Feature Tip: Add private address tag to any address under My Name Tag !
ERC-20
Overview
Max Total Supply
809.836268341141714284 iROBOT
Holders
33
Total Transfers
-
Market
Onchain Market Cap
$0.00
Circulating Supply Market Cap
-
Other Info
Token Contract (WITH 18 Decimals)
Loading...
Loading
Loading...
Loading
Loading...
Loading
# | Exchange | Pair | Price | 24H Volume | % Volume |
---|
Contract Name:
InvestmentPool
Compiler Version
v0.7.1+commit.f4a555be
Optimization Enabled:
Yes with 9999 runs
Other Settings:
default evmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; pragma experimental ABIEncoderV2; import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/EnumerableMap.sol"; import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/ReentrancyGuard.sol"; import "@balancer-labs/v2-solidity-utils/contracts/helpers/ERC20Helpers.sol"; import "@balancer-labs/v2-solidity-utils/contracts/helpers/WordCodec.sol"; import "../BaseWeightedPool.sol"; import "../WeightedPoolUserDataHelpers.sol"; import "./WeightCompression.sol"; /** * @dev Weighted Pool with mutable weights, designed to support investment use cases: large token counts, * rebalancing through gradual weight updates. */ contract InvestmentPool is BaseWeightedPool, ReentrancyGuard { // solhint-disable not-rely-on-time using FixedPoint for uint256; using WordCodec for bytes32; using WeightCompression for uint256; using WeightedPoolUserDataHelpers for bytes; using EnumerableMap for EnumerableMap.IERC20ToUint256Map; // State variables // The upper bound is WeightedMath.MAX_WEIGHTED_TOKENS, but this is constrained by other factors, such as Pool // creation gas consumption (which is linear). uint256 private constant _MAX_INVESTMENT_TOKENS = 50; // Percentage of swap fees that are allocated to the Pool owner. uint256 private immutable _managementSwapFeePercentage; uint256 private constant _MAX_MANAGEMENT_SWAP_FEE_PERCENTAGE = 1e18; // 100% // Use the _miscData slot in BasePool // First 64 bits are reserved for the swap fee // // Store non-token-based values: // Start/end timestamps for gradual weight update // Cache total tokens // [ 64 bits | 120 bits | 32 bits | 32 bits | 7 bits | 1 bit ] // [ reserved | unused | end time | start time | total tokens | swap flag ] // |MSB LSB| uint256 private constant _SWAP_ENABLED_OFFSET = 0; uint256 private constant _TOTAL_TOKENS_OFFSET = 1; uint256 private constant _START_TIME_OFFSET = 8; uint256 private constant _END_TIME_OFFSET = 40; // 7 bits is enough for the token count, since _MAX_INVESTMENT_TOKENS is 50 // Store scaling factor and start/end weights for each token // Mapping should be more efficient than trying to compress it further // [ 155 bits| 5 bits | 32 bits | 64 bits | // [ unused | decimals | end weight | start weight | // |MSB LSB| mapping(IERC20 => bytes32) private _tokenState; EnumerableMap.IERC20ToUint256Map private _tokenCollectedManagementFees; uint256 private constant _START_WEIGHT_OFFSET = 0; uint256 private constant _END_WEIGHT_OFFSET = 64; uint256 private constant _DECIMAL_DIFF_OFFSET = 96; uint256 private constant _MINIMUM_WEIGHT_CHANGE_DURATION = 1 days; // Event declarations event GradualWeightUpdateScheduled( uint256 startTime, uint256 endTime, uint256[] startWeights, uint256[] endWeights ); event SwapEnabledSet(bool swapEnabled); event ManagementFeePercentageChanged(uint256 managementFeePercentage); event ManagementFeesCollected(IERC20[] tokens, uint256[] amounts); struct NewPoolParams { IVault vault; string name; string symbol; IERC20[] tokens; uint256[] normalizedWeights; address[] assetManagers; uint256 swapFeePercentage; uint256 pauseWindowDuration; uint256 bufferPeriodDuration; address owner; bool swapEnabledOnStart; uint256 managementSwapFeePercentage; } constructor(NewPoolParams memory params) BaseWeightedPool( params.vault, params.name, params.symbol, params.tokens, params.assetManagers, params.swapFeePercentage, params.pauseWindowDuration, params.bufferPeriodDuration, params.owner ) { uint256 totalTokens = params.tokens.length; InputHelpers.ensureInputLengthMatch(totalTokens, params.normalizedWeights.length, params.assetManagers.length); _setMiscData(_getMiscData().insertUint7(totalTokens, _TOTAL_TOKENS_OFFSET)); // Double check it fits in 7 bits _require(_getTotalTokens() == totalTokens, Errors.MAX_TOKENS); uint256 currentTime = block.timestamp; _startGradualWeightChange( currentTime, currentTime, params.normalizedWeights, params.normalizedWeights, params.tokens ); // Initialize the accrued management fees map with the Pool's tokens and zero collected fees. for (uint256 i = 0; i < totalTokens; ++i) { _tokenCollectedManagementFees.set(params.tokens[i], 0); } // If false, the pool will start in the disabled state (prevents front-running the enable swaps transaction) _setSwapEnabled(params.swapEnabledOnStart); // This must be inlined in the constructor as we're setting an immutable variable. _require( params.managementSwapFeePercentage <= _MAX_MANAGEMENT_SWAP_FEE_PERCENTAGE, Errors.MAX_MANAGEMENT_SWAP_FEE_PERCENTAGE ); _managementSwapFeePercentage = params.managementSwapFeePercentage; emit ManagementFeePercentageChanged(params.managementSwapFeePercentage); } /** * @dev Returns true if swaps are enabled. */ function getSwapEnabled() public view returns (bool) { return _getMiscData().decodeBool(_SWAP_ENABLED_OFFSET); } /** * @dev Returns the management swap fee percentage as a 18-decimals fixed point number. */ function getManagementSwapFeePercentage() public view returns (uint256) { return _managementSwapFeePercentage; } /** * @dev Returns the mimimum duration of a gradual weight change */ function getMinimumWeightChangeDuration() external pure returns (uint256) { return _MINIMUM_WEIGHT_CHANGE_DURATION; } /** * @dev Return start time, end time, and endWeights as an array. * Current weights should be retrieved via `getNormalizedWeights()`. */ function getGradualWeightUpdateParams() external view returns ( uint256 startTime, uint256 endTime, uint256[] memory endWeights ) { // Load current pool state from storage bytes32 poolState = _getMiscData(); startTime = poolState.decodeUint32(_START_TIME_OFFSET); endTime = poolState.decodeUint32(_END_TIME_OFFSET); (IERC20[] memory tokens, , ) = getVault().getPoolTokens(getPoolId()); uint256 totalTokens = tokens.length; endWeights = new uint256[](totalTokens); for (uint256 i = 0; i < totalTokens; i++) { endWeights[i] = _tokenState[tokens[i]].decodeUint32(_END_WEIGHT_OFFSET).uncompress32(); } } function _getMaxTokens() internal pure virtual override returns (uint256) { return _MAX_INVESTMENT_TOKENS; } function _getTotalTokens() internal view virtual override returns (uint256) { return _getMiscData().decodeUint7(_TOTAL_TOKENS_OFFSET); } /** * @dev Schedule a gradual weight change, from the current weights to the given endWeights, * over startTime to endTime. */ function updateWeightsGradually( uint256 startTime, uint256 endTime, uint256[] memory endWeights ) external authenticate whenNotPaused nonReentrant { InputHelpers.ensureInputLengthMatch(_getTotalTokens(), endWeights.length); // If the start time is in the past, "fast forward" to start now // This avoids discontinuities in the weight curve. Otherwise, if you set the start/end times with // only 10% of the period in the future, the weights would immediately jump 90% uint256 currentTime = block.timestamp; startTime = Math.max(currentTime, startTime); _require(startTime <= endTime, Errors.GRADUAL_UPDATE_TIME_TRAVEL); _require(endTime - startTime >= _MINIMUM_WEIGHT_CHANGE_DURATION, Errors.WEIGHT_CHANGE_TOO_FAST); (IERC20[] memory tokens, , ) = getVault().getPoolTokens(getPoolId()); _startGradualWeightChange(startTime, endTime, _getNormalizedWeights(), endWeights, tokens); } function getCollectedManagementFees() public view returns (IERC20[] memory tokens, uint256[] memory collectedFees) { tokens = new IERC20[](_getTotalTokens()); collectedFees = new uint256[](_getTotalTokens()); for (uint256 i = 0; i < _getTotalTokens(); ++i) { // We can use unchecked getters as we know the map has the same size (and order!) as the Pool's tokens. (IERC20 token, uint256 fees) = _tokenCollectedManagementFees.unchecked_at(i); tokens[i] = token; collectedFees[i] = fees; } _downscaleDownArray(collectedFees, _scalingFactors()); } function withdrawCollectedManagementFees(address recipient) external authenticate whenNotPaused nonReentrant { (IERC20[] memory tokens, uint256[] memory collectedFees) = getCollectedManagementFees(); getVault().exitPool( getPoolId(), address(this), payable(recipient), IVault.ExitPoolRequest({ assets: _asIAsset(tokens), minAmountsOut: collectedFees, userData: abi.encode(BaseWeightedPool.ExitKind.MANAGEMENT_FEE_TOKENS_OUT), toInternalBalance: false }) ); // Technically collectedFees is the minimum amount, not the actual amount. However, since no fees will be // collected during the exit, it will also be the actual amount. emit ManagementFeesCollected(tokens, collectedFees); } /* * @dev Can enable/disable trading */ function setSwapEnabled(bool swapEnabled) external authenticate whenNotPaused nonReentrant { _setSwapEnabled(swapEnabled); } function _setSwapEnabled(bool swapEnabled) private { _setMiscData(_getMiscData().insertBool(swapEnabled, _SWAP_ENABLED_OFFSET)); emit SwapEnabledSet(swapEnabled); } function _scalingFactor(IERC20 token) internal view virtual override returns (uint256) { return _readScalingFactor(_getTokenData(token)); } function _scalingFactors() internal view virtual override returns (uint256[] memory scalingFactors) { (IERC20[] memory tokens, , ) = getVault().getPoolTokens(getPoolId()); uint256 numTokens = tokens.length; scalingFactors = new uint256[](numTokens); for (uint256 i = 0; i < numTokens; i++) { scalingFactors[i] = _readScalingFactor(_tokenState[tokens[i]]); } } function _getNormalizedWeight(IERC20 token) internal view override returns (uint256) { uint256 pctProgress = _calculateWeightChangeProgress(); bytes32 tokenData = _getTokenData(token); return _interpolateWeight(tokenData, pctProgress); } function _getNormalizedWeights() internal view override returns (uint256[] memory normalizedWeights) { (IERC20[] memory tokens, , ) = getVault().getPoolTokens(getPoolId()); uint256 numTokens = tokens.length; normalizedWeights = new uint256[](numTokens); uint256 pctProgress = _calculateWeightChangeProgress(); for (uint256 i = 0; i < numTokens; i++) { bytes32 tokenData = _tokenState[tokens[i]]; normalizedWeights[i] = _interpolateWeight(tokenData, pctProgress); } } function _getNormalizedWeightsAndMaxWeightIndex() internal view override returns (uint256[] memory normalizedWeights, uint256 maxWeightTokenIndex) { normalizedWeights = _getNormalizedWeights(); maxWeightTokenIndex = 0; uint256 maxNormalizedWeight = normalizedWeights[0]; for (uint256 i = 1; i < normalizedWeights.length; i++) { if (normalizedWeights[i] > maxNormalizedWeight) { maxWeightTokenIndex = i; maxNormalizedWeight = normalizedWeights[i]; } } } // Swap overrides - revert unless swaps are enabled function _onSwapGivenIn( SwapRequest memory swapRequest, uint256 currentBalanceTokenIn, uint256 currentBalanceTokenOut ) internal view override returns (uint256) { _require(getSwapEnabled(), Errors.SWAPS_DISABLED); return super._onSwapGivenIn(swapRequest, currentBalanceTokenIn, currentBalanceTokenOut); } function _onSwapGivenOut( SwapRequest memory swapRequest, uint256 currentBalanceTokenIn, uint256 currentBalanceTokenOut ) internal view override returns (uint256) { _require(getSwapEnabled(), Errors.SWAPS_DISABLED); return super._onSwapGivenOut(swapRequest, currentBalanceTokenIn, currentBalanceTokenOut); } /** * @dev Used to adjust balances by subtracting all collected fees from them, as if they had been withdrawn from the * Vault. */ function _subtractCollectedFees(uint256[] memory balances) private view { for (uint256 i = 0; i < _getTotalTokens(); ++i) { // We can use unchecked getters as we know the map has the same size (and order!) as the Pool's tokens. balances[i] = balances[i].sub(_tokenCollectedManagementFees.unchecked_valueAt(i)); } } // We override _onJoinPool and _onExitPool as we need to not compute the current invariant and calculate protocol // fees, since that mechanism does not work for Pools in which the weights change over time. Instead, this Pool // always pays zero protocol fees. // Additionally, we also check that only non-swap join and exit kinds are allowed while swaps are disabled. function getLastInvariant() public pure override returns (uint256) { _revert(Errors.UNHANDLED_BY_INVESTMENT_POOL); } function _onJoinPool( bytes32, address, address, uint256[] memory balances, uint256, uint256, uint256[] memory scalingFactors, bytes memory userData ) internal virtual override whenNotPaused // All joins are disabled while the contract is paused. returns ( uint256 bptAmountOut, uint256[] memory amountsIn, uint256[] memory dueProtocolFeeAmounts ) { _subtractCollectedFees(balances); // If swaps are disabled, the only join kind that is allowed is the proportional one, as all others involve // implicit swaps and alter token prices. _require( getSwapEnabled() || userData.joinKind() == JoinKind.ALL_TOKENS_IN_FOR_EXACT_BPT_OUT, Errors.INVALID_JOIN_EXIT_KIND_WHILE_SWAPS_DISABLED ); (bptAmountOut, amountsIn) = _doJoin(balances, _getNormalizedWeights(), scalingFactors, userData); dueProtocolFeeAmounts = new uint256[](_getTotalTokens()); } function _onExitPool( bytes32, address sender, address, uint256[] memory balances, uint256, uint256, uint256[] memory scalingFactors, bytes memory userData ) internal virtual override returns ( uint256 bptAmountIn, uint256[] memory amountsOut, uint256[] memory dueProtocolFeeAmounts ) { _subtractCollectedFees(balances); // Exits are not completely disabled while the contract is paused: proportional exits (exact BPT in for tokens // out) remain functional. // If swaps are disabled, the only exit kind that is allowed is the proportional one (as all others involve // implicit swaps and alter token prices) and management fee collection (as there's no point in restricting // that). ExitKind kind = userData.exitKind(); _require( getSwapEnabled() || kind == ExitKind.EXACT_BPT_IN_FOR_TOKENS_OUT || kind == ExitKind.MANAGEMENT_FEE_TOKENS_OUT, Errors.INVALID_JOIN_EXIT_KIND_WHILE_SWAPS_DISABLED ); (bptAmountIn, amountsOut) = _doInvestmentPoolExit( sender, balances, _getNormalizedWeights(), scalingFactors, userData ); dueProtocolFeeAmounts = new uint256[](_getTotalTokens()); } function _doInvestmentPoolExit( address sender, uint256[] memory balances, uint256[] memory normalizedWeights, uint256[] memory scalingFactors, bytes memory userData ) internal returns (uint256, uint256[] memory) { ExitKind kind = userData.exitKind(); if (kind == ExitKind.MANAGEMENT_FEE_TOKENS_OUT) { return _exitManagerFeeTokensOut(sender); } else { return _doExit(balances, normalizedWeights, scalingFactors, userData); } } function _exitManagerFeeTokensOut(address sender) private whenNotPaused returns (uint256 bptAmountIn, uint256[] memory amountsOut) { // This exit function is disabled if the contract is paused. // This exit function can only be called by the Pool itself - the authorization logic that governs when that // call can be made resides in withdrawCollectedManagementFees. _require(sender == address(this), Errors.UNAUTHORIZED_EXIT); // Since what we're doing is sending out collected management fees, we don't require any BPT in exchange: we // simply send those funds over. bptAmountIn = 0; amountsOut = new uint256[](_getTotalTokens()); for (uint256 i = 0; i < _getTotalTokens(); ++i) { // We can use unchecked getters and setters as we know the map has the same size (and order!) as the Pool's // tokens. amountsOut[i] = _tokenCollectedManagementFees.unchecked_valueAt(i); _tokenCollectedManagementFees.unchecked_setAt(i, 0); } } function _tokenAddressToIndex(IERC20 token) internal view override returns (uint256) { return _tokenCollectedManagementFees.indexOf(token, Errors.INVALID_TOKEN); } function _processSwapFeeAmount(uint256 index, uint256 amount) internal virtual override { if (amount > 0) { uint256 managementFeeAmount = amount.mulDown(_managementSwapFeePercentage); uint256 previousCollectedFees = _tokenCollectedManagementFees.unchecked_valueAt(index); _tokenCollectedManagementFees.unchecked_setAt(index, previousCollectedFees.add(managementFeeAmount)); } super._processSwapFeeAmount(index, amount); } // Pool swap hook override - subtract collected fees from all token amounts. We do this here as the original // `onSwap` does quite a bit of work, including computing swap fees, so we need to intercept that. function onSwap( SwapRequest memory swapRequest, uint256 currentBalanceTokenIn, uint256 currentBalanceTokenOut ) public override returns (uint256) { uint256 tokenInUpscaledCollectedFees = _tokenCollectedManagementFees.get( swapRequest.tokenIn, Errors.INVALID_TOKEN ); uint256 adjustedBalanceTokenIn = currentBalanceTokenIn.sub( _downscaleDown(tokenInUpscaledCollectedFees, _scalingFactor(swapRequest.tokenIn)) ); uint256 tokenOutUpscaledCollectedFees = _tokenCollectedManagementFees.get( swapRequest.tokenOut, Errors.INVALID_TOKEN ); uint256 adjustedBalanceTokenOut = currentBalanceTokenOut.sub( _downscaleDown(tokenOutUpscaledCollectedFees, _scalingFactor(swapRequest.tokenOut)) ); return super.onSwap(swapRequest, adjustedBalanceTokenIn, adjustedBalanceTokenOut); } /** * @dev When calling updateWeightsGradually again during an update, reset the start weights to the current weights, * if necessary. Time travel elements commented out. */ function _startGradualWeightChange( uint256 startTime, uint256 endTime, uint256[] memory startWeights, uint256[] memory endWeights, IERC20[] memory tokens ) internal virtual { uint256 normalizedSum = 0; bytes32 tokenState; for (uint256 i = 0; i < endWeights.length; i++) { uint256 endWeight = endWeights[i]; _require(endWeight >= _MIN_WEIGHT, Errors.MIN_WEIGHT); IERC20 token = tokens[i]; // Tokens with more than 18 decimals are not supported // Scaling calculations must be exact/lossless // Store decimal difference instead of actual scaling factor _tokenState[token] = tokenState .insertUint64(startWeights[i].compress64(), _START_WEIGHT_OFFSET) .insertUint32(endWeight.compress32(), _END_WEIGHT_OFFSET) .insertUint5(uint256(18).sub(ERC20(address(token)).decimals()), _DECIMAL_DIFF_OFFSET); normalizedSum = normalizedSum.add(endWeight); } // Ensure that the normalized weights sum to ONE _require(normalizedSum == FixedPoint.ONE, Errors.NORMALIZED_WEIGHT_INVARIANT); _setMiscData( _getMiscData().insertUint32(startTime, _START_TIME_OFFSET).insertUint32(endTime, _END_TIME_OFFSET) ); emit GradualWeightUpdateScheduled(startTime, endTime, startWeights, endWeights); } function _readScalingFactor(bytes32 tokenState) private pure returns (uint256) { uint256 decimalsDifference = tokenState.decodeUint5(_DECIMAL_DIFF_OFFSET); return FixedPoint.ONE * 10**decimalsDifference; } /** * @dev Extend ownerOnly functions to include the Investment Pool control functions. */ function _isOwnerOnlyAction(bytes32 actionId) internal view override returns (bool) { return (actionId == getActionId(InvestmentPool.updateWeightsGradually.selector)) || (actionId == getActionId(InvestmentPool.setSwapEnabled.selector)) || (actionId == getActionId(InvestmentPool.withdrawCollectedManagementFees.selector)) || super._isOwnerOnlyAction(actionId); } /** * @dev Returns a fixed-point number representing how far along the current weight change is, where 0 means the * change has not yet started, and FixedPoint.ONE means it has fully completed. */ function _calculateWeightChangeProgress() private view returns (uint256) { uint256 currentTime = block.timestamp; bytes32 poolState = _getMiscData(); uint256 startTime = poolState.decodeUint32(_START_TIME_OFFSET); uint256 endTime = poolState.decodeUint32(_END_TIME_OFFSET); if (currentTime >= endTime) { return FixedPoint.ONE; } else if (currentTime <= startTime) { return 0; } uint256 totalSeconds = endTime - startTime; uint256 secondsElapsed = currentTime - startTime; // In the degenerate case of a zero duration change, consider it completed (and avoid division by zero) return secondsElapsed.divDown(totalSeconds); } function _interpolateWeight(bytes32 tokenData, uint256 pctProgress) private pure returns (uint256 finalWeight) { uint256 startWeight = tokenData.decodeUint64(_START_WEIGHT_OFFSET).uncompress64(); uint256 endWeight = tokenData.decodeUint32(_END_WEIGHT_OFFSET).uncompress32(); if (pctProgress == 0 || startWeight == endWeight) return startWeight; if (pctProgress >= FixedPoint.ONE) return endWeight; if (startWeight > endWeight) { uint256 weightDelta = pctProgress.mulDown(startWeight - endWeight); return startWeight - weightDelta; } else { uint256 weightDelta = pctProgress.mulDown(endWeight - startWeight); return startWeight + weightDelta; } } function _getTokenData(IERC20 token) private view returns (bytes32 tokenData) { tokenData = _tokenState[token]; // A valid token can't be zero (must have non-zero weights) _require(tokenData != 0, Errors.INVALID_TOKEN); } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; pragma experimental ABIEncoderV2; import "@balancer-labs/v2-solidity-utils/contracts/math/FixedPoint.sol"; import "@balancer-labs/v2-solidity-utils/contracts/helpers/InputHelpers.sol"; import "@balancer-labs/v2-pool-utils/contracts/BaseMinimalSwapInfoPool.sol"; import "./WeightedMath.sol"; import "./WeightedPoolUserDataHelpers.sol"; /** * @dev Base class for WeightedPools containing swap, join and exit logic, but leaving storage and management of * the weights to subclasses. Derived contracts can choose to make weights immutable, mutable, or even dynamic * based on local or external logic. */ abstract contract BaseWeightedPool is BaseMinimalSwapInfoPool, WeightedMath { using FixedPoint for uint256; using WeightedPoolUserDataHelpers for bytes; uint256 private _lastInvariant; // For backwards compatibility, make sure new join and exit kinds are added at the end of the enum. enum JoinKind { INIT, EXACT_TOKENS_IN_FOR_BPT_OUT, TOKEN_IN_FOR_EXACT_BPT_OUT, ALL_TOKENS_IN_FOR_EXACT_BPT_OUT } enum ExitKind { EXACT_BPT_IN_FOR_ONE_TOKEN_OUT, EXACT_BPT_IN_FOR_TOKENS_OUT, BPT_IN_FOR_EXACT_TOKENS_OUT, MANAGEMENT_FEE_TOKENS_OUT // for InvestmentPool } constructor( IVault vault, string memory name, string memory symbol, IERC20[] memory tokens, address[] memory assetManagers, uint256 swapFeePercentage, uint256 pauseWindowDuration, uint256 bufferPeriodDuration, address owner ) BasePool( vault, // Given BaseMinimalSwapInfoPool supports both of these specializations, and this Pool never registers or // deregisters any tokens after construction, picking Two Token when the Pool only has two tokens is free // gas savings. tokens.length == 2 ? IVault.PoolSpecialization.TWO_TOKEN : IVault.PoolSpecialization.MINIMAL_SWAP_INFO, name, symbol, tokens, assetManagers, swapFeePercentage, pauseWindowDuration, bufferPeriodDuration, owner ) { // solhint-disable-previous-line no-empty-blocks } // Virtual functions /** * @dev Returns the normalized weight of `token`. Weights are fixed point numbers that sum to FixedPoint.ONE. */ function _getNormalizedWeight(IERC20 token) internal view virtual returns (uint256); /** * @dev Returns all normalized weights, in the same order as the Pool's tokens. */ function _getNormalizedWeights() internal view virtual returns (uint256[] memory); /** * @dev Returns all normalized weights, in the same order as the Pool's tokens, along with the index of the token * with the highest weight. */ function _getNormalizedWeightsAndMaxWeightIndex() internal view virtual returns (uint256[] memory, uint256); function getLastInvariant() public view virtual returns (uint256) { return _lastInvariant; } /** * @dev Returns the current value of the invariant. */ function getInvariant() public view returns (uint256) { (, uint256[] memory balances, ) = getVault().getPoolTokens(getPoolId()); // Since the Pool hooks always work with upscaled balances, we manually // upscale here for consistency _upscaleArray(balances, _scalingFactors()); (uint256[] memory normalizedWeights, ) = _getNormalizedWeightsAndMaxWeightIndex(); return WeightedMath._calculateInvariant(normalizedWeights, balances); } function getNormalizedWeights() external view returns (uint256[] memory) { return _getNormalizedWeights(); } // Base Pool handlers // Swap function _onSwapGivenIn( SwapRequest memory swapRequest, uint256 currentBalanceTokenIn, uint256 currentBalanceTokenOut ) internal view virtual override whenNotPaused returns (uint256) { // Swaps are disabled while the contract is paused. return WeightedMath._calcOutGivenIn( currentBalanceTokenIn, _getNormalizedWeight(swapRequest.tokenIn), currentBalanceTokenOut, _getNormalizedWeight(swapRequest.tokenOut), swapRequest.amount ); } function _onSwapGivenOut( SwapRequest memory swapRequest, uint256 currentBalanceTokenIn, uint256 currentBalanceTokenOut ) internal view virtual override whenNotPaused returns (uint256) { // Swaps are disabled while the contract is paused. return WeightedMath._calcInGivenOut( currentBalanceTokenIn, _getNormalizedWeight(swapRequest.tokenIn), currentBalanceTokenOut, _getNormalizedWeight(swapRequest.tokenOut), swapRequest.amount ); } // Initialize function _onInitializePool( bytes32, address, address, uint256[] memory scalingFactors, bytes memory userData ) internal virtual override whenNotPaused returns (uint256, uint256[] memory) { // It would be strange for the Pool to be paused before it is initialized, but for consistency we prevent // initialization in this case. JoinKind kind = userData.joinKind(); _require(kind == JoinKind.INIT, Errors.UNINITIALIZED); uint256[] memory amountsIn = userData.initialAmountsIn(); InputHelpers.ensureInputLengthMatch(_getTotalTokens(), amountsIn.length); _upscaleArray(amountsIn, scalingFactors); (uint256[] memory normalizedWeights, ) = _getNormalizedWeightsAndMaxWeightIndex(); uint256 invariantAfterJoin = WeightedMath._calculateInvariant(normalizedWeights, amountsIn); // Set the initial BPT to the value of the invariant times the number of tokens. This makes BPT supply more // consistent in Pools with similar compositions but different number of tokens. uint256 bptAmountOut = Math.mul(invariantAfterJoin, _getTotalTokens()); _lastInvariant = invariantAfterJoin; return (bptAmountOut, amountsIn); } // Join function _onJoinPool( bytes32, address, address, uint256[] memory balances, uint256, uint256 protocolSwapFeePercentage, uint256[] memory scalingFactors, bytes memory userData ) internal virtual override whenNotPaused returns ( uint256, uint256[] memory, uint256[] memory ) { // All joins are disabled while the contract is paused. (uint256[] memory normalizedWeights, uint256 maxWeightTokenIndex) = _getNormalizedWeightsAndMaxWeightIndex(); // Due protocol swap fee amounts are computed by measuring the growth of the invariant between the previous join // or exit event and now - the invariant's growth is due exclusively to swap fees. This avoids spending gas // computing them on each individual swap uint256 invariantBeforeJoin = WeightedMath._calculateInvariant(normalizedWeights, balances); uint256[] memory dueProtocolFeeAmounts = _getDueProtocolFeeAmounts( balances, normalizedWeights, maxWeightTokenIndex, _lastInvariant, invariantBeforeJoin, protocolSwapFeePercentage ); // Update current balances by subtracting the protocol fee amounts _mutateAmounts(balances, dueProtocolFeeAmounts, FixedPoint.sub); (uint256 bptAmountOut, uint256[] memory amountsIn) = _doJoin( balances, normalizedWeights, scalingFactors, userData ); // Update the invariant with the balances the Pool will have after the join, in order to compute the // protocol swap fee amounts due in future joins and exits. _lastInvariant = _invariantAfterJoin(balances, amountsIn, normalizedWeights); return (bptAmountOut, amountsIn, dueProtocolFeeAmounts); } function _doJoin( uint256[] memory balances, uint256[] memory normalizedWeights, uint256[] memory scalingFactors, bytes memory userData ) internal returns (uint256, uint256[] memory) { JoinKind kind = userData.joinKind(); if (kind == JoinKind.EXACT_TOKENS_IN_FOR_BPT_OUT) { return _joinExactTokensInForBPTOut(balances, normalizedWeights, scalingFactors, userData); } else if (kind == JoinKind.TOKEN_IN_FOR_EXACT_BPT_OUT) { return _joinTokenInForExactBPTOut(balances, normalizedWeights, userData); } else if (kind == JoinKind.ALL_TOKENS_IN_FOR_EXACT_BPT_OUT) { return _joinAllTokensInForExactBPTOut(balances, userData); } else { _revert(Errors.UNHANDLED_JOIN_KIND); } } function _joinExactTokensInForBPTOut( uint256[] memory balances, uint256[] memory normalizedWeights, uint256[] memory scalingFactors, bytes memory userData ) private returns (uint256, uint256[] memory) { (uint256[] memory amountsIn, uint256 minBPTAmountOut) = userData.exactTokensInForBptOut(); InputHelpers.ensureInputLengthMatch(_getTotalTokens(), amountsIn.length); _upscaleArray(amountsIn, scalingFactors); (uint256 bptAmountOut, uint256[] memory swapFees) = WeightedMath._calcBptOutGivenExactTokensIn( balances, normalizedWeights, amountsIn, totalSupply(), getSwapFeePercentage() ); // Note that swapFees is already upscaled _processSwapFeeAmounts(swapFees); _require(bptAmountOut >= minBPTAmountOut, Errors.BPT_OUT_MIN_AMOUNT); return (bptAmountOut, amountsIn); } function _joinTokenInForExactBPTOut( uint256[] memory balances, uint256[] memory normalizedWeights, bytes memory userData ) private returns (uint256, uint256[] memory) { (uint256 bptAmountOut, uint256 tokenIndex) = userData.tokenInForExactBptOut(); // Note that there is no maximum amountIn parameter: this is handled by `IVault.joinPool`. _require(tokenIndex < _getTotalTokens(), Errors.OUT_OF_BOUNDS); (uint256 amountIn, uint256 swapFee) = WeightedMath._calcTokenInGivenExactBptOut( balances[tokenIndex], normalizedWeights[tokenIndex], bptAmountOut, totalSupply(), getSwapFeePercentage() ); // Note that swapFee is already upscaled _processSwapFeeAmount(tokenIndex, swapFee); // We join in a single token, so we initialize amountsIn with zeros uint256[] memory amountsIn = new uint256[](_getTotalTokens()); // And then assign the result to the selected token amountsIn[tokenIndex] = amountIn; return (bptAmountOut, amountsIn); } function _joinAllTokensInForExactBPTOut(uint256[] memory balances, bytes memory userData) private view returns (uint256, uint256[] memory) { uint256 bptAmountOut = userData.allTokensInForExactBptOut(); // Note that there is no maximum amountsIn parameter: this is handled by `IVault.joinPool`. uint256[] memory amountsIn = WeightedMath._calcAllTokensInGivenExactBptOut( balances, bptAmountOut, totalSupply() ); return (bptAmountOut, amountsIn); } // Exit function _onExitPool( bytes32, address, address, uint256[] memory balances, uint256, uint256 protocolSwapFeePercentage, uint256[] memory scalingFactors, bytes memory userData ) internal virtual override returns ( uint256 bptAmountIn, uint256[] memory amountsOut, uint256[] memory dueProtocolFeeAmounts ) { (uint256[] memory normalizedWeights, uint256 maxWeightTokenIndex) = _getNormalizedWeightsAndMaxWeightIndex(); // Exits are not completely disabled while the contract is paused: proportional exits (exact BPT in for tokens // out) remain functional. if (_isNotPaused()) { // Due protocol swap fee amounts are computed by measuring the growth of the invariant between the previous // join or exit event and now - the invariant's growth is due exclusively to swap fees. This avoids // spending gas calculating the fees on each individual swap. uint256 invariantBeforeExit = WeightedMath._calculateInvariant(normalizedWeights, balances); dueProtocolFeeAmounts = _getDueProtocolFeeAmounts( balances, normalizedWeights, maxWeightTokenIndex, _lastInvariant, invariantBeforeExit, protocolSwapFeePercentage ); // Update current balances by subtracting the protocol fee amounts _mutateAmounts(balances, dueProtocolFeeAmounts, FixedPoint.sub); } else { // If the contract is paused, swap protocol fee amounts are not charged to avoid extra calculations and // reduce the potential for errors. dueProtocolFeeAmounts = new uint256[](_getTotalTokens()); } (bptAmountIn, amountsOut) = _doExit(balances, normalizedWeights, scalingFactors, userData); // Update the invariant with the balances the Pool will have after the exit, in order to compute the // protocol swap fees due in future joins and exits. _lastInvariant = _invariantAfterExit(balances, amountsOut, normalizedWeights); return (bptAmountIn, amountsOut, dueProtocolFeeAmounts); } function _doExit( uint256[] memory balances, uint256[] memory normalizedWeights, uint256[] memory scalingFactors, bytes memory userData ) internal returns (uint256, uint256[] memory) { ExitKind kind = userData.exitKind(); if (kind == ExitKind.EXACT_BPT_IN_FOR_ONE_TOKEN_OUT) { return _exitExactBPTInForTokenOut(balances, normalizedWeights, userData); } else if (kind == ExitKind.EXACT_BPT_IN_FOR_TOKENS_OUT) { return _exitExactBPTInForTokensOut(balances, userData); } else if (kind == ExitKind.BPT_IN_FOR_EXACT_TOKENS_OUT) { return _exitBPTInForExactTokensOut(balances, normalizedWeights, scalingFactors, userData); } else { _revert(Errors.UNHANDLED_EXIT_KIND); } } function _exitExactBPTInForTokenOut( uint256[] memory balances, uint256[] memory normalizedWeights, bytes memory userData ) private whenNotPaused returns (uint256, uint256[] memory) { // This exit function is disabled if the contract is paused. (uint256 bptAmountIn, uint256 tokenIndex) = userData.exactBptInForTokenOut(); // Note that there is no minimum amountOut parameter: this is handled by `IVault.exitPool`. _require(tokenIndex < _getTotalTokens(), Errors.OUT_OF_BOUNDS); (uint256 amountOut, uint256 swapFee) = WeightedMath._calcTokenOutGivenExactBptIn( balances[tokenIndex], normalizedWeights[tokenIndex], bptAmountIn, totalSupply(), getSwapFeePercentage() ); // This is an exceptional situation in which the fee is charged on a token out instead of a token in. // Note that swapFee is already upscaled. _processSwapFeeAmount(tokenIndex, swapFee); // We exit in a single token, so we initialize amountsOut with zeros uint256[] memory amountsOut = new uint256[](_getTotalTokens()); // And then assign the result to the selected token amountsOut[tokenIndex] = amountOut; return (bptAmountIn, amountsOut); } function _exitExactBPTInForTokensOut(uint256[] memory balances, bytes memory userData) private view returns (uint256, uint256[] memory) { // This exit function is the only one that is not disabled if the contract is paused: it remains unrestricted // in an attempt to provide users with a mechanism to retrieve their tokens in case of an emergency. // This particular exit function is the only one that remains available because it is the simplest one, and // therefore the one with the lowest likelihood of errors. uint256 bptAmountIn = userData.exactBptInForTokensOut(); // Note that there is no minimum amountOut parameter: this is handled by `IVault.exitPool`. uint256[] memory amountsOut = WeightedMath._calcTokensOutGivenExactBptIn(balances, bptAmountIn, totalSupply()); return (bptAmountIn, amountsOut); } function _exitBPTInForExactTokensOut( uint256[] memory balances, uint256[] memory normalizedWeights, uint256[] memory scalingFactors, bytes memory userData ) private whenNotPaused returns (uint256, uint256[] memory) { // This exit function is disabled if the contract is paused. (uint256[] memory amountsOut, uint256 maxBPTAmountIn) = userData.bptInForExactTokensOut(); InputHelpers.ensureInputLengthMatch(amountsOut.length, _getTotalTokens()); _upscaleArray(amountsOut, scalingFactors); (uint256 bptAmountIn, uint256[] memory swapFees) = WeightedMath._calcBptInGivenExactTokensOut( balances, normalizedWeights, amountsOut, totalSupply(), getSwapFeePercentage() ); _require(bptAmountIn <= maxBPTAmountIn, Errors.BPT_IN_MAX_AMOUNT); // This is an exceptional situation in which the fee is charged on a token out instead of a token in. // Note that swapFee is already upscaled. _processSwapFeeAmounts(swapFees); return (bptAmountIn, amountsOut); } // Helpers function _getDueProtocolFeeAmounts( uint256[] memory balances, uint256[] memory normalizedWeights, uint256 maxWeightTokenIndex, uint256 previousInvariant, uint256 currentInvariant, uint256 protocolSwapFeePercentage ) private view returns (uint256[] memory) { // Initialize with zeros uint256[] memory dueProtocolFeeAmounts = new uint256[](_getTotalTokens()); // Early return if the protocol swap fee percentage is zero, saving gas. if (protocolSwapFeePercentage == 0) { return dueProtocolFeeAmounts; } // The protocol swap fees are always paid using the token with the largest weight in the Pool. As this is the // token that is expected to have the largest balance, using it to pay fees should not unbalance the Pool. dueProtocolFeeAmounts[maxWeightTokenIndex] = WeightedMath._calcDueTokenProtocolSwapFeeAmount( balances[maxWeightTokenIndex], normalizedWeights[maxWeightTokenIndex], previousInvariant, currentInvariant, protocolSwapFeePercentage ); return dueProtocolFeeAmounts; } /** * @dev Returns the value of the invariant given `balances`, assuming they are increased by `amountsIn`. All * amounts are expected to be upscaled. */ function _invariantAfterJoin( uint256[] memory balances, uint256[] memory amountsIn, uint256[] memory normalizedWeights ) private view returns (uint256) { _mutateAmounts(balances, amountsIn, FixedPoint.add); return WeightedMath._calculateInvariant(normalizedWeights, balances); } function _invariantAfterExit( uint256[] memory balances, uint256[] memory amountsOut, uint256[] memory normalizedWeights ) private view returns (uint256) { _mutateAmounts(balances, amountsOut, FixedPoint.sub); return WeightedMath._calculateInvariant(normalizedWeights, balances); } /** * @dev Mutates `amounts` by applying `mutation` with each entry in `arguments`. * * Equivalent to `amounts = amounts.map(mutation)`. */ function _mutateAmounts( uint256[] memory toMutate, uint256[] memory arguments, function(uint256, uint256) pure returns (uint256) mutation ) private view { for (uint256 i = 0; i < _getTotalTokens(); ++i) { toMutate[i] = mutation(toMutate[i], arguments[i]); } } /** * @dev This function returns the appreciation of one BPT relative to the * underlying tokens. This starts at 1 when the pool is created and grows over time */ function getRate() public view returns (uint256) { // The initial BPT supply is equal to the invariant times the number of tokens. return Math.mul(getInvariant(), _getTotalTokens()).divDown(totalSupply()); } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; import "./LogExpMath.sol"; import "../helpers/BalancerErrors.sol"; /* solhint-disable private-vars-leading-underscore */ library FixedPoint { uint256 internal constant ONE = 1e18; // 18 decimal places uint256 internal constant MAX_POW_RELATIVE_ERROR = 10000; // 10^(-14) // Minimum base for the power function when the exponent is 'free' (larger than ONE). uint256 internal constant MIN_POW_BASE_FREE_EXPONENT = 0.7e18; function add(uint256 a, uint256 b) internal pure returns (uint256) { // Fixed Point addition is the same as regular checked addition uint256 c = a + b; _require(c >= a, Errors.ADD_OVERFLOW); return c; } function sub(uint256 a, uint256 b) internal pure returns (uint256) { // Fixed Point addition is the same as regular checked addition _require(b <= a, Errors.SUB_OVERFLOW); uint256 c = a - b; return c; } function mulDown(uint256 a, uint256 b) internal pure returns (uint256) { uint256 product = a * b; _require(a == 0 || product / a == b, Errors.MUL_OVERFLOW); return product / ONE; } function mulUp(uint256 a, uint256 b) internal pure returns (uint256) { uint256 product = a * b; _require(a == 0 || product / a == b, Errors.MUL_OVERFLOW); if (product == 0) { return 0; } else { // The traditional divUp formula is: // divUp(x, y) := (x + y - 1) / y // To avoid intermediate overflow in the addition, we distribute the division and get: // divUp(x, y) := (x - 1) / y + 1 // Note that this requires x != 0, which we already tested for. return ((product - 1) / ONE) + 1; } } function divDown(uint256 a, uint256 b) internal pure returns (uint256) { _require(b != 0, Errors.ZERO_DIVISION); if (a == 0) { return 0; } else { uint256 aInflated = a * ONE; _require(aInflated / a == ONE, Errors.DIV_INTERNAL); // mul overflow return aInflated / b; } } function divUp(uint256 a, uint256 b) internal pure returns (uint256) { _require(b != 0, Errors.ZERO_DIVISION); if (a == 0) { return 0; } else { uint256 aInflated = a * ONE; _require(aInflated / a == ONE, Errors.DIV_INTERNAL); // mul overflow // The traditional divUp formula is: // divUp(x, y) := (x + y - 1) / y // To avoid intermediate overflow in the addition, we distribute the division and get: // divUp(x, y) := (x - 1) / y + 1 // Note that this requires x != 0, which we already tested for. return ((aInflated - 1) / b) + 1; } } /** * @dev Returns x^y, assuming both are fixed point numbers, rounding down. The result is guaranteed to not be above * the true value (that is, the error function expected - actual is always positive). */ function powDown(uint256 x, uint256 y) internal pure returns (uint256) { uint256 raw = LogExpMath.pow(x, y); uint256 maxError = add(mulUp(raw, MAX_POW_RELATIVE_ERROR), 1); if (raw < maxError) { return 0; } else { return sub(raw, maxError); } } /** * @dev Returns x^y, assuming both are fixed point numbers, rounding up. The result is guaranteed to not be below * the true value (that is, the error function expected - actual is always negative). */ function powUp(uint256 x, uint256 y) internal pure returns (uint256) { uint256 raw = LogExpMath.pow(x, y); uint256 maxError = add(mulUp(raw, MAX_POW_RELATIVE_ERROR), 1); return add(raw, maxError); } /** * @dev Returns the complement of a value (1 - x), capped to 0 if x is larger than 1. * * Useful when computing the complement for values with some level of relative error, as it strips this error and * prevents intermediate negative values. */ function complement(uint256 x) internal pure returns (uint256) { return (x < ONE) ? (ONE - x) : 0; } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; import "../openzeppelin/IERC20.sol"; import "./BalancerErrors.sol"; library InputHelpers { function ensureInputLengthMatch(uint256 a, uint256 b) internal pure { _require(a == b, Errors.INPUT_LENGTH_MISMATCH); } function ensureInputLengthMatch( uint256 a, uint256 b, uint256 c ) internal pure { _require(a == b && b == c, Errors.INPUT_LENGTH_MISMATCH); } function ensureArrayIsSorted(IERC20[] memory array) internal pure { address[] memory addressArray; // solhint-disable-next-line no-inline-assembly assembly { addressArray := array } ensureArrayIsSorted(addressArray); } function ensureArrayIsSorted(address[] memory array) internal pure { if (array.length < 2) { return; } address previous = array[0]; for (uint256 i = 1; i < array.length; ++i) { address current = array[i]; _require(previous < current, Errors.UNSORTED_ARRAY); previous = current; } } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; pragma experimental ABIEncoderV2; import "./BasePool.sol"; import "@balancer-labs/v2-vault/contracts/interfaces/IMinimalSwapInfoPool.sol"; /** * @dev Extension of `BasePool`, adding a handler for `IMinimalSwapInfoPool.onSwap`. * * Derived contracts must call `BasePool`'s constructor, and implement `_onSwapGivenIn` and `_onSwapGivenOut` along with * `BasePool`'s virtual functions. Inheriting from this contract lets derived contracts choose the Two Token or Minimal * Swap Info specialization settings. */ abstract contract BaseMinimalSwapInfoPool is IMinimalSwapInfoPool, BasePool { // Swap Hooks function onSwap( SwapRequest memory request, uint256 balanceTokenIn, uint256 balanceTokenOut ) public virtual override onlyVault(request.poolId) returns (uint256) { uint256 scalingFactorTokenIn = _scalingFactor(request.tokenIn); uint256 scalingFactorTokenOut = _scalingFactor(request.tokenOut); if (request.kind == IVault.SwapKind.GIVEN_IN) { // Fees are subtracted before scaling, to reduce the complexity of the rounding direction analysis. uint256 amountInMinusSwapFees = _subtractSwapFeeAmount(request.amount); // Process the (upscaled!) swap fee. uint256 swapFee = request.amount - amountInMinusSwapFees; _processSwapFeeAmount(request.tokenIn, _upscale(swapFee, scalingFactorTokenIn)); request.amount = amountInMinusSwapFees; // All token amounts are upscaled. balanceTokenIn = _upscale(balanceTokenIn, scalingFactorTokenIn); balanceTokenOut = _upscale(balanceTokenOut, scalingFactorTokenOut); request.amount = _upscale(request.amount, scalingFactorTokenIn); uint256 amountOut = _onSwapGivenIn(request, balanceTokenIn, balanceTokenOut); // amountOut tokens are exiting the Pool, so we round down. return _downscaleDown(amountOut, scalingFactorTokenOut); } else { // All token amounts are upscaled. balanceTokenIn = _upscale(balanceTokenIn, scalingFactorTokenIn); balanceTokenOut = _upscale(balanceTokenOut, scalingFactorTokenOut); request.amount = _upscale(request.amount, scalingFactorTokenOut); uint256 amountIn = _onSwapGivenOut(request, balanceTokenIn, balanceTokenOut); // amountIn tokens are entering the Pool, so we round up. amountIn = _downscaleUp(amountIn, scalingFactorTokenIn); // Fees are added after scaling happens, to reduce the complexity of the rounding direction analysis. uint256 amountInPlusSwapFees = _addSwapFeeAmount(amountIn); // Process the (upscaled!) swap fee. uint256 swapFee = amountInPlusSwapFees - amountIn; _processSwapFeeAmount(request.tokenIn, _upscale(swapFee, scalingFactorTokenIn)); return amountInPlusSwapFees; } } /* * @dev Called when a swap with the Pool occurs, where the amount of tokens entering the Pool is known. * * Returns the amount of tokens that will be taken from the Pool in return. * * All amounts inside `swapRequest`, `balanceTokenIn` and `balanceTokenOut` are upscaled. The swap fee has already * been deducted from `swapRequest.amount`. * * The return value is also considered upscaled, and will be downscaled (rounding down) before returning it to the * Vault. */ function _onSwapGivenIn( SwapRequest memory swapRequest, uint256 balanceTokenIn, uint256 balanceTokenOut ) internal virtual returns (uint256); /* * @dev Called when a swap with the Pool occurs, where the amount of tokens exiting the Pool is known. * * Returns the amount of tokens that will be granted to the Pool in return. * * All amounts inside `swapRequest`, `balanceTokenIn` and `balanceTokenOut` are upscaled. * * The return value is also considered upscaled, and will be downscaled (rounding up) before applying the swap fee * and returning it to the Vault. */ function _onSwapGivenOut( SwapRequest memory swapRequest, uint256 balanceTokenIn, uint256 balanceTokenOut ) internal virtual returns (uint256); /** * @dev Called whenever a swap fee is charged. Implementations should call their parents via super, to ensure all * implementations in the inheritance tree are called. * * Callers must call one of the three `_processSwapFeeAmount` functions when swap fees are computed, * and upscale `amount`. */ function _processSwapFeeAmount( uint256, /*index*/ uint256 /*amount*/ ) internal virtual {} function _processSwapFeeAmount(IERC20 token, uint256 amount) internal { _processSwapFeeAmount(_tokenAddressToIndex(token), amount); } function _processSwapFeeAmounts(uint256[] memory amounts) internal { InputHelpers.ensureInputLengthMatch(amounts.length, _getTotalTokens()); for (uint256 i = 0; i < _getTotalTokens(); ++i) { _processSwapFeeAmount(i, amounts[i]); } } /** * @dev Returns the index of `token` in the Pool's token array (i.e. the one `vault.getPoolTokens()` would return). * * A trivial (and incorrect!) implementation is already provided for Pools that don't override * `_processSwapFeeAmount` and skip the entire feature. However, Pools that do override `_processSwapFeeAmount` * *must* override this function with a meaningful implementation. */ function _tokenAddressToIndex( IERC20 /*token*/ ) internal view virtual returns (uint256) { return 0; } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; import "@balancer-labs/v2-solidity-utils/contracts/math/FixedPoint.sol"; import "@balancer-labs/v2-solidity-utils/contracts/math/Math.sol"; import "@balancer-labs/v2-solidity-utils/contracts/helpers/InputHelpers.sol"; /* solhint-disable private-vars-leading-underscore */ contract WeightedMath { using FixedPoint for uint256; // A minimum normalized weight imposes a maximum weight ratio. We need this due to limitations in the // implementation of the power function, as these ratios are often exponents. uint256 internal constant _MIN_WEIGHT = 0.01e18; // Having a minimum normalized weight imposes a limit on the maximum number of tokens; // i.e., the largest possible pool is one where all tokens have exactly the minimum weight. uint256 internal constant _MAX_WEIGHTED_TOKENS = 100; // Pool limits that arise from limitations in the fixed point power function (and the imposed 1:100 maximum weight // ratio). // Swap limits: amounts swapped may not be larger than this percentage of total balance. uint256 internal constant _MAX_IN_RATIO = 0.3e18; uint256 internal constant _MAX_OUT_RATIO = 0.3e18; // Invariant growth limit: non-proportional joins cannot cause the invariant to increase by more than this ratio. uint256 internal constant _MAX_INVARIANT_RATIO = 3e18; // Invariant shrink limit: non-proportional exits cannot cause the invariant to decrease by less than this ratio. uint256 internal constant _MIN_INVARIANT_RATIO = 0.7e18; // Invariant is used to collect protocol swap fees by comparing its value between two times. // So we can round always to the same direction. It is also used to initiate the BPT amount // and, because there is a minimum BPT, we round down the invariant. function _calculateInvariant(uint256[] memory normalizedWeights, uint256[] memory balances) internal pure returns (uint256 invariant) { /********************************************************************************************** // invariant _____ // // wi = weight index i | | wi // // bi = balance index i | | bi ^ = i // // i = invariant // **********************************************************************************************/ invariant = FixedPoint.ONE; for (uint256 i = 0; i < normalizedWeights.length; i++) { invariant = invariant.mulDown(balances[i].powDown(normalizedWeights[i])); } _require(invariant > 0, Errors.ZERO_INVARIANT); } // Computes how many tokens can be taken out of a pool if `amountIn` are sent, given the // current balances and weights. function _calcOutGivenIn( uint256 balanceIn, uint256 weightIn, uint256 balanceOut, uint256 weightOut, uint256 amountIn ) internal pure returns (uint256) { /********************************************************************************************** // outGivenIn // // aO = amountOut // // bO = balanceOut // // bI = balanceIn / / bI \ (wI / wO) \ // // aI = amountIn aO = bO * | 1 - | -------------------------- | ^ | // // wI = weightIn \ \ ( bI + aI ) / / // // wO = weightOut // **********************************************************************************************/ // Amount out, so we round down overall. // The multiplication rounds down, and the subtrahend (power) rounds up (so the base rounds up too). // Because bI / (bI + aI) <= 1, the exponent rounds down. // Cannot exceed maximum in ratio _require(amountIn <= balanceIn.mulDown(_MAX_IN_RATIO), Errors.MAX_IN_RATIO); uint256 denominator = balanceIn.add(amountIn); uint256 base = balanceIn.divUp(denominator); uint256 exponent = weightIn.divDown(weightOut); uint256 power = base.powUp(exponent); return balanceOut.mulDown(power.complement()); } // Computes how many tokens must be sent to a pool in order to take `amountOut`, given the // current balances and weights. function _calcInGivenOut( uint256 balanceIn, uint256 weightIn, uint256 balanceOut, uint256 weightOut, uint256 amountOut ) internal pure returns (uint256) { /********************************************************************************************** // inGivenOut // // aO = amountOut // // bO = balanceOut // // bI = balanceIn / / bO \ (wO / wI) \ // // aI = amountIn aI = bI * | | -------------------------- | ^ - 1 | // // wI = weightIn \ \ ( bO - aO ) / / // // wO = weightOut // **********************************************************************************************/ // Amount in, so we round up overall. // The multiplication rounds up, and the power rounds up (so the base rounds up too). // Because b0 / (b0 - a0) >= 1, the exponent rounds up. // Cannot exceed maximum out ratio _require(amountOut <= balanceOut.mulDown(_MAX_OUT_RATIO), Errors.MAX_OUT_RATIO); uint256 base = balanceOut.divUp(balanceOut.sub(amountOut)); uint256 exponent = weightOut.divUp(weightIn); uint256 power = base.powUp(exponent); // Because the base is larger than one (and the power rounds up), the power should always be larger than one, so // the following subtraction should never revert. uint256 ratio = power.sub(FixedPoint.ONE); return balanceIn.mulUp(ratio); } function _calcBptOutGivenExactTokensIn( uint256[] memory balances, uint256[] memory normalizedWeights, uint256[] memory amountsIn, uint256 bptTotalSupply, uint256 swapFeePercentage ) internal pure returns (uint256, uint256[] memory) { // BPT out, so we round down overall. uint256[] memory balanceRatiosWithFee = new uint256[](amountsIn.length); uint256 invariantRatioWithFees = 0; for (uint256 i = 0; i < balances.length; i++) { balanceRatiosWithFee[i] = balances[i].add(amountsIn[i]).divDown(balances[i]); invariantRatioWithFees = invariantRatioWithFees.add(balanceRatiosWithFee[i].mulDown(normalizedWeights[i])); } (uint256 invariantRatio, uint256[] memory swapFees) = _computeJoinExactTokensInInvariantRatio( balances, normalizedWeights, amountsIn, balanceRatiosWithFee, invariantRatioWithFees, swapFeePercentage ); uint256 bptOut = (invariantRatio > FixedPoint.ONE) ? bptTotalSupply.mulDown(invariantRatio.sub(FixedPoint.ONE)) : 0; return (bptOut, swapFees); } /** * @dev Intermediate function to avoid stack-too-deep errors. */ function _computeJoinExactTokensInInvariantRatio( uint256[] memory balances, uint256[] memory normalizedWeights, uint256[] memory amountsIn, uint256[] memory balanceRatiosWithFee, uint256 invariantRatioWithFees, uint256 swapFeePercentage ) private pure returns (uint256 invariantRatio, uint256[] memory swapFees) { // Swap fees are charged on all tokens that are being added in a larger proportion than the overall invariant // increase. swapFees = new uint256[](amountsIn.length); invariantRatio = FixedPoint.ONE; for (uint256 i = 0; i < balances.length; i++) { uint256 amountInWithoutFee; if (balanceRatiosWithFee[i] > invariantRatioWithFees) { uint256 nonTaxableAmount = balances[i].mulDown(invariantRatioWithFees.sub(FixedPoint.ONE)); uint256 taxableAmount = amountsIn[i].sub(nonTaxableAmount); uint256 swapFee = taxableAmount.mulUp(swapFeePercentage); amountInWithoutFee = nonTaxableAmount.add(taxableAmount.sub(swapFee)); swapFees[i] = swapFee; } else { amountInWithoutFee = amountsIn[i]; } uint256 balanceRatio = balances[i].add(amountInWithoutFee).divDown(balances[i]); invariantRatio = invariantRatio.mulDown(balanceRatio.powDown(normalizedWeights[i])); } } function _calcTokenInGivenExactBptOut( uint256 balance, uint256 normalizedWeight, uint256 bptAmountOut, uint256 bptTotalSupply, uint256 swapFeePercentage ) internal pure returns (uint256 amountIn, uint256 swapFee) { /****************************************************************************************** // tokenInForExactBPTOut // // a = amountIn // // b = balance / / totalBPT + bptOut \ (1 / w) \ // // bptOut = bptAmountOut a = b * | | -------------------------- | ^ - 1 | // // bpt = totalBPT \ \ totalBPT / / // // w = weight // ******************************************************************************************/ // Token in, so we round up overall. // Calculate the factor by which the invariant will increase after minting BPTAmountOut uint256 invariantRatio = bptTotalSupply.add(bptAmountOut).divUp(bptTotalSupply); _require(invariantRatio <= _MAX_INVARIANT_RATIO, Errors.MAX_OUT_BPT_FOR_TOKEN_IN); // Calculate by how much the token balance has to increase to match the invariantRatio uint256 balanceRatio = invariantRatio.powUp(FixedPoint.ONE.divUp(normalizedWeight)); uint256 amountInWithoutFee = balance.mulUp(balanceRatio.sub(FixedPoint.ONE)); // We can now compute how much extra balance is being deposited and used in virtual swaps, and charge swap fees // accordingly. uint256 taxablePercentage = normalizedWeight.complement(); uint256 taxableAmount = amountInWithoutFee.mulUp(taxablePercentage); uint256 nonTaxableAmount = amountInWithoutFee.sub(taxableAmount); uint256 taxableAmountPlusFees = taxableAmount.divUp(FixedPoint.ONE.sub(swapFeePercentage)); swapFee = taxableAmountPlusFees - taxableAmount; amountIn = nonTaxableAmount.add(taxableAmountPlusFees); } function _calcAllTokensInGivenExactBptOut( uint256[] memory balances, uint256 bptAmountOut, uint256 totalBPT ) internal pure returns (uint256[] memory) { /************************************************************************************ // tokensInForExactBptOut // // (per token) // // aI = amountIn / bptOut \ // // b = balance aI = b * | ------------ | // // bptOut = bptAmountOut \ totalBPT / // // bpt = totalBPT // ************************************************************************************/ // Tokens in, so we round up overall. uint256 bptRatio = bptAmountOut.divUp(totalBPT); uint256[] memory amountsIn = new uint256[](balances.length); for (uint256 i = 0; i < balances.length; i++) { amountsIn[i] = balances[i].mulUp(bptRatio); } return amountsIn; } function _calcBptInGivenExactTokensOut( uint256[] memory balances, uint256[] memory normalizedWeights, uint256[] memory amountsOut, uint256 bptTotalSupply, uint256 swapFeePercentage ) internal pure returns (uint256, uint256[] memory) { // BPT in, so we round up overall. uint256[] memory balanceRatiosWithoutFee = new uint256[](amountsOut.length); uint256 invariantRatioWithoutFees = 0; for (uint256 i = 0; i < balances.length; i++) { balanceRatiosWithoutFee[i] = balances[i].sub(amountsOut[i]).divUp(balances[i]); invariantRatioWithoutFees = invariantRatioWithoutFees.add( balanceRatiosWithoutFee[i].mulUp(normalizedWeights[i]) ); } (uint256 invariantRatio, uint256[] memory swapFees) = _computeExitExactTokensOutInvariantRatio( balances, normalizedWeights, amountsOut, balanceRatiosWithoutFee, invariantRatioWithoutFees, swapFeePercentage ); uint256 bptIn = bptTotalSupply.mulUp(invariantRatio.complement()); return (bptIn, swapFees); } /** * @dev Intermediate function to avoid stack-too-deep errors. */ function _computeExitExactTokensOutInvariantRatio( uint256[] memory balances, uint256[] memory normalizedWeights, uint256[] memory amountsOut, uint256[] memory balanceRatiosWithoutFee, uint256 invariantRatioWithoutFees, uint256 swapFeePercentage ) private pure returns (uint256 invariantRatio, uint256[] memory swapFees) { swapFees = new uint256[](amountsOut.length); invariantRatio = FixedPoint.ONE; for (uint256 i = 0; i < balances.length; i++) { // Swap fees are typically charged on 'token in', but there is no 'token in' here, so we apply it to // 'token out'. This results in slightly larger price impact. uint256 amountOutWithFee; if (invariantRatioWithoutFees > balanceRatiosWithoutFee[i]) { uint256 nonTaxableAmount = balances[i].mulDown(invariantRatioWithoutFees.complement()); uint256 taxableAmount = amountsOut[i].sub(nonTaxableAmount); uint256 taxableAmountPlusFees = taxableAmount.divUp(FixedPoint.ONE.sub(swapFeePercentage)); swapFees[i] = taxableAmountPlusFees - taxableAmount; amountOutWithFee = nonTaxableAmount.add(taxableAmountPlusFees); } else { amountOutWithFee = amountsOut[i]; } uint256 balanceRatio = balances[i].sub(amountOutWithFee).divDown(balances[i]); invariantRatio = invariantRatio.mulDown(balanceRatio.powDown(normalizedWeights[i])); } } function _calcTokenOutGivenExactBptIn( uint256 balance, uint256 normalizedWeight, uint256 bptAmountIn, uint256 bptTotalSupply, uint256 swapFeePercentage ) internal pure returns (uint256 amountOut, uint256 swapFee) { /***************************************************************************************** // exactBPTInForTokenOut // // a = amountOut // // b = balance / / totalBPT - bptIn \ (1 / w) \ // // bptIn = bptAmountIn a = b * | 1 - | -------------------------- | ^ | // // bpt = totalBPT \ \ totalBPT / / // // w = weight // *****************************************************************************************/ // Token out, so we round down overall. The multiplication rounds down, but the power rounds up (so the base // rounds up). Because (totalBPT - bptIn) / totalBPT <= 1, the exponent rounds down. // Calculate the factor by which the invariant will decrease after burning BPTAmountIn uint256 invariantRatio = bptTotalSupply.sub(bptAmountIn).divUp(bptTotalSupply); _require(invariantRatio >= _MIN_INVARIANT_RATIO, Errors.MIN_BPT_IN_FOR_TOKEN_OUT); // Calculate by how much the token balance has to decrease to match invariantRatio uint256 balanceRatio = invariantRatio.powUp(FixedPoint.ONE.divDown(normalizedWeight)); // Because of rounding up, balanceRatio can be greater than one. Using complement prevents reverts. uint256 amountOutWithoutFee = balance.mulDown(balanceRatio.complement()); // We can now compute how much excess balance is being withdrawn as a result of the virtual swaps, which result // in swap fees. uint256 taxablePercentage = normalizedWeight.complement(); // Swap fees are typically charged on 'token in', but there is no 'token in' here, so we apply it // to 'token out'. This results in slightly larger price impact. Fees are rounded up. uint256 taxableAmount = amountOutWithoutFee.mulUp(taxablePercentage); uint256 nonTaxableAmount = amountOutWithoutFee.sub(taxableAmount); swapFee = taxableAmount.mulUp(swapFeePercentage); amountOut = nonTaxableAmount.add(taxableAmount.sub(swapFee)); } function _calcTokensOutGivenExactBptIn( uint256[] memory balances, uint256 bptAmountIn, uint256 totalBPT ) internal pure returns (uint256[] memory) { /********************************************************************************************** // exactBPTInForTokensOut // // (per token) // // aO = amountOut / bptIn \ // // b = balance a0 = b * | --------------------- | // // bptIn = bptAmountIn \ totalBPT / // // bpt = totalBPT // **********************************************************************************************/ // Since we're computing an amount out, we round down overall. This means rounding down on both the // multiplication and division. uint256 bptRatio = bptAmountIn.divDown(totalBPT); uint256[] memory amountsOut = new uint256[](balances.length); for (uint256 i = 0; i < balances.length; i++) { amountsOut[i] = balances[i].mulDown(bptRatio); } return amountsOut; } function _calcDueTokenProtocolSwapFeeAmount( uint256 balance, uint256 normalizedWeight, uint256 previousInvariant, uint256 currentInvariant, uint256 protocolSwapFeePercentage ) internal pure returns (uint256) { /********************************************************************************* /* protocolSwapFeePercentage * balanceToken * ( 1 - (previousInvariant / currentInvariant) ^ (1 / weightToken)) *********************************************************************************/ if (currentInvariant <= previousInvariant) { // This shouldn't happen outside of rounding errors, but have this safeguard nonetheless to prevent the Pool // from entering a locked state in which joins and exits revert while computing accumulated swap fees. return 0; } // We round down to prevent issues in the Pool's accounting, even if it means paying slightly less in protocol // fees to the Vault. // Fee percentage and balance multiplications round down, while the subtrahend (power) rounds up (as does the // base). Because previousInvariant / currentInvariant <= 1, the exponent rounds down. uint256 base = previousInvariant.divUp(currentInvariant); uint256 exponent = FixedPoint.ONE.divDown(normalizedWeight); // Because the exponent is larger than one, the base of the power function has a lower bound. We cap to this // value to avoid numeric issues, which means in the extreme case (where the invariant growth is larger than // 1 / min exponent) the Pool will pay less in protocol fees than it should. base = Math.max(base, FixedPoint.MIN_POW_BASE_FREE_EXPONENT); uint256 power = base.powUp(exponent); uint256 tokenAccruedFees = balance.mulDown(power.complement()); return tokenAccruedFees.mulDown(protocolSwapFeePercentage); } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/IERC20.sol"; import "./BaseWeightedPool.sol"; library WeightedPoolUserDataHelpers { function joinKind(bytes memory self) internal pure returns (BaseWeightedPool.JoinKind) { return abi.decode(self, (BaseWeightedPool.JoinKind)); } function exitKind(bytes memory self) internal pure returns (BaseWeightedPool.ExitKind) { return abi.decode(self, (BaseWeightedPool.ExitKind)); } // Joins function initialAmountsIn(bytes memory self) internal pure returns (uint256[] memory amountsIn) { (, amountsIn) = abi.decode(self, (BaseWeightedPool.JoinKind, uint256[])); } function exactTokensInForBptOut(bytes memory self) internal pure returns (uint256[] memory amountsIn, uint256 minBPTAmountOut) { (, amountsIn, minBPTAmountOut) = abi.decode(self, (BaseWeightedPool.JoinKind, uint256[], uint256)); } function tokenInForExactBptOut(bytes memory self) internal pure returns (uint256 bptAmountOut, uint256 tokenIndex) { (, bptAmountOut, tokenIndex) = abi.decode(self, (BaseWeightedPool.JoinKind, uint256, uint256)); } function allTokensInForExactBptOut(bytes memory self) internal pure returns (uint256 bptAmountOut) { (, bptAmountOut) = abi.decode(self, (BaseWeightedPool.JoinKind, uint256)); } // Exits function exactBptInForTokenOut(bytes memory self) internal pure returns (uint256 bptAmountIn, uint256 tokenIndex) { (, bptAmountIn, tokenIndex) = abi.decode(self, (BaseWeightedPool.ExitKind, uint256, uint256)); } function exactBptInForTokensOut(bytes memory self) internal pure returns (uint256 bptAmountIn) { (, bptAmountIn) = abi.decode(self, (BaseWeightedPool.ExitKind, uint256)); } function bptInForExactTokensOut(bytes memory self) internal pure returns (uint256[] memory amountsOut, uint256 maxBPTAmountIn) { (, amountsOut, maxBPTAmountIn) = abi.decode(self, (BaseWeightedPool.ExitKind, uint256[], uint256)); } }
