029190910101526001016123a2565b610a1e8282612d84565b1c63ffffffff1690565b600061066363ffffffff61158784670de0b6b3a76400006116078416565b600060608061243f611bc1565b61244888612c9d565b61246f6124536109ef565b806121325750600361246486612cfe565b600381111561213057fe5b6124828861247b611c7e565b8787612e40565b909350915061248f611a8a565b67ffffffffffffffff811180156124a557600080fd5b506040519080825280602002602001820160405280156124cf578160200160208202803683370190505b509050985098509895505050505050565b60005b6124eb611a8a565b8110156109ea5761252283828151811061250157fe5b602002602001015183838151811061251557fe5b6020026020010151611655565b83828151811061252e57fe5b60209081029190910101526001016124e3565b7f08c379a0000000000000000000000000000000000000000000000000000000006000908152602060045260076024526642414c23000030600a808404818106603090810160081b95839006959095019082900491820690940160101b939093010160c81b604452606490fd5b6001600160a01b03821660009081526002840160205260408120546125d58115158461199c565b6125e28560018303612ece565b95945050505050565b60006106636125f983612ee4565b612b3d565b600061072a8383612357565b6000836080015161261c610bea610ec2565b612627610c1061087f565b600061263686602001516125eb565b9050600061264787604001516125eb565b905060008751600181111561265857fe5b14156126e857600061266d8860600151612f0b565b90506000818960600151039050612691896020015161268c8387612f2c565b612f38565b606089018290526126a28885612f2c565b97506126ae8784612f2c565b96506126be896060015185612f2c565b60608a015260006126d08a8a8a612f4a565b90506126dc81856125fe565b96505050505050611502565b6126f28683612f2c565b95506126fe8582612f2c565b945061270e876060015182612f2c565b60608801526000612720888888612f72565b905061272c8184612f8a565b9050600061273982612f96565b9050600082820390506127548a6020015161268c8388612f2c565b50945061150292505050565b600061276a610ec2565b6001600160a01b031663aaabadc56040518163ffffffff1660e01b815260040160206040518083038186803b1580156127a257600080fd5b505afa1580156127b6573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906106b69190615044565b606060006127e6611c7e565b9150600090506000826000815181106127fb57fe5b602002602001015190506000600190505b8351811015612852578184828151811061282257fe5b6020026020010151111561284a5780925083818151811061283f57fe5b602002602001015191505b60010161280c565b50509091565b670de0b6b3a764000060005b83518110156128ba576128b06128a985838151811061287f57fe5b602002602001015185848151811061289357fe5b6020026020010151612fbc90919063ffffffff16565b8390612d58565b9150600101612864565b506106636000821161013761199c565b60006128d4611b24565b82604051602001610e5b929190615442565b600060606128f2611bc1565b60006128fd84612cfe565b9050612918600082600381111561291057fe5b1460ce61199c565b60606129238561300b565b9050612930610901611a8a565b61293a818761239f565b60606129446127da565b50905060006129538284612858565b9050600061296382610bb1611a8a565b60099290925550945090925050505b9550959350505050565b620f424090565b610a1e8282613021565b6129a5611f5882600061299e611faa565b91906115e0565b7f5a9e84f78f7957cb4ed7478eb0fcad35ee4ecbe2e0f298420b28a3955392573f816040516117df919061551a565b6002815110156129e35761067a565b6000816000815181106129f257fe5b602002602001015190506000600190505b82518110156109ea576000838281518110612a1a57fe5b60200260200101519050612a43816001600160a01b0316846001600160a01b031610606561199c565b9150600101612a03565b600073ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1b612a6c610e9e565b6001600160a01b031614158015612a875750612a87836130af565b15612aaf57612a94610e9e565b6001600160a01b0316336001600160a01b0316149050610663565b612ab7612760565b6001600160a01b0316639be2a8848484306040518463ffffffff1660e01b8152600401612ae693929190615546565b60206040518083038186803b158015612afe57600080fd5b505afa158015612b12573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190612b369190614f45565b9050610663565b600080612b4b83606061314f565b600a0a670de0b6b3a7640000029392505050565b6000612b6e848411158361199c565b5050900390565b4690565b60004281612b85611faa565b90506000612b9482600861240a565b90506000612ba383602861240a565b9050808410612bc057670de0b6b3a764000094505050505061064f565b818411612bd457600094505050505061064f565b818103828503612be48183612357565b965050505050505090565b600080612c04612bff85836120d2565b613156565b90506000612c16610dde86604061240a565b9050831580612c2457508082145b15612c3157509050610663565b670de0b6b3a76400008410612c495791506106639050565b80821115612c6c576000612c5f85838503612d58565b9092039250610663915050565b6000612c7a85848403612d58565b929092019250610663915050565b600854612c9790826000611520565b60085550565b60005b612ca8611a8a565b811015610a1e57612cdf612cbd600c83612ece565b838381518110612cc957fe5b602002602001015161155390919063ffffffff16565b828281518110612ceb57fe5b6020908102919091010152600101612ca0565b60008180602001905181019061066391906150ae565b600060606000612d2384612cfe565b90506003816003811115612d3357fe5b1415612d4c57612d4288613176565b9250925050612972565b612d4287878787613237565b6000828202612d7284158061162457508385838161162157fe5b670de0b6b3a764000090049392505050565b612d9b6001600160a01b038316151561019b61199c565b612da7826000836109ea565b6001600160a01b038216600090815260208190526040902054612dcd90826101a1612b5f565b6001600160a01b038316600090815260208190526040902055600254612df390826132b0565b6002556040516000906001600160a01b038416907fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef90612e3490859061553d565b60405180910390a35050565b600060606000612e4f84612cfe565b90506001816003811115612e5f57fe5b1415612e7b57612e71878787876132be565b9250925050612ec5565b6002816003811115612e8957fe5b1415612e9a57612e71878786613337565b6003816003811115612ea857fe5b1415612eb857612e718785613426565b612ec3610136612541565b505b94509492505050565b6000908152600191820160205260409020015490565b6001600160a01b0381166000908152600b6020526040902054610bd681151561013561199c565b600080612f20612f19610a22565b8490611607565b905061072a8382611553565b600061072a8383612d58565b610a1e612f4483613458565b82613468565b6000612f5f612f576109ef565b61014761199c565b612f6a8484846134cf565b949350505050565b6000612f7f612f576109ef565b612f6a848484613502565b600061072a8383611655565b6000610663612fb5612fa6610a22565b670de0b6b3a764000090611553565b8390611655565b600080612fc98484613535565b90506000612fe3612fdc83612710611607565b60016115ce565b905080821015612ff857600092505050610663565b6130028282611553565b92505050610663565b60608180602001905181019061072a9190615174565b61302d600083836109ea565b60025461303a90826115ce565b6002556001600160a01b03821660009081526020819052604090205461306090826115ce565b6001600160a01b0383166000818152602081905260408082209390935591519091907fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef90612e3490859061553d565b60006130da7f3e56920500000000000000000000000000000000000000000000000000000000610e26565b82148061310e575061310b7fe01af92c00000000000000000000000000000000000000000000000000000000610e26565b82145b80613140575061313d7f5b77155e00000000000000000000000000000000000000000000000000000000610e26565b82145b80610663575061066382613672565b1c601f1690565b600061066367ffffffffffffffff61158784670de0b6b3a7640000611607565b60006060613182611bc1565b6131996001600160a01b038416301461015161199c565b600091506131a5611a8a565b67ffffffffffffffff811180156131bb57600080fd5b506040519080825280602002602001820160405280156131e5578160200160208202803683370190505b50905060005b6131f3611a8a565b81101561323157613205600c82612ece565b82828151811061321157fe5b6020908102919091010152613229600c8260006136d6565b6001016131eb565b50915091565b60006060600061324684612cfe565b9050600081600381111561325657fe5b141561326757612e718787866136ee565b600181600381111561327557fe5b141561328557612e718785613759565b600281600381111561329357fe5b14156132a557612e718787878761377e565b612ec3610150612541565b600061072a83836001612b5f565b600060608060006132ce856137ec565b915091506132e46132dd611a8a565b8351611c5a565b6132ee828761239f565b6000606061330d8a8a8661330061067d565b613308610a22565b61380f565b9150915061331a81613978565b6133288383101560d061199c565b50989197509095505050505050565b60006060600080613347856139bc565b9150915061335f613356611a8a565b8210606461199c565b6000806133a389848151811061337157fe5b602002602001015189858151811061338557fe5b60200260200101518661339661067d565b61339e610a22565b6139d3565b915091506133b18382613468565b60606133bb611a8a565b67ffffffffffffffff811180156133d157600080fd5b506040519080825280602002602001820160405280156133fb578160200160208202803683370190505b5090508281858151811061340b57fe5b60209081029190910101529399939850929650505050505050565b60006060600061343584613aa9565b9050606061344b868361344661067d565b613abf565b9196919550909350505050565b6000610663600c83610135613b71565b80156134c557600061349a827f0000000000000000000000000000000000000000000000000000000000000000612d58565b905060006134a9600c85612ece565b90506134c2846134b983856115ce565b600c91906136d6565b50505b610a1e8282610a1e565b60006134d9611bc1565b612f6a836134ea8660200151613b98565b846134f88860400151613b98565b8860600151613bbc565b600061350c611bc1565b612f6a8361351d8660200151613b98565b8461352b8860400151613b98565b8860600151613c37565b60008161354b5750670de0b6b3a7640000610663565b8261355857506000610663565b6135857f80000000000000000000000000000000000000000000000000000000000000008410600661199c565b826135ab770bce5086492111aea88f4bb1ca6bcf584181ea8059f765328410600761199c565b826000670c7d713b49da0000831380156135cc5750670f43fc2c04ee000083125b156136035760006135dc84613cad565b9050670de0b6b3a764000080820784020583670de0b6b3a764000083050201915050613611565b8161360d84613de4565b0290505b670de0b6b3a7640000900561365f7ffffffffffffffffffffffffffffffffffffffffffffffffdc702bd3a30fc00008212801590613658575068070c1cc73b00c800008213155b600861199c565b61366881614184565b9695505050505050565b600061369d7f38e9922e00000000000000000000000000000000000000000000000000000000610e26565b82148061066357506136ce7f50dd6ed900000000000000000000000000000000000000000000000000000000610e26565b909114919050565b60009182526001928301602052604090912090910155565