ETH Price: $3,226.59 (+2.99%)

Contract Diff Checker

Contract Name:
RewardOpenSlim

Contract Source Code:

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import "../interfaces/IPool.sol";
import "../interfaces/IPosition.sol";
interface IFactory {
    event PoolCreated(address poolAddress, uint256 fee, uint256 tickSpacing, int32 activeTick, int256 lookback, uint64 protocolFeeRatio, IERC20 tokenA, IERC20 tokenB);
    event SetFactoryProtocolFeeRatio(uint64 protocolFeeRatio);
    event SetFactoryOwner(address owner);
    /// @notice creates new pool
    /// @param _fee is a rate in prbmath 60x18 decimal format
    /// @param _tickSpacing  1.0001^tickSpacing is the bin width
    /// @param _activeTick initial activeTick of the pool
    /// @param _lookback TWAP lookback in whole seconds
    /// @param _tokenA ERC20 token
    /// @param _tokenB ERC20 token
    function create(
        uint256 _fee,
        uint256 _tickSpacing,
        int256 _lookback,
        int32 _activeTick,
        IERC20 _tokenA,
        IERC20 _tokenB
    ) external returns (IPool);
    function lookup(
        uint256 fee,
        uint256 tickSpacing,
        int256 lookback,
        IERC20 tokenA,
        IERC20 tokenB
    ) external view returns (IPool);
    function owner() external view returns (address);
    function position() external view returns (IPosition);
    /// @notice protocolFeeRatio ratio of the swap fee that is kept for the
    //protocol
    function protocolFeeRatio() external view returns (uint64);
    /// @notice lookup table for whether a pool is owned by the factory
    function isFactoryPool(IPool pool) external view returns (bool);
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import "./IFactory.sol";
interface IPool {
    event Swap(address sender, address recipient, bool tokenAIn, bool exactOutput, uint256 amountIn, uint256 amountOut, int32 activeTick);
    event AddLiquidity(address indexed sender, uint256 indexed tokenId, BinDelta[] binDeltas);
    event MigrateBinsUpStack(address indexed sender, uint128 binId, uint32 maxRecursion);
    event TransferLiquidity(uint256 fromTokenId, uint256 toTokenId, RemoveLiquidityParams[] params);
    event RemoveLiquidity(address indexed sender, address indexed recipient, uint256 indexed tokenId, BinDelta[] binDeltas);
    event BinMerged(uint128 indexed binId, uint128 reserveA, uint128 reserveB, uint128 mergeId);
    event BinMoved(uint128 indexed binId, int128 previousTick, int128 newTick);
    event ProtocolFeeCollected(uint256 protocolFee, bool isTokenA);
    event SetProtocolFeeRatio(uint256 protocolFee);
    /// @notice return parameters for Add/Remove liquidity
    /// @param binId of the bin that changed
    /// @param kind one of the 4 Kinds (0=static, 1=right, 2=left, 3=both)
    /// @param isActive bool to indicate whether the bin is still active
    /// @param lowerTick is the lower price tick of the bin in its current state
    /// @param deltaA amount of A token that has been added or removed
    /// @param deltaB amount of B token that has been added or removed
    /// @param deltaLpToken amount of LP balance that has increase (add) or decreased (remove)
    struct BinDelta {
        uint128 deltaA;
        uint128 deltaB;
        uint256 deltaLpBalance;
        uint128 binId;
        uint8 kind;
        int32 lowerTick;
        bool isActive;
    }
    /// @notice time weighted average state
    /// @param twa the twa at the last update instant
    /// @param value the new value that was passed in at the last update
    /// @param lastTimestamp timestamp of the last update in seconds
    /// @param lookback time in seconds
    struct TwaState {
        int96 twa;
        int96 value;
        uint64 lastTimestamp;
    }
    /// @notice bin state parameters
    /// @param kind one of the 4 Kinds (0=static, 1=right, 2=left, 3=both)
    /// @param lowerTick is the lower price tick of the bin in its current state
    /// @param mergeId binId of the bin that this bin has merged in to
    /// @param reserveA amount of A token in bin
    /// @param reserveB amount of B token in bin
    /// @param totalSupply total amount of LP tokens in this bin
    /// @param mergeBinBalance LP token balance that this bin posseses of the merge bin
    struct BinState {
        uint128 reserveA;
        uint128 reserveB;
        uint128 mergeBinBalance;
        uint128 mergeId;
        uint128 totalSupply;
        uint8 kind;
        int32 lowerTick;
    }
    /// @notice Parameters for each bin that will get new liquidity
    /// @param kind one of the 4 Kinds (0=static, 1=right, 2=left, 3=both)
    /// @param pos bin position
    /// @param isDelta bool that indicates whether the bin position is relative
    //to the current bin or an absolute position
    /// @param deltaA amount of A token to add
    /// @param deltaB amount of B token to add
    struct AddLiquidityParams {
        uint8 kind;
        int32 pos;
        bool isDelta;
        uint128 deltaA;
        uint128 deltaB;
    }
    /// @notice Parameters for each bin that will have liquidity removed
    /// @param binId index of the bin losing liquidity
    /// @param amount LP balance amount to remove
    struct RemoveLiquidityParams {
        uint128 binId;
        uint128 amount;
    }
    /// @notice State of the pool
    /// @param activeTick  current bin position that contains the active bins
    /// @param status pool status.  e.g. locked or unlocked; status values
    //defined in Pool.sol
    /// @param binCounter index of the last bin created
    /// @param protocolFeeRatio ratio of the swap fee that is kept for the
    //protocol
    struct State {
        int32 activeTick;
        uint8 status;
        uint128 binCounter;
        uint64 protocolFeeRatio;
    }
    /// @notice fee for pool in 18 decimal format
    function fee() external view returns (uint256);
    /// @notice tickSpacing of pool where 1.0001^tickSpacing is the bin width
    function tickSpacing() external view returns (uint256);
    /// @notice address of token A
    function tokenA() external view returns (IERC20);
    /// @notice address of token B
    function tokenB() external view returns (IERC20);
    /// @notice address of Factory
    function factory() external view returns (IFactory);
    /// @notice bitmap of active bins
    function binMap(int32 tick) external view returns (uint256);
    /// @notice mapping of tick/kind to binId
    function binPositions(int32 tick, uint256 kind) external view returns (uint128);
    /// @notice internal accounting of the sum tokenA balance across bins
    function binBalanceA() external view returns (uint128);
    /// @notice internal accounting of the sum tokenB balance across bins
    function binBalanceB() external view returns (uint128);
    /// @notice Twa state values
    function getTwa() external view returns (TwaState memory);
    /// @notice log base binWidth of the time weighted average price
    function getCurrentTwa() external view returns (int256);
    /// @notice pool state
    function getState() external view returns (State memory);
    /// @notice Add liquidity to a pool.
    /// @param tokenId NFT token ID that will hold the position
    /// @param params array of AddLiquidityParams that specify the mode and
    //position of the liquidity
    /// @param data callback function that addLiquidity will call so that the
    //caller can transfer tokens
    function addLiquidity(
        uint256 tokenId,
        AddLiquidityParams[] calldata params,
        bytes calldata data
    )
        external
        returns (
            uint256 tokenAAmount,
            uint256 tokenBAmount,
            BinDelta[] memory binDeltas
        );
    /// @notice Transfer liquidity in an array of bins from one nft tokenId
    //to another
    /// @param fromTokenId NFT token ID that holds the position being transferred
    /// @param toTokenId NFT token ID that is receiving liquidity
    /// @param params array of binIds and amounts to transfer
    function transferLiquidity(
        uint256 fromTokenId,
        uint256 toTokenId,
        RemoveLiquidityParams[] calldata params
    ) external;
    /// @notice Remove liquidity from a pool.
    /// @param recipient address that will receive the removed tokens
    /// @param tokenId NFT token ID that holds the position being removed
    /// @param params array of RemoveLiquidityParams that specify the bins,
    //and amounts
    function removeLiquidity(
        address recipient,
        uint256 tokenId,
        RemoveLiquidityParams[] calldata params
    )
        external
        returns (
            uint256 tokenAOut,
            uint256 tokenBOut,
            BinDelta[] memory binDeltas
        );
    /// @notice Migrate bins up the linked list of merged bins so that its
    //mergeId is the currrent active bin.
    /// @param binId is an array of the binIds to be migrated
    /// @param maxRecursion is the maximum recursion depth of the migration. set to
    //zero to recurse until the active bin is found.
    function migrateBinUpStack(uint128 binId, uint32 maxRecursion) external;
    /// @notice swap tokens
    /// @param recipient address that will receive the output tokens
    /// @param amount amount of token that is either the input if exactOutput
    //is false or the output if exactOutput is true
    /// @param tokenAIn bool indicating whether tokenA is the input
    /// @param exactOutput bool indicating whether the amount specified is the
    //exact output amount (true)
    /// @param sqrtPriceLimit limiting sqrt price of the swap.  A value of 0
    //indicates no limit.  Limit is only engaged for exactOutput=false.  If the
    //limit is reached only part of the input amount will be swapped and the
    //callback will only require that amount of the swap to be paid.
    /// @param data callback function that swap will call so that the
    //caller can transfer tokens
    function swap(
        address recipient,
        uint256 amount,
        bool tokenAIn,
        bool exactOutput,
        uint256 sqrtPriceLimit,
        bytes calldata data
    ) external returns (uint256 amountIn, uint256 amountOut);
    /// @notice bin information for a given binId
    function getBin(uint128 binId) external view returns (BinState memory bin);
    /// @notice LP token balance for a given tokenId at a given binId
    function balanceOf(uint256 tokenId, uint128 binId) external view returns (uint256 lpToken);
    /// @notice tokenA scale value
    /// @dev msb is a flag to indicate whether tokenA has more or less than 18
    //decimals.  Scale is used in conjuction with Math.toScale/Math.fromScale
    //functions to convert from token amounts to D18 scale internal pool
    //accounting.
    function tokenAScale() external view returns (uint256);
    /// @notice tokenB scale value
    /// @dev msb is a flag to indicate whether tokenA has more or less than 18
    //decimals.  Scale is used in conjuction with Math.toScale/Math.fromScale
    //functions to convert from token amounts to D18 scale internal pool
    //accounting.
    function tokenBScale() external view returns (uint256);
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import "@openzeppelin/contracts/token/ERC721/extensions/IERC721Enumerable.sol";
import "../interfaces/IPositionMetadata.sol";
interface IPosition is IERC721Enumerable {
    event SetMetadata(IPositionMetadata metadata);
    /// @notice mint new position NFT
    function mint(address to) external returns (uint256 tokenId);
    /// @notice mint new position NFT
    function tokenOfOwnerByIndexExists(address owner, uint256 index) external view returns (bool);
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

interface IPositionMetadata {
    function tokenURI(uint256 tokenId) external view returns (string memory);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (security/ReentrancyGuard.sol)

pragma solidity ^0.8.0;

/**
 * @dev Contract module that helps prevent reentrant calls to a function.
 *
 * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
 * available, which can be applied to functions to make sure there are no nested
 * (reentrant) calls to them.
 *
 * Note that because there is a single `nonReentrant` guard, functions marked as
 * `nonReentrant` may not call one another. This can be worked around by making
 * those functions `private`, and then adding `external` `nonReentrant` entry
 * points to them.
 *
 * TIP: If you would like to learn more about reentrancy and alternative ways
 * to protect against it, check out our blog post
 * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
 */
abstract contract ReentrancyGuard {
    // Booleans are more expensive than uint256 or any type that takes up a full
    // word because each write operation emits an extra SLOAD to first read the
    // slot's contents, replace the bits taken up by the boolean, and then write
    // back. This is the compiler's defense against contract upgrades and
    // pointer aliasing, and it cannot be disabled.

    // The values being non-zero value makes deployment a bit more expensive,
    // but in exchange the refund on every call to nonReentrant will be lower in
    // amount. Since refunds are capped to a percentage of the total
    // transaction's gas, it is best to keep them low in cases like this one, to
    // increase the likelihood of the full refund coming into effect.
    uint256 private constant _NOT_ENTERED = 1;
    uint256 private constant _ENTERED = 2;

    uint256 private _status;

    constructor() {
        _status = _NOT_ENTERED;
    }

    /**
     * @dev Prevents a contract from calling itself, directly or indirectly.
     * Calling a `nonReentrant` function from another `nonReentrant`
     * function is not supported. It is possible to prevent this from happening
     * by making the `nonReentrant` function external, and making it call a
     * `private` function that does the actual work.
     */
    modifier nonReentrant() {
        // On the first call to nonReentrant, _notEntered will be true
        require(_status != _ENTERED, "ReentrancyGuard: reentrant call");

        // Any calls to nonReentrant after this point will fail
        _status = _ENTERED;

        _;

        // By storing the original value once again, a refund is triggered (see
        // https://eips.ethereum.org/EIPS/eip-2200)
        _status = _NOT_ENTERED;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/draft-IERC20Permit.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 */
interface IERC20Permit {
    /**
     * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
     * given ``owner``'s signed approval.
     *
     * IMPORTANT: The same issues {IERC20-approve} has related to transaction
     * ordering also apply here.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `deadline` must be a timestamp in the future.
     * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
     * over the EIP712-formatted function arguments.
     * - the signature must use ``owner``'s current nonce (see {nonces}).
     *
     * For more information on the signature format, see the
     * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
     * section].
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external;

    /**
     * @dev Returns the current nonce for `owner`. This value must be
     * included whenever a signature is generated for {permit}.
     *
     * Every successful call to {permit} increases ``owner``'s nonce by one. This
     * prevents a signature from being used multiple times.
     */
    function nonces(address owner) external view returns (uint256);

    /**
     * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view returns (bytes32);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol)

pragma solidity ^0.8.0;

import "../IERC20.sol";

/**
 * @dev Interface for the optional metadata functions from the ERC20 standard.
 *
 * _Available since v4.1._
 */
interface IERC20Metadata is IERC20 {
    /**
     * @dev Returns the name of the token.
     */
    function name() external view returns (string memory);

    /**
     * @dev Returns the symbol of the token.
     */
    function symbol() external view returns (string memory);

    /**
     * @dev Returns the decimals places of the token.
     */
    function decimals() external view returns (uint8);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the amount of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the amount of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves `amount` tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 amount) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 amount) external returns (bool);

    /**
     * @dev Moves `amount` tokens from `from` to `to` using the
     * allowance mechanism. `amount` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(
        address from,
        address to,
        uint256 amount
    ) external returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (token/ERC20/utils/SafeERC20.sol)

pragma solidity ^0.8.0;

import "../IERC20.sol";
import "../extensions/draft-IERC20Permit.sol";
import "../../../utils/Address.sol";

/**
 * @title SafeERC20
 * @dev Wrappers around ERC20 operations that throw on failure (when the token
 * contract returns false). Tokens that return no value (and instead revert or
 * throw on failure) are also supported, non-reverting calls are assumed to be
 * successful.
 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
 */
library SafeERC20 {
    using Address for address;

    function safeTransfer(
        IERC20 token,
        address to,
        uint256 value
    ) internal {
        _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
    }

    function safeTransferFrom(
        IERC20 token,
        address from,
        address to,
        uint256 value
    ) internal {
        _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
    }

    /**
     * @dev Deprecated. This function has issues similar to the ones found in
     * {IERC20-approve}, and its usage is discouraged.
     *
     * Whenever possible, use {safeIncreaseAllowance} and
     * {safeDecreaseAllowance} instead.
     */
    function safeApprove(
        IERC20 token,
        address spender,
        uint256 value
    ) internal {
        // safeApprove should only be called when setting an initial allowance,
        // or when resetting it to zero. To increase and decrease it, use
        // 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
        require(
            (value == 0) || (token.allowance(address(this), spender) == 0),
            "SafeERC20: approve from non-zero to non-zero allowance"
        );
        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
    }

    function safeIncreaseAllowance(
        IERC20 token,
        address spender,
        uint256 value
    ) internal {
        uint256 newAllowance = token.allowance(address(this), spender) + value;
        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
    }

    function safeDecreaseAllowance(
        IERC20 token,
        address spender,
        uint256 value
    ) internal {
        unchecked {
            uint256 oldAllowance = token.allowance(address(this), spender);
            require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
            uint256 newAllowance = oldAllowance - value;
            _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
        }
    }

    function safePermit(
        IERC20Permit token,
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal {
        uint256 nonceBefore = token.nonces(owner);
        token.permit(owner, spender, value, deadline, v, r, s);
        uint256 nonceAfter = token.nonces(owner);
        require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     */
    function _callOptionalReturn(IERC20 token, bytes memory data) private {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that
        // the target address contains contract code and also asserts for success in the low-level call.

        bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
        if (returndata.length > 0) {
            // Return data is optional
            require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.5.0) (token/ERC721/extensions/IERC721Enumerable.sol)

pragma solidity ^0.8.0;

import "../IERC721.sol";

/**
 * @title ERC-721 Non-Fungible Token Standard, optional enumeration extension
 * @dev See https://eips.ethereum.org/EIPS/eip-721
 */
interface IERC721Enumerable is IERC721 {
    /**
     * @dev Returns the total amount of tokens stored by the contract.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns a token ID owned by `owner` at a given `index` of its token list.
     * Use along with {balanceOf} to enumerate all of ``owner``'s tokens.
     */
    function tokenOfOwnerByIndex(address owner, uint256 index) external view returns (uint256);

    /**
     * @dev Returns a token ID at a given `index` of all the tokens stored by the contract.
     * Use along with {totalSupply} to enumerate all tokens.
     */
    function tokenByIndex(uint256 index) external view returns (uint256);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (token/ERC721/IERC721.sol)

pragma solidity ^0.8.0;

import "../../utils/introspection/IERC165.sol";

/**
 * @dev Required interface of an ERC721 compliant contract.
 */
interface IERC721 is IERC165 {
    /**
     * @dev Emitted when `tokenId` token is transferred from `from` to `to`.
     */
    event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);

    /**
     * @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
     */
    event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);

    /**
     * @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets.
     */
    event ApprovalForAll(address indexed owner, address indexed operator, bool approved);

    /**
     * @dev Returns the number of tokens in ``owner``'s account.
     */
    function balanceOf(address owner) external view returns (uint256 balance);

    /**
     * @dev Returns the owner of the `tokenId` token.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     */
    function ownerOf(uint256 tokenId) external view returns (address owner);

    /**
     * @dev Safely transfers `tokenId` token from `from` to `to`.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must exist and be owned by `from`.
     * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
     * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
     *
     * Emits a {Transfer} event.
     */
    function safeTransferFrom(
        address from,
        address to,
        uint256 tokenId,
        bytes calldata data
    ) external;

    /**
     * @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
     * are aware of the ERC721 protocol to prevent tokens from being forever locked.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must exist and be owned by `from`.
     * - If the caller is not `from`, it must have been allowed to move this token by either {approve} or {setApprovalForAll}.
     * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
     *
     * Emits a {Transfer} event.
     */
    function safeTransferFrom(
        address from,
        address to,
        uint256 tokenId
    ) external;

    /**
     * @dev Transfers `tokenId` token from `from` to `to`.
     *
     * WARNING: Usage of this method is discouraged, use {safeTransferFrom} whenever possible.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must be owned by `from`.
     * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(
        address from,
        address to,
        uint256 tokenId
    ) external;

    /**
     * @dev Gives permission to `to` to transfer `tokenId` token to another account.
     * The approval is cleared when the token is transferred.
     *
     * Only a single account can be approved at a time, so approving the zero address clears previous approvals.
     *
     * Requirements:
     *
     * - The caller must own the token or be an approved operator.
     * - `tokenId` must exist.
     *
     * Emits an {Approval} event.
     */
    function approve(address to, uint256 tokenId) external;

    /**
     * @dev Approve or remove `operator` as an operator for the caller.
     * Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller.
     *
     * Requirements:
     *
     * - The `operator` cannot be the caller.
     *
     * Emits an {ApprovalForAll} event.
     */
    function setApprovalForAll(address operator, bool _approved) external;

    /**
     * @dev Returns the account approved for `tokenId` token.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     */
    function getApproved(uint256 tokenId) external view returns (address operator);

    /**
     * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
     *
     * See {setApprovalForAll}
     */
    function isApprovedForAll(address owner, address operator) external view returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (utils/Address.sol)

pragma solidity ^0.8.1;

/**
 * @dev Collection of functions related to the address type
 */
library Address {
    /**
     * @dev Returns true if `account` is a contract.
     *
     * [IMPORTANT]
     * ====
     * It is unsafe to assume that an address for which this function returns
     * false is an externally-owned account (EOA) and not a contract.
     *
     * Among others, `isContract` will return false for the following
     * types of addresses:
     *
     *  - an externally-owned account
     *  - a contract in construction
     *  - an address where a contract will be created
     *  - an address where a contract lived, but was destroyed
     * ====
     *
     * [IMPORTANT]
     * ====
     * You shouldn't rely on `isContract` to protect against flash loan attacks!
     *
     * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
     * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
     * constructor.
     * ====
     */
    function isContract(address account) internal view returns (bool) {
        // This method relies on extcodesize/address.code.length, which returns 0
        // for contracts in construction, since the code is only stored at the end
        // of the constructor execution.

        return account.code.length > 0;
    }

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        require(address(this).balance >= amount, "Address: insufficient balance");

        (bool success, ) = recipient.call{value: amount}("");
        require(success, "Address: unable to send value, recipient may have reverted");
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason, it is bubbled up by this
     * function (like regular Solidity function calls).
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     *
     * _Available since v3.1._
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCall(target, data, "Address: low-level call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
     * `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(
        address target,
        bytes memory data,
        uint256 value
    ) internal returns (bytes memory) {
        return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
    }

    /**
     * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
     * with `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(
        address target,
        bytes memory data,
        uint256 value,
        string memory errorMessage
    ) internal returns (bytes memory) {
        require(address(this).balance >= value, "Address: insufficient balance for call");
        require(isContract(target), "Address: call to non-contract");

        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResult(success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        return functionStaticCall(target, data, "Address: low-level static call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        require(isContract(target), "Address: static call to non-contract");

        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResult(success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionDelegateCall(target, data, "Address: low-level delegate call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        require(isContract(target), "Address: delegate call to non-contract");

        (bool success, bytes memory returndata) = target.delegatecall(data);
        return verifyCallResult(success, returndata, errorMessage);
    }

    /**
     * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the
     * revert reason using the provided one.
     *
     * _Available since v4.3._
     */
    function verifyCallResult(
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal pure returns (bytes memory) {
        if (success) {
            return returndata;
        } else {
            // Look for revert reason and bubble it up if present
            if (returndata.length > 0) {
                // The easiest way to bubble the revert reason is using memory via assembly
                /// @solidity memory-safe-assembly
                assembly {
                    let returndata_size := mload(returndata)
                    revert(add(32, returndata), returndata_size)
                }
            } else {
                revert(errorMessage);
            }
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC165 standard, as defined in the
 * https://eips.ethereum.org/EIPS/eip-165[EIP].
 *
 * Implementers can declare support of contract interfaces, which can then be
 * queried by others ({ERC165Checker}).
 *
 * For an implementation, see {ERC165}.
 */
interface IERC165 {
    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30 000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (utils/math/Math.sol)

pragma solidity ^0.8.0;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Down, // Toward negative infinity
        Up, // Toward infinity
        Zero // Toward zero
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a >= b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds up instead
     * of rounding down.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
     * with further edits by Uniswap Labs also under MIT license.
     */
    function mulDiv(
        uint256 x,
        uint256 y,
        uint256 denominator
    ) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod0 := mul(x, y)
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            require(denominator > prod1);

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
            // See https://cs.stackexchange.com/q/138556/92363.