// SPDX-License-Identifier: MIT // Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated // documentation files (the “Software”), to deal in the Software without restriction, including without limitation the // rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to // permit persons to whom the Software is furnished to do so, subject to the following conditions: // The above copyright notice and this permission notice shall be included in all copies or substantial portions of the // Software. // THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE // WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR // COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR // OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. pragma solidity ^0.7.0; import "../helpers/BalancerErrors.sol"; /* solhint-disable */ /** * @dev Exponentiation and logarithm functions for 18 decimal fixed point numbers (both base and exponent/argument). * * Exponentiation and logarithm with arbitrary bases (x^y and log_x(y)) are implemented by conversion to natural * exponentiation and logarithm (where the base is Euler's number). * * @author Fernando Martinelli - @fernandomartinelli * @author Sergio Yuhjtman - @sergioyuhjtman * @author Daniel Fernandez - @dmf7z */ library LogExpMath { // All fixed point multiplications and divisions are inlined. This means we need to divide by ONE when multiplying // two numbers, and multiply by ONE when dividing them. // All arguments and return values are 18 decimal fixed point numbers. int256 constant ONE_18 = 1e18; // Internally, intermediate values are computed with higher precision as 20 decimal fixed point numbers, and in the // case of ln36, 36 decimals. int256 constant ONE_20 = 1e20; int256 constant ONE_36 = 1e36; // The domain of natural exponentiation is bound by the word size and number of decimals used. // // Because internally the result will be stored using 20 decimals, the largest possible result is // (2^255 - 1) / 10^20, which makes the largest exponent ln((2^255 - 1) / 10^20) = 130.700829182905140221. // The smallest possible result is 10^(-18), which makes largest negative argument // ln(10^(-18)) = -41.446531673892822312. // We use 130.0 and -41.0 to have some safety margin. int256 constant MAX_NATURAL_EXPONENT = 130e18; int256 constant MIN_NATURAL_EXPONENT = -41e18; // Bounds for ln_36's argument. Both ln(0.9) and ln(1.1) can be represented with 36 decimal places in a fixed point // 256 bit integer. int256 constant LN_36_LOWER_BOUND = ONE_18 - 1e17; int256 constant LN_36_UPPER_BOUND = ONE_18 + 1e17; uint256 constant MILD_EXPONENT_BOUND = 2**254 / uint256(ONE_20); // 18 decimal constants int256 constant x0 = 128000000000000000000; // 2ˆ7 int256 constant a0 = 38877084059945950922200000000000000000000000000000000000; // eˆ(x0) (no decimals) int256 constant x1 = 64000000000000000000; // 2ˆ6 int256 constant a1 = 6235149080811616882910000000; // eˆ(x1) (no decimals) // 20 decimal constants int256 constant x2 = 3200000000000000000000; // 2ˆ5 int256 constant a2 = 7896296018268069516100000000000000; // eˆ(x2) int256 constant x3 = 1600000000000000000000; // 2ˆ4 int256 constant a3 = 888611052050787263676000000; // eˆ(x3) int256 constant x4 = 800000000000000000000; // 2ˆ3 int256 constant a4 = 298095798704172827474000; // eˆ(x4) int256 constant x5 = 400000000000000000000; // 2ˆ2 int256 constant a5 = 5459815003314423907810; // eˆ(x5) int256 constant x6 = 200000000000000000000; // 2ˆ1 int256 constant a6 = 738905609893065022723; // eˆ(x6) int256 constant x7 = 100000000000000000000; // 2ˆ0 int256 constant a7 = 271828182845904523536; // eˆ(x7) int256 constant x8 = 50000000000000000000; // 2ˆ-1 int256 constant a8 = 164872127070012814685; // eˆ(x8) int256 constant x9 = 25000000000000000000; // 2ˆ-2 int256 constant a9 = 128402541668774148407; // eˆ(x9) int256 constant x10 = 12500000000000000000; // 2ˆ-3 int256 constant a10 = 113314845306682631683; // eˆ(x10) int256 constant x11 = 6250000000000000000; // 2ˆ-4 int256 constant a11 = 106449445891785942956; // eˆ(x11) /** * @dev Exponentiation (x^y) with unsigned 18 decimal fixed point base and exponent. * * Reverts if ln(x) * y is smaller than `MIN_NATURAL_EXPONENT`, or larger than `MAX_NATURAL_EXPONENT`. */ function pow(uint256 x, uint256 y) internal pure returns (uint256) { if (y == 0) { // We solve the 0^0 indetermination by making it equal one. return uint256(ONE_18); } if (x == 0) { return 0; } // Instead of computing x^y directly, we instead rely on the properties of logarithms and exponentiation to // arrive at that result. In particular, exp(ln(x)) = x, and ln(x^y) = y * ln(x). This means // x^y = exp(y * ln(x)). // The ln function takes a signed value, so we need to make sure x fits in the signed 256 bit range. _require(x < 2**255, Errors.X_OUT_OF_BOUNDS); int256 x_int256 = int256(x); // We will compute y * ln(x) in a single step. Depending on the value of x, we can either use ln or ln_36. In // both cases, we leave the division by ONE_18 (due to fixed point multiplication) to the end. // This prevents y * ln(x) from overflowing, and at the same time guarantees y fits in the signed 256 bit range. _require(y < MILD_EXPONENT_BOUND, Errors.Y_OUT_OF_BOUNDS); int256 y_int256 = int256(y); int256 logx_times_y; if (LN_36_LOWER_BOUND < x_int256 && x_int256 < LN_36_UPPER_BOUND) { int256 ln_36_x = _ln_36(x_int256); // ln_36_x has 36 decimal places, so multiplying by y_int256 isn't as straightforward, since we can't just // bring y_int256 to 36 decimal places, as it might overflow. Instead, we perform two 18 decimal // multiplications and add the results: one with the first 18 decimals of ln_36_x, and one with the // (downscaled) last 18 decimals. logx_times_y = ((ln_36_x / ONE_18) * y_int256 + ((ln_36_x % ONE_18) * y_int256) / ONE_18); } else { logx_times_y = _ln(x_int256) * y_int256; } logx_times_y /= ONE_18; // Finally, we compute exp(y * ln(x)) to arrive at x^y _require( MIN_NATURAL_EXPONENT <= logx_times_y && logx_times_y <= MAX_NATURAL_EXPONENT, Errors.PRODUCT_OUT_OF_BOUNDS ); return uint256(exp(logx_times_y)); } /** * @dev Natural exponentiation (e^x) with signed 18 decimal fixed point exponent. * * Reverts if `x` is smaller than MIN_NATURAL_EXPONENT, or larger than `MAX_NATURAL_EXPONENT`. */ function exp(int256 x) internal pure returns (int256) { _require(x >= MIN_NATURAL_EXPONENT && x <= MAX_NATURAL_EXPONENT, Errors.INVALID_EXPONENT); if (x < 0) { // We only handle positive exponents: e^(-x) is computed as 1 / e^x. We can safely make x positive since it // fits in the signed 256 bit range (as it is larger than MIN_NATURAL_EXPONENT). // Fixed point division requires multiplying by ONE_18. return ((ONE_18 * ONE_18) / exp(-x)); } // First, we use the fact that e^(x+y) = e^x * e^y to decompose x into a sum of powers of two, which we call x_n, // where x_n == 2^(7 - n), and e^x_n = a_n has been precomputed. We choose the first x_n, x0, to equal 2^7 // because all larger powers are larger than MAX_NATURAL_EXPONENT, and therefore not present in the // decomposition. // At the end of this process we will have the product of all e^x_n = a_n that apply, and the remainder of this // decomposition, which will be lower than the smallest x_n. // exp(x) = k_0 * a_0 * k_1 * a_1 * ... + k_n * a_n * exp(remainder), where each k_n equals either 0 or 1. // We mutate x by subtracting x_n, making it the remainder of the decomposition. // The first two a_n (e^(2^7) and e^(2^6)) are too large if stored as 18 decimal numbers, and could cause // intermediate overflows. Instead we store them as plain integers, with 0 decimals. // Additionally, x0 + x1 is larger than MAX_NATURAL_EXPONENT, which means they will not both be present in the // decomposition. // For each x_n, we test if that term is present in the decomposition (if x is larger than it), and if so deduct // it and compute the accumulated product. int256 firstAN; if (x >= x0) { x -= x0; firstAN = a0; } else if (x >= x1) { x -= x1; firstAN = a1; } else { firstAN = 1; // One with no decimal places } // We now transform x into a 20 decimal fixed point number, to have enhanced precision when computing the // smaller terms. x *= 100; // `product` is the accumulated product of all a_n (except a0 and a1), which starts at 20 decimal fixed point // one. Recall that fixed point multiplication requires dividing by ONE_20. int256 product = ONE_20; if (x >= x2) { x -= x2; product = (product * a2) / ONE_20; } if (x >= x3) { x -= x3; product = (product * a3) / ONE_20; } if (x >= x4) { x -= x4; product = (product * a4) / ONE_20; } if (x >= x5) { x -= x5; product = (product * a5) / ONE_20; } if (x >= x6) { x -= x6; product = (product * a6) / ONE_20; } if (x >= x7) { x -= x7; product = (product * a7) / ONE_20; } if (x >= x8) { x -= x8; product = (product * a8) / ONE_20; } if (x >= x9) { x -= x9; product = (product * a9) / ONE_20; } // x10 and x11 are unnecessary here since we have high enough precision already. // Now we need to compute e^x, where x is small (in particular, it is smaller than x9). We use the Taylor series // expansion for e^x: 1 + x + (x^2 / 2!) + (x^3 / 3!) + ... + (x^n / n!). int256 seriesSum = ONE_20; // The initial one in the sum, with 20 decimal places. int256 term; // Each term in the sum, where the nth term is (x^n / n!). // The first term is simply x. term = x; seriesSum += term; // Each term (x^n / n!) equals the previous one times x, divided by n. Since x is a fixed point number, // multiplying by it requires dividing by ONE_20, but dividing by the non-fixed point n values does not. term = ((term * x) / ONE_20) / 2; seriesSum += term; term = ((term * x) / ONE_20) / 3; seriesSum += term; term = ((term * x) / ONE_20) / 4; seriesSum += term; term = ((term * x) / ONE_20) / 5; seriesSum += term; term = ((term * x) / ONE_20) / 6; seriesSum += term; term = ((term * x) / ONE_20) / 7; seriesSum += term; term = ((term * x) / ONE_20) / 8; seriesSum += term; term = ((term * x) / ONE_20) / 9; seriesSum += term; term = ((term * x) / ONE_20) / 10; seriesSum += term; term = ((term * x) / ONE_20) / 11; seriesSum += term; term = ((term * x) / ONE_20) / 12; seriesSum += term; // 12 Taylor terms are sufficient for 18 decimal precision. // We now have the first a_n (with no decimals), and the product of all other a_n present, and the Taylor // approximation of the exponentiation of the remainder (both with 20 decimals). All that remains is to multiply // all three (one 20 decimal fixed point multiplication, dividing by ONE_20, and one integer multiplication), // and then drop two digits to return an 18 decimal value. return (((product * seriesSum) / ONE_20) * firstAN) / 100; } /** * @dev Logarithm (log(arg, base), with signed 18 decimal fixed point base and argument. */ function log(int256 arg, int256 base) internal pure returns (int256) { // This performs a simple base change: log(arg, base) = ln(arg) / ln(base). // Both logBase and logArg are computed as 36 decimal fixed point numbers, either by using ln_36, or by // upscaling. int256 logBase; if (LN_36_LOWER_BOUND < base && base < LN_36_UPPER_BOUND) { logBase = _ln_36(base); } else { logBase = _ln(base) * ONE_18; } int256 logArg; if (LN_36_LOWER_BOUND < arg && arg < LN_36_UPPER_BOUND) { logArg = _ln_36(arg); } else { logArg = _ln(arg) * ONE_18; } // When dividing, we multiply by ONE_18 to arrive at a result with 18 decimal places return (logArg * ONE_18) / logBase; } /** * @dev Natural logarithm (ln(a)) with signed 18 decimal fixed point argument. */ function ln(int256 a) internal pure returns (int256) { // The real natural logarithm is not defined for negative numbers or zero. _require(a > 0, Errors.OUT_OF_BOUNDS); if (LN_36_LOWER_BOUND < a && a < LN_36_UPPER_BOUND) { return _ln_36(a) / ONE_18; } else { return _ln(a); } } /** * @dev Internal natural logarithm (ln(a)) with signed 18 decimal fixed point argument. */ function _ln(int256 a) private pure returns (int256) { if (a < ONE_18) { // Since ln(a^k) = k * ln(a), we can compute ln(a) as ln(a) = ln((1/a)^(-1)) = - ln((1/a)). If a is less // than one, 1/a will be greater than one, and this if statement will not be entered in the recursive call. // Fixed point division requires multiplying by ONE_18. return (-_ln((ONE_18 * ONE_18) / a)); } // First, we use the fact that ln^(a * b) = ln(a) + ln(b) to decompose ln(a) into a sum of powers of two, which // we call x_n, where x_n == 2^(7 - n), which are the natural logarithm of precomputed quantities a_n (that is, // ln(a_n) = x_n). We choose the first x_n, x0, to equal 2^7 because the exponential of all larger powers cannot // be represented as 18 fixed point decimal numbers in 256 bits, and are therefore larger than a. // At the end of this process we will have the sum of all x_n = ln(a_n) that apply, and the remainder of this // decomposition, which will be lower than the smallest a_n. // ln(a) = k_0 * x_0 + k_1 * x_1 + ... + k_n * x_n + ln(remainder), where each k_n equals either 0 or 1. // We mutate a by subtracting a_n, making it the remainder of the decomposition. // For reasons related to how `exp` works, the first two a_n (e^(2^7) and e^(2^6)) are not stored as fixed point // numbers with 18 decimals, but instead as plain integers with 0 decimals, so we need to multiply them by // ONE_18 to convert them to fixed point. // For each a_n, we test if that term is present in the decomposition (if a is larger than it), and if so divide // by it and compute the accumulated sum. int256 sum = 0; if (a >= a0 * ONE_18) { a /= a0; // Integer, not fixed point division sum += x0; } if (a >= a1 * ONE_18) { a /= a1; // Integer, not fixed point division sum += x1; } // All other a_n and x_n are stored as 20 digit fixed point numbers, so we convert the sum and a to this format. sum *= 100; a *= 100; // Because further a_n are 20 digit fixed point numbers, we multiply by ONE_20 when dividing by them. if (a >= a2) { a = (a * ONE_20) / a2; sum += x2; } if (a >= a3) { a = (a * ONE_20) / a3; sum += x3; } if (a >= a4) { a = (a * ONE_20) / a4; sum += x4; } if (a >= a5) { a = (a * ONE_20) / a5; sum += x5; } if (a >= a6) { a = (a * ONE_20) / a6; sum += x6; } if (a >= a7) { a = (a * ONE_20) / a7; sum += x7; } if (a >= a8) { a = (a * ONE_20) / a8; sum += x8; } if (a >= a9) { a = (a * ONE_20) / a9; sum += x9; } if (a >= a10) { a = (a * ONE_20) / a10; sum += x10; } if (a >= a11) { a = (a * ONE_20) / a11; sum += x11; } // a is now a small number (smaller than a_11, which roughly equals 1.06). This means we can use a Taylor series // that converges rapidly for values of `a` close to one - the same one used in ln_36. // Let z = (a - 1) / (a + 1). // ln(a) = 2 * (z + z^3 / 3 + z^5 / 5 + z^7 / 7 + ... + z^(2 * n + 1) / (2 * n + 1)) // Recall that 20 digit fixed point division requires multiplying by ONE_20, and multiplication requires // division by ONE_20. int256 z = ((a - ONE_20) * ONE_20) / (a + ONE_20); int256 z_squared = (z * z) / ONE_20; // num is the numerator of the series: the z^(2 * n + 1) term int256 num = z; // seriesSum holds the accumulated sum of each term in the series, starting with the initial z int256 seriesSum = num; // In each step, the numerator is multiplied by z^2 num = (num * z_squared) / ONE_20; seriesSum += num / 3; num = (num * z_squared) / ONE_20; seriesSum += num / 5; num = (num * z_squared) / ONE_20; seriesSum += num / 7; num = (num * z_squared) / ONE_20; seriesSum += num / 9; num = (num * z_squared) / ONE_20; seriesSum += num / 11; // 6 Taylor terms are sufficient for 36 decimal precision. // Finally, we multiply by 2 (non fixed point) to compute ln(remainder) seriesSum *= 2; // We now have the sum of all x_n present, and the Taylor approximation of the logarithm of the remainder (both // with 20 decimals). All that remains is to sum these two, and then drop two digits to return a 18 decimal // value. return (sum + seriesSum) / 100; } /** * @dev Intrnal high precision (36 decimal places) natural logarithm (ln(x)) with signed 18 decimal fixed point argument, * for x close to one. * * Should only be used if x is between LN_36_LOWER_BOUND and LN_36_UPPER_BOUND. */ function _ln_36(int256 x) private pure returns (int256) { // Since ln(1) = 0, a value of x close to one will yield a very small result, which makes using 36 digits // worthwhile. // First, we transform x to a 36 digit fixed point value. x *= ONE_18; // We will use the following Taylor expansion, which converges very rapidly. Let z = (x - 1) / (x + 1). // ln(x) = 2 * (z + z^3 / 3 + z^5 / 5 + z^7 / 7 + ... + z^(2 * n + 1) / (2 * n + 1)) // Recall that 36 digit fixed point division requires multiplying by ONE_36, and multiplication requires // division by ONE_36. int256 z = ((x - ONE_36) * ONE_36) / (x + ONE_36); int256 z_squared = (z * z) / ONE_36; // num is the numerator of the series: the z^(2 * n + 1) term int256 num = z; // seriesSum holds the accumulated sum of each term in the series, starting with the initial z int256 seriesSum = num; // In each step, the numerator is multiplied by z^2 num = (num * z_squared) / ONE_36; seriesSum += num / 3; num = (num * z_squared) / ONE_36; seriesSum += num / 5; num = (num * z_squared) / ONE_36; seriesSum += num / 7; num = (num * z_squared) / ONE_36; seriesSum += num / 9; num = (num * z_squared) / ONE_36; seriesSum += num / 11; num = (num * z_squared) / ONE_36; seriesSum += num / 13; num = (num * z_squared) / ONE_36; seriesSum += num / 15; // 8 Taylor terms are sufficient for 36 decimal precision. // All that remains is multiplying by 2 (non fixed point). return seriesSum * 2; } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; // solhint-disable /** * @dev Reverts if `condition` is false, with a revert reason containing `errorCode`. Only codes up to 999 are * supported. */ function _require(bool condition, uint256 errorCode) pure { if (!condition) _revert(errorCode); } /** * @dev Reverts with a revert reason containing `errorCode`. Only codes up to 999 are supported. */ function _revert(uint256 errorCode) pure { // We're going to dynamically create a revert string based on the error code, with the following format: // 'BAL#{errorCode}' // where the code is left-padded with zeroes to three digits (so they range from 000 to 999). // // We don't have revert strings embedded in the contract to save bytecode size: it takes much less space to store a // number (8 to 16 bits) than the individual string characters. // // The dynamic string creation algorithm that follows could be implemented in Solidity, but assembly allows for a // much denser implementation, again saving bytecode size. Given this function unconditionally reverts, this is a // safe place to rely on it without worrying about how its usage might affect e.g. memory contents. assembly { // First, we need to compute the ASCII representation of the error code. We assume that it is in the 0-999 // range, so we only need to convert three digits. To convert the digits to ASCII, we add 0x30, the value for // the '0' character. let units := add(mod(errorCode, 10), 0x30) errorCode := div(errorCode, 10) let tenths := add(mod(errorCode, 10), 0x30) errorCode := div(errorCode, 10) let hundreds := add(mod(errorCode, 10), 0x30) // With the individual characters, we can now construct the full string. The "BAL#" part is a known constant // (0x42414c23): we simply shift this by 24 (to provide space for the 3 bytes of the error code), and add the // characters to it, each shifted by a multiple of 8. // The revert reason is then shifted left by 200 bits (256 minus the length of the string, 7 characters * 8 bits // per character = 56) to locate it in the most significant part of the 256 slot (the beginning of a byte // array). let revertReason := shl(200, add(0x42414c23000000, add(add(units, shl(8, tenths)), shl(16, hundreds)))) // We can now encode the reason in memory, which can be safely overwritten as we're about to revert. The encoded // message will have the following layout: // [ revert reason identifier ] [ string location offset ] [ string length ] [ string contents ] // The Solidity revert reason identifier is 0x08c739a0, the function selector of the Error(string) function. We // also write zeroes to the next 28 bytes of memory, but those are about to be overwritten. mstore(0x0, 0x08c379a000000000000000000000000000000000000000000000000000000000) // Next is the offset to the location of the string, which will be placed immediately after (20 bytes away). mstore(0x04, 0x0000000000000000000000000000000000000000000000000000000000000020) // The string length is fixed: 7 characters. mstore(0x24, 7) // Finally, the string itself is stored. mstore(0x44, revertReason) // Even if the string is only 7 bytes long, we need to return a full 32 byte slot containing it. The length of // the encoded message is therefore 4 + 32 + 32 + 32 = 100. revert(0, 100) } } library Errors { // Math uint256 internal constant ADD_OVERFLOW = 0; uint256 internal constant SUB_OVERFLOW = 1; uint256 internal constant SUB_UNDERFLOW = 2; uint256 internal constant MUL_OVERFLOW = 3; uint256 internal constant ZERO_DIVISION = 4; uint256 internal constant DIV_INTERNAL = 5; uint256 internal constant X_OUT_OF_BOUNDS = 6; uint256 internal constant Y_OUT_OF_BOUNDS = 7; uint256 internal constant PRODUCT_OUT_OF_BOUNDS = 8; uint256 internal constant INVALID_EXPONENT = 9; // Input uint256 internal constant OUT_OF_BOUNDS = 100; uint256 internal constant UNSORTED_ARRAY = 101; uint256 internal constant UNSORTED_TOKENS = 102; uint256 internal constant INPUT_LENGTH_MISMATCH = 103; uint256 internal constant ZERO_TOKEN = 104; // Shared pools uint256 internal constant MIN_TOKENS = 200; uint256 internal constant MAX_TOKENS = 201; uint256 internal constant MAX_SWAP_FEE_PERCENTAGE = 202; uint256 internal constant MIN_SWAP_FEE_PERCENTAGE = 203; uint256 internal constant MINIMUM_BPT = 204; uint256 internal constant CALLER_NOT_VAULT = 205; uint256 internal constant UNINITIALIZED = 206; uint256 internal constant BPT_IN_MAX_AMOUNT = 207; uint256 internal constant BPT_OUT_MIN_AMOUNT = 208; uint256 internal constant EXPIRED_PERMIT = 209; uint256 internal constant NOT_TWO_TOKENS = 210; // Pools uint256 internal constant MIN_AMP = 300; uint256 internal constant MAX_AMP = 301; uint256 internal constant MIN_WEIGHT = 302; uint256 internal constant MAX_STABLE_TOKENS = 303; uint256 internal constant MAX_IN_RATIO = 304; uint256 internal constant MAX_OUT_RATIO = 305; uint256 internal constant MIN_BPT_IN_FOR_TOKEN_OUT = 306; uint256 internal constant MAX_OUT_BPT_FOR_TOKEN_IN = 307; uint256 internal constant NORMALIZED_WEIGHT_INVARIANT = 308; uint256 internal constant INVALID_TOKEN = 309; uint256 internal constant UNHANDLED_JOIN_KIND = 310; uint256 internal constant ZERO_INVARIANT = 311; uint256 internal constant ORACLE_INVALID_SECONDS_QUERY = 312; uint256 internal constant ORACLE_NOT_INITIALIZED = 313; uint256 internal constant ORACLE_QUERY_TOO_OLD = 314; uint256 internal constant ORACLE_INVALID_INDEX = 315; uint256 internal constant ORACLE_BAD_SECS = 316; uint256 internal constant AMP_END_TIME_TOO_CLOSE = 317; uint256 internal constant AMP_ONGOING_UPDATE = 318; uint256 internal constant AMP_RATE_TOO_HIGH = 319; uint256 internal constant AMP_NO_ONGOING_UPDATE = 320; uint256 internal constant STABLE_INVARIANT_DIDNT_CONVERGE = 321; uint256 internal constant STABLE_GET_BALANCE_DIDNT_CONVERGE = 322; uint256 internal constant RELAYER_NOT_CONTRACT = 323; uint256 internal constant BASE_POOL_RELAYER_NOT_CALLED = 324; uint256 internal constant REBALANCING_RELAYER_REENTERED = 325; uint256 internal constant GRADUAL_UPDATE_TIME_TRAVEL = 326; uint256 internal constant SWAPS_DISABLED = 327; uint256 internal constant CALLER_IS_NOT_LBP_OWNER = 328; uint256 internal constant PRICE_RATE_OVERFLOW = 329; uint256 internal constant INVALID_JOIN_EXIT_KIND_WHILE_SWAPS_DISABLED = 330; uint256 internal constant WEIGHT_CHANGE_TOO_FAST = 331; uint256 internal constant LOWER_GREATER_THAN_UPPER_TARGET = 332; uint256 internal constant UPPER_TARGET_TOO_HIGH = 333; uint256 internal constant UNHANDLED_BY_LINEAR_POOL = 334; uint256 internal constant OUT_OF_TARGET_RANGE = 335; uint256 internal constant UNHANDLED_EXIT_KIND = 336; uint256 internal constant UNAUTHORIZED_EXIT = 337; uint256 internal constant MAX_MANAGEMENT_SWAP_FEE_PERCENTAGE = 338; uint256 internal constant UNHANDLED_BY_INVESTMENT_POOL = 339; // Lib uint256 internal constant REENTRANCY = 400; uint256 internal constant SENDER_NOT_ALLOWED = 401; uint256 internal constant PAUSED = 402; uint256 internal constant PAUSE_WINDOW_EXPIRED = 403; uint256 internal constant MAX_PAUSE_WINDOW_DURATION = 404; uint256 internal constant MAX_BUFFER_PERIOD_DURATION = 405; uint256 internal constant INSUFFICIENT_BALANCE = 406; uint256 internal constant INSUFFICIENT_ALLOWANCE = 407; uint256 internal constant ERC20_TRANSFER_FROM_ZERO_ADDRESS = 408; uint256 internal constant ERC20_TRANSFER_TO_ZERO_ADDRESS = 409; uint256 internal constant ERC20_MINT_TO_ZERO_ADDRESS = 410; uint256 internal constant ERC20_BURN_FROM_ZERO_ADDRESS = 411; uint256 internal constant ERC20_APPROVE_FROM_ZERO_ADDRESS = 412; uint256 internal constant ERC20_APPROVE_TO_ZERO_ADDRESS = 413; uint256 internal constant ERC20_TRANSFER_EXCEEDS_ALLOWANCE = 414; uint256 internal constant ERC20_DECREASED_ALLOWANCE_BELOW_ZERO = 415; uint256 internal constant ERC20_TRANSFER_EXCEEDS_BALANCE = 416; uint256 internal constant ERC20_BURN_EXCEEDS_ALLOWANCE = 417; uint256 internal constant SAFE_ERC20_CALL_FAILED = 418; uint256 internal constant ADDRESS_INSUFFICIENT_BALANCE = 419; uint256 internal constant ADDRESS_CANNOT_SEND_VALUE = 420; uint256 internal constant SAFE_CAST_VALUE_CANT_FIT_INT256 = 421; uint256 internal constant GRANT_SENDER_NOT_ADMIN = 422; uint256 internal constant REVOKE_SENDER_NOT_ADMIN = 423; uint256 internal constant RENOUNCE_SENDER_NOT_ALLOWED = 424; uint256 internal constant BUFFER_PERIOD_EXPIRED = 425; uint256 internal constant CALLER_IS_NOT_OWNER = 426; uint256 internal constant NEW_OWNER_IS_ZERO = 427; uint256 internal constant CODE_DEPLOYMENT_FAILED = 428; uint256 internal constant CALL_TO_NON_CONTRACT = 429; uint256 internal constant LOW_LEVEL_CALL_FAILED = 430; // Vault uint256 internal constant INVALID_POOL_ID = 500; uint256 internal constant CALLER_NOT_POOL = 501; uint256 internal constant SENDER_NOT_ASSET_MANAGER = 502; uint256 internal constant USER_DOESNT_ALLOW_RELAYER = 503; uint256 internal constant INVALID_SIGNATURE = 504; uint256 internal constant EXIT_BELOW_MIN = 505; uint256 internal constant JOIN_ABOVE_MAX = 506; uint256 internal constant SWAP_LIMIT = 507; uint256 internal constant SWAP_DEADLINE = 508; uint256 internal constant CANNOT_SWAP_SAME_TOKEN = 509; uint256 internal constant UNKNOWN_AMOUNT_IN_FIRST_SWAP = 510; uint256 internal constant MALCONSTRUCTED_MULTIHOP_SWAP = 511; uint256 internal constant INTERNAL_BALANCE_OVERFLOW = 512; uint256 internal constant INSUFFICIENT_INTERNAL_BALANCE = 513; uint256 internal constant INVALID_ETH_INTERNAL_BALANCE = 514; uint256 internal constant INVALID_POST_LOAN_BALANCE = 515; uint256 internal constant INSUFFICIENT_ETH = 516; uint256 internal constant UNALLOCATED_ETH = 517; uint256 internal constant ETH_TRANSFER = 518; uint256 internal constant CANNOT_USE_ETH_SENTINEL = 519; uint256 internal constant TOKENS_MISMATCH = 520; uint256 internal constant TOKEN_NOT_REGISTERED = 521; uint256 internal constant TOKEN_ALREADY_REGISTERED = 522; uint256 internal constant TOKENS_ALREADY_SET = 523; uint256 internal constant TOKENS_LENGTH_MUST_BE_2 = 524; uint256 internal constant NONZERO_TOKEN_BALANCE = 525; uint256 internal constant BALANCE_TOTAL_OVERFLOW = 526; uint256 internal constant POOL_NO_TOKENS = 527; uint256 internal constant INSUFFICIENT_FLASH_LOAN_BALANCE = 528; // Fees uint256 internal constant SWAP_FEE_PERCENTAGE_TOO_HIGH = 600; uint256 internal constant FLASH_LOAN_FEE_PERCENTAGE_TOO_HIGH = 601; uint256 internal constant INSUFFICIENT_FLASH_LOAN_FEE_AMOUNT = 602; }
// SPDX-License-Identifier: MIT pragma solidity ^0.7.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `recipient`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address recipient, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `sender` to `recipient` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom( address sender, address recipient, uint256 amount ) external returns (bool); /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; pragma experimental ABIEncoderV2; import "@balancer-labs/v2-solidity-utils/contracts/math/Math.sol"; import "@balancer-labs/v2-solidity-utils/contracts/math/FixedPoint.sol"; import "@balancer-labs/v2-solidity-utils/contracts/helpers/InputHelpers.sol"; import "@balancer-labs/v2-solidity-utils/contracts/helpers/TemporarilyPausable.sol"; import "@balancer-labs/v2-solidity-utils/contracts/helpers/WordCodec.sol"; import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/ERC20.sol"; import "@balancer-labs/v2-vault/contracts/interfaces/IVault.sol"; import "@balancer-labs/v2-vault/contracts/interfaces/IBasePool.sol"; import "@balancer-labs/v2-asset-manager-utils/contracts/IAssetManager.sol"; import "./BalancerPoolToken.sol"; import "./BasePoolAuthorization.sol"; // solhint-disable max-states-count /** * @dev Reference implementation for the base layer of a Pool contract that manages a single Pool with optional * Asset Managers, an admin-controlled swap fee percentage, and an emergency pause mechanism. * * Note that neither swap fees nor the pause mechanism are used by this contract. They are passed through so that * derived contracts can use them via the `_addSwapFeeAmount` and `_subtractSwapFeeAmount` functions, and the * `whenNotPaused` modifier. * * No admin permissions are checked here: instead, this contract delegates that to the Vault's own Authorizer. * * Because this contract doesn't implement the swap hooks, derived contracts should generally inherit from * BaseGeneralPool or BaseMinimalSwapInfoPool. Otherwise, subclasses must inherit from the corresponding interfaces * and implement the swap callbacks themselves. */ abstract contract BasePool is IBasePool, BasePoolAuthorization, BalancerPoolToken, TemporarilyPausable { using WordCodec for bytes32; using FixedPoint for uint256; uint256 private constant _MIN_TOKENS = 2; uint256 private constant _MINIMUM_BPT = 1e6; // 1e18 corresponds to 1.0, or a 100% fee uint256 private constant _MIN_SWAP_FEE_PERCENTAGE = 1e12; // 0.0001% uint256 private constant _MAX_SWAP_FEE_PERCENTAGE = 1e17; // 10% - this fits in 64 bits // Storage slot that can be used to store unrelated pieces of information. In particular, by default is used // to store only the swap fee percentage of a pool. But it can be extended to store some more pieces of information. // The swap fee percentage is stored in the most-significant 64 bits, therefore the remaining 192 bits can be // used to store any other piece of information. bytes32 private _miscData; uint256 private constant _SWAP_FEE_PERCENTAGE_OFFSET = 192; IVault private immutable _vault; bytes32 private immutable _poolId; event SwapFeePercentageChanged(uint256 swapFeePercentage); constructor( IVault vault, IVault.PoolSpecialization specialization, string memory name, string memory symbol, IERC20[] memory tokens, address[] memory assetManagers, uint256 swapFeePercentage, uint256 pauseWindowDuration, uint256 bufferPeriodDuration, address owner ) // Base Pools are expected to be deployed using factories. By using the factory address as the action // disambiguator, we make all Pools deployed by the same factory share action identifiers. This allows for // simpler management of permissions (such as being able to manage granting the 'set fee percentage' action in // any Pool created by the same factory), while still making action identifiers unique among different factories // if the selectors match, preventing accidental errors. Authentication(bytes32(uint256(msg.sender))) BalancerPoolToken(name, symbol) BasePoolAuthorization(owner) TemporarilyPausable(pauseWindowDuration, bufferPeriodDuration) { _require(tokens.length >= _MIN_TOKENS, Errors.MIN_TOKENS); _require(tokens.length <= _getMaxTokens(), Errors.MAX_TOKENS); // The Vault only requires the token list to be ordered for the Two Token Pools specialization. However, // to make the developer experience consistent, we are requiring this condition for all the native pools. // Also, since these Pools will register tokens only once, we can ensure the Pool tokens will follow the same // order. We rely on this property to make Pools simpler to write, as it lets us assume that the // order of token-specific parameters (such as token weights) will not change. InputHelpers.ensureArrayIsSorted(tokens); _setSwapFeePercentage(swapFeePercentage); bytes32 poolId = vault.registerPool(specialization); vault.registerTokens(poolId, tokens, assetManagers); // Set immutable state variables - these cannot be read from during construction _vault = vault; _poolId = poolId; } // Getters / Setters function getVault() public view returns (IVault) { return _vault; } function getPoolId() public view override returns (bytes32) { return _poolId; } function _getTotalTokens() internal view virtual returns (uint256); function _getMaxTokens() internal pure virtual returns (uint256); function _getMinimumBpt() internal pure virtual returns (uint256) { return _MINIMUM_BPT; } function getSwapFeePercentage() public view returns (uint256) { return _miscData.decodeUint64(_SWAP_FEE_PERCENTAGE_OFFSET); } function setSwapFeePercentage(uint256 swapFeePercentage) external virtual authenticate whenNotPaused { _setSwapFeePercentage(swapFeePercentage); } function _setSwapFeePercentage(uint256 swapFeePercentage) private { _require(swapFeePercentage >= _MIN_SWAP_FEE_PERCENTAGE, Errors.MIN_SWAP_FEE_PERCENTAGE); _require(swapFeePercentage <= _MAX_SWAP_FEE_PERCENTAGE, Errors.MAX_SWAP_FEE_PERCENTAGE); _miscData = _miscData.insertUint64(swapFeePercentage, _SWAP_FEE_PERCENTAGE_OFFSET); emit SwapFeePercentageChanged(swapFeePercentage); } function setAssetManagerPoolConfig(IERC20 token, bytes memory poolConfig) public virtual authenticate whenNotPaused { _setAssetManagerPoolConfig(token, poolConfig); } function _setAssetManagerPoolConfig(IERC20 token, bytes memory poolConfig) private { bytes32 poolId = getPoolId(); (, , , address assetManager) = getVault().getPoolTokenInfo(poolId, token); IAssetManager(assetManager).setConfig(poolId, poolConfig); } function setPaused(bool paused) external authenticate { _setPaused(paused); } function _isOwnerOnlyAction(bytes32 actionId) internal view virtual override returns (bool) { return (actionId == getActionId(this.setSwapFeePercentage.selector)) || (actionId == getActionId(this.setAssetManagerPoolConfig.selector)); } function _getMiscData() internal view returns (bytes32) { return _miscData; } /** * Inserts data into the least-significant 192 bits of the misc data storage slot. * Note that the remaining 64 bits are used for the swap fee percentage and cannot be overloaded. */ function _setMiscData(bytes32 newData) internal { _miscData = _miscData.insertBits192(newData, 0); } // Join / Exit Hooks modifier onlyVault(bytes32 poolId) { _require(msg.sender == address(getVault()), Errors.CALLER_NOT_VAULT); _require(poolId == getPoolId(), Errors.INVALID_POOL_ID); _; } function onJoinPool( bytes32 poolId, address sender, address recipient, uint256[] memory balances, uint256 lastChangeBlock, uint256 protocolSwapFeePercentage, bytes memory userData ) public virtual override onlyVault(poolId) returns (uint256[] memory, uint256[] memory) { uint256[] memory scalingFactors = _scalingFactors(); if (totalSupply() == 0) { (uint256 bptAmountOut, uint256[] memory amountsIn) = _onInitializePool( poolId, sender, recipient, scalingFactors, userData ); // On initialization, we lock _getMinimumBpt() by minting it for the zero address. This BPT acts as a // minimum as it will never be burned, which reduces potential issues with rounding, and also prevents the // Pool from ever being fully drained. _require(bptAmountOut >= _getMinimumBpt(), Errors.MINIMUM_BPT); _mintPoolTokens(address(0), _getMinimumBpt()); _mintPoolTokens(recipient, bptAmountOut - _getMinimumBpt()); // amountsIn are amounts entering the Pool, so we round up. _downscaleUpArray(amountsIn, scalingFactors); return (amountsIn, new uint256[](_getTotalTokens())); } else { _upscaleArray(balances, scalingFactors); (uint256 bptAmountOut, uint256[] memory amountsIn, uint256[] memory dueProtocolFeeAmounts) = _onJoinPool( poolId, sender, recipient, balances, lastChangeBlock, protocolSwapFeePercentage, scalingFactors, userData ); // Note we no longer use `balances` after calling `_onJoinPool`, which may mutate it. _mintPoolTokens(recipient, bptAmountOut); // amountsIn are amounts entering the Pool, so we round up. _downscaleUpArray(amountsIn, scalingFactors); // dueProtocolFeeAmounts are amounts exiting the Pool, so we round down. _downscaleDownArray(dueProtocolFeeAmounts, scalingFactors); return (amountsIn, dueProtocolFeeAmounts); } } function onExitPool( bytes32 poolId, address sender, address recipient, uint256[] memory balances, uint256 lastChangeBlock, uint256 protocolSwapFeePercentage, bytes memory userData ) public virtual override onlyVault(poolId) returns (uint256[] memory, uint256[] memory) { uint256[] memory scalingFactors = _scalingFactors(); _upscaleArray(balances, scalingFactors); (uint256 bptAmountIn, uint256[] memory amountsOut, uint256[] memory dueProtocolFeeAmounts) = _onExitPool( poolId, sender, recipient, balances, lastChangeBlock, protocolSwapFeePercentage, scalingFactors, userData ); // Note we no longer use `balances` after calling `_onExitPool`, which may mutate it. _burnPoolTokens(sender, bptAmountIn); // Both amountsOut and dueProtocolFeeAmounts are amounts exiting the Pool, so we round down. _downscaleDownArray(amountsOut, scalingFactors); _downscaleDownArray(dueProtocolFeeAmounts, scalingFactors); return (amountsOut, dueProtocolFeeAmounts); } // Query functions /** * @dev Returns the amount of BPT that would be granted to `recipient` if the `onJoinPool` hook were called by the * Vault with the same arguments, along with the number of tokens `sender` would have to supply. * * This function is not meant to be called directly, but rather from a helper contract that fetches current Vault * data, such as the protocol swap fee percentage and Pool balances. * * Like `IVault.queryBatchSwap`, this function is not view due to internal implementation details: the caller must * explicitly use eth_call instead of eth_sendTransaction. */ function queryJoin( bytes32 poolId, address sender, address recipient, uint256[] memory balances, uint256 lastChangeBlock, uint256 protocolSwapFeePercentage, bytes memory userData ) external returns (uint256 bptOut, uint256[] memory amountsIn) { InputHelpers.ensureInputLengthMatch(balances.length, _getTotalTokens()); _queryAction( poolId, sender, recipient, balances, lastChangeBlock, protocolSwapFeePercentage, userData, _onJoinPool, _downscaleUpArray ); // The `return` opcode is executed directly inside `_queryAction`, so execution never reaches this statement, // and we don't need to return anything here - it just silences compiler warnings. return (bptOut, amountsIn); } /** * @dev Returns the amount of BPT that would be burned from `sender` if the `onExitPool` hook were called by the * Vault with the same arguments, along with the number of tokens `recipient` would receive. * * This function is not meant to be called directly, but rather from a helper contract that fetches current Vault * data, such as the protocol swap fee percentage and Pool balances. * * Like `IVault.queryBatchSwap`, this function is not view due to internal implementation details: the caller must * explicitly use eth_call instead of eth_sendTransaction. */ function queryExit( bytes32 poolId, address sender, address recipient, uint256[] memory balances, uint256 lastChangeBlock, uint256 protocolSwapFeePercentage, bytes memory userData ) external returns (uint256 bptIn, uint256[] memory amountsOut) { InputHelpers.ensureInputLengthMatch(balances.length, _getTotalTokens()); _queryAction( poolId, sender, recipient, balances, lastChangeBlock, protocolSwapFeePercentage, userData, _onExitPool, _downscaleDownArray ); // The `return` opcode is executed directly inside `_queryAction`, so execution never reaches this statement, // and we don't need to return anything here - it just silences compiler warnings. return (bptIn, amountsOut); } // Internal hooks to be overridden by derived contracts - all token amounts (except BPT) in these interfaces are // upscaled. /** * @dev Called when the Pool is joined for the first time; that is, when the BPT total supply is zero. * * Returns the amount of BPT to mint, and the token amounts the Pool will receive in return. * * Minted BPT will be sent to `recipient`, except for _getMinimumBpt(), which will be deducted from this amount and * sent to the zero address instead. This will cause that BPT to remain forever locked there, preventing total BTP * from ever dropping below that value, and ensuring `_onInitializePool` can only be called once in the entire * Pool's lifetime. * * The tokens granted to the Pool will be transferred from `sender`. These amounts are considered upscaled and will * be downscaled (rounding up) before being returned to the Vault. */ function _onInitializePool( bytes32 poolId, address sender, address recipient, uint256[] memory scalingFactors, bytes memory userData ) internal virtual returns (uint256 bptAmountOut, uint256[] memory amountsIn); /** * @dev Called whenever the Pool is joined after the first initialization join (see `_onInitializePool`). * * Returns the amount of BPT to mint, the token amounts that the Pool will receive in return, and the number of * tokens to pay in protocol swap fees. * * Implementations of this function might choose to mutate the `balances` array to save gas (e.g. when * performing intermediate calculations, such as subtraction of due protocol fees). This can be done safely. * * Minted BPT will be sent to `recipient`. * * The tokens granted to the Pool will be transferred from `sender`. These amounts are considered upscaled and will * be downscaled (rounding up) before being returned to the Vault. * * Due protocol swap fees will be taken from the Pool's balance in the Vault (see `IBasePool.onJoinPool`). These * amounts are considered upscaled and will be downscaled (rounding down) before being returned to the Vault. */ function _onJoinPool( bytes32 poolId, address sender, address recipient, uint256[] memory balances, uint256 lastChangeBlock, uint256 protocolSwapFeePercentage, uint256[] memory scalingFactors, bytes memory userData ) internal virtual returns ( uint256 bptAmountOut, uint256[] memory amountsIn, uint256[] memory dueProtocolFeeAmounts ); /** * @dev Called whenever the Pool is exited. * * Returns the amount of BPT to burn, the token amounts for each Pool token that the Pool will grant in return, and * the number of tokens to pay in protocol swap fees. * * Implementations of this function might choose to mutate the `balances` array to save gas (e.g. when * performing intermediate calculations, such as subtraction of due protocol fees). This can be done safely. * * BPT will be burnt from `sender`. * * The Pool will grant tokens to `recipient`. These amounts are considered upscaled and will be downscaled * (rounding down) before being returned to the Vault. * * Due protocol swap fees will be taken from the Pool's balance in the Vault (see `IBasePool.onExitPool`). These * amounts are considered upscaled and will be downscaled (rounding down) before being returned to the Vault. */ function _onExitPool( bytes32 poolId, address sender, address recipient, uint256[] memory balances, uint256 lastChangeBlock, uint256 protocolSwapFeePercentage, uint256[] memory scalingFactors, bytes memory userData ) internal virtual returns ( uint256 bptAmountIn, uint256[] memory amountsOut, uint256[] memory dueProtocolFeeAmounts ); // Internal functions /** * @dev Adds swap fee amount to `amount`, returning a higher value. */ function _addSwapFeeAmount(uint256 amount) internal view returns (uint256) { // This returns amount + fee amount, so we round up (favoring a higher fee amount). return amount.divUp(FixedPoint.ONE.sub(getSwapFeePercentage())); } /** * @dev Subtracts swap fee amount from `amount`, returning a lower value. */ function _subtractSwapFeeAmount(uint256 amount) internal view returns (uint256) { // This returns amount - fee amount, so we round up (favoring a higher fee amount). uint256 feeAmount = amount.mulUp(getSwapFeePercentage()); return amount.sub(feeAmount); } // Scaling /** * @dev Returns a scaling factor that, when multiplied to a token amount for `token`, normalizes its balance as if * it had 18 decimals. */ function _computeScalingFactor(IERC20 token) internal view returns (uint256) { // Tokens that don't implement the `decimals` method are not supported. uint256 tokenDecimals = ERC20(address(token)).decimals(); // Tokens with more than 18 decimals are not supported. uint256 decimalsDifference = Math.sub(18, tokenDecimals); return FixedPoint.ONE * 10**decimalsDifference; } /** * @dev Returns the scaling factor for one of the Pool's tokens. Reverts if `token` is not a token registered by the * Pool. * * All scaling factors are fixed-point values with 18 decimals, to allow for this function to be overridden by * derived contracts that need to apply further scaling, making these factors potentially non-integer. * * The largest 'base' scaling factor (i.e. in tokens with less than 18 decimals) is 10**18, which in fixed-point is * 10**36. This value can be multiplied with a 112 bit Vault balance with no overflow by a factor of ~1e7, making * even relatively 'large' factors safe to use. * * The 1e7 figure is the result of 2**256 / (1e18 * 1e18 * 2**112). */ function _scalingFactor(IERC20 token) internal view virtual returns (uint256); /** * @dev Same as `_scalingFactor()`, except for all registered tokens (in the same order as registered). The Vault * will always pass balances in this order when calling any of the Pool hooks. */ function _scalingFactors() internal view virtual returns (uint256[] memory); function getScalingFactors() external view returns (uint256[] memory) { return _scalingFactors(); } /** * @dev Applies `scalingFactor` to `amount`, resulting in a larger or equal value depending on whether it needed * scaling or not. */ function _upscale(uint256 amount, uint256 scalingFactor) internal pure returns (uint256) { // Upscale rounding wouldn't necessarily always go in the same direction: in a swap for example the balance of // token in should be rounded up, and that of token out rounded down. This is the only place where we round in // the same direction for all amounts, as the impact of this rounding is expected to be minimal (and there's no // rounding error unless `_scalingFactor()` is overriden). return FixedPoint.mulDown(amount, scalingFactor); } /** * @dev Same as `_upscale`, but for an entire array. This function does not return anything, but instead *mutates* * the `amounts` array. */ function _upscaleArray(uint256[] memory amounts, uint256[] memory scalingFactors) internal view { for (uint256 i = 0; i < _getTotalTokens(); ++i) { amounts[i] = FixedPoint.mulDown(amounts[i], scalingFactors[i]); } } /** * @dev Reverses the `scalingFactor` applied to `amount`, resulting in a smaller or equal value depending on * whether it needed scaling or not. The result is rounded down. */ function _downscaleDown(uint256 amount, uint256 scalingFactor) internal pure returns (uint256) { return FixedPoint.divDown(amount, scalingFactor); } /** * @dev Same as `_downscaleDown`, but for an entire array. This function does not return anything, but instead * *mutates* the `amounts` array. */ function _downscaleDownArray(uint256[] memory amounts, uint256[] memory scalingFactors) internal view { for (uint256 i = 0; i < _getTotalTokens(); ++i) { amounts[i] = FixedPoint.divDown(amounts[i], scalingFactors[i]); } } /** * @dev Reverses the `scalingFactor` applied to `amount`, resulting in a smaller or equal value depending on * whether it needed scaling or not. The result is rounded up. */ function _downscaleUp(uint256 amount, uint256 scalingFactor) internal pure returns (uint256) { return FixedPoint.divUp(amount, scalingFactor); } /** * @dev Same as `_downscaleUp`, but for an entire array. This function does not return anything, but instead * *mutates* the `amounts` array. */ function _downscaleUpArray(uint256[] memory amounts, uint256[] memory scalingFactors) internal view { for (uint256 i = 0; i < _getTotalTokens(); ++i) { amounts[i] = FixedPoint.divUp(amounts[i], scalingFactors[i]); } } function _getAuthorizer() internal view override returns (IAuthorizer) { // Access control management is delegated to the Vault's Authorizer. This lets Balancer Governance manage which // accounts can call permissioned functions: for example, to perform emergency pauses. // If the owner is delegated, then *all* permissioned functions, including `setSwapFeePercentage`, will be under // Governance control. return getVault().getAuthorizer(); } function _queryAction( bytes32 poolId, address sender, address recipient, uint256[] memory balances, uint256 lastChangeBlock, uint256 protocolSwapFeePercentage, bytes memory userData, function(bytes32, address, address, uint256[] memory, uint256, uint256, uint256[] memory, bytes memory) internal returns (uint256, uint256[] memory, uint256[] memory) _action, function(uint256[] memory, uint256[] memory) internal view _downscaleArray ) private { // This uses the same technique used by the Vault in queryBatchSwap. Refer to that function for a detailed // explanation. if (msg.sender != address(this)) { // We perform an external call to ourselves, forwarding the same calldata. In this call, the else clause of // the preceding if statement will be executed instead. // solhint-disable-next-line avoid-low-level-calls (bool success, ) = address(this).call(msg.data); // solhint-disable-next-line no-inline-assembly assembly { // This call should always revert to decode the bpt and token amounts from the revert reason switch success case 0 { // Note we are manually writing the memory slot 0. We can safely overwrite whatever is // stored there as we take full control of the execution and then immediately return. // We copy the first 4 bytes to check if it matches with the expected signature, otherwise // there was another revert reason and we should forward it. returndatacopy(0, 0, 0x04) let error := and(mload(0), 0xffffffff00000000000000000000000000000000000000000000000000000000) // If the first 4 bytes don't match with the expected signature, we forward the revert reason. if eq(eq(error, 0x43adbafb00000000000000000000000000000000000000000000000000000000), 0) { returndatacopy(0, 0, returndatasize()) revert(0, returndatasize()) } // The returndata contains the signature, followed by the raw memory representation of the // `bptAmount` and `tokenAmounts` (array: length + data). We need to return an ABI-encoded // representation of these. // An ABI-encoded response will include one additional field to indicate the starting offset of // the `tokenAmounts` array. The `bptAmount` will be laid out in the first word of the // returndata. // // In returndata: // [ signature ][ bptAmount ][ tokenAmounts length ][ tokenAmounts values ] // [ 4 bytes ][ 32 bytes ][ 32 bytes ][ (32 * length) bytes ] // // We now need to return (ABI-encoded values): // [ bptAmount ][ tokeAmounts offset ][ tokenAmounts length ][ tokenAmounts values ] // [ 32 bytes ][ 32 bytes ][ 32 bytes ][ (32 * length) bytes ] // We copy 32 bytes for the `bptAmount` from returndata into memory. // Note that we skip the first 4 bytes for the error signature returndatacopy(0, 0x04, 32) // The offsets are 32-bytes long, so the array of `tokenAmounts` will start after // the initial 64 bytes. mstore(0x20, 64) // We now copy the raw memory array for the `tokenAmounts` from returndata into memory. // Since bpt amount and offset take up 64 bytes, we start copying at address 0x40. We also // skip the first 36 bytes from returndata, which correspond to the signature plus bpt amount. returndatacopy(0x40, 0x24, sub(returndatasize(), 36)) // We finally return the ABI-encoded uint256 and the array, which has a total length equal to // the size of returndata, plus the 32 bytes of the offset but without the 4 bytes of the // error signature. return(0, add(returndatasize(), 28)) } default { // This call should always revert, but we fail nonetheless if that didn't happen invalid() } } } else { uint256[] memory scalingFactors = _scalingFactors(); _upscaleArray(balances, scalingFactors); (uint256 bptAmount, uint256[] memory tokenAmounts, ) = _action( poolId, sender, recipient, balances, lastChangeBlock, protocolSwapFeePercentage, scalingFactors, userData ); _downscaleArray(tokenAmounts, scalingFactors); // solhint-disable-next-line no-inline-assembly assembly { // We will return a raw representation of `bptAmount` and `tokenAmounts` in memory, which is composed of // a 32-byte uint256, followed by a 32-byte for the array length, and finally the 32-byte uint256 values // Because revert expects a size in bytes, we multiply the array length (stored at `tokenAmounts`) by 32 let size := mul(mload(tokenAmounts), 32) // We store the `bptAmount` in the previous slot to the `tokenAmounts` array. We can make sure there // will be at least one available slot due to how the memory scratch space works. // We can safely overwrite whatever is stored in this slot as we will revert immediately after that. let start := sub(tokenAmounts, 0x20) mstore(start, bptAmount) // We send one extra value for the error signature "QueryError(uint256,uint256[])" which is 0x43adbafb // We use the previous slot to `bptAmount`. mstore(sub(start, 0x20), 0x0000000000000000000000000000000000000000000000000000000043adbafb) start := sub(start, 0x04) // When copying from `tokenAmounts` into returndata, we copy the additional 68 bytes to also return // the `bptAmount`, the array 's length, and the error signature. revert(start, add(size, 68)) } } } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; pragma experimental ABIEncoderV2; import "./IBasePool.sol"; /** * @dev Pool contracts with the MinimalSwapInfo or TwoToken specialization settings should implement this interface. * * This is called by the Vault when a user calls `IVault.swap` or `IVault.batchSwap` to swap with this Pool. * Returns the number of tokens the Pool will grant to the user in a 'given in' swap, or that the user will grant * to the pool in a 'given out' swap. * * This can often be implemented by a `view` function, since many pricing algorithms don't need to track state * changes in swaps. However, contracts implementing this in non-view functions should check that the caller is * indeed the Vault. */ interface IMinimalSwapInfoPool is IBasePool { function onSwap( SwapRequest memory swapRequest, uint256 currentBalanceTokenIn, uint256 currentBalanceTokenOut ) external returns (uint256 amount); }