b600060606136fa611bc1565b600080613706856139bc565b91509150613715613356611a8a565b6000806133a389848151811061372757fe5b602002602001015189858151811061373b57fe5b60200260200101518661374c61067d565b613754610a22565b614654565b60006060600061376884613aa9565b9050606061344b868361377961067d565b61470a565b6000606061378a611bc1565b60606000613797856137ec565b915091506137a88251610b6b611a8a565b6137b2828761239f565b600060606137d18a8a866137c461067d565b6137cc610a22565b61479c565b915091506137e38383111560cf61199c565b61332881613978565b606060008280602001905181019061380491906150ca565b909590945092505050565b6000606080855167ffffffffffffffff8111801561382c57600080fd5b50604051908082528060200260200182016040528015613856578160200160208202803683370190505b5090506000805b895181101561391b576138b68a828151811061387557fe5b6020026020010151610bb68a848151811061388c57fe5b60200260200101518d85815181106138a057fe5b60200260200101516115ce90919063ffffffff16565b8382815181106138c257fe5b60200260200101818152505061391161390a8a83815181106138e057fe5b60200260200101518584815181106138f457fe5b6020026020010151612d5890919063ffffffff16565b83906115ce565b915060010161385d565b506000606061392e8b8b8b87878c6148a1565b915091506000670de0b6b3a7640000831161394a576000613966565b61396661395f84670de0b6b3a7640000611553565b8a90612d58565b9c919b50909950505050505050505050565b6139858151610b6b611a8a565b60005b613990611a8a565b811015610a1e576139b4818383815181106139a757fe5b6020026020010151613468565b600101613988565b60008082806020019051810190613804919061513e565b600080806139e58561158781896115ce565b90506139fe6729a2241af62c000082111561013361199c565b6000613a1c613a15670de0b6b3a76400008a611655565b8390614a26565b90506000613a3c613a3583670de0b6b3a7640000611553565b8b90611607565b90506000613a498a614a52565b90506000613a578383611607565b90506000613a658483611553565b90506000613a85613a7e670de0b6b3a76400008c611553565b8490611655565b83810398509050613a9682826115ce565b9850505050505050509550959350505050565b60008180602001905181019061072a9190615111565b60606000613acd8484611655565b90506060855167ffffffffffffffff81118015613ae957600080fd5b50604051908082528060200260200182016040528015613b13578160200160208202803683370190505b50905060005b8651811015613b6757613b4883888381518110613b3257fe5b602002602001015161160790919063ffffffff16565b828281518110613b5457fe5b6020908102919091010152600101613b19565b5095945050505050565b600080613b7e8585614a78565b9050613b8c8115158461199c565b60001901949350505050565b600080613ba3612b79565b90506000613bb084612ee4565b9050612f6a8183612bef565b6000613bde613bd387670429d069189e0000612d58565b83111561013061199c565b6000613bea87846115ce565b90506000613bf88883611655565b90506000613c068887612357565b90506000613c148383614a26565b9050613c29613c2282614a52565b8990612d58565b9a9950505050505050505050565b6000613c59613c4e85670429d069189e0000612d58565b83111561013161199c565b6000613c6f613c688685611553565b8690611655565b90506000613c7d8588611655565b90506000613c8b8383614a26565b90506000613ca182670de0b6b3a7640000611553565b9050613c298a82611607565b670de0b6b3a7640000026000806ec097ce7bc90715b34b9f1000000000808401907fffffffffffffffffffffffffffffffffff3f68318436f8ea4cb460f00000000085010281613cf957fe5b05905060006ec097ce7bc90715b34b9f100000000082800205905081806ec097ce7bc90715b34b9f100000000081840205915060038205016ec097ce7bc90715b34b9f100000000082840205915060058205016ec097ce7bc90715b34b9f100000000082840205915060078205016ec097ce7bc90715b34b9f100000000082840205915060098205016ec097ce7bc90715b34b9f1000000000828402059150600b8205016ec097ce7bc90715b34b9f1000000000828402059150600d8205016ec097ce7bc90715b34b9f1000000000828402059150600f826002919005919091010295945050505050565b6000670de0b6b3a7640000821215613e2157613e17826ec097ce7bc90715b34b9f100000000081613e1157fe5b05613de4565b6000039050610bd6565b60007e1600ef3172e58d2e933ec884fde10064c63b5372d805e203c00000000000008312613e7257770195e54c5dd42177f53a27172fa9ec630262827000000000830592506806f05b59d3b2000000015b73011798004d755d3c8bc8e03204cf44619e0000008312613eaa576b1425982cf597cd205cef7380830592506803782dace9d9000000015b606492830292026e01855144814a7ff805980ff00840008312613ef2576e01855144814a7ff805980ff008400068056bc75e2d63100000840205925068ad78ebc5ac62000000015b6b02df0ab5a80a22c61ab5a7008312613f2d576b02df0ab5a80a22c61ab5a70068056bc75e2d6310000084020592506856bc75e2d631000000015b693f1fce3da636ea5cf8508312613f6457693f1fce3da636ea5cf85068056bc75e2d631000008402059250682b5e3af16b18800000015b690127fa27722cc06cc5e28312613f9b57690127fa27722cc06cc5e268056bc75e2d6310000084020592506815af1d78b58c400000015b68280e60114edb805d038312613fd05768280e60114edb805d0368056bc75e2d631000008402059250680ad78ebc5ac6200000015b680ebc5fb417461211108312613ffb57680ebc5fb4174612111068056bc75e2d631000009384020592015b6808f00f760a4b2db55d8312614030576808f00f760a4b2db55d68056bc75e2d6310000084020592506802b5e3af16b1880000015b6806f5f17757889379378312614065576806f5f177578893793768056bc75e2d63100000840205925068015af1d78b58c40000015b6806248f33704b2866038312614099576806248f33704b28660368056bc75e2d63100000840205925067ad78ebc5ac620000015b6805c548670b9510e7ac83126140cd576805c548670b9510e7ac68056bc75e2d6310000084020592506756bc75e2d6310000015b600068056bc75e2d63100000840168056bc75e2d6310000080860302816140f057fe5b059050600068056bc75e2d63100000828002059050818068056bc75e2d63100000818402059150600382050168056bc75e2d63100000828402059150600582050168056bc75e2d63100000828402059150600782050168056bc75e2d63100000828402059150600982050168056bc75e2d63100000828402059150600b820501600202606485820105979650505050505050565b60006141c97ffffffffffffffffffffffffffffffffffffffffffffffffdc702bd3a30fc000083121580156141c2575068070c1cc73b00c800008313155b600961199c565b60008212156141fd576141de82600003614184565b6ec097ce7bc90715b34b9f1000000000816141f557fe5b059050610bd6565b60006806f05b59d3b2000000831261425357507ffffffffffffffffffffffffffffffffffffffffffffffff90fa4a62c4e00000090910190770195e54c5dd42177f53a27172fa9ec63026282700000000061429f565b6803782dace9d9000000831261429b57507ffffffffffffffffffffffffffffffffffffffffffffffffc87d2531627000000909101906b1425982cf597cd205cef738061429f565b5060015b6064929092029168056bc75e2d6310000068ad78ebc5ac620000008412614305577fffffffffffffffffffffffffffffffffffffffffffffff5287143a539e0000009093019268056bc75e2d631000006e01855144814a7ff805980ff008400082020590505b6856bc75e2d6310000008412614357577fffffffffffffffffffffffffffffffffffffffffffffffa9438a1d29cf0000009093019268056bc75e2d631000006b02df0ab5a80a22c61ab5a70082020590505b682b5e3af16b1880000084126143a7577fffffffffffffffffffffffffffffffffffffffffffffffd4a1c50e94e78000009093019268056bc75e2d63100000693f1fce3da636ea5cf85082020590505b6815af1d78b58c40000084126143f7577fffffffffffffffffffffffffffffffffffffffffffffffea50e2874a73c000009093019268056bc75e2d63100000690127fa27722cc06cc5e282020590505b680ad78ebc5ac62000008412614446577ffffffffffffffffffffffffffffffffffffffffffffffff5287143a539e000009093019268056bc75e2d6310000068280e60114edb805d0382020590505b68056bc75e2d631000008412614495577ffffffffffffffffffffffffffffffffffffffffffffffffa9438a1d29cf000009093019268056bc75e2d63100000680ebc5fb4174612111082020590505b6802b5e3af16b188000084126144e4577ffffffffffffffffffffffffffffffffffffffffffffffffd4a1c50e94e7800009093019268056bc75e2d631000006808f00f760a4b2db55d82020590505b68015af1d78b58c400008412614533577ffffffffffffffffffffffffffffffffffffffffffffffffea50e2874a73c00009093019268056bc75e2d631000006806f5f177578893793782020590505b68056bc75e2d631000008481019085906002908280020505918201919050600368056bc75e2d631000008783020505918201919050600468056bc75e2d631000008783020505918201919050600568056bc75e2d631000008783020505918201919050600668056bc75e2d631000008783020505918201919050600768056bc75e2d631000008783020505918201919050600868056bc75e2d631000008783020505918201919050600968056bc75e2d631000008783020505918201919050600a68056bc75e2d631000008783020505918201919050600b68056bc75e2d631000008783020505918201919050600c68056bc75e2d631000008783020505918201919050606468056bc75e2d63100000848402058502059695505050505050565b60008080614666856115878189611553565b905061467f6709b6e64a8ec6000082101561013261199c565b6000614696613a15670de0b6b3a76400008a612357565b905060006146ad6146a683614a52565b8b90612d58565b905060006146ba8a614a52565b905060006146c88383611607565b905060006146d68483611553565b90506146e2828a611607565b96506146f86146f18389611553565b82906115ce565b97505050505050509550959350505050565b606060006147188484612357565b90506060855167ffffffffffffffff8111801561473457600080fd5b5060405190808252806020026020018201604052801561475e578160200160208202803683370190505b50905060005b8651811015613b675761477d838883815181106138f457fe5b82828151811061478957fe5b6020908102919091010152600101614764565b6000606080855167ffffffffffffffff811180156147b957600080fd5b506040519080825280602002602001820160405280156147e3578160200160208202803683370190505b5090506000805b89518110156148755761482d8a828151811061480257fe5b60200260200101516115878a848151811061481957fe5b60200260200101518d8581518110612cc957fe5b83828151811061483957fe5b60200260200101818152505061486b61390a8a838151811061485757fe5b6020026020010151858481518110613b3257fe5b91506001016147ea565b50600060606148888b8b8b87878c614a97565b91509150600061396661489a84614a52565b8a90611607565b60006060855167ffffffffffffffff811180156148bd57600080fd5b506040519080825280602002602001820160405280156148e7578160200160208202803683370190505b509050670de0b6b3a7640000915060005b8851811015614a1a5760008587838151811061491057fe5b6020026020010151111561499c57600061494161493588670de0b6b3a7640000611553565b8c85815181106138f457fe5b90506000614955828b8681518110612cc957fe5b905060006149638289611607565b90506149796149728383611553565b84906115ce565b93508086868151811061498857fe5b6020026020010181815250505050506149b3565b8782815181106149a857fe5b602002602001015190505b60006149dc8b84815181106149c457fe5b6020026020010151610bb6848e87815181106138a057