Contract Name:
L1StandardBridge
Contract Source Code:
// SPDX-License-Identifier: MIT
pragma solidity 0.8.15;
import { Predeploys } from "src/libraries/Predeploys.sol";
import { StandardBridge } from "src/universal/StandardBridge.sol";
import { ISemver } from "src/universal/ISemver.sol";
import { CrossDomainMessenger } from "src/universal/CrossDomainMessenger.sol";
import { SuperchainConfig } from "src/L1/SuperchainConfig.sol";
import { Constants } from "src/libraries/Constants.sol";
/// @custom:proxied
/// @title L1StandardBridge
/// @notice The L1StandardBridge is responsible for transfering ETH and ERC20 tokens between L1 and
/// L2. In the case that an ERC20 token is native to L1, it will be escrowed within this
/// contract. If the ERC20 token is native to L2, it will be burnt. Before Bedrock, ETH was
/// stored within this contract. After Bedrock, ETH is instead stored inside the
/// OptimismPortal contract.
/// NOTE: this contract is not intended to support all variations of ERC20 tokens. Examples
/// of some token types that may not be properly supported by this contract include, but are
/// not limited to: tokens with transfer fees, rebasing tokens, and tokens with blocklists.
contract L1StandardBridge is StandardBridge, ISemver {
/// @custom:legacy
/// @notice Emitted whenever a deposit of ETH from L1 into L2 is initiated.
/// @param from Address of the depositor.
/// @param to Address of the recipient on L2.
/// @param amount Amount of ETH deposited.
/// @param extraData Extra data attached to the deposit.
event ETHDepositInitiated(address indexed from, address indexed to, uint256 amount, bytes extraData);
/// @custom:legacy
/// @notice Emitted whenever a withdrawal of ETH from L2 to L1 is finalized.
/// @param from Address of the withdrawer.
/// @param to Address of the recipient on L1.
/// @param amount Amount of ETH withdrawn.
/// @param extraData Extra data attached to the withdrawal.
event ETHWithdrawalFinalized(address indexed from, address indexed to, uint256 amount, bytes extraData);
/// @custom:legacy
/// @notice Emitted whenever an ERC20 deposit is initiated.
/// @param l1Token Address of the token on L1.
/// @param l2Token Address of the corresponding token on L2.
/// @param from Address of the depositor.
/// @param to Address of the recipient on L2.
/// @param amount Amount of the ERC20 deposited.
/// @param extraData Extra data attached to the deposit.
event ERC20DepositInitiated(
address indexed l1Token,
address indexed l2Token,
address indexed from,
address to,
uint256 amount,
bytes extraData
);
/// @custom:legacy
/// @notice Emitted whenever an ERC20 withdrawal is finalized.
/// @param l1Token Address of the token on L1.
/// @param l2Token Address of the corresponding token on L2.
/// @param from Address of the withdrawer.
/// @param to Address of the recipient on L1.
/// @param amount Amount of the ERC20 withdrawn.
/// @param extraData Extra data attached to the withdrawal.
event ERC20WithdrawalFinalized(
address indexed l1Token,
address indexed l2Token,
address indexed from,
address to,
uint256 amount,
bytes extraData
);
/// @notice Semantic version.
/// @custom:semver 2.1.0
string public constant version = "2.1.0";
/// @notice Address of the SuperchainConfig contract.
SuperchainConfig public superchainConfig;
/// @notice Constructs the L1StandardBridge contract.
constructor() StandardBridge() {
initialize({ _messenger: CrossDomainMessenger(address(0)), _superchainConfig: SuperchainConfig(address(0)) });
}
/// @notice Initializer.
/// @param _messenger Contract for the CrossDomainMessenger on this network.