// SPDX-License-Identifier: MIT pragma solidity ^0.7.0; import "../helpers/BalancerErrors.sol"; /** * @dev Wrappers over Solidity's arithmetic operations with added overflow checks. * Adapted from OpenZeppelin's SafeMath library */ library Math { /** * @dev Returns the addition of two unsigned integers of 256 bits, reverting on overflow. */ function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; _require(c >= a, Errors.ADD_OVERFLOW); return c; } /** * @dev Returns the addition of two signed integers, reverting on overflow. */ function add(int256 a, int256 b) internal pure returns (int256) { int256 c = a + b; _require((b >= 0 && c >= a) || (b < 0 && c < a), Errors.ADD_OVERFLOW); return c; } /** * @dev Returns the subtraction of two unsigned integers of 256 bits, reverting on overflow. */ function sub(uint256 a, uint256 b) internal pure returns (uint256) { _require(b <= a, Errors.SUB_OVERFLOW); uint256 c = a - b; return c; } /** * @dev Returns the subtraction of two signed integers, reverting on overflow. */ function sub(int256 a, int256 b) internal pure returns (int256) { int256 c = a - b; _require((b >= 0 && c <= a) || (b < 0 && c > a), Errors.SUB_OVERFLOW); return c; } /** * @dev Returns the largest of two numbers of 256 bits. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return a >= b ? a : b; } /** * @dev Returns the smallest of two numbers of 256 bits. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } function mul(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a * b; _require(a == 0 || c / a == b, Errors.MUL_OVERFLOW); return c; } function div( uint256 a, uint256 b, bool roundUp ) internal pure returns (uint256) { return roundUp ? divUp(a, b) : divDown(a, b); } function divDown(uint256 a, uint256 b) internal pure returns (uint256) { _require(b != 0, Errors.ZERO_DIVISION); return a / b; } function divUp(uint256 a, uint256 b) internal pure returns (uint256) { _require(b != 0, Errors.ZERO_DIVISION); if (a == 0) { return 0; } else { return 1 + (a - 1) / b; } } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; import "./BalancerErrors.sol"; import "./ITemporarilyPausable.sol"; /** * @dev Allows for a contract to be paused during an initial period after deployment, disabling functionality. Can be * used as an emergency switch in case a security vulnerability or threat is identified. * * The contract can only be paused during the Pause Window, a period that starts at deployment. It can also be * unpaused and repaused any number of times during this period. This is intended to serve as a safety measure: it lets * system managers react quickly to potentially dangerous situations, knowing that this action is reversible if careful * analysis later determines there was a false alarm. * * If the contract is paused when the Pause Window finishes, it will remain in the paused state through an additional * Buffer Period, after which it will be automatically unpaused forever. This is to ensure there is always enough time * to react to an emergency, even if the threat is discovered shortly before the Pause Window expires. * * Note that since the contract can only be paused within the Pause Window, unpausing during the Buffer Period is * irreversible. */ abstract contract TemporarilyPausable is ITemporarilyPausable { // The Pause Window and Buffer Period are timestamp-based: they should not be relied upon for sub-minute accuracy. // solhint-disable not-rely-on-time uint256 private constant _MAX_PAUSE_WINDOW_DURATION = 90 days; uint256 private constant _MAX_BUFFER_PERIOD_DURATION = 30 days; uint256 private immutable _pauseWindowEndTime; uint256 private immutable _bufferPeriodEndTime; bool private _paused; constructor(uint256 pauseWindowDuration, uint256 bufferPeriodDuration) { _require(pauseWindowDuration <= _MAX_PAUSE_WINDOW_DURATION, Errors.MAX_PAUSE_WINDOW_DURATION); _require(bufferPeriodDuration <= _MAX_BUFFER_PERIOD_DURATION, Errors.MAX_BUFFER_PERIOD_DURATION); uint256 pauseWindowEndTime = block.timestamp + pauseWindowDuration; _pauseWindowEndTime = pauseWindowEndTime; _bufferPeriodEndTime = pauseWindowEndTime + bufferPeriodDuration; } /** * @dev Reverts if the contract is paused. */ modifier whenNotPaused() { _ensureNotPaused(); _; } /** * @dev Returns the current contract pause status, as well as the end times of the Pause Window and Buffer * Period. */ function getPausedState() external view override returns ( bool paused, uint256 pauseWindowEndTime, uint256 bufferPeriodEndTime ) { paused = !_isNotPaused(); pauseWindowEndTime = _getPauseWindowEndTime(); bufferPeriodEndTime = _getBufferPeriodEndTime(); } /** * @dev Sets the pause state to `paused`. The contract can only be paused until the end of the Pause Window, and * unpaused until the end of the Buffer Period. * * Once the Buffer Period expires, this function reverts unconditionally. */ function _setPaused(bool paused) internal { if (paused) { _require(block.timestamp < _getPauseWindowEndTime(), Errors.PAUSE_WINDOW_EXPIRED); } else { _require(block.timestamp < _getBufferPeriodEndTime(), Errors.BUFFER_PERIOD_EXPIRED); } _paused = paused; emit PausedStateChanged(paused); } /** * @dev Reverts if the contract is paused. */ function _ensureNotPaused() internal view { _require(_isNotPaused(), Errors.PAUSED); } /** * @dev Returns true if the contract is unpaused. * * Once the Buffer Period expires, the gas cost of calling this function is reduced dramatically, as storage is no * longer accessed. */ function _isNotPaused() internal view returns (bool) { // After the Buffer Period, the (inexpensive) timestamp check short-circuits the storage access. return block.timestamp > _getBufferPeriodEndTime() || !_paused; } // These getters lead to reduced bytecode size by inlining the immutable variables in a single place. function _getPauseWindowEndTime() private view returns (uint256) { return _pauseWindowEndTime; } function _getBufferPeriodEndTime() private view returns (uint256) { return _bufferPeriodEndTime; } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; /** * @dev Library for encoding and decoding values stored inside a 256 bit word. Typically used to pack multiple values in * a single storage slot, saving gas by performing less storage accesses. * * Each value is defined by its size and the least significant bit in the word, also known as offset. For example, two * 128 bit values may be encoded in a word by assigning one an offset of 0, and the other an offset of 128. */ library WordCodec { // Masks are values with the least significant N bits set. They can be used to extract an encoded value from a word, // or to insert a new one replacing the old. uint256 private constant _MASK_1 = 2**(1) - 1; uint256 private constant _MASK_5 = 2**(5) - 1; uint256 private constant _MASK_7 = 2**(7) - 1; uint256 private constant _MASK_10 = 2**(10) - 1; uint256 private constant _MASK_16 = 2**(16) - 1; uint256 private constant _MASK_22 = 2**(22) - 1; uint256 private constant _MASK_31 = 2**(31) - 1; uint256 private constant _MASK_32 = 2**(32) - 1; uint256 private constant _MASK_53 = 2**(53) - 1; uint256 private constant _MASK_64 = 2**(64) - 1; uint256 private constant _MASK_128 = 2**(128) - 1; uint256 private constant _MASK_192 = 2**(192) - 1; // Largest positive values that can be represented as N bits signed integers. int256 private constant _MAX_INT_22 = 2**(21) - 1; int256 private constant _MAX_INT_53 = 2**(52) - 1; // In-place insertion /** * @dev Inserts a boolean value shifted by an offset into a 256 bit word, replacing the old value. Returns the new * word. */ function insertBool( bytes32 word, bool value, uint256 offset ) internal pure returns (bytes32) { bytes32 clearedWord = bytes32(uint256(word) & ~(_MASK_1 << offset)); return clearedWord | bytes32(uint256(value ? 1 : 0) << offset); } // Unsigned /** * @dev Inserts a 5 bit unsigned integer shifted by an offset into a 256 bit word, replacing the old value. Returns * the new word. * * Assumes `value` only uses its least significant 5 bits, otherwise it may overwrite sibling bytes. */ function insertUint5( bytes32 word, uint256 value, uint256 offset ) internal pure returns (bytes32) { bytes32 clearedWord = bytes32(uint256(word) & ~(_MASK_5 << offset)); return clearedWord | bytes32(value << offset); } /** * @dev Inserts a 7 bit unsigned integer shifted by an offset into a 256 bit word, replacing the old value. Returns * the new word. * * Assumes `value` only uses its least significant 7 bits, otherwise it may overwrite sibling bytes. */ function insertUint7( bytes32 word, uint256 value, uint256 offset ) internal pure returns (bytes32) { bytes32 clearedWord = bytes32(uint256(word) & ~(_MASK_7 << offset)); return clearedWord | bytes32(value << offset); } /** * @dev Inserts a 10 bit unsigned integer shifted by an offset into a 256 bit word, replacing the old value. Returns * the new word. * * Assumes `value` only uses its least significant 10 bits, otherwise it may overwrite sibling bytes. */ function insertUint10( bytes32 word, uint256 value, uint256 offset ) internal pure returns (bytes32) { bytes32 clearedWord = bytes32(uint256(word) & ~(_MASK_10 << offset)); return clearedWord | bytes32(value << offset); } /** * @dev Inserts a 16 bit unsigned integer shifted by an offset into a 256 bit word, replacing the old value. * Returns the new word. * * Assumes `value` only uses its least significant 16 bits, otherwise it may overwrite sibling bytes. */ function insertUint16( bytes32 word, uint256 value, uint256 offset ) internal pure returns (bytes32) { bytes32 clearedWord = bytes32(uint256(word) & ~(_MASK_16 << offset)); return clearedWord | bytes32(value << offset); } /** * @dev Inserts a 31 bit unsigned integer shifted by an offset into a 256 bit word, replacing the old value. Returns * the new word. * * Assumes `value` can be represented using 31 bits. */ function insertUint31( bytes32 word, uint256 value, uint256 offset ) internal pure returns (bytes32) { bytes32 clearedWord = bytes32(uint256(word) & ~(_MASK_31 << offset)); return clearedWord | bytes32(value << offset); } /** * @dev Inserts a 32 bit unsigned integer shifted by an offset into a 256 bit word, replacing the old value. Returns * the new word. * * Assumes `value` only uses its least significant 32 bits, otherwise it may overwrite sibling bytes. */ function insertUint32( bytes32 word, uint256 value, uint256 offset ) internal pure returns (bytes32) { bytes32 clearedWord = bytes32(uint256(word) & ~(_MASK_32 << offset)); return clearedWord | bytes32(value << offset); } /** * @dev Inserts a 64 bit unsigned integer shifted by an offset into a 256 bit word, replacing the old value. Returns * the new word. * * Assumes `value` only uses its least significant 64 bits, otherwise it may overwrite sibling bytes. */ function insertUint64( bytes32 word, uint256 value, uint256 offset ) internal pure returns (bytes32) { bytes32 clearedWord = bytes32(uint256(word) & ~(_MASK_64 << offset)); return clearedWord | bytes32(value << offset); } // Signed /** * @dev Inserts a 22 bits signed integer shifted by an offset into a 256 bit word, replacing the old value. Returns * the new word. * * Assumes `value` can be represented using 22 bits. */ function insertInt22( bytes32 word, int256 value, uint256 offset ) internal pure returns (bytes32) { bytes32 clearedWord = bytes32(uint256(word) & ~(_MASK_22 << offset)); // Integer values need masking to remove the upper bits of negative values. return clearedWord | bytes32((uint256(value) & _MASK_22) << offset); } // Bytes /** * @dev Inserts 192 bit shifted by an offset into a 256 bit word, replacing the old value. Returns the new word. * * Assumes `value` can be represented using 192 bits. */ function insertBits192( bytes32 word, bytes32 value, uint256 offset ) internal pure returns (bytes32) { bytes32 clearedWord = bytes32(uint256(word) & ~(_MASK_192 << offset)); return clearedWord | bytes32((uint256(value) & _MASK_192) << offset); } // Encoding // Unsigned /** * @dev Encodes an unsigned integer shifted by an offset. This performs no size checks: it is up to the caller to * ensure that the values are bounded. * * The return value can be logically ORed with other encoded values to form a 256 bit word. */ function encodeUint(uint256 value, uint256 offset) internal pure returns (bytes32) { return bytes32(value << offset); } // Signed /** * @dev Encodes a 22 bits signed integer shifted by an offset. * * The return value can be logically ORed with other encoded values to form a 256 bit word. */ function encodeInt22(int256 value, uint256 offset) internal pure returns (bytes32) { // Integer values need masking to remove the upper bits of negative values. return bytes32((uint256(value) & _MASK_22) << offset); } /** * @dev Encodes a 53 bits signed integer shifted by an offset. * * The return value can be logically ORed with other encoded values to form a 256 bit word. */ function encodeInt53(int256 value, uint256 offset) internal pure returns (bytes32) { // Integer values need masking to remove the upper bits of negative values. return bytes32((uint256(value) & _MASK_53) << offset); } // Decoding /** * @dev Decodes and returns a boolean shifted by an offset from a 256 bit word. */ function decodeBool(bytes32 word, uint256 offset) internal pure returns (bool) { return (uint256(word >> offset) & _MASK_1) == 1; } // Unsigned /** * @dev Decodes and returns a 5 bit unsigned integer shifted by an offset from a 256 bit word. */ function decodeUint5(bytes32 word, uint256 offset) internal pure returns (uint256) { return uint256(word >> offset) & _MASK_5; } /** * @dev Decodes and returns a 7 bit unsigned integer shifted by an offset from a 256 bit word. */ function decodeUint7(bytes32 word, uint256 offset) internal pure returns (uint256) { return uint256(word >> offset) & _MASK_7; } /** * @dev Decodes and returns a 10 bit unsigned integer shifted by an offset from a 256 bit word. */ function decodeUint10(bytes32 word, uint256 offset) internal pure returns (uint256) { return uint256(word >> offset) & _MASK_10; } /** * @dev Decodes and returns a 16 bit unsigned integer shifted by an offset from a 256 bit word. */ function decodeUint16(bytes32 word, uint256 offset) internal pure returns (uint256) { return uint256(word >> offset) & _MASK_16; } /** * @dev Decodes and returns a 31 bit unsigned integer shifted by an offset from a 256 bit word. */ function decodeUint31(bytes32 word, uint256 offset) internal pure returns (uint256) { return uint256(word >> offset) & _MASK_31; } /** * @dev Decodes and returns a 32 bit unsigned integer shifted by an offset from a 256 bit word. */ function decodeUint32(bytes32 word, uint256 offset) internal pure returns (uint256) { return uint256(word >> offset) & _MASK_32; } /** * @dev Decodes and returns a 64 bit unsigned integer shifted by an offset from a 256 bit word. */ function decodeUint64(bytes32 word, uint256 offset) internal pure returns (uint256) { return uint256(word >> offset) & _MASK_64; } /** * @dev Decodes and returns a 128 bit unsigned integer shifted by an offset from a 256 bit word. */ function decodeUint128(bytes32 word, uint256 offset) internal pure returns (uint256) { return uint256(word >> offset) & _MASK_128; } // Signed /** * @dev Decodes and returns a 22 bits signed integer shifted by an offset from a 256 bit word. */ function decodeInt22(bytes32 word, uint256 offset) internal pure returns (int256) { int256 value = int256(uint256(word >> offset) & _MASK_22); // In case the decoded value is greater than the max positive integer that can be represented with 22 bits, // we know it was originally a negative integer. Therefore, we mask it to restore the sign in the 256 bit // representation. return value > _MAX_INT_22 ? (value | int256(~_MASK_22)) : value; } /** * @dev Decodes and returns a 53 bits signed integer shifted by an offset from a 256 bit word. */ function decodeInt53(bytes32 word, uint256 offset) internal pure returns (int256) { int256 value = int256(uint256(word >> offset) & _MASK_53); // In case the decoded value is greater than the max positive integer that can be represented with 53 bits, // we know it was originally a negative integer. Therefore, we mask it to restore the sign in the 256 bit // representation. return value > _MAX_INT_53 ? (value | int256(~_MASK_53)) : value; } }
// SPDX-License-Identifier: MIT pragma solidity ^0.7.0; import "../helpers/BalancerErrors.sol"; import "./IERC20.sol"; import "./SafeMath.sol"; /** * @dev Implementation of the {IERC20} interface. * * This implementation is agnostic to the way tokens are created. This means * that a supply mechanism has to be added in a derived contract using {_mint}. * For a generic mechanism see {ERC20PresetMinterPauser}. * * TIP: For a detailed writeup see our guide * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How * to implement supply mechanisms]. * * We have followed general OpenZeppelin guidelines: functions revert instead * of returning `false` on failure. This behavior is nonetheless conventional * and does not conflict with the expectations of ERC20 applications. * * Additionally, an {Approval} event is emitted on calls to {transferFrom}. * This allows applications to reconstruct the allowance for all accounts just * by listening to said events. Other implementations of the EIP may not emit * these events, as it isn't required by the specification. * * Finally, the non-standard {decreaseAllowance} and {increaseAllowance} * functions have been added to mitigate the well-known issues around setting * allowances. See {IERC20-approve}. */ contract ERC20 is IERC20 { using SafeMath for uint256; mapping(address => uint256) private _balances; mapping(address => mapping(address => uint256)) private _allowances; uint256 private _totalSupply; string private _name; string private _symbol; uint8 private _decimals; /** * @dev Sets the values for {name} and {symbol}, initializes {decimals} with * a default value of 18. * * To select a different value for {decimals}, use {_setupDecimals}. * * All three of these values are immutable: they can only be set once during * construction. */ constructor(string memory name_, string memory symbol_) { _name = name_; _symbol = symbol_; _decimals = 18; } /** * @dev Returns the name of the token. */ function name() public view returns (string memory) { return _name; } /** * @dev Returns the symbol of the token, usually a shorter version of the * name. */ function symbol() public view returns (string memory) { return _symbol; } /** * @dev Returns the number of decimals used to get its user representation. * For example, if `decimals` equals `2`, a balance of `505` tokens should * be displayed to a user as `5,05` (`505 / 10 ** 2`). * * Tokens usually opt for a value of 18, imitating the relationship between * Ether and Wei. This is the value {ERC20} uses, unless {_setupDecimals} is * called. * * NOTE: This information is only used for _display_ purposes: it in * no way affects any of the arithmetic of the contract, including * {IERC20-balanceOf} and {IERC20-transfer}. */ function decimals() public view returns (uint8) { return _decimals; } /** * @dev See {IERC20-totalSupply}. */ function totalSupply() public view override returns (uint256) { return _totalSupply; } /** * @dev See {IERC20-balanceOf}. */ function balanceOf(address account) public view override returns (uint256) { return _balances[account]; } /** * @dev See {IERC20-transfer}. * * Requirements: * * - `recipient` cannot be the zero address. * - the caller must have a balance of at least `amount`. */ function transfer(address recipient, uint256 amount) public virtual override returns (bool) { _transfer(msg.sender, recipient, amount); return true; } /** * @dev See {IERC20-allowance}. */ function allowance(address owner, address spender) public view virtual override returns (uint256) { return _allowances[owner][spender]; } /** * @dev See {IERC20-approve}. * * Requirements: * * - `spender` cannot be the zero address. */ function approve(address spender, uint256 amount) public virtual override returns (bool) { _approve(msg.sender, spender, amount); return true; } /** * @dev See {IERC20-transferFrom}. * * Emits an {Approval} event indicating the updated allowance. This is not * required by the EIP. See the note at the beginning of {ERC20}. * * Requirements: * * - `sender` and `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. * - the caller must have allowance for ``sender``'s tokens of at least * `amount`. */ function transferFrom( address sender, address recipient, uint256 amount ) public virtual override returns (bool) { _transfer(sender, recipient, amount); _approve( sender, msg.sender, _allowances[sender][msg.sender].sub(amount, Errors.ERC20_TRANSFER_EXCEEDS_ALLOWANCE) ); return true; } /** * @dev Atomically increases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. */ function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) { _approve(msg.sender, spender, _allowances[msg.sender][spender].add(addedValue)); return true; } /** * @dev Atomically decreases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. * - `spender` must have allowance for the caller of at least * `subtractedValue`. */ function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) { _approve( msg.sender, spender, _allowances[msg.sender][spender].sub(subtractedValue, Errors.ERC20_DECREASED_ALLOWANCE_BELOW_ZERO) ); return true; } /** * @dev Moves tokens `amount` from `sender` to `recipient`. * * This is internal function is equivalent to {transfer}, and can be used to * e.g. implement automatic token fees, slashing mechanisms, etc. * * Emits a {Transfer} event. * * Requirements: * * - `sender` cannot be the zero address. * - `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. */ function _transfer( address sender, address recipient, uint256 amount ) internal virtual { _require(sender != address(0), Errors.ERC20_TRANSFER_FROM_ZERO_ADDRESS); _require(recipient != address(0), Errors.ERC20_TRANSFER_TO_ZERO_ADDRESS); _beforeTokenTransfer(sender, recipient, amount); _balances[sender] = _balances[sender].sub(amount, Errors.ERC20_TRANSFER_EXCEEDS_BALANCE); _balances[recipient] = _balances[recipient].add(amount); emit Transfer(sender, recipient, amount); } /** @dev Creates `amount` tokens and assigns them to `account`, increasing * the total supply. * * Emits a {Transfer} event with `from` set to the zero address. * * Requirements: * * - `to` cannot be the zero address. */ function _mint(address account, uint256 amount) internal virtual { _beforeTokenTransfer(address(0), account, amount); _totalSupply = _totalSupply.add(amount); _balances[account] = _balances[account].add(amount); emit Transfer(address(0), account, amount); } /** * @dev Destroys `amount` tokens from `account`, reducing the * total supply. * * Emits a {Transfer} event with `to` set to the zero address. * * Requirements: * * - `account` cannot be the zero address. * - `account` must have at least `amount` tokens. */ function _burn(address account, uint256 amount) internal virtual { _require(account != address(0), Errors.ERC20_BURN_FROM_ZERO_ADDRESS); _beforeTokenTransfer(account, address(0), amount); _balances[account] = _balances[account].sub(amount, Errors.ERC20_BURN_EXCEEDS_ALLOWANCE); _totalSupply = _totalSupply.sub(amount); emit Transfer(account, address(0), amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens. * * This internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. */ function _approve( address owner, address spender, uint256 amount ) internal virtual { _allowances[owner][spender] = amount; emit Approval(owner, spender, amount); } /** * @dev Sets {decimals} to a value other than the default one of 18. * * WARNING: This function should only be called from the constructor. Most * applications that interact with token contracts will not expect * {decimals} to ever change, and may work incorrectly if it does. */ function _setupDecimals(uint8 decimals_) internal { _decimals = decimals_; } /** * @dev Hook that is called before any transfer of tokens. This includes * minting and burning. * * Calling conditions: * * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens * will be to transferred to `to`. * - when `from` is zero, `amount` tokens will be minted for `to`. * - when `to` is zero, `amount` of ``from``'s tokens will be burned. * - `from` and `to` are never both zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _beforeTokenTransfer( address from, address to, uint256 amount ) internal virtual {} }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma experimental ABIEncoderV2; import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/IERC20.sol"; import "@balancer-labs/v2-solidity-utils/contracts/helpers/ISignaturesValidator.sol"; import "@balancer-labs/v2-solidity-utils/contracts/helpers/ITemporarilyPausable.sol"; import "@balancer-labs/v2-solidity-utils/contracts/misc/IWETH.sol"; import "./IAsset.sol"; import "./IAuthorizer.sol"; import "./IFlashLoanRecipient.sol"; import "./IProtocolFeesCollector.sol"; pragma solidity ^0.7.0; /** * @dev Full external interface for the Vault core contract - no external or public methods exist in the contract that * don't override one of these declarations. */ interface IVault is ISignaturesValidator, ITemporarilyPausable { // Generalities about the Vault: // // - Whenever documentation refers to 'tokens', it strictly refers to ERC20-compliant token contracts. Tokens are // transferred out of the Vault by calling the `IERC20.transfer` function, and transferred in by calling // `IERC20.transferFrom`. In these cases, the sender must have previously allowed the Vault to use their tokens by // calling `IERC20.approve`. The only deviation from the ERC20 standard that is supported is functions not returning // a boolean value: in these scenarios, a non-reverting call is assumed to be successful. // // - All non-view functions in the Vault are non-reentrant: calling them while another one is mid-execution (e.g. // while execution control is transferred to a token contract during a swap) will result in a revert. View // functions can be called in a re-reentrant way, but doing so might cause them to return inconsistent results. // Contracts calling view functions in the Vault must make sure the Vault has not already been entered. // // - View functions revert if referring to either unregistered Pools, or unregistered tokens for registered Pools. // Authorizer // // Some system actions are permissioned, like setting and collecting protocol fees. This permissioning system exists // outside of the Vault in the Authorizer contract: the Vault simply calls the Authorizer to check if the caller // can perform a given action. /** * @dev Returns the Vault's Authorizer. */ function getAuthorizer() external view returns (IAuthorizer); /** * @dev Sets a new Authorizer for the Vault. The caller must be allowed by the current Authorizer to do this. * * Emits an `AuthorizerChanged` event. */ function setAuthorizer(IAuthorizer newAuthorizer) external; /** * @dev Emitted when a new authorizer is set by `setAuthorizer`. */ event AuthorizerChanged(IAuthorizer indexed newAuthorizer); // Relayers // // Additionally, it is possible for an account to perform certain actions on behalf of another one, using their // Vault ERC20 allowance and Internal Balance. These accounts are said to be 'relayers' for these Vault functions, // and are expected to be smart contracts with sound authentication mechanisms. For an account to be able to wield // this power, two things must occur: // - The Authorizer must grant the account the permission to be a relayer for the relevant Vault function. This // means that Balancer governance must approve each individual contract to act as a relayer for the intended // functions. // - Each user must approve the relayer to act on their behalf. // This double protection means users cannot be tricked into approving malicious relayers (because they will not // have been allowed by the Authorizer via governance), nor can malicious relayers approved by a compromised // Authorizer or governance drain user funds, since they would also need to be approved by each individual user. /** * @dev Returns true if `user` has approved `relayer` to act as a relayer for them. */ function hasApprovedRelayer(address user, address relayer) external view returns (bool); /** * @dev Allows `relayer` to act as a relayer for `sender` if `approved` is true, and disallows it otherwise. * * Emits a `RelayerApprovalChanged` event. */ function setRelayerApproval( address sender, address relayer, bool approved ) external; /** * @dev Emitted every time a relayer is approved or disapproved by `setRelayerApproval`. */ event RelayerApprovalChanged(address indexed relayer, address indexed sender, bool approved); // Internal Balance // // Users can deposit tokens into the Vault, where they are allocated to their Internal Balance, and later // transferred or withdrawn. It can also be used as a source of tokens when joining Pools, as a destination // when exiting them, and as either when performing swaps. This usage of Internal Balance results in greatly reduced // gas costs when compared to relying on plain ERC20 transfers, leading to large savings for frequent users. // // Internal Balance management features batching, which means a single contract call can be used to perform multiple // operations of different kinds, with different senders and recipients, at once. /** * @dev Returns `user`'s Internal Balance for a set of tokens. */ function getInternalBalance(address user, IERC20[] memory tokens) external view returns (uint256[] memory); /** * @dev Performs a set of user balance operations, which involve Internal Balance (deposit, withdraw or transfer) * and plain ERC20 transfers using the Vault's allowance. This last feature is particularly useful for relayers, as * it lets integrators reuse a user's Vault allowance. * * For each operation, if the caller is not `sender`, it must be an authorized relayer for them. */ function manageUserBalance(UserBalanceOp[] memory ops) external payable; /** * @dev Data for `manageUserBalance` operations, which include the possibility for ETH to be sent and received without manual WETH wrapping or unwrapping. */ struct UserBalanceOp { UserBalanceOpKind kind; IAsset asset; uint256 amount; address sender; address payable recipient; } // There are four possible operations in `manageUserBalance`: // // - DEPOSIT_INTERNAL // Increases the Internal Balance of the `recipient` account by transferring tokens from the corresponding // `sender`. The sender must have allowed the Vault to use their tokens via `IERC20.approve()`. // // ETH can be used by passing the ETH sentinel value as the asset and forwarding ETH in the call: it will be wrapped // and deposited as WETH. Any ETH amount remaining will be sent back to the caller (not the sender, which is // relevant for relayers). // // Emits an `InternalBalanceChanged` event. // // // - WITHDRAW_INTERNAL // Decreases the Internal Balance of the `sender` account by transferring tokens to the `recipient`. // // ETH can be used by passing the ETH sentinel value as the asset. This will deduct WETH instead, unwrap it and send // it to the recipient as ETH. // // Emits an `InternalBalanceChanged` event. // // // - TRANSFER_INTERNAL // Transfers tokens from the Internal Balance of the `sender` account to the Internal Balance of `recipient`. // // Reverts if the ETH sentinel value is passed. // // Emits an `InternalBalanceChanged` event. // // // - TRANSFER_EXTERNAL // Transfers tokens from `sender` to `recipient`, using the Vault's ERC20 allowance. This is typically used by // relayers, as it lets them reuse a user's Vault allowance. // // Reverts if the ETH sentinel value is passed. // // Emits an `ExternalBalanceTransfer` event. enum UserBalanceOpKind { DEPOSIT_INTERNAL, WITHDRAW_INTERNAL, TRANSFER_INTERNAL, TRANSFER_EXTERNAL } /** * @dev Emitted when a user's Internal Balance changes, either from calls to `manageUserBalance`, or through * interacting with Pools using Internal Balance. * * Because Internal Balance works exclusively with ERC20 tokens, ETH deposits and withdrawals will use the WETH * address. */ event InternalBalanceChanged(address indexed user, IERC20 indexed token, int256 delta); /** * @dev Emitted when a user's Vault ERC20 allowance is used by the Vault to transfer tokens to an external account. */ event ExternalBalanceTransfer(IERC20 indexed token, address indexed sender, address recipient, uint256 amount); // Pools // // There are three specialization settings for Pools, which allow for cheaper swaps at the cost of reduced // functionality: // // - General: no specialization, suited for all Pools. IGeneralPool is used for swap request callbacks, passing the // balance of all tokens in the Pool. These Pools have the largest swap costs (because of the extra storage reads), // which increase with the number of registered tokens. // // - Minimal Swap Info: IMinimalSwapInfoPool is used instead of IGeneralPool, which saves gas by only passing the // balance of the two tokens involved in the swap. This is suitable for some pricing algorithms, like the weighted // constant product one popularized by Balancer V1. Swap costs are smaller compared to general Pools, and are // independent of the number of registered tokens. // // - Two Token: only allows two tokens to be registered. This achieves the lowest possible swap gas cost. Like // minimal swap info Pools, these are called via IMinimalSwapInfoPool. enum PoolSpecialization { GENERAL, MINIMAL_SWAP_INFO, TWO_TOKEN } /** * @dev Registers the caller account as a Pool with a given specialization setting. Returns the Pool's ID, which * is used in all Pool-related functions. Pools cannot be deregistered, nor can the Pool's specialization be * changed. * * The caller is expected to be a smart contract that implements either `IGeneralPool` or `IMinimalSwapInfoPool`, * depending on the chosen specialization setting. This contract is known as the Pool's contract. * * Note that the same contract may register itself as multiple Pools with unique Pool IDs, or in other words, * multiple Pools may share the same contract. * * Emits a `PoolRegistered` event. */ function registerPool(PoolSpecialization specialization) external returns (bytes32); /** * @dev Emitted when a Pool is registered by calling `registerPool`. */ event PoolRegistered(bytes32 indexed poolId, address indexed poolAddress, PoolSpecialization specialization); /** * @dev Returns a Pool's contract address and specialization setting. */ function getPool(bytes32 poolId) external view returns (address, PoolSpecialization); /** * @dev Registers `tokens` for the `poolId` Pool. Must be called by the Pool's contract. * * Pools can only interact with tokens they have registered. Users join a Pool by transferring registered tokens, * exit by receiving registered tokens, and can only swap registered tokens. * * Each token can only be registered once. For Pools with the Two Token specialization, `tokens` must have a length * of two, that is, both tokens must be registered in the same `registerTokens` call, and they must be sorted in * ascending order. * * The `tokens` and `assetManagers` arrays must have the same length, and each entry in these indicates the Asset * Manager for the corresponding token. Asset Managers can manage a Pool's tokens via `managePoolBalance`, * depositing and withdrawing them directly, and can even set their balance to arbitrary amounts. They are therefore * expected to be highly secured smart contracts with sound design principles, and the decision to register an * Asset Manager should not be made lightly. * * Pools can choose not to assign an Asset Manager to a given token by passing in the zero address. Once an Asset * Manager is set, it cannot be changed except by deregistering the associated token and registering again with a * different Asset Manager. * * Emits a `TokensRegistered` event. */ function registerTokens( bytes32 poolId, IERC20[] memory tokens, address[] memory assetManagers ) external; /** * @dev Emitted when a Pool registers tokens by calling `registerTokens`. */ event TokensRegistered(bytes32 indexed poolId, IERC20[] tokens, address[] assetManagers); /** * @dev Deregisters `tokens` for the `poolId` Pool. Must be called by the Pool's contract. * * Only registered tokens (via `registerTokens`) can be deregistered. Additionally, they must have zero total * balance. For Pools with the Two Token specialization, `tokens` must have a length of two, that is, both tokens * must be deregistered in the same `deregisterTokens` call. * * A deregistered token can be re-registered later on, possibly with a different Asset Manager. * * Emits a `TokensDeregistered` event. */ function deregisterTokens(bytes32 poolId, IERC20[] memory tokens) external; /** * @dev Emitted when a Pool deregisters tokens by calling `deregisterTokens`. */ event TokensDeregistered(bytes32 indexed poolId, IERC20[] tokens); /** * @dev Returns detailed information for a Pool's registered token. * * `cash` is the number of tokens the Vault currently holds for the Pool. `managed` is the number of tokens * withdrawn and held outside the Vault by the Pool's token Asset Manager. The Pool's total balance for `token` * equals the sum of `cash` and `managed`. * * Internally, `cash` and `managed` are stored using 112 bits. No action can ever cause a Pool's token `cash`, * `managed` or `total` balance to be greater than 2^112 - 1. * * `lastChangeBlock` is the number of the block in which `token`'s total balance was last modified (via either a * join, exit, swap, or Asset Manager update). This value is useful to avoid so-called 'sandwich attacks', for * example when developing price oracles. A change of zero (e.g. caused by a swap with amount zero) is considered a * change for this purpose, and will update `lastChangeBlock`. * * `assetManager` is the Pool's token Asset Manager. */ function getPoolTokenInfo(bytes32 poolId, IERC20 token) external view returns ( uint256 cash, uint256 managed, uint256 lastChangeBlock, address assetManager ); /** * @dev Returns a Pool's registered tokens, the total balance for each, and the latest block when *any* of * the tokens' `balances` changed. * * The order of the `tokens` array is the same order that will be used in `joinPool`, `exitPool`, as well as in all * Pool hooks (where applicable). Calls to `registerTokens` and `deregisterTokens` may change this order. * * If a Pool only registers tokens once, and these are sorted in ascending order, they will be stored in the same * order as passed to `registerTokens`. * * Total balances include both tokens held by the Vault and those withdrawn by the Pool's Asset Managers. These are * the amounts used by joins, exits and swaps. For a detailed breakdown of token balances, use `getPoolTokenInfo` * instead. */ function getPoolTokens(bytes32 poolId) external view returns ( IERC20[] memory tokens, uint256[] memory balances, uint256 lastChangeBlock ); /** * @dev Called by users to join a Pool, which transfers tokens from `sender` into the Pool's balance. This will * trigger custom Pool behavior, which will typically grant something in return to `recipient` - often tokenized * Pool shares. * * If the caller is not `sender`, it must be an authorized relayer for them. * * The `assets` and `maxAmountsIn` arrays must have the same length, and each entry indicates the maximum amount * to send for each asset. The amounts to send are decided by the Pool and not the Vault: it just enforces * these maximums. * * If joining a Pool that holds WETH, it is possible to send ETH directly: the Vault will do the wrapping. To enable * this mechanism, the IAsset sentinel value (the zero address) must be passed in the `assets` array instead of the * WETH address. Note that it is not possible to combine ETH and WETH in the same join. Any excess ETH will be sent * back to the caller (not the sender, which is important for relayers). * * `assets` must have the same length and order as the array returned by `getPoolTokens`. This prevents issues when * interacting with Pools that register and deregister tokens frequently. If sending ETH however, the array must be * sorted *before* replacing the WETH address with the ETH sentinel value (the zero address), which means the final * `assets` array might not be sorted. Pools with no registered tokens cannot be joined. * * If `fromInternalBalance` is true, the caller's Internal Balance will be preferred: ERC20 transfers will only * be made for the difference between the requested amount and Internal Balance (if any). Note that ETH cannot be * withdrawn from Internal Balance: attempting to do so will trigger a revert. * * This causes the Vault to call the `IBasePool.onJoinPool` hook on the Pool's contract, where Pools implement * their own custom logic. This typically requires additional information from the user (such as the expected number * of Pool shares). This can be encoded in the `userData` argument, which is ignored by the Vault and passed * directly to the Pool's contract, as is `recipient`. * * Emits a `PoolBalanceChanged` event. */ function joinPool( bytes32 poolId, address sender, address recipient, JoinPoolRequest memory request ) external payable; struct JoinPoolRequest { IAsset[] assets; uint256[] maxAmountsIn; bytes userData; bool fromInternalBalance; } /** * @dev Called by users to exit a Pool, which transfers tokens from the Pool's balance to `recipient`. This will * trigger custom Pool behavior, which will typically ask for something in return from `sender` - often tokenized * Pool shares. The amount of tokens that can be withdrawn is limited by the Pool's `cash` balance (see * `getPoolTokenInfo`). * * If the caller is not `sender`, it must be an authorized relayer for them. * * The `tokens` and `minAmountsOut` arrays must have the same length, and each entry in these indicates the minimum * token amount to receive for each token contract. The amounts to send are decided by the Pool and not the Vault: * it just enforces these minimums. * * If exiting a Pool that holds WETH, it is possible to receive ETH directly: the Vault will do the unwrapping. To * enable this mechanism, the IAsset sentinel value (the zero address) must be passed in the `assets` array instead * of the WETH address. Note that it is not possible to combine ETH and WETH in the same exit. * * `assets` must have the same length and order as the array returned by `getPoolTokens`. This prevents issues when * interacting with Pools that register and deregister tokens frequently. If receiving ETH however, the array must * be sorted *before* replacing the WETH address with the ETH sentinel value (the zero address), which means the * final `assets` array might not be sorted. Pools with no registered tokens cannot be exited. * * If `toInternalBalance` is true, the tokens will be deposited to `recipient`'s Internal Balance. Otherwise, * an ERC20 transfer will be performed. Note that ETH cannot be deposited to Internal Balance: attempting to * do so will trigger a revert. * * `minAmountsOut` is the minimum amount of tokens the user expects to get out of the Pool, for each token in the * `tokens` array. This array must match the Pool's registered tokens. * * This causes the Vault to call the `IBasePool.onExitPool` hook on the Pool's contract, where Pools implement * their own custom logic. This typically requires additional information from the user (such as the expected number * of Pool shares to return). This can be encoded in the `userData` argument, which is ignored by the Vault and * passed directly to the Pool's contract. * * Emits a `PoolBalanceChanged` event. */ function exitPool( bytes32 poolId, address sender, address payable recipient, ExitPoolRequest memory request ) external; struct ExitPoolRequest { IAsset[] assets; uint256[] minAmountsOut; bytes userData; bool toInternalBalance; } /** * @dev Emitted when a user joins or exits a Pool by calling `joinPool` or `exitPool`, respectively. */ event PoolBalanceChanged( bytes32 indexed poolId, address indexed liquidityProvider, IERC20[] tokens, int256[] deltas, uint256[] protocolFeeAmounts ); enum PoolBalanceChangeKind { JOIN, EXIT } // Swaps // // Users can swap tokens with Pools by calling the `swap` and `batchSwap` functions. To do this, // they need not trust Pool contracts in any way: all security checks are made by the Vault. They must however be // aware of the Pools' pricing algorithms in order to estimate the prices Pools will quote. // // The `swap` function executes a single swap, while `batchSwap` can perform multiple swaps in sequence. // In each individual swap, tokens of one kind are sent from the sender to the Pool (this is the 'token in'), // and tokens of another kind are sent from the Pool to the recipient in exchange (this is the 'token out'). // More complex swaps, such as one token in to multiple tokens out can be achieved by batching together // individual swaps. // // There are two swap kinds: // - 'given in' swaps, where the amount of tokens in (sent to the Pool) is known, and the Pool determines (via the // `onSwap` hook) the amount of tokens out (to send to the recipient). // - 'given out' swaps, where the amount of tokens out (received from the Pool) is known, and the Pool determines // (via the `onSwap` hook) the amount of tokens in (to receive from the sender). // // Additionally, it is possible to chain swaps using a placeholder input amount, which the Vault replaces with // the calculated output of the previous swap. If the previous swap was 'given in', this will be the calculated // tokenOut amount. If the previous swap was 'given out', it will use the calculated tokenIn amount. These extended // swaps are known as 'multihop' swaps, since they 'hop' through a number of intermediate tokens before arriving at // the final intended token. // // In all cases, tokens are only transferred in and out of the Vault (or withdrawn from and deposited into Internal // Balance) after all individual swaps have been completed, and the net token balance change computed. This makes // certain swap patterns, such as multihops, or swaps that interact with the same token pair in multiple Pools, cost // much less gas than they would otherwise. // // It also means that under certain conditions it is possible to perform arbitrage by swapping with multiple // Pools in a way that results in net token movement out of the Vault (profit), with no tokens being sent in (only // updating the Pool's internal accounting). // // To protect users from front-running or the market changing rapidly, they supply a list of 'limits' for each token // involved in the swap, where either the maximum number of tokens to send (by passing a positive value) or the // minimum amount of tokens to receive (by passing a negative value) is specified. // // Additionally, a 'deadline' timestamp can also be provided, forcing the swap to fail if it occurs after // this point in time (e.g. if the transaction failed to be included in a block promptly). // // If interacting with Pools that hold WETH, it is possible to both send and receive ETH directly: the Vault will do // the wrapping and unwrapping. To enable this mechanism, the IAsset sentinel value (the zero address) must be // passed in the `assets` array instead of the WETH address. Note that it is possible to combine ETH and WETH in the // same swap. Any excess ETH will be sent back to the caller (not the sender, which is relevant for relayers). // // Finally, Internal Balance can be used when either sending or receiving tokens. enum SwapKind { GIVEN_IN, GIVEN_OUT } /** * @dev Performs a swap with a single Pool. * * If the swap is 'given in' (the number of tokens to send to the Pool is known), it returns the amount of tokens * taken from the Pool, which must be greater than or equal to `limit`. * * If the swap is 'given out' (the number of tokens to take from the Pool is known), it returns the amount of tokens * sent to the Pool, which must be less than or equal to `limit`. * * Internal Balance usage and the recipient are determined by the `funds` struct. * * Emits a `Swap` event. */ function swap( SingleSwap memory singleSwap, FundManagement memory funds, uint256 limit, uint256 deadline ) external payable returns (uint256); /** * @dev Data for a single swap executed by `swap`. `amount` is either `amountIn` or `amountOut` depending on * the `kind` value. * * `assetIn` and `assetOut` are either token addresses, or the IAsset sentinel value for ETH (the zero address). * Note that Pools never interact with ETH directly: it will be wrapped to or unwrapped from WETH by the Vault. * * The `userData` field is ignored by the Vault, but forwarded to the Pool in the `onSwap` hook, and may be * used to extend swap behavior. */ struct SingleSwap { bytes32 poolId; SwapKind kind; IAsset assetIn; IAsset assetOut; uint256 amount; bytes userData; } /** * @dev Performs a series of swaps with one or multiple Pools. In each individual swap, the caller determines either * the amount of tokens sent to or received from the Pool, depending on the `kind` value. * * Returns an array with the net Vault asset balance deltas. Positive amounts represent tokens (or ETH) sent to the * Vault, and negative amounts represent tokens (or ETH) sent by the Vault. Each delta corresponds to the asset at * the same index in the `assets` array. * * Swaps are executed sequentially, in the order specified by the `swaps` array. Each array element describes a * Pool, the token to be sent to this Pool, the token to receive from it, and an amount that is either `amountIn` or * `amountOut` depending on the swap kind. * * Multihop swaps can be executed by passing an `amount` value of zero for a swap. This will cause the amount in/out * of the previous swap to be used as the amount in for the current one. In a 'given in' swap, 'tokenIn' must equal * the previous swap's `tokenOut`. For a 'given out' swap, `tokenOut` must equal the previous swap's `tokenIn`. * * The `assets` array contains the addresses of all assets involved in the swaps. These are either token addresses, * or the IAsset sentinel value for ETH (the zero address). Each entry in the `swaps` array specifies tokens in and * out by referencing an index in `assets`. Note that Pools never interact with ETH directly: it will be wrapped to * or unwrapped from WETH by the Vault. * * Internal Balance usage, sender, and recipient are determined by the `funds` struct. The `limits` array specifies * the minimum or maximum amount of each token the vault is allowed to transfer. * * `batchSwap` can be used to make a single swap, like `swap` does, but doing so requires more gas than the * equivalent `swap` call. * * Emits `Swap` events. */ function batchSwap( SwapKind kind, BatchSwapStep[] memory swaps, IAsset[] memory assets, FundManagement memory funds, int256[] memory limits, uint256 deadline ) external payable returns (int256[] memory); /** * @dev Data for each individual swap executed by `batchSwap`. The asset in and out fields are indexes into the * `assets` array passed to that function, and ETH assets are converted to WETH. * * If `amount` is zero, the multihop mechanism is used to determine the actual amount based on the amount in/out * from the previous swap, depending on the swap kind. * * The `userData` field is ignored by the Vault, but forwarded to the Pool in the `onSwap` hook, and may be * used to extend swap behavior. */ struct BatchSwapStep { bytes32 poolId; uint256 assetInIndex; uint256 assetOutIndex; uint256 amount; bytes userData; } /** * @dev Emitted for each individual swap performed by `swap` or `batchSwap`. */ event Swap( bytes32 indexed poolId, IERC20 indexed tokenIn, IERC20 indexed tokenOut, uint256 amountIn, uint256 amountOut ); /** * @dev All tokens in a swap are either sent from the `sender` account to the Vault, or from the Vault to the * `recipient` account. * * If the caller is not `sender`, it must be an authorized relayer for them. * * If `fromInternalBalance` is true, the `sender`'s Internal Balance will be preferred, performing an ERC20 * transfer for the difference between the requested amount and the User's Internal Balance (if any). The `sender` * must have allowed the Vault to use their tokens via `IERC20.approve()`. This matches the behavior of * `joinPool`. * * If `toInternalBalance` is true, tokens will be deposited to `recipient`'s internal balance instead of * transferred. This matches the behavior of `exitPool`. * * Note that ETH cannot be deposited to or withdrawn from Internal Balance: attempting to do so will trigger a * revert. */ struct FundManagement { address sender; bool fromInternalBalance; address payable recipient; bool toInternalBalance; } /** * @dev Simulates a call to `batchSwap`, returning an array of Vault asset deltas. Calls to `swap` cannot be * simulated directly, but an equivalent `batchSwap` call can and will yield the exact same result. * * Each element in the array corresponds to the asset at the same index, and indicates the number of tokens (or ETH) * the Vault would take from the sender (if positive) or send to the recipient (if negative). The arguments it * receives are the same that an equivalent `batchSwap` call would receive. * * Unlike `batchSwap`, this function performs no checks on the sender or recipient field in the `funds` struct. * This makes it suitable to be called by off-chain applications via eth_call without needing to hold tokens, * approve them for the Vault, or even know a user's address. * * Note that this function is not 'view' (due to implementation details): the client code must explicitly execute * eth_call instead of eth_sendTransaction. */ function queryBatchSwap( SwapKind kind, BatchSwapStep[] memory swaps, IAsset[] memory assets, FundManagement memory funds ) external returns (int256[] memory assetDeltas); // Flash Loans /** * @dev Performs a 'flash loan', sending tokens to `recipient`, executing the `receiveFlashLoan` hook on it, * and then reverting unless the tokens plus a proportional protocol fee have been returned. * * The `tokens` and `amounts` arrays must have the same length, and