fe5b9050614a0e614a078b85815181106149f057fe5b602002602001015183612fbc90919063ffffffff16565b8690612d58565b945050506001016148f8565b50965096945050505050565b600080614a338484613535565b90506000614a46612fdc83612710611607565b90506125e282826115ce565b6000670de0b6b3a76400008210614a6a576000610663565b50670de0b6b3a76400000390565b6001600160a01b03166000908152600291909101602052604090205490565b60006060855167ffffffffffffffff81118015614ab357600080fd5b50604051908082528060200260200182016040528015614add578160200160208202803683370190505b509050670de0b6b3a7640000915060005b8851811015614a1a576000868281518110614b0557fe5b6020026020010151861115614b7f576000614b2261493588614a52565b90506000614b36828b8681518110612cc957fe5b90506000614b4f612fb5670de0b6b3a76400008a611553565b9050818103868681518110614b6057fe5b6020908102919091010152614b7583826115ce565b9350505050614b96565b878281518110614b8b57fe5b602002602001015190505b6000614bbf8b8481518110614ba757fe5b6020026020010151610bb6848e8781518110612cc957fe5b9050614bd3614a078b85815181106149f057fe5b94505050600101614aee565b8035610663816157fc565b600082601f830112614bfa578081fd5b8135614c0d614c08826157d0565b6157a9565b818152915060208083019084810181840286018201871015614c2e57600080fd5b60005b84811015614c4d57813584529282019290820190600101614c31565b505050505092915050565b600082601f830112614c68578081fd5b8151614c76614c08826157d0565b818152915060208083019084810181840286018201871015614c9757600080fd5b60005b84811015614c4d57815184529282019290820190600101614c9a565b600082601f830112614cc6578081fd5b813567ffffffffffffffff811115614cdc578182fd5b614cef6020601f19601f840116016157a9565b9150808252836020828501011115614d0657600080fd5b8060208401602084013760009082016020015292915050565b80356002811061066357600080fd5b600060208284031215614d3f578081fd5b813561072a816157fc565b60008060408385031215614d5c578081fd5b8235614d67816157fc565b91506020830135614d77816157fc565b809150509250929050565b600080600060608486031215614d96578081fd5b8335614da1816157fc565b92506020840135614db1816157fc565b929592945050506040919091013590565b600080600080600080600060e0888a031215614ddc578283fd5b8735614de7816157fc565b96506020880135614df7816157fc565b955060408801359450606088013593506080880135614e158161582c565b9699959850939692959460a0840135945060c09093013592915050565b60008060408385031215614e44578182fd5b8235614e4f816157fc565b946020939093013593505050565b600080600060608486031215614e71578081fd5b835167ffffffffffffffff80821115614e88578283fd5b818601915086601f830112614e9b578283fd5b8151614ea9614c08826157d0565b80828252602080830192508086018b828387028901011115614ec9578788fd5b8796505b84871015614ef4578051614ee0816157fc565b845260019690960195928101928101614ecd565b508901519097509350505080821115614f0b578283fd5b50614f1886828701614c58565b925050604084015190509250925092565b600060208284031215614f3a578081fd5b813561072a81615811565b600060208284031215614f56578081fd5b815161072a81615811565b600080600080600080600060e0888a031215614f7b578081fd5b873596506020880135614f8d816157fc565b95506040880135614f9d816157fc565b9450606088013567ffffffffffffffff80821115614fb9578283fd5b614fc58b838c01614bea565b955060808a0135945060a08a0135935060c08a0135915080821115614fe8578283fd5b50614ff58a828b01614cb6565b91505092959891949750929550565b600060208284031215615015578081fd5b81357fffffffff000000000000000000000000000000000000000000000000000000008116811461072a578182fd5b600060208284031215615055578081fd5b815161072a816157fc565b60008060408385031215615072578182fd5b823561507d816157fc565b9150602083013567ffffffffffffffff811115615098578182fd5b6150a485828601614cb6565b9150509250929050565b6000602082840312156150bf578081fd5b815161072a8161581f565b6000806000606084860312156150de578081fd5b83516150e98161581f565b602085015190935067ffffffffffffffff811115615105578182fd5b614f1886828701614c58565b60008060408385031215615123578182fd5b825161512e8161581f565b6020939093015192949293505050565b600080600060608486031215615152578081fd5b835161515d8161581f565b602085015160409095015190969495509392505050565b60008060408385031215615186578182fd5b82516151918161581f565b602084015190925067ffffffffffffffff8111156151ad578182fd5b6150a485828601614c58565b6000806000606084860312156151cd578081fd5b833567ffffffffffffffff808211156151e4578283fd5b81860191506101208083890312156151fa578384fd5b615203816157a9565b905061520f8884614d1f565b815261521e8860208501614bdf565b60208201526152308860408501614bdf565b6040820152606083013560608201526080830135608082015260a083013560a08201526152608860c08501614bdf565b60c08201526152728860e08501614bdf565b60e0820152610100808401358381111561528a578586fd5b6152968a828701614cb6565b9183019190915250976020870135975060409096013595945050505050565b6000602082840312156152c6578081fd5b5035919050565b6000806000606084860312156152e1578081fd5b8335925060208401359150604084013567ffffffffffffffff811115615305578182fd5b61531186828701614bea565b9150509250925092565b60008060008060808587031215615330578182fd5b8451935060208501519250604085015191506060850151615350816157fc565b939692955090935050565b60006020828403121561536c578081fd5b815161072a8161582c565b6000815180845260208085019450808401835b838110156153a65781518752958201959082019060010161538a565b509495945050505050565b15159052565b60008151808452815b818110156153dc576020818501810151868301820152016153c0565b818111156153ed5782602083870101525b50601f01601f19169290920160200192915050565b9182527fffffffff0000000000000000000000000000000000000000000000000000000016602082015260240190565b6000828483379101908152919050565b7f190100000000000000000000000000000000000000000000000000000000000081526002810192909252602282015260420190565b6001600160a01b0391909116815260200190565b604080825283519082018190526000906020906060840190828701845b828110156154ce5781516001600160a01b0316845292840192908401906001016154a9565b505050838103828501526136688186615377565b60006020825261072a6020830184615377565b6000604082526155086040830185615377565b82810360208401526125e28185615377565b901515815260200190565b92151583526020830191909152604082015260600190565b90815260200190565b9283526001600160a01b03918216602084015216604082015260600190565b600085825260206001600160a01b038087168285015280861660408501525060806060840152610100830184516080808601528181518084526101208701915084830193508592505b808310156155d6576155c084516157f0565b82529284019260019290920191908401906155ae565b508387015193507fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff809250828682030160a08701526156148185615377565b935050506040850151818584030160c086015261563183826153b7565b92505050606084015161564760e08501826153b1565b509695505050505050565b9586526001600160a01b0394851660208701529290931660408501526060840152608083019190915260a082015260c00190565b9485526020850193909352604084019190915260608301526001600160a01b0316608082015260a00190565b600083825260406020830152612f6a60408301846153b7565b9182526001600160a01b0316602082015260400190565b93845260ff9290921660208401526040830152606082015260800190565b602081016004831061570e57fe5b91905290565b60006020825261072a60208301846153b7565b600083825260406020830152612f6a6040830184615377565b6000848252836020830152606060408301526125e26060830184615377565b60008582528460208301526080604083015261577e6080830185615377565b82810360608401526157908185615377565b979650505050505050565b60ff91909116815260200190565b60405181810167ffffffffffffffff811182821017156157c857600080fd5b604052919050565b600067ffffffffffffffff8211156157e6578081fd5b5060209081020190565b6001600160a01b031690565b6001600160a01b038116811461067a57600080fd5b801515811461067a57600080fd5b6004811061067a57600080fd5b60ff8116811461067a57600080fdfea264697066735822122028ca628d97b6143340c071ae5b0d0c83a983b003d9aa3e14d77bf00b613b7ba064736f6c634300070100330000000000000000000000000000000000000000000000000000000000000020000000000000000000000000ba12222222228d8ba445958a75a0704d566bf2c8000000000000000000000000000000000000000000000000000000000000018000000000000000000000000000000000000000000000000000000000000001c00000000000000000000000000000000000000000000000000000000000000200000000000000000000000000000000000000000000000000000000000000026000000000000000000000000000000000000000000000000000000000000002c00000000000000000000000000000000000000000000000000018838370f33fff00000000000000000000000000000000000000000000000000000000004bd2550000000000000000000000000000000000000000000000000000000000278d00000000000000000000000000aeca461405dd2892fba8bd03efe6ab89749d4b390000000000000000000000000000000000000000000000000000000000000001000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000164d657461466163746f727920506f6f6c20546f6b656e00000000000000000000000000000000000000000000000000000000000000000000000000000000000669524f424f5400000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000002000000000000000000000000c02aaa39b223fe8d0a0e5c4f27ead9083c756cc2000000000000000000000000fb5453340c03db5ade474b27e68b6a9c6b2823eb00000000000000000000000000000000000000000000000000000000000000020000000000000000000000000000000000000000000000000dbd2fc137a30000000000000000000000000000000000000000000000000000002386f26fc10000000000000000000000000000000000000000000000000000000000000000000200000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

Deployed Bytecode