/// @param _superchainConfig Contract for the SuperchainConfig on this network.
function initialize(CrossDomainMessenger _messenger, SuperchainConfig _superchainConfig) public initializer {
superchainConfig = _superchainConfig;
__StandardBridge_init({
_messenger: _messenger,
_otherBridge: StandardBridge(payable(Predeploys.L2_STANDARD_BRIDGE))
});
}
/// @inheritdoc StandardBridge
function paused() public view override returns (bool) {
return superchainConfig.paused();
}
/// @notice Allows EOAs to bridge ETH by sending directly to the bridge.
receive() external payable override onlyEOA {
_initiateETHDeposit(msg.sender, msg.sender, RECEIVE_DEFAULT_GAS_LIMIT, bytes(""));
}
/// @custom:legacy
/// @notice Deposits some amount of ETH into the sender's account on L2.
/// @param _minGasLimit Minimum gas limit for the deposit message on L2.
/// @param _extraData Optional data to forward to L2.
/// Data supplied here will not be used to execute any code on L2 and is
/// only emitted as extra data for the convenience of off-chain tooling.
function depositETH(uint32 _minGasLimit, bytes calldata _extraData) external payable onlyEOA {
_initiateETHDeposit(msg.sender, msg.sender, _minGasLimit, _extraData);
}
/// @custom:legacy
/// @notice Deposits some amount of ETH into a target account on L2.
/// Note that if ETH is sent to a contract on L2 and the call fails, then that ETH will
/// be locked in the L2StandardBridge. ETH may be recoverable if the call can be
/// successfully replayed by increasing the amount of gas supplied to the call. If the
/// call will fail for any amount of gas, then the ETH will be locked permanently.
/// @param _to Address of the recipient on L2.
/// @param _minGasLimit Minimum gas limit for the deposit message on L2.
/// @param _extraData Optional data to forward to L2.
/// Data supplied here will not be used to execute any code on L2 and is
/// only emitted as extra data for the convenience of off-chain tooling.
function depositETHTo(address _to, uint32 _minGasLimit, bytes calldata _extraData) external payable {
_initiateETHDeposit(msg.sender, _to, _minGasLimit, _extraData);
}
/// @custom:legacy
/// @notice Deposits some amount of ERC20 tokens into the sender's account on L2.
/// @param _l1Token Address of the L1 token being deposited.
/// @param _l2Token Address of the corresponding token on L2.
/// @param _amount Amount of the ERC20 to deposit.
/// @param _minGasLimit Minimum gas limit for the deposit message on L2.
/// @param _extraData Optional data to forward to L2.
/// Data supplied here will not be used to execute any code on L2 and is
/// only emitted as extra data for the convenience of off-chain tooling.
function depositERC20(
address _l1Token,
address _l2Token,
uint256 _amount,
uint32 _minGasLimit,
bytes calldata _extraData
)
external
virtual
onlyEOA
{
_initiateERC20Deposit(_l1Token, _l2Token, msg.sender, msg.sender, _amount, _minGasLimit, _extraData);
}
/// @custom:legacy
/// @notice Deposits some amount of ERC20 tokens into a target account on L2.
/// @param _l1Token Address of the L1 token being deposited.
/// @param _l2Token Address of the corresponding token on L2.
/// @param _to Address of the recipient on L2.
/// @param _amount Amount of the ERC20 to deposit.
/// @param _minGasLimit Minimum gas limit for the deposit message on L2.
/// @param _extraData Optional data to forward to L2.
/// Data supplied here will not be used to execute any code on L2 and is
/// only emitted as extra data for the convenience of off-chain tooling.
function depositERC20To(
address _l1Token,
address _l2Token,
address _to,
uint256 _amount,
uint32 _minGasLimit,
bytes calldata _extraData
)
external
virtual
{
_initiateERC20Deposit(_l1Token, _l2Token, msg.sender, _to, _amount, _minGasLimit, _extraData);
}
/// @custom:legacy
/// @notice Finalizes a withdrawal of ETH from L2.
/// @param _from Address of the withdrawer on L2.
/// @param _to Address of the recipient on L1.
/// @param _amount Amount of ETH to withdraw.