each entry in these indicates the loan amount * for each token contract. `tokens` must be sorted in ascending order. * * The 'userData' field is ignored by the Vault, and forwarded as-is to `recipient` as part of the * `receiveFlashLoan` call. * * Emits `FlashLoan` events. */ function flashLoan( IFlashLoanRecipient recipient, IERC20[] memory tokens, uint256[] memory amounts, bytes memory userData ) external; /** * @dev Emitted for each individual flash loan performed by `flashLoan`. */ event FlashLoan(IFlashLoanRecipient indexed recipient, IERC20 indexed token, uint256 amount, uint256 feeAmount); // Asset Management // // Each token registered for a Pool can be assigned an Asset Manager, which is able to freely withdraw the Pool's // tokens from the Vault, deposit them, or assign arbitrary values to its `managed` balance (see // `getPoolTokenInfo`). This makes them extremely powerful and dangerous. Even if an Asset Manager only directly // controls one of the tokens in a Pool, a malicious manager could set that token's balance to manipulate the // prices of the other tokens, and then drain the Pool with swaps. The risk of using Asset Managers is therefore // not constrained to the tokens they are managing, but extends to the entire Pool's holdings. // // However, a properly designed Asset Manager smart contract can be safely used for the Pool's benefit, // for example by lending unused tokens out for interest, or using them to participate in voting protocols. // // This concept is unrelated to the IAsset interface. /** * @dev Performs a set of Pool balance operations, which may be either withdrawals, deposits or updates. * * Pool Balance management features batching, which means a single contract call can be used to perform multiple * operations of different kinds, with different Pools and tokens, at once. * * For each operation, the caller must be registered as the Asset Manager for `token` in `poolId`. */ function managePoolBalance(PoolBalanceOp[] memory ops) external; struct PoolBalanceOp { PoolBalanceOpKind kind; bytes32 poolId; IERC20 token; uint256 amount; } /** * Withdrawals decrease the Pool's cash, but increase its managed balance, leaving the total balance unchanged. * * Deposits increase the Pool's cash, but decrease its managed balance, leaving the total balance unchanged. * * Updates don't affect the Pool's cash balance, but because the managed balance changes, it does alter the total. * The external amount can be either increased or decreased by this call (i.e., reporting a gain or a loss). */ enum PoolBalanceOpKind { WITHDRAW, DEPOSIT, UPDATE } /** * @dev Emitted when a Pool's token Asset Manager alters its balance via `managePoolBalance`. */ event PoolBalanceManaged( bytes32 indexed poolId, address indexed assetManager, IERC20 indexed token, int256 cashDelta, int256 managedDelta ); // Protocol Fees // // Some operations cause the Vault to collect tokens in the form of protocol fees, which can then be withdrawn by // permissioned accounts. // // There are two kinds of protocol fees: // // - flash loan fees: charged on all flash loans, as a percentage of the amounts lent. // // - swap fees: a percentage of the fees charged by Pools when performing swaps. For a number of reasons, including // swap gas costs and interface simplicity, protocol swap fees are not charged on each individual swap. Rather, // Pools are expected to keep track of how much they have charged in swap fees, and pay any outstanding debts to the // Vault when they are joined or exited. This prevents users from joining a Pool with unpaid debt, as well as // exiting a Pool in debt without first paying their share. /** * @dev Returns the current protocol fee module. */ function getProtocolFeesCollector() external view returns (IProtocolFeesCollector); /** * @dev Safety mechanism to pause most Vault operations in the event of an emergency - typically detection of an * error in some part of the system. * * The Vault can only be paused during an initial time period, after which pausing is forever disabled. * * While the contract is paused, the following features are disabled: * - depositing and transferring internal balance * - transferring external balance (using the Vault's allowance) * - swaps * - joining Pools * - Asset Manager interactions * * Internal Balance can still be withdrawn, and Pools exited. */ function setPaused(bool paused) external; /** * @dev Returns the Vault's WETH instance. */ function WETH() external view returns (IWETH); // solhint-disable-previous-line func-name-mixedcase }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; pragma experimental ABIEncoderV2; import "./IVault.sol"; import "./IPoolSwapStructs.sol"; /** * @dev Interface for adding and removing liquidity that all Pool contracts should implement. Note that this is not * the complete Pool contract interface, as it is missing the swap hooks. Pool contracts should also inherit from * either IGeneralPool or IMinimalSwapInfoPool */ interface IBasePool is IPoolSwapStructs { /** * @dev Called by the Vault when a user calls `IVault.joinPool` to add liquidity to this Pool. Returns how many of * each registered token the user should provide, as well as the amount of protocol fees the Pool owes to the Vault. * The Vault will then take tokens from `sender` and add them to the Pool's balances, as well as collect * the reported amount in protocol fees, which the pool should calculate based on `protocolSwapFeePercentage`. * * Protocol fees are reported and charged on join events so that the Pool is free of debt whenever new users join. * * `sender` is the account performing the join (from which tokens will be withdrawn), and `recipient` is the account * designated to receive any benefits (typically pool shares). `balances` contains the total balances * for each token the Pool registered in the Vault, in the same order that `IVault.getPoolTokens` would return. * * `lastChangeBlock` is the last block in which *any* of the Pool's registered tokens last changed its total * balance. * * `userData` contains any pool-specific instructions needed to perform the calculations, such as the type of * join (e.g., proportional given an amount of pool shares, single-asset, multi-asset, etc.) * * Contracts implementing this function should check that the caller is indeed the Vault before performing any * state-changing operations, such as minting pool shares. */ function onJoinPool( bytes32 poolId, address sender, address recipient, uint256[] memory balances, uint256 lastChangeBlock, uint256 protocolSwapFeePercentage, bytes memory userData ) external returns (uint256[] memory amountsIn, uint256[] memory dueProtocolFeeAmounts); /** * @dev Called by the Vault when a user calls `IVault.exitPool` to remove liquidity from this Pool. Returns how many * tokens the Vault should deduct from the Pool's balances, as well as the amount of protocol fees the Pool owes * to the Vault. The Vault will then take tokens from the Pool's balances and send them to `recipient`, * as well as collect the reported amount in protocol fees, which the Pool should calculate based on * `protocolSwapFeePercentage`. * * Protocol fees are charged on exit events to guarantee that users exiting the Pool have paid their share. * * `sender` is the account performing the exit (typically the pool shareholder), and `recipient` is the account * to which the Vault will send the proceeds. `balances` contains the total token balances for each token * the Pool registered in the Vault, in the same order that `IVault.getPoolTokens` would return. * * `lastChangeBlock` is the last block in which *any* of the Pool's registered tokens last changed its total * balance. * * `userData` contains any pool-specific instructions needed to perform the calculations, such as the type of * exit (e.g., proportional given an amount of pool shares, single-asset, multi-asset, etc.) * * Contracts implementing this function should check that the caller is indeed the Vault before performing any * state-changing operations, such as burning pool shares. */ function onExitPool( bytes32 poolId, address sender, address recipient, uint256[] memory balances, uint256 lastChangeBlock, uint256 protocolSwapFeePercentage, bytes memory userData ) external returns (uint256[] memory amountsOut, uint256[] memory dueProtocolFeeAmounts); function getPoolId() external view returns (bytes32); }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; pragma experimental ABIEncoderV2; import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/IERC20.sol"; interface IAssetManager { /** * @notice Emitted when asset manager is rebalanced */ event Rebalance(bytes32 poolId); /** * @notice Sets the config */ function setConfig(bytes32 poolId, bytes calldata config) external; /** * Note: No function to read the asset manager config is included in IAssetManager * as the signature is expected to vary between asset manager implementations */ /** * @notice Returns the asset manager's token */ function getToken() external view returns (IERC20); /** * @return the current assets under management of this asset manager */ function getAUM(bytes32 poolId) external view returns (uint256); /** * @return poolCash - The up-to-date cash balance of the pool * @return poolManaged - The up-to-date managed balance of the pool */ function getPoolBalances(bytes32 poolId) external view returns (uint256 poolCash, uint256 poolManaged); /** * @return The difference in tokens between the target investment * and the currently invested amount (i.e. the amount that can be invested) */ function maxInvestableBalance(bytes32 poolId) external view returns (int256); /** * @notice Updates the Vault on the value of the pool's investment returns */ function updateBalanceOfPool(bytes32 poolId) external; /** * @notice Determines whether the pool should rebalance given the provided balances */ function shouldRebalance(uint256 cash, uint256 managed) external view returns (bool); /** * @notice Rebalances funds between the pool and the asset manager to maintain target investment percentage. * @param poolId - the poolId of the pool to be rebalanced * @param force - a boolean representing whether a rebalance should be forced even when the pool is near balance */ function rebalance(bytes32 poolId, bool force) external; /** * @notice allows an authorized rebalancer to remove capital to facilitate large withdrawals * @param poolId - the poolId of the pool to withdraw funds back to * @param amount - the amount of tokens to withdraw back to the pool */ function capitalOut(bytes32 poolId, uint256 amount) external; }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/ERC20.sol"; import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/ERC20Permit.sol"; /** * @title Highly opinionated token implementation * @author Balancer Labs * @dev * - Includes functions to increase and decrease allowance as a workaround * for the well-known issue with `approve`: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * - Allows for 'infinite allowance', where an allowance of 0xff..ff is not * decreased by calls to transferFrom * - Lets a token holder use `transferFrom` to send their own tokens, * without first setting allowance * - Emits 'Approval' events whenever allowance is changed by `transferFrom` */ contract BalancerPoolToken is ERC20, ERC20Permit { constructor(string memory tokenName, string memory tokenSymbol) ERC20(tokenName, tokenSymbol) ERC20Permit(tokenName) { // solhint-disable-previous-line no-empty-blocks } // Overrides /** * @dev Override to allow for 'infinite allowance' and let the token owner use `transferFrom` with no self-allowance */ function transferFrom( address sender, address recipient, uint256 amount ) public override returns (bool) { uint256 currentAllowance = allowance(sender, msg.sender); _require(msg.sender == sender || currentAllowance >= amount, Errors.ERC20_TRANSFER_EXCEEDS_ALLOWANCE); _transfer(sender, recipient, amount); if (msg.sender != sender && currentAllowance != uint256(-1)) { // Because of the previous require, we know that if msg.sender != sender then currentAllowance >= amount _approve(sender, msg.sender, currentAllowance - amount); } return true; } /** * @dev Override to allow decreasing allowance by more than the current amount (setting it to zero) */ function decreaseAllowance(address spender, uint256 amount) public override returns (bool) { uint256 currentAllowance = allowance(msg.sender, spender); if (amount >= currentAllowance) { _approve(msg.sender, spender, 0); } else { // No risk of underflow due to if condition _approve(msg.sender, spender, currentAllowance - amount); } return true; } // Internal functions function _mintPoolTokens(address recipient, uint256 amount) internal { _mint(recipient, amount); } function _burnPoolTokens(address sender, uint256 amount) internal { _burn(sender, amount); } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; import "@balancer-labs/v2-solidity-utils/contracts/helpers/Authentication.sol"; import "@balancer-labs/v2-vault/contracts/interfaces/IAuthorizer.sol"; import "./BasePool.sol"; /** * @dev Base authorization layer implementation for Pools. * * The owner account can call some of the permissioned functions - access control of the rest is delegated to the * Authorizer. Note that this owner is immutable: more sophisticated permission schemes, such as multiple ownership, * granular roles, etc., could be built on top of this by making the owner a smart contract. * * Access control of all other permissioned functions is delegated to an Authorizer. It is also possible to delegate * control of *all* permissioned functions to the Authorizer by setting the owner address to `_DELEGATE_OWNER`. */ abstract contract BasePoolAuthorization is Authentication { address private immutable _owner; address private constant _DELEGATE_OWNER = 0xBA1BA1ba1BA1bA1bA1Ba1BA1ba1BA1bA1ba1ba1B; constructor(address owner) { _owner = owner; } function getOwner() public view returns (address) { return _owner; } function getAuthorizer() external view returns (IAuthorizer) { return _getAuthorizer(); } function _canPerform(bytes32 actionId, address account) internal view override returns (bool) { if ((getOwner() != _DELEGATE_OWNER) && _isOwnerOnlyAction(actionId)) { // Only the owner can perform "owner only" actions, unless the owner is delegated. return msg.sender == getOwner(); } else { // Non-owner actions are always processed via the Authorizer, as "owner only" ones are when delegated. return _getAuthorizer().canPerform(actionId, account, address(this)); } } function _isOwnerOnlyAction(bytes32 actionId) internal view virtual returns (bool); function _getAuthorizer() internal view virtual returns (IAuthorizer); }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; /** * @dev Interface for the TemporarilyPausable helper. */ interface ITemporarilyPausable { /** * @dev Emitted every time the pause state changes by `_setPaused`. */ event PausedStateChanged(bool paused); /** * @dev Returns the current paused state. */ function getPausedState() external view returns ( bool paused, uint256 pauseWindowEndTime, uint256 bufferPeriodEndTime ); }
// SPDX-License-Identifier: MIT pragma solidity ^0.7.0; import "../helpers/BalancerErrors.sol"; /** * @dev Wrappers over Solidity's arithmetic operations with added overflow * checks. * * Arithmetic operations in Solidity wrap on overflow. This can easily result * in bugs, because programmers usually assume that an overflow raises an * error, which is the standard behavior in high level programming languages. * `SafeMath` restores this intuition by reverting the transaction when an * operation overflows. * * Using this library instead of the unchecked operations eliminates an entire * class of bugs, so it's recommended to use it always. */ library SafeMath { /** * @dev Returns the addition of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `+` operator. * * Requirements: * * - Addition cannot overflow. */ function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; _require(c >= a, Errors.ADD_OVERFLOW); return c; } /** * @dev Returns the subtraction of two unsigned integers, reverting on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b) internal pure returns (uint256) { return sub(a, b, Errors.SUB_OVERFLOW); } /** * @dev Returns the subtraction of two unsigned integers, reverting with custom message on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b, uint256 errorCode) internal pure returns (uint256) { _require(b <= a, errorCode); uint256 c = a - b; return c; } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; /** * @dev Interface for the SignatureValidator helper, used to support meta-transactions. */ interface ISignaturesValidator { /** * @dev Returns the EIP712 domain separator. */ function getDomainSeparator() external view returns (bytes32); /** * @dev Returns the next nonce used by an address to sign messages. */ function getNextNonce(address user) external view returns (uint256); }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; import "../openzeppelin/IERC20.sol"; /** * @dev Interface for WETH9. * See https://github.com/gnosis/canonical-weth/blob/0dd1ea3e295eef916d0c6223ec63141137d22d67/contracts/WETH9.sol */ interface IWETH is IERC20 { function deposit() external payable; function withdraw(uint256 amount) external; }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; /** * @dev This is an empty interface used to represent either ERC20-conforming token contracts or ETH (using the zero * address sentinel value). We're just relying on the fact that `interface` can be used to declare new address-like * types. * * This concept is unrelated to a Pool's Asset Managers. */ interface IAsset { // solhint-disable-previous-line no-empty-blocks }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; interface IAuthorizer { /** * @dev Returns true if `account` can perform the action described by `actionId` in the contract `where`. */ function canPerform( bytes32 actionId, address account, address where ) external view returns (bool); }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; // Inspired by Aave Protocol's IFlashLoanReceiver. import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/IERC20.sol"; interface IFlashLoanRecipient { /** * @dev When `flashLoan` is called on the Vault, it invokes the `receiveFlashLoan` hook on the recipient. * * At the time of the call, the Vault will have transferred `amounts` for `tokens` to the recipient. Before this * call returns, the recipient must have transferred `amounts` plus `feeAmounts` for each token back to the * Vault, or else the entire flash loan will revert. * * `userData` is the same value passed in the `IVault.flashLoan` call. */ function receiveFlashLoan( IERC20[] memory tokens, uint256[] memory amounts, uint256[] memory feeAmounts, bytes memory userData ) external; }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; pragma experimental ABIEncoderV2; import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/IERC20.sol"; import "./IVault.sol"; import "./IAuthorizer.sol"; interface IProtocolFeesCollector { event SwapFeePercentageChanged(uint256 newSwapFeePercentage); event FlashLoanFeePercentageChanged(uint256 newFlashLoanFeePercentage); function withdrawCollectedFees( IERC20[] calldata tokens, uint256[] calldata amounts, address recipient ) external; function setSwapFeePercentage(uint256 newSwapFeePercentage) external; function setFlashLoanFeePercentage(uint256 newFlashLoanFeePercentage) external; function getSwapFeePercentage() external view returns (uint256); function getFlashLoanFeePercentage() external view returns (uint256); function getCollectedFeeAmounts(IERC20[] memory tokens) external view returns (uint256[] memory feeAmounts); function getAuthorizer() external view returns (IAuthorizer); function vault() external view returns (IVault); }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; pragma experimental ABIEncoderV2; import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/IERC20.sol"; import "./IVault.sol"; interface IPoolSwapStructs { // This is not really an interface - it just defines common structs used by other interfaces: IGeneralPool and // IMinimalSwapInfoPool. // // This data structure represents a request for a token swap, where `kind` indicates the swap type ('given in' or // 'given out') which indicates whether or not the amount sent by the pool is known. // // The pool receives `tokenIn` and sends `tokenOut`. `amount` is the number of `tokenIn` tokens the pool will take // in, or the number of `tokenOut` tokens the Pool will send out, depending on the given swap `kind`. // // All other fields are not strictly necessary for most swaps, but are provided to support advanced scenarios in // some Pools. // // `poolId` is the ID of the Pool involved in the swap - this is useful for Pool contracts that implement more than // one Pool. // // The meaning of `lastChangeBlock` depends on the Pool specialization: // - Two Token or Minimal Swap Info: the last block in which either `tokenIn` or `tokenOut` changed its total // balance. // - General: the last block in which *any* of the Pool's registered tokens changed its total balance. // // `from` is the origin address for the funds the Pool receives, and `to` is the destination address // where the Pool sends the outgoing tokens. // // `userData` is extra data provided by the caller - typically a signature from a trusted party. struct SwapRequest { IVault.SwapKind kind; IERC20 tokenIn; IERC20 tokenOut; uint256 amount; // Misc data bytes32 poolId; uint256 lastChangeBlock; address from; address to; bytes userData; } }
// SPDX-License-Identifier: MIT pragma solidity ^0.7.0; import "./ERC20.sol"; import "./IERC20Permit.sol"; import "./EIP712.sol"; /** * @dev Implementation of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612]. * * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by * presenting a message signed by the account. By not relying on `{IERC20-approve}`, the token holder account doesn't * need to send a transaction, and thus is not required to hold Ether at all. * * _Available since v3.4._ */ abstract contract ERC20Permit is ERC20, IERC20Permit, EIP712 { mapping(address => uint256) private _nonces; // solhint-disable-next-line var-name-mixedcase bytes32 private immutable _PERMIT_TYPEHASH = keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)"); /** * @dev Initializes the {EIP712} domain separator using the `name` parameter, and setting `version` to `"1"`. * * It's a good idea to use the same `name` that is defined as the ERC20 token name. */ constructor(string memory name) EIP712(name, "1") {} /** * @dev See {IERC20Permit-permit}. */ function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) public virtual override { // solhint-disable-next-line not-rely-on-time _require(block.timestamp <= deadline, Errors.EXPIRED_PERMIT); uint256 nonce = _nonces[owner]; bytes32 structHash = keccak256(abi.encode(_PERMIT_TYPEHASH, owner, spender, value, nonce, deadline)); bytes32 hash = _hashTypedDataV4(structHash); address signer = ecrecover(hash, v, r, s); _require((signer != address(0)) && (signer == owner), Errors.INVALID_SIGNATURE); _nonces[owner] = nonce + 1; _approve(owner, spender, value); } /** * @dev See {IERC20Permit-nonces}. */ function nonces(address owner) public view override returns (uint256) { return _nonces[owner]; } /** * @dev See {IERC20Permit-DOMAIN_SEPARATOR}. */ // solhint-disable-next-line func-name-mixedcase function DOMAIN_SEPARATOR() external view override returns (bytes32) { return _domainSeparatorV4(); } }
// SPDX-License-Identifier: MIT pragma solidity ^0.7.0; /** * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612]. * * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by * presenting a message signed by the account. By not relying on `{IERC20-approve}`, the token holder account doesn't * need to send a transaction, and thus is not required to hold Ether at all. */ interface IERC20Permit { /** * @dev Sets `value` as the allowance of `spender` over `owner`'s tokens, * given `owner`'s signed approval. * * IMPORTANT: The same issues {IERC20-approve} has related to transaction * ordering also apply here. * * Emits an {Approval} event. * * Requirements: * * - `spender` cannot be the zero address. * - `deadline` must be a timestamp in the future. * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner` * over the EIP712-formatted function arguments. * - the signature must use ``owner``'s current nonce (see {nonces}). * * For more information on the signature format, see the * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP * section]. */ function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) external; /** * @dev Returns the current nonce for `owner`. This value must be * included whenever a signature is generated for {permit}. * * Every successful call to {permit} increases ``owner``'s nonce by one. This * prevents a signature from being used multiple times. */ function nonces(address owner) external view returns (uint256); /** * @dev Returns the domain separator used in the encoding of the signature for `permit`, as defined by {EIP712}. */ // solhint-disable-next-line func-name-mixedcase function DOMAIN_SEPARATOR() external view returns (bytes32); }
// SPDX-License-Identifier: MIT pragma solidity ^0.7.0; /** * @dev https://eips.ethereum.org/EIPS/eip-712[EIP 712] is a standard for hashing and signing of typed structured data. * * The encoding specified in the EIP is very generic, and such a generic implementation in Solidity is not feasible, * thus this contract does not implement the encoding itself. Protocols need to implement the type-specific encoding * they need in their contracts using a combination of `abi.encode` and `keccak256`. * * This contract implements the EIP 712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding * scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA * ({_hashTypedDataV4}). * * The implementation of the domain separator was designed to be as efficient as possible while still properly updating * the chain id to protect against replay attacks on an eventual fork of the chain. * * NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method * https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask]. * * _Available since v3.4._ */ abstract contract EIP712 { /* solhint-disable var-name-mixedcase */ bytes32 private immutable _HASHED_NAME; bytes32 private immutable _HASHED_VERSION; bytes32 private immutable _TYPE_HASH; /* solhint-enable var-name-mixedcase */ /** * @dev Initializes the domain separator and parameter caches. * * The meaning of `name` and `version` is specified in * https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP 712]: * * - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol. * - `version`: the current major version of the signing domain. * * NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart * contract upgrade]. */ constructor(string memory name, string memory version) { _HASHED_NAME = keccak256(bytes(name)); _HASHED_VERSION = keccak256(bytes(version)); _TYPE_HASH = keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"); } /** * @dev Returns the domain separator for the current chain. */ function _domainSeparatorV4() internal view virtual returns (bytes32) { return keccak256(abi.encode(_TYPE_HASH, _HASHED_NAME, _HASHED_VERSION, _getChainId(), address(this))); } /** * @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this * function returns the hash of the fully encoded EIP712 message for this domain. * * This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example: * * ```solidity * bytes32 digest = _hashTypedDataV4(keccak256(abi.encode( * keccak256("Mail(address to,string contents)"), * mailTo, * keccak256(bytes(mailContents)) * ))); * address signer = ECDSA.recover(digest, signature); * ``` */ function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) { return keccak256(abi.encodePacked("\x19\x01", _domainSeparatorV4(), structHash)); } function _getChainId() private view returns (uint256 chainId) { // Silence state mutability warning without generating bytecode. // See https://github.com/ethereum/solidity/issues/10090#issuecomment-741789128 and // https://github.com/ethereum/solidity/issues/2691 this; // solhint-disable-next-line no-inline-assembly assembly { chainId := chainid() } } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; import "./BalancerErrors.sol"; import "./IAuthentication.sol"; /** * @dev Building block for performing access control on external functions. * * This contract is used via the `authenticate` modifier (or the `_authenticateCaller` function), which can be applied * to external functions to only make them callable by authorized accounts. * * Derived contracts must implement the `_canPerform` function, which holds the actual access control logic. */ abstract contract Authentication is IAuthentication { bytes32 private immutable _actionIdDisambiguator; /** * @dev The main purpose of the `actionIdDisambiguator` is to prevent accidental function selector collisions in * multi contract systems. * * There are two main uses for it: * - if the contract is a singleton, any unique identifier can be used to make the associated action identifiers * unique. The contract's own address is a good option. * - if the contract belongs to a family that shares action identifiers for the same functions, an identifier * shared by the entire family (and no other contract) should be used instead. */ constructor(bytes32 actionIdDisambiguator) { _actionIdDisambiguator = actionIdDisambiguator; } /** * @dev Reverts unless the caller is allowed to call this function. Should only be applied to external functions. */ modifier authenticate() { _authenticateCaller(); _; } /** * @dev Reverts unless the caller is allowed to call the entry point function. */ function _authenticateCaller() internal view { bytes32 actionId = getActionId(msg.sig); _require(_canPerform(actionId, msg.sender), Errors.SENDER_NOT_ALLOWED); } function getActionId(bytes4 selector) public view override returns (bytes32) { // Each external function is dynamically assigned an action identifier as the hash of the disambiguator and the // function selector. Disambiguation is necessary to avoid potential collisions in the function selectors of // multiple contracts. return keccak256(abi.encodePacked(_actionIdDisambiguator, selector)); } function _canPerform(bytes32 actionId, address user) internal view virtual returns (bool); }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; interface IAuthentication { /** * @dev Returns the action identifier associated with the external function described by `selector`. */ function getActionId(bytes4 selector) external view returns (bytes32); }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; pragma experimental ABIEncoderV2; import "./BaseWeightedPool.sol"; /** * @dev Basic Weighted Pool with immutable weights. */ contract WeightedPool is BaseWeightedPool { using FixedPoint for uint256; uint256 private constant _MAX_TOKENS = 20; uint256 private immutable _totalTokens; IERC20 internal immutable _token0; IERC20 internal immutable _token1; IERC20 internal immutable _token2; IERC20 internal immutable _token3; IERC20 internal immutable _token4; IERC20 internal immutable _token5; IERC20 internal immutable _token6; IERC20 internal immutable _token7; IERC20 internal immutable _token8; IERC20 internal immutable _token9; IERC20 internal immutable _token10; IERC20 internal immutable _token11; IERC20 internal immutable _token12; IERC20 internal immutable _token13; IERC20 internal immutable _token14; IERC20 internal immutable _token15; IERC20 internal immutable _token16; IERC20 internal immutable _token17; IERC20 internal immutable _token18; IERC20 internal immutable _token19; // All token balances are normalized to behave as if the token had 18 decimals. We assume a token's decimals will // not change throughout its lifetime, and store the corresponding scaling factor for each at construction time. // These factors are always greater than or equal to one: tokens with more than 18 decimals are not supported. uint256 internal immutable _scalingFactor0; uint256 internal immutable _scalingFactor1; uint256 internal immutable _scalingFactor2; uint256 internal immutable _scalingFactor3; uint256 internal immutable _scalingFactor4; uint256 internal immutable _scalingFactor5; uint256 internal immutable _scalingFactor6; uint256 internal immutable _scalingFactor7; uint256 internal immutable _scalingFactor8; uint256 internal immutable _scalingFactor9; uint256 internal immutable _scalingFactor10; uint256 internal immutable _scalingFactor11; uint256 internal immutable _scalingFactor12; uint256 internal immutable _scalingFactor13; uint256 internal immutable _scalingFactor14; uint256 internal immutable _scalingFactor15; uint256 internal immutable _scalingFactor16; uint256 internal immutable _scalingFactor17; uint256 internal immutable _scalingFactor18; uint256 internal immutable _scalingFactor19; // The protocol fees will always be charged using the token associated with the max weight in the pool. // Since these Pools will register tokens only once, we can assume this index will be constant. uint256 internal immutable _maxWeightTokenIndex; uint256 internal immutable _normalizedWeight0; uint256 internal immutable _normalizedWeight1; uint256 internal immutable _normalizedWeight2; uint256 internal immutable _normalizedWeight3; uint256 internal immutable _normalizedWeight4; uint256 internal immutable _normalizedWeight5; uint256 internal immutable _normalizedWeight6; uint256 internal immutable _normalizedWeight7; uint256 internal immutable _normalizedWeight8; uint256 internal immutable _normalizedWeight9; uint256 internal immutable _normalizedWeight10; uint256 internal immutable _normalizedWeight11; uint256 internal immutable _normalizedWeight12; uint256 internal immutable _normalizedWeight13; uint256 internal immutable _normalizedWeight14; uint256 internal immutable _normalizedWeight15; uint256 internal immutable _normalizedWeight16; uint256 internal immutable _normalizedWeight17; uint256 internal immutable _normalizedWeight18; uint256 internal immutable _normalizedWeight19; constructor( IVault vault, string memory name, string memory symbol, IERC20[] memory tokens, uint256[] memory normalizedWeights, address[] memory assetManagers, uint256 swapFeePercentage, uint256 pauseWindowDuration, uint256 bufferPeriodDuration, address owner ) BaseWeightedPool( vault, name, symbol, tokens, assetManagers, swapFeePercentage, pauseWindowDuration, bufferPeriodDuration, owner ) { uint256 numTokens = tokens.length; InputHelpers.ensureInputLengthMatch(numTokens, normalizedWeights.length); _totalTokens = numTokens; // Ensure each normalized weight is above them minimum and find the token index of the maximum weight uint256 normalizedSum = 0; uint256 maxWeightTokenIndex = 0; uint256 maxNormalizedWeight = 0; for (uint8 i = 0; i < numTokens; i++) { uint256 normalizedWeight = normalizedWeights[i]; _require(normalizedWeight >= _MIN_WEIGHT, Errors.MIN_WEIGHT); normalizedSum = normalizedSum.add(normalizedWeight); if (normalizedWeight > maxNormalizedWeight) { maxWeightTokenIndex = i; maxNormalizedWeight = normalizedWeight; } } // Ensure that the normalized weights sum to ONE _require(normalizedSum == FixedPoint.ONE, Errors.NORMALIZED_WEIGHT_INVARIANT); _maxWeightTokenIndex = maxWeightTokenIndex; _normalizedWeight0 = normalizedWeights[0]; _normalizedWeight1 = normalizedWeights[1]; _normalizedWeight2 = numTokens > 2 ? normalizedWeights[2] : 0; _normalizedWeight3 = numTokens > 3 ? normalizedWeights[3] : 0; _normalizedWeight4 = numTokens > 4 ? normalizedWeights[4] : 0; _normalizedWeight5 = numTokens > 5 ? normalizedWeights[5] : 0; _normalizedWeight6 = numTokens > 6 ? normalizedWeights[6] : 0; _normalizedWeight7 = numTokens > 7 ? normalizedWeights[7] : 0; _normalizedWeight8 = numTokens > 8 ? normalizedWeights[8] : 0; _normalizedWeight9 = numTokens > 9 ? normalizedWeights[9] : 0; _normalizedWeight10 = numTokens > 10 ? normalizedWeights[10] : 0; _normalizedWeight11 = numTokens > 11 ? normalizedWeights[11] : 0; _normalizedWeight12 = numTokens > 12 ? normalizedWeights[12] : 0; _normalizedWeight13 = numTokens > 13 ? normalizedWeights[13] : 0; _normalizedWeight14 = numTokens > 14 ? normalizedWeights[14] : 0; _normalizedWeight15 = numTokens > 15 ? normalizedWeights[15] : 0; _normalizedWeight16 = numTokens > 16 ? normalizedWeights[16] : 0; _normalizedWeight17 = numTokens > 17 ? normalizedWeights[17] : 0; _normalizedWeight18 = numTokens > 18 ? normalizedWeights[18] : 0; _normalizedWeight19 = numTokens > 19 ? normalizedWeights[19] : 0; // Immutable variables cannot be initialized inside an if statement, so we must do conditional assignments _token0 = tokens[0]; _token1 = tokens[1]; _token2 = numTokens > 2 ? tokens[2] : IERC20(0); _token3 = numTokens > 3 ? tokens[3] : IERC20(0); _token4 = numTokens > 4 ? tokens[4] : IERC20(0); _token5 = numTokens > 5 ? tokens[5] : IERC20(0); _token6 = numTokens > 6 ? tokens[6] : IERC20(0); _token7 = numTokens > 7 ? tokens[7] : IERC20(0); _token8 = numTokens > 8 ? tokens[8] : IERC20(0); _token9 = numTokens > 9 ? tokens[9] : IERC20(0); _token10 = numTokens > 10 ? tokens[10] : IERC20(0); _token11 = numTokens > 11 ? tokens[11] : IERC20(0); _token12 = numTokens > 12 ? tokens[12] : IERC20(0); _token13 = numTokens > 13 ? tokens[13] : IERC20(0); _token14 = numTokens > 14 ? tokens[14] : IERC20(0); _token15 = numTokens > 15 ? tokens[15] : IERC20(0); _token16 = numTokens > 16 ? tokens[16] : IERC20(0); _token17 = numTokens > 17 ? tokens[17] : IERC20(0); _token18 = numTokens > 18 ? tokens[18] : IERC20(0); _token19 = numTokens > 19 ? tokens[19] : IERC20(0); _scalingFactor0 = _computeScalingFactor(tokens[0]); _scalingFactor1 = _computeScalingFactor(tokens[1]); _scalingFactor2 = numTokens > 2 ? _computeScalingFactor(tokens[2]) : 0; _scalingFactor3 = numTokens > 3 ? _computeScalingFactor(tokens[3]) : 0; _scalingFactor4 = numTokens > 4 ? _computeScalingFactor(tokens[4]) : 0; _scalingFactor5 = numTokens > 5 ? _computeScalingFactor(tokens[5]) : 0; _scalingFactor6 = numTokens > 6 ? _computeScalingFactor(tokens[6]) : 0; _scalingFactor7 = numTokens > 7 ? _computeScalingFactor(tokens[7]) : 0; _scalingFactor8 = numTokens > 8 ? _computeScalingFactor(tokens[8]) : 0; _scalingFactor9 = numTokens > 9 ? _computeScalingFactor(tokens[9]) : 0; _scalingFactor10 = numTokens > 10 ? _computeScalingFactor(tokens[10]) : 0; _scalingFactor11 = numTokens > 11 ? _computeScalingFactor(tokens[11]) : 0; _scalingFactor12 = numTokens > 12 ? _computeScalingFactor(tokens[12]) : 0; _scalingFactor13 = numTokens > 13 ? _computeScalingFactor(tokens[13]) : 0; _scalingFactor14 = numTokens > 14 ? _computeScalingFactor(tokens[14]) : 0; _scalingFactor15 = numTokens > 15 ? _computeScalingFactor(tokens[15]) : 0; _scalingFactor16 = numTokens > 16 ? _computeScalingFactor(tokens[16]) : 0; _scalingFactor17 = numTokens > 17 ? _computeScalingFactor(tokens[17]) : 0; _scalingFactor18 = numTokens > 18 ? _computeScalingFactor(tokens[18]) : 0; _scalingFactor19 = numTokens > 19 ? _computeScalingFactor(tokens[19]) : 0; } function _getNormalizedWeight(IERC20 token) internal view virtual override returns (uint256) { // prettier-ignore if (token == _token0) { return _normalizedWeight0; } else if (token == _token1) { return _normalizedWeight1; } else if (token == _token2) { return _normalizedWeight2; } else if (token == _token3) { return _normalizedWeight3; } else if (token == _token4) { return _normalizedWeight4; } else if (token == _token5) { return _normalizedWeight5; } else if (token == _token6) { return _normalizedWeight6; } else if (token == _token7) { return _normalizedWeight7; } else if (token == _token8) { return _normalizedWeight8; } else if (token == _token9) { return _normalizedWeight9; } else if (token == _token10) { return _normalizedWeight10; } else if (token == _token11) { return _normalizedWeight11; } else if (token == _token12) { return _normalizedWeight12; } else if (token == _token13) { return _normalizedWeight13; } else if (token == _token14) { return _normalizedWeight14; } else if (token == _token15) { return _normalizedWeight15; } else if (token == _token16) { return _normalizedWeight16; } else if (token == _token17) { return _normalizedWeight17; } else if (token == _token18) { return _normalizedWeight18; } else if (token == _token19) { return _normalizedWeight19; } else { _revert(Errors.INVALID_TOKEN); } } function _getNormalizedWeights() internal view virtual override returns (uint256[] memory) { uint256 totalTokens = _getTotalTokens(); uint256[] memory normalizedWeights = new uint256[](totalTokens); // prettier-ignore { if (totalTokens > 0) { normalizedWeights[0] = _normalizedWeight0; } else { return normalizedWeights; } if (totalTokens > 1) { normalizedWeights[1] = _normalizedWeight1; } else { return normalizedWeights; } if (totalTokens > 2) { normalizedWeights[2] = _normalizedWeight2; } else { return normalizedWeights; } if (totalTokens > 3) { normalizedWeights[3] = _normalizedWeight3; } else { return normalizedWeights; } if (totalTokens > 4) { normalizedWeights[4] = _normalizedWeight4; } else { return normalizedWeights; } if (totalTokens > 5) { normalizedWeights[5] = _normalizedWeight5; } else { return normalizedWeights; } if (totalTokens > 6) { normalizedWeights[6] = _normalizedWeight6; } else { return normalizedWeights; } if (totalTokens > 7) { normalizedWeights[7] = _normalizedWeight7; } else { return normalizedWeights; } if (totalTokens > 8) { normalizedWeights[8] = _normalizedWeight8; } else { return normalizedWeights; } if (totalTokens > 9) { normalizedWeights[9] = _normalizedWeight9; } else { return normalizedWeights; } if (totalTokens > 10) { normalizedWeights[10] = _normalizedWeight10; } else { return normalizedWeights; } if (totalTokens > 11) { normalizedWeights[11] = _normalizedWeight11; } else { return normalizedWeights; } if (totalTokens > 12) { normalizedWeights[12] = _normalizedWeight12; } else { return normalizedWeights; } if (totalTokens > 13) { normalizedWeights[13] = _normalizedWeight13; } else { return normalizedWeights; } if (totalTokens > 14) { normalizedWeights[14] = _normalizedWeight14; } else { return normalizedWeights; } if (totalTokens > 15) { normalizedWeights[15] = _normalizedWeight15; } else { return normalizedWeights; } if (totalTokens > 16) { normalizedWeights[16] = _normalizedWeight16; } else { return normalizedWeights; } if (totalTokens > 17) { normalizedWeights[17] = _normalizedWeight17; } else { return normalizedWeights; } if (totalTokens > 18) { normalizedWeights[18] = _normalizedWeight18; } else { return normalizedWeights; } if (totalTokens > 19) { normalizedWeights[19] = _normalizedWeight19; } else { return normalizedWeights; } } return normalizedWeights; } function _getNormalizedWeightsAndMaxWeightIndex() internal view virtual override returns (uint256[] memory, uint256) { return (_getNormalizedWeights(), _maxWeightTokenIndex); } function _getMaxTokens() internal pure virtual override returns (uint256) { return _MAX_TOKENS; } function _getTotalTokens() internal view virtual override returns (uint256) { return _totalTokens; } /** * @dev Returns the scaling factor for one of the Pool's tokens. Reverts if `token` is not a token registered by the * Pool. */ function _scalingFactor(IERC20 token) internal view virtual override returns (uint256) { // prettier-ignore if (token == _token0) { return _scalingFactor0; } else if (token == _token1) { return _scalingFactor1; } else if (token == _token2) { return _scalingFactor2; } else if (token == _token3) { return _scalingFactor3; } else if (token == _token4) { return _scalingFactor4; } else if (token == _token5) { return _scalingFactor5; } else if (token == _token6) { return _scalingFactor6; } else if (token == _token7) { return _scalingFactor7; } else if (token == _token8) { return _scalingFactor8; } else if (token == _token9) { return _scalingFactor9; } else if (token == _token10) { return _scalingFactor10; } else if (token == _token11) { return _scalingFactor11; } else if (token == _token12) { return _scalingFactor12; } else if (token == _token13) { return _scalingFactor13; } else if (token == _token14) { return _scalingFactor14; } else if (token == _token15) { return _scalingFactor15; } else if (token == _token16) { return _scalingFactor16; } else if (token == _token17) { return _scalingFactor17; } else if (token == _token18) { return _scalingFactor18; } else if (token == _token19) { return _scalingFactor19; } else { _revert(Errors.INVALID_TOKEN); } } function _scalingFactors() internal view virtual override returns (uint256[] memory) { uint256 totalTokens = _getTotalTokens(); uint256[] memory scalingFactors = new uint256[](totalTokens); // prettier-ignore { if (totalTokens > 0) { scalingFactors[0] = _scalingFactor0; } else { return scalingFactors; } if (totalTokens > 1) { scalingFactors[1] = _scalingFactor1; } else { return scalingFactors; } if (totalTokens > 2) { scalingFactors[2] = _scalingFactor2; } else { return scalingFactors; } if (totalTokens > 3) { scalingFactors[3] = _scalingFactor3; } else { return scalingFactors; } if (totalTokens > 4) { scalingFactors[4] = _scalingFactor4; } else { return scalingFactors; } if (totalTokens > 5) { scalingFactors[5] = _scalingFactor5; } else { return scalingFactors; } if (totalTokens > 6) { scalingFactors[6] = _scalingFactor6; } else { return scalingFactors; } if (totalTokens > 7) { scalingFactors[7] = _scalingFactor7; } else { return scalingFactors; } if (totalTokens > 8) { scalingFactors[8] = _scalingFactor8; } else { return scalingFactors; } if (totalTokens > 9) { scalingFactors[9] = _scalingFactor9; } else { return scalingFactors; } if (totalTokens > 10) { scalingFactors[10] = _scalingFactor10; } else { return scalingFactors; } if (totalTokens > 11) { scalingFactors[11] = _scalingFactor11; } else { return scalingFactors; } if (totalTokens > 12) { scalingFactors[12] = _scalingFactor12; } else { return scalingFactors; } if (totalTokens > 13) { scalingFactors[13] = _scalingFactor13; } else { return scalingFactors; } if (totalTokens > 14) { scalingFactors[14] = _scalingFactor14; } else { return scalingFactors; } if (totalTokens > 15) { scalingFactors[15] = _scalingFactor15; } else { return scalingFactors; } if (totalTokens > 16) { scalingFactors[16] = _scalingFactor16; } else { return scalingFactors; } if (totalTokens > 17) { scalingFactors[17] = _scalingFactor17; } else { return scalingFactors; } if (totalTokens > 18) { scalingFactors[18] = _scalingFactor18; } else { return scalingFactors; } if (totalTokens > 19) { scalingFactors[19] = _scalingFactor19; } else { return scalingFactors; } } return scalingFactors; } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; pragma experimental ABIEncoderV2; import "@balancer-labs/v2-vault/contracts/interfaces/IVault.sol"; import "@balancer-labs/v2-pool-utils/contracts/factories/BasePoolSplitCodeFactory.sol"; import "@balancer-labs/v2-pool-utils/contracts/factories/FactoryWidePauseWindow.sol"; import "./WeightedPool.sol"; contract WeightedPoolNoAMFactory is BasePoolSplitCodeFactory, FactoryWidePauseWindow { constructor(IVault vault) BasePoolSplitCodeFactory(vault, type(WeightedPool).creationCode) { // solhint-disable-previous-line no-empty-blocks } /** * @dev Deploys a new `WeightedPool` without asset managers. */ function create( string memory name, string memory symbol, IERC20[] memory tokens, uint256[] memory weights, uint256 swapFeePercentage, address owner ) external returns (address) { (uint256 pauseWindowDuration, uint256 bufferPeriodDuration) = getPauseConfiguration(); return _create( abi.encode( getVault(), name, symbol, tokens, weights, new address[](tokens.length), // Don't allow asset managers swapFeePercentage, pauseWindowDuration, bufferPeriodDuration, owner ) ); } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; pragma experimental ABIEncoderV2; import "@balancer-labs/v2-solidity-utils/contracts/helpers/BaseSplitCodeFactory.sol"; import "@balancer-labs/v2-vault/contracts/interfaces/IVault.sol"; /** * @dev Same as `BasePoolFactory`, for Pools whose creation code is so large that the factory cannot hold it. */ abstract contract BasePoolSplitCodeFactory is BaseSplitCodeFactory { IVault private immutable _vault; mapping(address => bool) private _isPoolFromFactory; event PoolCreated(address indexed pool); constructor(IVault vault, bytes memory creationCode) BaseSplitCodeFactory(creationCode) { _vault = vault; } /** * @dev Returns the Vault's address. */ function getVault() public view returns (IVault) { return _vault; } /** * @dev Returns true if `pool` was created by this factory. */ function isPoolFromFactory(address pool) external view returns (bool) { return _isPoolFromFactory[pool]; } function _create(bytes memory constructorArgs) internal override returns (address) { address pool = super._create(constructorArgs); _isPoolFromFactory[pool] = true; emit PoolCreated(pool); return pool; } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; pragma experimental ABIEncoderV2; /** * @dev Utility to create Pool factories for Pools that use the `TemporarilyPausable` contract. * * By calling `TemporarilyPausable`'s constructor with the result of `getPauseConfiguration`, all Pools created by this * factory will share the same Pause Window end time, after which both old and new Pools will not be pausable. */ contract FactoryWidePauseWindow { // This contract relies on timestamps in a similar way as `TemporarilyPausable` does - the same caveats apply. // solhint-disable not-rely-on-time uint256 private constant _INITIAL_PAUSE_WINDOW_DURATION = 90 days; uint256 private constant _BUFFER_PERIOD_DURATION = 30 days; // Time when the pause window for all created Pools expires, and the pause window duration of new Pools becomes // zero. uint256 private immutable _poolsPauseWindowEndTime; constructor() { _poolsPauseWindowEndTime = block.timestamp + _INITIAL_PAUSE_WINDOW_DURATION; } /** * @dev Returns the current `TemporarilyPausable` configuration that will be applied to Pools created by this * factory. * * `pauseWindowDuration` will decrease over time until it reaches zero, at which point both it and * `bufferPeriodDuration` will be zero forever, meaning deployed Pools will not be pausable. */ function getPauseConfiguration() public view returns (uint256 pauseWindowDuration, uint256 bufferPeriodDuration) { uint256 currentTime = block.timestamp; if (currentTime < _poolsPauseWindowEndTime) { // The buffer period is always the same since its duration is related to how much time is needed to respond // to a potential emergency. The Pause Window duration however decreases as the end time approaches. pauseWindowDuration = _poolsPauseWindowEndTime - currentTime; // No need for checked arithmetic. bufferPeriodDuration = _BUFFER_PERIOD_DURATION; } else { // After the end time, newly created Pools have no Pause Window, nor Buffer Period (since they are not // pausable in the first place). pauseWindowDuration = 0; bufferPeriodDuration = 0; } } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; pragma experimental ABIEncoderV2; import "./BalancerErrors.sol"; import "./CodeDeployer.sol"; /** * @dev Base factory for contracts whose creation code is so large that the factory cannot hold it. This happens when * the contract's creation code grows close to 24kB. * * Note that this factory cannot help with contracts that have a *runtime* (deployed) bytecode larger than 24kB. */ abstract contract BaseSplitCodeFactory { // The contract's creation code is stored as code in two separate addresses, and retrieved via `extcodecopy`. This // means this factory supports contracts with creation code of up to 48kB. // We rely on inline-assembly to achieve this, both to make the entire operation highly gas efficient, and because // `extcodecopy` is not available in Solidity. // solhint-disable no-inline-assembly address private immutable _creationCodeContractA; uint256 private immutable _creationCodeSizeA; address private immutable _creationCodeContractB; uint256 private immutable _creationCodeSizeB; /** * @dev The creation code of a contract Foo can be obtained inside Solidity with `type(Foo).creationCode`. */ constructor(bytes memory creationCode) { uint256 creationCodeSize = creationCode.length; // We are going to deploy two contracts: one with approximately the first half of `creationCode`'s contents // (A), and another with the remaining half (B). // We store the lengths in both immutable and stack variables, since immutable variables cannot be read during // construction. uint256 creationCodeSizeA = creationCodeSize / 2; _creationCodeSizeA = creationCodeSizeA; uint256 creationCodeSizeB = creationCodeSize - creationCodeSizeA; _creationCodeSizeB = creationCodeSizeB; // To deploy the contracts, we're going to use `CodeDeployer.deploy()`, which expects a memory array with // the code to deploy. Note that we cannot simply create arrays for A and B's code by copying or moving // `creationCode`'s contents as they are expected to be very large (> 24kB), so we must operate in-place. // Memory: [ code length ] [ A.data ] [ B.data ] // Creating A's array is simple: we simply replace `creationCode`'s length with A's length. We'll later restore // the original length. bytes memory creationCodeA; assembly { creationCodeA := creationCode mstore(creationCodeA, creationCodeSizeA) } // Memory: [ A.length ] [ A.data ] [ B.data ] // ^ creationCodeA _creationCodeContractA = CodeDeployer.deploy(creationCodeA); // Creating B's array is a bit more involved: since we cannot move B's contents, we are going to create a 'new' // memory array starting at A's last 32 bytes, which will be replaced with B's length. We'll back-up this last // byte to later restore it. bytes memory creationCodeB; bytes32 lastByteA; assembly { // `creationCode` points to the array's length, not data, so by adding A's length to it we arrive at A's // last 32 bytes. creationCodeB := add(creationCode, creationCodeSizeA) lastByteA := mload(creationCodeB) mstore(creationCodeB, creationCodeSizeB) } // Memory: [ A.length ] [ A.data[ : -1] ] [ B.length ][ B.data ] // ^ creationCodeA ^ creationCodeB _creationCodeContractB = CodeDeployer.deploy(creationCodeB); // We now restore the original contents of `creationCode` by writing back the original length and A's last byte. assembly { mstore(creationCodeA, creationCodeSize) mstore(creationCodeB, lastByteA) } } /** * @dev Returns the two addresses where the creation code of the contract crated by this factory is stored. */ function getCreationCodeContracts() public view returns (address contractA, address contractB) { return (_creationCodeContractA, _creationCodeContractB); } /** * @dev Returns the creation code of the contract this factory creates. */ function getCreationCode() public view returns (bytes memory) { return _getCreationCodeWithArgs(""); } /** * @dev Returns the creation code that will result in a contract being deployed with `constructorArgs`. */ function _getCreationCodeWithArgs(bytes memory constructorArgs) private view returns (bytes memory code) { // This function exists because `abi.encode()` cannot be instructed to place its result at a specific address. // We need for the ABI-encoded constructor arguments to be located immediately after the creation code, but // cannot rely on `abi.encodePacked()` to perform concatenation as that would involve copying the creation code, // which would be prohibitively expensive. // Instead, we compute the creation code in a pre-allocated array that is large enough to hold *both* the // creation code and the constructor arguments, and then copy the ABI-encoded arguments (which should not be // overly long) right after the end of the creation code. // Immutable variables cannot be used in assembly, so we store them in the stack first. address creationCodeContractA = _creationCodeContractA; uint256 creationCodeSizeA = _creationCodeSizeA; address creationCodeContractB = _creationCodeContractB; uint256 creationCodeSizeB = _creationCodeSizeB; uint256 creationCodeSize = creationCodeSizeA + creationCodeSizeB; uint256 constructorArgsSize = constructorArgs.length; uint256 codeSize = creationCodeSize + constructorArgsSize; assembly { // First, we allocate memory for `code` by retrieving the free memory pointer and then moving it ahead of // `code` by the size of the creation code plus constructor arguments, and 32 bytes for the array length. code := mload(0x40) mstore(0x40, add(code, add(codeSize, 32))) // We now store the length of the code plus constructor arguments. mstore(code, codeSize) // Next, we concatenate the creation code stored in A and B. let dataStart := add(code, 32) extcodecopy(creationCodeContractA, dataStart, 0, creationCodeSizeA) extcodecopy(creationCodeContractB, add(dataStart, creationCodeSizeA), 0, creationCodeSizeB) } // Finally, we copy the constructorArgs to the end of the array. Unfortunately there is no way to avoid this // copy, as it is not possible to tell Solidity where to store the result of `abi.encode()`. uint256 constructorArgsDataPtr; uint256 constructorArgsCodeDataPtr; assembly { constructorArgsDataPtr := add(constructorArgs, 32) constructorArgsCodeDataPtr := add(add(code, 32), creationCodeSize) } _memcpy(constructorArgsCodeDataPtr, constructorArgsDataPtr, constructorArgsSize); } /** * @dev Deploys a contract with constructor arguments. To create `constructorArgs`, call `abi.encode()` with the * contract's constructor arguments, in order. */ function _create(bytes memory constructorArgs) internal virtual returns (address) { bytes memory creationCode = _getCreationCodeWithArgs(constructorArgs); address destination; assembly { destination := create(0, add(creationCode, 32), mload(creationCode)) } if (destination == address(0)) { // Bubble up inner revert reason // solhint-disable-next-line no-inline-assembly assembly { returndatacopy(0, 0, returndatasize()) revert(0, returndatasize()) } } return destination; } // From // https://github.com/Arachnid/solidity-stringutils/blob/b9a6f6615cf18a87a823cbc461ce9e140a61c305/src/strings.sol function _memcpy( uint256 dest, uint256 src, uint256 len ) private pure { // Copy word-length chunks while possible for (; len >= 32; len -= 32) { assembly { mstore(dest, mload(src)) } dest += 32; src += 32; } // Copy remaining bytes uint256 mask = 256**(32 - len) - 1; assembly { let srcpart := and(mload(src), not(mask)) let destpart := and(mload(dest), mask) mstore(dest, or(destpart, srcpart)) } } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; import "./BalancerErrors.sol"; /** * @dev Library used to deploy contracts with specific code. This can be used for long-term storage of immutable data as * contract code, which can be retrieved via the `extcodecopy` opcode. */ library CodeDeployer { // During contract construction, the full code supplied exists as code, and can be accessed via `codesize` and // `codecopy`. This is not the contract's final code however: whatever the constructor returns is what will be // stored as its code. // // We use this mechanism to have a simple constructor that stores whatever is appended to it. The following opcode // sequence corresponds to the creation code of the following equivalent Solidity contract, plus padding to make the // full code 32 bytes long: // // contract CodeDeployer { // constructor() payable { // uint256 size; // assembly { // size := sub(codesize(), 32) // size of appended data, as constructor is 32 bytes long // codecopy(0, 32, size) // copy all appended data to memory at position 0 // return(0, size) // return appended data for it to be stored as code // } // } // } // // More specifically, it is composed of the following opcodes (plus padding): // // [1] PUSH1 0x20 // [2] CODESIZE // [3] SUB // [4] DUP1 // [6] PUSH1 0x20 // [8] PUSH1 0x00 // [9] CODECOPY // [11] PUSH1 0x00 // [12] RETURN // // The padding is just the 0xfe sequence (invalid opcode). bytes32 private constant _DEPLOYER_CREATION_CODE = 0x602038038060206000396000f3fefefefefefefefefefefefefefefefefefefe; /** * @dev Deploys a contract with `code` as its code, returning the destination address. * * Reverts if deployment fails. */ function deploy(bytes memory code) internal returns (address destination) { bytes32 deployerCreationCode = _DEPLOYER_CREATION_CODE; // solhint-disable-next-line no-inline-assembly assembly { let codeLength := mload(code) // `code` is composed of length and data. We've already stored its length in `codeLength`, so we simply // replace it with the deployer creation code (which is exactly 32 bytes long). mstore(code, deployerCreationCode) // At this point, `code` now points to the deployer creation code immediately followed by `code`'s data // contents. This is exactly what the deployer expects to receive when created. destination := create(0, code, add(codeLength, 32)) // Finally, we restore the original length in order to not mutate `code`. mstore(code, codeLength) } // The create opcode returns the zero address when contract creation fails, so we revert if this happens. _require(destination != address(0), Errors.CODE_DEPLOYMENT_FAILED); } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; pragma experimental ABIEncoderV2; import "@balancer-labs/v2-vault/contracts/interfaces/IVault.sol"; import "@balancer-labs/v2-pool-utils/contracts/factories/BasePoolSplitCodeFactory.sol"; import "@balancer-labs/v2-pool-utils/contracts/factories/FactoryWidePauseWindow.sol"; import "./WeightedPool.sol"; contract WeightedPoolFactory is BasePoolSplitCodeFactory, FactoryWidePauseWindow { constructor(IVault vault) BasePoolSplitCodeFactory(vault, type(WeightedPool).creationCode) { // solhint-disable-previous-line no-empty-blocks } /** * @dev Deploys a new `WeightedPool`. */ function create( string memory name, string memory symbol, IERC20[] memory tokens, uint256[] memory weights, address[] memory assetManagers, uint256 swapFeePercentage, address owner ) external returns (address) { (uint256 pauseWindowDuration, uint256 bufferPeriodDuration) = getPauseConfiguration(); return _create( abi.encode( getVault(), name, symbol, tokens, weights, assetManagers, swapFeePercentage, pauseWindowDuration, bufferPeriodDuration, owner ) ); } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; pragma experimental ABIEncoderV2; import "@balancer-labs/v2-solidity-utils/contracts/math/FixedPoint.sol"; import "@balancer-labs/v2-solidity-utils/contracts/helpers/InputHelpers.sol"; import "@balancer-labs/v2-solidity-utils/contracts/helpers/LogCompression.sol"; import "@balancer-labs/v2-solidity-utils/contracts/helpers/TemporarilyPausable.sol"; import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/ERC20.sol"; import "@balancer-labs/v2-vault/contracts/interfaces/IMinimalSwapInfoPool.sol"; import "@balancer-labs/v2-pool-utils/contracts/BasePoolAuthorization.sol"; import "@balancer-labs/v2-pool-utils/contracts/BalancerPoolToken.sol"; import "@balancer-labs/v2-pool-utils/contracts/oracle/PoolPriceOracle.sol"; import "@balancer-labs/v2-pool-utils/contracts/oracle/Buffer.sol"; import "./WeightedMath.sol"; import "./WeightedOracleMath.sol"; import "./WeightedPoolUserDataHelpers.sol"; import "./WeightedPool2TokensMiscData.sol"; contract WeightedPool2Tokens is IMinimalSwapInfoPool, BasePoolAuthorization, BalancerPoolToken, TemporarilyPausable, PoolPriceOracle, WeightedMath, WeightedOracleMath { using FixedPoint for uint256; using WeightedPoolUserDataHelpers for bytes; using WeightedPool2TokensMiscData for bytes32; uint256 private constant _MINIMUM_BPT = 1e6; // 1e18 corresponds to 1.0, or a 100% fee uint256 private constant _MIN_SWAP_FEE_PERCENTAGE = 1e12; // 0.0001% uint256 private constant _MAX_SWAP_FEE_PERCENTAGE = 1e17; // 10% // The swap fee is internally stored using 64 bits, which is enough to represent _MAX_SWAP_FEE_PERCENTAGE. bytes32 internal _miscData; uint256 private _lastInvariant; IVault private immutable _vault; bytes32 private immutable _poolId; IERC20 internal immutable _token0; IERC20 internal immutable _token1; uint256 private immutable _normalizedWeight0; uint256 private immutable _normalizedWeight1; // The protocol fees will always be charged using the token associated with the max weight in the pool. // Since these Pools will register tokens only once, we can assume this index will be constant. uint256 private immutable _maxWeightTokenIndex; // All token balances are normalized to behave as if the token had 18 decimals. We assume a token's decimals will // not change throughout its lifetime, and store the corresponding scaling factor for each at construction time. // These factors are always greater than or equal to one: tokens with more than 18 decimals are not supported. uint256 internal immutable _scalingFactor0; uint256 internal immutable _scalingFactor1; event OracleEnabledChanged(bool enabled); event SwapFeePercentageChanged(uint256 swapFeePercentage); modifier onlyVault(bytes32 poolId) { _require(msg.sender == address(getVault()), Errors.CALLER_NOT_VAULT); _require(poolId == getPoolId(), Errors.INVALID_POOL_ID); _; } struct NewPoolParams { IVault vault; string name; string symbol; IERC20 token0; IERC20 token1; uint256 normalizedWeight0; uint256 normalizedWeight1; uint256 swapFeePercentage; uint256 pauseWindowDuration; uint256 bufferPeriodDuration; bool oracleEnabled; address owner; } constructor(NewPoolParams memory params) // Base Pools are expected to be deployed using factories. By using the factory address as the action // disambiguator, we make all Pools deployed by the same factory share action identifiers. This allows for // simpler management of permissions (such as being able to manage granting the 'set fee percentage' action in // any Pool created by the same factory), while still making action identifiers unique among different factories // if the selectors match, preventing accidental errors. Authentication(bytes32(uint256(msg.sender))) BalancerPoolToken(params.name, params.symbol) BasePoolAuthorization(params.owner) TemporarilyPausable(params.pauseWindowDuration, params.bufferPeriodDuration) { _setOracleEnabled(params.oracleEnabled); _setSwapFeePercentage(params.swapFeePercentage); bytes32 poolId = params.vault.registerPool(IVault.PoolSpecialization.TWO_TOKEN); // Pass in zero addresses for Asset Managers IERC20[] memory tokens = new IERC20[](2); tokens[0] = params.token0; tokens[1] = params.token1; params.vault.registerTokens(poolId, tokens, new address[](2)); // Set immutable state variables - these cannot be read from during construction _vault = params.vault; _poolId = poolId; _token0 = params.token0; _token1 = params.token1; _scalingFactor0 = _computeScalingFactor(params.token0); _scalingFactor1 = _computeScalingFactor(params.token1); // Ensure each normalized weight is above them minimum and find the token index of the maximum weight _require(params.normalizedWeight0 >= _MIN_WEIGHT, Errors.MIN_WEIGHT); _require(params.normalizedWeight1 >= _MIN_WEIGHT, Errors.MIN_WEIGHT); // Ensure that the normalized weights sum to ONE uint256 normalizedSum = params.normalizedWeight0.add(params.normalizedWeight1); _require(normalizedSum == FixedPoint.ONE, Errors.NORMALIZED_WEIGHT_INVARIANT); _normalizedWeight0 = params.normalizedWeight0; _normalizedWeight1 = params.normalizedWeight1; _maxWeightTokenIndex = params.normalizedWeight0 >= params.normalizedWeight1 ? 0 : 1; } // Getters / Setters function getVault() public view returns (IVault) { return _vault; } function getPoolId() public view override returns (bytes32) { return _poolId; } function getMiscData() external view returns ( int256 logInvariant, int256 logTotalSupply, uint256 oracleSampleCreationTimestamp, uint256 oracleIndex, bool oracleEnabled, uint256 swapFeePercentage ) { bytes32 miscData = _miscData; logInvariant = miscData.logInvariant(); logTotalSupply = miscData.logTotalSupply(); oracleSampleCreationTimestamp = miscData.oracleSampleCreationTimestamp(); oracleIndex = miscData.oracleIndex(); oracleEnabled = miscData.oracleEnabled(); swapFeePercentage = miscData.swapFeePercentage(); } function getSwapFeePercentage() public view returns (uint256) { return _miscData.swapFeePercentage(); } // Caller must be approved by the Vault's Authorizer function setSwapFeePercentage(uint256 swapFeePercentage) public virtual authenticate whenNotPaused { _setSwapFeePercentage(swapFeePercentage); } function _setSwapFeePercentage(uint256 swapFeePercentage) private { _require(swapFeePercentage >= _MIN_SWAP_FEE_PERCENTAGE, Errors.MIN_SWAP_FEE_PERCENTAGE); _require(swapFeePercentage <= _MAX_SWAP_FEE_PERCENTAGE, Errors.MAX_SWAP_FEE_PERCENTAGE); _miscData = _miscData.setSwapFeePercentage(swapFeePercentage); emit SwapFeePercentageChanged(swapFeePercentage); } function _isOwnerOnlyAction(bytes32 actionId) internal view virtual override returns (bool) { return (actionId == getActionId(BasePool.setSwapFeePercentage.selector)) || (actionId == getActionId(BasePool.setAssetManagerPoolConfig.selector)); } /** * @dev Balancer Governance can always enable the Oracle, even if it was originally not enabled. This allows for * Pools that unexpectedly drive much more volume and liquidity than expected to serve as Price Oracles. * * Note that the Oracle can only be enabled - it can never be disabled. */ function enableOracle() external whenNotPaused authenticate { _setOracleEnabled(true); // Cache log invariant and supply only if the pool was initialized if (totalSupply() > 0) { _cacheInvariantAndSupply(); } } function _setOracleEnabled(bool enabled) internal { _miscData = _miscData.setOracleEnabled(enabled); emit OracleEnabledChanged(enabled); } // Caller must be approved by the Vault's Authorizer function setPaused(bool paused) external authenticate { _setPaused(paused); } function getNormalizedWeights() external view returns (uint256[] memory) { return _normalizedWeights(); } function _normalizedWeights() internal view virtual returns (uint256[] memory) { uint256[] memory normalizedWeights = new uint256[](2); normalizedWeights[0] = _normalizedWeights(true); normalizedWeights[1] = _normalizedWeights(false); return normalizedWeights; } function _normalizedWeights(bool token0) internal view virtual returns (uint256) { return token0 ? _normalizedWeight0 : _normalizedWeight1; } function getLastInvariant() external view returns (uint256) { return _lastInvariant; } /** * @dev Returns the current value of the invariant. */ function getInvariant() public view returns (uint256) { (, uint256[] memory balances, ) = getVault().getPoolTokens(getPoolId()); // Since the Pool hooks always work with upscaled balances, we manually // upscale here for consistency _upscaleArray(balances); uint256[] memory normalizedWeights = _normalizedWeights(); return WeightedMath._calculateInvariant(normalizedWeights, balances); } // Swap Hooks function onSwap( SwapRequest memory request, uint256 balanceTokenIn, uint256 balanceTokenOut ) public virtual override whenNotPaused onlyVault(request.poolId) returns (uint256) { bool tokenInIsToken0 = request.tokenIn == _token0; uint256 scalingFactorTokenIn = _scalingFactor(tokenInIsToken0); uint256 scalingFactorTokenOut = _scalingFactor(!tokenInIsToken0); uint256 normalizedWeightIn = _normalizedWeights(tokenInIsToken0); uint256 normalizedWeightOut = _normalizedWeights(!tokenInIsToken0); // All token amounts are upscaled. balanceTokenIn = _upscale(balanceTokenIn, scalingFactorTokenIn); balanceTokenOut = _upscale(balanceTokenOut, scalingFactorTokenOut); // Update price oracle with the pre-swap balances _updateOracle( request.lastChangeBlock, tokenInIsToken0 ? balanceTokenIn : balanceTokenOut, tokenInIsToken0 ? balanceTokenOut : balanceTokenIn ); if (request.kind == IVault.SwapKind.GIVEN_IN) { // Fees are subtracted before scaling, to reduce the complexity of the rounding direction analysis. // This is amount - fee amount, so we round up (favoring a higher fee amount). uint256 feeAmount = request.amount.mulUp(getSwapFeePercentage()); request.amount = _upscale(request.amount.sub(feeAmount), scalingFactorTokenIn); uint256 amountOut = _onSwapGivenIn( request, balanceTokenIn, balanceTokenOut, normalizedWeightIn, normalizedWeightOut ); // amountOut tokens are exiting the Pool, so we round down. return _downscaleDown(amountOut, scalingFactorTokenOut); } else { request.amount = _upscale(request.amount, scalingFactorTokenOut); uint256 amountIn = _onSwapGivenOut( request, balanceTokenIn, balanceTokenOut, normalizedWeightIn, normalizedWeightOut ); // amountIn tokens are entering the Pool, so we round up. amountIn = _downscaleUp(amountIn, scalingFactorTokenIn); // Fees are added after scaling happens, to reduce the complexity of the rounding direction analysis. // This is amount + fee amount, so we round up (favoring a higher fee amount). return amountIn.divUp(getSwapFeePercentage().complement()); } } function _onSwapGivenIn( SwapRequest memory swapRequest, uint256 currentBalanceTokenIn, uint256 currentBalanceTokenOut, uint256 normalizedWeightIn, uint256 normalizedWeightOut ) private pure returns (uint256) { // Swaps are disabled while the contract is paused. return WeightedMath._calcOutGivenIn( currentBalanceTokenIn, normalizedWeightIn, currentBalanceTokenOut, normalizedWeightOut, swapRequest.amount ); } function _onSwapGivenOut( SwapRequest memory swapRequest, uint256 currentBalanceTokenIn, uint256 currentBalanceTokenOut, uint256 normalizedWeightIn, uint256 normalizedWeightOut ) private pure returns (uint256) { // Swaps are disabled while the contract is paused. return WeightedMath._calcInGivenOut( currentBalanceTokenIn, normalizedWeightIn, currentBalanceTokenOut, normalizedWeightOut, swapRequest.amount ); } // Join Hook function onJoinPool( bytes32 poolId, address sender, address recipient, uint256[] memory balances, uint256 lastChangeBlock, uint256 protocolSwapFeePercentage, bytes memory userData ) public virtual override onlyVault(poolId) whenNotPaused returns (uint256[] memory amountsIn, uint256[] memory dueProtocolFeeAmounts) { // All joins, including initializations, are disabled while the contract is paused. uint256 bptAmountOut; if (totalSupply() == 0) { (bptAmountOut, amountsIn) = _onInitializePool(poolId, sender, recipient, userData); // On initialization, we lock _MINIMUM_BPT by minting it for the zero address. This BPT acts as a minimum // as it will never be burned, which reduces potential issues with rounding, and also prevents the Pool from // ever being fully drained. _require(bptAmountOut >= _MINIMUM_BPT, Errors.MINIMUM_BPT); _mintPoolTokens(address(0), _MINIMUM_BPT); _mintPoolTokens(recipient, bptAmountOut - _MINIMUM_BPT); // amountsIn are amounts entering the Pool, so we round up. _downscaleUpArray(amountsIn); // There are no due protocol fee amounts during initialization dueProtocolFeeAmounts = new uint256[](2); } else { _upscaleArray(balances); // Update price oracle with the pre-join balances _updateOracle(lastChangeBlock, balances[0], balances[1]); (bptAmountOut, amountsIn, dueProtocolFeeAmounts) = _onJoinPool( poolId, sender, recipient, balances, lastChangeBlock, protocolSwapFeePercentage, userData ); // Note we no longer use `balances` after calling `_onJoinPool`, which may mutate it. _mintPoolTokens(recipient, bptAmountOut); // amountsIn are amounts entering the Pool, so we round up. _downscaleUpArray(amountsIn); // dueProtocolFeeAmounts are amounts exiting the Pool, so we round down. _downscaleDownArray(dueProtocolFeeAmounts); } // Update cached total supply and invariant using the results after the join that will be used for future // oracle updates. _cacheInvariantAndSupply(); } /** * @dev Called when the Pool is joined for the first time; that is, when the BPT total supply is zero. * * Returns the amount of BPT to mint, and the token amounts the Pool will receive in return. * * Minted BPT will be sent to `recipient`, except for _MINIMUM_BPT, which will be deducted from this amount and sent * to the zero address instead. This will cause that BPT to remain forever locked there, preventing total BTP from * ever dropping below that value, and ensuring `_onInitializePool` can only be called once in the entire Pool's * lifetime. * * The tokens granted to the Pool will be transferred from `sender`. These amounts are considered upscaled and will * be downscaled (rounding up) before being returned to the Vault. */ function _onInitializePool( bytes32, address, address, bytes memory userData ) private returns (uint256, uint256[] memory) { BaseWeightedPool.JoinKind kind = userData.joinKind(); _require(kind == BaseWeightedPool.JoinKind.INIT, Errors.UNINITIALIZED); uint256[] memory amountsIn = userData.initialAmountsIn(); InputHelpers.ensureInputLengthMatch(amountsIn.length, 2); _upscaleArray(amountsIn); uint256[] memory normalizedWeights = _normalizedWeights(); uint256 invariantAfterJoin = WeightedMath._calculateInvariant(normalizedWeights, amountsIn); // Set the initial BPT to the value of the invariant times the number of tokens. This makes BPT supply more // consistent in Pools with similar compositions but different number of tokens. uint256 bptAmountOut = Math.mul(invariantAfterJoin, 2); _lastInvariant = invariantAfterJoin; return (bptAmountOut, amountsIn); } /** * @dev Called whenever the Pool is joined after the first initialization join (see `_onInitializePool`). * * Returns the amount of BPT to mint, the token amounts that the Pool will receive in return, and the number of * tokens to pay in protocol swap fees. * * Implementations of this function might choose to mutate the `balances` array to save gas (e.g. when * performing intermediate calculations, such as subtraction of due protocol fees). This can be done safely. * * Minted BPT will be sent to `recipient`. * * The tokens granted to the Pool will be transferred from `sender`. These amounts are considered upscaled and will * be downscaled (rounding up) before being returned to the Vault. * * Due protocol swap fees will be taken from the Pool's balance in the Vault (see `IBasePool.onJoinPool`). These * amounts are considered upscaled and will be downscaled (rounding down) before being returned to the Vault. */ function _onJoinPool( bytes32, address, address, uint256[] memory balances, uint256, uint256 protocolSwapFeePercentage, bytes memory userData ) private returns ( uint256, uint256[] memory, uint256[] memory ) { uint256[] memory normalizedWeights = _normalizedWeights(); // Due protocol swap fee amounts are computed by measuring the growth of the invariant between the previous join // or exit event and now - the invariant's growth is due exclusively to swap fees. This avoids spending gas // computing them on each individual swap uint256 invariantBeforeJoin = WeightedMath._calculateInvariant(normalizedWeights, balances); uint256[] memory dueProtocolFeeAmounts = _getDueProtocolFeeAmounts( balances, normalizedWeights, _lastInvariant, invariantBeforeJoin, protocolSwapFeePercentage ); // Update current balances by subtracting the protocol fee amounts _mutateAmounts(balances, dueProtocolFeeAmounts, FixedPoint.sub); (uint256 bptAmountOut, uint256[] memory amountsIn) = _doJoin(balances, normalizedWeights, userData); // Update the invariant with the balances the Pool will have after the join, in order to compute the // protocol swap fee amounts due in future joins and exits. _mutateAmounts(balances, amountsIn, FixedPoint.add); _lastInvariant = WeightedMath._calculateInvariant(normalizedWeights, balances); return (bptAmountOut, amountsIn, dueProtocolFeeAmounts); } function _doJoin( uint256[] memory balances, uint256[] memory normalizedWeights, bytes memory userData ) private view returns (uint256, uint256[] memory) { BaseWeightedPool.JoinKind kind = userData.joinKind(); if (kind == BaseWeightedPool.JoinKind.EXACT_TOKENS_IN_FOR_BPT_OUT) { return _joinExactTokensInForBPTOut(balances, normalizedWeights, userData); } else if (kind == BaseWeightedPool.JoinKind.TOKEN_IN_FOR_EXACT_BPT_OUT) { return _joinTokenInForExactBPTOut(balances, normalizedWeights, userData); } else if (kind == BaseWeightedPool.JoinKind.ALL_TOKENS_IN_FOR_EXACT_BPT_OUT) { return _joinAllTokensInForExactBPTOut(balances, userData); } else { _revert(Errors.UNHANDLED_JOIN_KIND); } } function _joinExactTokensInForBPTOut( uint256[] memory balances, uint256[] memory normalizedWeights, bytes memory userData ) private view returns (uint256, uint256[] memory) { (uint256[] memory amountsIn, uint256 minBPTAmountOut) = userData.exactTokensInForBptOut(); InputHelpers.ensureInputLengthMatch(amountsIn.length, 2); _upscaleArray(amountsIn); (uint256 bptAmountOut, ) = WeightedMath._calcBptOutGivenExactTokensIn( balances, normalizedWeights, amountsIn, totalSupply(), getSwapFeePercentage() ); _require(bptAmountOut >= minBPTAmountOut, Errors.BPT_OUT_MIN_AMOUNT); return (bptAmountOut, amountsIn); } function _joinTokenInForExactBPTOut( uint256[] memory balances, uint256[] memory normalizedWeights, bytes memory userData ) private view returns (uint256, uint256[] memory) { (uint256 bptAmountOut, uint256 tokenIndex) = userData.tokenInForExactBptOut(); // Note that there is no maximum amountIn parameter: this is handled by `IVault.joinPool`. _require(tokenIndex < 2, Errors.OUT_OF_BOUNDS); uint256[] memory amountsIn = new uint256[](2); (amountsIn[tokenIndex], ) = WeightedMath._calcTokenInGivenExactBptOut( balances[tokenIndex], normalizedWeights[tokenIndex], bptAmountOut, totalSupply(), getSwapFeePercentage() ); return (bptAmountOut, amountsIn); } function _joinAllTokensInForExactBPTOut(uint256[] memory balances, bytes memory userData) private view returns (uint256, uint256[] memory) { uint256 bptAmountOut = userData.allTokensInForExactBptOut(); // Note that there is no maximum amountsIn parameter: this is handled by `IVault.joinPool`. uint256[] memory amountsIn = WeightedMath._calcAllTokensInGivenExactBptOut( balances, bptAmountOut, totalSupply() ); return (bptAmountOut, amountsIn); } // Exit Hook function onExitPool( bytes32 poolId, address sender, address recipient, uint256[] memory balances, uint256 lastChangeBlock, uint256 protocolSwapFeePercentage, bytes memory userData ) public virtual override onlyVault(poolId) returns (uint256[] memory, uint256[] memory) { _upscaleArray(balances); (uint256 bptAmountIn, uint256[] memory amountsOut, uint256[] memory dueProtocolFeeAmounts) = _onExitPool( poolId, sender, recipient, balances, lastChangeBlock, protocolSwapFeePercentage, userData ); // Note we no longer use `balances` after calling `_onExitPool`, which may mutate it. _burnPoolTokens(sender, bptAmountIn); // Both amountsOut and dueProtocolFeeAmounts are amounts exiting the Pool, so we round down. _downscaleDownArray(amountsOut); _downscaleDownArray(dueProtocolFeeAmounts); // Update cached total supply and invariant using the results after the exit that will be used for future // oracle updates, only if the pool was not paused (to minimize code paths taken while paused). if (_isNotPaused()) { _cacheInvariantAndSupply(); } return (amountsOut, dueProtocolFeeAmounts); } /** * @dev Called whenever the Pool is exited. * * Returns the amount of BPT to burn, the token amounts for each Pool token that the Pool will grant in return, and * the number of tokens to pay in protocol swap fees. * * Implementations of this function might choose to mutate the `balances` array to save gas (e.g. when * performing intermediate calculations, such as subtraction of due protocol fees). This can be done safely. * * BPT will be burnt from `sender`. * * The Pool will grant tokens to `recipient`. These amounts are considered upscaled and will be downscaled * (rounding down) before being returned to the Vault. * * Due protocol swap fees will be taken from the Pool's balance in the Vault (see `IBasePool.onExitPool`). These * amounts are considered upscaled and will be downscaled (rounding down) before being returned to the Vault. */ function _onExitPool( bytes32, address, address, uint256[] memory balances, uint256 lastChangeBlock, uint256 protocolSwapFeePercentage, bytes memory userData ) private returns ( uint256 bptAmountIn, uint256[] memory amountsOut, uint256[] memory dueProtocolFeeAmounts ) { // Exits are not completely disabled while the contract is paused: proportional exits (exact BPT in for tokens // out) remain functional. uint256[] memory normalizedWeights = _normalizedWeights(); if (_isNotPaused()) { // Update price oracle with the pre-exit balances _updateOracle(lastChangeBlock, balances[0], balances[1]); // Due protocol swap fee amounts are computed by measuring the growth of the invariant between the previous // join or exit event and now - the invariant's growth is due exclusively to swap fees. This avoids // spending gas calculating the fees on each individual swap. uint256 invariantBeforeExit = WeightedMath._calculateInvariant(normalizedWeights, balances); dueProtocolFeeAmounts = _getDueProtocolFeeAmounts( balances, normalizedWeights, _lastInvariant, invariantBeforeExit, protocolSwapFeePercentage ); // Update current balances by subtracting the protocol fee amounts _mutateAmounts(balances, dueProtocolFeeAmounts, FixedPoint.sub); } else { // If the contract is paused, swap protocol fee amounts are not charged and the oracle is not updated // to avoid extra calculations and reduce the potential for errors. dueProtocolFeeAmounts = new uint256[](2); } (bptAmountIn, amountsOut) = _doExit(balances, normalizedWeights, userData); // Update the invariant with the balances the Pool will have after the exit, in order to compute the // protocol swap fees due in future joins and exits. _mutateAmounts(balances, amountsOut, FixedPoint.sub); _lastInvariant = WeightedMath._calculateInvariant(normalizedWeights, balances); return (bptAmountIn, amountsOut, dueProtocolFeeAmounts); } function _doExit( uint256[] memory balances, uint256[] memory normalizedWeights, bytes memory userData ) private view returns (uint256, uint256[] memory) { BaseWeightedPool.ExitKind kind = userData.exitKind(); if (kind == BaseWeightedPool.ExitKind.EXACT_BPT_IN_FOR_ONE_TOKEN_OUT) { return _exitExactBPTInForTokenOut(balances, normalizedWeights, userData); } else if (kind == BaseWeightedPool.ExitKind.EXACT_BPT_IN_FOR_TOKENS_OUT) { return _exitExactBPTInForTokensOut(balances, userData); } else if (kind == BaseWeightedPool.ExitKind.BPT_IN_FOR_EXACT_TOKENS_OUT) { return _exitBPTInForExactTokensOut(balances, normalizedWeights, userData); } else { _revert(Errors.UNHANDLED_EXIT_KIND); } } function _exitExactBPTInForTokenOut( uint256[] memory balances, uint256[] memory normalizedWeights, bytes memory userData ) private view whenNotPaused returns (uint256, uint256[] memory) { // This exit function is disabled if the contract is paused. (uint256 bptAmountIn, uint256 tokenIndex) = userData.exactBptInForTokenOut(); // Note that there is no minimum amountOut parameter: this is handled by `IVault.exitPool`. _require(tokenIndex < 2, Errors.OUT_OF_BOUNDS); // We exit in a single token, so we initialize amountsOut with zeros uint256[] memory amountsOut = new uint256[](2); // And then assign the result to the selected token (amountsOut[tokenIndex], ) = WeightedMath._calcTokenOutGivenExactBptIn( balances[tokenIndex], normalizedWeights[tokenIndex], bptAmountIn, totalSupply(), getSwapFeePercentage() ); return (bptAmountIn, amountsOut); } function _exitExactBPTInForTokensOut(uint256[] memory balances, bytes memory userData) private view returns (uint256, uint256[] memory) { // This exit function is the only one that is not disabled if the contract is paused: it remains unrestricted // in an attempt to provide users with a mechanism to retrieve their tokens in case of an emergency. // This particular exit function is the only one that remains available because it is the simplest one, and // therefore the one with the lowest likelihood of errors. uint256 bptAmountIn = userData.exactBptInForTokensOut(); // Note that there is no minimum amountOut parameter: this is handled by `IVault.exitPool`. uint256[] memory amountsOut = WeightedMath._calcTokensOutGivenExactBptIn(balances, bptAmountIn, totalSupply()); return (bptAmountIn, amountsOut); } function _exitBPTInForExactTokensOut( uint256[] memory balances, uint256[] memory normalizedWeights, bytes memory userData ) private view whenNotPaused returns (uint256, uint256[] memory) { // This exit function is disabled if the contract is paused. (uint256[] memory amountsOut, uint256 maxBPTAmountIn) = userData.bptInForExactTokensOut(); InputHelpers.ensureInputLengthMatch(amountsOut.length, 2); _upscaleArray(amountsOut); (uint256 bptAmountIn, ) = WeightedMath._calcBptInGivenExactTokensOut( balances, normalizedWeights, amountsOut, totalSupply(), getSwapFeePercentage() ); _require(bptAmountIn <= maxBPTAmountIn, Errors.BPT_IN_MAX_AMOUNT); return (bptAmountIn, amountsOut); } // Oracle functions /** * @dev Updates the Price Oracle based on the Pool's current state (balances, BPT supply and invariant). Must be * called on *all* state-changing functions with the balances *before* the state change happens, and with * `lastChangeBlock` as the number of the block in which any of the balances last changed. */ function _updateOracle( uint256 lastChangeBlock, uint256 balanceToken0, uint256 balanceToken1 ) internal { bytes32 miscData = _miscData; if (miscData.oracleEnabled() && block.number > lastChangeBlock) { int256 logSpotPrice = WeightedOracleMath._calcLogSpotPrice( _normalizedWeight0, balanceToken0, _normalizedWeight1, balanceToken1 ); int256 logBPTPrice = WeightedOracleMath._calcLogBPTPrice( _normalizedWeight0, balanceToken0, miscData.logTotalSupply() ); uint256 oracleCurrentIndex = miscData.oracleIndex(); uint256 oracleCurrentSampleInitialTimestamp = miscData.oracleSampleCreationTimestamp(); uint256 oracleUpdatedIndex = _processPriceData( oracleCurrentSampleInitialTimestamp, oracleCurrentIndex, logSpotPrice, logBPTPrice, miscData.logInvariant() ); if (oracleCurrentIndex != oracleUpdatedIndex) { // solhint-disable not-rely-on-time miscData = miscData.setOracleIndex(oracleUpdatedIndex); miscData = miscData.setOracleSampleCreationTimestamp(block.timestamp); _miscData = miscData; } } } /** * @dev Stores the logarithm of the invariant and BPT total supply, to be later used in each oracle update. Because * it is stored in miscData, which is read in all operations (including swaps), this saves gas by not requiring to * compute or read these values when updating the oracle. * * This function must be called by all actions that update the invariant and BPT supply (joins and exits). Swaps * also alter the invariant due to collected swap fees, but this growth is considered negligible and not accounted * for. */ function _cacheInvariantAndSupply() internal { bytes32 miscData = _miscData; if (miscData.oracleEnabled()) { miscData = miscData.setLogInvariant(LogCompression.toLowResLog(_lastInvariant)); miscData = miscData.setLogTotalSupply(LogCompression.toLowResLog(totalSupply())); _miscData = miscData; } } function _getOracleIndex() internal view override returns (uint256) { return _miscData.oracleIndex(); } // Query functions /** * @dev Returns the amount of BPT that would be granted to `recipient` if the `onJoinPool` hook were called by the * Vault with the same arguments, along with the number of tokens `sender` would have to supply. * * This function is not meant to be called directly, but rather from a helper contract that fetches current Vault * data, such as the protocol swap fee percentage and Pool balances. * * Like `IVault.queryBatchSwap`, this function is not view due to internal implementation details: the caller must * explicitly use eth_call instead of eth_sendTransaction. */ function queryJoin( bytes32 poolId, address sender, address recipient, uint256[] memory balances, uint256 lastChangeBlock, uint256 protocolSwapFeePercentage, bytes memory userData ) external returns (uint256 bptOut, uint256[] memory amountsIn) { InputHelpers.ensureInputLengthMatch(balances.length, 2); _queryAction( poolId, sender, recipient, balances, lastChangeBlock, protocolSwapFeePercentage, userData, _onJoinPool, _downscaleUpArray ); // The `return` opcode is executed directly inside `_queryAction`, so execution never reaches this statement, // and we don't need to return anything here - it just silences compiler warnings. return (bptOut, amountsIn); } /** * @dev Returns the amount of BPT that would be burned from `sender` if the `onExitPool` hook were called by the * Vault with the same arguments, along with the number of tokens `recipient` would receive. * * This function is not meant to be called directly, but rather from a helper contract that fetches current Vault * data, such as the protocol swap fee percentage and Pool balances. * * Like `IVault.queryBatchSwap`, this function is not view due to internal implementation details: the caller must * explicitly use eth_call instead of eth_sendTransaction. */ function queryExit( bytes32 poolId, address sender, address recipient, uint256[] memory balances, uint256 lastChangeBlock, uint256 protocolSwapFeePercentage, bytes memory userData ) external returns (uint256 bptIn, uint256[] memory amountsOut) { InputHelpers.ensureInputLengthMatch(balances.length, 2); _queryAction( poolId, sender, recipient, balances, lastChangeBlock, protocolSwapFeePercentage, userData, _onExitPool, _downscaleDownArray ); // The `return` opcode is executed directly inside `_queryAction`, so execution never reaches this statement, // and we don't need to return anything here - it just silences compiler warnings. return (bptIn, amountsOut); } // Helpers function _getDueProtocolFeeAmounts( uint256[] memory balances, uint256[] memory normalizedWeights, uint256 previousInvariant, uint256 currentInvariant, uint256 protocolSwapFeePercentage ) private view returns (uint256[] memory) { // Initialize with zeros uint256[] memory dueProtocolFeeAmounts = new uint256[](2); // Early return if the protocol swap fee percentage is zero, saving gas. if (protocolSwapFeePercentage == 0) { return dueProtocolFeeAmounts; } // The protocol swap fees are always paid using the token with the largest weight in the Pool. As this is the // token that is expected to have the largest balance, using it to pay fees should not unbalance the Pool. dueProtocolFeeAmounts[_maxWeightTokenIndex] = WeightedMath._calcDueTokenProtocolSwapFeeAmount( balances[_maxWeightTokenIndex], normalizedWeights[_maxWeightTokenIndex], previousInvariant, currentInvariant, protocolSwapFeePercentage ); return dueProtocolFeeAmounts; } /** * @dev Mutates `amounts` by applying `mutation` with each entry in `arguments`. * * Equivalent to `amounts = amounts.map(mutation)`. */ function _mutateAmounts( uint256[] memory toMutate, uint256[] memory arguments, function(uint256, uint256) pure returns (uint256) mutation ) private pure { toMutate[0] = mutation(toMutate[0], arguments[0]); toMutate[1] = mutation(toMutate[1], arguments[1]); } /** * @dev This function returns the appreciation of one BPT relative to the * underlying tokens. This starts at 1 when the pool is created and grows over time */ function getRate() public view returns (uint256) { // The initial BPT supply is equal to the invariant times the number of tokens. return Math.mul(getInvariant(), 2).divDown(totalSupply()); } // Scaling /** * @dev Returns a scaling factor that, when multiplied to a token amount for `token`, normalizes its balance as if * it had 18 decimals. */ function _computeScalingFactor(IERC20 token) private view returns (uint256) { // Tokens that don't implement the `decimals` method are not supported. uint256 tokenDecimals = ERC20(address(token)).decimals(); // Tokens with more than 18 decimals are not supported. uint256 decimalsDifference = Math.sub(18, tokenDecimals); return 10**decimalsDifference; } /** * @dev Returns the scaling factor for one of the Pool's tokens. Reverts if `token` is not a token registered by the * Pool. */ function _scalingFactor(bool token0) internal view returns (uint256) { return token0 ? _scalingFactor0 : _scalingFactor1; } /** * @dev Applies `scalingFactor` to `amount`, resulting in a larger or equal value depending on whether it needed * scaling or not. */ function _upscale(uint256 amount, uint256 scalingFactor) internal pure returns (uint256) { return Math.mul(amount, scalingFactor); } /** * @dev Same as `_upscale`, but for an entire array (of two elements). This function does not return anything, but * instead *mutates* the `amounts` array. */ function _upscaleArray(uint256[] memory amounts) internal view { amounts[0] = Math.mul(amounts[0], _scalingFactor(true)); amounts[1] = Math.mul(amounts[1], _scalingFactor(false)); } /** * @dev Reverses the `scalingFactor` applied to `amount`, resulting in a smaller or equal value depending on * whether it needed scaling or not. The result is rounded down. */ function _downscaleDown(uint256 amount, uint256 scalingFactor) internal pure returns (uint256) { return Math.divDown(amount, scalingFactor); } /** * @dev Same as `_downscaleDown`, but for an entire array (of two elements). This function does not return anything, * but instead *mutates* the `amounts` array. */ function _downscaleDownArray(uint256[] memory amounts) internal view { amounts[0] = Math.divDown(amounts[0], _scalingFactor(true)); amounts[1] = Math.divDown(amounts[1], _scalingFactor(false)); } /** * @dev Reverses the `scalingFactor` applied to `amount`, resulting in a smaller or equal value depending on * whether it needed scaling or not. The result is rounded up. */ function _downscaleUp(uint256 amount, uint256 scalingFactor) internal pure returns (uint256) { return Math.divUp(amount, scalingFactor); } /** * @dev Same as `_downscaleUp`, but for an entire array (of two elements). This function does not return anything, * but instead *mutates* the `amounts` array. */ function _downscaleUpArray(uint256[] memory amounts) internal view { amounts[0] = Math.divUp(amounts[0], _scalingFactor(true)); amounts[1] = Math.divUp(amounts[1], _scalingFactor(false)); } function _getAuthorizer() internal view override returns (IAuthorizer) { // Access control management is delegated to the Vault's Authorizer. This lets Balancer Governance manage which // accounts can call permissioned functions: for example, to perform emergency pauses. // If the owner is delegated, then *all* permissioned functions, including `setSwapFeePercentage`, will be under // Governance control. return getVault().getAuthorizer(); } function _queryAction( bytes32 poolId, address sender, address recipient, uint256[] memory balances, uint256 lastChangeBlock, uint256 protocolSwapFeePercentage, bytes memory userData, function(bytes32, address, address, uint256[] memory, uint256, uint256, bytes memory) internal returns (uint256, uint256[] memory, uint256[] memory) _action, function(uint256[] memory) internal view _downscaleArray ) private { // This uses the same technique used by the Vault in queryBatchSwap. Refer to that function for a detailed // explanation. if (msg.sender != address(this)) { // We perform an external call to ourselves, forwarding the same calldata. In this call, the else clause of // the preceding if statement will be executed instead. // solhint-disable-next-line avoid-low-level-calls (bool success, ) = address(this).call(msg.data); // solhint-disable-next-line no-inline-assembly assembly { // This call should always revert to decode the bpt and token amounts from the revert reason switch success case 0 { // Note we are manually writing the memory slot 0. We can safely overwrite whatever is // stored there as we take full control of the execution and then immediately return. // We copy the first 4 bytes to check if it matches with the expected signature, otherwise // there was another revert reason and we should forward it. returndatacopy(0, 0, 0x04) let error := and(mload(0), 0xffffffff00000000000000000000000000000000000000000000000000000000) // If the first 4 bytes don't match with the expected signature, we forward the revert reason. if eq(eq(error, 0x43adbafb00000000000000000000000000000000000000000000000000000000), 0) { returndatacopy(0, 0, returndatasize()) revert(0, returndatasize()) } // The returndata contains the signature, followed by the raw memory representation of the // `bptAmount` and `tokenAmounts` (array: length + data). We need to return an ABI-encoded // representation of these. // An ABI-encoded response will include one additional field to indicate the starting offset of // the `tokenAmounts` array. The `bptAmount` will be laid out in the first word of the // returndata. // // In returndata: // [ signature ][ bptAmount ][ tokenAmounts length ][ tokenAmounts values ] // [ 4 bytes ][ 32 bytes ][ 32 bytes ][ (32 * length) bytes ] // // We now need to return (ABI-encoded values): // [ bptAmount ][ tokeAmounts offset ][ tokenAmounts length ][ tokenAmounts values ] // [ 32 bytes ][ 32 bytes ][ 32 bytes ][ (32 * length) bytes ] // We copy 32 bytes for the `bptAmount` from returndata into memory. // Note that we skip the first 4 bytes for the error signature returndatacopy(0, 0x04, 32) // The offsets are 32-bytes long, so the array of `tokenAmounts` will start after // the initial 64 bytes. mstore(0x20, 64) // We now copy the raw memory array for the `tokenAmounts` from returndata into memory. // Since bpt amount and offset take up 64 bytes, we start copying at address 0x40. We also // skip the first 36 bytes from returndata, which correspond to the signature plus bpt amount. returndatacopy(0x40, 0x24, sub(returndatasize(), 36)) // We finally return the ABI-encoded uint256 and the array, which has a total length equal to // the size of returndata, plus the 32 bytes of the offset but without the 4 bytes of the // error signature. return(0, add(returndatasize(), 28)) } default { // This call should always revert, but we fail nonetheless if that didn't happen invalid() } } } else { _upscaleArray(balances); (uint256 bptAmount, uint256[] memory tokenAmounts, ) = _action( poolId, sender, recipient, balances, lastChangeBlock, protocolSwapFeePercentage, userData ); _downscaleArray(tokenAmounts); // solhint-disable-next-line no-inline-assembly assembly { // We will return a raw representation of `bptAmount` and `tokenAmounts` in memory, which is composed of // a 32-byte uint256, followed by a 32-byte for the array length, and finally the 32-byte uint256 values // Because revert expects a size in bytes, we multiply the array length (stored at `tokenAmounts`) by 32 let size := mul(mload(tokenAmounts), 32) // We store the `bptAmount` in the previous slot to the `tokenAmounts` array. We can make sure there // will be at least one available slot due to how the memory scratch space works. // We can safely overwrite whatever is stored in this slot as we will revert immediately after that. let start := sub(tokenAmounts, 0x20) mstore(start, bptAmount) // We send one extra value for the error signature "QueryError(uint256,uint256[])" which is 0x43adbafb // We use the previous slot to `bptAmount`. mstore(sub(start, 0x20), 0x0000000000000000000000000000000000000000000000000000000043adbafb) start := sub(start, 0x04) // When copying from `tokenAmounts` into returndata, we copy the additional 68 bytes to also return // the `bptAmount`, the array length, and the error signature. revert(start, add(size, 68)) } } } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; import "../math/LogExpMath.sol"; /** * @dev Library for encoding and decoding values stored inside a 256 bit word. Typically used to pack multiple values in * a single storage slot, saving gas by performing less storage accesses. * * Each value is defined by its size and the least significant bit in the word, also known as offset. For example, two * 128 bit values may be encoded in a word by assigning one an offset of 0, and the other an offset of 128. */ library LogCompression { int256 private constant _LOG_COMPRESSION_FACTOR = 1e14; int256 private constant _HALF_LOG_COMPRESSION_FACTOR = 0.5e14; /** * @dev Returns the natural logarithm of `value`, dropping most of the decimal places to arrive at a value that, * when passed to `fromLowResLog`, will have a maximum relative error of ~0.05% compared to `value`. * * Values returned from this function should not be mixed with other fixed-point values (as they have a different * number of digits), but can be added or subtracted. Use `fromLowResLog` to undo this process and return to an * 18 decimal places fixed point value. * * Because so much precision is lost, the logarithmic values can be stored using much fewer bits than the original * value required. */ function toLowResLog(uint256 value) internal pure returns (int256) { int256 ln = LogExpMath.ln(int256(value)); // Rounding division for signed numerator int256 lnWithError = (ln > 0 ? ln + _HALF_LOG_COMPRESSION_FACTOR : ln - _HALF_LOG_COMPRESSION_FACTOR); return lnWithError / _LOG_COMPRESSION_FACTOR; } /** * @dev Restores `value` from logarithmic space. `value` is expected to be the result of a call to `toLowResLog`, * any other function that returns 4 decimals fixed point logarithms, or the sum of such values. */ function fromLowResLog(int256 value) internal pure returns (uint256) { return uint256(LogExpMath.exp(value * _LOG_COMPRESSION_FACTOR)); } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; pragma experimental ABIEncoderV2; import "@balancer-labs/v2-solidity-utils/contracts/helpers/BalancerErrors.sol"; import "../interfaces/IPriceOracle.sol"; import "../interfaces/IPoolPriceOracle.sol"; import "./Buffer.sol"; import "./Samples.sol"; import "./QueryProcessor.sol"; /** * @dev This module allows Pools to access historical pricing information. * * It uses a 1024 long circular buffer to store past data, where the data within each sample is the result of * accumulating live data for no more than two minutes. Therefore, assuming the worst case scenario where new data is * updated in every single block, the oldest samples in the buffer (and therefore largest queryable period) will * be slightly over 34 hours old. * * Usage of this module requires the caller to keep track of two variables: the latest circular buffer index, and the * timestamp when the index last changed. Aditionally, access to the latest circular buffer index must be exposed by * implementing `_getOracleIndex`. * * This contract relies on the `QueryProcessor` linked library to reduce bytecode size. */ abstract contract PoolPriceOracle is IPoolPriceOracle, IPriceOracle { using Buffer for uint256; using Samples for bytes32; // Each sample in the buffer accumulates information for up to 2 minutes. This is simply to reduce the size of the // buffer: small time deviations will not have any significant effect. // solhint-disable not-rely-on-time uint256 private constant _MAX_SAMPLE_DURATION = 2 minutes; // We use a mapping to simulate an array: the buffer won't grow or shrink, and since we will always use valid // indexes using a mapping saves gas by skipping the bounds checks. mapping(uint256 => bytes32) internal _samples; // IPoolPriceOracle function getSample(uint256 index) external view override returns ( int256 logPairPrice, int256 accLogPairPrice, int256 logBptPrice, int256 accLogBptPrice, int256 logInvariant, int256 accLogInvariant, uint256 timestamp ) { _require(index < Buffer.SIZE, Errors.ORACLE_INVALID_INDEX); bytes32 sample = _getSample(index); return sample.unpack(); } function getTotalSamples() external pure override returns (uint256) { return Buffer.SIZE; } /** * @dev Manually dirty oracle sample storage slots with dummy data, to reduce the gas cost of the future swaps * that will initialize them. This function is only useful before the oracle has been fully initialized. * * `endIndex` is non-inclusive. */ function dirtyUninitializedOracleSamples(uint256 startIndex, uint256 endIndex) external { _require(startIndex < endIndex && endIndex <= Buffer.SIZE, Errors.OUT_OF_BOUNDS); // Uninitialized samples are identified by a zero timestamp -- all other fields are ignored, // so any non-zero value with a zero timestamp suffices. bytes32 initSample = Samples.pack(1, 0, 0, 0, 0, 0, 0); for (uint256 i = startIndex; i < endIndex; i++) { if (_samples[i].timestamp() == 0) { _samples[i] = initSample; } } } // IPriceOracle function getLargestSafeQueryWindow() external pure override returns (uint256) { return 34 hours; } function getLatest(Variable variable) external view override returns (uint256) { return QueryProcessor.getInstantValue(_samples, variable, _getOracleIndex()); } function getTimeWeightedAverage(OracleAverageQuery[] memory queries) external view override returns (uint256[] memory results) { results = new uint256[](queries.length); uint256 latestIndex = _getOracleIndex(); for (uint256 i = 0; i < queries.length; ++i) { results[i] = QueryProcessor.getTimeWeightedAverage(_samples, queries[i], latestIndex); } } function getPastAccumulators(OracleAccumulatorQuery[] memory queries) external view override returns (int256[] memory results) { results = new int256[](queries.length); uint256 latestIndex = _getOracleIndex(); OracleAccumulatorQuery memory query; for (uint256 i = 0; i < queries.length; ++i) { query = queries[i]; results[i] = _getPastAccumulator(query.variable, latestIndex, query.ago); } } // Internal functions /** * @dev Processes new price and invariant data, updating the latest sample or creating a new one. * * Receives the new logarithms of values to store: `logPairPrice`, `logBptPrice` and `logInvariant`, as well the * index of the latest sample and the timestamp of its creation. * * Returns the index of the latest sample. If different from `latestIndex`, the caller should also store the * timestamp, and pass it on future calls to this function. */ function _processPriceData( uint256 latestSampleCreationTimestamp, uint256 latestIndex, int256 logPairPrice, int256 logBptPrice, int256 logInvariant ) internal returns (uint256) { // Read latest sample, and compute the next one by updating it with the newly received data. bytes32 sample = _getSample(latestIndex).update(logPairPrice, logBptPrice, logInvariant, block.timestamp); // We create a new sample if more than _MAX_SAMPLE_DURATION seconds have elapsed since the creation of the // latest one. In other words, no sample accumulates data over a period larger than _MAX_SAMPLE_DURATION. bool newSample = block.timestamp - latestSampleCreationTimestamp >= _MAX_SAMPLE_DURATION; latestIndex = newSample ? latestIndex.next() : latestIndex; // Store the updated or new sample. _samples[latestIndex] = sample; return latestIndex; } function _getPastAccumulator( IPriceOracle.Variable variable, uint256 latestIndex, uint256 ago ) internal view returns (int256) { return QueryProcessor.getPastAccumulator(_samples, variable, latestIndex, ago); } function _findNearestSample( uint256 lookUpDate, uint256 offset, uint256 length ) internal view returns (bytes32 prev, bytes32 next) { return QueryProcessor.findNearestSample(_samples, lookUpDate, offset, length); } /** * @dev Returns the sample that corresponds to a given `index`. * * Using this function instead of accessing storage directly results in denser bytecode (since the storage slot is * only computed here). */ function _getSample(uint256 index) internal view returns (bytes32) { return _samples[index]; } /** * @dev Virtual function to be implemented by derived contracts. Must return the current index of the oracle * circular buffer. */ function _getOracleIndex() internal view virtual returns (uint256); }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; library Buffer { // The buffer is a circular storage structure with 1024 slots. // solhint-disable-next-line private-vars-leading-underscore uint256 internal constant SIZE = 1024; /** * @dev Returns the index of the element before the one pointed by `index`. */ function prev(uint256 index) internal pure returns (uint256) { return sub(index, 1); } /** * @dev Returns the index of the element after the one pointed by `index`. */ function next(uint256 index) internal pure returns (uint256) { return add(index, 1); } /** * @dev Returns the index of an element `offset` slots after the one pointed by `index`. */ function add(uint256 index, uint256 offset) internal pure returns (uint256) { return (index + offset) % SIZE; } /** * @dev Returns the index of an element `offset` slots before the one pointed by `index`. */ function sub(uint256 index, uint256 offset) internal pure returns (uint256) { return (index + SIZE - offset) % SIZE; } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; import "@balancer-labs/v2-solidity-utils/contracts/math/FixedPoint.sol"; import "@balancer-labs/v2-solidity-utils/contracts/helpers/LogCompression.sol"; contract WeightedOracleMath { using FixedPoint for uint256; /** * @dev Calculates the logarithm of the spot price of token B in token A. * * The return value is a 4 decimal fixed-point number: use `LogCompression.fromLowResLog` * to recover the original value. */ function _calcLogSpotPrice( uint256 normalizedWeightA, uint256 balanceA, uint256 normalizedWeightB, uint256 balanceB ) internal pure returns (int256) { // Max balances are 2^112 and min weights are 0.01, so the division never overflows. // The rounding direction is irrelevant as we're about to introduce a much larger error when converting to log // space. We use `divUp` as it prevents the result from being zero, which would make the logarithm revert. A // result of zero is therefore only possible with zero balances, which are prevented via other means. uint256 spotPrice = balanceA.divUp(normalizedWeightA).divUp(balanceB.divUp(normalizedWeightB)); return LogCompression.toLowResLog(spotPrice); } /** * @dev Calculates the price of BPT in a token. `logBptTotalSupply` should be the result of calling `toLowResLog` * with the current BPT supply. * * The return value is a 4 decimal fixed-point number: use `LogCompression.fromLowResLog` * to recover the original value. */ function _calcLogBPTPrice( uint256 normalizedWeight, uint256 balance, int256 logBptTotalSupply ) internal pure returns (int256) { // BPT price = (balance / weight) / total supply // Since we already have ln(total supply) and want to compute ln(BPT price), we perform the computation in log // space directly: ln(BPT price) = ln(balance / weight) - ln(total supply) // The rounding direction is irrelevant as we're about to introduce a much larger error when converting to log // space. We use `divUp` as it prevents the result from being zero, which would make the logarithm revert. A // result of zero is therefore only possible with zero balances, which are prevented via other means. uint256 balanceOverWeight = balance.divUp(normalizedWeight); int256 logBalanceOverWeight = LogCompression.toLowResLog(balanceOverWeight); // Because we're subtracting two values in log space, this value has a larger error (+-0.0001 instead of // +-0.00005), which results in a final larger relative error of around 0.1%. return logBalanceOverWeight - logBptTotalSupply; } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; import "@balancer-labs/v2-solidity-utils/contracts/helpers/WordCodec.sol"; /** * @dev This module provides an interface to store seemingly unrelated pieces of information, in particular used by * pools with a price oracle. * * These pieces of information are all kept together in a single storage slot to reduce the number of storage reads. In * particular, we not only store configuration values (such as the swap fee percentage), but also cache * reduced-precision versions of the total BPT supply and invariant, which lets us not access nor compute these values * when producing oracle updates during a swap. * * Data is stored with the following structure: * * [ swap fee pct | oracle enabled | oracle index | oracle sample initial timestamp | log supply | log invariant ] * [ uint64 | bool | uint10 | uint31 | int22 | int22 ] * * Note that we are not using the most-significant 106 bits. */ library WeightedPool2TokensMiscData { using WordCodec for bytes32; using WordCodec for uint256; uint256 private constant _LOG_INVARIANT_OFFSET = 0; uint256 private constant _LOG_TOTAL_SUPPLY_OFFSET = 22; uint256 private constant _ORACLE_SAMPLE_CREATION_TIMESTAMP_OFFSET = 44; uint256 private constant _ORACLE_INDEX_OFFSET = 75; uint256 private constant _ORACLE_ENABLED_OFFSET = 85; uint256 private constant _SWAP_FEE_PERCENTAGE_OFFSET = 86; /** * @dev Returns the cached logarithm of the invariant. */ function logInvariant(bytes32 data) internal pure returns (int256) { return data.decodeInt22(_LOG_INVARIANT_OFFSET); } /** * @dev Returns the cached logarithm of the total supply. */ function logTotalSupply(bytes32 data) internal pure returns (int256) { return data.decodeInt22(_LOG_TOTAL_SUPPLY_OFFSET); } /** * @dev Returns the timestamp of the creation of the oracle's latest sample. */ function oracleSampleCreationTimestamp(bytes32 data) internal pure returns (uint256) { return data.decodeUint31(_ORACLE_SAMPLE_CREATION_TIMESTAMP_OFFSET); } /** * @dev Returns the index of the oracle's latest sample. */ function oracleIndex(bytes32 data) internal pure returns (uint256) { return data.decodeUint10(_ORACLE_INDEX_OFFSET); } /** * @dev Returns true if the oracle is enabled. */ function