            // Does not overflow because the denominator cannot be zero at this stage in the function.
            uint256 twos = denominator & (~denominator + 1);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
            // in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(
        uint256 x,
        uint256 y,
        uint256 denominator,
        Rounding rounding
    ) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. It the number is not a perfect square, the value is rounded down.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`.
        // We also know that `k`, the position of the most significant bit, is such that `msb(a) = 2**k`.
        // This gives `2**k < a <= 2**(k+1)` → `2**(k/2) <= sqrt(a) < 2 ** (k/2+1)`.
        // Using an algorithm similar to the msb conmputation, we are able to compute `result = 2**(k/2)` which is a
        // good first aproximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1;
        uint256 x = a;
        if (x >> 128 > 0) {
            x >>= 128;
            result <<= 64;
        }
        if (x >> 64 > 0) {
            x >>= 64;
            result <<= 32;
        }
        if (x >> 32 > 0) {
            x >>= 32;
            result <<= 16;
        }
        if (x >> 16 > 0) {
            x >>= 16;
            result <<= 8;
        }
        if (x >> 8 > 0) {
            x >>= 8;
            result <<= 4;
        }
        if (x >> 4 > 0) {
            x >>= 4;
            result <<= 2;
        }
        if (x >> 2 > 0) {
            result <<= 1;
        }

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        uint256 result = sqrt(a);
        if (rounding == Rounding.Up && result * result < a) {
            result += 1;
        }
        return result;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.5.0) (utils/Multicall.sol)

pragma solidity ^0.8.0;

import "./Address.sol";

/**
 * @dev Provides a function to batch together multiple calls in a single external call.
 *
 * _Available since v4.1._
 */
abstract contract Multicall {
    /**
     * @dev Receives and executes a batch of function calls on this contract.
     */
    function multicall(bytes[] calldata data) external virtual returns (bytes[] memory results) {
        results = new bytes[](data.length);
        for (uint256 i = 0; i < data.length; i++) {
            results[i] = Address.functionDelegateCall(address(this), data[i]);
        }
        return results;
    }
}

// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.0;

import {IPool} from "@maverickprotocol/maverick-v1-interfaces/contracts/interfaces/IPool.sol";
import {IFactory} from "@maverickprotocol/maverick-v1-interfaces/contracts/interfaces/IFactory.sol";

import {IPoolPositionSlim} from "./IPoolPositionSlim.sol";
import {IReward} from "./IReward.sol";

interface IPoolPositionAndRewardFactorySlim {
    event PoolPositionCreated(IPool pool, uint128[] binIds, uint128[] ratios, IPoolPositionSlim poolPosition, uint256 poolPositionNumber);

    event LpRewardCreated(IPoolPositionSlim poolPosition, address reward);

    event AddNewApprovedRewardToken(address rewardToken, uint256 minimumAmount);

    struct RewardInfos {
        IReward.RewardInfo[] rewardInfoList;
    }

    function allPoolPositions(uint256 poolPositionNumber) external view returns (IPoolPositionSlim poolPosition);

    function poolPositionNumber(IPoolPositionSlim poolPosition) external view returns (uint256 poolPositionNumber);

    function getLpRewardByPP(IPoolPositionSlim) external view returns (IReward);

    function poolFactory() external view returns (IFactory);

    function allPoolPositionsLength() external view returns (uint256);

    function isApprovedRewardToken(address reward) external view returns (bool);

    function minimumRewardAmount(address reward) external view returns (uint256);

    function isPoolPosition(IPoolPositionSlim poolPosition) external view returns (bool);

    function createPoolPositionAndRewards(IPool pool, uint128[] calldata binIds, uint128[] calldata ratios, bool isStatic) external returns (IPoolPositionSlim);

    function owner() external view returns (address);
}

// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.0;

import {IERC20Metadata} from "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol";

import {IPool} from "@maverickprotocol/maverick-v1-interfaces/contracts/interfaces/IPool.sol";

interface IPoolPositionSlim is IERC20Metadata {
    error InvalidBinIds(uint128[] binIds);
    error InvalidRatio();
    error BinIsMerged();
    error InvalidTokenId(uint256 tokenId);

    event MigrateBinLiquidity(uint128 oldBinId, uint128 newBinId);

    function allBinIds() external view returns (uint128[] memory);

    function binIds(uint256) external view returns (uint128);

    function ratios(uint256) external view returns (uint128);

    /// @notice tokenId that holds PP assets
    function tokenId() external view returns (uint256);

    /// @notice Pool that the position exists in
    function pool() external view returns (IPool);

    /// @notice Whether or not the PP contains all static bins as opposed to
    //movement bins
    function isStatic() external view returns (bool);

    /// @notice Returns struct array of bin lp amounts that need to be transfered for a mint
    /// @param  binZeroLpAddAmount LP amount of bin[0] to be added
    function binLpAddAmountRequirement(uint128 binZeroLpAddAmount) external view returns (IPool.RemoveLiquidityParams[] memory params);

    /// @notice Burns PoolPosition ERC20 tokens from given account and
    //trasnfers Pool liquidity position to toTokenId
    /// @param account wallet or contract whose PoolPosition tokens will be
    //burned
    /// @param toTokenId pool.position() that will own the output liquidity
    /// @param lpAmountToUnStake number of PoolPosition LPs tokens to burn
    function burnFromToTokenIdAsBinLiquidity(address account, uint256 toTokenId, uint256 lpAmountToUnStake) external returns (IPool.RemoveLiquidityParams[] memory params);

    /// @notice Burns PoolPosition ERC20 tokens and trasnfers resulting
    //liquidity as A/B tokens to recipient
    /// @param account wallet or contract whose PoolPosition tokens will be
    //burned
    /// @param recipient pool.position() that will own the output tokens
    /// @param lpAmountToUnStake number of PoolPosition LPs tokens to burn
    function burnFromToAddressAsReserves(address account, address recipient, uint256 lpAmountToUnStake) external returns (uint256 amountA, uint256 amountB);

    /// @notice Migrates the PoolPosition liquidity to active bin if the
    //liquidity is currently merged
    /// @dev Migrating only applies to one-bin dynamic-kind PoolPositions and
    //it must be called before any other external call will execute if the bin
    //in the PoolPosition has been merged.
    function migrateBinLiquidity() external;

    /// @notice Mint new PoolPosition tokens
    /// @param to wallet or contract where PoolPosition tokens will be minted
    /// @param fromTokenId pool.position() that will contribute input liquidity
    /// @param binZeroLpAddAmount LP balance of pool.position() in PoolPosition
    //bins[0] to be transfered
    //  @return liquidity number of PoolPosition LP tokens minted
    function mint(address to, uint256 fromTokenId, uint128 binZeroLpAddAmount) external returns (uint256 liquidity);

    /// @notice Amount of pool.tokenA() and pool.tokenB() tokens held by the
    //PoolPosition
    //  @return reserveA Amount of pool.tokenA() tokens held by the
    //  PoolPosition
    //  @return reserveB Amount of pool.tokenB() tokens held by the
    //  PoolPosition
    function getReserves() external view returns (uint256 reserveA, uint256 reserveB);
}

// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.0;

import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";

interface IReward {
    event NotifyRewardAmount(address sender, address rewardTokenAddress, uint256 amount, uint256 duration, uint256 rewardRate);
    event GetReward(address sender, address account, address recipient, uint8 rewardTokenIndex, address rewardTokenAddress, uint256 rewardPaid);
    event UnStake(address sender, address account, uint256 amount, address recipient, uint256 userBalance, uint256 totalSupply);
    event Stake(address sender, address supplier, uint256 amount, address account, uint256 userBalance, uint256 totalSupply);
    event AddRewardToken(address rewardTokenAddress, uint8 rewardTokenIndex);
    event RemoveRewardToken(address rewardTokenAddress, uint8 rewardTokenIndex);

    error DurationOutOfBounds(uint256 duration);
    error OnlyFactoryOwner();
    error ZeroAmount();
    error NotValidRewardToken(address rewardTokenAddress);
    error TooManyRewardTokens();
    error StaleToken(uint8 rewardTokenIndex);
    error TokenNotStale(uint8 rewardTokenIndex);
    error RewardStillActive(uint8 rewardTokenIndex);
    error RewardAmountBelowThreshold(uint256 amount, uint256 minimumAmount);

    struct RewardInfo {
        // Timestamp of when the rewards finish
        uint256 finishAt;
        // Minimum of last updated time and reward finish time
        uint256 updatedAt;
        // Reward to be paid out per second
        uint256 rewardRate;
        // Sum of (reward rate * dt * 1e18 / total supply)
        uint256 rewardPerTokenStored;
        IERC20 rewardToken;
    }

    struct EarnedInfo {
        // account
        address account;
        // earned
        uint256 earned;
        // reward token
        IERC20 rewardToken;
    }

    function rewardInfo() external view returns (RewardInfo[] memory);

    function tokenIndex(address tokenAddress) external view returns (uint8);

    function balanceOf(address account) external view returns (uint256);

    function earned(address account, address rewardTokenAddress) external view returns (uint256);

    function earned(address account) external view returns (EarnedInfo[] memory earnedInfo);

    /// @notice Add rewards tokens account the pot of rewards with a transferFrom.
    /// @param  rewardTokenAddress address of reward token added
    function notifyAndTransfer(address rewardTokenAddress, uint256 amount, uint256 duration) external;

    /// @notice Deposit LP tokens for reward allocation.
    /// @param amount LP token amount account deposit.
    /// @param account The receiver of `amount` deposit benefit.
    function stake(uint256 amount, address account) external;

    /// @notice Withdraw LP token stake.
    /// @param amount LP token amount account withdraw.
    /// @param  recipient Receiver of the LP tokens.
    function unstake(uint256 amount, address recipient) external;

    /// @notice Withdraw entire amount of LP token stake.
    /// @param  recipient Receiver of the LP tokens.
    function unstakeAll(address recipient) external;

    /// @notice Get reward proceeds for transaction sender account `account`.
    /// @param recipient Receiver of REWARD_TOKEN rewards.
    /// @param rewardTokenIndices indices of reward tokens to collect
    function getReward(address recipient, uint8[] calldata rewardTokenIndices) external;

    /// @notice Get reward proceeds for transaction sender account `account`.
    /// @param recipient Receiver of REWARD_TOKEN rewards.
    /// @param rewardTokenIndex index of reward token to collect
    function getReward(address recipient, uint8 rewardTokenIndex) external returns (uint256);

    /// @notice Remove stale tokens from the reward contract
    /// @param rewardTokenIndex is the index of the reward token in the
    //tokenIndex mapping
    function removeStaleToken(uint8 rewardTokenIndex) external;
}

// SPDX-License-Identifier: MIT
// modified from OpenZeppelin Contracts (last updated v4.8.0) (utils/structs/BitMaps.sol)
pragma solidity ^0.8.0;

/**
 * @dev Library for managing uint256 to bool mapping in a compact and efficient way, providing the keys are sequential.
 * Largely inspired by Uniswap's https://github.com/Uniswap/merkle-distributor/blob/master/contracts/MerkleDistributor.sol[merkle-distributor].
 */
library BitMap {
    struct Instance {
        uint256 _data;
    }

    /**
     * @dev Returns whether the bit at `index` is set.
     */
    function get(Instance storage self, uint8 index) internal view returns (bool) {
        uint256 mask = 1 << index;
        return self._data & mask != 0;
    }

    /**
     * @dev Sets the bit at `index`.
     */
    function set(Instance storage self, uint8 index) internal {
        uint256 mask = 1 << index;
        self._data |= mask;
    }

    /**
     * @dev Unsets the bit at `index`.
     */
    function unset(Instance storage self, uint8 index) internal {
        uint256 mask = 1 << index;
        self._data &= ~mask;
    }
}

// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.0;
import {PRBMath} from "prb-math/contracts/PRBMath.sol";
import {PRBMathUD60x18} from "prb-math/contracts/PRBMathUD60x18.sol";

library Math {
    using PRBMathUD60x18 for uint256;
    uint256 constant MAX_BIT = 0x8000000000000000000000000000000000000000000000000000000000000000;
    uint256 constant DEFAULT_SCALE = 1;

    function max(uint256 x, uint256 y) internal pure returns (uint256) {
        return x > y ? x : y;
    }

    function min(uint256 x, uint256 y) internal pure returns (uint256) {
        return x < y ? x : y;
    }

    function mulDiv(uint256 x, uint256 y, uint256 k, bool ceil) internal pure returns (uint256 result) {
        result = PRBMath.mulDiv(x, y, k);
        if (ceil && mulmod(x, y, k) != 0) result = result + 1;
    }

    function clip(uint256 x, uint256 y) internal pure returns (uint256) {
        return x < y ? 0 : x - y;
    }

    function toScale(uint256 amount, uint256 scaleFactor, bool ceil) internal pure returns (uint256) {
        if (scaleFactor == DEFAULT_SCALE || amount == 0) {
            return amount;
        } else if ((scaleFactor & MAX_BIT) != 0) {
            return amount * (scaleFactor & ~MAX_BIT);
        } else {
            return (ceil && mulmod(amount, 1, scaleFactor) != 0) ? amount / scaleFactor + 1 : amount / scaleFactor;
        }
    }

    function fromScale(uint256 amount, uint256 scaleFactor) internal pure returns (uint256) {
        if (scaleFactor == DEFAULT_SCALE) {
            return amount;
        } else if ((scaleFactor & MAX_BIT) != 0) {
            return amount / (scaleFactor & ~MAX_BIT);
        } else {
            return amount * scaleFactor;
        }
    }

    function tickSqrtPrice(uint256 tickSpacing, int32 _tick) internal pure returns (uint256 _result) {
        unchecked {
            uint256 tick = _tick < 0 ? uint256(-int256(_tick)) : uint256(int256(_tick));
            tick *= tickSpacing;
            uint256 ratio = tick & 0x1 != 0 ? 0xfffcb933bd6fad9d3af5f0b9f25db4d6 : 0x100000000000000000000000000000000;
            if (tick & 0x2 != 0) ratio = (ratio * 0xfff97272373d41fd789c8cb37ffcaa1c) >> 128;
            if (tick & 0x4 != 0) ratio = (ratio * 0xfff2e50f5f656ac9229c67059486f389) >> 128;
            if (tick & 0x8 != 0) ratio = (ratio * 0xffe5caca7e10e81259b3cddc7a064941) >> 128;
            if (tick & 0x10 != 0) ratio = (ratio * 0xffcb9843d60f67b19e8887e0bd251eb7) >> 128;
            if (tick & 0x20 != 0) ratio = (ratio * 0xff973b41fa98cd2e57b660be99eb2c4a) >> 128;
            if (tick & 0x40 != 0) ratio = (ratio * 0xff2ea16466c9838804e327cb417cafcb) >> 128;
            if (tick & 0x80 != 0) ratio = (ratio * 0xfe5dee046a99d51e2cc356c2f617dbe0) >> 128;
            if (tick & 0x100 != 0) ratio = (ratio * 0xfcbe86c7900aecf64236ab31f1f9dcb5) >> 128;
            if (tick & 0x200 != 0) ratio = (ratio * 0xf987a7253ac4d9194200696907cf2e37) >> 128;
            if (tick & 0x400 != 0) ratio = (ratio * 0xf3392b0822b88206f8abe8a3b44dd9be) >> 128;
            if (tick & 0x800 != 0) ratio = (ratio * 0xe7159475a2c578ef4f1d17b2b235d480) >> 128;
            if (tick & 0x1000 != 0) ratio = (ratio * 0xd097f3bdfd254ee83bdd3f248e7e785e) >> 128;
            if (tick & 0x2000 != 0) ratio = (ratio * 0xa9f746462d8f7dd10e744d913d033333) >> 128;
            if (tick & 0x4000 != 0) ratio = (ratio * 0x70d869a156ddd32a39e257bc3f50aa9b) >> 128;
            if (tick & 0x8000 != 0) ratio = (ratio * 0x31be135f97da6e09a19dc367e3b6da40) >> 128;
            if (tick & 0x10000 != 0) ratio = (ratio * 0x9aa508b5b7e5a9780b0cc4e25d61a56) >> 128;
            if (tick & 0x20000 != 0) ratio = (ratio * 0x5d6af8dedbcb3a6ccb7ce618d14225) >> 128;
            if (tick & 0x40000 != 0) ratio = (ratio * 0x2216e584f630389b2052b8db590e) >> 128;
            if (_tick > 0) ratio = type(uint256).max / ratio;
            _result = (ratio * PRBMathUD60x18.SCALE) >> 128;
        }
    }

    function getTickL(uint256 _reserveA, uint256 _reserveB, uint256 _sqrtLowerTickPrice, uint256 _sqrtUpperTickPrice) internal pure returns (uint256) {
        uint256 precisionBump = 0;
        if ((_reserveA >> 60) == 0 && (_reserveB >> 60) == 0) {
            precisionBump = 40;
            _reserveA <<= precisionBump;
            _reserveB <<= precisionBump;
        }
        if (_reserveA == 0 || _reserveB == 0) {
            uint256 b = (_reserveA.div(_sqrtUpperTickPrice) + _reserveB.mul(_sqrtLowerTickPrice));
            return mulDiv(b, _sqrtUpperTickPrice, _sqrtUpperTickPrice - _sqrtLowerTickPrice, false) >> precisionBump;
        } else {
            uint256 b = (_reserveA.div(_sqrtUpperTickPrice) + _reserveB.mul(_sqrtLowerTickPrice)) >> 1;
            uint256 diff = _sqrtUpperTickPrice - _sqrtLowerTickPrice;
            return mulDiv(b + (b.mul(b) + mulDiv(_reserveB.mul(_reserveA), diff, _sqrtUpperTickPrice, false)).sqrt(), _sqrtUpperTickPrice, diff, false) >> precisionBump;
        }
    }

    function getTickSqrtPriceAndL(uint256 _reserveA, uint256 _reserveB, uint256 _sqrtLowerTickPrice, uint256 _sqrtUpperTickPrice) internal pure returns (uint256 sqrtPrice, uint256 liquidity) {
        liquidity = getTickL(_reserveA, _reserveB, _sqrtLowerTickPrice, _sqrtUpperTickPrice);
        if (_reserveA == 0) {
            return (_sqrtLowerTickPrice, liquidity);
        }
        if (_reserveB == 0) {
            return (_sqrtUpperTickPrice, liquidity);
        }
        sqrtPrice = ((_reserveA + liquidity.mul(_sqrtLowerTickPrice)).div(_reserveB + liquidity.div(_sqrtUpperTickPrice))).sqrt();
        sqrtPrice = min(max(sqrtPrice, _sqrtLowerTickPrice), _sqrtUpperTickPrice);
    }
}

// SPDX-License-Identifier: GPL-2.0-or-later

// adapted from https://github.com/Synthetixio/synthetix/blob/c53070db9a93e5717ca7f74fcaf3922e991fb71b/contracts/StakingRewards.sol
pragma solidity ^0.8.0;

import {SafeERC20} from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import {Math} from "@openzeppelin/contracts/utils/math/Math.sol";
import {ReentrancyGuard} from "@openzeppelin/contracts/security/ReentrancyGuard.sol";
import {Multicall} from "@openzeppelin/contracts/utils/Multicall.sol";

import {IReward} from "./interfaces/IReward.sol";
import {Math as MavMath} from "./libraries/Math.sol";
import {BitMap} from "./libraries/BitMap.sol";
import {IPoolPositionAndRewardFactorySlim} from "./interfaces/IPoolPositionAndRewardFactorySlim.sol";

abstract contract RewardBase is IReward, ReentrancyGuard, Multicall {
    using SafeERC20 for IERC20;
    using BitMap for BitMap.Instance;

    uint8 public MAX_REWARD_TOKENS = 16;
    uint256 constant ONE = 1e18;
    // after this period of time without a reward, users can remove token from
    // list
    uint256 constant STALE_INTERVAL = 30 days;

    IPoolPositionAndRewardFactorySlim public immutable rewardFactory;
    IERC20 public immutable stakingToken;

    // Max Duration of rewards to be paid out
    uint256 constant MAX_DURATION = 30 days;
    uint256 constant MIN_DURATION = 3 days;

    // Total staked
    uint256 public totalSupply;
    // User address => staked amount
    mapping(address => uint256) public balanceOf;

    struct RewardData {
        // Timestamp of when the rewards finish
        uint256 finishAt;
        // Minimum of last updated time and reward finish time
        uint256 updatedAt;
        // Reward to be paid out per second
        uint256 rewardRate;
        // Sum of (reward rate * dt * 1e18 / total supply)
        uint256 rewardPerTokenStored;
        // User address => rewardPerTokenStored
        mapping(address => uint256) userRewardPerTokenPaid;
        // User address => rewards to be claimed
        mapping(address => uint256) rewards;
        // User address => rewards mapping to track if token index has been
        // updated
        mapping(address => uint256) resetCount;
        // total earned
        uint256 escrowedReward;
        uint256 globalResetCount;
        IERC20 rewardToken;
    }
    RewardData[] public rewardData;
    mapping(address => uint8) public tokenIndex;

    BitMap.Instance public globalActive;

    constructor(IERC20 _stakingToken, IPoolPositionAndRewardFactorySlim _rewardFactory) {
        stakingToken = _stakingToken;

        rewardFactory = _rewardFactory;
        // push empty token so that we can use index zero as a sentinel value
        // in tokenIndex mapping; ie if tokenIndex[X] = 0, we know X is not in
        // the list
        rewardData.push();
    }

    modifier checkAmount(uint256 amount) {
        if (amount == 0) revert ZeroAmount();
        _;
    }

    /////////////////////////////////////
    /// View Functions
    /////////////////////////////////////

    function rewardInfo() external view returns (RewardInfo[] memory info) {
        uint256 length = rewardData.length;
        info = new RewardInfo[](length);
        for (uint8 i = 1; i < length; i++) {
            RewardData storage data = rewardData[i];
            info[i] = RewardInfo({finishAt: data.finishAt, updatedAt: data.updatedAt, rewardRate: data.rewardRate, rewardPerTokenStored: data.rewardPerTokenStored, rewardToken: data.rewardToken});
        }
    }

    function earned(address account) public view returns (EarnedInfo[] memory earnedInfo) {
        uint256 length = rewardData.length;
        earnedInfo = new EarnedInfo[](length);
        for (uint8 i = 1; i < length; i++) {
            RewardData storage data = rewardData[i];
            earnedInfo[i] = EarnedInfo({account: account, earned: earned(account, data), rewardToken: data.rewardToken});
        }
    }

    function earned(address account, address rewardTokenAddress) external view returns (uint256) {
        uint256 rewardTokenIndex = tokenIndex[rewardTokenAddress];
        if (rewardTokenIndex == 0) revert NotValidRewardToken(rewardTokenAddress);
        RewardData storage data = rewardData[rewardTokenIndex];
        return earned(account, data);
    }

    function earned(address account, RewardData storage data) internal view returns (uint256) {
        return data.rewards[account] + Math.mulDiv(balanceOf[account], MavMath.clip(data.rewardPerTokenStored + deltaRewardPerToken(data), data.userRewardPerTokenPaid[account]), ONE);
    }

    /////////////////////////////////////
    /// Internal Update Functions
    /////////////////////////////////////

    function updateReward(address account, RewardData storage data) internal {
        uint256 reward = deltaRewardPerToken(data);
        if (reward != 0) {
            data.rewardPerTokenStored += reward;
            data.escrowedReward += Math.mulDiv(reward, totalSupply, ONE, Math.Rounding(1));
        }
        data.updatedAt = lastTimeRewardApplicable(data.finishAt);

        if (account != address(0)) {
            if (data.resetCount[account] != data.globalResetCount) {
                // check to see if this token index was changed
                data.userRewardPerTokenPaid[account] = 0;
                data.rewards[account] = 0;
                data.resetCount[account] = data.globalResetCount;
            }
            data.rewards[account] += deltaEarned(account, data);
            data.userRewardPerTokenPaid[account] = data.rewardPerTokenStored;
        }
    }

    function deltaEarned(address account, RewardData storage data) internal view returns (uint256) {
        return Math.mulDiv(balanceOf[account], MavMath.clip(data.rewardPerTokenStored, data.userRewardPerTokenPaid[account]), ONE);
    }

    function deltaRewardPerToken(RewardData storage data) internal view returns (uint256) {
        uint256 timeDiff = MavMath.clip(lastTimeRewardApplicable(data.finishAt), data.updatedAt);
        if (timeDiff == 0 || totalSupply == 0 || data.rewardRate == 0) {
            return 0;
        }
        return Math.mulDiv(data.rewardRate, timeDiff * ONE, totalSupply);
    }

    function lastTimeRewardApplicable(uint256 dataFinishAt) internal view returns (uint256) {
        return Math.min(dataFinishAt, block.timestamp);
    }

    function updateAllRewards(address account) internal {
        uint256 length = rewardData.length;
        for (uint8 i = 1; i < length; i++) {
            if (!globalActive.get(i)) continue;

            RewardData storage data = rewardData[i];

            updateReward(account, data);
        }
    }

    /// @dev add token if it is approved and is not already tracked
    function _checkAndAddRewardToken(address rewardTokenAddress) internal returns (uint8 rewardTokenIndex) {
        rewardTokenIndex = tokenIndex[rewardTokenAddress];
        if (rewardTokenIndex != 0) return rewardTokenIndex;

        if (!rewardFactory.isApprovedRewardToken(rewardTokenAddress)) revert NotValidRewardToken(rewardTokenAddress);

        // find first unset token index and use it
        for (uint8 i = 1; i < MAX_REWARD_TOKENS + 1; i++) {
            if (globalActive.get(i)) continue;
            rewardTokenIndex = i;
            break;
        }
        if (rewardTokenIndex == 0) revert TooManyRewardTokens();
        if (rewardTokenIndex == rewardData.length) rewardData.push();

        RewardData storage _data = rewardData[rewardTokenIndex];

        _data.rewardToken = IERC20(rewardTokenAddress);
        _data.globalResetCount++;

        tokenIndex[rewardTokenAddress] = rewardTokenIndex;
        globalActive.set(rewardTokenIndex);
        emit AddRewardToken(rewardTokenAddress, rewardTokenIndex);
    }