/// @param _extraData Optional data forwarded from L2.
function finalizeETHWithdrawal(
address _from,
address _to,
uint256 _amount,
bytes calldata _extraData
)
external
payable
{
finalizeBridgeETH(_from, _to, _amount, _extraData);
}
/// @custom:legacy
/// @notice Finalizes a withdrawal of ERC20 tokens from L2.
/// @param _l1Token Address of the token on L1.
/// @param _l2Token Address of the corresponding token on L2.
/// @param _from Address of the withdrawer on L2.
/// @param _to Address of the recipient on L1.
/// @param _amount Amount of the ERC20 to withdraw.
/// @param _extraData Optional data forwarded from L2.
function finalizeERC20Withdrawal(
address _l1Token,
address _l2Token,
address _from,
address _to,
uint256 _amount,
bytes calldata _extraData
)
external
{
finalizeBridgeERC20(_l1Token, _l2Token, _from, _to, _amount, _extraData);
}
/// @custom:legacy
/// @notice Retrieves the access of the corresponding L2 bridge contract.
/// @return Address of the corresponding L2 bridge contract.
function l2TokenBridge() external view returns (address) {
return address(otherBridge);
}
/// @notice Internal function for initiating an ETH deposit.
/// @param _from Address of the sender on L1.
/// @param _to Address of the recipient on L2.
/// @param _minGasLimit Minimum gas limit for the deposit message on L2.
/// @param _extraData Optional data to forward to L2.
function _initiateETHDeposit(address _from, address _to, uint32 _minGasLimit, bytes memory _extraData) internal {
_initiateBridgeETH(_from, _to, msg.value, _minGasLimit, _extraData);
}
/// @notice Internal function for initiating an ERC20 deposit.
/// @param _l1Token Address of the L1 token being deposited.
/// @param _l2Token Address of the corresponding token on L2.
/// @param _from Address of the sender on L1.
/// @param _to Address of the recipient on L2.
/// @param _amount Amount of the ERC20 to deposit.
/// @param _minGasLimit Minimum gas limit for the deposit message on L2.
/// @param _extraData Optional data to forward to L2.
function _initiateERC20Deposit(
address _l1Token,
address _l2Token,
address _from,
address _to,
uint256 _amount,
uint32 _minGasLimit,
bytes memory _extraData
)
internal
{
_initiateBridgeERC20(_l1Token, _l2Token, _from, _to, _amount, _minGasLimit, _extraData);
}
/// @inheritdoc StandardBridge
/// @notice Emits the legacy ETHDepositInitiated event followed by the ETHBridgeInitiated event.
/// This is necessary for backwards compatibility with the legacy bridge.
function _emitETHBridgeInitiated(
address _from,
address _to,
uint256 _amount,
bytes memory _extraData
)
internal
override
{
emit ETHDepositInitiated(_from, _to, _amount, _extraData);
super._emitETHBridgeInitiated(_from, _to, _amount, _extraData);
}
/// @inheritdoc StandardBridge
/// @notice Emits the legacy ERC20DepositInitiated event followed by the ERC20BridgeInitiated
/// event. This is necessary for backwards compatibility with the legacy bridge.
function _emitETHBridgeFinalized(
address _from,
address _to,
uint256 _amount,
bytes memory _extraData
)
internal
override
{
emit ETHWithdrawalFinalized(_from, _to, _amount, _extraData);
super._emitETHBridgeFinalized(_from, _to, _amount, _extraData);
}
/// @inheritdoc StandardBridge
/// @notice Emits the legacy ERC20WithdrawalFinalized event followed by the ERC20BridgeFinalized
/// event. This is necessary for backwards compatibility with the legacy bridge.
function _emitERC20BridgeInitiated(
address _localToken,
address _remoteToken,
address _from,
address _to,
uint256 _amount,
bytes memory _extraData
)
internal
override
{
emit ERC20DepositInitiated(_localToken, _remoteToken, _from, _to, _amount, _extraData);
super._emitERC20BridgeInitiated(_localToken, _remoteToken, _from, _to, _amount, _extraData);
}
/// @inheritdoc StandardBridge
/// @notice Emits the legacy ERC20WithdrawalFinalized event followed by the ERC20BridgeFinalized
/// event. This is necessary for backwards compatibility with the legacy bridge.