oracleEnabled(bytes32 data) internal pure returns (bool) { return data.decodeBool(_ORACLE_ENABLED_OFFSET); } /** * @dev Returns the swap fee percentage. */ function swapFeePercentage(bytes32 data) internal pure returns (uint256) { return data.decodeUint64(_SWAP_FEE_PERCENTAGE_OFFSET); } /** * @dev Sets the logarithm of the invariant in `data`, returning the updated value. */ function setLogInvariant(bytes32 data, int256 _logInvariant) internal pure returns (bytes32) { return data.insertInt22(_logInvariant, _LOG_INVARIANT_OFFSET); } /** * @dev Sets the logarithm of the total supply in `data`, returning the updated value. */ function setLogTotalSupply(bytes32 data, int256 _logTotalSupply) internal pure returns (bytes32) { return data.insertInt22(_logTotalSupply, _LOG_TOTAL_SUPPLY_OFFSET); } /** * @dev Sets the timestamp of the creation of the oracle's latest sample in `data`, returning the updated value. */ function setOracleSampleCreationTimestamp(bytes32 data, uint256 _initialTimestamp) internal pure returns (bytes32) { return data.insertUint31(_initialTimestamp, _ORACLE_SAMPLE_CREATION_TIMESTAMP_OFFSET); } /** * @dev Sets the index of the oracle's latest sample in `data`, returning the updated value. */ function setOracleIndex(bytes32 data, uint256 _oracleIndex) internal pure returns (bytes32) { return data.insertUint10(_oracleIndex, _ORACLE_INDEX_OFFSET); } /** * @dev Enables or disables the oracle in `data`, returning the updated value. */ function setOracleEnabled(bytes32 data, bool _oracleEnabled) internal pure returns (bytes32) { return data.insertBool(_oracleEnabled, _ORACLE_ENABLED_OFFSET); } /** * @dev Sets the swap fee percentage in `data`, returning the updated value. */ function setSwapFeePercentage(bytes32 data, uint256 _swapFeePercentage) internal pure returns (bytes32) { return data.insertUint64(_swapFeePercentage, _SWAP_FEE_PERCENTAGE_OFFSET); } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; pragma experimental ABIEncoderV2; /** * @dev Interface for querying historical data from a Pool that can be used as a Price Oracle. * * This lets third parties retrieve average prices of tokens held by a Pool over a given period of time, as well as the * price of the Pool share token (BPT) and invariant. Since the invariant is a sensible measure of Pool liquidity, it * can be used to compare two different price sources, and choose the most liquid one. * * Once the oracle is fully initialized, all queries are guaranteed to succeed as long as they require no data that * is not older than the largest safe query window. */ interface IPriceOracle { // The three values that can be queried: // // - PAIR_PRICE: the price of the tokens in the Pool, expressed as the price of the second token in units of the // first token. For example, if token A is worth $2, and token B is worth $4, the pair price will be 2.0. // Note that the price is computed *including* the tokens decimals. This means that the pair price of a Pool with // DAI and USDC will be close to 1.0, despite DAI having 18 decimals and USDC 6. // // - BPT_PRICE: the price of the Pool share token (BPT), in units of the first token. // Note that the price is computed *including* the tokens decimals. This means that the BPT price of a Pool with // USDC in which BPT is worth $5 will be 5.0, despite the BPT having 18 decimals and USDC 6. // // - INVARIANT: the value of the Pool's invariant, which serves as a measure of its liquidity. enum Variable { PAIR_PRICE, BPT_PRICE, INVARIANT } /** * @dev Returns the time average weighted price corresponding to each of `queries`. Prices are represented as 18 * decimal fixed point values. */ function getTimeWeightedAverage(OracleAverageQuery[] memory queries) external view returns (uint256[] memory results); /** * @dev Returns latest sample of `variable`. Prices are represented as 18 decimal fixed point values. */ function getLatest(Variable variable) external view returns (uint256); /** * @dev Information for a Time Weighted Average query. * * Each query computes the average over a window of duration `secs` seconds that ended `ago` seconds ago. For * example, the average over the past 30 minutes is computed by settings secs to 1800 and ago to 0. If secs is 1800 * and ago is 1800 as well, the average between 60 and 30 minutes ago is computed instead. */ struct OracleAverageQuery { Variable variable; uint256 secs; uint256 ago; } /** * @dev Returns largest time window that can be safely queried, where 'safely' means the Oracle is guaranteed to be * able to produce a result and not revert. * * If a query has a non-zero `ago` value, then `secs + ago` (the oldest point in time) must be smaller than this * value for 'safe' queries. */ function getLargestSafeQueryWindow() external view returns (uint256); /** * @dev Returns the accumulators corresponding to each of `queries`. */ function getPastAccumulators(OracleAccumulatorQuery[] memory queries) external view returns (int256[] memory results); /** * @dev Information for an Accumulator query. * * Each query estimates the accumulator at a time `ago` seconds ago. */ struct OracleAccumulatorQuery { Variable variable; uint256 ago; } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; interface IPoolPriceOracle { /** * @dev Returns the raw data of the sample at `index`. */ function getSample(uint256 index) external view returns ( int256 logPairPrice, int256 accLogPairPrice, int256 logBptPrice, int256 accLogBptPrice, int256 logInvariant, int256 accLogInvariant, uint256 timestamp ); /** * @dev Returns the total number of samples. */ function getTotalSamples() external view returns (uint256); }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; import "@balancer-labs/v2-solidity-utils/contracts/helpers/WordCodec.sol"; import "../interfaces/IPriceOracle.sol"; /** * @dev This library provides functions to help manipulating samples for Pool Price Oracles. It handles updates, * encoding, and decoding of samples. * * Each sample holds the timestamp of its last update, plus information about three pieces of data: the price pair, the * price of BPT (the associated Pool token), and the invariant. * * Prices and invariant are not stored directly: instead, we store their logarithm. These are known as the 'instant' * values: the exact value at that timestamp. * * Additionally, for each value we keep an accumulator with the sum of all past values, each weighted by the time * elapsed since the previous update. This lets us later subtract accumulators at different points in time and divide by * the time elapsed between them, arriving at the geometric mean of the values (also known as log-average). * * All samples are stored in a single 256 bit word with the following structure: * * [ log pair price | bpt price | invariant | timestamp ] * [ instant | accumulator | instant | accumulator | instant | accumulator | ] * [ int22 | int53 | int22 | int53 | int22 | int53 | uint31 ] * MSB LSB * * Assuming the timestamp doesn't overflow (which holds until the year 2038), the largest elapsed time is 2^31, which * means the largest possible accumulator value is 2^21 * 2^31, which can be represented using a signed 53 bit integer. */ library Samples { using WordCodec for int256; using WordCodec for uint256; using WordCodec for bytes32; uint256 internal constant _TIMESTAMP_OFFSET = 0; uint256 internal constant _ACC_LOG_INVARIANT_OFFSET = 31; uint256 internal constant _INST_LOG_INVARIANT_OFFSET = 84; uint256 internal constant _ACC_LOG_BPT_PRICE_OFFSET = 106; uint256 internal constant _INST_LOG_BPT_PRICE_OFFSET = 159; uint256 internal constant _ACC_LOG_PAIR_PRICE_OFFSET = 181; uint256 internal constant _INST_LOG_PAIR_PRICE_OFFSET = 234; /** * @dev Updates a sample, accumulating the new data based on the elapsed time since the previous update. Returns the * updated sample. * * IMPORTANT: This function does not perform any arithmetic checks. In particular, it assumes the caller will never * pass values that cannot be represented as 22 bit signed integers. Additionally, it also assumes * `currentTimestamp` is greater than `sample`'s timestamp. */ function update( bytes32 sample, int256 instLogPairPrice, int256 instLogBptPrice, int256 instLogInvariant, uint256 currentTimestamp ) internal pure returns (bytes32) { // Because elapsed can be represented as a 31 bit unsigned integer, and the received values can be represented // as 22 bit signed integers, we don't need to perform checked arithmetic. int256 elapsed = int256(currentTimestamp - timestamp(sample)); int256 accLogPairPrice = _accLogPairPrice(sample) + instLogPairPrice * elapsed; int256 accLogBptPrice = _accLogBptPrice(sample) + instLogBptPrice * elapsed; int256 accLogInvariant = _accLogInvariant(sample) + instLogInvariant * elapsed; return pack( instLogPairPrice, accLogPairPrice, instLogBptPrice, accLogBptPrice, instLogInvariant, accLogInvariant, currentTimestamp ); } /** * @dev Returns the instant value stored in `sample` for `variable`. */ function instant(bytes32 sample, IPriceOracle.Variable variable) internal pure returns (int256) { if (variable == IPriceOracle.Variable.PAIR_PRICE) { return _instLogPairPrice(sample); } else if (variable == IPriceOracle.Variable.BPT_PRICE) { return _instLogBptPrice(sample); } else { // variable == IPriceOracle.Variable.INVARIANT return _instLogInvariant(sample); } } /** * @dev Returns the accumulator value stored in `sample` for `variable`. */ function accumulator(bytes32 sample, IPriceOracle.Variable variable) internal pure returns (int256) { if (variable == IPriceOracle.Variable.PAIR_PRICE) { return _accLogPairPrice(sample); } else if (variable == IPriceOracle.Variable.BPT_PRICE) { return _accLogBptPrice(sample); } else { // variable == IPriceOracle.Variable.INVARIANT return _accLogInvariant(sample); } } /** * @dev Returns `sample`'s timestamp. */ function timestamp(bytes32 sample) internal pure returns (uint256) { return sample.decodeUint31(_TIMESTAMP_OFFSET); } /** * @dev Returns `sample`'s instant value for the logarithm of the pair price. */ function _instLogPairPrice(bytes32 sample) private pure returns (int256) { return sample.decodeInt22(_INST_LOG_PAIR_PRICE_OFFSET); } /** * @dev Returns `sample`'s accumulator of the logarithm of the pair price. */ function _accLogPairPrice(bytes32 sample) private pure returns (int256) { return sample.decodeInt53(_ACC_LOG_PAIR_PRICE_OFFSET); } /** * @dev Returns `sample`'s instant value for the logarithm of the BPT price. */ function _instLogBptPrice(bytes32 sample) private pure returns (int256) { return sample.decodeInt22(_INST_LOG_BPT_PRICE_OFFSET); } /** * @dev Returns `sample`'s accumulator of the logarithm of the BPT price. */ function _accLogBptPrice(bytes32 sample) private pure returns (int256) { return sample.decodeInt53(_ACC_LOG_BPT_PRICE_OFFSET); } /** * @dev Returns `sample`'s instant value for the logarithm of the invariant. */ function _instLogInvariant(bytes32 sample) private pure returns (int256) { return sample.decodeInt22(_INST_LOG_INVARIANT_OFFSET); } /** * @dev Returns `sample`'s accumulator of the logarithm of the invariant. */ function _accLogInvariant(bytes32 sample) private pure returns (int256) { return sample.decodeInt53(_ACC_LOG_INVARIANT_OFFSET); } /** * @dev Returns a sample created by packing together its components. */ function pack( int256 instLogPairPrice, int256 accLogPairPrice, int256 instLogBptPrice, int256 accLogBptPrice, int256 instLogInvariant, int256 accLogInvariant, uint256 _timestamp ) internal pure returns (bytes32) { return instLogPairPrice.encodeInt22(_INST_LOG_PAIR_PRICE_OFFSET) | accLogPairPrice.encodeInt53(_ACC_LOG_PAIR_PRICE_OFFSET) | instLogBptPrice.encodeInt22(_INST_LOG_BPT_PRICE_OFFSET) | accLogBptPrice.encodeInt53(_ACC_LOG_BPT_PRICE_OFFSET) | instLogInvariant.encodeInt22(_INST_LOG_INVARIANT_OFFSET) | accLogInvariant.encodeInt53(_ACC_LOG_INVARIANT_OFFSET) | _timestamp.encodeUint(_TIMESTAMP_OFFSET); // Using 31 bits } /** * @dev Unpacks a sample into its components. */ function unpack(bytes32 sample) internal pure returns ( int256 logPairPrice, int256 accLogPairPrice, int256 logBptPrice, int256 accLogBptPrice, int256 logInvariant, int256 accLogInvariant, uint256 _timestamp ) { logPairPrice = _instLogPairPrice(sample); accLogPairPrice = _accLogPairPrice(sample); logBptPrice = _instLogBptPrice(sample); accLogBptPrice = _accLogBptPrice(sample); logInvariant = _instLogInvariant(sample); accLogInvariant = _accLogInvariant(sample); _timestamp = timestamp(sample); } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; pragma experimental ABIEncoderV2; import "@balancer-labs/v2-solidity-utils/contracts/helpers/BalancerErrors.sol"; import "@balancer-labs/v2-solidity-utils/contracts/helpers/LogCompression.sol"; import "../interfaces/IPriceOracle.sol"; import "./Buffer.sol"; import "./Samples.sol"; /** * @dev Auxiliary library for PoolPriceOracle, offloading most of the query code to reduce bytecode size by using this * as a linked library. The downside is an extra DELEGATECALL is added (2600 gas as of the Berlin hardfork), but the * bytecode size gains are so big (specially of the oracle contract does not use `LogCompression.fromLowResLog`) that * it is worth it. */ library QueryProcessor { using Buffer for uint256; using Samples for bytes32; using LogCompression for int256; /** * @dev Returns the value for `variable` at the indexed sample. */ function getInstantValue( mapping(uint256 => bytes32) storage samples, IPriceOracle.Variable variable, uint256 index ) external view returns (uint256) { bytes32 sample = samples[index]; _require(sample.timestamp() > 0, Errors.ORACLE_NOT_INITIALIZED); int256 rawInstantValue = sample.instant(variable); return LogCompression.fromLowResLog(rawInstantValue); } /** * @dev Returns the time average weighted price corresponding to `query`. */ function getTimeWeightedAverage( mapping(uint256 => bytes32) storage samples, IPriceOracle.OracleAverageQuery memory query, uint256 latestIndex ) external view returns (uint256) { _require(query.secs != 0, Errors.ORACLE_BAD_SECS); int256 beginAccumulator = getPastAccumulator(samples, query.variable, latestIndex, query.ago + query.secs); int256 endAccumulator = getPastAccumulator(samples, query.variable, latestIndex, query.ago); return LogCompression.fromLowResLog((endAccumulator - beginAccumulator) / int256(query.secs)); } /** * @dev Returns the value of the accumulator for `variable` `ago` seconds ago. `latestIndex` must be the index of * the latest sample in the buffer. * * Reverts under the following conditions: * - if the buffer is empty. * - if querying past information and the buffer has not been fully initialized. * - if querying older information than available in the buffer. Note that a full buffer guarantees queries for the * past 34 hours will not revert. * * If requesting information for a timestamp later than the latest one, it is extrapolated using the latest * available data. * * When no exact information is available for the requested past timestamp (as usually happens, since at most one * timestamp is stored every two minutes), it is estimated by performing linear interpolation using the closest * values. This process is guaranteed to complete performing at most 10 storage reads. */ function getPastAccumulator( mapping(uint256 => bytes32) storage samples, IPriceOracle.Variable variable, uint256 latestIndex, uint256 ago ) public view returns (int256) { // solhint-disable not-rely-on-time // `ago` must not be before the epoch. _require(block.timestamp >= ago, Errors.ORACLE_INVALID_SECONDS_QUERY); uint256 lookUpTime = block.timestamp - ago; bytes32 latestSample = samples[latestIndex]; uint256 latestTimestamp = latestSample.timestamp(); // The latest sample only has a non-zero timestamp if no data was ever processed and stored in the buffer. _require(latestTimestamp > 0, Errors.ORACLE_NOT_INITIALIZED); if (latestTimestamp <= lookUpTime) { // The accumulator at times ahead of the latest one are computed by extrapolating the latest data. This is // equivalent to the instant value not changing between the last timestamp and the look up time. // We can use unchecked arithmetic since the accumulator can be represented in 53 bits, timestamps in 31 // bits, and the instant value in 22 bits. uint256 elapsed = lookUpTime - latestTimestamp; return latestSample.accumulator(variable) + (latestSample.instant(variable) * int256(elapsed)); } else { // The look up time is before the latest sample, but we need to make sure that it is not before the oldest // sample as well. // Since we use a circular buffer, the oldest sample is simply the next one. uint256 bufferLength; uint256 oldestIndex = latestIndex.next(); { // Local scope used to prevent stack-too-deep errors. bytes32 oldestSample = samples[oldestIndex]; uint256 oldestTimestamp = oldestSample.timestamp(); if (oldestTimestamp > 0) { // If the oldest timestamp is not zero, it means the buffer was fully initialized. bufferLength = Buffer.SIZE; } else { // If the buffer was not fully initialized, we haven't wrapped around it yet, // and can treat it as a regular array where the oldest index is the first one, // and the length the number of samples. bufferLength = oldestIndex; // Equal to latestIndex.next() oldestIndex = 0; oldestTimestamp = samples[0].timestamp(); } // Finally check that the look up time is not previous to the oldest timestamp. _require(oldestTimestamp <= lookUpTime, Errors.ORACLE_QUERY_TOO_OLD); } // Perform binary search to find nearest samples to the desired timestamp. (bytes32 prev, bytes32 next) = findNearestSample(samples, lookUpTime, oldestIndex, bufferLength); // `next`'s timestamp is guaranteed to be larger than `prev`'s, so we can skip checked arithmetic. uint256 samplesTimeDiff = next.timestamp() - prev.timestamp(); if (samplesTimeDiff > 0) { // We estimate the accumulator at the requested look up time by interpolating linearly between the // previous and next accumulators. // We can use unchecked arithmetic since the accumulators can be represented in 53 bits, and timestamps // in 31 bits. int256 samplesAccDiff = next.accumulator(variable) - prev.accumulator(variable); uint256 elapsed = lookUpTime - prev.timestamp(); return prev.accumulator(variable) + ((samplesAccDiff * int256(elapsed)) / int256(samplesTimeDiff)); } else { // Rarely, one of the samples will have the exact requested look up time, which is indicated by `prev` // and `next` being the same. In this case, we simply return the accumulator at that point in time. return prev.accumulator(variable); } } } /** * @dev Finds the two samples with timestamps before and after `lookUpDate`. If one of the samples matches exactly, * both `prev` and `next` will be it. `offset` is the index of the oldest sample in the buffer. `length` is the size * of the samples list. * * Assumes `lookUpDate` is greater or equal than the timestamp of the oldest sample, and less or equal than the * timestamp of the latest sample. */ function findNearestSample( mapping(uint256 => bytes32) storage samples, uint256 lookUpDate, uint256 offset, uint256 length ) public view returns (bytes32 prev, bytes32 next) { // We're going to perform a binary search in the circular buffer, which requires it to be sorted. To achieve // this, we offset all buffer accesses by `offset`, making the first element the oldest one. // Auxiliary variables in a typical binary search: we will look at some value `mid` between `low` and `high`, // periodically increasing `low` or decreasing `high` until we either find a match or determine the element is // not in the array. uint256 low = 0; uint256 high = length - 1; uint256 mid; // If the search fails and no sample has a timestamp of `lookUpDate` (as is the most common scenario), `sample` // will be either the sample with the largest timestamp smaller than `lookUpDate`, or the one with the smallest // timestamp larger than `lookUpDate`. bytes32 sample; uint256 sampleTimestamp; while (low <= high) { // Mid is the floor of the average. uint256 midWithoutOffset = (high + low) / 2; // Recall that the buffer is not actually sorted: we need to apply the offset to access it in a sorted way. mid = midWithoutOffset.add(offset); sample = samples[mid]; sampleTimestamp = sample.timestamp(); if (sampleTimestamp < lookUpDate) { // If the mid sample is bellow the look up date, then increase the low index to start from there. low = midWithoutOffset + 1; } else if (sampleTimestamp > lookUpDate) { // If the mid sample is above the look up date, then decrease the high index to start from there. // We can skip checked arithmetic: it is impossible for `high` to ever be 0, as a scenario where `low` // equals 0 and `high` equals 1 would result in `low` increasing to 1 in the previous `if` clause. high = midWithoutOffset - 1; } else { // sampleTimestamp == lookUpDate // If we have an exact match, return the sample as both `prev` and `next`. return (sample, sample); } } // In case we reach here, it means we didn't find exactly the sample we where looking for. return sampleTimestamp < lookUpDate ? (sample, samples[mid.next()]) : (samples[mid.prev()], sample); } }
// SPDX-License-Identifier: MIT // Based on the ReentrancyGuard library from OpenZeppelin Contracts, altered to reduce bytecode size. // Modifier code is inlined by the compiler, which causes its code to appear multiple times in the codebase. By using // private functions, we achieve the same end result with slightly higher runtime gas costs, but reduced bytecode size. pragma solidity ^0.7.0; import "../helpers/BalancerErrors.sol"; /** * @dev Contract module that helps prevent reentrant calls to a function. * * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier * available, which can be applied to functions to make sure there are no nested * (reentrant) calls to them. * * Note that because there is a single `nonReentrant` guard, functions marked as * `nonReentrant` may not call one another. This can be worked around by making * those functions `private`, and then adding `external` `nonReentrant` entry * points to them. * * TIP: If you would like to learn more about reentrancy and alternative ways * to protect against it, check out our blog post * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul]. */ abstract contract ReentrancyGuard { // Booleans are more expensive than uint256 or any type that takes up a full // word because each write operation emits an extra SLOAD to first read the // slot's contents, replace the bits taken up by the boolean, and then write // back. This is the compiler's defense against contract upgrades and // pointer aliasing, and it cannot be disabled. // The values being non-zero value makes deployment a bit more expensive, // but in exchange the refund on every call to nonReentrant will be lower in // amount. Since refunds are capped to a percentage of the total // transaction's gas, it is best to keep them low in cases like this one, to // increase the likelihood of the full refund coming into effect. uint256 private constant _NOT_ENTERED = 1; uint256 private constant _ENTERED = 2; uint256 private _status; constructor() { _status = _NOT_ENTERED; } /** * @dev Prevents a contract from calling itself, directly or indirectly. * Calling a `nonReentrant` function from another `nonReentrant` * function is not supported. It is possible to prevent this from happening * by making the `nonReentrant` function external, and make it call a * `private` function that does the actual work. */ modifier nonReentrant() { _enterNonReentrant(); _; _exitNonReentrant(); } function _enterNonReentrant() private { // On the first call to nonReentrant, _status will be _NOT_ENTERED _require(_status != _ENTERED, Errors.REENTRANCY); // Any calls to nonReentrant after this point will fail _status = _ENTERED; } function _exitNonReentrant() private { // By storing the original value once again, a refund is triggered (see // https://eips.ethereum.org/EIPS/eip-2200) _status = _NOT_ENTERED; } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; pragma experimental ABIEncoderV2; import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/ReentrancyGuard.sol"; import "@balancer-labs/v2-solidity-utils/contracts/helpers/WordCodec.sol"; import "@balancer-labs/v2-solidity-utils/contracts/math/Math.sol"; import "../BaseWeightedPool.sol"; import "./WeightCompression.sol"; /** * @dev Weighted Pool with mutable weights, designed to support V2 Liquidity Bootstrapping */ contract LiquidityBootstrappingPool is BaseWeightedPool, ReentrancyGuard { // The Pause Window and Buffer Period are timestamp-based: they should not be relied upon for sub-minute accuracy. // solhint-disable not-rely-on-time using FixedPoint for uint256; using WordCodec for bytes32; using WeightCompression for uint256; // LBPs often involve only two tokens - we support up to four since we're able to pack the entire config in a single // storage slot. uint256 private constant _MAX_LBP_TOKENS = 4; // State variables uint256 private immutable _totalTokens; IERC20 internal immutable _token0; IERC20 internal immutable _token1; IERC20 internal immutable _token2; IERC20 internal immutable _token3; // All token balances are normalized to behave as if the token had 18 decimals. We assume a token's decimals will // not change throughout its lifetime, and store the corresponding scaling factor for each at construction time. // These factors are always greater than or equal to one: tokens with more than 18 decimals are not supported. uint256 internal immutable _scalingFactor0; uint256 internal immutable _scalingFactor1; uint256 internal immutable _scalingFactor2; uint256 internal immutable _scalingFactor3; // For gas optimization, store start/end weights and timestamps in one bytes32 // Start weights need to be high precision, since restarting the update resets them to "spot" // values. Target end weights do not need as much precision. // [ 32 bits | 32 bits | 64 bits | 124 bits | 3 bits | 1 bit ] // [ end timestamp | start timestamp | 4x16 end weights | 4x31 start weights | not used | swap enabled ] // |MSB LSB| bytes32 private _poolState; // Offsets for data elements in _poolState uint256 private constant _SWAP_ENABLED_OFFSET = 0; uint256 private constant _START_WEIGHT_OFFSET = 4; uint256 private constant _END_WEIGHT_OFFSET = 128; uint256 private constant _START_TIME_OFFSET = 192; uint256 private constant _END_TIME_OFFSET = 224; // Event declarations event SwapEnabledSet(bool swapEnabled); event GradualWeightUpdateScheduled( uint256 startTime, uint256 endTime, uint256[] startWeights, uint256[] endWeights ); constructor( IVault vault, string memory name, string memory symbol, IERC20[] memory tokens, uint256[] memory normalizedWeights, uint256 swapFeePercentage, uint256 pauseWindowDuration, uint256 bufferPeriodDuration, address owner, bool swapEnabledOnStart ) BaseWeightedPool( vault, name, symbol, tokens, new address[](tokens.length), // Pass the zero address: LBPs can't have asset managers swapFeePercentage, pauseWindowDuration, bufferPeriodDuration, owner ) { uint256 totalTokens = tokens.length; InputHelpers.ensureInputLengthMatch(totalTokens, normalizedWeights.length); _totalTokens = totalTokens; // Immutable variables cannot be initialized inside an if statement, so we must do conditional assignments _token0 = tokens[0]; _token1 = tokens[1]; _token2 = totalTokens > 2 ? tokens[2] : IERC20(0); _token3 = totalTokens > 3 ? tokens[3] : IERC20(0); _scalingFactor0 = _computeScalingFactor(tokens[0]); _scalingFactor1 = _computeScalingFactor(tokens[1]); _scalingFactor2 = totalTokens > 2 ? _computeScalingFactor(tokens[2]) : 0; _scalingFactor3 = totalTokens > 3 ? _computeScalingFactor(tokens[3]) : 0; uint256 currentTime = block.timestamp; _startGradualWeightChange(currentTime, currentTime, normalizedWeights, normalizedWeights); // If false, the pool will start in the disabled state (prevents front-running the enable swaps transaction) _setSwapEnabled(swapEnabledOnStart); } // External functions /** * @dev Tells whether swaps are enabled or not for the given pool. */ function getSwapEnabled() public view returns (bool) { return _poolState.decodeBool(_SWAP_ENABLED_OFFSET); } /** * @dev Return start time, end time, and endWeights as an array. * Current weights should be retrieved via `getNormalizedWeights()`. */ function getGradualWeightUpdateParams() external view returns ( uint256 startTime, uint256 endTime, uint256[] memory endWeights ) { // Load current pool state from storage bytes32 poolState = _poolState; startTime = poolState.decodeUint32(_START_TIME_OFFSET); endTime = poolState.decodeUint32(_END_TIME_OFFSET); uint256 totalTokens = _getTotalTokens(); endWeights = new uint256[](totalTokens); for (uint256 i = 0; i < totalTokens; i++) { endWeights[i] = poolState.decodeUint16(_END_WEIGHT_OFFSET + i * 16).uncompress16(); } } /** * @dev Can pause/unpause trading */ function setSwapEnabled(bool swapEnabled) external authenticate whenNotPaused nonReentrant { _setSwapEnabled(swapEnabled); } /** * @dev Schedule a gradual weight change, from the current weights to the given endWeights, * over startTime to endTime */ function updateWeightsGradually( uint256 startTime, uint256 endTime, uint256[] memory endWeights ) external authenticate whenNotPaused nonReentrant { InputHelpers.ensureInputLengthMatch(_getTotalTokens(), endWeights.length); // If the start time is in the past, "fast forward" to start now // This avoids discontinuities in the weight curve. Otherwise, if you set the start/end times with // only 10% of the period in the future, the weights would immediately jump 90% uint256 currentTime = block.timestamp; startTime = Math.max(currentTime, startTime); _require(startTime <= endTime, Errors.GRADUAL_UPDATE_TIME_TRAVEL); _startGradualWeightChange(startTime, endTime, _getNormalizedWeights(), endWeights); } // Internal functions function _getNormalizedWeight(IERC20 token) internal view override returns (uint256) { uint256 i; // First, convert token address to a token index // prettier-ignore if (token == _token0) { i = 0; } else if (token == _token1) { i = 1; } else if (token == _token2) { i = 2; } else if (token == _token3) { i = 3; } else { _revert(Errors.INVALID_TOKEN); } return _getNormalizedWeightByIndex(i, _poolState); } function _getNormalizedWeightByIndex(uint256 i, bytes32 poolState) internal view returns (uint256) { uint256 startWeight = poolState.decodeUint31(_START_WEIGHT_OFFSET + i * 31).uncompress31(); uint256 endWeight = poolState.decodeUint16(_END_WEIGHT_OFFSET + i * 16).uncompress16(); uint256 pctProgress = _calculateWeightChangeProgress(poolState); return _interpolateWeight(startWeight, endWeight, pctProgress); } function _getNormalizedWeights() internal view override returns (uint256[] memory) { uint256 totalTokens = _getTotalTokens(); uint256[] memory normalizedWeights = new uint256[](totalTokens); bytes32 poolState = _poolState; // prettier-ignore { normalizedWeights[0] = _getNormalizedWeightByIndex(0, poolState); normalizedWeights[1] = _getNormalizedWeightByIndex(1, poolState); if (totalTokens == 2) return normalizedWeights; normalizedWeights[2] = _getNormalizedWeightByIndex(2, poolState); if (totalTokens == 3) return normalizedWeights; normalizedWeights[3] = _getNormalizedWeightByIndex(3, poolState); } return normalizedWeights; } function _getNormalizedWeightsAndMaxWeightIndex() internal view override returns (uint256[] memory normalizedWeights, uint256 maxWeightTokenIndex) { normalizedWeights = _getNormalizedWeights(); maxWeightTokenIndex = 0; uint256 maxNormalizedWeight = normalizedWeights[0]; for (uint256 i = 1; i < normalizedWeights.length; i++) { if (normalizedWeights[i] > maxNormalizedWeight) { maxWeightTokenIndex = i; maxNormalizedWeight = normalizedWeights[i]; } } } // Pool callback functions // Prevent any account other than the owner from joining the pool function _onInitializePool( bytes32 poolId, address sender, address recipient, uint256[] memory scalingFactors, bytes memory userData ) internal override returns (uint256, uint256[] memory) { // Only the owner can initialize the pool _require(sender == getOwner(), Errors.CALLER_IS_NOT_LBP_OWNER); return super._onInitializePool(poolId, sender, recipient, scalingFactors, userData); } function _onJoinPool( bytes32 poolId, address sender, address recipient, uint256[] memory balances, uint256 lastChangeBlock, uint256 protocolSwapFeePercentage, uint256[] memory scalingFactors, bytes memory userData ) internal override returns ( uint256, uint256[] memory, uint256[] memory ) { // Only the owner can add liquidity; block public LPs _require(sender == getOwner(), Errors.CALLER_IS_NOT_LBP_OWNER); return super._onJoinPool( poolId, sender, recipient, balances, lastChangeBlock, protocolSwapFeePercentage, scalingFactors, userData ); } // Swap overrides - revert unless swaps are enabled function _onSwapGivenIn( SwapRequest memory swapRequest, uint256 currentBalanceTokenIn, uint256 currentBalanceTokenOut ) internal view override returns (uint256) { _require(getSwapEnabled(), Errors.SWAPS_DISABLED); return super._onSwapGivenIn(swapRequest, currentBalanceTokenIn, currentBalanceTokenOut); } function _onSwapGivenOut( SwapRequest memory swapRequest, uint256 currentBalanceTokenIn, uint256 currentBalanceTokenOut ) internal view override returns (uint256) { _require(getSwapEnabled(), Errors.SWAPS_DISABLED); return super._onSwapGivenOut(swapRequest, currentBalanceTokenIn, currentBalanceTokenOut); } /** * @dev Extend ownerOnly functions to include the LBP control functions */ function _isOwnerOnlyAction(bytes32 actionId) internal view override returns (bool) { return (actionId == getActionId(LiquidityBootstrappingPool.setSwapEnabled.selector)) || (actionId == getActionId(LiquidityBootstrappingPool.updateWeightsGradually.selector)) || super._isOwnerOnlyAction(actionId); } // Private functions /** * @dev Returns a fixed-point number representing how far along the current weight change is, where 0 means the * change has not yet started, and FixedPoint.ONE means it has fully completed. */ function _calculateWeightChangeProgress(bytes32 poolState) private view returns (uint256) { uint256 currentTime = block.timestamp; uint256 startTime = poolState.decodeUint32(_START_TIME_OFFSET); uint256 endTime = poolState.decodeUint32(_END_TIME_OFFSET); if (currentTime > endTime) { return FixedPoint.ONE; } else if (currentTime < startTime) { return 0; } // No need for SafeMath as it was checked right above: endTime >= currentTime >= startTime uint256 totalSeconds = endTime - startTime; uint256 secondsElapsed = currentTime - startTime; // In the degenerate case of a zero duration change, consider it completed (and avoid division by zero) return totalSeconds == 0 ? FixedPoint.ONE : secondsElapsed.divDown(totalSeconds); } /** * @dev When calling updateWeightsGradually again during an update, reset the start weights to the current weights, * if necessary. */ function _startGradualWeightChange( uint256 startTime, uint256 endTime, uint256[] memory startWeights, uint256[] memory endWeights ) internal virtual { bytes32 newPoolState = _poolState; uint256 normalizedSum = 0; for (uint256 i = 0; i < endWeights.length; i++) { uint256 endWeight = endWeights[i]; _require(endWeight >= _MIN_WEIGHT, Errors.MIN_WEIGHT); newPoolState = newPoolState .insertUint31(startWeights[i].compress31(), _START_WEIGHT_OFFSET + i * 31) .insertUint16(endWeight.compress16(), _END_WEIGHT_OFFSET + i * 16); normalizedSum = normalizedSum.add(endWeight); } // Ensure that the normalized weights sum to ONE _require(normalizedSum == FixedPoint.ONE, Errors.NORMALIZED_WEIGHT_INVARIANT); _poolState = newPoolState.insertUint32(startTime, _START_TIME_OFFSET).insertUint32(endTime, _END_TIME_OFFSET); emit GradualWeightUpdateScheduled(startTime, endTime, startWeights, endWeights); } function _interpolateWeight( uint256 startWeight, uint256 endWeight, uint256 pctProgress ) private pure returns (uint256) { if (pctProgress == 0 || startWeight == endWeight) return startWeight; if (pctProgress >= FixedPoint.ONE) return endWeight; if (startWeight > endWeight) { uint256 weightDelta = pctProgress.mulDown(startWeight - endWeight); return startWeight.sub(weightDelta); } else { uint256 weightDelta = pctProgress.mulDown(endWeight - startWeight); return startWeight.add(weightDelta); } } function _setSwapEnabled(bool swapEnabled) private { _poolState = _poolState.insertBool(swapEnabled, _SWAP_ENABLED_OFFSET); emit SwapEnabledSet(swapEnabled); } function _getMaxTokens() internal pure override returns (uint256) { return _MAX_LBP_TOKENS; } function _getTotalTokens() internal view virtual override returns (uint256) { return _totalTokens; } function _scalingFactor(IERC20 token) internal view virtual override returns (uint256) { // prettier-ignore if (token == _token0) { return _scalingFactor0; } else if (token == _token1) { return _scalingFactor1; } else if (token == _token2) { return _scalingFactor2; } else if (token == _token3) { return _scalingFactor3; } else { _revert(Errors.INVALID_TOKEN); } } function _scalingFactors() internal view virtual override returns (uint256[] memory) { uint256 totalTokens = _getTotalTokens(); uint256[] memory scalingFactors = new uint256[](totalTokens); // prettier-ignore { if (totalTokens > 0) { scalingFactors[0] = _scalingFactor0; } else { return scalingFactors; } if (totalTokens > 1) { scalingFactors[1] = _scalingFactor1; } else { return scalingFactors; } if (totalTokens > 2) { scalingFactors[2] = _scalingFactor2; } else { return scalingFactors; } if (totalTokens > 3) { scalingFactors[3] = _scalingFactor3; } else { return scalingFactors; } } return scalingFactors; } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; import "@balancer-labs/v2-solidity-utils/contracts/math/FixedPoint.sol"; /** * @dev Library for compressing and uncompresing numbers by using smaller types. * All values are 18 decimal fixed-point numbers in the [0.0, 1.0] range, * so heavier compression (fewer bits) results in fewer decimals. */ library WeightCompression { uint256 private constant _UINT31_MAX = 2**(31) - 1; using FixedPoint for uint256; /** * @dev Convert a 16-bit value to full FixedPoint */ function uncompress16(uint256 value) internal pure returns (uint256) { return value.mulUp(FixedPoint.ONE).divUp(type(uint16).max); } /** * @dev Compress a FixedPoint value to 16 bits */ function compress16(uint256 value) internal pure returns (uint256) { return value.mulUp(type(uint16).max).divUp(FixedPoint.ONE); } /** * @dev Convert a 31-bit value to full FixedPoint */ function uncompress31(uint256 value) internal pure returns (uint256) { return value.mulUp(FixedPoint.ONE).divUp(_UINT31_MAX); } /** * @dev Compress a FixedPoint value to 31 bits */ function compress31(uint256 value) internal pure returns (uint256) { return value.mulUp(_UINT31_MAX).divUp(FixedPoint.ONE); } /** * @dev Convert a 32-bit value to full FixedPoint */ function uncompress32(uint256 value) internal pure returns (uint256) { return value.mulUp(FixedPoint.ONE).divUp(type(uint32).max); } /** * @dev Compress a FixedPoint value to 32 bits */ function compress32(uint256 value) internal pure returns (uint256) { return value.mulUp(type(uint32).max).divUp(FixedPoint.ONE); } /** * @dev Convert a 64-bit value to full FixedPoint */ function uncompress64(uint256 value) internal pure returns (uint256) { return value.mulUp(FixedPoint.ONE).divUp(type(uint64).max); } /** * @dev Compress a FixedPoint value to 64 bits */ function compress64(uint256 value) internal pure returns (uint256) { return value.mulUp(type(uint64).max).divUp(FixedPoint.ONE); } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; pragma experimental ABIEncoderV2; import "@balancer-labs/v2-vault/contracts/interfaces/IVault.sol"; import "@balancer-labs/v2-pool-utils/contracts/factories/BasePoolSplitCodeFactory.sol"; import "@balancer-labs/v2-pool-utils/contracts/factories/FactoryWidePauseWindow.sol"; import "./LiquidityBootstrappingPool.sol"; contract LiquidityBootstrappingPoolFactory is BasePoolSplitCodeFactory, FactoryWidePauseWindow { constructor(IVault vault) BasePoolSplitCodeFactory(vault, type(LiquidityBootstrappingPool).creationCode) { // solhint-disable-previous-line no-empty-blocks } /** * @dev Deploys a new `LiquidityBootstrappingPool`. */ function create( string memory name, string memory symbol, IERC20[] memory tokens, uint256[] memory weights, uint256 swapFeePercentage, address owner, bool swapEnabledOnStart ) external returns (address) { (uint256 pauseWindowDuration, uint256 bufferPeriodDuration) = getPauseConfiguration(); return _create( abi.encode( getVault(), name, symbol, tokens, weights, swapFeePercentage, pauseWindowDuration, bufferPeriodDuration, owner, swapEnabledOnStart ) ); } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; pragma experimental ABIEncoderV2; import "@balancer-labs/v2-vault/contracts/interfaces/IVault.sol"; import "@balancer-labs/v2-pool-utils/contracts/factories/BasePoolSplitCodeFactory.sol"; import "@balancer-labs/v2-pool-utils/contracts/factories/FactoryWidePauseWindow.sol"; import "./InvestmentPool.sol"; contract InvestmentPoolFactory is BasePoolSplitCodeFactory, FactoryWidePauseWindow { constructor(IVault vault) BasePoolSplitCodeFactory(vault, type(InvestmentPool).creationCode) { // solhint-disable-previous-line no-empty-blocks } /** * @dev Deploys a new `InvestmentPool`. */ function create( string memory name, string memory symbol, IERC20[] memory tokens, uint256[] memory weights, uint256 swapFeePercentage, address owner, bool swapEnabledOnStart, uint256 managementSwapFeePercentage ) external returns (address) { (uint256 pauseWindowDuration, uint256 bufferPeriodDuration) = getPauseConfiguration(); return _create( abi.encode( InvestmentPool.NewPoolParams({ vault: getVault(), name: name, symbol: symbol, tokens: tokens, normalizedWeights: weights, assetManagers: new address[](tokens.length), swapFeePercentage: swapFeePercentage, pauseWindowDuration: pauseWindowDuration, bufferPeriodDuration: bufferPeriodDuration, owner: owner, swapEnabledOnStart: swapEnabledOnStart, managementSwapFeePercentage: managementSwapFeePercentage }) ) ); } }
// SPDX-License-Identifier: MIT // Based on the EnumerableMap library from OpenZeppelin Contracts, altered to include the following: // * a map from IERC20 to bytes32 // * entries are stored in mappings instead of arrays, reducing implicit storage reads for out-of-bounds checks // * unchecked_at and unchecked_valueAt, which allow for more gas efficient data reads in some scenarios // * indexOf, unchecked_indexOf and unchecked_setAt, which allow for more gas efficient data writes in some scenarios // // Additionally, the base private functions that work on bytes32 were removed and replaced with a native implementation // for IERC20 keys, to reduce bytecode size and runtime costs. pragma solidity ^0.7.0; import "./IERC20.sol"; import "../helpers/BalancerErrors.sol"; /** * @dev Library for managing an enumerable variant of Solidity's * https://solidity.readthedocs.io/en/latest/types.html#mapping-types[`mapping`] * type. * * Maps have the following properties: * * - Entries are added, removed, and checked for existence in constant time * (O(1)). * - Entries are enumerated in O(n). No guarantees are made on the ordering. * * ``` * contract Example { * // Add the library methods * using EnumerableMap for EnumerableMap.UintToAddressMap; * * // Declare a set state variable * EnumerableMap.UintToAddressMap private myMap; * } * ``` */ library EnumerableMap { // The original OpenZeppelin implementation uses a generic Map type with bytes32 keys: this was replaced with // IERC20ToBytes32Map and IERC20ToUint256Map, resulting in more dense bytecode (as long as each contract only uses // one of these - there'll otherwise be duplicated code). // IERC20ToBytes32Map struct IERC20ToBytes32MapEntry { IERC20 _key; bytes32 _value; } struct IERC20ToBytes32Map { // Number of entries in the map uint256 _length; // Storage of map keys and values mapping(uint256 => IERC20ToBytes32MapEntry) _entries; // Position of the entry defined by a key in the `entries` array, plus 1 // because index 0 means a key is not in the map. mapping(IERC20 => uint256) _indexes; } /** * @dev Adds a key-value pair to a map, or updates the value for an existing * key. O(1). * * Returns true if the key was added to the map, that is if it was not * already present. */ function set( IERC20ToBytes32Map storage map, IERC20 key, bytes32 value ) internal returns (bool) { // We read and store the key's index to prevent multiple reads from the same storage slot uint256 keyIndex = map._indexes[key]; // Equivalent to !contains(map, key) if (keyIndex == 0) { uint256 previousLength = map._length; map._entries[previousLength] = IERC20ToBytes32MapEntry({ _key: key, _value: value }); map._length = previousLength + 1; // The entry is stored at previousLength, but we add 1 to all indexes // and use 0 as a sentinel value map._indexes[key] = previousLength + 1; return true; } else { map._entries[keyIndex - 1]._value = value; return false; } } /** * @dev Updates the value for an entry, given its key's index. The key index can be retrieved via * {unchecked_indexOf}, and it should be noted that key indices may change when calling {set} or {remove}. O(1). * * This function performs one less storage read than {set}, but it should only be used when `index` is known to be * within bounds. */ function unchecked_setAt( IERC20ToBytes32Map storage map, uint256 index, bytes32 value ) internal { map._entries[index]._value = value; } /** * @dev Removes a key-value pair from a map. O(1). * * Returns true if the key was removed from the map, that is if it was present. */ function remove(IERC20ToBytes32Map storage map, IERC20 key) internal returns (bool) { // We read and store the key's index to prevent multiple reads from the same storage slot uint256 keyIndex = map._indexes[key]; // Equivalent to contains(map, key) if (keyIndex != 0) { // To delete a key-value pair from the _entries pseudo-array in O(1), we swap the entry to delete with the // one at the highest index, and then remove this last entry (sometimes called as 'swap and pop'). // This modifies the order of the pseudo-array, as noted in {at}. uint256 toDeleteIndex = keyIndex - 1; uint256 lastIndex = map._length - 1; // The swap is only necessary if we're not removing the last element if (toDeleteIndex != lastIndex) { IERC20ToBytes32MapEntry storage lastEntry = map._entries[lastIndex]; // Move the last entry to the index where the entry to delete is map._entries[toDeleteIndex] = lastEntry; // Update the index for the moved entry map._indexes[lastEntry._key] = toDeleteIndex + 1; // All indexes are 1-based } // Delete the slot where the moved entry was stored delete map._entries[lastIndex]; map._length = lastIndex; // Delete the index for the deleted slot delete map._indexes[key]; return true; } else { return false; } } /** * @dev Returns true if the key is in the map. O(1). */ function contains(IERC20ToBytes32Map storage map, IERC20 key) internal view returns (bool) { return map._indexes[key] != 0; } /** * @dev Returns the number of key-value pairs in the map. O(1). */ function length(IERC20ToBytes32Map storage map) internal view returns (uint256) { return map._length; } /** * @dev Returns the key-value pair stored at position `index` in the map. O(1). * * Note that there are no guarantees on the ordering of entries inside the * array, and it may change when more entries are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function at(IERC20ToBytes32Map storage map, uint256 index) internal view returns (IERC20, bytes32) { _require(map._length > index, Errors.OUT_OF_BOUNDS); return unchecked_at(map, index); } /** * @dev Same as {at}, except this doesn't revert if `index` it outside of the map (i.e. if it is equal or larger * than {length}). O(1). * * This function performs one less storage read than {at}, but should only be used when `index` is known to be * within bounds. */ function unchecked_at(IERC20ToBytes32Map storage map, uint256 index) internal view returns (IERC20, bytes32) { IERC20ToBytes32MapEntry storage entry = map._entries[index]; return (entry._key, entry._value); } /** * @dev Same as {unchecked_At}, except it only returns the value and not the key (performing one less storage * read). O(1). */ function unchecked_valueAt(IERC20ToBytes32Map storage map, uint256 index) internal view returns (bytes32) { return map._entries[index]._value; } /** * @dev Returns the value associated with `key`. O(1). * * Requirements: * * - `key` must be in the map. Reverts with `errorCode` otherwise. */ function get( IERC20ToBytes32Map storage map, IERC20 key, uint256 errorCode ) internal view returns (bytes32) { uint256 index = map._indexes[key]; _require(index > 0, errorCode); return unchecked_valueAt(map, index - 1); } /** * @dev Returns the index for `key`. * * Requirements: * * - `key` must be in the map. */ function indexOf( IERC20ToBytes32Map storage map, IERC20 key, uint256 errorCode ) internal view returns (uint256) { uint256 uncheckedIndex = unchecked_indexOf(map, key); _require(uncheckedIndex != 0, errorCode); return uncheckedIndex - 1; } /** * @dev Returns the index for `key` **plus one**. Does not revert if the key is not in the map, and returns 0 * instead. */ function unchecked_indexOf(IERC20ToBytes32Map storage map, IERC20 key) internal view returns (uint256) { return map._indexes[key]; } // IERC20ToUint256Map struct IERC20ToUint256MapEntry { IERC20 _key; uint256 _value; } struct IERC20ToUint256Map { // Number of entries in the map uint256 _length; // Storage of map keys and values mapping(uint256 => IERC20ToUint256MapEntry) _entries; // Position of the entry defined by a key in the `entries` array, plus 1 // because index 0 means a key is not in the map. mapping(IERC20 => uint256) _indexes; } /** * @dev Adds a key-value pair to a map, or updates the value for an existing * key. O(1). * * Returns true if the key was added to the map, that is if it was not * already present. */ function set( IERC20ToUint256Map storage map, IERC20 key, uint256 value ) internal returns (bool) { // We read and store the key's index to prevent multiple reads from the same storage slot uint256 keyIndex = map._indexes[key]; // Equivalent to !contains(map, key) if (keyIndex == 0) { uint256 previousLength = map._length; map._entries[previousLength] = IERC20ToUint256MapEntry({ _key: key, _value: value }); map._length = previousLength + 1; // The entry is stored at previousLength, but we add 1 to all indexes // and use 0 as a sentinel value map._indexes[key] = previousLength + 1; return true; } else { map._entries[keyIndex - 1]._value = value; return false; } } /** * @dev Updates the value for an entry, given its key's index. The key index can be retrieved via * {unchecked_indexOf}, and it should be noted that key indices may change when calling {set} or {remove}. O(1). * * This function performs one less storage read than {set}, but it should only be used when `index` is known to be * within bounds. */ function unchecked_setAt( IERC20ToUint256Map storage map, uint256 index, uint256 value ) internal { map._entries[index]._value = value; } /** * @dev Removes a key-value pair from a map. O(1). * * Returns true if the key was removed from the map, that is if it was present. */ function remove(IERC20ToUint256Map storage map, IERC20 key) internal returns (bool) { // We read and store the key's index to prevent multiple reads from the same storage slot uint256 keyIndex = map._indexes[key]; // Equivalent to contains(map, key) if (keyIndex != 0) { // To delete a key-value pair from the _entries pseudo-array in O(1), we swap the entry to delete with the // one at the highest index, and then remove this last entry (sometimes called as 'swap and pop'). // This modifies the order of the pseudo-array, as noted in {at}. uint256 toDeleteIndex = keyIndex - 1; uint256 lastIndex = map._length - 1; // The swap is only necessary if we're not removing the last element if (toDeleteIndex != lastIndex) { IERC20ToUint256MapEntry storage lastEntry = map._entries[lastIndex]; // Move the last entry to the index where the entry to delete is map._entries[toDeleteIndex] = lastEntry; // Update the index for the moved entry map._indexes[lastEntry._key] = toDeleteIndex + 1; // All indexes are 1-based } // Delete the slot where the moved entry was stored delete map._entries[lastIndex]; map._length = lastIndex; // Delete the index for the deleted slot delete map._indexes[key]; return true; } else { return false; } } /** * @dev Returns true if the key is in the map. O(1). */ function contains(IERC20ToUint256Map storage map, IERC20 key) internal view returns (bool) { return map._indexes[key] != 0; } /** * @dev Returns the number of key-value pairs in the map. O(1). */ function length(IERC20ToUint256Map storage map) internal view returns (uint256) { return map._length; } /** * @dev Returns the key-value pair stored at position `index` in the map. O(1). * * Note that there are no guarantees on the ordering of entries inside the * array, and it may change when more entries are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function at(IERC20ToUint256Map storage map, uint256 index) internal view returns (IERC20, uint256) { _require(map._length > index, Errors.OUT_OF_BOUNDS); return unchecked_at(map, index); } /** * @dev Same as {at}, except this doesn't revert if `index` it outside of the map (i.e. if it is equal or larger * than {length}). O(1). * * This function performs one less storage read than {at}, but should only be used when `index` is known to be * within bounds. */ function unchecked_at(IERC20ToUint256Map storage map, uint256 index) internal view returns (IERC20, uint256) { IERC20ToUint256MapEntry storage entry = map._entries[index]; return (entry._key, entry._value); } /** * @dev Same as {unchecked_At}, except it only returns the value and not the key (performing one less storage * read). O(1). */ function unchecked_valueAt(IERC20ToUint256Map storage map, uint256 index) internal view returns (uint256) { return map._entries[index]._value; } /** * @dev Returns the value associated with `key`. O(1). * * Requirements: * * - `key` must be in the map. Reverts with `errorCode` otherwise. */ function get( IERC20ToUint256Map storage map, IERC20 key, uint256 errorCode ) internal view returns (uint256) { uint256 index = map._indexes[key]; _require(index > 0, errorCode); return unchecked_valueAt(map, index - 1); } /** * @dev Returns the index for `key`. * * Requirements: * * - `key` must be in the map. */ function indexOf( IERC20ToUint256Map storage map, IERC20 key, uint256 errorCode ) internal view returns (uint256) { uint256 uncheckedIndex = unchecked_indexOf(map, key); _require(uncheckedIndex != 0, errorCode); return uncheckedIndex - 1; } /** * @dev Returns the index for `key` **plus one**. Does not revert if the key is not in the map, and returns 0 * instead. */ function unchecked_indexOf(IERC20ToUint256Map storage map, IERC20 key) internal view returns (uint256) { return map._indexes[key]; } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; import "@balancer-labs/v2-vault/contracts/interfaces/IAsset.sol"; import "../openzeppelin/IERC20.sol"; // solhint-disable function _asIAsset(IERC20[] memory tokens) pure returns (IAsset[] memory assets) { // solhint-disable-next-line no-inline-assembly assembly { assets := tokens } } function _sortTokens( IERC20 tokenA, IERC20 tokenB, IERC20 tokenC ) pure returns (IERC20[] memory tokens) { (uint256 indexTokenA, uint256 indexTokenB, uint256 indexTokenC) = _getSortedTokenIndexes(tokenA, tokenB, tokenC); tokens = new IERC20[](3); tokens[indexTokenA] = tokenA; tokens[indexTokenB] = tokenB; tokens[indexTokenC] = tokenC; } function _getSortedTokenIndexes( IERC20 tokenA, IERC20 tokenB, IERC20 tokenC ) pure returns ( uint256 indexTokenA, uint256 indexTokenB, uint256 indexTokenC ) { if (tokenA < tokenB) { if (tokenB < tokenC) { // (tokenA, tokenB, tokenC) return (0, 1, 2); } else if (tokenA < tokenC) { // (tokenA, tokenC, tokenB) return (0, 2, 1); } else { // (tokenC, tokenA, tokenB) return (1, 2, 0); } } else { // tokenB < tokenA if (tokenC < tokenB) { // (tokenC, tokenB, tokenA) return (2, 1, 0); } else if (tokenC < tokenA) { // (tokenB, tokenC, tokenA) return (2, 0, 1); } else { // (tokenB, tokenA, tokenC) return (1, 0, 2); } } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; import "../helpers/LogCompression.sol"; contract MockLogCompression { function toLowResLog(uint256 value) external pure returns (int256) { return LogCompression.toLowResLog(value); } function fromLowResLog(int256 value) external pure returns (uint256) { return LogCompression.fromLowResLog(value); } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; import "@balancer-labs/v2-solidity-utils/contracts/test/MockLogCompression.sol"; import "../WeightedOracleMath.sol"; contract MockWeightedOracleMath is WeightedOracleMath, MockLogCompression { function calcLogSpotPrice( uint256 normalizedWeightA, uint256 balanceA, uint256 normalizedWeightB, uint256 balanceB ) external pure returns (int256) { return WeightedOracleMath._calcLogSpotPrice(normalizedWeightA, balanceA, normalizedWeightB, balanceB); } function calcLogBPTPrice( uint256 normalizedWeight, uint256 balance, int256 bptTotalSupplyLn ) external pure returns (int256) { return WeightedOracleMath._calcLogBPTPrice(normalizedWeight, balance, bptTotalSupplyLn); } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; pragma experimental ABIEncoderV2; import "./MockWeightedOracleMath.sol"; import "../WeightedPool2Tokens.sol"; contract MockWeightedPool2Tokens is WeightedPool2Tokens, MockWeightedOracleMath { using WeightedPool2TokensMiscData for bytes32; struct MiscData { int256 logInvariant; int256 logTotalSupply; uint256 oracleSampleCreationTimestamp; uint256 oracleIndex; bool oracleEnabled; uint256 swapFeePercentage; } constructor(NewPoolParams memory params) WeightedPool2Tokens(params) {} function mockOracleDisabled() external { _setOracleEnabled(false); } function mockOracleIndex(uint256 index) external { _miscData = _miscData.setOracleIndex(index); } function mockMiscData(MiscData memory miscData) external { _miscData = encode(miscData); } /** * @dev Encodes a misc data object into a bytes32 */ function encode(MiscData memory _data) private pure returns (bytes32 data) { data = data.setSwapFeePercentage(_data.swapFeePercentage); data = data.setOracleEnabled(_data.oracleEnabled); data = data.setOracleIndex(_data.oracleIndex); data = data.setOracleSampleCreationTimestamp(_data.oracleSampleCreationTimestamp); data = data.setLogTotalSupply(_data.logTotalSupply); data = data.setLogInvariant(_data.logInvariant); } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; import "../WeightedMath.sol"; contract MockWeightedMath is WeightedMath { function invariant(uint256[] memory normalizedWeights, uint256[] memory balances) external pure returns (uint256) { return _calculateInvariant(normalizedWeights, balances); } function outGivenIn( uint256 tokenBalanceIn, uint256 tokenWeightIn, uint256 tokenBalanceOut, uint256 tokenWeightOut, uint256 tokenAmountIn ) external pure returns (uint256) { return _calcOutGivenIn(tokenBalanceIn, tokenWeightIn, tokenBalanceOut, tokenWeightOut, tokenAmountIn); } function inGivenOut( uint256 tokenBalanceIn, uint256 tokenWeightIn, uint256 tokenBalanceOut, uint256 tokenWeightOut, uint256 tokenAmountOut ) external pure returns (uint256) { return _calcInGivenOut(tokenBalanceIn, tokenWeightIn, tokenBalanceOut, tokenWeightOut, tokenAmountOut); } function exactTokensInForBPTOut( uint256[] memory balances, uint256[] memory normalizedWeights, uint256[] memory amountsIn, uint256 bptTotalSupply, uint256 swapFee ) external pure returns (uint256) { (uint256 bptOut, ) = _calcBptOutGivenExactTokensIn( balances, normalizedWeights, amountsIn, bptTotalSupply, swapFee ); return bptOut; } function tokenInForExactBPTOut( uint256 tokenBalance, uint256 tokenNormalizedWeight, uint256 bptAmountOut, uint256 bptTotalSupply, uint256 swapFee ) external pure returns (uint256) { (uint256 amountIn, ) = _calcTokenInGivenExactBptOut( tokenBalance, tokenNormalizedWeight, bptAmountOut, bptTotalSupply, swapFee ); return amountIn; } function exactBPTInForTokenOut( uint256 tokenBalance, uint256 tokenNormalizedWeight, uint256 bptAmountIn, uint256 bptTotalSupply, uint256 swapFee ) external pure returns (uint256) { (uint256 amountOut, ) = _calcTokenOutGivenExactBptIn( tokenBalance, tokenNormalizedWeight, bptAmountIn, bptTotalSupply, swapFee ); return amountOut; } function exactBPTInForTokensOut( uint256[] memory currentBalances, uint256 bptAmountIn, uint256 totalBPT ) external pure returns (uint256[] memory) { return _calcTokensOutGivenExactBptIn(currentBalances, bptAmountIn, totalBPT); } function bptInForExactTokensOut( uint256[] memory balances, uint256[] memory normalizedWeights, uint256[] memory amountsOut, uint256 bptTotalSupply, uint256 swapFee ) external pure returns (uint256) { (uint256 bptIn, ) = _calcBptInGivenExactTokensOut( balances, normalizedWeights, amountsOut, bptTotalSupply, swapFee ); return bptIn; } function calculateDueTokenProtocolSwapFeeAmount( uint256 balance, uint256 normalizedWeight, uint256 previousInvariant, uint256 currentInvariant, uint256 protocolSwapFeePercentage ) external pure returns (uint256) { return _calcDueTokenProtocolSwapFeeAmount( balance, normalizedWeight, previousInvariant, currentInvariant, protocolSwapFeePercentage ); } }