    /////////////////////////////////////
    /// Internal User Functions
    /////////////////////////////////////

    function _stake(address supplier, uint256 amount, address account) internal nonReentrant checkAmount(amount) {
        updateAllRewards(account);
        stakingToken.safeTransferFrom(supplier, address(this), amount);
        balanceOf[account] += amount;
        totalSupply += amount;
        emit Stake(msg.sender, supplier, amount, account, balanceOf[account], totalSupply);
    }

    function _unstake(address account, uint256 amount, address recipient) internal nonReentrant checkAmount(amount) {
        updateAllRewards(account);
        balanceOf[account] -= amount;
        totalSupply -= amount;
        stakingToken.safeTransfer(recipient, amount);
        emit UnStake(msg.sender, account, amount, recipient, balanceOf[account], totalSupply);
    }

    function _unstakeAll(address account, address recipient) internal {
        _unstake(account, balanceOf[account], recipient);
    }

    function _getReward(address account, address recipient, uint8 rewardTokenIndex) internal nonReentrant returns (uint256 reward) {
        if (!globalActive.get(rewardTokenIndex)) revert StaleToken(rewardTokenIndex);
        RewardData storage data = rewardData[rewardTokenIndex];
        updateReward(account, data);
        reward = data.rewards[account];
        if (reward != 0) {
            data.rewards[account] = 0;
            data.escrowedReward -= reward;
            data.rewardToken.safeTransfer(recipient, reward);
        }
        emit GetReward(msg.sender, account, recipient, rewardTokenIndex, address(data.rewardToken), reward);
    }

    function _getReward(address account, address recipient, uint8[] memory rewardTokenIndices) internal {
        uint256 length = rewardTokenIndices.length;
        for (uint8 i; i < length; i++) {
            _getReward(account, recipient, rewardTokenIndices[i]);
        }
    }

    /////////////////////////////////////
    /// Add Reward
    /////////////////////////////////////

    /// @notice Adds reward to contract.
    function notifyAndTransfer(address rewardTokenAddress, uint256 amount, uint256 duration) public nonReentrant {
        if (duration < MIN_DURATION) revert DurationOutOfBounds(duration);

        uint256 minimumAmount = rewardFactory.minimumRewardAmount(rewardTokenAddress);
        if (amount < minimumAmount) revert RewardAmountBelowThreshold(amount, minimumAmount);

        duration = _notifyRewardAmount(rewardTokenAddress, amount, duration);

        if (duration > MAX_DURATION) revert DurationOutOfBounds(duration);
        IERC20(rewardTokenAddress).safeTransferFrom(msg.sender, address(this), amount);
    }

    /* @notice called by reward depositor to recompute the reward rate.  If
     *  notifier sends more than remaining amount, then notifier sets the rate.
     *  Else, we extend the duration at the current rate. We may notify with less
     *  than enough of assets to cover the period. In that case, reward rate will
     *  be 0 and the assets sit on the contract until another notify happens with
     *  enough assets for a positive rate.
     *   @dev Must notify before transfering assets.  Transfering and then
     *  notifying with the same amount will break the logic of this reward
     *  contract.  If a contract needs to transfer and then notify, the
     *  notification amount should be 0.
     */
    function _notifyRewardAmount(address rewardTokenAddress, uint256 amount, uint256 duration) internal returns (uint256) {
        uint8 rewardTokenIndex = _checkAndAddRewardToken(rewardTokenAddress);
        RewardData storage data = rewardData[rewardTokenIndex];
        updateReward(address(0), data);
        uint256 remainingRewards = MavMath.clip(data.rewardToken.balanceOf(address(this)), data.escrowedReward);

        if (amount > remainingRewards || data.rewardRate == 0) {
            // if notifying new amount, notifier gets to set the rate
            data.rewardRate = (amount + remainingRewards) / duration;
        } else {
            // if notifier doesn't bring enough, we extend the duration at the
            // same rate
            duration = (amount + remainingRewards) / data.rewardRate;
        }

        data.finishAt = block.timestamp + duration;
        data.updatedAt = block.timestamp;
        emit NotifyRewardAmount(msg.sender, rewardTokenAddress, amount, duration, data.rewardRate);
        return duration;
    }

    /////////////////////////////////////
    /// Admin Function
    /////////////////////////////////////

    function removeStaleToken(uint8 rewardTokenIndex) public virtual nonReentrant {
        _removeStaleToken(rewardTokenIndex);
    }

    function _removeStaleToken(uint8 rewardTokenIndex) internal {
        RewardData storage data = rewardData[rewardTokenIndex];
        if (block.timestamp < STALE_INTERVAL + data.finishAt) revert TokenNotStale(rewardTokenIndex);
        emit RemoveRewardToken(address(data.rewardToken), rewardTokenIndex);

        // remove token from list
        globalActive.unset(rewardTokenIndex);
        delete tokenIndex[address(data.rewardToken)];

        delete data.rewardToken;
        delete data.escrowedReward;
        delete data.rewardPerTokenStored;
        delete data.rewardRate;
        delete data.finishAt;
        delete data.updatedAt;
    }
}

// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.0;

import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";

import {IPoolPositionAndRewardFactorySlim} from "./interfaces/IPoolPositionAndRewardFactorySlim.sol";
import {RewardBase} from "./RewardBase.sol";

contract RewardOpenSlim is RewardBase {
    constructor(IERC20 _stakingToken, IPoolPositionAndRewardFactorySlim _rewardFactory) RewardBase(_stakingToken, _rewardFactory) {}

    function stake(uint256 amount, address account) external {
        _stake(msg.sender, amount, account);
    }

    function unstake(uint256 amount, address recipient) external {
        _unstake(msg.sender, amount, recipient);
    }

    function unstakeAll(address recipient) external {
        _unstakeAll(msg.sender, recipient);
    }

    function getReward(address recipient, uint8[] calldata rewardTokenIndices) external {
        _getReward(msg.sender, recipient, rewardTokenIndices);
    }

    function getReward(address recipient, uint8 rewardTokenIndex) external returns (uint256) {
        return _getReward(msg.sender, recipient, rewardTokenIndex);
    }
}

// SPDX-License-Identifier: Unlicense
pragma solidity >=0.8.4;

/// @notice Emitted when the result overflows uint256.
error PRBMath__MulDivFixedPointOverflow(uint256 prod1);

/// @notice Emitted when the result overflows uint256.
error PRBMath__MulDivOverflow(uint256 prod1, uint256 denominator);

/// @notice Emitted when one of the inputs is type(int256).min.
error PRBMath__MulDivSignedInputTooSmall();

/// @notice Emitted when the intermediary absolute result overflows int256.
error PRBMath__MulDivSignedOverflow(uint256 rAbs);

/// @notice Emitted when the input is MIN_SD59x18.
error PRBMathSD59x18__AbsInputTooSmall();

/// @notice Emitted when ceiling a number overflows SD59x18.
error PRBMathSD59x18__CeilOverflow(int256 x);

/// @notice Emitted when one of the inputs is MIN_SD59x18.
error PRBMathSD59x18__DivInputTooSmall();

/// @notice Emitted when one of the intermediary unsigned results overflows SD59x18.
error PRBMathSD59x18__DivOverflow(uint256 rAbs);

/// @notice Emitted when the input is greater than 133.084258667509499441.
error PRBMathSD59x18__ExpInputTooBig(int256 x);

/// @notice Emitted when the input is greater than 192.
error PRBMathSD59x18__Exp2InputTooBig(int256 x);

/// @notice Emitted when flooring a number underflows SD59x18.
error PRBMathSD59x18__FloorUnderflow(int256 x);

/// @notice Emitted when converting a basic integer to the fixed-point format overflows SD59x18.
error PRBMathSD59x18__FromIntOverflow(int256 x);

/// @notice Emitted when converting a basic integer to the fixed-point format underflows SD59x18.
error PRBMathSD59x18__FromIntUnderflow(int256 x);

/// @notice Emitted when the product of the inputs is negative.
error PRBMathSD59x18__GmNegativeProduct(int256 x, int256 y);

/// @notice Emitted when multiplying the inputs overflows SD59x18.
error PRBMathSD59x18__GmOverflow(int256 x, int256 y);

/// @notice Emitted when the input is less than or equal to zero.
error PRBMathSD59x18__LogInputTooSmall(int256 x);

/// @notice Emitted when one of the inputs is MIN_SD59x18.
error PRBMathSD59x18__MulInputTooSmall();

/// @notice Emitted when the intermediary absolute result overflows SD59x18.
error PRBMathSD59x18__MulOverflow(uint256 rAbs);

/// @notice Emitted when the intermediary absolute result overflows SD59x18.
error PRBMathSD59x18__PowuOverflow(uint256 rAbs);

/// @notice Emitted when the input is negative.
error PRBMathSD59x18__SqrtNegativeInput(int256 x);

/// @notice Emitted when the calculating the square root overflows SD59x18.
error PRBMathSD59x18__SqrtOverflow(int256 x);

/// @notice Emitted when addition overflows UD60x18.
error PRBMathUD60x18__AddOverflow(uint256 x, uint256 y);

/// @notice Emitted when ceiling a number overflows UD60x18.
error PRBMathUD60x18__CeilOverflow(uint256 x);

/// @notice Emitted when the input is greater than 133.084258667509499441.
error PRBMathUD60x18__ExpInputTooBig(uint256 x);

/// @notice Emitted when the input is greater than 192.
error PRBMathUD60x18__Exp2InputTooBig(uint256 x);

/// @notice Emitted when converting a basic integer to the fixed-point format format overflows UD60x18.
error PRBMathUD60x18__FromUintOverflow(uint256 x);

/// @notice Emitted when multiplying the inputs overflows UD60x18.
error PRBMathUD60x18__GmOverflow(uint256 x, uint256 y);

/// @notice Emitted when the input is less than 1.
error PRBMathUD60x18__LogInputTooSmall(uint256 x);

/// @notice Emitted when the calculating the square root overflows UD60x18.
error PRBMathUD60x18__SqrtOverflow(uint256 x);

/// @notice Emitted when subtraction underflows UD60x18.
error PRBMathUD60x18__SubUnderflow(uint256 x, uint256 y);

/// @dev Common mathematical functions used in both PRBMathSD59x18 and PRBMathUD60x18. Note that this shared library
/// does not always assume the signed 59.18-decimal fixed-point or the unsigned 60.18-decimal fixed-point
/// representation. When it does not, it is explicitly mentioned in the NatSpec documentation.
library PRBMath {
    /// STRUCTS ///

    struct SD59x18 {
        int256 value;
    }

    struct UD60x18 {
        uint256 value;
    }

    /// STORAGE ///

    /// @dev How many trailing decimals can be represented.
    uint256 internal constant SCALE = 1e18;

    /// @dev Largest power of two divisor of SCALE.
    uint256 internal constant SCALE_LPOTD = 262144;

    /// @dev SCALE inverted mod 2^256.
    uint256 internal constant SCALE_INVERSE =
        78156646155174841979727994598816262306175212592076161876661_508869554232690281;

    /// FUNCTIONS ///

    /// @notice Calculates the binary exponent of x using the binary fraction method.
    /// @dev Has to use 192.64-bit fixed-point numbers.
    /// See https://ethereum.stackexchange.com/a/96594/24693.
    /// @param x The exponent as an unsigned 192.64-bit fixed-point number.
    /// @return result The result as an unsigned 60.18-decimal fixed-point number.
    function exp2(uint256 x) internal pure returns (uint256 result) {
        unchecked {
            // Start from 0.5 in the 192.64-bit fixed-point format.
            result = 0x800000000000000000000000000000000000000000000000;

            // Multiply the result by root(2, 2^-i) when the bit at position i is 1. None of the intermediary results overflows
            // because the initial result is 2^191 and all magic factors are less than 2^65.
            if (x & 0x8000000000000000 > 0) {
                result = (result * 0x16A09E667F3BCC909) >> 64;
            }
            if (x & 0x4000000000000000 > 0) {
                result = (result * 0x1306FE0A31B7152DF) >> 64;
            }
            if (x & 0x2000000000000000 > 0) {
                result = (result * 0x1172B83C7D517ADCE) >> 64;
            }
            if (x & 0x1000000000000000 > 0) {
                result = (result * 0x10B5586CF9890F62A) >> 64;
            }
            if (x & 0x800000000000000 > 0) {
                result = (result * 0x1059B0D31585743AE) >> 64;
            }
            if (x & 0x400000000000000 > 0) {
                result = (result * 0x102C9A3E778060EE7) >> 64;
            }
            if (x & 0x200000000000000 > 0) {
                result = (result * 0x10163DA9FB33356D8) >> 64;
            }
            if (x & 0x100000000000000 > 0) {
                result = (result * 0x100B1AFA5ABCBED61) >> 64;
            }
            if (x & 0x80000000000000 > 0) {
                result = (result * 0x10058C86DA1C09EA2) >> 64;
            }
            if (x & 0x40000000000000 > 0) {
                result = (result * 0x1002C605E2E8CEC50) >> 64;
            }
            if (x & 0x20000000000000 > 0) {
                result = (result * 0x100162F3904051FA1) >> 64;
            }
            if (x & 0x10000000000000 > 0) {
                result = (result * 0x1000B175EFFDC76BA) >> 64;
            }
            if (x & 0x8000000000000 > 0) {
                result = (result * 0x100058BA01FB9F96D) >> 64;
            }
            if (x & 0x4000000000000 > 0) {
                result = (result * 0x10002C5CC37DA9492) >> 64;
            }
            if (x & 0x2000000000000 > 0) {
                result = (result * 0x1000162E525EE0547) >> 64;
            }
            if (x & 0x1000000000000 > 0) {
                result = (result * 0x10000B17255775C04) >> 64;
            }
            if (x & 0x800000000000 > 0) {
                result = (result * 0x1000058B91B5BC9AE) >> 64;
            }
            if (x & 0x400000000000 > 0) {
                result = (result * 0x100002C5C89D5EC6D) >> 64;
            }
            if (x & 0x200000000000 > 0) {
                result = (result * 0x10000162E43F4F831) >> 64;
            }
            if (x & 0x100000000000 > 0) {
                result = (result * 0x100000B1721BCFC9A) >> 64;
            }
            if (x & 0x80000000000 > 0) {
                result = (result * 0x10000058B90CF1E6E) >> 64;
            }
            if (x & 0x40000000000 > 0) {
                result = (result * 0x1000002C5C863B73F) >> 64;
            }
            if (x & 0x20000000000 > 0) {
                result = (result * 0x100000162E430E5A2) >> 64;
            }
            if (x & 0x10000000000 > 0) {
                result = (result * 0x1000000B172183551) >> 64;
            }
            if (x & 0x8000000000 > 0) {
                result = (result * 0x100000058B90C0B49) >> 64;
            }
            if (x & 0x4000000000 > 0) {
                result = (result * 0x10000002C5C8601CC) >> 64;
            }
            if (x & 0x2000000000 > 0) {
                result = (result * 0x1000000162E42FFF0) >> 64;
            }
            if (x & 0x1000000000 > 0) {
                result = (result * 0x10000000B17217FBB) >> 64;
            }
            if (x & 0x800000000 > 0) {
                result = (result * 0x1000000058B90BFCE) >> 64;
            }
            if (x & 0x400000000 > 0) {
                result = (result * 0x100000002C5C85FE3) >> 64;
            }
            if (x & 0x200000000 > 0) {
                result = (result * 0x10000000162E42FF1) >> 64;
            }
            if (x & 0x100000000 > 0) {
                result = (result * 0x100000000B17217F8) >> 64;
            }
            if (x & 0x80000000 > 0) {
                result = (result * 0x10000000058B90BFC) >> 64;
            }
            if (x & 0x40000000 > 0) {
                result = (result * 0x1000000002C5C85FE) >> 64;
            }
            if (x & 0x20000000 > 0) {
                result = (result * 0x100000000162E42FF) >> 64;
            }
            if (x & 0x10000000 > 0) {
                result = (result * 0x1000000000B17217F) >> 64;
            }
            if (x & 0x8000000 > 0) {
                result = (result * 0x100000000058B90C0) >> 64;
            }
            if (x & 0x4000000 > 0) {
                result = (result * 0x10000000002C5C860) >> 64;
            }
            if (x & 0x2000000 > 0) {
                result = (result * 0x1000000000162E430) >> 64;
            }
            if (x & 0x1000000 > 0) {
                result = (result * 0x10000000000B17218) >> 64;
            }
            if (x & 0x800000 > 0) {
                result = (result * 0x1000000000058B90C) >> 64;
            }
            if (x & 0x400000 > 0) {
                result = (result * 0x100000000002C5C86) >> 64;
            }
            if (x & 0x200000 > 0) {
                result = (result * 0x10000000000162E43) >> 64;
            }
            if (x & 0x100000 > 0) {
                result = (result * 0x100000000000B1721) >> 64;
            }
            if (x & 0x80000 > 0) {
                result = (result * 0x10000000000058B91) >> 64;
            }
            if (x & 0x40000 > 0) {
                result = (result * 0x1000000000002C5C8) >> 64;
            }
            if (x & 0x20000 > 0) {
                result = (result * 0x100000000000162E4) >> 64;
            }
            if (x & 0x10000 > 0) {
                result = (result * 0x1000000000000B172) >> 64;
            }
            if (x & 0x8000 > 0) {
                result = (result * 0x100000000000058B9) >> 64;
            }
            if (x & 0x4000 > 0) {
                result = (result * 0x10000000000002C5D) >> 64;
            }
            if (x & 0x2000 > 0) {
                result = (result * 0x1000000000000162E) >> 64;
            }
            if (x & 0x1000 > 0) {
                result = (result * 0x10000000000000B17) >> 64;
            }
            if (x & 0x800 > 0) {
                result = (result * 0x1000000000000058C) >> 64;
            }
            if (x & 0x400 > 0) {
                result = (result * 0x100000000000002C6) >> 64;
            }
            if (x & 0x200 > 0) {
                result = (result * 0x10000000000000163) >> 64;
            }
            if (x & 0x100 > 0) {
                result = (result * 0x100000000000000B1) >> 64;
            }
            if (x & 0x80 > 0) {
                result = (result * 0x10000000000000059) >> 64;
            }
            if (x & 0x40 > 0) {
                result = (result * 0x1000000000000002C) >> 64;
            }
            if (x & 0x20 > 0) {
                result = (result * 0x10000000000000016) >> 64;
            }
            if (x & 0x10 > 0) {
                result = (result * 0x1000000000000000B) >> 64;
            }
            if (x & 0x8 > 0) {
                result = (result * 0x10000000000000006) >> 64;
            }
            if (x & 0x4 > 0) {
                result = (result * 0x10000000000000003) >> 64;
            }
            if (x & 0x2 > 0) {
                result = (result * 0x10000000000000001) >> 64;
            }
            if (x & 0x1 > 0) {
                result = (result * 0x10000000000000001) >> 64;
            }

            // We're doing two things at the same time:
            //
            //   1. Multiply the result by 2^n + 1, where "2^n" is the integer part and the one is added to account for
            //      the fact that we initially set the result to 0.5. This is accomplished by subtracting from 191
            //      rather than 192.
            //   2. Convert the result to the unsigned 60.18-decimal fixed-point format.
            //
            // This works because 2^(191-ip) = 2^ip / 2^191, where "ip" is the integer part "2^n".
            result *= SCALE;
            result >>= (191 - (x >> 64));
        }
    }

    /// @notice Finds the zero-based index of the first one in the binary representation of x.
    /// @dev See the note on msb in the "Find First Set" Wikipedia article https://en.wikipedia.org/wiki/Find_first_set
    /// @param x The uint256 number for which to find the index of the most significant bit.
    /// @return msb The index of the most significant bit as an uint256.
    function mostSignificantBit(uint256 x) internal pure returns (uint256 msb) {
        if (x >= 2**128) {
            x >>= 128;
            msb += 128;
        }
        if (x >= 2**64) {
            x >>= 64;
            msb += 64;
        }
        if (x >= 2**32) {
            x >>= 32;
            msb += 32;
        }
        if (x >= 2**16) {
            x >>= 16;
            msb += 16;
        }
        if (x >= 2**8) {
            x >>= 8;
            msb += 8;
        }
        if (x >= 2**4) {
            x >>= 4;
            msb += 4;
        }
        if (x >= 2**2) {
            x >>= 2;
            msb += 2;
        }
        if (x >= 2**1) {
            // No need to shift x any more.
            msb += 1;
        }
    }

    /// @notice Calculates floor(x*y÷denominator) with full precision.
    ///
    /// @dev Credit to Remco Bloemen under MIT license https://xn--2-umb.com/21/muldiv.
    ///
    /// Requirements:
    /// - The denominator cannot be zero.
    /// - The result must fit within uint256.
    ///
    /// Caveats:
    /// - This function does not work with fixed-point numbers.
    ///
    /// @param x The multiplicand as an uint256.
    /// @param y The multiplier as an uint256.
    /// @param denominator The divisor as an uint256.
    /// @return result The result as an uint256.
    function mulDiv(
        uint256 x,
        uint256 y,
        uint256 denominator
    ) internal pure returns (uint256 result) {
        // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
        // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
        // variables such that product = prod1 * 2^256 + prod0.
        uint256 prod0; // Least significant 256 bits of the product
        uint256 prod1; // Most significant 256 bits of the product
        assembly {
            let mm := mulmod(x, y, not(0))
            prod0 := mul(x, y)
            prod1 := sub(sub(mm, prod0), lt(mm, prod0))
        }

        // Handle non-overflow cases, 256 by 256 division.
        if (prod1 == 0) {
            unchecked {
                result = prod0 / denominator;
            }
            return result;
        }

        // Make sure the result is less than 2^256. Also prevents denominator == 0.
        if (prod1 >= denominator) {
            revert PRBMath__MulDivOverflow(prod1, denominator);
        }

        ///////////////////////////////////////////////
        // 512 by 256 division.
        ///////////////////////////////////////////////

        // Make division exact by subtracting the remainder from [prod1 prod0].
        uint256 remainder;
        assembly {
            // Compute remainder using mulmod.
            remainder := mulmod(x, y, denominator)

            // Subtract 256 bit number from 512 bit number.
            prod1 := sub(prod1, gt(remainder, prod0))
            prod0 := sub(prod0, remainder)
        }

        // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
        // See https://cs.stackexchange.com/q/138556/92363.
        unchecked {
            // Does not overflow because the denominator cannot be zero at this stage in the function.
            uint256 lpotdod = denominator & (~denominator + 1);
            assembly {
                // Divide denominator by lpotdod.
                denominator := div(denominator, lpotdod)

                // Divide [prod1 prod0] by lpotdod.
                prod0 := div(prod0, lpotdod)

                // Flip lpotdod such that it is 2^256 / lpotdod. If lpotdod is zero, then it becomes one.
                lpotdod := add(div(sub(0, lpotdod), lpotdod), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * lpotdod;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
            // in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /// @notice Calculates floor(x*y÷1e18) with full precision.
    ///
    /// @dev Variant of "mulDiv" with constant folding, i.e. in which the denominator is always 1e18. Before returning the
    /// final result, we add 1 if (x * y) % SCALE >= HALF_SCALE. Without this, 6.6e-19 would be truncated to 0 instead of
    /// being rounded to 1e-18.  See "Listing 6" and text above it at https://accu.org/index.php/journals/1717.
    ///
    /// Requirements:
    /// - The result must fit within uint256.
    ///
    /// Caveats:
    /// - The body is purposely left uncommented; see the NatSpec comments in "PRBMath.mulDiv" to understand how this works.
    /// - It is assumed that the result can never be type(uint256).max when x and y solve the following two equations:
    ///     1. x * y = type(uint256).max * SCALE
    ///     2. (x * y) % SCALE >= SCALE / 2
    ///
    /// @param x The multiplicand as an unsigned 60.18-decimal fixed-point number.
    /// @param y The multiplier as an unsigned 60.18-decimal fixed-point number.
    /// @return result The result as an unsigned 60.18-decimal fixed-point number.
    function mulDivFixedPoint(uint256 x, uint256 y) internal pure returns (uint256 result) {
        uint256 prod0;
        uint256 prod1;
        assembly {
            let mm := mulmod(x, y, not(0))
            prod0 := mul(x, y)
            prod1 := sub(sub(mm, prod0), lt(mm, prod0))
        }

        if (prod1 >= SCALE) {
            revert PRBMath__MulDivFixedPointOverflow(prod1);
        }

        uint256 remainder;
        uint256 roundUpUnit;
        assembly {
            remainder := mulmod(x, y, SCALE)
            roundUpUnit := gt(remainder, 499999999999999999)
        }

        if (prod1 == 0) {
            unchecked {
                result = (prod0 / SCALE) + roundUpUnit;
                return result;
            }
        }

        assembly {
            result := add(
                mul(
                    or(
                        div(sub(prod0, remainder), SCALE_LPOTD),
                        mul(sub(prod1, gt(remainder, prod0)), add(div(sub(0, SCALE_LPOTD), SCALE_LPOTD), 1))
                    ),
                    SCALE_INVERSE
                ),
                roundUpUnit
            )
        }
    }