function _emitERC20BridgeFinalized(
address _localToken,
address _remoteToken,
address _from,
address _to,
uint256 _amount,
bytes memory _extraData
)
internal
override
{
emit ERC20WithdrawalFinalized(_localToken, _remoteToken, _from, _to, _amount, _extraData);
super._emitERC20BridgeFinalized(_localToken, _remoteToken, _from, _to, _amount, _extraData);
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
/// @title Predeploys
/// @notice Contains constant addresses for contracts that are pre-deployed to the L2 system.
library Predeploys {
/// @notice Address of the L2ToL1MessagePasser predeploy.
address internal constant L2_TO_L1_MESSAGE_PASSER = 0x4200000000000000000000000000000000000016;
/// @notice Address of the L2CrossDomainMessenger predeploy.
address internal constant L2_CROSS_DOMAIN_MESSENGER = 0x4200000000000000000000000000000000000007;
/// @notice Address of the L2StandardBridge predeploy.
address internal constant L2_STANDARD_BRIDGE = 0x4200000000000000000000000000000000000010;
/// @notice Address of the L2ERC721Bridge predeploy.
address internal constant L2_ERC721_BRIDGE = 0x4200000000000000000000000000000000000014;
//// @notice Address of the SequencerFeeWallet predeploy.
address internal constant SEQUENCER_FEE_WALLET = 0x4200000000000000000000000000000000000011;
/// @notice Address of the OptimismMintableERC20Factory predeploy.
address internal constant OPTIMISM_MINTABLE_ERC20_FACTORY = 0x4200000000000000000000000000000000000012;
/// @notice Address of the OptimismMintableERC721Factory predeploy.
address internal constant OPTIMISM_MINTABLE_ERC721_FACTORY = 0x4200000000000000000000000000000000000017;
/// @notice Address of the L1Block predeploy.
address internal constant L1_BLOCK_ATTRIBUTES = 0x4200000000000000000000000000000000000015;
/// @notice Address of the GasPriceOracle predeploy. Includes fee information
/// and helpers for computing the L1 portion of the transaction fee.
address internal constant GAS_PRICE_ORACLE = 0x420000000000000000000000000000000000000F;
/// @custom:legacy
/// @notice Address of the L1MessageSender predeploy. Deprecated. Use L2CrossDomainMessenger
/// or access tx.origin (or msg.sender) in a L1 to L2 transaction instead.
address internal constant L1_MESSAGE_SENDER = 0x4200000000000000000000000000000000000001;
/// @custom:legacy
/// @notice Address of the DeployerWhitelist predeploy. No longer active.
address internal constant DEPLOYER_WHITELIST = 0x4200000000000000000000000000000000000002;
/// @notice Address of the canonical WETH9 contract.
address internal constant WETH9 = 0x4200000000000000000000000000000000000006;
/// @custom:legacy
/// @notice Address of the LegacyERC20ETH predeploy. Deprecated. Balances are migrated to the
/// state trie as of the Bedrock upgrade. Contract has been locked and write functions
/// can no longer be accessed.
address internal constant LEGACY_ERC20_ETH = 0xDeadDeAddeAddEAddeadDEaDDEAdDeaDDeAD0000;
/// @custom:legacy
/// @notice Address of the L1BlockNumber predeploy. Deprecated. Use the L1Block predeploy
/// instead, which exposes more information about the L1 state.
address internal constant L1_BLOCK_NUMBER = 0x4200000000000000000000000000000000000013;
/// @custom:legacy
/// @notice Address of the LegacyMessagePasser predeploy. Deprecate. Use the updated
/// L2ToL1MessagePasser contract instead.
address internal constant LEGACY_MESSAGE_PASSER = 0x4200000000000000000000000000000000000000;
/// @notice Address of the ProxyAdmin predeploy.