0x608060405234801561001057600080fd5b50600436106102de5760003560e01c806374f3b009116101865780639d2c110c116100e3578063c0ff1a1511610097578063dd62ed3e11610071578063dd62ed3e1461058d578063e01af92c146105a0578063f89f27ed146105b3576102de565b8063c0ff1a151461055f578063d505accf14610567578063d5c096c41461057a576102de565b8063a9059cbb116100c8578063a9059cbb1461053c578063aaabadc51461054f578063b322c79b14610557576102de565b80639d2c110c14610516578063a457c2d714610529576102de565b8063893d20e81161013a57806390605f3a1161011f57806390605f3a146104fe57806395d89b41146105065780639b02cdde1461050e576102de565b8063893d20e8146104e15780638d928af8146104f6576102de565b80637ecebe001161016b5780637ecebe00146104a8578063851c1bb3146104bb57806387ec6817146104ce576102de565b806374f3b009146104705780637beed22014610491576102de565b806338e9922e1161023f57806350dd6ed9116101f35780636028bfd4116101cd5780636028bfd414610434578063679aefce1461045557806370a082311461045d576102de565b806350dd6ed91461040657806355c67628146104195780635b77155e14610421576102de565b8063395093511161022457806339509351146103d85780633e569205146103eb57806347bc4d92146103fe576102de565b806338e9922e146103bd57806338fff2d0146103d0576102de565b80631dd746ea11610296578063313ce5671161027b578063313ce5671461038a57806332f144f51461039f5780633644e515146103b5576102de565b80631dd746ea1461036257806323b872dd14610377576102de565b806316c38b3c116102c757806316c38b3c1461032157806318160ddd146103365780631c0de0511461034b576102de565b806306fdde03146102e3578063095ea7b314610301575b600080fd5b6102eb6105bb565b6040516102f89190615714565b60405180910390f35b61031461030f366004614e32565b610652565b6040516102f8919061551a565b61033461032f366004614f29565b610669565b005b61033e61067d565b6040516102f8919061553d565b610353610683565b6040516102f893929190615525565b61036a6106ac565b6040516102f891906154e2565b610314610385366004614d82565b6106bb565b610392610731565b6040516102f8919061579b565b6103a761073a565b6040516102f892919061548c565b61033e61085c565b6103346103cb3660046152b5565b610866565b61033e61087f565b6103146103e6366004614e32565b6108a3565b6103346103f93660046152cd565b6108de565b6103146109ef565b610334610414366004615060565b610a04565b61033e610a22565b61033461042f366004614d2e565b610a33565b610447610442366004614f61565b610b5a565b6040516102f8929190615727565b61033e610b91565b61033e61046b366004614d2e565b610bbc565b61048361047e366004614f61565b610bdb565b6040516102f89291906154f5565b610499610c7e565b6040516102f893929190615740565b61033e6104b6366004614d2e565b610e0b565b61033e6104c9366004615004565b610e26565b6104476104dc366004614f61565b610e78565b6104e9610e9e565b6040516102f89190615478565b6104e9610ec2565b61033e610ee6565b6102eb610f0a565b61033e610f6b565b61033e6105243660046151b9565b610f78565b610314610537366004614e32565b611013565b61031461054a366004614e32565b611051565b6104e961105e565b61033e611068565b61033e61106f565b610334610575366004614dc2565b611134565b610483610588366004614f61565b61127d565b61033e61059b366004614d4a565b6113ae565b6103346105ae366004614f29565b6113d9565b61036a611402565b60038054604080516020601f60026000196101006001881615020190951694909404938401819004810282018101909252828152606093909290918301828280156106475780601f1061061c57610100808354040283529160200191610647565b820191906000526020600020905b81548152906001019060200180831161062a57829003601f168201915b505050505090505b90565b600061065f3384846116a0565b5060015b92915050565b610671611708565b61067a8161174e565b50565b60025490565b60008060006106906117ea565b15925061069b611807565b91506106a561182b565b9050909192565b60606106b661184f565b905090565b6000806106c885336113ae565b90506106ec336001600160a01b03871614806106e45750838210155b61019e61199c565b6106f78585856119aa565b336001600160a01b0386161480159061071257506000198114155b156107245761072485338584036116a0565b60019150505b9392505050565b60055460ff1690565b606080610745611a8a565b67ffffffffffffffff8111801561075b57600080fd5b50604051908082528060200260200182016040528015610785578160200160208202803683370190505b509150610790611a8a565b67ffffffffffffffff811180156107a657600080fd5b506040519080825280602002602001820160405280156107d0578160200160208202803683370190505b50905060005b6107de611a8a565b811015610846576000806107f3600c84611a9f565b915091508185848151811061080457fe5b60200260200101906001600160a01b031690816001600160a01b0316815250508084848151811061083157fe5b602090810291909101015250506001016107d6565b506108588161085361184f565b611ac3565b9091565b60006106b6611b24565b61086e611708565b610876611bc1565b61067a81611bd6565b7fccf5575570fac94cec733a58ff91bb3d073085c70002000000000000000000af90565b3360008181526001602090815260408083206001600160a01b0387168452909152812054909161065f9185906108d990866115ce565b6116a0565b6108e6611708565b6108ee611bc1565b6108f6611c41565b610908610901611a8a565b8251611c5a565b426109138185611c67565b93506109248385111561014661199c565b61093862015180858503101561014b61199c565b6060610942610ec2565b6001600160a01b031663f94d466861095861087f565b6040518263ffffffff1660e01b8152600401610974919061553d565b60006040518083038186803b15801561098c57600080fd5b505afa1580156109a0573d6000803e3d6000fd5b505050506040513d6000823e601f3d908101601f191682016040526109c89190810190614e5d565b505090506109e085856109d9611c7e565b8685611ddf565b50506109ea611fa3565b505050565b60006106b660006109fe611faa565b90611fb0565b610a0c611708565b610a14611bc1565b610a1e8282611fba565b5050565b6008546000906106b69060c06120d2565b610a3b611708565b610a43611bc1565b610a4b611c41565b606080610a5661073a565b91509150610a62610ec2565b6001600160a01b0316638bdb3913610a7861087f565b30866040518060800160405280610a8e8961064f565b81526020018781526020016003604051602001610aab9190615700565b6040516020818303038152906040528152602001600015158152506040518563ffffffff1660e01b8152600401610ae59493929190615565565b600060405180830381600087803b158015610aff57600080fd5b505af1158015610b13573d6000803e3d6000fd5b505050507f5cf8dd4ddeaded21c5e3dc4043073fa7659089e0d11d8480344663008dff060f8282604051610b4892919061548c565b60405180910390a1505061067a611fa3565b60006060610b708651610b6b611a8a565b611c5a565b610b85898989898989896120e0611ac36121ad565b97509795505050505050565b60006106b6610b9e61067d565b610bb6610ba961106f565b610bb1611a8a565b61233d565b90612357565b6001600160a01b0381166000908152602081905260409020545b919050565b60608088610c05610bea610ec2565b6001600160a01b0316336001600160a01b03161460cd61199c565b610c1a610c1061087f565b82146101f461199c565b6060610c2461184f565b9050610c30888261239f565b6000606080610c458e8e8e8e8e8e8a8f6120e0565b925092509250610c558d84612400565b610c5f8285611ac3565b610c698185611ac3565b909550935050505b5097509795505050505050565b60008060606000610c8d611faa565b9050610c9a81600861240a565b9350610ca781602861240a565b92506060610cb3610ec2565b6001600160a01b031663f94d4668610cc961087f565b6040518263ffffffff1660e01b8152600401610ce5919061553d565b60006040518083038186803b158015610cfd57600080fd5b505afa158015610d11573d6000803e3d6000fd5b505050506040513d6000823e601f3d908101601f19168201604052610d399190810190614e5d565b505080519091508067ffffffffffffffff81118015610d5757600080fd5b50604051908082528060200260200182016040528015610d81578160200160208202803683370190505b50935060005b81811015610e0257610de3610dde6040600b6000878681518110610da757fe5b60200260200101516001600160a01b03166001600160a01b031681526020019081526020016000205461240a90919063ffffffff16565b612414565b858281518110610def57fe5b6020908102919091010152600101610d87565b50505050909192565b6001600160a01b031660009081526006602052604090205490565b60007f00000000000000000000000048767f9f868a4a7b86a90736632f6e44c2df7fa982604051602001610e5b929190615402565b604051602081830303815290604052805190602001209050919050565b60006060610e898651610b6b611a8a565b610b85898989898989896124326124e06121ad565b7f000000000000000000000000aeca461405dd2892fba8bd03efe6ab89749d4b3990565b7f000000000000000000000000ba12222222228d8ba445958a75a0704d566bf2c890565b7f000000000000000000000000000000000000000000000000000000000000000090565b60048054604080516020601f60026000196101006001881615020190951694909404938401819004810282018101909252828152606093909290918301828280156106475780601f1061061c57610100808354040283529160200191610647565b600061064f610153612541565b600080610f978560200151610135600c6125ae9092919063ffffffff16565b90506000610fbb610fb483610faf89602001516125eb565b6125fe565b8690611553565b90506000610fdb8760400151610135600c6125ae9092919063ffffffff16565b90506000610ffa610ff383610faf8b604001516125eb565b8790611553565b905061100788848361260a565b98975050505050505050565b60008061102033856113ae565b905080831061103a57611035338560006116a0565b611047565b61104733858584036116a0565b5060019392505050565b600061065f3384846119aa565b60006106b6612760565b6201518090565b6000606061107b610ec2565b6001600160a01b031663f94d466861109161087f565b6040518263ffffffff1660e01b81526004016110ad919061553d565b60006040518083038186803b1580156110c557600080fd5b505afa1580156110d9573d6000803e3d6000fd5b505050506040513d6000823e601f3d908101601f191682016040526111019190810190614e5d565b509150506111168161111161184f565b61239f565b60606111206127da565b50905061112d8183612858565b9250505090565b6111428442111560d161199c565b6001600160a01b0387166000908152600660209081526040808320549051909291611199917f6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c9918c918c918c9188918d9101615652565b60405160208183030381529060405280519060200120905060006111bc826128ca565b90506000600182888888604051600081526020016040526040516111e394939291906156e2565b6020604051602081039080840390855afa158015611205573d6000803e3d6000fd5b5050604051601f190151915061124790506001600160a01b0382161580159061123f57508b6001600160a01b0316826001600160a01b0316145b6101f861199c565b6001600160a01b038b1660009081526006602052604090206001850190556112708b8b8b6116a0565b5050505050505050505050565b6060808861128c610bea610ec2565b611297610c1061087f565b60606112a161184f565b90506112ab61067d565b61135e57600060606112c08d8d8d868b6128e6565b915091506112d96112cf61297c565b83101560cc61199c565b6112eb60006112e661297c565b612983565b6112fe8b6112f761297c565b8403612983565b61130881846124e0565b80611311611a8a565b67ffffffffffffffff8111801561132757600080fd5b50604051908082528060200260200182016040528015611351578160200160208202803683370190505b5095509550505050610c71565b611368888261239f565b600060608061137d8e8e8e8e8e8e8a8f612432565b92509250925061138d8c84612983565b61139782856124e0565b6113a18185611ac3565b9095509350610c71915050565b6001600160a01b03918216600090815260016020908152604080832093909416825291909152205490565b6113e1611708565b6113e9611bc1565b6113f1611c41565b6113fa8161298d565b61067a611fa3565b60606106b6611c7e565b80610a1e816129d4565b6109ea828414801561142757508183145b606761199c565b607f811b1992909216911b1790565b6001600160a01b0382166000908152600284016020526040812054806