    /// @notice Calculates floor(x*y÷denominator) with full precision.
    ///
    /// @dev An extension of "mulDiv" for signed numbers. Works by computing the signs and the absolute values separately.
    ///
    /// Requirements:
    /// - None of the inputs can be type(int256).min.
    /// - The result must fit within int256.
    ///
    /// @param x The multiplicand as an int256.
    /// @param y The multiplier as an int256.
    /// @param denominator The divisor as an int256.
    /// @return result The result as an int256.
    function mulDivSigned(
        int256 x,
        int256 y,
        int256 denominator
    ) internal pure returns (int256 result) {
        if (x == type(int256).min || y == type(int256).min || denominator == type(int256).min) {
            revert PRBMath__MulDivSignedInputTooSmall();
        }

        // Get hold of the absolute values of x, y and the denominator.
        uint256 ax;
        uint256 ay;
        uint256 ad;
        unchecked {
            ax = x < 0 ? uint256(-x) : uint256(x);
            ay = y < 0 ? uint256(-y) : uint256(y);
            ad = denominator < 0 ? uint256(-denominator) : uint256(denominator);
        }

        // Compute the absolute value of (x*y)÷denominator. The result must fit within int256.
        uint256 rAbs = mulDiv(ax, ay, ad);
        if (rAbs > uint256(type(int256).max)) {
            revert PRBMath__MulDivSignedOverflow(rAbs);
        }

        // Get the signs of x, y and the denominator.
        uint256 sx;
        uint256 sy;
        uint256 sd;
        assembly {
            sx := sgt(x, sub(0, 1))
            sy := sgt(y, sub(0, 1))
            sd := sgt(denominator, sub(0, 1))
        }

        // XOR over sx, sy and sd. This is checking whether there are one or three negative signs in the inputs.
        // If yes, the result should be negative.
        result = sx ^ sy ^ sd == 0 ? -int256(rAbs) : int256(rAbs);
    }

    /// @notice Calculates the square root of x, rounding down.
    /// @dev Uses the Babylonian method https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method.
    ///
    /// Caveats:
    /// - This function does not work with fixed-point numbers.
    ///
    /// @param x The uint256 number for which to calculate the square root.
    /// @return result The result as an uint256.
    function sqrt(uint256 x) internal pure returns (uint256 result) {
        if (x == 0) {
            return 0;
        }

        // Set the initial guess to the least power of two that is greater than or equal to sqrt(x).
        uint256 xAux = uint256(x);
        result = 1;
        if (xAux >= 0x100000000000000000000000000000000) {
            xAux >>= 128;
            result <<= 64;
        }
        if (xAux >= 0x10000000000000000) {
            xAux >>= 64;
            result <<= 32;
        }
        if (xAux >= 0x100000000) {
            xAux >>= 32;
            result <<= 16;
        }
        if (xAux >= 0x10000) {
            xAux >>= 16;
            result <<= 8;
        }
        if (xAux >= 0x100) {
            xAux >>= 8;
            result <<= 4;
        }
        if (xAux >= 0x10) {
            xAux >>= 4;
            result <<= 2;
        }
        if (xAux >= 0x8) {
            result <<= 1;
        }

        // The operations can never overflow because the result is max 2^127 when it enters this block.
        unchecked {
            result = (result + x / result) >> 1;
            result = (result + x / result) >> 1;
            result = (result + x / result) >> 1;
            result = (result + x / result) >> 1;
            result = (result + x / result) >> 1;
            result = (result + x / result) >> 1;
            result = (result + x / result) >> 1; // Seven iterations should be enough
            uint256 roundedDownResult = x / result;
            return result >= roundedDownResult ? roundedDownResult : result;
        }
    }
}

// SPDX-License-Identifier: Unlicense
pragma solidity >=0.8.4;

import "./PRBMath.sol";

/// @title PRBMathUD60x18
/// @author Paul Razvan Berg
/// @notice Smart contract library for advanced fixed-point math that works with uint256 numbers considered to have 18
/// trailing decimals. We call this number representation unsigned 60.18-decimal fixed-point, since there can be up to 60
/// digits in the integer part and up to 18 decimals in the fractional part. The numbers are bound by the minimum and the
/// maximum values permitted by the Solidity type uint256.
library PRBMathUD60x18 {
    /// @dev Half the SCALE number.
    uint256 internal constant HALF_SCALE = 5e17;

    /// @dev log2(e) as an unsigned 60.18-decimal fixed-point number.
    uint256 internal constant LOG2_E = 1_442695040888963407;

    /// @dev The maximum value an unsigned 60.18-decimal fixed-point number can have.
    uint256 internal constant MAX_UD60x18 =
        115792089237316195423570985008687907853269984665640564039457_584007913129639935;

    /// @dev The maximum whole value an unsigned 60.18-decimal fixed-point number can have.
    uint256 internal constant MAX_WHOLE_UD60x18 =
        115792089237316195423570985008687907853269984665640564039457_000000000000000000;

    /// @dev How many trailing decimals can be represented.
    uint256 internal constant SCALE = 1e18;

    /// @notice Calculates the arithmetic average of x and y, rounding down.
    /// @param x The first operand as an unsigned 60.18-decimal fixed-point number.
    /// @param y The second operand as an unsigned 60.18-decimal fixed-point number.
    /// @return result The arithmetic average as an unsigned 60.18-decimal fixed-point number.
    function avg(uint256 x, uint256 y) internal pure returns (uint256 result) {
        // The operations can never overflow.
        unchecked {
            // The last operand checks if both x and y are odd and if that is the case, we add 1 to the result. We need
            // to do this because if both numbers are odd, the 0.5 remainder gets truncated twice.
            result = (x >> 1) + (y >> 1) + (x & y & 1);
        }
    }

    /// @notice Yields the least unsigned 60.18 decimal fixed-point number greater than or equal to x.
    ///
    /// @dev Optimized for fractional value inputs, because for every whole value there are (1e18 - 1) fractional counterparts.
    /// See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions.
    ///
    /// Requirements:
    /// - x must be less than or equal to MAX_WHOLE_UD60x18.
    ///
    /// @param x The unsigned 60.18-decimal fixed-point number to ceil.
    /// @param result The least integer greater than or equal to x, as an unsigned 60.18-decimal fixed-point number.
    function ceil(uint256 x) internal pure returns (uint256 result) {
        if (x > MAX_WHOLE_UD60x18) {
            revert PRBMathUD60x18__CeilOverflow(x);
        }
        assembly {
            // Equivalent to "x % SCALE" but faster.
            let remainder := mod(x, SCALE)

            // Equivalent to "SCALE - remainder" but faster.
            let delta := sub(SCALE, remainder)

            // Equivalent to "x + delta * (remainder > 0 ? 1 : 0)" but faster.
            result := add(x, mul(delta, gt(remainder, 0)))
        }
    }

    /// @notice Divides two unsigned 60.18-decimal fixed-point numbers, returning a new unsigned 60.18-decimal fixed-point number.
    ///
    /// @dev Uses mulDiv to enable overflow-safe multiplication and division.
    ///
    /// Requirements:
    /// - The denominator cannot be zero.
    ///
    /// @param x The numerator as an unsigned 60.18-decimal fixed-point number.
    /// @param y The denominator as an unsigned 60.18-decimal fixed-point number.
    /// @param result The quotient as an unsigned 60.18-decimal fixed-point number.
    function div(uint256 x, uint256 y) internal pure returns (uint256 result) {
        result = PRBMath.mulDiv(x, SCALE, y);
    }

    /// @notice Returns Euler's number as an unsigned 60.18-decimal fixed-point number.
    /// @dev See https://en.wikipedia.org/wiki/E_(mathematical_constant).
    function e() internal pure returns (uint256 result) {
        result = 2_718281828459045235;
    }

    /// @notice Calculates the natural exponent of x.
    ///
    /// @dev Based on the insight that e^x = 2^(x * log2(e)).
    ///
    /// Requirements:
    /// - All from "log2".
    /// - x must be less than 133.084258667509499441.
    ///
    /// @param x The exponent as an unsigned 60.18-decimal fixed-point number.
    /// @return result The result as an unsigned 60.18-decimal fixed-point number.
    function exp(uint256 x) internal pure returns (uint256 result) {
        // Without this check, the value passed to "exp2" would be greater than 192.
        if (x >= 133_084258667509499441) {
            revert PRBMathUD60x18__ExpInputTooBig(x);
        }

        // Do the fixed-point multiplication inline to save gas.
        unchecked {
            uint256 doubleScaleProduct = x * LOG2_E;
            result = exp2((doubleScaleProduct + HALF_SCALE) / SCALE);
        }
    }

    /// @notice Calculates the binary exponent of x using the binary fraction method.
    ///
    /// @dev See https://ethereum.stackexchange.com/q/79903/24693.
    ///
    /// Requirements:
    /// - x must be 192 or less.
    /// - The result must fit within MAX_UD60x18.
    ///
    /// @param x The exponent as an unsigned 60.18-decimal fixed-point number.
    /// @return result The result as an unsigned 60.18-decimal fixed-point number.
    function exp2(uint256 x) internal pure returns (uint256 result) {
        // 2^192 doesn't fit within the 192.64-bit format used internally in this function.
        if (x >= 192e18) {
            revert PRBMathUD60x18__Exp2InputTooBig(x);
        }

        unchecked {
            // Convert x to the 192.64-bit fixed-point format.
            uint256 x192x64 = (x << 64) / SCALE;

            // Pass x to the PRBMath.exp2 function, which uses the 192.64-bit fixed-point number representation.
            result = PRBMath.exp2(x192x64);
        }
    }

    /// @notice Yields the greatest unsigned 60.18 decimal fixed-point number less than or equal to x.
    /// @dev Optimized for fractional value inputs, because for every whole value there are (1e18 - 1) fractional counterparts.
    /// See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions.
    /// @param x The unsigned 60.18-decimal fixed-point number to floor.
    /// @param result The greatest integer less than or equal to x, as an unsigned 60.18-decimal fixed-point number.
    function floor(uint256 x) internal pure returns (uint256 result) {
        assembly {
            // Equivalent to "x % SCALE" but faster.
            let remainder := mod(x, SCALE)

            // Equivalent to "x - remainder * (remainder > 0 ? 1 : 0)" but faster.
            result := sub(x, mul(remainder, gt(remainder, 0)))
        }
    }

    /// @notice Yields the excess beyond the floor of x.
    /// @dev Based on the odd function definition https://en.wikipedia.org/wiki/Fractional_part.
    /// @param x The unsigned 60.18-decimal fixed-point number to get the fractional part of.
    /// @param result The fractional part of x as an unsigned 60.18-decimal fixed-point number.
    function frac(uint256 x) internal pure returns (uint256 result) {
        assembly {
            result := mod(x, SCALE)
        }
    }

    /// @notice Converts a number from basic integer form to unsigned 60.18-decimal fixed-point representation.
    ///
    /// @dev Requirements:
    /// - x must be less than or equal to MAX_UD60x18 divided by SCALE.
    ///
    /// @param x The basic integer to convert.
    /// @param result The same number in unsigned 60.18-decimal fixed-point representation.
    function fromUint(uint256 x) internal pure returns (uint256 result) {
        unchecked {
            if (x > MAX_UD60x18 / SCALE) {
                revert PRBMathUD60x18__FromUintOverflow(x);
            }
            result = x * SCALE;
        }
    }

    /// @notice Calculates geometric mean of x and y, i.e. sqrt(x * y), rounding down.
    ///
    /// @dev Requirements:
    /// - x * y must fit within MAX_UD60x18, lest it overflows.
    ///
    /// @param x The first operand as an unsigned 60.18-decimal fixed-point number.
    /// @param y The second operand as an unsigned 60.18-decimal fixed-point number.
    /// @return result The result as an unsigned 60.18-decimal fixed-point number.
    function gm(uint256 x, uint256 y) internal pure returns (uint256 result) {
        if (x == 0) {
            return 0;
        }

        unchecked {
            // Checking for overflow this way is faster than letting Solidity do it.
            uint256 xy = x * y;
            if (xy / x != y) {
                revert PRBMathUD60x18__GmOverflow(x, y);
            }

            // We don't need to multiply by the SCALE here because the x*y product had already picked up a factor of SCALE
            // during multiplication. See the comments within the "sqrt" function.
            result = PRBMath.sqrt(xy);
        }
    }

    /// @notice Calculates 1 / x, rounding toward zero.
    ///
    /// @dev Requirements:
    /// - x cannot be zero.
    ///
    /// @param x The unsigned 60.18-decimal fixed-point number for which to calculate the inverse.
    /// @return result The inverse as an unsigned 60.18-decimal fixed-point number.
    function inv(uint256 x) internal pure returns (uint256 result) {
        unchecked {
            // 1e36 is SCALE * SCALE.
            result = 1e36 / x;
        }
    }

    /// @notice Calculates the natural logarithm of x.
    ///
    /// @dev Based on the insight that ln(x) = log2(x) / log2(e).
    ///
    /// Requirements:
    /// - All from "log2".
    ///
    /// Caveats:
    /// - All from "log2".
    /// - This doesn't return exactly 1 for 2.718281828459045235, for that we would need more fine-grained precision.
    ///
    /// @param x The unsigned 60.18-decimal fixed-point number for which to calculate the natural logarithm.
    /// @return result The natural logarithm as an unsigned 60.18-decimal fixed-point number.
    function ln(uint256 x) internal pure returns (uint256 result) {
        // Do the fixed-point multiplication inline to save gas. This is overflow-safe because the maximum value that log2(x)
        // can return is 196205294292027477728.
        unchecked {
            result = (log2(x) * SCALE) / LOG2_E;
        }
    }

    /// @notice Calculates the common logarithm of x.
    ///
    /// @dev First checks if x is an exact power of ten and it stops if yes. If it's not, calculates the common
    /// logarithm based on the insight that log10(x) = log2(x) / log2(10).
    ///
    /// Requirements:
    /// - All from "log2".
    ///
    /// Caveats:
    /// - All from "log2".
    ///
    /// @param x The unsigned 60.18-decimal fixed-point number for which to calculate the common logarithm.
    /// @return result The common logarithm as an unsigned 60.18-decimal fixed-point number.
    function log10(uint256 x) internal pure returns (uint256 result) {
        if (x < SCALE) {
            revert PRBMathUD60x18__LogInputTooSmall(x);
        }

        // Note that the "mul" in this block is the assembly multiplication operation, not the "mul" function defined
        // in this contract.
        // prettier-ignore
        assembly {
            switch x
            case 1 { result := mul(SCALE, sub(0, 18)) }
            case 10 { result := mul(SCALE, sub(1, 18)) }
            case 100 { result := mul(SCALE, sub(2, 18)) }
            case 1000 { result := mul(SCALE, sub(3, 18)) }
            case 10000 { result := mul(SCALE, sub(4, 18)) }
            case 100000 { result := mul(SCALE, sub(5, 18)) }
            case 1000000 { result := mul(SCALE, sub(6, 18)) }
            case 10000000 { result := mul(SCALE, sub(7, 18)) }
            case 100000000 { result := mul(SCALE, sub(8, 18)) }
            case 1000000000 { result := mul(SCALE, sub(9, 18)) }
            case 10000000000 { result := mul(SCALE, sub(10, 18)) }
            case 100000000000 { result := mul(SCALE, sub(11, 18)) }
            case 1000000000000 { result := mul(SCALE, sub(12, 18)) }
            case 10000000000000 { result := mul(SCALE, sub(13, 18)) }
            case 100000000000000 { result := mul(SCALE, sub(14, 18)) }
            case 1000000000000000 { result := mul(SCALE, sub(15, 18)) }
            case 10000000000000000 { result := mul(SCALE, sub(16, 18)) }
            case 100000000000000000 { result := mul(SCALE, sub(17, 18)) }
            case 1000000000000000000 { result := 0 }
            case 10000000000000000000 { result := SCALE }
            case 100000000000000000000 { result := mul(SCALE, 2) }
            case 1000000000000000000000 { result := mul(SCALE, 3) }
            case 10000000000000000000000 { result := mul(SCALE, 4) }
            case 100000000000000000000000 { result := mul(SCALE, 5) }
            case 1000000000000000000000000 { result := mul(SCALE, 6) }
            case 10000000000000000000000000 { result := mul(SCALE, 7) }
            case 100000000000000000000000000 { result := mul(SCALE, 8) }
            case 1000000000000000000000000000 { result := mul(SCALE, 9) }
            case 10000000000000000000000000000 { result := mul(SCALE, 10) }
            case 100000000000000000000000000000 { result := mul(SCALE, 11) }
            case 1000000000000000000000000000000 { result := mul(SCALE, 12) }
            case 10000000000000000000000000000000 { result := mul(SCALE, 13) }
            case 100000000000000000000000000000000 { result := mul(SCALE, 14) }
            case 1000000000000000000000000000000000 { result := mul(SCALE, 15) }
            case 10000000000000000000000000000000000 { result := mul(SCALE, 16) }
            case 100000000000000000000000000000000000 { result := mul(SCALE, 17) }
            case 1000000000000000000000000000000000000 { result := mul(SCALE, 18) }
            case 10000000000000000000000000000000000000 { result := mul(SCALE, 19) }
            case 100000000000000000000000000000000000000 { result := mul(SCALE, 20) }
            case 1000000000000000000000000000000000000000 { result := mul(SCALE, 21) }
            case 10000000000000000000000000000000000000000 { result := mul(SCALE, 22) }
            case 100000000000000000000000000000000000000000 { result := mul(SCALE, 23) }
            case 1000000000000000000000000000000000000000000 { result := mul(SCALE, 24) }
            case 10000000000000000000000000000000000000000000 { result := mul(SCALE, 25) }
            case 100000000000000000000000000000000000000000000 { result := mul(SCALE, 26) }
            case 1000000000000000000000000000000000000000000000 { result := mul(SCALE, 27) }
            case 10000000000000000000000000000000000000000000000 { result := mul(SCALE, 28) }
            case 100000000000000000000000000000000000000000000000 { result := mul(SCALE, 29) }
            case 1000000000000000000000000000000000000000000000000 { result := mul(SCALE, 30) }
            case 10000000000000000000000000000000000000000000000000 { result := mul(SCALE, 31) }
            case 100000000000000000000000000000000000000000000000000 { result := mul(SCALE, 32) }
            case 1000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 33) }
            case 10000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 34) }
            case 100000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 35) }
            case 1000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 36) }
            case 10000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 37) }
            case 100000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 38) }
            case 1000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 39) }
            case 10000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 40) }
            case 100000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 41) }
            case 1000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 42) }
            case 10000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 43) }
            case 100000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 44) }
            case 1000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 45) }
            case 10000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 46) }
            case 100000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 47) }
            case 1000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 48) }
            case 10000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 49) }
            case 100000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 50) }
            case 1000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 51) }
            case 10000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 52) }
            case 100000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 53) }
            case 1000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 54) }
            case 10000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 55) }
            case 100000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 56) }
            case 1000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 57) }
            case 10000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 58) }
            case 100000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 59) }
            default {
                result := MAX_UD60x18
            }
        }

        if (result == MAX_UD60x18) {
            // Do the fixed-point division inline to save gas. The denominator is log2(10).
            unchecked {
                result = (log2(x) * SCALE) / 3_321928094887362347;
            }
        }
    }

    /// @notice Calculates the binary logarithm of x.
    ///
    /// @dev Based on the iterative approximation algorithm.
    /// https://en.wikipedia.org/wiki/Binary_logarithm#Iterative_approximation
    ///
    /// Requirements:
    /// - x must be greater than or equal to SCALE, otherwise the result would be negative.
    ///
    /// Caveats:
    /// - The results are nor perfectly accurate to the last decimal, due to the lossy precision of the iterative approximation.
    ///
    /// @param x The unsigned 60.18-decimal fixed-point number for which to calculate the binary logarithm.
    /// @return result The binary logarithm as an unsigned 60.18-decimal fixed-point number.
    function log2(uint256 x) internal pure returns (uint256 result) {
        if (x < SCALE) {
            revert PRBMathUD60x18__LogInputTooSmall(x);
        }
        unchecked {
            // Calculate the integer part of the logarithm and add it to the result and finally calculate y = x * 2^(-n).
            uint256 n = PRBMath.mostSignificantBit(x / SCALE);

            // The integer part of the logarithm as an unsigned 60.18-decimal fixed-point number. The operation can't overflow
            // because n is maximum 255 and SCALE is 1e18.
            result = n * SCALE;

            // This is y = x * 2^(-n).
            uint256 y = x >> n;

            // If y = 1, the fractional part is zero.
            if (y == SCALE) {
                return result;
            }

            // Calculate the fractional part via the iterative approximation.
            // The "delta >>= 1" part is equivalent to "delta /= 2", but shifting bits is faster.
            for (uint256 delta = HALF_SCALE; delta > 0; delta >>= 1) {
                y = (y * y) / SCALE;

                // Is y^2 > 2 and so in the range [2,4)?
                if (y >= 2 * SCALE) {
                    // Add the 2^(-m) factor to the logarithm.
                    result += delta;

                    // Corresponds to z/2 on Wikipedia.
                    y >>= 1;
                }
            }
        }
    }

    /// @notice Multiplies two unsigned 60.18-decimal fixed-point numbers together, returning a new unsigned 60.18-decimal
    /// fixed-point number.
    /// @dev See the documentation for the "PRBMath.mulDivFixedPoint" function.
    /// @param x The multiplicand as an unsigned 60.18-decimal fixed-point number.
    /// @param y The multiplier as an unsigned 60.18-decimal fixed-point number.
    /// @return result The product as an unsigned 60.18-decimal fixed-point number.
    function mul(uint256 x, uint256 y) internal pure returns (uint256 result) {
        result = PRBMath.mulDivFixedPoint(x, y);
    }

    /// @notice Returns PI as an unsigned 60.18-decimal fixed-point number.
    function pi() internal pure returns (uint256 result) {
        result = 3_141592653589793238;
    }

    /// @notice Raises x to the power of y.
    ///
    /// @dev Based on the insight that x^y = 2^(log2(x) * y).
    ///
    /// Requirements:
    /// - All from "exp2", "log2" and "mul".
    ///
    /// Caveats:
    /// - All from "exp2", "log2" and "mul".
    /// - Assumes 0^0 is 1.
    ///
    /// @param x Number to raise to given power y, as an unsigned 60.18-decimal fixed-point number.
    /// @param y Exponent to raise x to, as an unsigned 60.18-decimal fixed-point number.
    /// @return result x raised to power y, as an unsigned 60.18-decimal fixed-point number.
    function pow(uint256 x, uint256 y) internal pure returns (uint256 result) {
        if (x == 0) {
            result = y == 0 ? SCALE : uint256(0);
        } else {
            result = exp2(mul(log2(x), y));
        }
    }

    /// @notice Raises x (unsigned 60.18-decimal fixed-point number) to the power of y (basic unsigned integer) using the
    /// famous algorithm "exponentiation by squaring".
    ///
    /// @dev See https://en.wikipedia.org/wiki/Exponentiation_by_squaring
    ///
    /// Requirements:
    /// - The result must fit within MAX_UD60x18.
    ///
    /// Caveats:
    /// - All from "mul".
    /// - Assumes 0^0 is 1.
    ///
    /// @param x The base as an unsigned 60.18-decimal fixed-point number.
    /// @param y The exponent as an uint256.
    /// @return result The result as an unsigned 60.18-decimal fixed-point number.
    function powu(uint256 x, uint256 y) internal pure returns (uint256 result) {
        // Calculate the first iteration of the loop in advance.
        result = y & 1 > 0 ? x : SCALE;

        // Equivalent to "for(y /= 2; y > 0; y /= 2)" but faster.
        for (y >>= 1; y > 0; y >>= 1) {
            x = PRBMath.mulDivFixedPoint(x, x);

            // Equivalent to "y % 2 == 1" but faster.
            if (y & 1 > 0) {
                result = PRBMath.mulDivFixedPoint(result, x);
            }
        }
    }

    /// @notice Returns 1 as an unsigned 60.18-decimal fixed-point number.
    function scale() internal pure returns (uint256 result) {
        result = SCALE;
    }

    /// @notice Calculates the square root of x, rounding down.
    /// @dev Uses the Babylonian method https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method.
    ///
    /// Requirements:
    /// - x must be less than MAX_UD60x18 / SCALE.
    ///
    /// @param x The unsigned 60.18-decimal fixed-point number for which to calculate the square root.
    /// @return result The result as an unsigned 60.18-decimal fixed-point .
    function sqrt(uint256 x) internal pure returns (uint256 result) {
        unchecked {
            if (x > MAX_UD60x18 / SCALE) {
                revert PRBMathUD60x18__SqrtOverflow(x);
            }
            // Multiply x by the SCALE to account for the factor of SCALE that is picked up when multiplying two unsigned
            // 60.18-decimal fixed-point numbers together (in this case, those two numbers are both the square root).
            result = PRBMath.sqrt(x * SCALE);
        }
    }

    /// @notice Converts a unsigned 60.18-decimal fixed-point number to basic integer form, rounding down in the process.
    /// @param x The unsigned 60.18-decimal fixed-point number to convert.
    /// @return result The same number in basic integer form.
    function toUint(uint256 x) internal pure returns (uint256 result) {
        unchecked {
            result = x / SCALE;
        }
    }
}