address internal constant PROXY_ADMIN = 0x4200000000000000000000000000000000000018;
/// @notice Address of the BaseFeeVault predeploy.
address internal constant BASE_FEE_VAULT = 0x4200000000000000000000000000000000000019;
/// @notice Address of the L1FeeVault predeploy.
address internal constant L1_FEE_VAULT = 0x420000000000000000000000000000000000001A;
/// @notice Address of the GovernanceToken predeploy.
address internal constant GOVERNANCE_TOKEN = 0x4200000000000000000000000000000000000042;
/// @notice Address of the SchemaRegistry predeploy.
address internal constant SCHEMA_REGISTRY = 0x4200000000000000000000000000000000000020;
/// @notice Address of the EAS predeploy.
address internal constant EAS = 0x4200000000000000000000000000000000000021;
/// @notice Address of the MultiCall3 predeploy.
address internal constant MultiCall3 = 0xcA11bde05977b3631167028862bE2a173976CA11;
/// @notice Address of the Create2Deployer predeploy.
address internal constant Create2Deployer = 0x13b0D85CcB8bf860b6b79AF3029fCA081AE9beF2;
/// @notice Address of the Safe_v130 predeploy.
address internal constant Safe_v130 = 0x69f4D1788e39c87893C980c06EdF4b7f686e2938;
/// @notice Address of the SafeL2_v130 predeploy.
address internal constant SafeL2_v130 = 0xfb1bffC9d739B8D520DaF37dF666da4C687191EA;
/// @notice Address of the MultiSendCallOnly_v130 predeploy.
address internal constant MultiSendCallOnly_v130 = 0xA1dabEF33b3B82c7814B6D82A79e50F4AC44102B;
/// @notice Address of the SafeSingletonFactory predeploy.
address internal constant SafeSingletonFactory = 0x914d7Fec6aaC8cd542e72Bca78B30650d45643d7;
/// @notice Address of the DeterministicDeploymentProxy predeploy.
address internal constant DeterministicDeploymentProxy = 0x4e59b44847b379578588920cA78FbF26c0B4956C;
/// @notice Address of the MultiSend_v130 predeploy.
address internal constant MultiSend_v130 = 0x998739BFdAAdde7C933B942a68053933098f9EDa;
/// @notice Address of the Permit2 predeploy.
address internal constant Permit2 = 0x000000000022D473030F116dDEE9F6B43aC78BA3;
/// @notice Address of the SenderCreator predeploy.
address internal constant SenderCreator = 0x7fc98430eAEdbb6070B35B39D798725049088348;
/// @notice Address of the EntryPoint predeploy.
address internal constant EntryPoint = 0x5FF137D4b0FDCD49DcA30c7CF57E578a026d2789;
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.15;
import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import { ERC165Checker } from "@openzeppelin/contracts/utils/introspection/ERC165Checker.sol";
import { Address } from "@openzeppelin/contracts/utils/Address.sol";
import { SafeERC20 } from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import { SafeCall } from "src/libraries/SafeCall.sol";
import { IOptimismMintableERC20, ILegacyMintableERC20 } from "src/universal/IOptimismMintableERC20.sol";
import { CrossDomainMessenger } from "src/universal/CrossDomainMessenger.sol";
import { OptimismMintableERC20 } from "src/universal/OptimismMintableERC20.sol";
import { Initializable } from "@openzeppelin/contracts/proxy/utils/Initializable.sol";
/// @custom:upgradeable
/// @title StandardBridge
/// @notice StandardBridge is a base contract for the L1 and L2 standard ERC20 bridges. It handles
/// the core bridging logic, including escrowing tokens that are native to the local chain
/// and minting/burning tokens that are native to the remote chain.
abstract contract StandardBridge is Initializable {
using SafeERC20 for IERC20;
/// @notice The L2 gas limit set when eth is depoisited using the receive() function.
uint32 internal constant RECEIVE_DEFAULT_GAS_LIMIT = 200_000;
/// @custom:legacy
/// @custom:spacer messenger
/// @notice Spacer for backwards compatibility.
bytes30 private spacer_0_2_30;
/// @custom:legacy
/// @custom:spacer l2TokenBridge
/// @notice Spacer for backwards compatibility.
address private spacer_1_0_20;
/// @notice Mapping that stores deposits for a given pair of local and remote tokens.
mapping(address => mapping(address => uint256)) public deposits;
/// @notice Messenger contract on this domain.