{ "optimizer": { "enabled": true, "runs": 9999 }, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } }, "libraries": {} }
Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
[{"inputs":[{"components":[{"internalType":"contract IVault","name":"vault","type":"address"},{"internalType":"string","name":"name","type":"string"},{"internalType":"string","name":"symbol","type":"string"},{"internalType":"contract IERC20[]","name":"tokens","type":"address[]"},{"internalType":"uint256[]","name":"normalizedWeights","type":"uint256[]"},{"internalType":"address[]","name":"assetManagers","type":"address[]"},{"internalType":"uint256","name":"swapFeePercentage","type":"uint256"},{"internalType":"uint256","name":"pauseWindowDuration","type":"uint256"},{"internalType":"uint256","name":"bufferPeriodDuration","type":"uint256"},{"internalType":"address","name":"owner","type":"address"},{"internalType":"bool","name":"swapEnabledOnStart","type":"bool"},{"internalType":"uint256","name":"managementSwapFeePercentage","type":"uint256"}],"internalType":"struct InvestmentPool.NewPoolParams","name":"params","type":"tuple"}],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"spender","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"startTime","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"endTime","type":"uint256"},{"indexed":false,"internalType":"uint256[]","name":"startWeights","type":"uint256[]"},{"indexed":false,"internalType":"uint256[]","name":"endWeights","type":"uint256[]"}],"name":"GradualWeightUpdateScheduled","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"managementFeePercentage","type":"uint256"}],"name":"ManagementFeePercentageChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"contract IERC20[]","name":"tokens","type":"address[]"},{"indexed":false,"internalType":"uint256[]","name":"amounts","type":"uint256[]"}],"name":"ManagementFeesCollected","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"bool","name":"paused","type":"bool"}],"name":"PausedStateChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"bool","name":"swapEnabled","type":"bool"}],"name":"SwapEnabledSet","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"swapFeePercentage","type":"uint256"}],"name":"SwapFeePercentageChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Transfer","type":"event"},{"inputs":[],"name":"DOMAIN_SEPARATOR","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"}],"name":"allowance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"approve","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"decimals","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"decreaseAllowance","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes4","name":"selector","type":"bytes4"}],"name":"getActionId","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getAuthorizer","outputs":[{"internalType":"contract IAuthorizer","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getCollectedManagementFees","outputs":[{"internalType":"contract IERC20[]","name":"tokens","type":"address[]"},{"internalType":"uint256[]","name":"collectedFees","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getGradualWeightUpdateParams","outputs":[{"internalType":"uint256","name":"startTime","type":"uint256"},{"internalType":"uint256","name":"endTime","type":"uint256"},{"internalType":"uint256[]","name":"endWeights","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getInvariant","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getLastInvariant","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"getManagementSwapFeePercentage","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getMinimumWeightChangeDuration","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"getNormalizedWeights","outputs":[{"internalType":"uint256[]","name":"","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getOwner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getPausedState","outputs":[{"internalType":"bool","name":"paused","type":"bool"},{"internalType":"uint256","name":"pauseWindowEndTime","type":"uint256"},{"internalType":"uint256","name":"bufferPeriodEndTime","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getPoolId","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getRate","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getScalingFactors","outputs":[{"internalType":"uint256[]","name":"","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getSwapEnabled","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getSwapFeePercentage","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getVault","outputs":[{"internalType":"contract IVault","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"addedValue","type":"uint256"}],"name":"increaseAllowance","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"nonces","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"poolId","type":"bytes32"},{"internalType":"address","name":"sender","type":"address"},{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256[]","name":"balances","type":"uint256[]"},{"internalType":"uint256","name":"lastChangeBlock","type":"uint256"},{"internalType":"uint256","name":"protocolSwapFeePercentage","type":"uint256"},{"internalType":"bytes","name":"userData","type":"bytes"}],"name":"onExitPool","outputs":[{"internalType":"uint256[]","name":"","type":"uint256[]"},{"internalType":"uint256[]","name":"","type":"uint256[]"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"poolId","type":"bytes32"},{"internalType":"address","name":"sender","type":"address"},{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256[]","name":"balances","type":"uint256[]"},{"internalType":"uint256","name":"lastChangeBlock","type":"uint256"},{"internalType":"uint256","name":"protocolSwapFeePercentage","type":"uint256"},{"internalType":"bytes","name":"userData","type":"bytes"}],"name":"onJoinPool","outputs":[{"internalType":"uint256[]","name":"","type":"uint256[]"},{"internalType":"uint256[]","name":"","type":"uint256[]"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"internalType":"enum IVault.SwapKind","name":"kind","type":"uint8"},{"internalType":"contract IERC20","name":"tokenIn","type":"address"},{"internalType":"contract IERC20","name":"tokenOut","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"bytes32","name":"poolId","type":"bytes32"},{"internalType":"uint256","name":"lastChangeBlock","type":"uint256"},{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"bytes","name":"userData","type":"bytes"}],"internalType":"struct IPoolSwapStructs.SwapRequest","name":"swapRequest","type":"tuple"},{"internalType":"uint256","name":"currentBalanceTokenIn","type":"uint256"},{"internalType":"uint256","name":"currentBalanceTokenOut","type":"uint256"}],"name":"onSwap","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"},{"internalType":"uint256","name":"deadline","type":"uint256"},{"internalType":"uint8","name":"v","type":"uint8"},{"internalType":"bytes32","name":"r","type":"bytes32"},{"internalType":"bytes32","name":"s","type":"bytes32"}],"name":"permit","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"poolId","type":"bytes32"},{"internalType":"address","name":"sender","type":"address"},{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256[]","name":"balances","type":"uint256[]"},{"internalType":"uint256","name":"lastChangeBlock","type":"uint256"},{"internalType":"uint256","name":"protocolSwapFeePercentage","type":"uint256"},{"internalType":"bytes","name":"userData","type":"bytes"}],"name":"queryExit","outputs":[{"internalType":"uint256","name":"bptIn","type":"uint256"},{"internalType":"uint256[]","name":"amountsOut","type":"uint256[]"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"poolId","type":"bytes32"},{"internalType":"address","name":"sender","type":"address"},{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256[]","name":"balances","type":"uint256[]"},{"internalType":"uint256","name":"lastChangeBlock","type":"uint256"},{"internalType":"uint256","name":"protocolSwapFeePercentage","type":"uint256"},{"internalType":"bytes","name":"userData","type":"bytes"}],"name":"queryJoin","outputs":[{"internalType":"uint256","name":"bptOut","type":"uint256"},{"internalType":"uint256[]","name":"amountsIn","type":"uint256[]"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"contract IERC20","name":"token","type":"address"},{"internalType":"bytes","name":"poolConfig","type":"bytes"}],"name":"setAssetManagerPoolConfig","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bool","name":"paused","type":"bool"}],"name":"setPaused","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bool","name":"swapEnabled","type":"bool"}],"name":"setSwapEnabled","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"swapFeePercentage","type":"uint256"}],"name":"setSwapFeePercentage","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transfer","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"sender","type":"address"},{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transferFrom","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"startTime","type":"uint256"},{"internalType":"uint256","name":"endTime","type":"uint256"},{"internalType":"uint256[]","name":"endWeights","type":"uint256[]"}],"name":"updateWeightsGradually","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"recipient","type":"address"}],"name":"withdrawCollectedManagementFees","outputs":[],"stateMutability":"nonpayable","type":"function"}]
Contract Creation Code
6101e06040527f6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c9610120523480156200003757600080fd5b5060405162006aac38038062006aac8339810160408190526200005a9162000e67565b805160208201516040830151606084015160a085015160c086015160e0870151610100880151610120890151855189906002146200009a5760016200009d565b60025b8989898989898989828289898180604051806040016040528060018152602001603160f81b815250848489336001600160a01b031660001b806080818152505050806001600160a01b031660a0816001600160a01b031660601b815250505081600390805190602001906200011492919062000baf565b5080516200012a90600490602084019062000baf565b50506005805460ff1916601217905550815160209283012060c052805191012060e05250507f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f6101005250620001896276a7008311156101946200047b565b6200019d62278d008211156101956200047b565b4290910161014081905201610160528551620001bf906002111560c86200047b565b620001d9620001cd62000490565b8751111560c96200047b565b620001ef866200049560201b6200140c1760201c565b620001fa84620004a1565b6040516309b2760f60e01b81526000906001600160a01b038c16906309b2760f906200022b908d90600401620010ed565b602060405180830381600087803b1580156200024657600080fd5b505af11580156200025b573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019062000281919062000e4e565b604051633354e3e960e11b81529091506001600160a01b038c16906366a9c7d290620002b69084908b908b9060040162001051565b600060405180830381600087803b158015620002d157600080fd5b505af1158015620002e6573d6000803e3d6000fd5b5050505060609a8b1b6001600160601b031916610180526101a05250506001600a5550505050928d01515160808e01515160a08f015151919d50620003479c508d9b50995097505050506200052d602090811b6200141617901c9350505050565b62000377620003718260016200035c6200054d565b6200055360201b6200142e179092919060201c565b62000566565b6200038f81620003866200058b565b1460c96200047b565b608082015160608301514291620003ac91839182918190620005b6565b60005b82811015620003f857620003ee84606001518281518110620003cd57fe5b60200260200101516000600c620007f760201b6200143d179092919060201c565b50600101620003af565b506101408301516200040a90620008a7565b6200042e670de0b6b3a764000084610160015111156101526200047b60201b60201c565b610160830180516101c052516040517feba99e9e36df79031493efd8473cfce5475d3a135878665490df8b0140693210916200046a9162001102565b60405180910390a1505050620011b4565b816200048c576200048c8162000902565b5050565b603290565b806200048c8162000955565b620004b664e8d4a5100082101560cb6200047b565b620004ce67016345785d8a000082111560ca6200047b565b620004ed8160c0600854620009df60201b6200150a179092919060201c565b6008556040517fa9ba3ffe0b6c366b81232caab38605a0699ad5398d6cce76f91ee809e322dafc906200052290839062001102565b60405180910390a150565b6200054882841480156200054057508183145b60676200047b565b505050565b60085490565b81811b607f821b198416175b9392505050565b62000585816000600854620009f460201b62001520179092919060201c565b60085550565b6000620005b160016200059d6200054d565b62000a0f60201b6200154c1790919060201c565b905090565b600080805b84518110156200077d576000858281518110620005d457fe5b60200260200101519050620005fc662386f26fc1000082101561012e6200047b60201b60201c565b60008583815181106200060b57fe5b6020026020010151905062000739620006ab826001600160a01b031663313ce5676040518163ffffffff1660e01b815260040160206040518083038186803b1580156200065757600080fd5b505afa1580156200066c573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019062000692919062000fe7565b60ff16601262000a1c60201b620015531790919060201c565b606062000724620006c78662000a3460201b620015691760201c565b60406200070f620006f78f8b81518110620006de57fe5b602002602001015162000a7760201b6200158d1760201c565b60008c620009df60201b6200150a179092919060201c565b62000aa960201b620015ad179092919060201c565b62000abb60201b620015bf179092919060201c565b6001600160a01b0382166000908152600b6020908152604090912091909155620007709086908490620015ce62000aca821b17901c565b94505050600101620005bb565b5062000796670de0b6b3a764000083146101346200047b565b620007af620003718760286200070f8b6008826200054d565b7f0f3631f9dab08169d1db21c6dc5f32536fb2b0a6b9bb5330d71c52132f968be087878787604051620007e694939291906200110b565b60405180910390a150505050505050565b6001600160a01b0382166000908152600284016020526040812054806200088657505082546040805180820182526001600160a01b03858116808352602080840187815260008781526001808c018452878220965187546001600160a01b031916961695909517865590519484019490945594820180895590835260028801909452919020919091556200055f565b6000190160009081526001808601602052604082200183905590506200055f565b620008d162000371826000620008bc6200054d565b62000ade60201b620015e0179092919060201c565b7f5a9e84f78f7957cb4ed7478eb0fcad35ee4ecbe2e0f298420b28a3955392573f8160405162000522919062001046565b62461bcd60e51b6000908152602060045260076024526642414c23000030600a808404818106603090810160081b95839006959095019082900491820690940160101b939093010160c81b604452606490fd5b6002815110156200096657620009dc565b6000816000815181106200097657fe5b602002602001015190506000600190505b825181101562000548576000838281518110620009a057fe5b60200260200101519050620009d1816001600160a01b0316846001600160a01b03161060656200047b60201b60201c565b915060010162000987565b50565b6001600160401b03811b1992909216911b1790565b6001600160c01b03828116821b90821b198416179392505050565b81811c607f165b92915050565b600062000a2e8383111560016200047b565b50900390565b600062000a16670de0b6b3a764000062000a6363ffffffff80168562000b0760201b620016071790919060201c565b62000b5c60201b620016551790919060201c565b600062000a16670de0b6b3a764000062000a636001600160401b0380168562000b0760201b620016071790919060201c565b63ffffffff811b1992909216911b1790565b601f811b1992909216911b1790565b60008282016200055f84821015836200047b565b60006001821b198416828462000af657600062000af9565b60015b60ff16901b17949350505050565b600082820262000b2f84158062000b2757508385838162000b2457fe5b04145b60036200047b565b8062000b4057600091505062000a16565b670de0b6b3a764000060001982015b0460010191505062000a16565b600062000b6d82151560046200047b565b8262000b7c5750600062000a16565b670de0b6b3a76400008381029062000ba29085838162000b9857fe5b041460056200047b565b82600182038162000b4f57fe5b828054600181600116156101000203166002900490600052602060002090601f016020900481019282601f1062000bf257805160ff191683800117855562000c22565b8280016001018555821562000c22579182015b8281111562000c2257825182559160200191906001019062000c05565b5062000c3092915062000c34565b5090565b5b8082111562000c30576000815560010162000c35565b805162000a16816200119e565b600082601f83011262000c69578081fd5b815162000c8062000c7a8262001172565b6200114b565b81815291506020808301908481018184028601820187101562000ca257600080fd5b60005b8481101562000cce57815162000cbb816200119e565b8452928201929082019060010162000ca5565b505050505092915050565b600082601f83011262000cea578081fd5b815162000cfb62000c7a8262001172565b81815291506020808301908481018184028601820187101562000d1d57600080fd5b60005b8481101562000cce57815162000d36816200119e565b8452928201929082019060010162000d20565b600082601f83011262000d5a578081fd5b815162000d6b62000c7a8262001172565b81815291506020808301908481018184028601820187101562000d8d57600080fd5b60005b8481101562000cce5781518452928201929082019060010162000d90565b8051801515811462000a1657600080fd5b600082601f83011262000dd0578081fd5b81516001600160401b0381111562000de6578182fd5b602062000dfc601f8301601f191682016200114b565b9250818352848183860101111562000e1357600080fd5b60005b8281101562000e3357848101820151848201830152810162000e16565b8281111562000e455760008284860101525b50505092915050565b60006020828403121562000e60578081fd5b5051919050565b60006020828403121562000e79578081fd5b81516001600160401b038082111562000e90578283fd5b818401915061018080838703121562000ea7578384fd5b62000eb2816200114b565b905062000ec0868462000c4b565b815260208301518281111562000ed4578485fd5b62000ee28782860162000dbf565b60208301525060408301518281111562000efa578485fd5b62000f088782860162000dbf565b60408301525060608301518281111562000f20578485fd5b62000f2e8782860162000cd9565b60608301525060808301518281111562000f46578485fd5b62000f548782860162000d49565b60808301525060a08301518281111562000f6c578485fd5b62000f7a8782860162000c58565b60a08301525060c083015160c082015260e083015160e082015261010091508183015182820152610120915062000fb48683850162000c4b565b82820152610140915062000fcb8683850162000dae565b9181019190915261016091820151918101919091529392505050565b60006020828403121562000ff9578081fd5b815160ff811681146200055f578182fd5b6000815180845260208085019450808401835b838110156200103b578151875295820195908201906001016200101d565b509495945050505050565b901515815260200190565b60006060820185835260206060818501528186518084526080860191508288019350845b818110156200109d576200108a855162001192565b8352938301939183019160010162001075565b505084810360408601528551808252908201925081860190845b81811015620010df57620010cc835162001192565b85529383019391830191600101620010b7565b509298975050505050505050565b6020810160038310620010fc57fe5b91905290565b90815260200190565b6000858252846020830152608060408301526200112c60808301856200100a565b82810360608401526200114081856200100a565b979650505050505050565b6040518181016001600160401b03811182821017156200116a57600080fd5b604052919050565b60006001600160401b0382111562001188578081fd5b5060209081020190565b6001600160a01b031690565b6001600160a01b0381168114620009dc57600080fd5b60805160a05160601c60c05160e051610100516101205161014051610160516101805160601c6101a0516101c0516158716200123b60003980610ee85280613476525080610881525080610ec452508061182d525080611809525080611169525080611b28525080611b6a525080611b49525080610ea0525080610e2a52506158716000f3fe608060405234801561001057600080fd5b50600436106102de5760003560e01c806374f3b009116101865780639d2c110c116100e3578063c0ff1a1511610097578063dd62ed3e11610071578063dd62ed3e1461058d578063e01af92c146105a0578063f89f27ed146105b3576102de565b8063c0ff1a151461055f578063d505accf14610567578063d5c096c41461057a576102de565b8063a9059cbb116100c8578063a9059cbb1461053c578063aaabadc51461054f578063b322c79b14610557576102de565b80639d2c110c14610516578063a457c2d714610529576102de565b8063893d20e81161013a57806390605f3a1161011f57806390605f3a146104fe57806395d89b41146105065780639b02cdde1461050e576102de565b8063893d20e8146104e15780638d928af8146104f6576102de565b80637ecebe001161016b5780637ecebe00146104a8578063851c1bb3146104bb57806387ec6817146104ce576102de565b806374f3b009146104705780637beed22014610491576102de565b806338e9922e1161023f57806350dd6ed9116101f35780636028bfd4116101cd5780636028bfd414610434578063679aefce1461045557806370a082311461045d576102de565b806350dd6ed91461040657806355c67628146104195780635b77155e14610421576102de565b8063395093511161022457806339509351146103d85780633e569205146103eb57806347bc4d92146103fe576102de565b806338e9922e146103bd57806338fff2d0146103d0576102de565b80631dd746ea11610296578063313ce5671161027b578063313ce5671461038a57806332f144f51461039f5780633644e515146103b5576102de565b80631dd746ea1461036257806323b872dd14610377576102de565b806316c38b3c116102c757806316c38b3c1461032157806318160ddd146103365780631c0de0511461034b576102de565b806306fdde03146102e3578063095ea7b314610301575b600080fd5b6102eb6105bb565b6040516102f89190615714565b60405180910390f35b61031461030f366004614e32565b610652565b6040516102f8919061551a565b61033461032f366004614f29565b610669565b005b61033e61067d565b6040516102f8919061553d565b610353610683565b6040516102f893929190615525565b61036a6106ac565b6040516102f891906154e2565b610314610385366004614d82565b6106bb565b610392610731565b6040516102f8919061579b565b6103a761073a565b6040516102f892919061548c565b61033e61085c565b6103346103cb3660046152b5565b610866565b61033e61087f565b6103146103e6366004614e32565b6108a3565b6103346103f93660046152cd565b6108de565b6103146109ef565b610334610414366004615060565b610a04565b61033e610a22565b61033461042f366004614d2e565b610a33565b610447610442366004614f61565b610b5a565b6040516102f8929190615727565b61033e610b91565b61033e61046b366004614d2e565b610bbc565b61048361047e366004614f61565b610bdb565b6040516102f89291906154f5565b610499610c7e565b6040516102f893929190615740565b61033e6104b6366004614d2e565b610e0b565b61033e6104c9366004615004565b610e26565b6104476104dc366004614f61565b610e78565b6104e9610e9e565b6040516102f89190615478565b6104e9610ec2565b61033e610ee6565b6102eb610f0a565b61033e610f6b565b61033e6105243660046151b9565b610f78565b610314610537366004614e32565b611013565b61031461054a366004614e32565b611051565b6104e961105e565b61033e611068565b61033e61106f565b610334610575366004614dc2565b611134565b610483610588366004614f61565b61127d565b61033e61059b366004614d4a565b6113ae565b6103346105ae366004614f29565b6113d9565b61036a611402565b60038054604080516020601f60026000196101006001881615020190951694909404938401819004810282018101909252828152606093909290918301828280156106475780601f1061061c57610100808354040283529160200191610647565b820191906000526020600020905b81548152906001019060200180831161062a57829003601f168201915b505050505090505b90565b600061065f3384846116a0565b5060015b92915050565b610671611708565b61067a8161174e565b50565b60025490565b60008060006106906117ea565b15925061069b611807565b91506106a561182b565b9050909192565b60606106b661184f565b905090565b6000806106c885336113ae565b90506106ec336001600160a01b03871614806106e45750838210155b61019e61199c565b6106f78585856119aa565b336001600160a01b0386161480159061071257506000198114155b156107245761072485338584036116a0565b60019150505b9392505050565b60055460ff1690565b606080610745611a8a565b67ffffffffffffffff8111801561075b57600080fd5b50604051908082528060200260200182016040528015610785578160200160208202803683370190505b509150610790611a8a565b67ffffffffffffffff811180156107a657600080fd5b506040519080825280602002602001820160405280156107d0578160200160208202803683370190505b50905060005b6107de611a8a565b811015610846576000806107f3600c84611a9f565b915091508185848151811061080457fe5b60200260200101906001600160a01b031690816001600160a01b0316815250508084848151811061083157fe5b602090810291909101015250506001016107d6565b506108588161085361184f565b611ac3565b9091565b60006106b6611b24565b61086e611708565b610876611bc1565b61067a81611bd6565b7f000000000000000000000000000000000000000000000000000000000000000090565b3360008181526001602090815260408083206001600160a01b0387168452909152812054909161065f9185906108d990866115ce565b6116a0565b6108e6611708565b6108ee611bc1565b6108f6611c41565b610908610901611a8a565b8251611c5a565b426109138185611c67565b93506109248385111561014661199c565b61093862015180858503101561014b61199c565b6060610942610ec2565b6001600160a01b031663f94d466861095861087f565b6040518263ffffffff1660e01b8152600401610974919061553d565b60006040518083038186803b15801561098c57600080fd5b505afa1580156109a0573d6000803e3d6000fd5b505050506040513d6000823e601f3d908101601f191682016040526109c89190810190614e5d565b505090506109e085856109d9611c7e565b8685611ddf565b50506109ea611fa3565b505050565b60006106b660006109fe611faa565b90611fb0565b610a0c611708565b610a14611bc1565b610a1e8282611fba565b5050565b6008546000906106b69060c06120d2565b610a3b611708565b610a43611bc1565b610a4b611c41565b606080610a5661073a565b91509150610a62610ec2565b6001600160a01b0316638bdb3913610a7861087f565b30866040518060800160405280610a8e8961064f565b81526020018781526020016003604051602001610aab9190615700565b6040516020818303038152906040528152602001600015158152506040518563ffffffff1660e01b8152600401610ae59493929190615565565b600060405180830381600087803b158015610aff57600080fd5b505af1158015610b13573d6000803e3d6000fd5b505050507f5cf8dd4ddeaded21c5e3dc4043073fa7659089e0d11d8480344663008dff060f8282604051610b4892919061548c565b60405180910390a1505061067a611fa3565b60006060610b708651610b6b611a8a565b611c5a565b610b85898989898989896120e0611ac36121ad565b97509795505050505050565b60006106b6610b9e61067d565b610bb6610ba961106f565b610bb1611a8a565b61233d565b90612357565b6001600160a01b0381166000908152602081905260409020545b919050565b60608088610c05610bea610ec2565b6001600160a01b0316336001600160a01b03161460cd61199c565b610c1a610c1061087f565b82146101f461199c565b6060610c2461184f565b9050610c30888261239f565b6000606080610c458e8e8e8e8e8e8a8f6120e0565b925092509250610c558d84612400565b610c5f8285611ac3565b610c698185611ac3565b909550935050505b5097509795505050505050565b60008060606000610c8d611faa565b9050610c9a81600861240a565b9350610ca781602861240a565b92506060610cb3610ec2565b6001600160a01b031663f94d4668610cc961087f565b6040518263ffffffff1660e01b8152600401610ce5919061553d565b60006040518083038186803b158015610cfd57600080fd5b505afa158015610d11573d6000803e3d6000fd5b505050506040513d6000823e601f3d908101601f19168201604052610d399190810190614e5d565b505080519091508067ffffffffffffffff81118015610d5757600080fd5b50604051908082528060200260200182016040528015610d81578160200160208202803683370190505b50935060005b81811015610e0257610de3610dde6040600b6000878681518110610da757fe5b60200260200101516001600160a01b03166001600160a01b031681526020019081526020016000205461240a90919063ffffffff16565b612414565b858281518110610def57fe5b6020908102919091010152600101610d87565b50505050909192565b6001600160a01b031660009081526006602052604090205490565b60007f000000000000000000000000000000000000000000000000000000000000000082604051602001610e5b929190615402565b604051602081830303815290604052805190602001209050919050565b60006060610e898651610b6b611a8a565b610b85898989898989896124326124e06121ad565b7f000000000000000000000000000000000000000000000000000000000000000090565b7f000000000000000000000000000000000000000000000000000000000000000090565b7f000000000000000000000000000000000000000000000000000000000000000090565b60048054604080516020601f60026000196101006001881615020190951694909404938401819004810282018101909252828152606093909290918301828280156106475780601f1061061c57610100808354040283529160200191610647565b600061064f610153612541565b600080610f978560200151610135600c6125ae9092919063ffffffff16565b90506000610fbb610fb483610faf89602001516125eb565b6125fe565b8690611553565b90506000610fdb8760400151610135600c6125ae9092919063ffffffff16565b90506000610ffa610ff383610faf8b604001516125eb565b8790611553565b905061100788848361260a565b98975050505050505050565b60008061102033856113ae565b905080831061103a57611035338560006116a0565b611047565b61104733858584036116a0565b5060019392505050565b600061065f3384846119aa565b60006106b6612760565b6201518090565b6000606061107b610ec2565b6001600160a01b031663f94d466861109161087f565b6040518263ffffffff1660e01b81526004016110ad919061553d565b60006040518083038186803b1580156110c557600080fd5b505afa1580156110d9573d6000803e3d6000fd5b505050506040513d6000823e601f3d908101601f191682016040526111019190810190614e5d565b509150506111168161111161184f565b61239f565b60606111206127da565b50905061112d8183612858565b9250505090565b6111428442111560d161199c565b6001600160a01b0387166000908152600660209081526040808320549051909291611199917f0000000000000000000000000000000000000000000000000000000000000000918c918c918c9188918d9101615652565b60405160208183030381529060405280519060200120905060006111bc826128ca565b90506000600182888888604051600081526020016040526040516111e394939291906156e2565b6020604051602081039080840390855afa158015611205573d6000803e3d6000fd5b5050604051601f190151915061124790506001600160a01b0382161580159061123f57508b6001600160a01b0316826001600160a01b0316145b6101f861199c565b6001600160a01b038b1660009081526006602052604090206001850190556112708b8b8b6116a0565b5050505050505050505050565b6060808861128c610bea610ec2565b611297610c1061087f565b60606112a161184f565b90506112ab61067d565b61135e57600060606112c08d8d8d868b6128e6565b915091506112d96112cf61297c565b83101560cc61199c565b6112eb60006112e661297c565b612983565b6112fe8b6112f761297c565b8403612983565b61130881846124e0565b80611311611a8a565b67ffffffffffffffff8111801561132757600080fd5b50604051908082528060200260200182016040528015611351578160200160208202803683370190505b5095509550505050610c71565b611368888261239f565b600060608061137d8e8e8e8e8e8e8a8f612432565b92509250925061138d8c84612983565b61139782856124e0565b6113a18185611ac3565b9095509350610c71915050565b6001600160a01b03918216600090815260016020908152604080832093909416825291909152205490565b6113e1611708565b6113e9611bc1565b6113f1611c41565b6113fa8161298d565b61067a611fa3565b60606106b6611c7e565b80610a1e816129d4565b6109ea828414801561142757508183145b606761199c565b607f811b1992909216911b1790565b6001600160a01b0382166000908152600284016020526040812054806114e257505082546040805180820182526001600160a01b03858116808352602080840187815260008781526001808c018452878220965187547fffffffffffffffffffffffff0000000000000000000000000000000000000000169616959095178655905194840194909455948201808955908352600288019094529190209190915561072a565b60001901600090815260018086016020526040822001839055905061072a565b509392505050565b67ffffffffffffffff811b1992909216911b1790565b77ffffffffffffffffffffffffffffffffffffffffffffffff828116821b90821b198416179392505050565b1c607f1690565b600061156383831115600161199c565b50900390565b6000610663670de0b6b3a76400006115878463ffffffff6116078116565b90611655565b6000610663670de0b6b3a76400006115878467ffffffffffffffff611607565b63ffffffff811b1992909216911b1790565b601f811b1992909216911b1790565b600082820161072a848210158361199c565b60006001821b19841682846115f65760006115f9565b60015b60ff16901b17949350505050565b600082820261162b84158061162457508385838161162157fe5b04145b600361199c565b8061163a576000915050610663565b670de0b6b3a764000060001982015b04600101915050610663565b6000611664821515600461199c565b8261167157506000610663565b670de0b6b3a7640000838102906116949085838161168b57fe5b0414600561199c565b82600182038161164957fe5b6001600160a01b0380841660008181526001602090815260408083209487168084529490915290819020849055517f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b925906116fb90859061553d565b60405180910390a3505050565b60006117376000357fffffffff0000000000000000000000000000000000000000000000000000000016610e26565b905061067a6117468233612a4d565b61019161199c565b801561176e5761176961175f611807565b421061019361199c565b611783565b61178361177961182b565b42106101a961199c565b600780547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00168215151790556040517f9e3a5e37224532dea67b89face185703738a228a6e8a23dee546960180d3be64906117df90839061551a565b60405180910390a150565b60006117f461182b565b4211806106b657505060075460ff161590565b7f000000000000000000000000000000000000000000000000000000000000000090565b7f000000000000000000000000000000000000000000000000000000000000000090565b60608061185a610ec2565b6001600160a01b031663f94d466861187061087f565b6040518263ffffffff1660e01b815260040161188c919061553d565b60006040518083038186803b1580156118a457600080fd5b505afa1580156118b8573d6000803e3d6000fd5b505050506040513d6000823e601f3d908101601f191682016040526118e09190810190614e5d565b505080519091508067ffffffffffffffff811180156118fe57600080fd5b50604051908082528060200260200182016040528015611928578160200160208202803683370190505b50925060005b8181101561199657611977600b600085848151811061194957fe5b60200260200101516001600160a01b03166001600160a01b0316815260200190815260200160002054612b3d565b84828151811061198357fe5b602090810291909101015260010161192e565b50505090565b81610a1e57610a1e81612541565b6119c16001600160a01b038416151561019861199c565b6119d86001600160a01b038316151561019961199c565b6119e38383836109ea565b6001600160a01b038316600090815260208190526040902054611a0990826101a0612b5f565b6001600160a01b038085166000908152602081905260408082209390935590841681522054611a3890826115ce565b6001600160a01b0380841660008181526020819052604090819020939093559151908516907fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef906116fb90859061553d565b60006106b66001611a99611faa565b9061154c565b600090815260019182016020526040902080549101546001600160a01b0390911691565b60005b611ace611a8a565b8110156109ea57611b05838281518110611ae457fe5b6020026020010151838381518110611af857fe5b6020026020010151612357565b838281518110611b1157fe5b6020908102919091010152600101611ac6565b60007f00000000000000000000000000000000000000000000000000000000000000007f00000000000000000000000000000000000000000000000000000000000000007f0000000000000000000000000000000000000000000000000000000000000000611b91612b75565b30604051602001611ba6959493929190615686565b60405160208183030381529060405280519060200120905090565b611bd4611bcc6117ea565b61019261199c565b565b611be964e8d4a5100082101560cb61199c565b611bff67016345785d8a000082111560ca61199c565b600854611c0e908260c061150a565b6008556040517fa9ba3ffe0b6c366b81232caab38605a0699ad5398d6cce76f91ee809e322dafc906117df90839061553d565b611c536002600a54141561019061199c565b6002600a55565b610a1e818314606761199c565b600081831015611c77578161072a565b5090919050565b606080611c89610ec2565b6001600160a01b031663f94d4668611c9f61087f565b6040518263ffffffff1660e01b8152600401611cbb919061553d565b60006040518083038186803b158015611cd357600080fd5b505afa158015611ce7573d6000803e3d6000fd5b505050506040513d6000823e601f3d908101601f19168201604052611d0f9190810190614e5d565b505080519091508067ffffffffffffffff81118015611d2d57600080fd5b50604051908082528060200260200182016040528015611d57578160200160208202803683370190505b5092506000611d64612b79565b905060005b82811015611dd8576000600b6000868481518110611d8357fe5b60200260200101516001600160a01b03166001600160a01b03168152602001908152602001600020549050611db88184612bef565b868381518110611dc457fe5b602090810291909101015250600101611d69565b5050505090565b600080805b8451811015611f2a576000858281518110611dfb57fe5b60200260200101519050611e1b662386f26fc1000082101561012e61199c565b6000858381518110611e2957fe5b60200260200101519050611efb611eb5826001600160a01b031663313ce5676040518163ffffffff1660e01b815260040160206040518083038186803b158015611e7257600080fd5b505afa158015611e86573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190611eaa919061535b565b60129060ff16611553565b6060611ef4611ec386611569565b6040611eed611ee48f8b81518110611ed757fe5b602002602001015161158d565b8b90600061150a565b91906115ad565b91906115bf565b6001600160a01b0382166000908152600b6020526040902055611f1e85836115ce565b94505050600101611de4565b50611f41670de0b6b3a7640000831461013461199c565b611f5d611f58876028611eed8b6008611eed611faa565b612c88565b7f0f3631f9dab08169d1db21c6dc5f32536fb2b0a6b9bb5330d71c52132f968be087878787604051611f92949392919061575f565b60405180910390a150505050505050565b6001600a55565b60085490565b1c60019081161490565b6000611fc461087f565b90506000611fd0610ec2565b6001600160a01b031663b05f8e4883866040518363ffffffff1660e01b8152600401611ffd9291906156cb565b60806040518083038186803b15801561201557600080fd5b505afa158015612029573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061204d919061531b565b6040517f18e736d40000000000000000000000000000000000000000000000000000000081529094506001600160a01b03851693506318e736d4925061209a9150859087906004016156b2565b600060405180830381600087803b1580156120b457600080fd5b505af11580156120c8573d6000803e3d6000fd5b5050505050505050565b1c67ffffffffffffffff1690565b60006060806120ee88612c9d565b60006120f985612cfe565b905061213a6121066109ef565b8061211c5750600182600381111561211a57fe5b145b806121325750600382600381111561213057fe5b145b61014a61199c565b61214e8b8a612147611c7e565b8989612d14565b909450925061215b611a8a565b67ffffffffffffffff8111801561217157600080fd5b5060405190808252806020026020018201604052801561219b578160200160208202803683370190505b50915050985098509895505050505050565b33301461229c576000306001600160a01b03166000366040516121d1929190615432565b6000604051808303816000865af19150503d806000811461220e576040519150601f19603f3d011682016040523d82523d6000602084013e612213565b606091505b50509050806000811461222257fe5b60046000803e6000517fffffffff00000000000000000000000000000000000000000000000000000000167f43adbafb00000000000000000000000000000000000000000000000000000000811461227e573d6000803e3d6000fd5b506020600460003e604060205260243d03602460403e601c3d016000f35b60606122a661184f565b90506122b2878261239f565b600060606122ca8c8c8c8c8c8c898d8d63ffffffff16565b50915091506122dd81848663ffffffff16565b8051601f1982018390526343adbafb7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc08301526020027fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffdc82016044820181fd5b600082820261072a84158061162457508385838161162157fe5b6000612366821515600461199c565b8261237357506000610663565b670de0b6b3a76400008381029061238d9085838161168b57fe5b82818161239657fe5b04915050610663565b60005b6123aa611a8a565b8110156109ea576123e18382815181106123c057fe5b60200260200101518383815181106123d457fe5b6020026020010151612d58565b8382815181106123ed57fe5b60209081029190910101526001016123a2565b610a1e8282612d84565b1c63ffffffff1690565b600061066363ffffffff61158784670de0b6b3a76400006116078416565b600060608061243f611bc1565b61244888612c9d565b61246f6124536109ef565b806121325750600361246486612cfe565b600381111561213057fe5b6124828861247b611c7e565b8787612e40565b909350915061248f611a8a565b67ffffffffffffffff811180156124a557600080fd5b506040519080825280602002602001820160405280156124cf578160200160208202803683370190505b509050985098509895505050505050565b60005b6124eb611a8a565b8110156109ea5761252283828151811061250157fe5b602002602001015183838151811061251557fe5b6020026020010151611655565b83828151811061252e57fe5b60209081029190910101526001016124e3565b7f08c379a0000000000000000000000000000000000000000000000000000000006000908152602060045260076024526642414c23000030600a808404818106603090810160081b95839006959095019082900491820690940160101b939093010160c81b604452606490fd5b6001600160a01b03821660009081526002840160205260408120546125d58115158461199c565b6125e28560018303612ece565b95945050505050565b60006106636125f983612ee4565b612b3d565b600061072a8383612357565b6000836080015161261c610bea610ec2565b612627610c1061087f565b600061263686602001516125eb565b9050600061264787604001516125eb565b905060008751600181111561265857fe5b14156126e857600061266d8860600151612f0b565b90506000818960600151039050612691896020015161268c8387612f2c565b612f38565b606089018290526126a28885612f2c565b97506126ae8784612f2c565b96506126be896060015185612f2c565b60608a015260006126d08a8a8a612f4a565b90506126dc81856125fe565b96505050505050611502565b6126f28683612f2c565b95506126fe8582612f2c565b945061270e876060015182612f2c565b60608801526000612720888888612f72565b905061272c8184612f8a565b9050600061273982612f96565b9050600082820390506127548a6020015161268c8388612f2c565b50945061150292505050565b600061276a610ec2565b6001600160a01b031663aaabadc56040518163ffffffff1660e01b815260040160206040518083038186803b1580156127a257600080fd5b505afa1580156127b6573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906106b69190615044565b606060006127e6611c7e565b9150600090506000826000815181106127fb57fe5b602002602001015190506000600190505b8351811015612852578184828151811061282257fe5b6020026020010151111561284a5780925083818151811061283f57fe5b602002602001015191505b60010161280c565b50509091565b670de0b6b3a764000060005b83518110156128ba576128b06128a985838151811061287f57fe5b602002602001015185848151811061289357fe5b6020026020010151612fbc90919063ffffffff16565b8390612d58565b9150600101612864565b506106636000821161013761199c565b60006128d4611b24565b82604051602001610e5b929190615442565b600060606128f2611bc1565b60006128fd84612cfe565b9050612918600082600381111561291057fe5b1460ce61199c565b60606129238561300b565b9050612930610901611a8a565b61293a818761239f565b60606129446127da565b50905060006129538284612858565b9050600061296382610bb1611a8a565b60099290925550945090925050505b9550959350505050565b620f424090565b610a1e8282613021565b6129a5611f5882600061299e611faa565b91906115e0565b7f5a9e84f78f7957cb4ed7478eb0fcad35ee4ecbe2e0f298420b28a3955392573f816040516117df919061551a565b6002815110156129e35761067a565b6000816000815181106129f257fe5b602002602001015190506000600190505b82518110156109ea576000838281518110612a1a57fe5b60200260200101519050612a43816001600160a01b0316846001600160a01b031610606561199c565b9150600101612a03565b600073ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1b612a6c610e9e565b6001600160a01b031614158015612a875750612a87836130af565b15612aaf57612a94610e9e565b6001600160a01b0316336001600160a01b0316149050610663565b612ab7612760565b6001600160a01b0316639be2a8848484306040518463ffffffff1660e01b8152600401612ae693929190615546565b60206040518083038186803b158015612afe57600080fd5b505afa158015612b12573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190612b369190614f45565b9050610663565b600080612b4b83606061314f565b600a0a670de0b6b3a7640000029392505050565b6000612b6e848411158361199c565b5050900390565b4690565b60004281612b85611faa565b90506000612b9482600861240a565b90506000612ba383602861240a565b9050808410612bc057670de0b6b3a764000094505050505061064f565b818411612bd457600094505050505061064f565b818103828503612be48183612357565b965050505050505090565b600080612c04612bff85836120d2565b613156565b90506000612c16610dde86604061240a565b9050831580612c2457508082145b15612c3157509050610663565b670de0b6b3a76400008410612c495791506106639050565b80821115612c6c576000612c5f85838503612d58565b9092039250610663915050565b6000612c7a85848403612d58565b929092019250610663915050565b600854612c9790826000611520565b60085550565b60005b612ca8611a8a565b811015610a1e57612cdf612cbd600c83612ece565b838381518110612cc957fe5b602002602001015161155390919063ffffffff16565b828281518110612ceb57fe5b6020908102919091010152600101612ca0565b60008180602001905181019061066391906150ae565b600060606000612d2384612cfe565b90506003816003811115612d3357fe5b1415612d4c57612d4288613176565b9250925050612972565b612d4287878787613237565b6000828202612d7284158061162457508385838161162157fe5b670de0b6b3a764000090049392505050565b612d9b6001600160a01b038316151561019b61199c565b612da7826000836109ea565b6001600160a01b038216600090815260208190526040902054612dcd90826101a1612b5f565b6001600160a01b038316600090815260208190526040902055600254612df390826132b0565b6002556040516000906001600160a01b038416907fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef90612e3490859061553d565b60405180910390a35050565b600060606000612e4f84612cfe565b90506001816003811115612e5f57fe5b1415612e7b57612e71878787876132be565b9250925050612ec5565b6002816003811115612e8957fe5b1415612e9a57612e71878786613337565b6003816003811115612ea857fe5b1415612eb857612e718785613426565b612ec3610136612541565b505b94509492505050565b6000908152600191820160205260409020015490565b6001600160a01b0381166000908152600b6020526040902054610bd681151561013561199c565b600080612f20612f19610a22565b8490611607565b905061072a8382611553565b600061072a8383612d58565b610a1e612f4483613458565b82613468565b6000612f5f612f576109ef565b61014761199c565b612f6a8484846134cf565b949350505050565b6000612f7f612f576109ef565b612f6a848484613502565b600061072a8383611655565b6000610663612fb5612fa6610a22565b670de0b6b3a764000090611553565b8390611655565b600080612fc98484613535565b90506000612fe3612fdc83612710611607565b60016115ce565b905080821015612ff857600092505050610663565b6130028282611553565b92505050610663565b60608180602001905181019061072a9190615174565b61302d600083836109ea565b60025461303a90826115ce565b6002556001600160a01b03821660009081526020819052604090205461306090826115ce565b6001600160a01b0383166000818152602081905260408082209390935591519091907fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef90612e3490859061553d565b60006130da7f3e56920500000000000000000000000000000000000000000000000000000000610e26565b82148061310e575061310b7fe01af92c00000000000000000000000000000000000000000000000000000000610e26565b82145b80613140575061313d7f5b77155e00000000000000000000000000000000000000000000000000000000610e26565b82145b80610663575061066382613672565b1c601f1690565b600061066367ffffffffffffffff61158784670de0b6b3a7640000611607565b60006060613182611bc1565b6131996001600160a01b038416301461015161199c565b600091506131a5611a8a565b67ffffffffffffffff811180156131bb57600080fd5b506040519080825280602002602001820160405280156131e5578160200160208202803683370190505b50905060005b6131f3611a8a565b81101561323157613205600c82612ece565b82828151811061321157fe5b6020908102919091010152613229600c8260006136d6565b6001016131eb565b50915091565b60006060600061324684612cfe565b9050600081600381111561325657fe5b141561326757612e718787866136ee565b600181600381111561327557fe5b141561328557612e718785613759565b600281600381111561329357fe5b14156132a557612e718787878761377e565b612ec3610150612541565b600061072a83836001612b5f565b600060608060006132ce856137ec565b915091506132e46132dd611a8a565b8351611c5a565b6132ee828761239f565b6000606061330d8a8a8661330061067d565b613308610a22565b61380f565b9150915061331a81613978565b6133288383101560d061199c565b50989197509095505050505050565b60006060600080613347856139bc565b9150915061335f613356611a8a565b8210606461199c565b6000806133a389848151811061337157fe5b602002602001015189858151811061338557fe5b60200260200101518661339661067d565b61339e610a22565b6139d3565b915091506133b18382613468565b60606133bb611a8a565b67ffffffffffffffff811180156133d157600080fd5b506040519080825280602002602001820160405280156133fb578160200160208202803683370190505b5090508281858151811061340b57fe5b60209081029190910101529399939850929650505050505050565b60006060600061343584613aa9565b9050606061344b868361344661067d565b613abf565b9196919550909350505050565b6000610663600c83610135613b71565b80156134c557600061349a827f0000000000000000000000000000000000000000000000000000000000000000612d58565b905060006134a9600c85612ece565b90506134c2846134b983856115ce565b600c91906136d6565b50505b610a1e8282610a1e565b60006134d9611bc1565b612f6a836134ea8660200151613b98565b846134f88860400151613b98565b8860600151613bbc565b600061350c611bc1565b612f6a8361351d8660200151613b98565b8461352b8860400151613b98565b8860600151613c37565b60008161354b5750670de0b6b3a7640000610663565b8261355857506000610663565b6135857f80000000000000000000000000000000000000000000000000000000000000008410600661199c565b826135ab770bce5086492111aea88f4bb1ca6bcf584181ea8059f765328410600761199c565b826000670c7d713b49da0000831380156135cc5750670f43fc2c04ee000083125b156136035760006135dc84613cad565b9050670de0b6b3a764000080820784020583670de0b6b3a764000083050201915050613611565b8161360d84613de4565b0290505b670de0b6b3a7640000900561365f7ffffffffffffffffffffffffffffffffffffffffffffffffdc702bd3a30fc00008212801590613658575068070c1cc73b00c800008213155b600861199c565b61366881614184565b9695505050505050565b600061369d7f38e9922e00000000000000000000000000000000000000000000000000000000610e26565b82148061066357506136ce7f50dd6ed900000000000000000000000000000000000000000000000000000000610e26565b909114919050565b60009182526001928301602052604090912090910155565b600060606136fa611bc1565b600080613706856139bc565b91509150613715613356611a8a565b6000806133a389848151811061372757fe5b602002602001015189858151811061373b57fe5b60200260200101518661374c61067d565b613754610a22565b614654565b60006060600061376884613aa9565b9050606061344b868361377961067d565b61470a565b6000606061378a611bc1565b60606000613797856137ec565b915091506137a88251610b6b611a8a565b6137b2828761239f565b600060606137d18a8a866137c461067d565b6137cc610a22565b61479c565b915091506137e38383111560cf61199c565b61332881613978565b606060008280602001905181019061380491906150ca565b909590945092505050565b6000606080855167ffffffffffffffff8111801561382c57600080fd5b50604051908082528060200260200182016040528015613856578160200160208202803683370190505b5090506000805b895181101561391b576138b68a828151811061387557fe5b6020026020010151610bb68a848151811061388c57fe5b60200260200101518d85815181106138a057fe5b60200260200101516115ce90919063ffffffff16565b8382815181106138c257fe5b60200260200101818152505061391161390a8a83815181106138e057fe5b60200260200101518584815181106138f457fe5b6020026020010151612d5890919063ffffffff16565b83906115ce565b915060010161385d565b506000606061392e8b8b8b87878c6148a1565b915091506000670de0b6b3a7640000831161394a576000613966565b61396661395f84670de0b6b3a7640000611553565b8a90612d58565b9c919b50909950505050505050505050565b6139858151610b6b611a8a565b60005b613990611a8a565b811015610a1e576139b4818383815181106139a757fe5b6020026020010151613468565b600101613988565b60008082806020019051810190613804919061513e565b600080806139e58561158781896115ce565b90506139fe6729a2241af62c000082111561013361199c565b6000613a1c613a15670de0b6b3a76400008a611655565b8390614a26565b90506000613a3c613a3583670de0b6b3a7640000611553565b8b90611607565b90506000613a498a614a52565b90506000613a578383611607565b90506000613a658483611553565b90506000613a85613a7e670de0b6b3a76400008c611553565b8490611655565b83810398509050613a9682826115ce565b9850505050505050509550959350505050565b60008180602001905181019061072a9190615111565b60606000613acd8484611655565b90506060855167ffffffffffffffff81118015613ae957600080fd5b50604051908082528060200260200182016040528015613b13578160200160208202803683370190505b50905060005b8651811015613b6757613b4883888381518110613b3257fe5b602002602001015161160790919063ffffffff16565b828281518110613b5457fe5b6020908102919091010152600101613b19565b5095945050505050565b600080613b7e8585614a78565b9050613b8c8115158461199c565b60001901949350505050565b600080613ba3612b79565b90506000613bb084612ee4565b9050612f6a8183612bef565b6000613bde613bd387670429d069189e0000612d58565b83111561013061199c565b6000613bea87846115ce565b90506000613bf88883611655565b90506000613c068887612357565b90506000613c148383614a26565b9050613c29613c2282614a52565b8990612d58565b9a9950505050505050505050565b6000613c59613c4e85670429d069189e0000612d58565b83111561013161199c565b6000613c6f613c688685611553565b8690611655565b90506000613c7d8588611655565b90506000613c8b8383614a26565b90506000613ca182670de0b6b3a7640000611553565b9050613c298a82611607565b670de0b6b3a7640000026000806ec097ce7bc90715b34b9f1000000000808401907fffffffffffffffffffffffffffffffffff3f68318436f8ea4cb460f00000000085010281613cf957fe5b05905060006ec097ce7bc90715b34b9f100000000082800205905081806ec097ce7bc90715b34b9f100000000081840205915060038205016ec097ce7bc90715b34b9f100000000082840205915060058205016ec097ce7bc90715b34b9f100000000082840205915060078205016ec097ce7bc90715b34b9f100000000082840205915060098205016ec097ce7bc90715b34b9f1000000000828402059150600b8205016ec097ce7bc90715b34b9f1000000000828402059150600d8205016ec097ce7bc90715b34b9f1000000000828402059150600f826002919005919091010295945050505050565b6000670de0b6b3a7640000821215613e2157613e17826ec097ce7bc90715b34b9f100000000081613e1157fe5b05613de4565b6000039050610bd6565b60007e1600ef3172e58d2e933ec884fde10064c63b5372d805e203c00000000000008312613e7257770195e54c5dd42177f53a27172fa9ec630262827000000000830592506806f05b59d3b2000000015b73011798004d755d3c8bc8e03204cf44619e0000008312613eaa576b1425982cf597cd205cef7380830592506803782dace9d9000000015b606492830292026e01855144814a7ff805980ff00840008312613ef2576e01855144814a7ff805980ff008400068056bc75e2d63100000840205925068ad78ebc5ac62000000015b6b02df0ab5a80a22c61ab5a7008312613f2d576b02df0ab5a80a22c61ab5a70068056bc75e2d6310000084020592506856bc75e2d631000000015b693f1fce3da636ea5cf8508312613f6457693f1fce3da636ea5cf85068056bc75e2d631000008402059250682b5e3af16b18800000015b690127fa27722cc06cc5e28312613f9b57690127fa27722cc06cc5e268056bc75e2d6310000084020592506815af1d78b58c400000015b68280e60114edb805d038312613fd05768280e60114edb805d0368056bc75e2d631000008402059250680ad78ebc5ac6200000015b680ebc5fb417461211108312613ffb57680ebc5fb4174612111068056bc75e2d631000009384020592015b6808f00f760a4b2db55d8312614030576808f00f760a4b2db55d68056bc75e2d6310000084020592506802b5e3af16b1880000015b6806f5f17757889379378312614065576806f5f177578893793768056bc75e2d63100000840205925068015af1d78b58c40000015b6806248f33704b2866038312614099576806248f33704b28660368056bc75e2d63100000840205925067ad78ebc5ac620000015b6805c548670b9510e7ac83126140cd576805c548670b9510e7ac68056bc75e2d6310000084020592506756bc75e2d6310000015b600068056bc75e2d63100000840168056bc75e2d6310000080860302816140f057fe5b059050600068056bc75e2d63100000828002059050818068056bc75e2d63100000818402059150600382050168056bc75e2d63100000828402059150600582050168056bc75e2d63100000828402059150600782050168056bc75e2d63100000828402059150600982050168056bc75e2d63100000828402059150600b820501600202606485820105979650505050505050565b60006141c97ffffffffffffffffffffffffffffffffffffffffffffffffdc702bd3a30fc000083121580156141c2575068070c1cc73b00c800008313155b600961199c565b60008212156141fd576141de82600003614184565b6ec097ce7bc90715b34b9f1000000000816141f557fe5b059050610bd6565b60006806f05b59d3b2000000831261425357507ffffffffffffffffffffffffffffffffffffffffffffffff90fa4a62c4e00000090910190770195e54c5dd42177f53a27172fa9ec63026282700000000061429f565b6803782dace9d9000000831261429b57507ffffffffffffffffffffffffffffffffffffffffffffffffc87d2531627000000909101906b1425982cf597cd205cef738061429f565b5060015b6064929092029168056bc75e2d6310000068ad78ebc5ac620000008412614305577fffffffffffffffffffffffffffffffffffffffffffffff5287143a539e0000009093019268056bc75e2d631000006e01855144814a7ff805980ff008400082020590505b6856bc75e2d6310000008412614357577fffffffffffffffffffffffffffffffffffffffffffffffa9438a1d29cf0000009093019268056bc75e2d631000006b02df0ab5a80a22c61ab5a70082020590505b682b5e3af16b1880000084126143a7577fffffffffffffffffffffffffffffffffffffffffffffffd4a1c50e94e78000009093019268056bc75e2d63100000693f1fce3da636ea5cf85082020590505b6815af1d78b58c40000084126143f7577fffffffffffffffffffffffffffffffffffffffffffffffea50e2874a73c000009093019268056bc75e2d63100000690127fa27722cc06cc5e282020590505b680ad78ebc5ac62000008412614446577ffffffffffffffffffffffffffffffffffffffffffffffff5287143a539e000009093019268056bc75e2d6310000068280e60114edb805d0382020590505b68056bc75e2d631000008412614495577ffffffffffffffffffffffffffffffffffffffffffffffffa9438a1d29cf000009093019268056bc75e2d63100000680ebc5fb4174612111082020590505b6802b5e3af16b188000084126144e4577ffffffffffffffffffffffffffffffffffffffffffffffffd4a1c50e94e7800009093019268056bc75e2d631000006808f00f760a4b2db55d82020590505b68015af1d78b58c400008412614533577ffffffffffffffffffffffffffffffffffffffffffffffffea50e2874a73c00009093019268056bc75e2d631000006806f5f177578893793782020590505b68056bc75e2d631000008481019085906002908280020505918201919050600368056bc75e2d631000008783020505918201919050600468056bc75e2d631000008783020505918201919050600568056bc75e2d631000008783020505918201919050600668056bc75e2d631000008783020505918201919050600768056bc75e2d631000008783020505918201919050600868056bc75e2d631000008783020505918201919050600968056bc75e2d631000008783020505918201919050600a68056bc75e2d631000008783020505918201919050600b68056bc75e2d631000008783020505918201919050600c68056bc75e2d631000008783020505918201919050606468056bc75e2d63100000848402058502059695505050505050565b60008080614666856115878189611553565b905061467f6709b6e64a8ec6000082101561013261199c565b6000614696613a15670de0b6b3a76400008a612357565b905060006146ad6146a683614a52565b8b90612d58565b905060006146ba8a614a52565b905060006146c88383611607565b905060006146d68483611553565b90506146e2828a611607565b96506146f86146f18389611553565b82906115ce565b97505050505050509550959350505050565b606060006147188484612357565b90506060855167ffffffffffffffff8111801561473457600080fd5b5060405190808252806020026020018201604052801561475e578160200160208202803683370190505b50905060005b8651811015613b675761477d838883815181106138f457fe5b82828151811061478957fe5b6020908102919091010152600101614764565b6000606080855167ffffffffffffffff811180156147b957600080fd5b506040519080825280602002602001820160405280156147e3578160200160208202803683370190505b5090506000805b89518110156148755761482d8a828151811061480257fe5b60200260200101516115878a848151811061481957fe5b60200260200101518d8581518110612cc957fe5b83828151811061483957fe5b60200260200101818152505061486b61390a8a838151811061485757fe5b6020026020010151858481518110613b3257fe5b91506001016147ea565b50600060606148888b8b8b87878c614a97565b91509150600061396661489a84614a52565b8a90611607565b60006060855167ffffffffffffffff811180