Contract Name:
RewardOpenSlim

Contract Source Code:

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import "../interfaces/IPool.sol";
import "../interfaces/IPosition.sol";
interface IFactory {
    event PoolCreated(address poolAddress, uint256 fee, uint256 tickSpacing, int32 activeTick, int256 lookback, uint64 protocolFeeRatio, IERC20 tokenA, IERC20 tokenB);
    event SetFactoryProtocolFeeRatio(uint64 protocolFeeRatio);
    event SetFactoryOwner(address owner);
    /// @notice creates new pool
    /// @param _fee is a rate in prbmath 60x18 decimal format
    /// @param _tickSpacing  1.0001^tickSpacing is the bin width
    /// @param _activeTick initial activeTick of the pool
    /// @param _lookback TWAP lookback in whole seconds
    /// @param _tokenA ERC20 token
    /// @param _tokenB ERC20 token
    function create(
        uint256 _fee,
        uint256 _tickSpacing,
        int256 _lookback,
        int32 _activeTick,
        IERC20 _tokenA,
        IERC20 _tokenB
    ) external returns (IPool);
    function lookup(
        uint256 fee,
        uint256 tickSpacing,
        int256 lookback,
        IERC20 tokenA,
        IERC20 tokenB
    ) external view returns (IPool);
    function owner() external view returns (address);
    function position() external view returns (IPosition);
    /// @notice protocolFeeRatio ratio of the swap fee that is kept for the
    //protocol
    function protocolFeeRatio() external view returns (uint64);
    /// @notice lookup table for whether a pool is owned by the factory
    function isFactoryPool(IPool pool) external view returns (bool);
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import "./IFactory.sol";
interface IPool {
    event Swap(address sender, address recipient, bool tokenAIn, bool exactOutput, uint256 amountIn, uint256 amountOut, int32 activeTick);
    event AddLiquidity(address indexed sender, uint256 indexed tokenId, BinDelta[] binDeltas);
    event MigrateBinsUpStack(address indexed sender, uint128 binId, uint32 maxRecursion);
    event TransferLiquidity(uint256 fromTokenId, uint256 toTokenId, RemoveLiquidityParams[] params);
    event RemoveLiquidity(address indexed sender, address indexed recipient, uint256 indexed tokenId, BinDelta[] binDeltas);
    event BinMerged(uint128 indexed binId, uint128 reserveA, uint128 reserveB, uint128 mergeId);
    event BinMoved(uint128 indexed binId, int128 previousTick, int128 newTick);
    event ProtocolFeeCollected(uint256 protocolFee, bool isTokenA);
    event SetProtocolFeeRatio(uint256 protocolFee);
    /// @notice return parameters for Add/Remove liquidity
    /// @param binId of the bin that changed
    /// @param kind one of the 4 Kinds (0=static, 1=right, 2=left, 3=both)
    /// @param isActive bool to indicate whether the bin is still active
    /// @param lowerTick is the lower price tick of the bin in its current state
    /// @param deltaA amount of A token that has been added or removed
    /// @param deltaB amount of B token that has been added or removed
    /// @param deltaLpToken amount of LP balance that has increase (add) or decreased (remove)
    struct BinDelta {
        uint128 deltaA;
        uint128 deltaB;
        uint256 deltaLpBalance;
        uint128 binId;
        uint8 kind;
        int32 lowerTick;
        bool isActive;
    }
    /// @notice time weighted average state
    /// @param twa the twa at the last update instant
    /// @param value the new value that was passed in at the last update
    /// @param lastTimestamp timestamp of the last update in seconds
    /// @param lookback time in seconds
    struct TwaState {
        int96 twa;
        int96 value;
        uint64 lastTimestamp;
    }
    /// @notice bin state parameters
    /// @param kind one of the 4 Kinds (0=static, 1=right, 2=left, 3=both)
    /// @param lowerTick is the lower price tick of the bin in its current state
    /// @param mergeId binId of the bin that this bin has merged in to
    /// @param reserveA amount of A token in bin
    /// @param reserveB amount of B token in bin
    /// @param totalSupply total amount of LP tokens in this bin
    /// @param mergeBinBalance LP token balance that this bin posseses of the merge bin
    struct BinState {
        uint128 reserveA;
        uint128 reserveB;
        uint128 mergeBinBalance;
        uint128 mergeId;
        uint128 totalSupply;
        uint8 kind;
        int32 lowerTick;
    }
    /// @notice Parameters for each bin that will get new liquidity
    /// @param kind one of the 4 Kinds (0=static, 1=right, 2=left, 3=both)
    /// @param pos bin position
    /// @param isDelta bool that indicates whether the bin position is relative
    //to the current bin or an absolute position
    /// @param deltaA amount of A token to add
    /// @param deltaB amount of B token to add
    struct AddLiquidityParams {
        uint8 kind;
        int32 pos;
        bool isDelta;
        uint128 deltaA;
        uint128 deltaB;
    }
    /// @notice Parameters for each bin that will have liquidity removed
    /// @param binId index of the bin losing liquidity
    /// @param amount LP balance amount to remove
    struct RemoveLiquidityParams {
        uint128 binId;
        uint128 amount;
    }
    /// @notice State of the pool
    /// @param activeTick  current bin position that contains the active bins
    /// @param status pool status.  e.g. locked or unlocked; status values
    //defined in Pool.sol
    /// @param binCounter index of the last bin created
    /// @param protocolFeeRatio ratio of the swap fee that is kept for the
    //protocol
    struct State {
        int32 activeTick;
        uint8 status;
        uint128 binCounter;
        uint64 protocolFeeRatio;
    }
    /// @notice fee for pool in 18 decimal format
    function fee() external view returns (uint256);
    /// @notice tickSpacing of pool where 1.0001^tickSpacing is the bin width
    function tickSpacing() external view returns (uint256);
    /// @notice address of token A
    function tokenA() external view returns (IERC20);
    /// @notice address of token B
    function tokenB() external view returns (IERC20);
    /// @notice address of Factory
    function factory() external view returns (IFactory);
    /// @notice bitmap of active bins
    function binMap(int32 tick) external view returns (uint256);
    /// @notice mapping of tick/kind to binId
    function binPositions(int32 tick, uint256 kind) external view returns (uint128);
    /// @notice internal accounting of the sum tokenA balance across bins
    function binBalanceA() external view returns (uint128);
    /// @notice internal accounting of the sum tokenB balance across bins
    function binBalanceB() external view returns (uint128);
    /// @notice Twa state values
    function getTwa() external view returns (TwaState memory);
    /// @notice log base binWidth of the time weighted average price
    function getCurrentTwa() external view returns (int256);
    /// @notice pool state
    function getState() external view returns (State memory);
    /// @notice Add liquidity to a pool.
    /// @param tokenId NFT token ID that will hold the position
    /// @param params array of AddLiquidityParams that specify the mode and
    //position of the liquidity
    /// @param data callback function that addLiquidity will call so that the
    //caller can transfer tokens
    function addLiquidity(
        uint256 tokenId,
        AddLiquidityParams[] calldata params,
        bytes calldata data
    )
        external
        returns (
            uint256 tokenAAmount,
            uint256 tokenBAmount,
            BinDelta[] memory binDeltas
        );
    /// @notice Transfer liquidity in an array of bins from one nft tokenId
    //to another
    /// @param fromTokenId NFT token ID that holds the position being transferred
    /// @param toTokenId NFT token ID that is receiving liquidity
    /// @param params array of binIds and amounts to transfer
    function transferLiquidity(
        uint256 fromTokenId,
        uint256 toTokenId,
        RemoveLiquidityParams[] calldata params
    ) external;
    /// @notice Remove liquidity from a pool.
    /// @param recipient address that will receive the removed tokens
    /// @param tokenId NFT token ID that holds the position being removed
    /// @param params array of RemoveLiquidityParams that specify the bins,
    //and amounts
    function removeLiquidity(
        address recipient,
        uint256 tokenId,
        RemoveLiquidityParams[] calldata params
    )
        external
        returns (
            uint256 tokenAOut,
            uint256 tokenBOut,
            BinDelta[] memory binDeltas
        );
    /// @notice Migrate bins up the linked list of merged bins so that its
    //mergeId is the currrent active bin.
    /// @param binId is an array of the binIds to be migrated
    /// @param maxRecursion is the maximum recursion depth of the migration. set to
    //zero to recurse until the active bin is found.
    function migrateBinUpStack(uint128 binId, uint32 maxRecursion) external;
    /// @notice swap tokens
    /// @param recipient address that will receive the output tokens
    /// @param amount amount of token that is either the input if exactOutput
    //is false or the output if exactOutput is true
    /// @param tokenAIn bool indicating whether tokenA is the input
    /// @param exactOutput bool indicating whether the amount specified is the
    //exact output amount (true)
    /// @param sqrtPriceLimit limiting sqrt price of the swap.  A value of 0
    //indicates no limit.  Limit is only engaged for exactOutput=false.  If the
    //limit is reached only part of the input amount will be swapped and the
    //callback will only require that amount of the swap to be paid.
    /// @param data callback function that swap will call so that the
    //caller can transfer tokens
    function swap(
        address recipient,
        uint256 amount,
        bool tokenAIn,
        bool exactOutput,
        uint256 sqrtPriceLimit,
        bytes calldata data
    ) external returns (uint256 amountIn, uint256 amountOut);
    /// @notice bin information for a given binId
    function getBin(uint128 binId) external view returns (BinState memory bin);
    /// @notice LP token balance for a given tokenId at a given binId
    function balanceOf(uint256 tokenId, uint128 binId) external view returns (uint256 lpToken);
    /// @notice tokenA scale value
    /// @dev msb is a flag to indicate whether tokenA has more or less than 18
    //decimals.  Scale is used in conjuction with Math.toScale/Math.fromScale
    //functions to convert from token amounts to D18 scale internal pool
    //accounting.
    function tokenAScale() external view returns (uint256);
    /// @notice tokenB scale value
    /// @dev msb is a flag to indicate whether tokenA has more or less than 18
    //decimals.  Scale is used in conjuction with Math.toScale/Math.fromScale
    //functions to convert from token amounts to D18 scale internal pool
    //accounting.
    function tokenBScale() external view returns (uint256);
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import "@openzeppelin/contracts/token/ERC721/extensions/IERC721Enumerable.sol";
import "../interfaces/IPositionMetadata.sol";
interface IPosition is IERC721Enumerable {
    event SetMetadata(IPositionMetadata metadata);
    /// @notice mint new position NFT
    function mint(address to) external returns (uint256 tokenId);
    /// @notice mint new position NFT
    function tokenOfOwnerByIndexExists(address owner, uint256 index) external view returns (bool);
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

interface IPositionMetadata {
    function tokenURI(uint256 tokenId) external view returns (string memory);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (security/ReentrancyGuard.sol)

pragma solidity ^0.8.0;

/**
 * @dev Contract module that helps prevent reentrant calls to a function.
 *
 * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
 * available, which can be applied to functions to make sure there are no nested
 * (reentrant) calls to them.
 *
 * Note that because there is a single `nonReentrant` guard, functions marked as
 * `nonReentrant` may not call one another. This can be worked around by making
 * those functions `private`, and then adding `external` `nonReentrant` entry
 * points to them.
 *
 * TIP: If you would like to learn more about reentrancy and alternative ways
 * to protect against it, check out our blog post
 * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
 */
abstract contract ReentrancyGuard {
    // Booleans are more expensive than uint256 or any type that takes up a full
    // word because each write operation emits an extra SLOAD to first read the
    // slot's contents, replace the bits taken up by the boolean, and then write
    // back. This is the compiler's defense against contract upgrades and
    // pointer aliasing, and it cannot be disabled.

    // The values being non-zero value makes deployment a bit more expensive,
    // but in exchange the refund on every call to nonReentrant will be lower in
    // amount. Since refunds are capped to a percentage of the total
    // transaction's gas, it is best to keep them low in cases like this one, to
    // increase the likelihood of the full refund coming into effect.
    uint256 private constant _NOT_ENTERED = 1;
    uint256 private constant _ENTERED = 2;

    uint256 private _status;

    constructor() {
        _status = _NOT_ENTERED;
    }

    /**
     * @dev Prevents a contract from calling itself, directly or indirectly.
     * Calling a `nonReentrant` function from another `nonReentrant`
     * function is not supported. It is possible to prevent this from happening
     * by making the `nonReentrant` function external, and making it call a
     * `private` function that does the actual work.
     */
    modifier nonReentrant() {
        // On the first call to nonReentrant, _notEntered will be true
        require(_status != _ENTERED, "ReentrancyGuard: reentrant call");

        // Any calls to nonReentrant after this point will fail
        _status = _ENTERED;

        _;

        // By storing the original value once again, a refund is triggered (see
        // https://eips.ethereum.org/EIPS/eip-2200)
        _status = _NOT_ENTERED;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/draft-IERC20Permit.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 */
interface IERC20Permit {
    /**
     * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
     * given ``owner``'s signed approval.
     *
     * IMPORTANT: The same issues {IERC20-approve} has related to transaction
     * ordering also apply here.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `deadline` must be a timestamp in the future.
     * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
     * over the EIP712-formatted function arguments.
     * - the signature must use ``owner``'s current nonce (see {nonces}).
     *
     * For more information on the signature format, see the
     * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
     * section].
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external;

    /**
     * @dev Returns the current nonce for `owner`. This value must be
     * included whenever a signature is generated for {permit}.
     *
     * Every successful call to {permit} increases ``owner``'s nonce by one. This
     * prevents a signature from being used multiple times.
     */
    function nonces(address owner) external view returns (uint256);

    /**
     * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view returns (bytes32);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol)

pragma solidity ^0.8.0;

import "../IERC20.sol";

/**
 * @dev Interface for the optional metadata functions from the ERC20 standard.
 *
 * _Available since v4.1._
 */
interface IERC20Metadata is IERC20 {
    /**
     * @dev Returns the name of the token.
     */
    function name() external view returns (string memory);

    /**
     * @dev Returns the symbol of the token.
     */
    function symbol() external view returns (string memory);

    /**
     * @dev Returns the decimals places of the token.
     */
    function decimals() external view returns (uint8);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the amount of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the amount of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves `amount` tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 amount) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 amount) external returns (bool);

    /**
     * @dev Moves `amount` tokens from `from` to `to` using the
     * allowance mechanism. `amount` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(
        address from,
        address to,
        uint256 amount
    ) external returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (token/ERC20/utils/SafeERC20.sol)

pragma solidity ^0.8.0;

import "../IERC20.sol";
import "../extensions/draft-IERC20Permit.sol";
import "../../../utils/Address.sol";

/**
 * @title SafeERC20
 * @dev Wrappers around ERC20 operations that throw on failure (when the token
 * contract returns false). Tokens that return no value (and instead revert or
 * throw on failure) are also supported, non-reverting calls are assumed to be
 * successful.
 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
 */
library SafeERC20 {
    using Address for address;

    function safeTransfer(
        IERC20 token,
        address to,
        uint256 value
    ) internal {
        _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
    }

    function safeTransferFrom(
        IERC20 token,
        address from,
        address to,
        uint256 value
    ) internal {
        _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
    }

    /**
     * @dev Deprecated. This function has issues similar to the ones found in
     * {IERC20-approve}, and its usage is discouraged.
     *
     * Whenever possible, use {safeIncreaseAllowance} and
     * {safeDecreaseAllowance} instead.
     */
    function safeApprove(
        IERC20 token,
        address spender,
        uint256 value
    ) internal {
        // safeApprove should only be called when setting an initial allowance,
        // or when resetting it to zero. To increase and decrease it, use
        // 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
        require(
            (value == 0) || (token.allowance(address(this), spender) == 0),
            "SafeERC20: approve from non-zero to non-zero allowance"
        );
        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
    }

    function safeIncreaseAllowance(
        IERC20 token,
        address spender,
        uint256 value
    ) internal {
        uint256 newAllowance = token.allowance(address(this), spender) + value;
        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
    }

    function safeDecreaseAllowance(
        IERC20 token,
        address spender,
        uint256 value
    ) internal {
        unchecked {
            uint256 oldAllowance = token.allowance(address(this), spender);
            require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
            uint256 newAllowance = oldAllowance - value;
            _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
        }
    }

    function safePermit(
        IERC20Permit token,
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal {
        uint256 nonceBefore = token.nonces(owner);
        token.permit(owner, spender, value, deadline, v, r, s);
        uint256 nonceAfter = token.nonces(owner);
        require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     */
    function _callOptionalReturn(IERC20 token, bytes memory data) private {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that
        // the target address contains contract code and also asserts for success in the low-level call.

        bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
        if (returndata.length > 0) {
            // Return data is optional
            require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.5.0) (token/ERC721/extensions/IERC721Enumerable.sol)

pragma solidity ^0.8.0;

import "../IERC721.sol";

/**
 * @title ERC-721 Non-Fungible Token Standard, optional enumeration extension
 * @dev See https://eips.ethereum.org/EIPS/eip-721
 */
interface IERC721Enumerable is IERC721 {
    /**
     * @dev Returns the total amount of tokens stored by the contract.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns a token ID owned by `owner` at a given `index` of its token list.
     * Use along with {balanceOf} to enumerate all of ``owner``'s tokens.
     */
    function tokenOfOwnerByIndex(address owner, uint256 index) external view returns (uint256);

    /**
     * @dev Returns a token ID at a given `index` of all the tokens stored by the contract.
     * Use along with {totalSupply} to enumerate all tokens.
     */
    function tokenByIndex(uint256 index) external view returns (uint256);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (token/ERC721/IERC721.sol)

pragma solidity ^0.8.0;

import "../../utils/introspection/IERC165.sol";

/**
 * @dev Required interface of an ERC721 compliant contract.
 */
interface IERC721 is IERC165 {
    /**
     * @dev Emitted when `tokenId` token is transferred from `from` to `to`.
     */
    event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);

    /**
     * @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
     */
    event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);

    /**
     * @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets.
     */
    event ApprovalForAll(address indexed owner, address indexed operator, bool approved);

    /**
     * @dev Returns the number of tokens in ``owner``'s account.
     */
    function balanceOf(address owner) external view returns (uint256 balance);

    /**
     * @dev Returns the owner of the `tokenId` token.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     */
    function ownerOf(uint256 tokenId) external view returns (address owner);

    /**
     * @dev Safely transfers `tokenId` token from `from` to `to`.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must exist and be owned by `from`.
     * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
     * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
     *
     * Emits a {Transfer} event.
     */
    function safeTransferFrom(
        address from,
        address to,
        uint256 tokenId,
        bytes calldata data
    ) external;

    /**
     * @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
     * are aware of the ERC721 protocol to prevent tokens from being forever locked.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must exist and be owned by `from`.
     * - If the caller is not `from`, it must have been allowed to move this token by either {approve} or {setApprovalForAll}.
     * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
     *
     * Emits a {Transfer} event.
     */
    function safeTransferFrom(
        address from,
        address to,
        uint256 tokenId
    ) external;

    /**
     * @dev Transfers `tokenId` token from `from` to `to`.
     *
     * WARNING: Usage of this method is discouraged, use {safeTransferFrom} whenever possible.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must be owned by `from`.
     * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(
        address from,
        address to,
        uint256 tokenId
    ) external;

    /**
     * @dev Gives permission to `to` to transfer `tokenId` token to another account.
     * The approval is cleared when the token is transferred.
     *
     * Only a single account can be approved at a time, so approving the zero address clears previous approvals.
     *
     * Requirements:
     *
     * - The caller must own the token or be an approved operator.
     * - `tokenId` must exist.
     *
     * Emits an {Approval} event.
     */
    function approve(address to, uint256 tokenId) external;

    /**
     * @dev Approve or remove `operator` as an operator for the caller.
     * Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller.
     *
     * Requirements:
     *
     * - The `operator` cannot be the caller.
     *
     * Emits an {ApprovalForAll} event.
     */
    function setApprovalForAll(address operator, bool _approved) external;

    /**
     * @dev Returns the account approved for `tokenId` token.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     */
    function getApproved(uint256 tokenId) external view returns (address operator);

    /**
     * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
     *
     * See {setApprovalForAll}
     */
    function isApprovedForAll(address owner, address operator) external view returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (utils/Address.sol)

pragma solidity ^0.8.1;

/**
 * @dev Collection of functions related to the address type
 */
library Address {
    /**
     * @dev Returns true if `account` is a contract.
     *
     * [IMPORTANT]
     * ====
     * It is unsafe to assume that an address for which this function returns
     * false is an externally-owned account (EOA) and not a contract.
     *
     * Among others, `isContract` will return false for the following
     * types of addresses:
     *
     *  - an externally-owned account
     *  - a contract in construction
     *  - an address where a contract will be created
     *  - an address where a contract lived, but was destroyed
     * ====
     *
     * [IMPORTANT]
     * ====
     * You shouldn't rely on `isContract` to protect against flash loan attacks!
     *
     * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
     * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
     * constructor.
     * ====
     */
    function isContract(address account) internal view returns (bool) {
        // This method relies on extcodesize/address.code.length, which returns 0
        // for contracts in construction, since the code is only stored at the end
        // of the constructor execution.

        return account.code.length > 0;
    }

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        require(address(this).balance >= amount, "Address: insufficient balance");

        (bool success, ) = recipient.call{value: amount}("");
        require(success, "Address: unable to send value, recipient may have reverted");
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason, it is bubbled up by this
     * function (like regular Solidity function calls).
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     *
     * _Available since v3.1._
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCall(target, data, "Address: low-level call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
     * `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(
        address target,
        bytes memory data,
        uint256 value
    ) internal returns (bytes memory) {
        return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
    }

    /**
     * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
     * with `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(
        address target,
        bytes memory data,
        uint256 value,
        string memory errorMessage
    ) internal returns (bytes memory) {
        require(address(this).balance >= value, "Address: insufficient balance for call");
        require(isContract(target), "Address: call to non-contract");

        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResult(success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        return functionStaticCall(target, data, "Address: low-level static call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        require(isContract(target), "Address: static call to non-contract");

        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResult(success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionDelegateCall(target, data, "Address: low-level delegate call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        require(isContract(target), "Address: delegate call to non-contract");

        (bool success, bytes memory returndata) = target.delegatecall(data);
        return verifyCallResult(success, returndata, errorMessage);
    }

    /**
     * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the
     * revert reason using the provided one.
     *
     * _Available since v4.3._
     */
    function verifyCallResult(
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal pure returns (bytes memory) {
        if (success) {
            return returndata;
        } else {
            // Look for revert reason and bubble it up if present
            if (returndata.length > 0) {
                // The easiest way to bubble the revert reason is using memory via assembly
                /// @solidity memory-safe-assembly
                assembly {
                    let returndata_size := mload(returndata)
                    revert(add(32, returndata), returndata_size)
                }
            } else {
                revert(errorMessage);
            }
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC165 standard, as defined in the
 * https://eips.ethereum.org/EIPS/eip-165[EIP].
 *
 * Implementers can declare support of contract interfaces, which can then be
 * queried by others ({ERC165Checker}).
 *
 * For an implementation, see {ERC165}.
 */
interface IERC165 {
    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30 000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (utils/math/Math.sol)

pragma solidity ^0.8.0;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Down, // Toward negative infinity
        Up, // Toward infinity
        Zero // Toward zero
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a >= b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds up instead
     * of rounding down.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
     * with further edits by Uniswap Labs also under MIT license.
     */
    function mulDiv(
        uint256 x,
        uint256 y,
        uint256 denominator
    ) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod0 := mul(x, y)
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            require(denominator > prod1);

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
            // See https://cs.stackexchange.com/q/138556/92363.