/// @custom:network-specific
CrossDomainMessenger public messenger;
/// @notice Corresponding bridge on the other domain.
/// @custom:network-specific
StandardBridge public otherBridge;
/// @notice Reserve extra slots (to a total of 50) in the storage layout for future upgrades.
/// A gap size of 45 was chosen here, so that the first slot used in a child contract
/// would be a multiple of 50.
uint256[45] private __gap;
/// @notice Emitted when an ETH bridge is initiated to the other chain.
/// @param from Address of the sender.
/// @param to Address of the receiver.
/// @param amount Amount of ETH sent.
/// @param extraData Extra data sent with the transaction.
event ETHBridgeInitiated(address indexed from, address indexed to, uint256 amount, bytes extraData);
/// @notice Emitted when an ETH bridge is finalized on this chain.
/// @param from Address of the sender.
/// @param to Address of the receiver.
/// @param amount Amount of ETH sent.
/// @param extraData Extra data sent with the transaction.
event ETHBridgeFinalized(address indexed from, address indexed to, uint256 amount, bytes extraData);
/// @notice Emitted when an ERC20 bridge is initiated to the other chain.
/// @param localToken Address of the ERC20 on this chain.
/// @param remoteToken Address of the ERC20 on the remote chain.
/// @param from Address of the sender.
/// @param to Address of the receiver.
/// @param amount Amount of the ERC20 sent.
/// @param extraData Extra data sent with the transaction.
event ERC20BridgeInitiated(
address indexed localToken,
address indexed remoteToken,
address indexed from,
address to,
uint256 amount,
bytes extraData
);
/// @notice Emitted when an ERC20 bridge is finalized on this chain.
/// @param localToken Address of the ERC20 on this chain.
/// @param remoteToken Address of the ERC20 on the remote chain.
/// @param from Address of the sender.
/// @param to Address of the receiver.
/// @param amount Amount of the ERC20 sent.
/// @param extraData Extra data sent with the transaction.
event ERC20BridgeFinalized(
address indexed localToken,
address indexed remoteToken,
address indexed from,
address to,
uint256 amount,
bytes extraData
);
/// @notice Only allow EOAs to call the functions. Note that this is not safe against contracts
/// calling code within their constructors, but also doesn't really matter since we're
/// just trying to prevent users accidentally depositing with smart contract wallets.
modifier onlyEOA() {
require(!Address.isContract(msg.sender), "StandardBridge: function can only be called from an EOA");
_;
}
/// @notice Ensures that the caller is a cross-chain message from the other bridge.
modifier onlyOtherBridge() {
require(
msg.sender == address(messenger) && messenger.xDomainMessageSender() == address(otherBridge),
"StandardBridge: function can only be called from the other bridge"
);
_;
}
/// @notice Initializer.
/// @param _messenger Contract for CrossDomainMessenger on this network.
/// @param _otherBridge Contract for the other StandardBridge contract.
// solhint-disable-next-line func-name-mixedcase
function __StandardBridge_init(
CrossDomainMessenger _messenger,
StandardBridge _otherBridge
)
internal
onlyInitializing
{
messenger = _messenger;
otherBridge = _otherBridge;
}
/// @notice Allows EOAs to bridge ETH by sending directly to the bridge.
/// Must be implemented by contracts that inherit.
receive() external payable virtual;
/// @notice Getter for messenger contract.
/// Public getter is legacy and will be removed in the future. Use `messenger` instead.
/// @return Contract of the messenger on this domain.