114e257505082546040805180820182526001600160a01b03858116808352602080840187815260008781526001808c018452878220965187547fffffffffffffffffffffffff0000000000000000000000000000000000000000169616959095178655905194840194909455948201808955908352600288019094529190209190915561072a565b60001901600090815260018086016020526040822001839055905061072a565b509392505050565b67ffffffffffffffff811b1992909216911b1790565b77ffffffffffffffffffffffffffffffffffffffffffffffff828116821b90821b198416179392505050565b1c607f1690565b600061156383831115600161199c565b50900390565b6000610663670de0b6b3a76400006115878463ffffffff6116078116565b90611655565b6000610663670de0b6b3a76400006115878467ffffffffffffffff611607565b63ffffffff811b1992909216911b1790565b601f811b1992909216911b1790565b600082820161072a848210158361199c565b60006001821b19841682846115f65760006115f9565b60015b60ff16901b17949350505050565b600082820261162b84158061162457508385838161162157fe5b04145b600361199c565b8061163a576000915050610663565b670de0b6b3a764000060001982015b04600101915050610663565b6000611664821515600461199c565b8261167157506000610663565b670de0b6b3a7640000838102906116949085838161168b57fe5b0414600561199c565b82600182038161164957fe5b6001600160a01b0380841660008181526001602090815260408083209487168084529490915290819020849055517f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b925906116fb90859061553d565b60405180910390a3505050565b60006117376000357fffffffff0000000000000000000000000000000000000000000000000000000016610e26565b905061067a6117468233612a4d565b61019161199c565b801561176e5761176961175f611807565b421061019361199c565b611783565b61178361177961182b565b42106101a961199c565b600780547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00168215151790556040517f9e3a5e37224532dea67b89face185703738a228a6e8a23dee546960180d3be64906117df90839061551a565b60405180910390a150565b60006117f461182b565b4211806106b657505060075460ff161590565b7f0000000000000000000000000000000000000000000000000000000061c2804b90565b7f0000000000000000000000000000000000000000000000000000000061ea0d4b90565b60608061185a610ec2565b6001600160a01b031663f94d466861187061087f565b6040518263ffffffff1660e01b815260040161188c919061553d565b60006040518083038186803b1580156118a457600080fd5b505afa1580156118b8573d6000803e3d6000fd5b505050506040513d6000823e601f3d908101601f191682016040526118e09190810190614e5d565b505080519091508067ffffffffffffffff811180156118fe57600080fd5b50604051908082528060200260200182016040528015611928578160200160208202803683370190505b50925060005b8181101561199657611977600b600085848151811061194957fe5b60200260200101516001600160a01b03166001600160a01b0316815260200190815260200160002054612b3d565b84828151811061198357fe5b602090810291909101015260010161192e565b50505090565b81610a1e57610a1e81612541565b6119c16001600160a01b038416151561019861199c565b6119d86001600160a01b038316151561019961199c565b6119e38383836109ea565b6001600160a01b038316600090815260208190526040902054611a0990826101a0612b5f565b6001600160a01b038085166000908152602081905260408082209390935590841681522054611a3890826115ce565b6001600160a01b0380841660008181526020819052604090819020939093559151908516907fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef906116fb90859061553d565b60006106b66001611a99611faa565b9061154c565b600090815260019182016020526040902080549101546001600160a01b0390911691565b60005b611ace611a8a565b8110156109ea57611b05838281518110611ae457fe5b6020026020010151838381518110611af857fe5b6020026020010151612357565b838281518110611b1157fe5b6020908102919091010152600101611ac6565b60007f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f7f3544b6accc9112e9c9b1729fa123ed71bb4483d3d61850a4e057457711fd5ff37fc89efdaa54c0f20c7adf612882df0950f5a951637e0307cdcb4c672f298b8bc6611b91612b75565b30604051602001611ba6959493929190615686565b60405160208183030381529060405280519060200120905090565b611bd4611bcc6117ea565b61019261199c565b565b611be964e8d4a5100082101560cb61199c565b611bff67016345785d8a000082111560ca61199c565b600854611c0e908260c061150a565b6008556040517fa9ba3ffe0b6c366b81232caab38605a0699ad5398d6cce76f91ee809e322dafc906117df90839061553d565b611c536002600a54141561019061199c565b6002600a55565b610a1e818314606761199c565b600081831015611c77578161072a565b5090919050565b606080611c89610ec2565b6001600160a01b031663f94d4668611c9f61087f565b6040518263ffffffff1660e01b8152600401611cbb919061553d565b60006040518083038186803b158015611cd357600080fd5b505afa158015611ce7573d6000803e3d6000fd5b505050506040513d6000823e601f3d908101601f19168201604052611d0f9190810190614e5d565b505080519091508067ffffffffffffffff81118015611d2d57600080fd5b50604051908082528060200260200182016040528015611d57578160200160208202803683370190505b5092506000611d64612b79565b905060005b82811015611dd8576000600b6000868481518110611d8357fe5b60200260200101516001600160a01b03166001600160a01b03168152602001908152602001600020549050611db88184612bef565b868381518110611dc457fe5b602090810291909101015250600101611d69565b5050505090565b600080805b8451811015611f2a576000858281518110611dfb57fe5b60200260200101519050611e1b662386f26fc1000082101561012e61199c565b6000858381518110611e2957fe5b60200260200101519050611efb611eb5826001600160a01b031663313ce5676040518163ffffffff1660e01b815260040160206040518083038186803b158015611e7257600080fd5b505afa158015611e86573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190611eaa919061535b565b60129060ff16611553565b6060611ef4611ec386611569565b6040611eed611ee48f8b81518110611ed757fe5b602002602001015161158d565b8b90600061150a565b91906115ad565b91906115bf565b6001600160a01b0382166000908152600b6020526040902055611f1e85836115ce565b94505050600101611de4565b50611f41670de0b6b3a7640000831461013461199c565b611f5d611f58876028611eed8b6008611eed611faa565b612c88565b7f0f3631f9dab08169d1db21c6dc5f32536fb2b0a6b9bb5330d71c52132f968be087878787604051611f92949392919061575f565b60405180910390a150505050505050565b6001600a55565b60085490565b1c60019081161490565b6000611fc461087f565b90506000611fd0610ec2565b6001600160a01b031663b05f8e4883866040518363ffffffff1660e01b8152600401611ffd9291906156cb565b60806040518083038186803b15801561201557600080fd5b505afa158015612029573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061204d919061531b565b6040517f18e736d40000000000000000000000000000000000000000000000000000000081529094506001600160a01b03851693506318e736d4925061209a9150859087906004016156b2565b600060405180830381600087803b1580156120b457600080fd5b505af11580156120c8573d6000803e3d6000fd5b5050505050505050565b1c67ffffffffffffffff1690565b60006060806120ee88612c9d565b60006120f985612cfe565b905061213a6121066109ef565b8061211c5750600182600381111561211a57fe5b145b806121325750600382600381111561213057fe5b145b61014a61199c565b61214e8b8a612147611c7e565b8989612d14565b909450925061215b611a8a565b67ffffffffffffffff8111801561217157600080fd5b5060405190808252806020026020018201604052801561219b578160200160208202803683370190505b50915050985098509895505050505050565b33301461229c576000306001600160a01b03166000366040516121d1929190615432565b6000604051808303816000865af19150503d806000811461220e576040519150601f19603f3d011682016040523d82523d6000602084013e612213565b606091505b50509050806000811461222257fe5b60046000803e6000517fffffffff00000000000000000000000000000000000000000000000000000000167f43adbafb00000000000000000000000000000000000000000000000000000000811461227e573d6000803e3d6000fd5b506020600460003e604060205260243d03602460403e601c3d016000f35b60606122a661184f565b90506122b2878261239f565b600060606122ca8c8c8c8c8c8c898d8d63ffffffff16565b50915091506122dd81848663ffffffff16565b8051601f1982018390526343adbafb7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc08301526020027fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffdc82016044820181fd5b600082820261072a84158061162457508385838161162157fe5b6000612366821515600461199c565b8261237357506000610663565b670de0b6b3a76400008381029061238d9085838161168b57fe5b82818161239657fe5b04915050610663565b60005b6123aa611a8a565b8110156109ea576123e18382815181106123c057fe5b60200260200101518383815181106123d457fe5b6020026020010151612d58565b8382815181106123ed57fe5b60209081029190910101526001016123a2565b610a1e8282612d84565b1c63ffffffff1690565b600061066363ffffffff61158784670de0b6b3a76400006116078416565b600060608061243f611bc1565b61244888612c9d565b61246f6124536109ef565b806121325750600361246486612cfe565b600381111561213057fe5b6124828861247b611c7e565b8787612e40565b909350915061248f611a8a565b67ffffffffffffffff811180156124a557600080fd5b506040519080825280602002602001820160405280156124cf578160200160208202803683370190505b509050985098509895505050505050565b60005b6124eb611a8a565b8110156109ea5761252283828151811061250157fe5b602002602001015183838151811061251557fe5b6020026020010151611655565b83828151811061252e57fe5b60209081029190910101526001016124e3565b7f08c379a0000000000000000000000000000000000000000000000000000000006000908152602060045260076024526642414c23000030600a808404818106603090810160081b95839006959095019082900491820690940160101b939093010160c81b604452606490fd5b6001600160a01b03821660009081526002840160205260408120546125d58115158461199c565b6125e28560018303612ece565b95945050505050565b60006106636125f983612ee4565b612b3d565b600061072a8383612357565b6000836080015161261c610bea610ec2565b612627610c1061087f565b600061263686602001516125eb565b9050600061264787604001516125eb565b905060008751600181111561265857fe5b14156126e857600061266d8860600151612f0b565b90506000818960600151039050612691896020015161268c8387612f2c565b612f38565b606089018290526126a28885612f2c565b97506126ae8784612f2c565b96506126be896060015185612f2c565b60608a015260006126d08a8a8a612f4a565b90506126dc81856125fe565b96505050505050611502565b6126f28683612f2c565b95506126fe8582612f2c565b945061270e876060015182612f2c565b60608801526000612720888888612f72565b905061272c8184612f8a565b9050600061273982612f96565b9050600082820390506127548a6020015161268c8388612f2c565b50945061150292505050565b600061276a610ec2565b6001600160a