            // Does not overflow because the denominator cannot be zero at this stage in the function.
            uint256 twos = denominator & (~denominator + 1);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
            // in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(
        uint256 x,
        uint256 y,
        uint256 denominator,
        Rounding rounding
    ) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. It the number is not a perfect square, the value is rounded down.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`.
        // We also know that `k`, the position of the most significant bit, is such that `msb(a) = 2**k`.
        // This gives `2**k < a <= 2**(k+1)` → `2**(k/2) <= sqrt(a) < 2 ** (k/2+1)`.
        // Using an algorithm similar to the msb conmputation, we are able to compute `result = 2**(k/2)` which is a
        // good first aproximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1;
        uint256 x = a;
        if (x >> 128 > 0) {
            x >>= 128;
            result <<= 64;
        }
        if (x >> 64 > 0) {
            x >>= 64;
            result <<= 32;
        }
        if (x >> 32 > 0) {
            x >>= 32;
            result <<= 16;
        }
        if (x >> 16 > 0) {
            x >>= 16;
            result <<= 8;
        }
        if (x >> 8 > 0) {
            x >>= 8;
            result <<= 4;
        }
        if (x >> 4 > 0) {
            x >>= 4;
            result <<= 2;
        }
        if (x >> 2 > 0) {
            result <<= 1;
        }

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        uint256 result = sqrt(a);
        if (rounding == Rounding.Up && result * result < a) {
            result += 1;
        }
        return result;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.5.0) (utils/Multicall.sol)

pragma solidity ^0.8.0;

import "./Address.sol";

/**
 * @dev Provides a function to batch together multiple calls in a single external call.
 *
 * _Available since v4.1._
 */
abstract contract Multicall {
    /**
     * @dev Receives and executes a batch of function calls on this contract.
     */
    function multicall(bytes[] calldata data) external virtual returns (bytes[] memory results) {
        results = new bytes[](data.length);
        for (uint256 i = 0; i < data.length; i++) {
            results[i] = Address.functionDelegateCall(address(this), data[i]);
        }
        return results;
    }
}

// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.0;

import {IPool} from "@maverickprotocol/maverick-v1-interfaces/contracts/interfaces/IPool.sol";
import {IFactory} from "@maverickprotocol/maverick-v1-interfaces/contracts/interfaces/IFactory.sol";

import {IPoolPositionSlim} from "./IPoolPositionSlim.sol";
import {IReward} from "./IReward.sol";

interface IPoolPositionAndRewardFactorySlim {
    event PoolPositionCreated(IPool pool, uint128[] binIds, uint128[] ratios, IPoolPositionSlim poolPosition, uint256 poolPositionNumber);

    event LpRewardCreated(IPoolPositionSlim poolPosition, address reward);

    event AddNewApprovedRewardToken(address rewardToken, uint256 minimumAmount);

    struct RewardInfos {
        IReward.RewardInfo[] rewardInfoList;
    }

    function allPoolPositions(uint256 poolPositionNumber) external view returns (IPoolPositionSlim poolPosition);

    function poolPositionNumber(IPoolPositionSlim poolPosition) external view returns (uint256 poolPositionNumber);

    function getLpRewardByPP(IPoolPositionSlim) external view returns (IReward);

    function poolFactory() external view returns (IFactory);

    function allPoolPositionsLength() external view returns (uint256);

    function isApprovedRewardToken(address reward) external view returns (bool);

    function minimumRewardAmount(address reward) external view returns (uint256);

    function isPoolPosition(IPoolPositionSlim poolPosition) external view returns (bool);

    function createPoolPositionAndRewards(IPool pool, uint128[] calldata binIds, uint128[] calldata ratios, bool isStatic) external returns (IPoolPositionSlim);

    function owner() external view returns (address);
}

// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.0;

import {IERC20Metadata} from "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol";

import {IPool} from "@maverickprotocol/maverick-v1-interfaces/contracts/interfaces/IPool.sol";

interface IPoolPositionSlim is IERC20Metadata {
    error InvalidBinIds(uint128[] binIds);
    error InvalidRatio();
    error BinIsMerged();
    error InvalidTokenId(uint256 tokenId);

    event MigrateBinLiquidity(uint128 oldBinId, uint128 newBinId);

    function allBinIds() external view returns (uint128[] memory);

    function binIds(uint256) external view returns (uint128);

    function ratios(uint256) external view returns (uint128);

    /// @notice tokenId that holds PP assets
    function tokenId() external view returns (uint256);

    /// @notice Pool that the position exists in
    function pool() external view returns (IPool);

    /// @notice Whether or not the PP contains all static bins as opposed to
    //movement bins
    function isStatic() external view returns (bool);

    /// @notice Returns struct array of bin lp amounts that need to be transfered for a mint
    /// @param  binZeroLpAddAmount LP amount of bin[0] to be added
    function binLpAddAmountRequirement(uint128 binZeroLpAddAmount) external view returns (IPool.RemoveLiquidityParams[] memory params);

    /// @notice Burns PoolPosition ERC20 tokens from given account and
    //trasnfers Pool liquidity position to toTokenId
    /// @param account wallet or contract whose PoolPosition tokens will be
    //burned
    /// @param toTokenId pool.position() that will own the output liquidity
    /// @param lpAmountToUnStake number of PoolPosition LPs tokens to burn
    function burnFromToTokenIdAsBinLiquidity(address account, uint256 toTokenId, uint256 lpAmountToUnStake) external returns (IPool.RemoveLiquidityParams[] memory params);

    /// @notice Burns PoolPosition ERC20 tokens and trasnfers resulting
    //liquidity as A/B tokens to recipient
    /// @param account wallet or contract whose PoolPosition tokens will be
    //burned
    /// @param recipient pool.position() that will own the output tokens
    /// @param lpAmountToUnStake number of PoolPosition LPs tokens to burn
    function burnFromToAddressAsReserves(address account, address recipient, uint256 lpAmountToUnStake) external returns (uint256 amountA, uint256 amountB);

    /// @notice Migrates the PoolPosition liquidity to active bin if the
    //liquidity is currently merged
    /// @dev Migrating only applies to one-bin dynamic-kind PoolPositions and
    //it must be called before any other external call will execute if the bin
    //in the PoolPosition has been merged.
    function migrateBinLiquidity() external;

    /// @notice Mint new PoolPosition tokens
    /// @param to wallet or contract where PoolPosition tokens will be minted
    /// @param fromTokenId pool.position() that will contribute input liquidity
    /// @param binZeroLpAddAmount LP balance of pool.position() in PoolPosition
    //bins[0] to be transfered
    //  @return liquidity number of PoolPosition LP tokens minted
    function mint(address to, uint256 fromTokenId, uint128 binZeroLpAddAmount) external returns (uint256 liquidity);

    /// @notice Amount of pool.tokenA() and pool.tokenB() tokens held by the
    //PoolPosition
    //  @return reserveA Amount of pool.tokenA() tokens held by the
    //  PoolPosition
    //  @return reserveB Amount of pool.tokenB() tokens held by the
    //  PoolPosition
    function getReserves() external view returns (uint256 reserveA, uint256 reserveB);
}

// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.0;

import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";

interface IReward {
    event NotifyRewardAmount(address sender, address rewardTokenAddress, uint256 amount, uint256 duration, uint256 rewardRate);
    event GetReward(address sender, address account, address recipient, uint8 rewardTokenIndex, address rewardTokenAddress, uint256 rewardPaid);
    event UnStake(address sender, address account, uint256 amount, address recipient, uint256 userBalance, uint256 totalSupply);
    event Stake(address sender, address supplier, uint256 amount, address account, uint256 userBalance, uint256 totalSupply);
    event AddRewardToken(address rewardTokenAddress, uint8 rewardTokenIndex);
    event RemoveRewardToken(address rewardTokenAddress, uint8 rewardTokenIndex);

    error DurationOutOfBounds(uint256 duration);
    error OnlyFactoryOwner();
    error ZeroAmount();
    error NotValidRewardToken(address rewardTokenAddress);
    error TooManyRewardTokens();
    error StaleToken(uint8 rewardTokenIndex);
    error TokenNotStale(uint8 rewardTokenIndex);
    error RewardStillActive(uint8 rewardTokenIndex);
    error RewardAmountBelowThreshold(uint256 amount, uint256 minimumAmount);

    struct RewardInfo {
        // Timestamp of when the rewards finish
        uint256 finishAt;
        // Minimum of last updated time and reward finish time
        uint256 updatedAt;
        // Reward to be paid out per second
        uint256 rewardRate;
        // Sum of (reward rate * dt * 1e18 / total supply)
        uint256 rewardPerTokenStored;
        IERC20 rewardToken;
    }

    struct EarnedInfo {
        // account
        address account;
        // earned
        uint256 earned;
        // reward token
        IERC20 rewardToken;
    }

    function rewardInfo() external view returns (RewardInfo[] memory);

    function tokenIndex(address tokenAddress) external view returns (uint8);

    function balanceOf(address account) external view returns (uint256);

    function earned(address account, address rewardTokenAddress) external view returns (uint256);

    function earned(address account) external view returns (EarnedInfo[] memory earnedInfo);

    /// @notice Add rewards tokens account the pot of rewards with a transferFrom.
    /// @param  rewardTokenAddress address of reward token added
    function notifyAndTransfer(address rewardTokenAddress, uint256 amount, uint256 duration) external;

    /// @notice Deposit LP tokens for reward allocation.
    /// @param amount LP token amount account deposit.
    /// @param account The receiver of `amount` deposit benefit.
    function stake(uint256 amount, address account) external;

    /// @notice Withdraw LP token stake.
    /// @param amount LP token amount account withdraw.
    /// @param  recipient Receiver of the LP tokens.
    function unstake(uint256 amount, address recipient) external;

    /// @notice Withdraw entire amount of LP token stake.
    /// @param  recipient Receiver of the LP tokens.
    function unstakeAll(address recipient) external;

    /// @notice Get reward proceeds for transaction sender account `account`.
    /// @param recipient Receiver of REWARD_TOKEN rewards.
    /// @param rewardTokenIndices indices of reward tokens to collect
    function getReward(address recipient, uint8[] calldata rewardTokenIndices) external;

    /// @notice Get reward proceeds for transaction sender account `account`.
    /// @param recipient Receiver of REWARD_TOKEN rewards.
    /// @param rewardTokenIndex index of reward token to collect
    function getReward(address recipient, uint8 rewardTokenIndex) external returns (uint256);

    /// @notice Remove stale tokens from the reward contract
    /// @param rewardTokenIndex is the index of the reward token in the
    //tokenIndex mapping
    function removeStaleToken(uint8 rewardTokenIndex) external;
}

// SPDX-License-Identifier: MIT
// modified from OpenZeppelin Contracts (last updated v4.8.0) (utils/structs/BitMaps.sol)
pragma solidity ^0.8.0;

/**
 * @dev Library for managing uint256 to bool mapping in a compact and efficient way, providing the keys are sequential.
 * Largely inspired by Uniswap's https://github.com/Uniswap/merkle-distributor/blob/master/contracts/MerkleDistributor.sol[merkle-distributor].
 */
library BitMap {
    struct Instance {
        uint256 _data;
    }

    /**
     * @dev Returns whether the bit at `index` is set.
     */
    function get(Instance storage self, uint8 index) internal view returns (bool) {
        uint256 mask = 1 << index;
        return self._data & mask != 0;
    }

    /**
     * @dev Sets the bit at `index`.
     */
    function set(Instance storage self, uint8 index) internal {
        uint256 mask = 1 << index;
        self._data |= mask;
    }

    /**
     * @dev Unsets the bit at `index`.
     */
    function unset(Instance storage self, uint8 index) internal {
        uint256 mask = 1 << index;
        self._data &= ~mask;
    }
}

// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.0;
import {PRBMath} from "prb-math/contracts/PRBMath.sol";
import {PRBMathUD60x18} from "prb-math/contracts/PRBMathUD60x18.sol";

library Math {
    using PRBMathUD60x18 for uint256;
    uint256 constant MAX_BIT = 0x8000000000000000000000000000000000000000000000000000000000000000;
    uint256 constant DEFAULT_SCALE = 1;

    function max(uint256 x, uint256 y) internal pure returns (uint256) {
        return x > y ? x : y;
    }

    function min(uint256 x, uint256 y) internal pure returns (uint256) {
        return x < y ? x : y;
    }

    function mulDiv(uint256 x, uint256 y, uint256 k, bool ceil) internal pure returns (uint256 result) {
        result = PRBMath.mulDiv(x, y, k);
        if (ceil && mulmod(x, y, k) != 0) result = result + 1;
    }

    function clip(uint256 x, uint256 y) internal pure returns (uint256) {
        return x < y ? 0 : x - y;
    }

    function toScale(uint256 amount, uint256 scaleFactor, bool ceil) internal pure returns (uint256) {
        if (scaleFactor == DEFAULT_SCALE || amount == 0) {
            return amount;
        } else if ((scaleFactor & MAX_BIT) != 0) {
            return amount * (scaleFactor & ~MAX_BIT);
        } else {
            return (ceil && mulmod(amount, 1, scaleFactor) != 0) ? amount / scaleFactor + 1 : amount / scaleFactor;
        }
    }

    function fromScale(uint256 amount, uint256 scaleFactor) internal pure returns (uint256) {
        if (scaleFactor == DEFAULT_SCALE) {
            return amount;
        } else if ((scaleFactor & MAX_BIT) != 0) {
            return amount / (scaleFactor & ~MAX_BIT);
        } else {
            return amount * scaleFactor;
        }
    }

    function tickSqrtPrice(uint256 tickSpacing, int32 _tick) internal pure returns (uint256 _result) {
        unchecked {
            uint256 tick = _tick < 0 ? uint256(-int256(_tick)) : uint256(int256(_tick));
            tick *= tickSpacing;
            uint256 ratio = tick & 0x1 != 0 ? 0xfffcb933bd6fad9d3af5f0b9f25db4d6 : 0x100000000000000000000000000000000;
            if (tick & 0x2 != 0) ratio = (ratio * 0xfff97272373d41fd789c8cb37ffcaa1c) >> 128;
            if (tick & 0x4 != 0) ratio = (ratio * 0xfff2e50f5f656ac9229c67059486f389) >> 128;
            if (tick & 0x8 != 0) ratio = (ratio * 0xffe5caca7e10e81259b3cddc7a064941) >> 128;
            if (tick & 0x10 != 0) ratio = (ratio * 0xffcb9843d60f67b19e8887e0bd251eb7) >> 128;
            if (tick & 0x20 != 0) ratio = (ratio * 0xff973b41fa98cd2e57b660be99eb2c4a) >> 128;
            if (tick & 0x40 != 0) ratio = (ratio * 0xff2ea16466c9838804e327cb417cafcb) >> 128;
            if (tick & 0x80 != 0) ratio = (ratio * 0xfe5dee046a99d51e2cc356c2f617dbe0) >> 128;
            if (tick & 0x100 != 0) ratio = (ratio * 0xfcbe86c7900aecf64236ab31f1f9dcb5) >> 128;
            if (tick & 0x200 != 0) ratio = (ratio * 0xf987a7253ac4d9194200696907cf2e37) >> 128;
            if (tick & 0x400 != 0) ratio = (ratio * 0xf3392b0822b88206f8abe8a3b44dd9be) >> 128;
            if (tick & 0x800 != 0) ratio = (ratio * 0xe7159475a2c578ef4f1d17b2b235d480) >> 128;
            if (tick & 0x1000 != 0) ratio = (ratio * 0xd097f3bdfd254ee83bdd3f248e7e785e) >> 128;
            if (tick & 0x2000 != 0) ratio = (ratio * 0xa9f746462d8f7dd10e744d913d033333) >> 128;
            if (tick & 0x4000 != 0) ratio = (ratio * 0x70d869a156ddd32a39e257bc3f50aa9b) >> 128;
            if (tick & 0x8000 != 0) ratio = (ratio * 0x31be135f97da6e09a19dc367e3b6da40) >> 128;
            if (tick & 0x10000 != 0) ratio = (ratio * 0x9aa508b5b7e5a9780b0cc4e25d61a56) >> 128;
            if (tick & 0x20000 != 0) ratio = (ratio * 0x5d6af8dedbcb3a6ccb7ce618d14225) >> 128;
            if (tick & 0x40000 != 0) ratio = (ratio * 0x2216e584f630389b2052b8db590e) >> 128;
            if (_tick > 0) ratio = type(uint256).max / ratio;
            _result = (ratio * PRBMathUD60x18.SCALE) >> 128;
        }
    }

    function getTickL(uint256 _reserveA, uint256 _reserveB, uint256 _sqrtLowerTickPrice, uint256 _sqrtUpperTickPrice) internal pure returns (uint256) {
        uint256 precisionBump = 0;
        if ((_reserveA >> 60) == 0 && (_reserveB >> 60) == 0) {
            precisionBump = 40;
            _reserveA <<= precisionBump;
            _reserveB <<= precisionBump;
        }
        if (_reserveA == 0 || _reserveB == 0) {
            uint256 b = (_reserveA.div(_sqrtUpperTickPrice) + _reserveB.mul(_sqrtLowerTickPrice));
            return mulDiv(b, _sqrtUpperTickPrice, _sqrtUpperTickPrice - _sqrtLowerTickPrice, false) >> precisionBump;
        } else {
            uint256 b = (_reserveA.div(_sqrtUpperTickPrice) + _reserveB.mul(_sqrtLowerTickPrice)) >> 1;
            uint256 diff = _sqrtUpperTickPrice - _sqrtLowerTickPrice;
            return mulDiv(b + (b.mul(b) + mulDiv(_reserveB.mul(_reserveA), diff, _sqrtUpperTickPrice, false)).sqrt(), _sqrtUpperTickPrice, diff, false) >> precisionBump;
        }
    }

    function getTickSqrtPriceAndL(uint256 _reserveA, uint256 _reserveB, uint256 _sqrtLowerTickPrice, uint256 _sqrtUpperTickPrice) internal pure returns (uint256 sqrtPrice, uint256 liquidity) {
        liquidity = getTickL(_reserveA, _reserveB, _sqrtLowerTickPrice, _sqrtUpperTickPrice);
        if (_reserveA == 0) {
            return (_sqrtLowerTickPrice, liquidity);
        }
        if (_reserveB == 0) {
            return (_sqrtUpperTickPrice, liquidity);
        }
        sqrtPrice = ((_reserveA + liquidity.mul(_sqrtLowerTickPrice)).div(_reserveB + liquidity.div(_sqrtUpperTickPrice))).sqrt();
        sqrtPrice = min(max(sqrtPrice, _sqrtLowerTickPrice), _sqrtUpperTickPrice);
    }
}

// SPDX-License-Identifier: GPL-2.0-or-later

// adapted from https://github.com/Synthetixio/synthetix/blob/c53070db9a93e5717ca7f74fcaf3922e991fb71b/contracts/StakingRewards.sol
pragma solidity ^0.8.0;

import {SafeERC20} from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import {Math} from "@openzeppelin/contracts/utils/math/Math.sol";
import {ReentrancyGuard} from "@openzeppelin/contracts/security/ReentrancyGuard.sol";
import {Multicall} from "@openzeppelin/contracts/utils/Multicall.sol";

import {IReward} from "./interfaces/IReward.sol";
import {Math as MavMath} from "./libraries/Math.sol";
import {BitMap} from "./libraries/BitMap.sol";
import {IPoolPositionAndRewardFactorySlim} from "./interfaces/IPoolPositionAndRewardFactorySlim.sol";

abstract contract RewardBase is IReward, ReentrancyGuard, Multicall {
    using SafeERC20 for IERC20;
    using BitMap for BitMap.Instance;

    uint8 public MAX_REWARD_TOKENS = 16;
    uint256 constant ONE = 1e18;
    // after this period of time without a reward, users can remove token from
    // list
    uint256 constant STALE_INTERVAL = 30 days;

    IPoolPositionAndRewardFactorySlim public immutable rewardFactory;
    IERC20 public immutable stakingToken;

    // Max Duration of rewards to be paid out
    uint256 constant MAX_DURATION = 30 days;
    uint256 constant MIN_DURATION = 3 days;

    // Total staked
    uint256 public totalSupply;
    // User address => staked amount
    mapping(address => uint256) public balanceOf;

    struct RewardData {
        // Timestamp of when the rewards finish
        uint256 finishAt;
        // Minimum of last updated time and reward finish time
        uint256 updatedAt;
        // Reward to be paid out per second
        uint256 rewardRate;
        // Sum of (reward rate * dt * 1e18 / total supply)
        uint256 rewardPerTokenStored;
        // User address => rewardPerTokenStored
        mapping(address => uint256) userRewardPerTokenPaid;
        // User address => rewards to be claimed
        mapping(address => uint256) rewards;
        // User address => rewards mapping to track if token index has been
        // updated
        mapping(address => uint256) resetCount;
        // total earned
        uint256 escrowedReward;
        uint256 globalResetCount;
        IERC20 rewardToken;
    }
    RewardData[] public rewardData;
    mapping(address => uint8) public tokenIndex;

    BitMap.Instance public globalActive;

    constructor(IERC20 _stakingToken, IPoolPositionAndRewardFactorySlim _rewardFactory) {
        stakingToken = _stakingToken;

        rewardFactory = _rewardFactory;
        // push empty token so that we can use index zero as a sentinel value
        // in tokenIndex mapping; ie if tokenIndex[X] = 0, we know X is not in
        // the list
        rewardData.push();
    }

    modifier checkAmount(uint256 amount) {
        if (amount == 0) revert ZeroAmount();
        _;
    }

    /////////////////////////////////////
    /// View Functions
    /////////////////////////////////////

    function rewardInfo() external view returns (RewardInfo[] memory info) {
        uint256 length = rewardData.length;
        info = new RewardInfo[](length);
        for (uint8 i = 1; i < length; i++) {
            RewardData storage data = rewardData[i];
            info[i] = RewardInfo({finishAt: data.finishAt, updatedAt: data.updatedAt, rewardRate: data.rewardRate, rewardPerTokenStored: data.rewardPerTokenStored, rewardToken: data.rewardToken});
        }
    }

    function earned(address account) public view returns (EarnedInfo[] memory earnedInfo) {
        uint256 length = rewardData.length;
        earnedInfo = new EarnedInfo[](length);
        for (uint8 i = 1; i < length; i++) {
            RewardData storage data = rewardData[i];
            earnedInfo[i] = EarnedInfo({account: account, earned: earned(account, data), rewardToken: data.rewardToken});
        }
    }

    function earned(address account, address rewardTokenAddress) external view returns (uint256) {
        uint256 rewardTokenIndex = tokenIndex[rewardTokenAddress];
        if (rewardTokenIndex == 0) revert NotValidRewardToken(rewardTokenAddress);
        RewardData storage data = rewardData[rewardTokenIndex];
        return earned(account, data);
    }

    function earned(address account, RewardData storage data) internal view returns (uint256) {
        return data.rewards[account] + Math.mulDiv(balanceOf[account], MavMath.clip(data.rewardPerTokenStored + deltaRewardPerToken(data), data.userRewardPerTokenPaid[account]), ONE);
    }

    /////////////////////////////////////
    /// Internal Update Functions
    /////////////////////////////////////

    function updateReward(address account, RewardData storage data) internal {
        uint256 reward = deltaRewardPerToken(data);
        if (reward != 0) {
            data.rewardPerTokenStored += reward;
            data.escrowedReward += Math.mulDiv(reward, totalSupply, ONE, Math.Rounding(1));
        }
        data.updatedAt = lastTimeRewardApplicable(data.finishAt);

        if (account != address(0)) {
            if (data.resetCount[account] != data.globalResetCount) {
                // check to see if this token index was changed
                data.userRewardPerTokenPaid[account] = 0;
                data.rewards[account] = 0;
                data.resetCount[account] = data.globalResetCount;
            }
            data.rewards[account] += deltaEarned(account, data);
            data.userRewardPerTokenPaid[account] = data.rewardPerTokenStored;
        }
    }

    function deltaEarned(address account, RewardData storage data) internal view returns (uint256) {
        return Math.mulDiv(balanceOf[account], MavMath.clip(data.rewardPerTokenStored, data.userRewardPerTokenPaid[account]), ONE);
    }

    function deltaRewardPerToken(RewardData storage data) internal view returns (uint256) {
        uint256 timeDiff = MavMath.clip(lastTimeRewardApplicable(data.finishAt), data.updatedAt);
        if (timeDiff == 0 || totalSupply == 0 || data.rewardRate == 0) {
            return 0;
        }
        return Math.mulDiv(data.rewardRate, timeDiff * ONE, totalSupply);
    }

    function lastTimeRewardApplicable(uint256 dataFinishAt) internal view returns (uint256) {
        return Math.min(dataFinishAt, block.timestamp);
    }

    function updateAllRewards(address account) internal {
        uint256 length = rewardData.length;
        for (uint8 i = 1; i < length; i++) {
            if (!globalActive.get(i)) continue;

            RewardData storage data = rewardData[i];

            updateReward(account, data);
        }
    }

    /// @dev add token if it is approved and is not already tracked
    function _checkAndAddRewardToken(address rewardTokenAddress) internal returns (uint8 rewardTokenIndex) {
        rewardTokenIndex = tokenIndex[rewardTokenAddress];
        if (rewardTokenIndex != 0) return rewardTokenIndex;

        if (!rewardFactory.isApprovedRewardToken(rewardTokenAddress)) revert NotValidRewardToken(rewardTokenAddress);

        // find first unset token index and use it
        for (uint8 i = 1; i < MAX_REWARD_TOKENS + 1; i++) {
            if (globalActive.get(i)) continue;
            rewardTokenIndex = i;
            break;
        }
        if (rewardTokenIndex == 0) revert TooManyRewardTokens();
        if (rewardTokenIndex == rewardData.length) rewardData.push();

        RewardData storage _data = rewardData[rewardTokenIndex];

        _data.rewardToken = IERC20(rewardTokenAddress);
        _data.globalResetCount++;

        tokenIndex[rewardTokenAddress] = rewardTokenIndex;
        globalActive.set(rewardTokenIndex);
        emit AddRewardToken(rewardTokenAddress, rewardTokenIndex);
    }