/// @custom:legacy
function MESSENGER() external view returns (CrossDomainMessenger) {
return messenger;
}
/// @notice Getter for the other bridge contract.
/// Public getter is legacy and will be removed in the future. Use `otherBridge` instead.
/// @return Contract of the bridge on the other network.
/// @custom:legacy
function OTHER_BRIDGE() external view returns (StandardBridge) {
return otherBridge;
}
/// @notice This function should return true if the contract is paused.
/// On L1 this function will check the SuperchainConfig for its paused status.
/// On L2 this function should be a no-op.
/// @return Whether or not the contract is paused.
function paused() public view virtual returns (bool) {
return false;
}
/// @notice Sends ETH to the sender's address on the other chain.
/// @param _minGasLimit Minimum amount of gas that the bridge can be relayed with.
/// @param _extraData Extra data to be sent with the transaction. Note that the recipient will
/// not be triggered with this data, but it will be emitted and can be used
/// to identify the transaction.
function bridgeETH(uint32 _minGasLimit, bytes calldata _extraData) public payable onlyEOA {
_initiateBridgeETH(msg.sender, msg.sender, msg.value, _minGasLimit, _extraData);
}
/// @notice Sends ETH to a receiver's address on the other chain. Note that if ETH is sent to a
/// smart contract and the call fails, the ETH will be temporarily locked in the
/// StandardBridge on the other chain until the call is replayed. If the call cannot be
/// replayed with any amount of gas (call always reverts), then the ETH will be
/// permanently locked in the StandardBridge on the other chain. ETH will also
/// be locked if the receiver is the other bridge, because finalizeBridgeETH will revert
/// in that case.
/// @param _to Address of the receiver.
/// @param _minGasLimit Minimum amount of gas that the bridge can be relayed with.
/// @param _extraData Extra data to be sent with the transaction. Note that the recipient will
/// not be triggered with this data, but it will be emitted and can be used
/// to identify the transaction.
function bridgeETHTo(address _to, uint32 _minGasLimit, bytes calldata _extraData) public payable {
_initiateBridgeETH(msg.sender, _to, msg.value, _minGasLimit, _extraData);
}
/// @notice Sends ERC20 tokens to the sender's address on the other chain. Note that if the
/// ERC20 token on the other chain does not recognize the local token as the correct
/// pair token, the ERC20 bridge will fail and the tokens will be returned to sender on
/// this chain.
/// @param _localToken Address of the ERC20 on this chain.
/// @param _remoteToken Address of the corresponding token on the remote chain.
/// @param _amount Amount of local tokens to deposit.
/// @param _minGasLimit Minimum amount of gas that the bridge can be relayed with.
/// @param _extraData Extra data to be sent with the transaction. Note that the recipient will
/// not be triggered with this data, but it will be emitted and can be used
/// to identify the transaction.
function bridgeERC20(
address _localToken,
address _remoteToken,
uint256 _amount,
uint32 _minGasLimit,
bytes calldata _extraData
)
public
virtual
onlyEOA
{
_initiateBridgeERC20(_localToken, _remoteToken, msg.sender, msg.sender, _amount, _minGasLimit, _extraData);
}
/// @notice Sends ERC20 tokens to a receiver's address on the other chain. Note that if the
/// ERC20 token on the other chain does not recognize the local token as the correct
/// pair token, the ERC20 bridge will fail and the tokens will be returned to sender on
/// this chain.
/// @param _localToken Address of the ERC20 on this chain.
/// @param _remoteToken Address of the corresponding token on the remote chain.
/// @param _to Address of the receiver.
/// @param _amount Amount of local tokens to deposit.
/// @param _minGasLimit Minimum amount of gas that the bridge can be relayed with.