01b031663aaabadc56040518163ffffffff1660e01b815260040160206040518083038186803b1580156127a257600080fd5b505afa1580156127b6573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906106b69190615044565b606060006127e6611c7e565b9150600090506000826000815181106127fb57fe5b602002602001015190506000600190505b8351811015612852578184828151811061282257fe5b6020026020010151111561284a5780925083818151811061283f57fe5b602002602001015191505b60010161280c565b50509091565b670de0b6b3a764000060005b83518110156128ba576128b06128a985838151811061287f57fe5b602002602001015185848151811061289357fe5b6020026020010151612fbc90919063ffffffff16565b8390612d58565b9150600101612864565b506106636000821161013761199c565b60006128d4611b24565b82604051602001610e5b929190615442565b600060606128f2611bc1565b60006128fd84612cfe565b9050612918600082600381111561291057fe5b1460ce61199c565b60606129238561300b565b9050612930610901611a8a565b61293a818761239f565b60606129446127da565b50905060006129538284612858565b9050600061296382610bb1611a8a565b60099290925550945090925050505b9550959350505050565b620f424090565b610a1e8282613021565b6129a5611f5882600061299e611faa565b91906115e0565b7f5a9e84f78f7957cb4ed7478eb0fcad35ee4ecbe2e0f298420b28a3955392573f816040516117df919061551a565b6002815110156129e35761067a565b6000816000815181106129f257fe5b602002602001015190506000600190505b82518110156109ea576000838281518110612a1a57fe5b60200260200101519050612a43816001600160a01b0316846001600160a01b031610606561199c565b9150600101612a03565b600073ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1b612a6c610e9e565b6001600160a01b031614158015612a875750612a87836130af565b15612aaf57612a94610e9e565b6001600160a01b0316336001600160a01b0316149050610663565b612ab7612760565b6001600160a01b0316639be2a8848484306040518463ffffffff1660e01b8152600401612ae693929190615546565b60206040518083038186803b158015612afe57600080fd5b505afa158015612b12573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190612b369190614f45565b9050610663565b600080612b4b83606061314f565b600a0a670de0b6b3a7640000029392505050565b6000612b6e848411158361199c565b5050900390565b4690565b60004281612b85611faa565b90506000612b9482600861240a565b90506000612ba383602861240a565b9050808410612bc057670de0b6b3a764000094505050505061064f565b818411612bd457600094505050505061064f565b818103828503612be48183612357565b965050505050505090565b600080612c04612bff85836120d2565b613156565b90506000612c16610dde86604061240a565b9050831580612c2457508082145b15612c3157509050610663565b670de0b6b3a76400008410612c495791506106639050565b80821115612c6c576000612c5f85838503612d58565b9092039250610663915050565b6000612c7a85848403612d58565b929092019250610663915050565b600854612c9790826000611520565b60085550565b60005b612ca8611a8a565b811015610a1e57612cdf612cbd600c83612ece565b838381518110612cc957fe5b602002602001015161155390919063ffffffff16565b828281518110612ceb57fe5b6020908102919091010152600101612ca0565b60008180602001905181019061066391906150ae565b600060606000612d2384612cfe565b90506003816003811115612d3357fe5b1415612d4c57612d4288613176565b9250925050612972565b612d4287878787613237565b6000828202612d7284158061162457508385838161162157fe5b670de0b6b3a764000090049392505050565b612d9b6001600160a01b038316151561019b61199c565b612da7826000836109ea565b6001600160a01b038216600090815260208190526040902054612dcd90826101a1612b5f565b6001600160a01b038316600090815260208190526040902055600254612df390826132b0565b6002556040516000906001600160a01b038416907fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef90612e3490859061553d565b60405180910390a35050565b600060606000612e4f84612cfe565b90506001816003811115612e5f57fe5b1415612e7b57612e71878787876132be565b9250925050612ec5565b6002816003811115612e8957fe5b1415612e9a57612e71878786613337565b6003816003811115612ea857fe5b1415612eb857612e718785613426565b612ec3610136612541565b505b94509492505050565b6000908152600191820160205260409020015490565b6001600160a01b0381166000908152600b6020526040902054610bd681151561013561199c565b600080612f20612f19610a22565b8490611607565b905061072a8382611553565b600061072a8383612d58565b610a1e612f4483613458565b82613468565b6000612f5f612f576109ef565b61014761199c565b612f6a8484846134cf565b949350505050565b6000612f7f612f576109ef565b612f6a848484613502565b600061072a8383611655565b6000610663612fb5612fa6610a22565b670de0b6b3a764000090611553565b8390611655565b600080612fc98484613535565b90506000612fe3612fdc83612710611607565b60016115ce565b905080821015612ff857600092505050610663565b6130028282611553565b92505050610663565b60608180602001905181019061072a9190615174565b61302d600083836109ea565b60025461303a90826115ce565b6002556001600160a01b03821660009081526020819052604090205461306090826115ce565b6001600160a01b0383166000818152602081905260408082209390935591519091907fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef90612e3490859061553d565b60006130da7f3e56920500000000000000000000000000000000000000000000000000000000610e26565b82148061310e575061310b7fe01af92c00000000000000000000000000000000000000000000000000000000610e26565b82145b80613140575061313d7f5b77155e00000000000000000000000000000000000000000000000000000000610e26565b82145b80610663575061066382613672565b1c601f1690565b600061066367ffffffffffffffff61158784670de0b6b3a7640000611607565b60006060613182611bc1565b6131996001600160a01b038416301461015161199c565b600091506131a5611a8a565b67ffffffffffffffff811180156131bb57600080fd5b506040519080825280602002602001820160405280156131e5578160200160208202803683370190505b50905060005b6131f3611a8a565b81101561323157613205600c82612ece565b82828151811061321157fe5b6020908102919091010152613229600c8260006136d6565b6001016131eb565b50915091565b60006060600061324684612cfe565b9050600081600381111561325657fe5b141561326757612e718787866136ee565b600181600381111561327557fe5b141561328557612e718785613759565b600281600381111561329357fe5b14156132a557612e718787878761377e565b612ec3610150612541565b600061072a83836001612b5f565b600060608060006132ce856137ec565b915091506132e46132dd611a8a565b8351611c5a565b6132ee828761239f565b6000606061330d8a8a8661330061067d565b613308610a22565b61380f565b9150915061331a81613978565b6133288383101560d061199c565b50989197509095505050505050565b60006060600080613347856139bc565b9150915061335f613356611a8a565b8210606461199c565b6000806133a389848151811061337157fe5b602002602001015189858151811061338557fe5b60200260200101518661339661067d565b61339e610a22565b6139d3565b915091506133b18382613468565b60606133bb611a8a565b67ffffffffffffffff811180156133d157600080fd5b506040519080825280602002602001820160405280156133fb578160200160208202803683370190505b5090508281858151811061340b57fe5b60209081029190910101529399939850929650505050505050565b60006060600061343584613aa9565b9050606061344b868361344661067d565b613abf565b9196919550909350505050565b6000610663600c83610135613b71565b80156134c557600061349a827f0000000000000000000000000000000000000000000000000000000000000000612d58565b905060006134a9600c85612ece565b90506134c2846134b983856115ce565b600c91906136d6565b50505b610a1e8282610a1e565b60006134d9611bc1565b612f6a836134ea8660200151613b98565b846134f88860400151613b98565b8860600151613bbc565b600061350c611bc1565b612f6a8361351d8660200151613b98565b8461352b8860400151613b98565b8860600151613c37565b60008161354b5750670de0b6b3a7640000610663565b8261355857506000610663565b6135857f80000000000000000000000000000000000000000000000000000000000000008410600661199c565b826135ab770bce5086492111aea88f4bb1ca6bcf584181ea8059f765328410600761199c565b826000670c7d713b49da0000831380156135cc5750670f43fc2c04ee000083125b156136035760006135dc84613cad565b9050670de0b6b3a764000080820784020583670de0b6b3a764000083050201915050613611565b8161360d84613de4565b0290505b670de0b6b3a7640000900561365f7ffffffffffffffffffffffffffffffffffffffffffffffffdc702bd3a30fc00008212801590613658575068070c1cc73b00c800008213155b600861199c565b61366881614184565b9695505050505050565b600061369d7f38e9922e00000000000000000000000000000000000000000000000000000000610e26565b82148061066357506136ce7f50dd6ed900000000000000000000000000000000000000000000000000000000610e26565b909114919050565b60009182526001928301602052604090912090910155565b600060606136fa611bc1565b600080613706856139bc565b91509150613715613356611a8a565b6000806133a389848151811061372757fe5b602002602001015189858151811061373b57fe5b60200260200101518661374c61067d565b613754610a22565b614654565b60006060600061376884613aa9565b9050606061344b868361377961067d565b61470a565b6000606061378a611bc1565b60606000613797856137ec565b915091506137a88251610b6b611a8a565b6137b2828761239f565b600060606137d18a8a866137c461067d565b6137cc610a22565b61479c565b915091506137e38383111560cf61199c565b61332881613978565b606060008280602001905181019061380491906150ca565b909590945092505050565b6000606080855167ffffffffffffffff8111801561382c57600080fd5b50604051908082528060200260200182016040528015613856578160200160208202803683370190505b5090506000805b895181101561391b576138b68a828151811061387557fe5b6020026020010151610bb68a848151811061388c57fe5b60200260200101518d85815181106138a057fe5b60200260200101516115ce90919063ffffffff16565b8382815181106138c257fe5b60200260200101818152505061391161390a8a83815181106138e057fe5b60200260200101518584815181106138f457fe5b6020026020010151612d5890919063ffffffff16565b83906115ce565b915060010161385d565b506000606061392e8b8b8b87878c6148a1565b915091506000670de0b6b3a7640000831161394a576000613966565b61396661395f84670de0b6b3a7640000611553565b8a90612d58565b9c919b50909950505050505050505050565b6139858151610b6b611a8a565b60005b613990611a8a565b811015610a1e576139b4818383815181106139a757fe5b6020026020010151613468565b600101613988565b60008082806020019051810190613804919061513e565b600080806139e58561158781896115ce565b90506139fe6729a2241af62c000082111561013361199c565b6000613a1c613a15670de0b6b3a76400008a611655565b8390614a26565b90506000613a3c613a3583670de0b6b3a7640000611553565b8b90611607565b90506000613a498a614a52565b90506000613a578383611607565b90506000613a658483611553565b90506000613a85