    /////////////////////////////////////
    /// Internal User Functions
    /////////////////////////////////////

    function _stake(address supplier, uint256 amount, address account) internal nonReentrant checkAmount(amount) {
        updateAllRewards(account);
        stakingToken.safeTransferFrom(supplier, address(this), amount);
        balanceOf[account] += amount;
        totalSupply += amount;
        emit Stake(msg.sender, supplier, amount, account, balanceOf[account], totalSupply);
    }

    function _unstake(address account, uint256 amount, address recipient) internal nonReentrant checkAmount(amount) {
        updateAllRewards(account);
        balanceOf[account] -= amount;
        totalSupply -= amount;
        stakingToken.safeTransfer(recipient, amount);
        emit UnStake(msg.sender, account, amount, recipient, balanceOf[account], totalSupply);
    }

    function _unstakeAll(address account, address recipient) internal {
        _unstake(account, balanceOf[account], recipient);
    }

    function _getReward(address account, address recipient, uint8 rewardTokenIndex) internal nonReentrant returns (uint256 reward) {
        if (!globalActive.get(rewardTokenIndex)) revert StaleToken(rewardTokenIndex);
        RewardData storage data = rewardData[rewardTokenIndex];
        updateReward(account, data);
        reward = data.rewards[account];
        if (reward != 0) {
            data.rewards[account] = 0;
            data.escrowedReward -= reward;
            data.rewardToken.safeTransfer(recipient, reward);
        }
        emit GetReward(msg.sender, account, recipient, rewardTokenIndex, address(data.rewardToken), reward);
    }

    function _getReward(address account, address recipient, uint8[] memory rewardTokenIndices) internal {
        uint256 length = rewardTokenIndices.length;
        for (uint8 i; i < length; i++) {
            _getReward(account, recipient, rewardTokenIndices[i]);
        }
    }

    /////////////////////////////////////
    /// Add Reward
    /////////////////////////////////////

    /// @notice Adds reward to contract.
    function notifyAndTransfer(address rewardTokenAddress, uint256 amount, uint256 duration) public nonReentrant {
        if (duration < MIN_DURATION) revert DurationOutOfBounds(duration);

        uint256 minimumAmount = rewardFactory.minimumRewardAmount(rewardTokenAddress);
        if (amount < minimumAmount) revert RewardAmountBelowThreshold(amount, minimumAmount);

        duration = _notifyRewardAmount(rewardTokenAddress, amount, duration);

        if (duration > MAX_DURATION) revert DurationOutOfBounds(duration);
        IERC20(rewardTokenAddress).safeTransferFrom(msg.sender, address(this), amount);
    }

    /* @notice called by reward depositor to recompute the reward rate.  If
     *  notifier sends more than remaining amount, then notifier sets the rate.
     *  Else, we extend the duration at the current rate. We may notify with less
     *  than enough of assets to cover the period. In that case, reward rate will
     *  be 0 and the assets sit on the contract until another notify happens with
     *  enough assets for a positive rate.
     *   @dev Must notify before transfering assets.  Transfering and then
     *  notifying with the same amount will break the logic of this reward
     *  contract.  If a contract needs to transfer and then notify, the
     *  notification amount should be 0.
     */
    function _notifyRewardAmount(address rewardTokenAddress, uint256 amount, uint256 duration) internal returns (uint256) {
        uint8 rewardTokenIndex = _checkAndAddRewardToken(rewardTokenAddress);
        RewardData storage data = rewardData[rewardTokenIndex];
        updateReward(address(0), data);
        uint256 remainingRewards = MavMath.clip(data.rewardToken.balanceOf(address(this)), data.escrowedReward);

        if (amount > remainingRewards || data.rewardRate == 0) {
            // if notifying new amount, notifier gets to set the rate
            data.rewardRate = (amount + remainingRewards) / duration;
        } else {
            // if notifier doesn't bring enough, we extend the duration at the
            // same rate
            duration = (amount + remainingRewards) / data.rewardRate;
        }

        data.finishAt = block.timestamp + duration;
        data.updatedAt = block.timestamp;
        emit NotifyRewardAmount(msg.sender, rewardTokenAddress, amount, duration, data.rewardRate);
        return duration;
    }

    /////////////////////////////////////
    /// Admin Function
    /////////////////////////////////////

    function removeStaleToken(uint8 rewardTokenIndex) public virtual nonReentrant {
        _removeStaleToken(rewardTokenIndex);
    }

    function _removeStaleToken(uint8 rewardTokenIndex) internal {
        RewardData storage data = rewardData[rewardTokenIndex];
        if (block.timestamp < STALE_INTERVAL + data.finishAt) revert TokenNotStale(rewardTokenIndex);
        emit RemoveRewardToken(address(data.rewardToken), rewardTokenIndex);

        // remove token from list
        globalActive.unset(rewardTokenIndex);
        delete tokenIndex[address(data.rewardToken)];

        delete data.rewardToken;
        delete data.escrowedReward;
        delete data.rewardPerTokenStored;
        delete data.rewardRate;
        delete data.finishAt;
        delete data.updatedAt;
    }
}

// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.0;

import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";

import {IPoolPositionAndRewardFactorySlim} from "./interfaces/IPoolPositionAndRewardFactorySlim.sol";
import {RewardBase} from "./RewardBase.sol";

contract RewardOpenSlim is RewardBase {
    constructor(IERC20 _stakingToken, IPoolPositionAndRewardFactorySlim _rewardFactory) RewardBase(_stakingToken, _rewardFactory) {}

    function stake(uint256 amount, address account) external {
        _stake(msg.sender, amount, account);
    }

    function unstake(uint256 amount, address recipient) external {
        _unstake(msg.sender, amount, recipient);
    }

    function unstakeAll(address recipient) external {
        _unstakeAll(msg.sender, recipient);
    }

    function getReward(address recipient, uint8[] calldata rewardTokenIndices) external {
        _getReward(msg.sender, recipient, rewardTokenIndices);
    }

    function getReward(address recipient, uint8 rewardTokenIndex) external returns (uint256) {
        return _getReward(msg.sender, recipient, rewardTokenIndex);
    }
}

// SPDX-License-Identifier: Unlicense
pragma solidity >=0.8.4;

/// @notice Emitted when the result overflows uint256.
error PRBMath__MulDivFixedPointOverflow(uint256 prod1);

/// @notice Emitted when the result overflows uint256.
error PRBMath__MulDivOverflow(uint256 prod1, uint256 denominator);

/// @notice Emitted when one of the inputs is type(int256).min.
error PRBMath__MulDivSignedInputTooSmall();

/// @notice Emitted when the intermediary absolute result overflows int256.
error PRBMath__MulDivSignedOverflow(uint256 rAbs);

/// @notice Emitted when the input is MIN_SD59x18.
error PRBMathSD59x18__AbsInputTooSmall();

/// @notice Emitted when ceiling a number overflows SD59x18.
error PRBMathSD59x18__CeilOverflow(int256 x);

/// @notice Emitted when one of the inputs is MIN_SD59x18.
error PRBMathSD59x18__DivInputTooSmall();

/// @notice Emitted when one of the intermediary unsigned results overflows SD59x18.
error PRBMathSD59x18__DivOverflow(uint256 rAbs);

/// @notice Emitted when the input is greater than 133.084258667509499441.
error PRBMathSD59x18__ExpInputTooBig(int256 x);

/// @notice Emitted when the input is greater than 192.
error PRBMathSD59x18__Exp2InputTooBig(int256 x);

/// @notice Emitted when flooring a number underflows SD59x18.
error PRBMathSD59x18__FloorUnderflow(int256 x);

/// @notice Emitted when converting a basic integer to the fixed-point format overflows SD59x18.
error PRBMathSD59x18__FromIntOverflow(int256 x);

/// @notice Emitted when converting a basic integer to the fixed-point format underflows SD59x18.
error PRBMathSD59x18__FromIntUnderflow(int256 x);

/// @notice Emitted when the product of the inputs is negative.
error PRBMathSD59x18__GmNegativeProduct(int256 x, int256 y);

/// @notice Emitted when multiplying the inputs overflows SD59x18.
error PRBMathSD59x18__GmOverflow(int256 x, int256 y);

/// @notice Emitted when the input is less than or equal to zero.
error PRBMathSD59x18__LogInputTooSmall(int256 x);

/// @notice Emitted when one of the inputs is MIN_SD59x18.
error PRBMathSD59x18__MulInputTooSmall();

/// @notice Emitted when the intermediary absolute result overflows SD59x18.
error PRBMathSD59x18__MulOverflow(uint256 rAbs);

/// @notice Emitted when the intermediary absolute result overflows SD59x18.
error PRBMathSD59x18__PowuOverflow(uint256 rAbs);

/// @notice Emitted when the input is negative.
error PRBMathSD59x18__SqrtNegativeInput(int256 x);

/// @notice Emitted when the calculating the square root overflows SD59x18.
error PRBMathSD59x18__SqrtOverflow(int256 x);

/// @notice Emitted when addition overflows UD60x18.
error PRBMathUD60x18__AddOverflow(uint256 x, uint256 y);

/// @notice Emitted when ceiling a number overflows UD60x18.
error PRBMathUD60x18__CeilOverflow(uint256 x);

/// @notice Emitted when the input is greater than 133.084258667509499441.
error PRBMathUD60x18__ExpInputTooBig(uint256 x);

/// @notice Emitted when the input is greater than 192.
error PRBMathUD60x18__Exp2InputTooBig(uint256 x);

/// @notice Emitted when converting a basic integer to the fixed-point format format overflows UD60x18.
error PRBMathUD60x18__FromUintOverflow(uint256 x);

/// @notice Emitted when multiplying the inputs overflows UD60x18.
error PRBMathUD60x18__GmOverflow(uint256 x, uint256 y);

/// @notice Emitted when the input is less than 1.
error PRBMathUD60x18__LogInputTooSmall(uint256 x);

/// @notice Emitted when the calculating the square root overflows UD60x18.
error PRBMathUD60x18__SqrtOverflow(uint256 x);

/// @notice Emitted when subtraction underflows UD60x18.
error PRBMathUD60x18__SubUnderflow(uint256 x, uint256 y);

/// @dev Common mathematical functions used in both PRBMathSD59x18 and PRBMathUD60x18. Note that this shared library
/// does not always assume the signed 59.18-decimal fixed-point or the unsigned 60.18-decimal fixed-point
/// representation. When it does not, it is explicitly mentioned in the NatSpec documentation.
library PRBMath {
    /// STRUCTS ///

    struct SD59x18 {
        int256 value;
    }

    struct UD60x18 {
        uint256 value;
    }

    /// STORAGE ///

    /// @dev How many trailing decimals can be represented.
    uint256 internal constant SCALE = 1e18;

    /// @dev Largest power of two divisor of SCALE.
    uint256 internal constant SCALE_LPOTD = 262144;

    /// @dev SCALE inverted mod 2^256.
    uint256 internal constant SCALE_INVERSE =
        78156646155174841979727994598816262306175212592076161876661_508869554232690281;

    /// FUNCTIONS ///

    /// @notice Calculates the binary exponent of x using the binary fraction method.
    /// @dev Has to use 192.64-bit fixed-point numbers.
    /// See https://ethereum.stackexchange.com/a/96594/24693.
    /// @param x The exponent as an unsigned 192.64-bit fixed-point number.
    /// @return result The result as an unsigned 60.18-decimal fixed-point number.
    function exp2(uint256 x) internal pure returns (uint256 result) {
        unchecked {
            // Start from 0.5 in the 192.64-bit fixed-point format.
            result = 0x800000000000000000000000000000000000000000000000;

            // Multiply the result by root(2, 2^-i) when the bit at position i is 1. None of the intermediary results overflows
            // because the initial result is 2^191 and all magic factors are less than 2^65.
            if (x & 0x8000000000000000 > 0) {
                result = (result * 0x16A09E667F3BCC909) >> 64;
            }
            if (x & 0x4000000000000000 > 0) {
                result = (result * 0x1306FE0A31B7152DF) >> 64;
            }
            if (x & 0x2000000000000000 > 0) {
                result = (result * 0x1172B83C7D517ADCE) >> 64;
            }
            if (x & 0x1000000000000000 > 0) {
                result = (result * 0x10B5586CF9890F62A) >> 64;
            }
            if (x & 0x800000000000000 > 0) {
                result = (result * 0x1059B0D31585743AE) >> 64;
            }
            if (x & 0x400000000000000 > 0) {
                result = (result * 0x102C9A3E778060EE7) >> 64;
            }
            if (x & 0x200000000000000 > 0) {
                result = (result * 0x10163DA9FB33356D8) >> 64;
            }
            if (x & 0x100000000000000 > 0) {
                result = (result * 0x100B1AFA5ABCBED61) >> 64;
            }
            if (x & 0x80000000000000 > 0) {
                result = (result * 0x10058C86DA1C09EA2) >> 64;
            }
            if (x & 0x40000000000000 > 0) {
                result = (result * 0x1002C605E2E8CEC50) >> 64;
            }
            if (x & 0x20000000000000 > 0) {
                result = (result * 0x100162F3904051FA1) >> 64;
            }
            if (x & 0x10000000000000 > 0) {
                result = (result * 0x1000B175EFFDC76BA) >> 64;
            }
            if (x & 0x8000000000000 > 0) {
                result = (result * 0x100058BA01FB9F96D) >> 64;
            }
            if (x & 0x4000000000000 > 0) {
                result = (result * 0x10002C5CC37DA9492) >> 64;
            }
            if (x & 0x2000000000000 > 0) {
                result = (result * 0x1000162E525EE0547) >> 64;
            }
            if (x & 0x1000000000000 > 0) {
                result = (result * 0x10000B17255775C04) >> 64;
            }
            if (x & 0x800000000000 > 0) {
                result = (result * 0x1000058B91B5BC9AE) >> 64;
            }
            if (x & 0x400000000000 > 0) {
                result = (result * 0x100002C5C89D5EC6D) >> 64;
            }
            if (x & 0x200000000000 > 0) {
                result = (result * 0x10000162E43F4F831) >> 64;
            }
            if (x & 0x100000000000 > 0) {
                result = (result * 0x100000B1721BCFC9A) >> 64;
            }
            if (x & 0x80000000000 > 0) {
                result = (result * 0x10000058B90CF1E6E) >> 64;
            }
            if (x & 0x40000000000 > 0) {
                result = (result * 0x1000002C5C863B73F) >> 64;
            }
            if (x & 0x20000000000 > 0) {
                result = (result * 0x100000162E430E5A2) >> 64;
            }
            if (x & 0x10000000000 > 0) {
                result = (result * 0x1000000B172183551) >> 64;
            }
            if (x & 0x8000000000 > 0) {
                result = (result * 0x100000058B90C0B49) >> 64;
            }
            if (x & 0x4000000000 > 0) {
                result = (result * 0x10000002C5C8601CC) >> 64;
            }
            if (x & 0x2000000000 > 0) {
                result = (result * 0x1000000162E42FFF0) >> 64;
            }
            if (x & 0x1000000000 > 0) {
                result = (result * 0x10000000B17217FBB) >> 64;
            }
            if (x & 0x800000000 > 0) {
                result = (result * 0x1000000058B90BFCE) >> 64;
            }
            if (x & 0x400000000 > 0) {
                result = (result * 0x100000002C5C85FE3) >> 64;
            }
            if (x & 0x200000000 > 0) {
                result = (result * 0x10000000162E42FF1) >> 64;
            }
            if (x & 0x100000000 > 0) {
                result = (result * 0x100000000B17217F8) >> 64;
            }
            if (x & 0x80000000 > 0) {
                result = (result * 0x10000000058B90BFC) >> 64;
            }
            if (x & 0x40000000 > 0) {
                result = (result * 0x1000000002C5C85FE) >> 64;
            }
            if (x & 0x20000000 > 0) {
                result = (result * 0x100000000162E42FF) >> 64;
            }
            if (x & 0x10000000 > 0) {
                result = (result * 0x1000000000B17217F) >> 64;
            }
            if (x & 0x8000000 > 0) {
                result = (result * 0x100000000058B90C0) >> 64;
            }
            if (x & 0x4000000 > 0) {
                result = (result * 0x10000000002C5C860) >> 64;
            }
            if (x & 0x2000000 > 0) {
                result = (result * 0x1000000000162E430) >> 64;
            }
            if (x & 0x1000000 > 0) {
                result = (result * 0x10000000000B17218) >> 64;
            }
            if (x & 0x800000 > 0) {
                result = (result * 0x1000000000058B90C) >> 64;
            }
            if (x & 0x400000 > 0) {
                result = (result * 0x100000000002C5C86) >> 64;
            }
            if (x & 0x200000 > 0) {
                result = (result * 0x10000000000162E43) >> 64;
            }
            if (x & 0x100000 > 0) {
                result = (result * 0x100000000000B1721) >> 64;
            }
            if (x & 0x80000 > 0) {
                result = (result * 0x10000000000058B91) >> 64;
            }
            if (x & 0x40000 > 0) {
                result = (result * 0x1000000000002C5C8) >> 64;
            }
            if (x & 0x20000 > 0) {
                result = (result * 0x100000000000162E4) >> 64;
            }
            if (x & 0x10000 > 0) {
                result = (result * 0x1000000000000B172) >> 64;
            }
            if (x & 0x8000 > 0) {
                result = (result * 0x100000000000058B9) >> 64;
            }
            if (x & 0x4000 > 0) {
                result = (result * 0x10000000000002C5D) >> 64;
            }
            if (x & 0x2000 > 0) {
                result = (result * 0x1000000000000162E) >> 64;
            }
            if (x & 0x1000 > 0) {
                result = (result * 0x10000000000000B17) >> 64;
            }
            if (x & 0x800 > 0) {
                result = (result * 0x1000000000000058C) >> 64;
            }
            if (x & 0x400 > 0) {
                result = (result * 0x100000000000002C6) >> 64;
            }
            if (x & 0x200 > 0) {
                result = (result * 0x10000000000000163) >> 64;
            }
            if (x & 0x100 > 0) {
                result = (result * 0x100000000000000B1) >> 64;
            }
            if (x & 0x80 > 0) {
                result = (result * 0x10000000000000059) >> 64;
            }
            if (x & 0x40 > 0) {
                result = (result * 0x1000000000000002C) >> 64;
            }
            if (x & 0x20 > 0) {
                result = (result * 0x10000000000000016) >> 64;
            }
            if (x & 0x10 > 0) {
                result = (result * 0x1000000000000000B) >> 64;
            }
            if (x & 0x8 > 0) {
                result = (result * 0x10000000000000006) >> 64;
            }
            if (x & 0x4 > 0) {
                result = (result * 0x10000000000000003) >> 64;
            }
            if (x & 0x2 > 0) {
                result = (result * 0x10000000000000001) >> 64;
            }
            if (x & 0x1 > 0) {
                result = (result * 0x10000000000000001) >> 64;
            }

            // We're doing two things at the same time:
            //
            //   1. Multiply the result by 2^n + 1, where "2^n" is the integer part and the one is added to account for
            //      the fact that we initially set the result to 0.5. This is accomplished by subtracting from 191
            //      rather than 192.
            //   2. Convert the result to the unsigned 60.18-decimal fixed-point format.
            //
            // This works because 2^(191-ip) = 2^ip / 2^191, where "ip" is the integer part "2^n".
            result *= SCALE;
            result >>= (191 - (x >> 64));
        }
    }

    /// @notice Finds the zero-based index of the first one in the binary representation of x.
    /// @dev See the note on msb in the "Find First Set" Wikipedia article https://en.wikipedia.org/wiki/Find_first_set
    /// @param x The uint256 number for which to find the index of the most significant bit.
    /// @return msb The index of the most significant bit as an uint256.
    function mostSignificantBit(uint256 x) internal pure returns (uint256 msb) {
        if (x >= 2**128) {
            x >>= 128;
            msb += 128;
        }
        if (x >= 2**64) {
            x >>= 64;
            msb += 64;
        }
        if (x >= 2**32) {
            x >>= 32;
            msb += 32;
        }
        if (x >= 2**16) {
            x >>= 16;
            msb += 16;
        }
        if (x >= 2**8) {
            x >>= 8;
            msb += 8;
        }
        if (x >= 2**4) {
            x >>= 4;
            msb += 4;
        }
        if (x >= 2**2) {
            x >>= 2;
            msb += 2;
        }
        if (x >= 2**1) {
            // No need to shift x any more.
            msb += 1;
        }
    }

    /// @notice Calculates floor(x*y÷denominator) with full precision.
    ///
    /// @dev Credit to Remco Bloemen under MIT license https://xn--2-umb.com/21/muldiv.
    ///
    /// Requirements:
    /// - The denominator cannot be zero.
    /// - The result must fit within uint256.
    ///
    /// Caveats:
    /// - This function does not work with fixed-point numbers.
    ///
    /// @param x The multiplicand as an uint256.
    /// @param y The multiplier as an uint256.
    /// @param denominator The divisor as an uint256.
    /// @return result The result as an uint256.
    function mulDiv(
        uint256 x,
        uint256 y,
        uint256 denominator
    ) internal pure returns (uint256 result) {
        // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
        // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
        // variables such that product = prod1 * 2^256 + prod0.
        uint256 prod0; // Least significant 256 bits of the product
        uint256 prod1; // Most significant 256 bits of the product
        assembly {
            let mm := mulmod(x, y, not(0))
            prod0 := mul(x, y)
            prod1 := sub(sub(mm, prod0), lt(mm, prod0))
        }

        // Handle non-overflow cases, 256 by 256 division.
        if (prod1 == 0) {
            unchecked {
                result = prod0 / denominator;
            }
            return result;
        }

        // Make sure the result is less than 2^256. Also prevents denominator == 0.
        if (prod1 >= denominator) {
            revert PRBMath__MulDivOverflow(prod1, denominator);
        }

        ///////////////////////////////////////////////
        // 512 by 256 division.
        ///////////////////////////////////////////////

        // Make division exact by subtracting the remainder from [prod1 prod0].
        uint256 remainder;
        assembly {
            // Compute remainder using mulmod.
            remainder := mulmod(x, y, denominator)

            // Subtract 256 bit number from 512 bit number.
            prod1 := sub(prod1, gt(remainder, prod0))
            prod0 := sub(prod0, remainder)
        }

        // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
        // See https://cs.stackexchange.com/q/138556/92363.
        unchecked {
            // Does not overflow because the denominator cannot be zero at this stage in the function.
            uint256 lpotdod = denominator & (~denominator + 1);
            assembly {
                // Divide denominator by lpotdod.
                denominator := div(denominator, lpotdod)

                // Divide [prod1 prod0] by lpotdod.
                prod0 := div(prod0, lpotdod)

                // Flip lpotdod such that it is 2^256 / lpotdod. If lpotdod is zero, then it becomes one.
                lpotdod := add(div(sub(0, lpotdod), lpotdod), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * lpotdod;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
            // in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /// @notice Calculates floor(x*y÷1e18) with full precision.
    ///
    /// @dev Variant of "mulDiv" with constant folding, i.e. in which the denominator is always 1e18. Before returning the
    /// final result, we add 1 if (x * y) % SCALE >= HALF_SCALE. Without this, 6.6e-19 would be truncated to 0 instead of
    /// being rounded to 1e-18.  See "Listing 6" and text above it at https://accu.org/index.php/journals/1717.
    ///
    /// Requirements:
    /// - The result must fit within uint256.
    ///
    /// Caveats:
    /// - The body is purposely left uncommented; see the NatSpec comments in "PRBMath.mulDiv" to understand how this works.
    /// - It is assumed that the result can never be type(uint256).max when x and y solve the following two equations:
    ///     1. x * y = type(uint256).max * SCALE
    ///     2. (x * y) % SCALE >= SCALE / 2
    ///
    /// @param x The multiplicand as an unsigned 60.18-decimal fixed-point number.
    /// @param y The multiplier as an unsigned 60.18-decimal fixed-point number.
    /// @return result The result as an unsigned 60.18-decimal fixed-point number.
    function mulDivFixedPoint(uint256 x, uint256 y) internal pure returns (uint256 result) {
        uint256 prod0;
        uint256 prod1;
        assembly {
            let mm := mulmod(x, y, not(0))
            prod0 := mul(x, y)
            prod1 := sub(sub(mm, prod0), lt(mm, prod0))
        }

        if (prod1 >= SCALE) {
            revert PRBMath__MulDivFixedPointOverflow(prod1);
        }

        uint256 remainder;
        uint256 roundUpUnit;
        assembly {
            remainder := mulmod(x, y, SCALE)
            roundUpUnit := gt(remainder, 499999999999999999)
        }

        if (prod1 == 0) {
            unchecked {
                result = (prod0 / SCALE) + roundUpUnit;
                return result;
            }
        }

        assembly {
            result := add(
                mul(
                    or(
                        div(sub(prod0, remainder), SCALE_LPOTD),
                        mul(sub(prod1, gt(remainder, prod0)), add(div(sub(0, SCALE_LPOTD), SCALE_LPOTD), 1))
                    ),
                    SCALE_INVERSE
                ),
                roundUpUnit
            )
        }
    }