156148bd57600080fd5b506040519080825280602002602001820160405280156148e7578160200160208202803683370190505b509050670de0b6b3a7640000915060005b8851811015614a1a5760008587838151811061491057fe5b6020026020010151111561499c57600061494161493588670de0b6b3a7640000611553565b8c85815181106138f457fe5b90506000614955828b8681518110612cc957fe5b905060006149638289611607565b90506149796149728383611553565b84906115ce565b93508086868151811061498857fe5b6020026020010181815250505050506149b3565b8782815181106149a857fe5b602002602001015190505b60006149dc8b84815181106149c457fe5b6020026020010151610bb6848e87815181106138a057fe5b9050614a0e614a078b85815181106149f057fe5b602002602001015183612fbc90919063ffffffff16565b8690612d58565b945050506001016148f8565b50965096945050505050565b600080614a338484613535565b90506000614a46612fdc83612710611607565b90506125e282826115ce565b6000670de0b6b3a76400008210614a6a576000610663565b50670de0b6b3a76400000390565b6001600160a01b03166000908152600291909101602052604090205490565b60006060855167ffffffffffffffff81118015614ab357600080fd5b50604051908082528060200260200182016040528015614add578160200160208202803683370190505b509050670de0b6b3a7640000915060005b8851811015614a1a576000868281518110614b0557fe5b6020026020010151861115614b7f576000614b2261493588614a52565b90506000614b36828b8681518110612cc957fe5b90506000614b4f612fb5670de0b6b3a76400008a611553565b9050818103868681518110614b6057fe5b6020908102919091010152614b7583826115ce565b9350505050614b96565b878281518110614b8b57fe5b602002602001015190505b6000614bbf8b8481518110614ba757fe5b6020026020010151610bb6848e8781518110612cc957fe5b9050614bd3614a078b85815181106149f057fe5b94505050600101614aee565b8035610663816157fc565b600082601f830112614bfa578081fd5b8135614c0d614c08826157d0565b6157a9565b818152915060208083019084810181840286018201871015614c2e57600080fd5b60005b84811015614c4d57813584529282019290820190600101614c31565b505050505092915050565b600082601f830112614c68578081fd5b8151614c76614c08826157d0565b818152915060208083019084810181840286018201871015614c9757600080fd5b60005b84811015614c4d57815184529282019290820190600101614c9a565b600082601f830112614cc6578081fd5b813567ffffffffffffffff811115614cdc578182fd5b614cef6020601f19601f840116016157a9565b9150808252836020828501011115614d0657600080fd5b8060208401602084013760009082016020015292915050565b80356002811061066357600080fd5b600060208284031215614d3f578081fd5b813561072a816157fc565b60008060408385031215614d5c578081fd5b8235614d67816157fc565b91506020830135614d77816157fc565b809150509250929050565b600080600060608486031215614d96578081fd5b8335614da1816157fc565b92506020840135614db1816157fc565b929592945050506040919091013590565b600080600080600080600060e0888a031215614ddc578283fd5b8735614de7816157fc565b96506020880135614df7816157fc565b955060408801359450606088013593506080880135614e158161582c565b9699959850939692959460a0840135945060c09093013592915050565b60008060408385031215614e44578182fd5b8235614e4f816157fc565b946020939093013593505050565b600080600060608486031215614e71578081fd5b835167ffffffffffffffff80821115614e88578283fd5b818601915086601f830112614e9b578283fd5b8151614ea9614c08826157d0565b80828252602080830192508086018b828387028901011115614ec9578788fd5b8796505b84871015614ef4578051614ee0816157fc565b845260019690960195928101928101614ecd565b508901519097509350505080821115614f0b578283fd5b50614f1886828701614c58565b925050604084015190509250925092565b600060208284031215614f3a578081fd5b813561072a81615811565b600060208284031215614f56578081fd5b815161072a81615811565b600080600080600080600060e0888a031215614f7b578081fd5b873596506020880135614f8d816157fc565b95506040880135614f9d816157fc565b9450606088013567ffffffffffffffff80821115614fb9578283fd5b614fc58b838c01614bea565b955060808a0135945060a08a0135935060c08a0135915080821115614fe8578283fd5b50614ff58a828b01614cb6565b91505092959891949750929550565b600060208284031215615015578081fd5b81357fffffffff000000000000000000000000000000000000000000000000000000008116811461072a578182fd5b600060208284031215615055578081fd5b815161072a816157fc565b60008060408385031215615072578182fd5b823561507d816157fc565b9150602083013567ffffffffffffffff811115615098578182fd5b6150a485828601614cb6565b9150509250929050565b6000602082840312156150bf578081fd5b815161072a8161581f565b6000806000606084860312156150de578081fd5b83516150e98161581f565b602085015190935067ffffffffffffffff811115615105578182fd5b614f1886828701614c58565b60008060408385031215615123578182fd5b825161512e8161581f565b6020939093015192949293505050565b600080600060608486031215615152578081fd5b835161515d8161581f565b602085015160409095015190969495509392505050565b60008060408385031215615186578182fd5b82516151918161581f565b602084015190925067ffffffffffffffff8111156151ad578182fd5b6150a485828601614c58565b6000806000606084860312156151cd578081fd5b833567ffffffffffffffff808211156151e4578283fd5b81860191506101208083890312156151fa578384fd5b615203816157a9565b905061520f8884614d1f565b815261521e8860208501614bdf565b60208201526152308860408501614bdf565b6040820152606083013560608201526080830135608082015260a083013560a08201526152608860c08501614bdf565b60c08201526152728860e08501614bdf565b60e0820152610100808401358381111561528a578586fd5b6152968a828701614cb6565b9183019190915250976020870135975060409096013595945050505050565b6000602082840312156152c6578081fd5b5035919050565b6000806000606084860312156152e1578081fd5b8335925060208401359150604084013567ffffffffffffffff811115615305578182fd5b61531186828701614bea565b9150509250925092565b60008060008060808587031215615330578182fd5b8451935060208501519250604085015191506060850151615350816157fc565b939692955090935050565b60006020828403121561536c578081fd5b815161072a8161582c565b6000815180845260208085019450808401835b838110156153a65781518752958201959082019060010161538a565b509495945050505050565b15159052565b60008151808452815b818110156153dc576020818501810151868301820152016153c0565b818111156153ed5782602083870101525b50601f01601f19169290920160200192915050565b9182527fffffffff0000000000000000000000000000000000000000000000000000000016602082015260240190565b6000828483379101908152919050565b7f190100000000000000000000000000000000000000000000000000000000000081526002810192909252602282015260420190565b6001600160a01b0391909116815260200190565b604080825283519082018190526000906020906060840190828701845b828110156154ce5781516001600160a01b0316845292840192908401906001016154a9565b505050838103828501526136688186615377565b60006020825261072a6020830184615377565b6000604082526155086040830185615377565b82810360208401526125e28185615377565b901515815260200190565b92151583526020830191909152604082015260600190565b90815260200190565b9283526001600160a01b03918216602084015216604082015260600190565b600085825260206001600160a01b038087168285015280861660408501525060806060840152610100830184516080808601528181518084526101208701915084830193508592505b808310156155d6576155c084516157f0565b82529284019260019290920191908401906155ae565b508387015193507fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff809250828682030160a08701526156148185615377565b935050506040850151818584030160c086015261563183826153b7565b92505050606084015161564760e08501826153b1565b509695505050505050565b9586526001600160a01b0394851660208701529290931660408501526060840152608083019190915260a082015260c00190565b9485526020850193909352604084019190915260608301526001600160a01b0316608082015260a00190565b600083825260406020830152612f6a60408301846153b7565b9182526001600160a01b0316602082015260400190565b93845260ff9290921660208401526040830152606082015260800190565b602081016004831061570e57fe5b91905290565b60006020825261072a60208301846153b7565b600083825260406020830152612f6a6040830184615377565b6000848252836020830152606060408301526125e26060830184615377565b60008582528460208301526080604083015261577e6080830185615377565b82810360608401526157908185615377565b979650505050505050565b60ff91909116815260200190565b60405181810167ffffffffffffffff811182821017156157c857600080fd5b604052919050565b600067ffffffffffffffff8211156157e6578081fd5b5060209081020190565b6001600160a01b031690565b6001600160a01b038116811461067a57600080fd5b801515811461067a57600080fd5b6004811061067a57600080fd5b60ff8116811461067a57600080fdfea264697066735822122028ca628d97b6143340c071ae5b0d0c83a983b003d9aa3e14d77bf00b613b7ba064736f6c634300070100330000000000000000000000000000000000000000000000000000000000000020000000000000000000000000ba12222222228d8ba445958a75a0704d566bf2c8000000000000000000000000000000000000000000000000000000000000018000000000000000000000000000000000000000000000000000000000000001c00000000000000000000000000000000000000000000000000000000000000200000000000000000000000000000000000000000000000000000000000000026000000000000000000000000000000000000000000000000000000000000002c00000000000000000000000000000000000000000000000000018838370f33fff00000000000000000000000000000000000000000000000000000000004bd2550000000000000000000000000000000000000000000000000000000000278d00000000000000000000000000aeca461405dd2892fba8bd03efe6ab89749d4b390000000000000000000000000000000000000000000000000000000000000001000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000164d657461466163746f727920506f6f6c20546f6b656e00000000000000000000000000000000000000000000000000000000000000000000000000000000000669524f424f5400000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000002000000000000000000000000c02aaa39b223fe8d0a0e5c4f27ead9083c756cc2000000000000000000000000fb5453340c03db5ade474b27e68b6a9c6b2823eb00000000000000000000000000000000000000000000000000000000000000020000000000000000000000000000000000000000000000000dbd2fc137a30000000000000000000000000000000000000000000000000000002386f26fc10000000000000000000000000000000000000000000000000000000000000000000200000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
Deployed Bytecode
0x608060405234801561001057600080fd5b50600436106102de5760003560e01c806374f3b009116101865780639d2c110c116100e3578063c0ff1a1511610097578063dd62ed3e11610071578063dd62ed3e1461058d578063e01af92c146105a0578063f89f27ed146105b3576102de565b8063c0ff1a151461055f578063d505accf14610567578063d5c096c41461057a576102de565b8063a9059cbb116100c8578063a9059cbb1461053c578063aaabadc51461054f578063b322c79b14610557576102de565b80639d2c110c14610516578063a457c2d714610529576102de565b8063893d20e81161013a57806390605f3a1161011f57806390605f3a146104fe57806395d89b41146105065780639b02cdde1461050e576102de565b8063893d20e8146104e15780638d928af8146104f6576102de565b80637ecebe001161016b5780637ecebe00146104a8578063851c1bb3146104bb57806387ec6817146104ce576102de565b806374f3b009146104705780637beed22014610491576102de565b806338e9922e1161023f57806350dd6ed9116101f35780636028bfd4116101cd5780636028bfd414610434578063679aefce1461045557806370a082311461045d576102de565b806350dd6ed91461040657806355c67628146104195780635b77155e14610421576102de565b8063395093511161022457806339509351146103d85780633e569205146103eb57806347bc4d92146103fe576102de565b806338e9922e146103bd57806338fff2d0146103d0576102de565b80631dd746ea11610296578063313ce5671161027b578063313ce5671461038a57806332f144f51461039f5780633644e515146103b5576102de565b80631dd746ea1461036257806323b872dd14610377576102de565b806316c38b3c116102c757806316c38b3c1461032157806318160ddd146103365780631c0de0511461034b576102de565b806306fdde03146102e3578063095ea7b314610301575b600080fd5b6102eb6105bb565b6040516102f89190615714565b60405180910390f35b61031461030f366004614e32565b610652565b6040516102f8919061551a565b61033461032f366004614f29565b610669565b005b61033e61067d565b6040516102f8919061553d565b610353610683565b6040516102f893929190615525565b61036a6106ac565b6040516102f891906154e2565b610314610385366004614d82565b6106bb565b610392610731565b6040516102f8919061579b565b6103a761073a565b6040516102f892919061548c565b61033e61085c565b6103346103cb3660046152b5565b610866565b61033e61087f565b6103146103e6366004614e32565b6108a3565b6103346103f93660046152cd565b6108de565b6103146109ef565b610334610414366004615060565b610a04565b61033e610a22565b61033461042f366004614d2e565b610a33565b610447610442366004614f61565b610b5a565b6040516102f8929190615727565b61033e610b91565b61033e61046b366004614d2e565b610bbc565b61048361047e366004614f61565b610bdb565b6040516102f89291906154f5565b610499610c7e565b6040516102f893929190615740565b61033e6104b6366004614d2e565b610e0b565b61033e6104c9366004615004565b610e26565b6104476104dc366004614f61565b610e78565b6104e9610e9e565b6040516102f89190615478565b6104e9610ec2565b61033e610ee6565b6102eb610f0a565b61033e610f6b565b61033e6105243660046151b9565b610f78565b610314610537366004614e32565b611013565b61031461054a366004614e32565b611051565b6104e961105e565b61033e611068565b61033e61106f565b610334610575366004614dc2565b611134565b610483610588366004614f61565b61127d565b61033e61059b366004614d4a565b6113ae565b6103346105ae366004614f29565b6113d9565b61036a611402565b60038054604080516020601f60026000196101006001881615020190951694909404938401819004810282018101909252828152606093909290918301828280156106475780601f1061061c57610100808354040283529160200191610647565b820191906000526020600020905b81548152906001019060200180831161062a57829003601f168201915b505050505090505b90565b600061065f3384846116a0565b5060015b92915050565b610671611708565b61067a8161174e565b50565b60025490565b60008060006106906117ea565b15925061069b611807565b91506106a561182b565b9050909192565b60606106b661184f565b905090565b6000806106c885336113ae565b90506106ec336001600160a01b03871614806106e45750838210155b61019e61199c565b6106f78585856119aa565b336001600160a01b0386161480159061071257506000198114155b156107245761072485338584036116a0565b60019150505b9392505050565b60055460ff1690565b606080610745611a8a565b67ffffffffffffffff8111801561075b57600080fd5b50604051908082528060200260200182016040528015610785578160200160208202803683370190505b509150610790611a8a565b67ffffffffffffffff811180156107a657600080fd5b506040519080825280602002602001820160405280156107d0578160200160208202803683370190505b50905060005b6107de611a8a565b811015610846576000806107f3600c84611a9f565b915091508185848151811061080457fe5b60200260200101906001600160a01b031690816001600160a01b0316815250508084848151811061083157fe5b602090810291909101015250506001016107d6565b506108588161085361184f565b611ac3565b9091565b60006106b6611b24565b61086e611708565b610876611bc1565b61067a81611bd6565b7fccf5575570fac94cec733a58ff91bb3d073085c70002000000000000000000af90565b3360008181526001602090815260408083206001600160a01b0387168452909152812054909161065f9185906108d990866115ce565b6116a0565b6108e6611708565b6108ee611bc1565b6108f6611c41565b610908610901611a8a565b8251611c5a565b426109138185611c67565b93506109248385111561014661199c565b61093862015180858503101561014b61199c565b6060610942610ec2565b6001600160a01b031663f94d466861095861087f565b6040518263ffffffff1660e01b8152600401610974919061553d565b60006040518083038186803b15801561098c57600080fd5b505afa1580156109a0573d6000803e3d6000fd5b505050506040513d6000823e601f3d908101601f191682016040526109c89190810190614e5d565b505090506109e085856109d9611c7e565b8685611ddf565b50506109ea611fa3565b505050565b60006106b660006109fe611faa565b90611fb0565b610a0c611708565b610a14611bc1565b610a1e8282611fba565b5050565b6008546000906106b69060c06120d2565b610a3b611708565b610a43611bc1565b610a4b611c41565b606080610a5661073a565b91509150610a62610ec2565b6001600160a01b0316638bdb3913610a7861087f565b30866040518060800160405280610a8e8961064f565b81526020018781526020016003604051602001610aab9190615700565b6040516020818303038152906040528152602001600015158152506040518563ffffffff1660e01b8152600401610ae59493929190615565565b600060405180830381600087803b158015610aff57600080fd5b505af1158015610b13573d6000803e3d6000fd5b505050507f5cf8dd4ddeaded21c5e3dc4043073fa7659089e0d11d8480344663008dff060f8282604051610b4892919061548c565b60405180910390a1505061067a611fa3565b60006060610b708651610b6b611a8a565b611c5a565b610b85898989898989896120e0611ac36121ad565b97509795505050505050565b60006106b6610b9e61067d565b610bb6610ba961106f565b610bb1611a8a565b61233d565b90612357565b6001600160a01b0381166000908152602081905260409020545b919050565b60608088610c05610bea610ec2565b6001600160a01b0316336001600160a01b03161460cd61199c565b610c1a610c1061087f565b82146101f461199c565b6060610c2461184f565b9050610c30888261239f565b6000606080610c458e8e8e8e8e8e8a8f6120e0565b925092509250610c558d84612400565b610c5f8285611ac3565b610c698185611ac3565b909550935050505b5097509795505050505050565b60008060606000610c8d611faa565b9050610c9a81600861240a565b9350610ca781602861240a565b92506060610cb3610ec2565b6001600160a01b031663f94d4668610cc961087f565b6040518263ffffffff1660e01b8152600401610ce5919061553d565b60006040518083038186803b158015610cfd57600080fd5b505afa158015610d11573d6000803e3d6000fd5b505050506040513d6000823e601f3d908101601f19168201604052610d399190810190614e5d565b505080519091508067ffffffffffffffff81118015610d5757600080fd5b50604051908082528060200260200182016040528015610d81578160200160208202803683370190505b50935060005b81811015610e0257610de3610dde6040600b6000878681518110610da757fe5b60200260200101516001600160a01b03166001600160a01b031681526020019081526020016000205461240a90919063ffffffff16565b612414565b858281518110610def57fe5b6020908102919091010152600101610d87565b50505050909192565b6001600160a01b031660009081526006602052604090205490565b60007f00000000000000000000000048767f9f868a4a7b86a90736632f6e44c2df7fa982604051602001610e5b929190615402565b604051602081830303815290604052805190602001209050919050565b60006060610e898651610b6b611a8a565b610b85898989898989896124326124e06121ad565b7f000000000000000000000000aeca461405dd2892fba8bd03efe6ab89749d4b3990565b7f000000000000000000000000ba12222222228d8ba445958a75a0704d566bf2c890565b7f000000000000000000000000000000000000000000000000000000000000000090565b60048054604080516020601f60026000196101006001881615020190951694909404938401819004810282018101909252828152606093909290918301828280156106475780601f1061061c57610100808354040283529160200191610647565b600061064f610153612541565b600080610f978560200151610135600c6125ae9092919063ffffffff16565b90506000610fbb610fb483610faf89602001516125eb565b6125fe565b8690611553565b90506000610fdb8760400151610135600c6125ae9092919063ffffffff16565b90506000610ffa610ff383610faf8b604001516125eb565b8790611553565b905061100788848361260a565b98975050505050505050565b60008061102033856113ae565b905080831061103a57611035338560006116a0565b611047565b61104733858584036116a0565b5060019392505050565b600061065f3384846119aa565b60006106b6612760565b6201518090565b6000606061107b610ec2565b6001600160a01b031663f94d466861109161087f565b6040518263ffffffff1660e01b81526004016110ad919061553d565b60006040518083038186803b1580156110c557600080fd5b505afa1580156110d9573d6000803e3d6000fd5b505050506040513d6000823e601f3d908101601f191682016040526111019190810190614e5d565b509150506111168161111161184f565b61239f565b60606111206127da565b50905061112d8183612858565b9250505090565b6111428442111560d161199c565b6001600160a01b0387166000908152600660209081526040808320549051909291611199917f6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c9918c918c918c9188918d9101615652565b60405160208183030381529060405280519060200120905060006111bc826128ca565b90506000600182888888604051600081526020016040526040516111e394939291906156e2565b6020604051602081039080840390855afa158015611205573d6000803e3d6000fd5b5050604051601f190151915061124790506001600160a01b0382161580159061123f57508b6001600160a01b0316826001600160a01b0316145b6101f861199c565b6001600160a01b038b1660009081526006602052604090206001850190556112708b8b8b6116a0565b5050505050505050505050565b6060808861128c610bea610ec2565b611297610c1061087f565b60606112a161184f565b90506112ab61067d565b61135e57600060606112c08d8d8d868b6128e6565b915091506112d96112cf61297c565b83101560cc61199c565b6112eb60006112e661297c565b612983565b6112fe8b6112f761297c565b8403612983565b61130881846124e0565b80611311611a8a565b67ffffffffffffffff8111801561132757600080fd5b50604051908082528060200260200182016040528015611351578160200160208202803683370190505b5095509550505050610c71565b611368888261239f565b600060608061137d8e8e8e8e8e8e8a8f612432565b92509250925061138d8c84612983565b61139782856124e0565b6113a18185611ac3565b9095509350610c71915050565b6001600160a01b03918216600090815260016020908152604080832093909416825291909152205490565b6113e1611708565b6113e9611bc1565b6113f1611c41565b6113fa8161298d565b61067a611fa3565b60606106b6611c7e565b80610a1e816129d4565b6109ea828414801561142757508183145b606761199c565b607f811b1992909216911b1790565b6001600160a01b0382166000908152600284016020526040812054806114e257505082546040805180820182526001600160a01b03858116808352602080840187815260008781526001808c018452878220965187547fffffffffffffffffffffffff0000000000000000000000000000000000000000169616959095178655905194840194909455948201808955908352600288019094529190209190915561072a565b60001901600090815260018086016020526040822001839055905061072a565b509392505050565b67ffffffffffffffff811b1992909216911b1790565b77ffffffffffffffffffffffffffffffffffffffffffffffff828116821b90821b198416179392505050565b1c607f1690565b600061156383831115600161199c565b50900390565b6000610663670de0b6b3a76400006115878463ffffffff6116078116565b90611655565b6000610663670de0b6b3a76400006115878467ffffffffffffffff611607565b63ffffffff811b1992909216911b1790565b601f811b1992909216911b1790565b600082820161072a848210158361199c565b60006001821b19841682846115f65760006115f9565b60015b60ff16901b17949350505050565b600082820261162b84158061162457508385838161162157fe5b04145b600361199c565b8061163a576000915050610663565b670de0b6b3a764000060001982015b04600101915050610663565b6000611664821515600461199c565b8261167157506000610663565b670de0b6b3a7640000838102906116949085838161168b57fe5b0414600561199c565b82600182038161164957fe5b6001600160a01b0380841660008181526001602090815260408083209487168084529490915290819020849055517f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b925906116fb90859061553d565b60405180910390a3505050565b60006117376000357fffffffff0000000000000000000000000000000000000000000000000000000016610e26565b905061067a6117468233612a4d565b61019161199c565b801561176e5761176961175f611807565b421061019361199c565b611783565b61178361177961182b565b42106101a961199c565b600780547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00168215151790556040517f9e3a5e37224532dea67b89face185703738a228a6e8a23dee546960180d3be64906117df90839061551a565b60405180910390a150565b60006117f461182b565b4211806106b657505060075460ff161590565b7f0000000000000000000000000000000000000000000000000000000061c2804b90565b7f0000000000000000000000000000000000000000000000000000000061ea0d4b90565b60608061185a610ec2565b6001600160a01b031663f94d466861187061087f565b6040518263ffffffff1660e01b815260040161188c919061553d565b60006040518083038186803b1580156118a457600080fd5b505afa1580156118b8573d6000803e3d6000fd5b505050506040513d6000823e601f3d908101601f191682016040526118e09190810190614e5d565b505080519091508067ffffffffffffffff811180156118fe57600080fd5b50604051908082528060200260200182016040528015611928578160200160208202803683370190505b50925060005b8181101561199657611977600b600085848151811061194957fe5b60200260200101516001600160a01b03166001600160a01b0316815260200190815260200160002054612b3d565b84828151811061198357fe5b602090810291909101015260010161192e565b50505090565b81610a1e57610a1e81612541565b6119c16001600160a01b038416151561019861199c565b6119d86001600160a01b038316151561019961199c565b6119e38383836109ea565b6001600160a01b038316600090815260208190526040902054611a0990826101a0612b5f565b6001600160a01b038085166000908152602081905260408082209390935590841681522054611a3890826115ce565b6001600160a01b0380841660008181526020819052604090819020939093559151908516907fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef906116fb90859061553d565b60006106b66001611a99611faa565b9061154c565b600090815260019182016020526040902080549101546001600160a01b0390911691565b60005b611ace611a8a565b8110156109ea57611b05838281518110611ae457fe5b6020026020010151838381518110611af857fe5b6020026020010151612357565b838281518110611b1157fe5b6020908102919091010152600101611ac6565b60007f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f7f3544b6accc9112e9c9b1729fa123ed71bb4483d3d61850a4e057457711fd5ff37fc89efdaa54c0f20c7adf612882df0950f5a951637e0307cdcb4c672f298b8bc6611b91612b75565b30604051602001611ba6959493929190615686565b60405160208183030381529060405280519060200120905090565b611bd4611bcc6117ea565b61019261199c565b565b611be964e8d4a5100082101560cb61199c565b611bff67016345785d8a000082111560ca61199c565b600854611c0e908260c061150a565b6008556040517fa9ba3ffe0b6c366b81232caab38605a0699ad5398d6cce76f91ee809e322dafc906117df90839061553d565b611c536002600a54141561019061199c565b6002600a55565b610a1e818314606761199c565b600081831015611c77578161072a565b5090919050565b606080611c89610ec2565b6001600160a01b031663f94d4668611c9f61087f565b6040518263ffffffff1660e01b8152600401611cbb919061553d565b60006040518083038186803b158015611cd357600080fd5b505afa158015611ce7573d6000803e3d6000fd5b505050506040513d6000823e601f3d908101601f19168201604052611d0f9190810190614e5d565b505080519091508067ffffffffffffffff81118015611d2d57600080fd5b50604051908082528060200260200182016040528015611d57578160200160208202803683370190505b5092506000611d64612b79565b905060005b82811015611dd8576000600b6000868481518110611d8357fe5b60200260200101516001600160a01b03166001600160a01b03168152602001908152602001600020549050611db88184612bef565b868381518110611dc457fe5b602090810291909101015250600101611d69565b5050505090565b600080805b8451811015611f2a576000858281518110611dfb57fe5b60200260200101519050611e1b662386f26fc1000082101561012e61199c565b6000858381518110611e2957fe5b60200260200101519050611efb611eb5826001600160a01b031663313ce5676040518163ffffffff1660e01b815260040160206040518083038186803b158015611e7257600080fd5b505afa158015611e86573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190611eaa919061535b565b60129060ff16611553565b6060611ef4611ec386611569565b6040611eed611ee48f8b81518110611ed757fe5b602002602001015161158d565b8b90600061150a565b91906115ad565b91906115bf565b6001600160a01b0382166000908152600b6020526040902055611f1e85836115ce565b94505050600101611de4565b50611f41670de0b6b3a7640000831461013461199c565b611f5d611f58876028611eed8b6008611eed611faa565b612c88565b7f0f3631f9dab08169d1db21c6dc5f32536fb2b0a6b9bb5330d71c52132f968be087878787604051611f92949392919061575f565b60405180910390a150505050505050565b6001600a55565b60085490565b1c60019081161490565b6000611fc461087f565b90506000611fd0610ec2565b6001600160a01b031663b05f8e4883866040518363ffffffff1660e01b8152600401611ffd9291906156cb565b60806040518083038186803b15801561201557600080fd5b505afa158015612029573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061204d919061531b565b6040517f18e736d40000000000000000000000000000000000000000000000000000000081529094506001600160a01b03851693506318e736d4925061209a9150859087906004016156b2565b600060405180830381600087803b1580156120b457600080fd5b505af11580156120c8573d6000803e3d6000fd5b5050505050505050565b1c67ffffffffffffffff1690565b60006060806120ee88612c9d565b60006120f985612cfe565b905061213a6121066109ef565b8061211c5750600182600381111561211a57fe5b145b806121325750600382600381111561213057fe5b145b61014a61199c565b61214e8b8a612147611c7e565b8989612d14565b909450925061215b611a8a565b67ffffffffffffffff8111801561217157600080fd5b5060405190808252806020026020018201604052801561219b578160200160208202803683370190505b50915050985098509895505050505050565b33301461229c576000306001600160a01b03166000366040516121d1929190615432565b6000604051808303816000865af19150503d806000811461220e576040519150601f19603f3d011682016040523d82523d6000602084013e612213565b606091505b50509050806000811461222257fe5b60046000803e6000517fffffffff00000000000000000000000000000000000000000000000000000000167f43adbafb00000000000000000000000000000000000000000000000000000000811461227e573d6000803e3d6000fd5b506020600460003e604060205260243d03602460403e601c3d016000f35b60606122a661184f565b90506122b2878261239f565b600060606122ca8c8c8c8c8c8c898d8d63ffffffff16565b50915091506122dd81848663ffffffff16565b8051601f1982018390526343adbafb7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc08301526020027fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffdc82016044820181fd5b600082820261072a84158061162457508385838161162157fe5b6000612366821515600461199c565b8261237357506000610663565b670de0b6b3a76400008381029061238d9085838161168b57fe5b82818161239657fe5b04915050610663565b60005b6123aa611a8a565b8110156109ea576123e18382815181106123c057fe5b60200260200101518383815181106123d457fe5b6020026020010151612d58565b8382815181106123ed57fe5b60209081029190910101526001016123a2565b610a1e8282612d84565b1c63ffffffff1690565b600061066363ffffffff61158784670de0b6b3a76400006116078416565b600060608061243f611bc1565b61244888612c9d565b61246f6124536109ef565b806121325750600361246486612cfe565b600381111561213057fe5b6124828861247b611c7e565b8787612e40565b909350915061248f611a8a565b67ffffffffffffffff811180156124a557600080fd5b506040519080825280602002602001820160405280156124cf578160200160208202803683370190505b509050985098509895505050505050565b60005b6124eb611a8a565b8110156109ea5761252283828151811061250157fe5b602002602001015183838151811061251557fe5b6020026020010151611655565b83828151811061252e57fe5b60209081029190910101526001016124e3565b7f08c379a0000000000000000000000000000000000000000000000000000000006000908152602060045260076024526642414c23000030600a808404818106603090810160081b95839006959095019082900491820690940160101b939093010160c81b604452606490fd5b6001600160a01b03821660009081526002840160205260408120546125d58115158461199c565b6125e28560018303612ece565b95945050505050565b60006106636125f983612ee4565b612b3d565b600061072a8383612357565b6000836080015161261c610bea610ec2565b612627610c1061087f565b600061263686602001516125eb565b9050600061264787604001516125eb565b905060008751600181111561265857fe5b14156126e857600061266d8860600151612f0b565b90506000818960600151039050612691896020015161268c8387612f2c565b612f38565b606089018290526126a28885612f2c565b97506126ae8784612f2c565b96506126be896060015185612f2c565b60608a015260006126d08a8a8a612f4a565b90506126dc81856125fe565b96505050505050611502565b6126f28683612f2c565b95506126fe8582612f2c565b945061270e876060015182612f2c565b60608801526000612720888888612f72565b905061272c8184612f8a565b9050600061273982612f96565b9050600082820390506127548a6020015161268c8388612f2c565b50945061150292505050565b600061276a610ec2565b6001600160a01b031663aaabadc56040518163ffffffff1660e01b815260040160206040518083038186803b1580156127a257600080fd5b505afa1580156127b6573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906106b69190615044565b606060006127e6611c7e565b9150600090506000826000815181106127fb57fe5b602002602001015190506000600190505b8351811015612852578184828151811061282257fe5b6020026020010151111561284a5780925083818151811061283f57fe5b602002602001015191505b60010161280c565b50509091565b670de0b6b3a764000060005b83518110156128ba576128b06128a985838151811061287f57fe5b602002602001015185848151811061289357fe5b6020026020010151612fbc90919063ffffffff16565b8390612d58565b9150600101612864565b506106636000821161013761199c565b60006128d4611b24565b82604051602001610e5b929190615442565b600060606128f2611bc1565b60006128fd84612cfe565b9050612918600082600381111561291057fe5b1460ce61199c565b60606129238561300b565b9050612930610901611a8a565b61293a818761239f565b60606129446127da565b50905060006129538284612858565b9050600061296382610bb1611a8a565b60099290925550945090925050505b9550959350505050565b620f424090565b610a1e8282613021565b6129a5611f5882600061299e611faa565b91906115e0565b7f5a9e84f78f7957cb4ed7478eb0fcad35ee4ecbe2e0f298420b28a3955392573f816040516117df919061551a565b6002815110156129e35761067a565b6000816000815181106129f257fe5b602002602001015190506000600190505b82518110156109ea576000838281518110612a1a57fe5b60200260200101519050612a43816001600160a01b0316846001600160a01b031610606561199c565b9150600101612a03565b600073ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1b612a6c610e9e565b6001600160a01b031614158015612a875750612a87836130af565b15612aaf57612a94610e9e565b6001600160a01b0316336001600160a01b0316149050610663565b612ab7612760565b6001600160a01b0316639be2a8848484306040518463ffffffff1660e01b8152600401612ae693929190615546565b60206040518083038186803b158015612afe57600080fd5b505afa158015612b12573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190612b369190614f45565b9050610663565b600080612b4b83606061314f565b600a0a670de0b6b3a7640000029392505050565b6000612b6e848411158361199c565b5050900390565b4690565b60004281612b85611faa565b90506000612b9482600861240a565b90506000612ba383602861240a565b9050808410612bc057670de0b6b3a764000094505050505061064f565b818411612bd457600094505050505061064f565b818103828503612be48183612357565b965050505050505090565b600080612c04612bff85836120d2565b613156565b90506000612c16610dde86604061240a565b9050831580612c2457508082145b15612c3157509050610663565b670de0b6b3a76400008410612c495791506106639050565b80821115612c6c576000612c5f85838503612d58565b9092039250610663915050565b6000612c7a85848403612d58565b929092019250610663915050565b600854612c9790826000611520565b60085550565b60005b612ca8611a8a565b811015610a1e57612cdf612cbd600c83612ece565b838381518110612cc957fe5b602002602001015161155390919063ffffffff16565b828281518110612ceb57fe5b6020908102919091010152600101612ca0565b60008180602001905181019061066391906150ae565b600060606000612d2384612cfe565b90506003816003811115612d3357fe5b1415612d4c57612d4288613176565b9250925050612972565b612d4287878787613237565b6000828202612d7284158061162457508385838161162157fe5b670de0b6b3a764000090049392505050565b612d9b6001600160a01b038316151561019b61199c565b612da7826000836109ea565b6001600160a01b038216600090815260208190526040902054612dcd90826101a1612b5f565b6001600160a01b038316600090815260208190526040902055600254612df390826132b0565b6002556040516000906001600160a01b038416907fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef90612e3490859061553d565b60405180910390a35050565b600060606000612e4f84612cfe565b90506001816003811115612e5f57fe5b1415612e7b57612e71878787876132be565b9250925050612ec5565b6002816003811115612e8957fe5b1415612e9a57612e71878786613337565b6003816003811115612ea857fe5b1415612eb857612e718785613426565b612ec3610136612541565b505b94509492505050565b6000908152600191820160205260409020015490565b6001600160a01b0381166000908152600b6020526040902054610bd681151561013561199c565b600080612f20612f19610a22565b8490611607565b905061072a8382611553565b600061072a8383612d58565b610a1e612f4483613458565b82613468565b6000612f5f612f576109ef565b61014761199c565b612f6a8484846134cf565b949350505050565b6000612f7f612f576109ef565b612f6a848484613502565b600061072a8383611655565b6000610663612fb5612fa6610a22565b670de0b6b3a764000090611553565b8390611655565b600080612fc98484613535565b90506000612fe3612fdc83612710611607565b60016115ce565b905080821015612ff857600092505050610663565b6130028282611553565b92505050610663565b60608180602001905181019061072a9190615174565b61302d600083836109ea565b60025461303a90826115ce565b6002556001600160a01b03821660009081526020819052604090205461306090826115ce565b6001600160a01b0383166000818152602081905260408082209390935591519091907fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef90612e3490859061553d565b60006130da7f3e56920500000000000000000000000000000000000000000000000000000000610e26565b82148061310e575061310b7fe01af92c00000000000000000000000000000000000000000000000000000000610e26565b82145b80613140575061313d7f5b77155e00000000000000000000000000000000000000000000000000000000610e26565b82145b80610663575061066382613672565b1c601f1690565b600061066367ffffffffffffffff61158784670de0b6b3a7640000611607565b60006060613182611bc1565b6131996001600160a01b038416301461015161199c565b600091506131a5611a8a565b67ffffffffffffffff811180156131bb57600080fd5b506040519080825280602002602001820160405280156131e5578160200160208202803683370190505b50905060005b6131f3611a8a565b81101561323157613205600c82612ece565b82828151811061321157fe5b6020908102919091010152613229600c8260006136d6565b6001016131eb565b50915091565b60006060600061324684612cfe565b9050600081600381111561325657fe5b141561326757612e718787866136ee565b600181600381111561327557fe5b141561328557612e718785613759565b600281600381111561329357fe5b14156132a557612e718787878761377e565b612ec3610150612541565b600061072a83836001612b5f565b600060608060006132ce856137ec565b915091506132e46132dd611a8a565b8351611c5a565b6132ee828761239f565b6000606061330d8a8a8661330061067d565b613308610a22565b61380f565b9150915061331a81613978565b6133288383101560d061199c565b50989197509095505050505050565b60006060600080613347856139bc565b9150915061335f613356611a8a565b8210606461199c565b6000806133a389848151811061337157fe5b602002602001015189858151811061338557fe5b60200260200101518661339661067d565b61339e610a22565b6139d3565b915091506133b18382613468565b60606133bb611a8a565b67ffffffffffffffff811180156133d157600080fd5b506040519080825280602002602001820160405280156133fb578160200160208202803683370190505b5090508281858151811061340b57fe5b60209081029190910101529399939850929650505050505050565b60006060600061343584613aa9565b9050606061344b868361344661067d565b613abf565b9196919550909350505050565b6000610663600c83610135613b71565b80156134c557600061349a827f0000000000000000000000000000000000000000000000000000000000000000612d58565b905060006134a9600c85612ece565b90506134c2846134b983856115ce565b600c91906136d6565b50505b610a1e8282610a1e565b60006134d9611bc1565b612f6a836134ea8660200151613b98565b846134f88860400151613b98565b8860600151613bbc565b600061350c611bc1565b612f6a8361351d8660200151613b98565b8461352b8860400151613b98565b8860600151613c37565b60008161354b5750670de0b6b3a7640000610663565b8261355857506000610663565b6135857f80000000000000000000000000000000000000000000000000000000000000008410600661199c565b826135ab770bce5086492111aea88f4bb1ca6bcf584181ea8059f765328410600761199c565b826000670c7d713b49da0000831380156135cc5750670f43fc2c04ee000083125b156136035760006135dc84613cad565b9050670de0b6b3a764000080820784020583670de0b6b3a764000083050201915050613611565b8161360d84613de4565b0290505b670de0b6b3a7640000900561365f7ffffffffffffffffffffffffffffffffffffffffffffffffdc702bd3a30fc00008212801590613658575068070c1cc73b00c800008213155b600861199c565b61366881614184565b9695505050505050565b600061369d7f38e9922e00000000000000000000000000000000000000000000000000000000610e26565b82148061066357506136ce7f50dd6ed900000000000000000000000000000000000000000000000000000000610e26565b909114919050565b60009182526001928301602052604090912090910155565b600060606136fa611bc1565b600080613706856139bc565b91509150613715613356611a8a565b6000806133a389848151811061372757fe5b602002602001015189858151811061373b57fe5b60200260200101518661374c61067d565b613754610a22565b614654565b60006060600061376884613aa9565b9050606061344b868361377961067d565b61470a565b6000606061378a611bc1565b60606000613797856137ec565b915091506137a88251610b6b611a8a565b6137b2828761239f565b600060606137d18a8a866137c461067d565b6137cc610a22565b61479c565b915091506137e38383111560cf61199c565b61332881613978565b606060008280602001905181019061380491906150ca565b909590945092505050565b6000606080855167ffffffffffffffff8111801561382c57600080fd5b50604051908082528060200260200182016040528015613856578160200160208202803683370190505b5090506000805b895181101561391b576138b68a828151811061387557fe5b6020026020010151610bb68a848151811061388c57fe5b60200260200101518d85815181106138a057fe5b60200260200101516115ce90919063ffffffff16565b8382815181106138c257fe5b60200260200101818152505061391161390a8a83815181106138e057fe5b60200260200101518584815181106138f457fe5b6020026020010151612d5890919063ffffffff16565b83906115ce565b915060010161385d565b506000606061392e8b8b8b87878c6148a1565b915091506000670de0b6b3a7640000831161394a576000613966565b61396661395f84670de0b6b3a7640000611553565b8a90612d58565b9c919b50909950505050505050505050565b6139858151610b6b611a8a565b60005b613990611a8a565b811015610a1e576139b4818383815181106139a757fe5b6020026020010151613468565b600101613988565b60008082806020019051810190613804919061513e565b600080806139e58561158781896115ce565b90506139fe6729a2241af62c000082111561013361199c565b6000613a1c613a15670de0b6b3a76400008a611655565b8390614a26565b90506000613a3c613a3583670de0b6b3a7640000611553565b8b90611607565b90506000613a498a614a52565b90506000613a578383611607565b90506000613a658483611553565b90506000613a85613a7e670de0b6b3a76400008c611553565b8490611655565b83810398509050613a9682826115ce565b9850505050505050509550959350505050565b60008180602001905181019061072a9190615111565b60606000613acd8484611655565b90506060855167ffffffffffffffff81118015613ae957600080fd5b50604051908082528060200260200182016040528015613b13578160200160208202803683370190505b50905060005b8651811015613b6757613b4883888381518110613b3257fe5b602002602001015161160790919063ffffffff16565b828281518110613b5457fe5b6020908102919091010152600101613b19565b5095945050505050565b600080613b7e8585614a78565b9050613b8c8115158461199c565b60001901949350505050565b600080613ba3612b79565b90506000613bb084612ee4565b9050612f6a8183612bef565b6000613bde613bd387670429d069189e0000612d58565b83111561013061199c565b6000613bea87846115ce565b90506000613bf88883611655565b90506000613c068887612357565b90506000613c148383614a26565b9050613c29613c2282614a52565b8990612d58565b9a9950505050505050505050565b6000613c59613c4e85670429d069189e0000612d58565b83111561013161199c565b6000613c6f613c688685611553565b8690611655565b90506000613c7d8588611655565b90506000613c8b8383614a26565b90506000613ca182670de0b6b3a7640000611553565b9050613c298a82611607565b670de0b6b3a7640000026000806ec097ce7bc90715b34b9f1000000000808401907fffffffffffffffffffffffffffffffffff3f68318436f8ea4cb460f00000000085010281613cf957fe5b05905060006ec097ce7bc90715b34b9f100000000082800205905081806ec097ce7bc90715b34b9f100000000081840205915060038205016ec097ce7bc90715b34b9f100000000082840205915060058205016ec097ce7bc90715b34b9f100000000082840205915060078205016ec097ce7bc90715b34b9f100000000082840205915060098205016ec097ce7bc90715b34b9f1000000000828402059150600b8205016ec097ce7bc90715b34b9f1000000000828402059150600d8205016ec097ce7bc90715b34b9f1000000000828402059150600f826002919005919091010295945050505050565b6000670de0b6b3a7640000821215613e2157613e17826ec097ce7bc90715b34b9f100000000081613e1157fe5b05613de4565b6000039050610bd6565b60007e1600ef3172e58d2e933ec884fde10064c63b5372d805e203c00000000000008312613e7257770195e54c5dd42177f53a27172fa9ec630262827000000000830592506806f05b59d3b2000000015b73011798004d755d3c8bc8e03204cf44619e0000008312613eaa576b1425982cf597cd205cef7380830592506803782dace9d9000000015b606492830292026e01855144814a7ff805980ff00840008312613ef2576e01855144814a7ff805980ff008400068056bc75e2d63100000840205925068ad78ebc5ac62000000015b6b02df0ab5a80a22c61ab5a7008312613f2d576b02df0ab5a80a22c61ab5a70068056bc75e2d6310000084020592506856bc75e2d631000000015b693f1fce3da636ea5cf8508312613f6457693f1fce3da636ea5cf85068056bc75e2d631000008402059250682b5e3af16b18800000015b690127fa27722cc06cc5e28312613f9b57690127fa27722cc06cc5e268056bc75e2d6310000084020592506815af1d78b58c400000015b68280e60114edb805d038312613fd05768280e60114edb805d0368056bc75e2d631000008402059250680ad78ebc5ac6200000015b680ebc5fb417461211108312613ffb57680ebc5fb4174612111068056bc75e2d631000009384020592015b6808f00f760a4b2db55d8312614030576808f00f760a4b2db55d68056bc75e2d6310000084020592506802b5e3af16b1880000015b6806f5f17757889379378312614065576806f5f177578893793768056bc75e2d63100000840205925068015af1d78b58c40000015b6806248f33704b2866038312614099576806248f33704b28660368056bc75e2d63100000840205925067ad78ebc5ac620000015b6805c548670b9510e7ac83126140cd576805c548670b9510e7ac68056bc75e2d6310000084020592506756bc75e2d6310000015b600068056bc75e2d63100000840168056bc75e2d6310000080860302816140f057fe5b059050600068056bc75e2d63100000828002059050818068056bc75e2d63100000818402059150600382050168056bc75e2d63100000828402059150600582050168056bc75e2d63100000828402059150600782050168056bc75e2d63100000828402059150600982050168056bc75e2d63100000828402059150600b820501600202606485820105979650505050505050565b60006141c97ffffffffffffffffffffffffffffffffffffffffffffffffdc702bd3a30fc000083121580156141c2575068070c1cc73b00c800008313155b600961199c565b60008212156141fd576141de82600003614184565b6ec097ce7bc90715b34b9f1000000000816141f557fe5b059050610bd6565b60006806f05b59d3b2000000831261425357507ffffffffffffffffffffffffffffffffffffffffffffffff90fa4a62c4e00000090910190770195e54c5dd42177f53a27172fa9ec63026282700000000061429f565b6803782dace9d9000000831261429b57507ffffffffffffffffffffffffffffffffffffffffffffffffc87d2531627000000909101906b1425982cf597cd205cef738061429f565b5060015b6064929092029168056bc75e2d6310000068ad78ebc5ac620000008412614305577fffffffffffffffffffffffffffffffffffffffffffffff5287143a539e0000009093019268056bc75e2d631000006e01855144814a7ff805980ff008400082020590505b6856bc75e2d6310000008412614357577fffffffffffffffffffffffffffffffffffffffffffffffa9438a1d29cf0000009093019268056bc75e2d631000006b02df0ab5a80a22c61ab5a70082020590505b682b5e3af16b1880000084126143a7577fffffffffffffffffffffffffffffffffffffffffffffffd4a1c50e94e78000009093019268056bc75e2d63100000693f1fce3da636ea5cf85082020590505b6815af1d78b58c40000084126143f7577fffffffffffffffffffffffffffffffffffffffffffffffea50e2874a73c000009093019268056bc75e2d63100000690127fa27722cc06cc5e282020590505b680ad78ebc5ac62000008412614446577ffffffffffffffffffffffffffffffffffffffffffffffff5287143a539e000009093019268056bc75e2d6310000068280e60114edb805d0382020590505b68056bc75e2d631000008412614495577ffffffffffffffffffffffffffffffffffffffffffffffffa9438a1d29cf000009093019268056bc75e2d63100000680ebc5fb4174612111082020590505b6802b5e3af16b188000084126144e4577ffffffffffffffffffffffffffffffffffffffffffffffffd4a1c50e94e7800009093019268056bc75e2d631000006808f00f760a4b2db55d82020590505b68015af1d78b58c400008412614533577ffffffffffffffffffffffffffffffffffffffffffffffffea50e2874a73c00009093019268056bc75e2d631000006806f5f177578893793782020590505b68056bc75e2d631000008481019085906002908280020505918201919050600368056bc75e2d631000008783020505918201919050600468056bc75e2d631000008783020505918201919050600568056bc75e2d631000008783020505918201919050600668056bc75e2d631000008783020505918201919050600768056bc75e2d631000008783020505918201919050600868056bc75e2d631000008783020505918201919050600968056bc75e2d631000008783020505918201919050600a68056bc75e2d631000008783020505918201919050600b68056bc75e2d631000008783020505918201919050600c68056bc75e2d631000008783020505918201919050606468056bc75e2d63100000848402058502059695505050505050565b60008080614666856115878189611553565b905061467f6709b6e64a8ec6000082101561013261199c565b6000614696613a15670de0b6b3a76400008a612357565b905060006146ad6146a683614a52565b8b90612d58565b905060006146ba8a614a52565b905060006146c88383611607565b905060006146d68483611553565b90506146e2828a611607565b96506146f86146f18389611553565b82906115ce565b97505050505050509550959350505050565b606060006147188484612357565b90506060855167ffffffffffffffff8111801561473457600080fd5b5060405190808252806020026020018201604052801561475e578160200160208202803683370190505b50905060005b8651811015613b675761477d838883815181106138f457fe5b82828151811061478957fe5b6020908102919091010152600101614764565b6000606080855167ffffffffffffffff811180156147b957600080fd5b506040519080825280602002602001820160405280156147e3578160200160208202803683370190505b5090506000805b89518110156148755761482d8a828151811061480257fe5b60200260200101516115878a848151811061481957fe5b60200260200101518d8581518110612cc957fe5b83828151811061483957fe5b60200260200101818152505061486b61390a8a838151811061485757fe5b6020026020010151858481518110613b3257fe5b91506001016147ea565b50600060606148888b8b8b87878c614a97565b91509150600061396661489a84614a52565b8a90611607565b60006060855167ffffffffffffffff811180156148bd57600080fd5b506040519080825280602002602001820160405280156148e7578160200160208202803683370190505b509050670de0b6b3a7640000915060005b8851811015614a1a5760008587838151811061491057fe5b6020026020010151111561499c57600061494161493588670de0b6b3a7640000611553565b8c85815181106138f457fe5b90506000614955828b8681518110612cc957fe5b905060006149638289611607565b90506149796149728383611553565b84906115ce565b93508086868151811061498857fe5b6020026020010181815250505050506149b3565b8782815181106149a857fe5b602002602001015190505b60006149dc8b84815181106149c457fe5b6020026020010151610bb6848e87815181106138a057fe5b9050614a0e614a078b85815181106149f057fe5b602002602001015183612fbc90919063ffffffff16565b8690612d58565b945050506001016148f8565b50965096945050505050565b600080614a338484613535565b90506000614a46612fdc83612710611607565b90506125e282826115ce565b6000670de0b6b3a76400008210614a6a576000610663565b50670de0b6b3a76400000390565b6001600160a01b03166000908152600291909101602052604090205490565b60006060855167ffffffffffffffff81118015614ab357600080fd5b50604051908082528060200260200182016040528015614add578160200160208202803683370190505b509050670de0b6b3a7640000915060005b8851811015614a1a576000868281518110614b0557fe5b6020026020010151861115614b7f576000614b2261493588614a52565b90506000614b36828b8681518110612cc957fe5b90506000614b4f612fb5670de0b6b3a76400008a611553565b9050818103868681518110614b6057fe5b6020908102919091010152614b7583826115ce565b9350505050614b96565b878281518110614b8b57fe5b602002602001015190505b6000614bbf8b8481518110614ba757fe5b6020026020010151610bb6848e8781518110612cc957fe5b9050614bd3614a078b85815181106149f057fe5b94505050600101614aee565b8035610663816157fc565b600082601f830112614bfa578081fd5b8135614c0d614c08826157d0565b6157a9565b818152915060208083019084810181840286018201871015614c2e57600080fd5b60005b84811015614c4d57813584529282019290820190600101614c31565b505050505092915050565b600082601f830112614c68578081fd5b8151614c76614c08826157d0565b818152915060208083019084810181840286018201871015614c9757600080fd5b60005b84811015614c4d57815184529282019290820190600101614c9a565b600082601f830112614cc6578081fd5b813567ffffffffffffffff811115614cdc578182fd5b614cef6020601f19601f840116016157a9565b9150808252836020828501011115614d0657600080fd5b8060208401602084013760009082016020015292915050565b80356002811061066357600080fd5b600060208284031215614d3f578081fd5b813561072a816157fc565b60008060408385031215614d5c578081fd5b8235614d67816157fc565b91506020830135614d77816157fc565b809150509250929050565b600080600060608486031215614d96578081fd5b8335614da1816157fc565b92506020840135614db1816157fc565b929592945050506040919091013590565b600080600080600080600060e0888a031215614ddc578283fd5b8735614de7816157fc565b96506020880135614df7816157fc565b955060408801359450606088013593506080880135614e158161582c565b9699959850939692959460a0840135945060c09093013592915050565b60008060408385031215614e44578182fd5b8235614e4f816157fc565b946020939093013593505050565b600080600060608486031215614e71578081fd5b835167ffffffffffffffff80821115614e88578283fd5b818601915086601f830112614e9b578283fd5b8151614ea9614c08826157d0565b80828252602080830192508086018b828387028901011115614ec9578788fd5b8796505b84871015614ef4578051614ee0816157fc565b845260019690960195928101928101614ecd565b508901519097509350505080821115614f0b578283fd5b50614f1886828701614c58565b925050604084015190509250925092565b600060208284031215614f3a578081fd5b813561072a81615811565b600060208284031215614f56578081fd5b815161072a81615811565b600080600080600080600060e0888a031215614f7b578081fd5b873596506020880135614f8d816157fc565b95506040880135614f9d816157fc565b9450606088013567ffffffffffffffff80821115614fb9578283fd5b614fc58b838c01614bea565b955060808a0135945060a08a0135935060c08a0135915080821115614fe8578283fd5b50614ff58a828b01614cb6565b91505092959891949750929550565b600060208284031215615015578081fd5b81357fffffffff000000000000000000000000000000000000000000000000000000008116811461072a578182fd5b600060208284031215615055578081fd5b815161072a816157fc565b60008060408385031215615072578182fd5b823561507d816157fc565b9150602083013567ffffffffffffffff811115615098578182fd5b6150a485828601614cb6565b9150509250929050565b6000602082840312156150bf578081fd5b815161072a8161581f565b6000806000606084860312156150de578081fd5b83516150e98161581f565b602085015190935067ffffffffffffffff811115615105578182fd5b614f1886828701614c58565b60008060408385031215615123578182fd5b825161512e8161581f565b6020939093015192949293505050565b600080600060608486031215615152578081fd5b835161515d8161581f565b602085015160409095015190969495509392505050565b60008060408385031215615186578182fd5b82516151918161581f565b602084015190925067ffffffffffffffff8111156151ad578182fd5b6150a485828601614c58565b6000806000606084860312156151cd578081fd5b833567ffffffffffffffff808211156151e4578283fd5b81860191506101208083890312156151fa578384fd5b615203816157a9565b905061520f8884614d1f565b815261521e8860208501614bdf565b60208201526152308860408501614bdf565b6040820152606083013560608201526080830135608082015260a083013560a08201526152608860c08501614bdf565b60c08201526152728860e08501614bdf565b60e0820152610100808401358381111561528a578586fd5b6152968a828701614cb6565b9183019190915250976020870135975060409096013595945050505050565b6000602082840312156152c6578081fd5b5035919050565b6000806000606084860312156152e1578081fd5b8335925060208401359150604084013567ffffffffffffffff811115615305578182fd5b61531186828701614bea565b9150509250925092565b60008060008060808587031215615330578182fd5b8451935060208501519250604085015191506060850151615350816157fc565b939692955090935050565b60006020828403121561536c578081fd5b815161072a8161582c565b6000815180845260208085019450808401835b838110156153a65781518752958201959082019060010161538a565b509495945050505050565b15159052565b60008151808452815b818110156153dc576020818501810151868301820152016153c0565b818111156153ed5782602083870101525b50601f01601f19169290920160200192915050565b9182527fffffffff0000000000000000000000000000000000000000000000000000000016602082015260240190565b6000828483379101908152919050565b7f190100000000000000000000000000000000000000000000000000000000000081526002810192909252602282015260420190565b6001600160a01b0391909116815260200190565b604080825283519082018190526000906020906060840190828701845b828110156154ce5781516001600160a01b0316845292840192908401906001016154a9565b505050838103828501526136688186615377565b60006020825261072a6020830184615377565b6000604082526155086040830185615377565b82810360208401526125e28185615377565b901515815260200190565b92151583526020830191909152604082015260600190565b90815260200190565b9283526001600160a01b03918216602084015216604082015260600190565b600085825260206001600160a01b038087168285015280861660408501525060806060840152610100830184516080808601528181518084526101208701915084830193508592505b808310156155d6576155c084516157f0565b82529284019260019290920191908401906155ae565b508387015193507fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff809250828682030160a08701526156148185615377565b935050506040850151818584030160c086015261563183826153b7565b92505050606084015161564760e08501826153b1565b509695505050505050565b9586526001600160a01b0394851660208701529290931660408501526060840152608083019190915260a082015260c00190565b9485526020850193909352604084019190915260608301526001600160a01b0316608082015260a00190565b600083825260406020830152612f6a60408301846153b7565b9182526001600160a01b0316602082015260400190565b93845260ff9290921660208401526040830152606082015260800190565b602081016004831061570e57fe5b91905290565b60006020825261072a60208301846153b7565b600083825260406020830152612f6a6040830184615377565b6000848252836020830152606060408301526125e26060830184615377565b60008582528460208301526080604083015261577e6080830185615377565b82810360608401526157908185615377565b979650505050505050565b60ff91909116815260200190565b60405181810167ffffffffffffffff811182821017156157c857600080fd5b604052919050565b600067ffffffffffffffff8211156157e6578081fd5b5060209081020190565b6001600160a01b031690565b6001600160a01b038116811461067a57600080fd5b801515811461067a57600080fd5b6004811061067a57600080fd5b60ff8116811461067a57600080fdfea264697066735822122028ca628d97b6143340c071ae5b0d0c83a983b003d9aa3e14d77bf00b613b7ba064736f6c63430007010033
Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)
0000000000000000000000000000000000000000000000000000000000000020000000000000000000000000ba12222222228d8ba445958a75a0704d566bf2c8000000000000000000000000000000000000000000000000000000000000018000000000000000000000000000000000000000000000000000000000000001c00000000000000000000000000000000000000000000000000000000000000200000000000000000000000000000000000000000000000000000000000000026000000000000000000000000000000000000000000000000000000000000002c00000000000000000000000000000000000000000000000000018838370f33fff00000000000000000000000000000000000000000000000000000000004bd2550000000000000000000000000000000000000000000000000000000000278d00000000000000000000000000aeca461405dd2892fba8bd03efe6ab89749d4b390000000000000000000000000000000000000000000000000000000000000001000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000164d657461466163746f727920506f6f6c20546f6b656e00000000000000000000000000000000000000000000000000000000000000000000000000000000000669524f424f5400000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000002000000000000000000000000c02aaa39b223fe8d0a0e5c4f27ead9083c756cc2000000000000000000000000fb5453340c03db5ade474b27e68b6a9c6b2823eb00000000000000000000000000000000000000000000000000000000000000020000000000000000000000000000000000000000000000000dbd2fc137a30000000000000000000000000000000000000000000000000000002386f26fc10000000000000000000000000000000000000000000000000000000000000000000200000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
-----Decoded View---------------
Arg [0] : params (tuple): System.Collections.Generic.List`1[Nethereum.ABI.FunctionEncoding.ParameterOutput]
-----Encoded View---------------
26 Constructor Arguments found :
Arg [0] : 0000000000000000000000000000000000000000000000000000000000000020
Arg [1] : 000000000000000000000000ba12222222228d8ba445958a75a0704d566bf2c8
Arg [2] : 0000000000000000000000000000000000000000000000000000000000000180
Arg [3] : 00000000000000000000000000000000000000000000000000000000000001c0
Arg [4] : 0000000000000000000000000000000000000000000000000000000000000200
Arg [5] : 0000000000000000000000000000000000000000000000000000000000000260
Arg [6] : 00000000000000000000000000000000000000000000000000000000000002c0
Arg [7] : 0000000000000000000000000000000000000000000000000018838370f33fff
Arg [8] : 00000000000000000000000000000000000000000000000000000000004bd255
Arg [9] : 0000000000000000000000000000000000000000000000000000000000278d00
Arg [10] : 000000000000000000000000aeca461405dd2892fba8bd03efe6ab89749d4b39
Arg [11] : 0000000000000000000000000000000000000000000000000000000000000001
Arg [12] : 0000000000000000000000000000000000000000000000000000000000000000
Arg [13] : 0000000000000000000000000000000000000000000000000000000000000016
Arg [14] : 4d657461466163746f727920506f6f6c20546f6b656e00000000000000000000
Arg [15] : 0000000000000000000000000000000000000000000000000000000000000006
Arg [16] : 69524f424f540000000000000000000000000000000000000000000000000000
Arg [17] : 0000000000000000000000000000000000000000000000000000000000000002
Arg [18] : 000000000000000000000000c02aaa39b223fe8d0a0e5c4f27ead9083c756cc2
Arg [19] : 000000000000000000000000fb5453340c03db5ade474b27e68b6a9c6b2823eb
Arg [20] : 0000000000000000000000000000000000000000000000000000000000000002
Arg [21] : 0000000000000000000000000000000000000000000000000dbd2fc137a30000
Arg [22] : 000000000000000000000000000000000000000000000000002386f26fc10000
Arg [23] : 0000000000000000000000000000000000000000000000000000000000000002
Arg [24] : 0000000000000000000000000000000000000000000000000000000000000000
Arg [25] : 0000000000000000000000000000000000000000000000000000000000000000
Loading...
Loading
Loading...
Loading
[ Download: CSV Export ]
[ Download: CSV Export ]
A token is a representation of an on-chain or off-chain asset. The token page shows information such as price, total supply, holders, transfers and social links. Learn more about this page in our Knowledge Base.