613a7e670de0b6b3a76400008c611553565b8490611655565b83810398509050613a9682826115ce565b9850505050505050509550959350505050565b60008180602001905181019061072a9190615111565b60606000613acd8484611655565b90506060855167ffffffffffffffff81118015613ae957600080fd5b50604051908082528060200260200182016040528015613b13578160200160208202803683370190505b50905060005b8651811015613b6757613b4883888381518110613b3257fe5b602002602001015161160790919063ffffffff16565b828281518110613b5457fe5b6020908102919091010152600101613b19565b5095945050505050565b600080613b7e8585614a78565b9050613b8c8115158461199c565b60001901949350505050565b600080613ba3612b79565b90506000613bb084612ee4565b9050612f6a8183612bef565b6000613bde613bd387670429d069189e0000612d58565b83111561013061199c565b6000613bea87846115ce565b90506000613bf88883611655565b90506000613c068887612357565b90506000613c148383614a26565b9050613c29613c2282614a52565b8990612d58565b9a9950505050505050505050565b6000613c59613c4e85670429d069189e0000612d58565b83111561013161199c565b6000613c6f613c688685611553565b8690611655565b90506000613c7d8588611655565b90506000613c8b8383614a26565b90506000613ca182670de0b6b3a7640000611553565b9050613c298a82611607565b670de0b6b3a7640000026000806ec097ce7bc90715b34b9f1000000000808401907fffffffffffffffffffffffffffffffffff3f68318436f8ea4cb460f00000000085010281613cf957fe5b05905060006ec097ce7bc90715b34b9f100000000082800205905081806ec097ce7bc90715b34b9f100000000081840205915060038205016ec097ce7bc90715b34b9f100000000082840205915060058205016ec097ce7bc90715b34b9f100000000082840205915060078205016ec097ce7bc90715b34b9f100000000082840205915060098205016ec097ce7bc90715b34b9f1000000000828402059150600b8205016ec097ce7bc90715b34b9f1000000000828402059150600d8205016ec097ce7bc90715b34b9f1000000000828402059150600f826002919005919091010295945050505050565b6000670de0b6b3a7640000821215613e2157613e17826ec097ce7bc90715b34b9f100000000081613e1157fe5b05613de4565b6000039050610bd6565b60007e1600ef3172e58d2e933ec884fde10064c63b5372d805e203c00000000000008312613e7257770195e54c5dd42177f53a27172fa9ec630262827000000000830592506806f05b59d3b2000000015b73011798004d755d3c8bc8e03204cf44619e0000008312613eaa576b1425982cf597cd205cef7380830592506803782dace9d9000000015b606492830292026e01855144814a7ff805980ff00840008312613ef2576e01855144814a7ff805980ff008400068056bc75e2d63100000840205925068ad78ebc5ac62000000015b6b02df0ab5a80a22c61ab5a7008312613f2d576b02df0ab5a80a22c61ab5a70068056bc75e2d6310000084020592506856bc75e2d631000000015b693f1fce3da636ea5cf8508312613f6457693f1fce3da636ea5cf85068056bc75e2d631000008402059250682b5e3af16b18800000015b690127fa27722cc06cc5e28312613f9b57690127fa27722cc06cc5e268056bc75e2d6310000084020592506815af1d78b58c400000015b68280e60114edb805d038312613fd05768280e60114edb805d0368056bc75e2d631000008402059250680ad78ebc5ac6200000015b680ebc5fb417461211108312613ffb57680ebc5fb4174612111068056bc75e2d631000009384020592015b6808f00f760a4b2db55d8312614030576808f00f760a4b2db55d68056bc75e2d6310000084020592506802b5e3af16b1880000015b6806f5f17757889379378312614065576806f5f177578893793768056bc75e2d63100000840205925068015af1d78b58c40000015b6806248f33704b2866038312614099576806248f33704b28660368056bc75e2d63100000840205925067ad78ebc5ac620000015b6805c548670b9510e7ac83126140cd576805c548670b9510e7ac68056bc75e2d6310000084020592506756bc75e2d6310000015b600068056bc75e2d63100000840168056bc75e2d6310000080860302816140f057fe5b059050600068056bc75e2d63100000828002059050818068056bc75e2d63100000818402059150600382050168056bc75e2d63100000828402059150600582050168056bc75e2d63100000828402059150600782050168056bc75e2d63100000828402059150600982050168056bc75e2d63100000828402059150600b820501600202606485820105979650505050505050565b60006141c97ffffffffffffffffffffffffffffffffffffffffffffffffdc702bd3a30fc000083121580156141c2575068070c1cc73b00c800008313155b600961199c565b60008212156141fd576141de82600003614184565b6ec097ce7bc90715b34b9f1000000000816141f557fe5b059050610bd6565b60006806f05b59d3b2000000831261425357507ffffffffffffffffffffffffffffffffffffffffffffffff90fa4a62c4e00000090910190770195e54c5dd42177f53a27172fa9ec63026282700000000061429f565b6803782dace9d9000000831261429b57507ffffffffffffffffffffffffffffffffffffffffffffffffc87d2531627000000909101906b1425982cf597cd205cef738061429f565b5060015b6064929092029168056bc75e2d6310000068ad78ebc5ac620000008412614305577fffffffffffffffffffffffffffffffffffffffffffffff5287143a539e0000009093019268056bc75e2d631000006e01855144814a7ff805980ff008400082020590505b6856bc75e2d6310000008412614357577fffffffffffffffffffffffffffffffffffffffffffffffa9438a1d29cf0000009093019268056bc75e2d631000006b02df0ab5a80a22c61ab5a70082020590505b682b5e3af16b1880000084126143a7577fffffffffffffffffffffffffffffffffffffffffffffffd4a1c50e94e78000009093019268056bc75e2d63100000693f1fce3da636ea5cf85082020590505b6815af1d78b58c40000084126143f7577fffffffffffffffffffffffffffffffffffffffffffffffea50e2874a73c000009093019268056bc75e2d63100000690127fa27722cc06cc5e282020590505b680ad78ebc5ac62000008412614446577ffffffffffffffffffffffffffffffffffffffffffffffff5287143a539e000009093019268056bc75e2d6310000068280e60114edb805d0382020590505b68056bc75e2d631000008412614495577ffffffffffffffffffffffffffffffffffffffffffffffffa9438a1d29cf000009093019268056bc75e2d63100000680ebc5fb4174612111082020590505b6802b5e3af16b188000084126144e4577ffffffffffffffffffffffffffffffffffffffffffffffffd4a1c50e94e7800009093019268056bc75e2d631000006808f00f760a4b2db55d82020590505b68015af1d78b58c400008412614533577ffffffffffffffffffffffffffffffffffffffffffffffffea50e2874a73c00009093019268056bc75e2d631000006806f5f177578893793782020590505b68056bc75e2d631000008481019085906002908280020505918201919050600368056bc75e2d631000008783020505918201919050600468056bc75e2d631000008783020505918201919050600568056bc75e2d631000008783020505918201919050600668056bc75e2d631000008783020505918201919050600768056bc75e2d631000008783020505918201919050600868056bc75e2d631000008783020505918201919050600968056bc75e2d631000008783020505918201919050600a68056bc75e2d631000008783020505918201919050600b68056bc75e2d631000008783020505918201919050600c68056bc75e2d631000008783020505918201919050606468056bc75e2d63100000848402058502059695505050505050565b60008080614666856115878189611553565b905061467f6709b6e64a8ec6000082101561013261199c565b6000614696613a15670de0b6b3a76400008a612357565b905060006146ad6146a683614a52565b8b90612d58565b905060006146ba8a614a52565b905060006146c88383611607565b905060006146d68483611553565b90506146e2828a611607565b96506146f86146f18389611553565b82906115ce565b97505050505050509550959350505050565b606060006147188484612357565b90506060855167ffffffffffffffff8111801561473457600080fd5b5060405190808252806020026020018201604052801561475e578160200160208202803683370190505b50905060005b8651811015613b675761477d838883815181106138f457fe5b82828151811061478957fe5b6020908102919091010152600101614764565b6000606080855167ffffffffffffffff811180156147b957600080fd5b506040519080825280602002602001820160405280156147e3578160200160208202803683370190505b5090506000805b89518110156148755761482d8a828151811061480257fe5b60200260200101516115878a848151811061481957fe5b60200260200101518d8581518110612cc957fe5b83828151811061483957fe5b60200260200101818152505061486b61390a8a838151811061485757fe5b6020026020010151858481518110613b3257fe5b91506001016147ea565b50600060606148888b8b8b87878c614a97565b91509150600061396661489a84614a52565b8a90611607565b60006060855167ffffffffffffffff811180156148bd57600080fd5b506040519080825280602002602001820160405280156148e7578160200160208202803683370190505b509050670de0b6b3a7640000915060005b8851811015614a1a5760008587838151811061491057fe5b6020026020010151111561499c57600061494161493588670de0b6b3a7640000611553565b8c85815181106138f457fe5b90506000614955828b8681518110612cc957fe5b905060006149638289611607565b90506149796149728383611553565b84906115ce565b93508086868151811061498857fe5b6020026020010181815250505050506149b3565b8782815181106149a857fe5b602002602001015190505b60006149dc8b84815181106149c457fe5b6020026020010151610bb6848e87815181106138a057fe5b9050614a0e614a078b85815181106149f057fe5b602002602001015183612fbc90919063ffffffff16565b8690612d58565b945050506001016148f8565b50965096945050505050565b600080614a338484613535565b90506000614a46612fdc83612710611607565b90506125e282826115ce565b6000670de0b6b3a76400008210614a6a576000610663565b50670de0b6b3a76400000390565b6001600160a01b03166000908152600291909101602052604090205490565b60006060855167ffffffffffffffff81118015614ab357600080fd5b50604051908082528060200260200182016040528015614add578160200160208202803683370190505b509050670de0b6b3a7640000915060005b8851811015614a1a576000868281518110614b0557fe5b6020026020010151861115614b7f576000614b2261493588614a52565b90506000614b36828b8681518110612cc957fe5b90506000614b4f612fb5670de0b6b3a76400008a611553565b9050818103868681518110614b6057fe5b6020908102919091010152614b7583826115ce565b9350505050614b96565b878281518110614b8b57fe5b602002602001015190505b6000614bbf8b8481518110614ba757fe5b6020026020010151610bb6848e8781518110612cc957fe5b9050614bd3614a078b85815181106149f057fe5b94505050600101614aee565b8035610663816157fc565b600082601f830112614bfa578081fd5b8135614c0d614c08826157d0565b6157a9565b818152915060208083019084810181840286018201871015614c2e57600080fd5b60005b84811015614c4d57813584529282019290820190600101614c31565b505050505092915050565b600082601f830112614c68578081fd5b8151614c76614c08826157d0565b818152915060208083019084810181840286018201871015614c9757600080fd5b60005b84811015614c4d57815184529282019290820190600101614c9a565b600082601f830112614cc6578081fd5b813567ffffffffffffffff811115614cdc578182fd5b614cef6020601f19601f840116016157a9565b9150808252836020828501011115614d0657600080fd5b8060208401602084013760009082016020015292915050565b80356002811061066357600080fd5b600060208284031215614d3f578081fd5b813561072a816157fc565b60008060408385031215614d5c578