    /// @notice Calculates floor(x*y÷denominator) with full precision.
    ///
    /// @dev An extension of "mulDiv" for signed numbers. Works by computing the signs and the absolute values separately.
    ///
    /// Requirements:
    /// - None of the inputs can be type(int256).min.
    /// - The result must fit within int256.
    ///
    /// @param x The multiplicand as an int256.
    /// @param y The multiplier as an int256.
    /// @param denominator The divisor as an int256.
    /// @return result The result as an int256.
    function mulDivSigned(
        int256 x,
        int256 y,
        int256 denominator
    ) internal pure returns (int256 result) {
        if (x == type(int256).min || y == type(int256).min || denominator == type(int256).min) {
            revert PRBMath__MulDivSignedInputTooSmall();
        }

        // Get hold of the absolute values of x, y and the denominator.
        uint256 ax;
        uint256 ay;
        uint256 ad;
        unchecked {
            ax = x < 0 ? uint256(-x) : uint256(x);
            ay = y < 0 ? uint256(-y) : uint256(y);
            ad = denominator < 0 ? uint256(-denominator) : uint256(denominator);
        }

        // Compute the absolute value of (x*y)÷denominator. The result must fit within int256.
        uint256 rAbs = mulDiv(ax, ay, ad);
        if (rAbs > uint256(type(int256).max)) {
            revert PRBMath__MulDivSignedOverflow(rAbs);
        }

        // Get the signs of x, y and the denominator.
        uint256 sx;
        uint256 sy;
        uint256 sd;
        assembly {
            sx := sgt(x, sub(0, 1))
            sy := sgt(y, sub(0, 1))
            sd := sgt(denominator, sub(0, 1))
        }

        // XOR over sx, sy and sd. This is checking whether there are one or three negative signs in the inputs.
        // If yes, the result should be negative.
        result = sx ^ sy ^ sd == 0 ? -int256(rAbs) : int256(rAbs);
    }

    /// @notice Calculates the square root of x, rounding down.
    /// @dev Uses the Babylonian method https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method.
    ///
    /// Caveats:
    /// - This function does not work with fixed-point numbers.
    ///
    /// @param x The uint256 number for which to calculate the square root.
    /// @return result The result as an uint256.
    function sqrt(uint256 x) internal pure returns (uint256 result) {
        if (x == 0) {
            return 0;
        }

        // Set the initial guess to the least power of two that is greater than or equal to sqrt(x).
        uint256 xAux = uint256(x);
        result = 1;
        if (xAux >= 0x100000000000000000000000000000000) {
            xAux >>= 128;
            result <<= 64;
        }
        if (xAux >= 0x10000000000000000) {
            xAux >>= 64;
            result <<= 32;
        }
        if (xAux >= 0x100000000) {
            xAux >>= 32;
            result <<= 16;
        }
        if (xAux >= 0x10000) {
            xAux >>= 16;
            result <<= 8;
        }
        if (xAux >= 0x100) {
            xAux >>= 8;
            result <<= 4;
        }
        if (xAux >= 0x10) {
            xAux >>= 4;
            result <<= 2;
        }
        if (xAux >= 0x8) {
            result <<= 1;
        }

        // The operations can never overflow because the result is max 2^127 when it enters this block.
        unchecked {
            result = (result + x / result) >> 1;
            result = (result + x / result) >> 1;
            result = (result + x / result) >> 1;
            result = (result + x / result) >> 1;
            result = (result + x / result) >> 1;
            result = (result + x / result) >> 1;
            result = (result + x / result) >> 1; // Seven iterations should be enough
            uint256 roundedDownResult = x / result;
            return result >= roundedDownResult ? roundedDownResult : result;
        }
    }
}

// SPDX-License-Identifier: Unlicense
pragma solidity >=0.8.4;

import "./PRBMath.sol";

/// @title PRBMathUD60x18
/// @author Paul Razvan Berg
/// @notice Smart contract library for advanced fixed-point math that works with uint256 numbers considered to have 18
/// trailing decimals. We call this number representation unsigned 60.18-decimal fixed-point, since there can be up to 60
/// digits in the integer part and up to 18 decimals in the fractional part. The numbers are bound by the minimum and the
/// maximum values permitted by the Solidity type uint256.
library PRBMathUD60x18 {
    /// @dev Half the SCALE number.
    uint256 internal constant HALF_SCALE = 5e17;

    /// @dev log2(e) as an unsigned 60.18-decimal fixed-point number.
    uint256 internal constant LOG2_E = 1_442695040888963407;

    /// @dev The maximum value an unsigned 60.18-decimal fixed-point number can have.
    uint256 internal constant MAX_UD60x18 =
        115792089237316195423570985008687907853269984665640564039457_584007913129639935;

    /// @dev The maximum whole value an unsigned 60.18-decimal fixed-point number can have.
    uint256 internal constant MAX_WHOLE_UD60x18 =
        115792089237316195423570985008687907853269984665640564039457_000000000000000000;

    /// @dev How many trailing decimals can be represented.
    uint256 internal constant SCALE = 1e18;

    /// @notice Calculates the arithmetic average of x and y, rounding down.
    /// @param x The first operand as an unsigned 60.18-decimal fixed-point number.
    /// @param y The second operand as an unsigned 60.18-decimal fixed-point number.
    /// @return result The arithmetic average as an unsigned 60.18-decimal fixed-point number.
    function avg(uint256 x, uint256 y) internal pure returns (uint256 result) {
        // The operations can never overflow.
        unchecked {
            // The last operand checks if both x and y are odd and if that is the case, we add 1 to the result. We need
            // to do this because if both numbers are odd, the 0.5 remainder gets truncated twice.
            result = (x >> 1) + (y >> 1) + (x & y & 1);
        }
    }

    /// @notice Yields the least unsigned 60.18 decimal fixed-point number greater than or equal to x.
    ///
    /// @dev Optimized for fractional value inputs, because for every whole value there are (1e18 - 1) fractional counterparts.
    /// See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions.
    ///
    /// Requirements:
    /// - x must be less than or equal to MAX_WHOLE_UD60x18.
    ///
    /// @param x The unsigned 60.18-decimal fixed-point number to ceil.
    /// @param result The least integer greater than or equal to x, as an unsigned 60.18-decimal fixed-point number.
    function ceil(uint256 x) internal pure returns (uint256 result) {
        if (x > MAX_WHOLE_UD60x18) {
            revert PRBMathUD60x18__CeilOverflow(x);
        }
        assembly {
            // Equivalent to "x % SCALE" but faster.
            let remainder := mod(x, SCALE)

            // Equivalent to "SCALE - remainder" but faster.
            let delta := sub(SCALE, remainder)

            // Equivalent to "x + delta * (remainder > 0 ? 1 : 0)" but faster.
            result := add(x, mul(delta, gt(remainder, 0)))
        }
    }

    /// @notice Divides two unsigned 60.18-decimal fixed-point numbers, returning a new unsigned 60.18-decimal fixed-point number.
    ///
    /// @dev Uses mulDiv to enable overflow-safe multiplication and division.
    ///
    /// Requirements:
    /// - The denominator cannot be zero.
    ///
    /// @param x The numerator as an unsigned 60.18-decimal fixed-point number.
    /// @param y The denominator as an unsigned 60.18-decimal fixed-point number.
    /// @param result The quotient as an unsigned 60.18-decimal fixed-point number.
    function div(uint256 x, uint256 y) internal pure returns (uint256 result) {
        result = PRBMath.mulDiv(x, SCALE, y);
    }

    /// @notice Returns Euler's number as an unsigned 60.18-decimal fixed-point number.
    /// @dev See https://en.wikipedia.org/wiki/E_(mathematical_constant).
    function e() internal pure returns (uint256 result) {
        result = 2_718281828459045235;
    }

    /// @notice Calculates the natural exponent of x.
    ///
    /// @dev Based on the insight that e^x = 2^(x * log2(e)).
    ///
    /// Requirements:
    /// - All from "log2".
    /// - x must be less than 133.084258667509499441.
    ///
    /// @param x The exponent as an unsigned 60.18-decimal fixed-point number.
    /// @return result The result as an unsigned 60.18-decimal fixed-point number.
    function exp(uint256 x) internal pure returns (uint256 result) {
        // Without this check, the value passed to "exp2" would be greater than 192.
        if (x >= 133_084258667509499441) {
            revert PRBMathUD60x18__ExpInputTooBig(x);
        }

        // Do the fixed-point multiplication inline to save gas.
        unchecked {
            uint256 doubleScaleProduct = x * LOG2_E;
            result = exp2((doubleScaleProduct + HALF_SCALE) / SCALE);
        }
    }

    /// @notice Calculates the binary exponent of x using the binary fraction method.
    ///
    /// @dev See https://ethereum.stackexchange.com/q/79903/24693.
    ///
    /// Requirements:
    /// - x must be 192 or less.
    /// - The result must fit within MAX_UD60x18.
    ///
    /// @param x The exponent as an unsigned 60.18-decimal fixed-point number.
    /// @return result The result as an unsigned 60.18-decimal fixed-point number.
    function exp2(uint256 x) internal pure returns (uint256 result) {
        // 2^192 doesn't fit within the 192.64-bit format used internally in this function.
        if (x >= 192e18) {
            revert PRBMathUD60x18__Exp2InputTooBig(x);
        }

        unchecked {
            // Convert x to the 192.64-bit fixed-point format.
            uint256 x192x64 = (x << 64) / SCALE;

            // Pass x to the PRBMath.exp2 function, which uses the 192.64-bit fixed-point number representation.
            result = PRBMath.exp2(x192x64);
        }
    }

    /// @notice Yields the greatest unsigned 60.18 decimal fixed-point number less than or equal to x.
    /// @dev Optimized for fractional value inputs, because for every whole value there are (1e18 - 1) fractional counterparts.
    /// See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions.
    /// @param x The unsigned 60.18-decimal fixed-point number to floor.
    /// @param result The greatest integer less than or equal to x, as an unsigned 60.18-decimal fixed-point number.
    function floor(uint256 x) internal pure returns (uint256 result) {
        assembly {
            // Equivalent to "x % SCALE" but faster.
            let remainder := mod(x, SCALE)

            // Equivalent to "x - remainder * (remainder > 0 ? 1 : 0)" but faster.
            result := sub(x, mul(remainder, gt(remainder, 0)))
        }
    }

    /// @notice Yields the excess beyond the floor of x.
    /// @dev Based on the odd function definition https://en.wikipedia.org/wiki/Fractional_part.
    /// @param x The unsigned 60.18-decimal fixed-point number to get the fractional part of.
    /// @param result The fractional part of x as an unsigned 60.18-decimal fixed-point number.
    function frac(uint256 x) internal pure returns (uint256 result) {
        assembly {
            result := mod(x, SCALE)
        }
    }

    /// @notice Converts a number from basic integer form to unsigned 60.18-decimal fixed-point representation.
    ///
    /// @dev Requirements:
    /// - x must be less than or equal to MAX_UD60x18 divided by SCALE.
    ///
    /// @param x The basic integer to convert.
    /// @param result The same number in unsigned 60.18-decimal fixed-point representation.
    function fromUint(uint256 x) internal pure returns (uint256 result) {
        unchecked {
            if (x > MAX_UD60x18 / SCALE) {
                revert PRBMathUD60x18__FromUintOverflow(x);
            }
            result = x * SCALE;
        }
    }

    /// @notice Calculates geometric mean of x and y, i.e. sqrt(x * y), rounding down.
    ///
    /// @dev Requirements:
    /// - x * y must fit within MAX_UD60x18, lest it overflows.
    ///
    /// @param x The first operand as an unsigned 60.18-decimal fixed-point number.
    /// @param y The second operand as an unsigned 60.18-decimal fixed-point number.
    /// @return result The result as an unsigned 60.18-decimal fixed-point number.
    function gm(uint256 x, uint256 y) internal pure returns (uint256 result) {
        if (x == 0) {
            return 0;
        }

        unchecked {
            // Checking for overflow this way is faster than letting Solidity do it.
            uint256 xy = x * y;
            if (xy / x != y) {
                revert PRBMathUD60x18__GmOverflow(x, y);
            }

            // We don't need to multiply by the SCALE here because the x*y product had already picked up a factor of SCALE
            // during multiplication. See the comments within the "sqrt" function.
            result = PRBMath.sqrt(xy);
        }
    }

    /// @notice Calculates 1 / x, rounding toward zero.
    ///
    /// @dev Requirements:
    /// - x cannot be zero.
    ///
    /// @param x The unsigned 60.18-decimal fixed-point number for which to calculate the inverse.
    /// @return result The inverse as an unsigned 60.18-decimal fixed-point number.
    function inv(uint256 x) internal pure returns (uint256 result) {
        unchecked {
            // 1e36 is SCALE * SCALE.
            result = 1e36 / x;
        }
    }

    /// @notice Calculates the natural logarithm of x.
    ///
    /// @dev Based on the insight that ln(x) = log2(x) / log2(e).
    ///
    /// Requirements:
    /// - All from "log2".
    ///
    /// Caveats:
    /// - All from "log2".
    /// - This doesn't return exactly 1 for 2.718281828459045235, for that we would need more fine-grained precision.
    ///
    /// @param x The unsigned 60.18-decimal fixed-point number for which to calculate the natural logarithm.
    /// @return result The natural logarithm as an unsigned 60.18-decimal fixed-point number.
    function ln(uint256 x) internal pure returns (uint256 result) {
        // Do the fixed-point multiplication inline to save gas. This is overflow-safe because the maximum value that log2(x)
        // can return is 196205294292027477728.
        unchecked {
            result = (log2(x) * SCALE) / LOG2_E;
        }
    }

    /// @notice Calculates the common logarithm of x.
    ///
    /// @dev First checks if x is an exact power of ten and it stops if yes. If it's not, calculates the common
    /// logarithm based on the insight that log10(x) = log2(x) / log2(10).
    ///
    /// Requirements:
    /// - All from "log2".
    ///
    /// Caveats:
    /// - All from "log2".
    ///
    /// @param x The unsigned 60.18-decimal fixed-point number for which to calculate the common logarithm.
    /// @return result The common logarithm as an unsigned 60.18-decimal fixed-point number.
    function log10(uint256 x) internal pure returns (uint256 result) {
        if (x < SCALE) {
            revert PRBMathUD60x18__LogInputTooSmall(x);
        }

        // Note that the "mul" in this block is the assembly multiplication operation, not the "mul" function defined
        // in this contract.
        // prettier-ignore
        assembly {
            switch x
            case 1 { result := mul(SCALE, sub(0, 18)) }
            case 10 { result := mul(SCALE, sub(1, 18)) }
            case 100 { result := mul(SCALE, sub(2, 18)) }
            case 1000 { result := mul(SCALE, sub(3, 18)) }
            case 10000 { result := mul(SCALE, sub(4, 18)) }
            case 100000 { result := mul(SCALE, sub(5, 18)) }
            case 1000000 { result := mul(SCALE, sub(6, 18)) }
            case 10000000 { result := mul(SCALE, sub(7, 18)) }
            case 100000000 { result := mul(SCALE, sub(8, 18)) }
            case 1000000000 { result := mul(SCALE, sub(9, 18)) }
            case 10000000000 { result := mul(SCALE, sub(10, 18)) }
            case 100000000000 { result := mul(SCALE, sub(11, 18)) }
            case 1000000000000 { result := mul(SCALE, sub(12, 18)) }
            case 10000000000000 { result := mul(SCALE, sub(13, 18)) }
            case 100000000000000 { result := mul(SCALE, sub(14, 18)) }
            case 1000000000000000 { result := mul(SCALE, sub(15, 18)) }
            case 10000000000000000 { result := mul(SCALE, sub(16, 18)) }
            case 100000000000000000 { result := mul(SCALE, sub(17, 18)) }
            case 1000000000000000000 { result := 0 }
            case 10000000000000000000 { result := SCALE }
            case 100000000000000000000 { result := mul(SCALE, 2) }
            case 1000000000000000000000 { result := mul(SCALE, 3) }
            case 10000000000000000000000 { result := mul(SCALE, 4) }
            case 100000000000000000000000 { result := mul(SCALE, 5) }
            case 1000000000000000000000000 { result := mul(SCALE, 6) }
            case 10000000000000000000000000 { result := mul(SCALE, 7) }
            case 100000000000000000000000000 { result := mul(SCALE, 8) }
            case 1000000000000000000000000000 { result := mul(SCALE, 9) }
            case 10000000000000000000000000000 { result := mul(SCALE, 10) }
            case 100000000000000000000000000000 { result := mul(SCALE, 11) }
            case 1000000000000000000000000000000 { result := mul(SCALE, 12) }
            case 10000000000000000000000000000000 { result := mul(SCALE, 13) }
            case 100000000000000000000000000000000 { result := mul(SCALE, 14) }
            case 1000000000000000000000000000000000 { result := mul(SCALE, 15) }
            case 10000000000000000000000000000000000 { result := mul(SCALE, 16) }
            case 100000000000000000000000000000000000 { result := mul(SCALE, 17) }
            case 1000000000000000000000000000000000000 { result := mul(SCALE, 18) }
            case 10000000000000000000000000000000000000 { result := mul(SCALE, 19) }
            case 100000000000000000000000000000000000000 { result := mul(SCALE, 20) }
            case 1000000000000000000000000000000000000000 { result := mul(SCALE, 21) }
            case 10000000000000000000000000000000000000000 { result := mul(SCALE, 22) }
            case 100000000000000000000000000000000000000000 { result := mul(SCALE, 23) }
            case 1000000000000000000000000000000000000000000 { result := mul(SCALE, 24) }
            case 10000000000000000000000000000000000000000000 { result := mul(SCALE, 25) }
            case 100000000000000000000000000000000000000000000 { result := mul(SCALE, 26) }
            case 1000000000000000000000000000000000000000000000 { result := mul(SCALE, 27) }
            case 10000000000000000000000000000000000000000000000 { result := mul(SCALE, 28) }
            case 100000000000000000000000000000000000000000000000 { result := mul(SCALE, 29) }
            case 1000000000000000000000000000000000000000000000000 { result := mul(SCALE, 30) }
            case 10000000000000000000000000000000000000000000000000 { result := mul(SCALE, 31) }
            case 100000000000000000000000000000000000000000000000000 { result := mul(SCALE, 32) }
            case 1000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 33) }
            case 10000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 34) }
            case 100000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 35) }
            case 1000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 36) }
            case 10000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 37) }
            case 100000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 38) }
            case 1000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 39) }
            case 10000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 40) }
            case 100000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 41) }
            case 1000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 42) }
            case 10000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 43) }
            case 100000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 44) }
            case 1000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 45) }
            case 10000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 46) }
            case 100000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 47) }
            case 1000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 48) }
            case 10000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 49) }
            case 100000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 50) }
            case 1000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 51) }
            case 10000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 52) }
            case 100000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 53) }
            case 1000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 54) }
            case 10000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 55) }
            case 100000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 56) }
            case 1000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 57) }
            case 10000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 58) }
            case 100000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 59) }
            default {
                result := MAX_UD60x18
            }
        }

        if (result == MAX_UD60x18) {
            // Do the fixed-point division inline to save gas. The denominator is log2(10).
            unchecked {
                result = (log2(x) * SCALE) / 3_321928094887362347;
            }
        }
    }

    /// @notice Calculates the binary logarithm of x.
    ///
    /// @dev Based on the iterative approximation algorithm.
    /// https://en.wikipedia.org/wiki/Binary_logarithm#Iterative_approximation
    ///
    /// Requirements:
    /// - x must be greater than or equal to SCALE, otherwise the result would be negative.
    ///
    /// Caveats:
    /// - The results are nor perfectly accurate to the last decimal, due to the lossy precision of the iterative approximation.
    ///
    /// @param x The unsigned 60.18-decimal fixed-point number for which to calculate the binary logarithm.
    /// @return result The binary logarithm as an unsigned 60.18-decimal fixed-point number.
    function log2(uint256 x) internal pure returns (uint256 result) {
        if (x < SCALE) {
            revert PRBMathUD60x18__LogInputTooSmall(x);
        }
        unchecked {
            // Calculate the integer part of the logarithm and add it to the result and finally calculate y = x * 2^(-n).
            uint256 n = PRBMath.mostSignificantBit(x / SCALE);

            // The integer part of the logarithm as an unsigned 60.18-decimal fixed-point number. The operation can't overflow
            // because n is maximum 255 and SCALE is 1e18.
            result = n * SCALE;

            // This is y = x * 2^(-n).
            uint256 y = x >> n;

            // If y = 1, the fractional part is zero.
            if (y == SCALE) {
                return result;
            }

            // Calculate the fractional part via the iterative approximation.
            // The "delta >>= 1" part is equivalent to "delta /= 2", but shifting bits is faster.
            for (uint256 delta = HALF_SCALE; delta > 0; delta >>= 1) {
                y = (y * y) / SCALE;

                // Is y^2 > 2 and so in the range [2,4)?
                if (y >= 2 * SCALE) {
                    // Add the 2^(-m) factor to the logarithm.
                    result += delta;

                    // Corresponds to z/2 on Wikipedia.
                    y >>= 1;
                }
            }
        }
    }

    /// @notice Multiplies two unsigned 60.18-decimal fixed-point numbers together, returning a new unsigned 60.18-decimal
    /// fixed-point number.
    /// @dev See the documentation for the "PRBMath.mulDivFixedPoint" function.
    /// @param x The multiplicand as an unsigned 60.18-decimal fixed-point number.
    /// @param y The multiplier as an unsigned 60.18-decimal fixed-point number.
    /// @return result The product as an unsigned 60.18-decimal fixed-point number.
    function mul(uint256 x, uint256 y) internal pure returns (uint256 result) {
        result = PRBMath.mulDivFixedPoint(x, y);
    }

    /// @notice Returns PI as an unsigned 60.18-decimal fixed-point number.
    function pi() internal pure returns (uint256 result) {
        result = 3_141592653589793238;
    }

    /// @notice Raises x to the power of y.
    ///
    /// @dev Based on the insight that x^y = 2^(log2(x) * y).
    ///
    /// Requirements:
    /// - All from "exp2", "log2" and "mul".
    ///
    /// Caveats:
    /// - All from "exp2", "log2" and "mul".
    /// - Assumes 0^0 is 1.
    ///
    /// @param x Number to raise to given power y, as an unsigned 60.18-decimal fixed-point number.
    /// @param y Exponent to raise x to, as an unsigned 60.18-decimal fixed-point number.
    /// @return result x raised to power y, as an unsigned 60.18-decimal fixed-point number.
    function pow(uint256 x, uint256 y) internal pure returns (uint256 result) {
        if (x == 0) {
            result = y == 0 ? SCALE : uint256(0);
        } else {
            result = exp2(mul(log2(x), y));
        }
    }

    /// @notice Raises x (unsigned 60.18-decimal fixed-point number) to the power of y (basic unsigned integer) using the
    /// famous algorithm "exponentiation by squaring".
    ///
    /// @dev See https://en.wikipedia.org/wiki/Exponentiation_by_squaring
    ///
    /// Requirements:
    /// - The result must fit within MAX_UD60x18.
    ///
    /// Caveats:
    /// - All from "mul".
    /// - Assumes 0^0 is 1.
    ///
    /// @param x The base as an unsigned 60.18-decimal fixed-point number.
    /// @param y The exponent as an uint256.
    /// @return result The result as an unsigned 60.18-decimal fixed-point number.
    function powu(uint256 x, uint256 y) internal pure returns (uint256 result) {
        // Calculate the first iteration of the loop in advance.
        result = y & 1 > 0 ? x : SCALE;

        // Equivalent to "for(y /= 2; y > 0; y /= 2)" but faster.
        for (y >>= 1; y > 0; y >>= 1) {
            x = PRBMath.mulDivFixedPoint(x, x);

            // Equivalent to "y % 2 == 1" but faster.
            if (y & 1 > 0) {
                result = PRBMath.mulDivFixedPoint(result, x);
            }
        }
    }

    /// @notice Returns 1 as an unsigned 60.18-decimal fixed-point number.
    function scale() internal pure returns (uint256 result) {
        result = SCALE;
    }

    /// @notice Calculates the square root of x, rounding down.
    /// @dev Uses the Babylonian method https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method.
    ///
    /// Requirements:
    /// - x must be less than MAX_UD60x18 / SCALE.
    ///
    /// @param x The unsigned 60.18-decimal fixed-point number for which to calculate the square root.
    /// @return result The result as an unsigned 60.18-decimal fixed-point .
    function sqrt(uint256 x) internal pure returns (uint256 result) {
        unchecked {
            if (x > MAX_UD60x18 / SCALE) {
                revert PRBMathUD60x18__SqrtOverflow(x);
            }
            // Multiply x by the SCALE to account for the factor of SCALE that is picked up when multiplying two unsigned
            // 60.18-decimal fixed-point numbers together (in this case, those two numbers are both the square root).
            result = PRBMath.sqrt(x * SCALE);
        }
    }

    /// @notice Converts a unsigned 60.18-decimal fixed-point number to basic integer form, rounding down in the process.
    /// @param x The unsigned 60.18-decimal fixed-point number to convert.
    /// @return result The same number in basic integer form.
    function toUint(uint256 x) internal pure returns (uint256 result) {
        unchecked {
            result = x / SCALE;
        }
    }
}

Context size (optional):