081fd5b8235614d67816157fc565b91506020830135614d77816157fc565b809150509250929050565b600080600060608486031215614d96578081fd5b8335614da1816157fc565b92506020840135614db1816157fc565b929592945050506040919091013590565b600080600080600080600060e0888a031215614ddc578283fd5b8735614de7816157fc565b96506020880135614df7816157fc565b955060408801359450606088013593506080880135614e158161582c565b9699959850939692959460a0840135945060c09093013592915050565b60008060408385031215614e44578182fd5b8235614e4f816157fc565b946020939093013593505050565b600080600060608486031215614e71578081fd5b835167ffffffffffffffff80821115614e88578283fd5b818601915086601f830112614e9b578283fd5b8151614ea9614c08826157d0565b80828252602080830192508086018b828387028901011115614ec9578788fd5b8796505b84871015614ef4578051614ee0816157fc565b845260019690960195928101928101614ecd565b508901519097509350505080821115614f0b578283fd5b50614f1886828701614c58565b925050604084015190509250925092565b600060208284031215614f3a578081fd5b813561072a81615811565b600060208284031215614f56578081fd5b815161072a81615811565b600080600080600080600060e0888a031215614f7b578081fd5b873596506020880135614f8d816157fc565b95506040880135614f9d816157fc565b9450606088013567ffffffffffffffff80821115614fb9578283fd5b614fc58b838c01614bea565b955060808a0135945060a08a0135935060c08a0135915080821115614fe8578283fd5b50614ff58a828b01614cb6565b91505092959891949750929550565b600060208284031215615015578081fd5b81357fffffffff000000000000000000000000000000000000000000000000000000008116811461072a578182fd5b600060208284031215615055578081fd5b815161072a816157fc565b60008060408385031215615072578182fd5b823561507d816157fc565b9150602083013567ffffffffffffffff811115615098578182fd5b6150a485828601614cb6565b9150509250929050565b6000602082840312156150bf578081fd5b815161072a8161581f565b6000806000606084860312156150de578081fd5b83516150e98161581f565b602085015190935067ffffffffffffffff811115615105578182fd5b614f1886828701614c58565b60008060408385031215615123578182fd5b825161512e8161581f565b6020939093015192949293505050565b600080600060608486031215615152578081fd5b835161515d8161581f565b602085015160409095015190969495509392505050565b60008060408385031215615186578182fd5b82516151918161581f565b602084015190925067ffffffffffffffff8111156151ad578182fd5b6150a485828601614c58565b6000806000606084860312156151cd578081fd5b833567ffffffffffffffff808211156151e4578283fd5b81860191506101208083890312156151fa578384fd5b615203816157a9565b905061520f8884614d1f565b815261521e8860208501614bdf565b60208201526152308860408501614bdf565b6040820152606083013560608201526080830135608082015260a083013560a08201526152608860c08501614bdf565b60c08201526152728860e08501614bdf565b60e0820152610100808401358381111561528a578586fd5b6152968a828701614cb6565b9183019190915250976020870135975060409096013595945050505050565b6000602082840312156152c6578081fd5b5035919050565b6000806000606084860312156152e1578081fd5b8335925060208401359150604084013567ffffffffffffffff811115615305578182fd5b61531186828701614bea565b9150509250925092565b60008060008060808587031215615330578182fd5b8451935060208501519250604085015191506060850151615350816157fc565b939692955090935050565b60006020828403121561536c578081fd5b815161072a8161582c565b6000815180845260208085019450808401835b838110156153a65781518752958201959082019060010161538a565b509495945050505050565b15159052565b60008151808452815b818110156153dc576020818501810151868301820152016153c0565b818111156153ed5782602083870101525b50601f01601f19169290920160200192915050565b9182527fffffffff0000000000000000000000000000000000000000000000000000000016602082015260240190565b6000828483379101908152919050565b7f190100000000000000000000000000000000000000000000000000000000000081526002810192909252602282015260420190565b6001600160a01b0391909116815260200190565b604080825283519082018190526000906020906060840190828701845b828110156154ce5781516001600160a01b0316845292840192908401906001016154a9565b505050838103828501526136688186615377565b60006020825261072a6020830184615377565b6000604082526155086040830185615377565b82810360208401526125e28185615377565b901515815260200190565b92151583526020830191909152604082015260600190565b90815260200190565b9283526001600160a01b03918216602084015216604082015260600190565b600085825260206001600160a01b038087168285015280861660408501525060806060840152610100830184516080808601528181518084526101208701915084830193508592505b808310156155d6576155c084516157f0565b82529284019260019290920191908401906155ae565b508387015193507fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff809250828682030160a08701526156148185615377565b935050506040850151818584030160c086015261563183826153b7565b92505050606084015161564760e08501826153b1565b509695505050505050565b9586526001600160a01b0394851660208701529290931660408501526060840152608083019190915260a082015260c00190565b9485526020850193909352604084019190915260608301526001600160a01b0316608082015260a00190565b600083825260406020830152612f6a60408301846153b7565b9182526001600160a01b0316602082015260400190565b93845260ff9290921660208401526040830152606082015260800190565b602081016004831061570e57fe5b91905290565b60006020825261072a60208301846153b7565b600083825260406020830152612f6a6040830184615377565b6000848252836020830152606060408301526125e26060830184615377565b60008582528460208301526080604083015261577e6080830185615377565b82810360608401526157908185615377565b979650505050505050565b60ff91909116815260200190565b60405181810167ffffffffffffffff811182821017156157c857600080fd5b604052919050565b600067ffffffffffffffff8211156157e6578081fd5b5060209081020190565b6001600160a01b031690565b6001600160a01b038116811461067a57600080fd5b801515811461067a57600080fd5b6004811061067a57600080fd5b60ff8116811461067a57600080fdfea264697066735822122028ca628d97b6143340c071ae5b0d0c83a983b003d9aa3e14d77bf00b613b7ba064736f6c63430007010033

Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)

0000000000000000000000000000000000000000000000000000000000000020000000000000000000000000ba12222222228d8ba445958a75a0704d566bf2c8000000000000000000000000000000000000000000000000000000000000018000000000000000000000000000000000000000000000000000000000000001c00000000000000000000000000000000000000000000000000000000000000200000000000000000000000000000000000000000000000000000000000000026000000000000000000000000000000000000000000000000000000000000002c00000000000000000000000000000000000000000000000000018838370f33fff00000000000000000000000000000000000000000000000000000000004bd2550000000000000000000000000000000000000000000000000000000000278d00000000000000000000000000aeca461405dd2892fba8bd03efe6ab89749d4b390000000000000000000000000000000000000000000000000000000000000001000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000164d657461466163746f727920506f6f6c20546f6b656e00000000000000000000000000000000000000000000000000000000000000000000000000000000000669524f424f5400000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000002000000000000000000000000c02aaa39b223fe8d0a0e5c4f27ead9083c756cc2000000000000000000000000fb5453340c03db5ade474b27e68b6a9c6b2823eb00000000000000000000000000000000000000000000000000000000000000020000000000000000000000000000000000000000000000000dbd2fc137a30000000000000000000000000000000000000000000000000000002386f26fc10000000000000000000000000000000000000000000000000000000000000000000200000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

-----Decoded View---------------
Arg [0] : params (tuple): System.Collections.Generic.List`1[Nethereum.ABI.FunctionEncoding.ParameterOutput]

-----Encoded View---------------
26 Constructor Arguments found :
Arg [0] : 0000000000000000000000000000000000000000000000000000000000000020
Arg [1] : 000000000000000000000000ba12222222228d8ba445958a75a0704d566bf2c8
Arg [2] : 0000000000000000000000000000000000000000000000000000000000000180
Arg [3] : 00000000000000000000000000000000000000000000000000000000000001c0
Arg [4] : 0000000000000000000000000000000000000000000000000000000000000200
Arg [5] : 0000000000000000000000000000000000000000000000000000000000000260
Arg [6] : 00000000000000000000000000000000000000000000000000000000000002c0
Arg [7] : 0000000000000000000000000000000000000000000000000018838370f33fff
Arg [8] : 00000000000000000000000000000000000000000000000000000000004bd255
Arg [9] : 0000000000000000000000000000000000000000000000000000000000278d00
Arg [10] : 000000000000000000000000aeca461405dd2892fba8bd03efe6ab89749d4b39
Arg [11] : 0000000000000000000000000000000000000000000000000000000000000001
Arg [12] : 0000000000000000000000000000000000000000000000000000000000000000
Arg [13] : 0000000000000000000000000000000000000000000000000000000000000016
Arg [14] : 4d657461466163746f727920506f6f6c20546f6b656e00000000000000000000
Arg [15] : 0000000000000000000000000000000000000000000000000000000000000006
Arg [16] : 69524f424f540000000000000000000000000000000000000000000000000000
Arg [17] : 0000000000000000000000000000000000000000000000000000000000000002
Arg [18] : 000000000000000000000000c02aaa39b223fe8d0a0e5c4f27ead9083c756cc2
Arg [19] : 000000000000000000000000fb5453340c03db5ade474b27e68b6a9c6b2823eb
Arg [20] : 0000000000000000000000000000000000000000000000000000000000000002
Arg [21] : 0000000000000000000000000000000000000000000000000dbd2fc137a30000
Arg [22] : 000000000000000000000000000000000000000000000000002386f26fc10000
Arg [23] : 0000000000000000000000000000000000000000000000000000000000000002
Arg [24] : 0000000000000000000000000000000000000000000000000000000000000000
Arg [25] : 0000000000000000000000000000000000000000000000000000000000000000


Loading...
Loading
Loading...
Loading
[ Download: CSV Export  ]
[ Download: CSV Export  ]

A token is a representation of an on-chain or off-chain asset. The token page shows information such as price, total supply, holders, transfers and social links. Learn more about this page in our Knowledge Base.