/// @param _extraData Extra data to be sent with the transaction. Note that the recipient will
/// not be triggered with this data, but it will be emitted and can be used
/// to identify the transaction.
function bridgeERC20To(
address _localToken,
address _remoteToken,
address _to,
uint256 _amount,
uint32 _minGasLimit,
bytes calldata _extraData
)
public
virtual
{
_initiateBridgeERC20(_localToken, _remoteToken, msg.sender, _to, _amount, _minGasLimit, _extraData);
}
/// @notice Finalizes an ETH bridge on this chain. Can only be triggered by the other
/// StandardBridge contract on the remote chain.
/// @param _from Address of the sender.
/// @param _to Address of the receiver.
/// @param _amount Amount of ETH being bridged.
/// @param _extraData Extra data to be sent with the transaction. Note that the recipient will
/// not be triggered with this data, but it will be emitted and can be used
/// to identify the transaction.
function finalizeBridgeETH(
address _from,
address _to,
uint256 _amount,
bytes calldata _extraData
)
public
payable
onlyOtherBridge
{
require(paused() == false, "StandardBridge: paused");
require(msg.value == _amount, "StandardBridge: amount sent does not match amount required");
require(_to != address(this), "StandardBridge: cannot send to self");
require(_to != address(messenger), "StandardBridge: cannot send to messenger");
// Emit the correct events. By default this will be _amount, but child
// contracts may override this function in order to emit legacy events as well.
_emitETHBridgeFinalized(_from, _to, _amount, _extraData);
bool success = SafeCall.call(_to, gasleft(), _amount, hex"");
require(success, "StandardBridge: ETH transfer failed");
}
/// @notice Finalizes an ERC20 bridge on this chain. Can only be triggered by the other
/// StandardBridge contract on the remote chain.
/// @param _localToken Address of the ERC20 on this chain.
/// @param _remoteToken Address of the corresponding token on the remote chain.
/// @param _from Address of the sender.
/// @param _to Address of the receiver.
/// @param _amount Amount of the ERC20 being bridged.
/// @param _extraData Extra data to be sent with the transaction. Note that the recipient will
/// not be triggered with this data, but it will be emitted and can be used
/// to identify the transaction.
function finalizeBridgeERC20(
address _localToken,
address _remoteToken,
address _from,
address _to,
uint256 _amount,
bytes calldata _extraData
)
public
onlyOtherBridge
{
require(paused() == false, "StandardBridge: paused");
if (_isOptimismMintableERC20(_localToken)) {
require(
_isCorrectTokenPair(_localToken, _remoteToken),
"StandardBridge: wrong remote token for Optimism Mintable ERC20 local token"
);
OptimismMintableERC20(_localToken).mint(_to, _amount);
} else {
deposits[_localToken][_remoteToken] = deposits[_localToken][_remoteToken] - _amount;
IERC20(_localToken).safeTransfer(_to, _amount);
}
// Emit the correct events. By default this will be ERC20BridgeFinalized, but child
// contracts may override this function in order to emit legacy events as well.
_emitERC20BridgeFinalized(_localToken, _remoteToken, _from, _to, _amount, _extraData);
}
/// @notice Initiates a bridge of ETH through the CrossDomainMessenger.
/// @param _from Address of the sender.
/// @param _to Address of the receiver.
/// @param _amount Amount of ETH being bridged.
/// @param _minGasLimit Minimum amount of gas that the bridge can be relayed with.
/// @param _extraData Extra data to be sent with the transaction. Note that the recipient will
/// not be triggered with this data, but it will be emitted and can be used
/// to identify the transaction.
function _initiateBridgeETH(
address _from,
address _to,
uint256 _amount,
uint32 _minGasLimit,
bytes memory _extraData
)
internal
{
require(msg.value == _amount, "StandardBridge: bridging ETH must include sufficient ETH value");
// Emit the correct events. By default this will be _amount, but child
// contracts may override this function in order to emit legacy events as well.
_emitETHBridgeInitiated(_from, _to, _amount, _extraData);
messenger.sendMessage{ value: _amount }({
_target: address(otherBridge),
_message: abi.encodeWithSelector(this.finalizeBridgeETH.selector, _from, _to, _amount, _extraData),
_minGasLimit: _minGasLimit
});
}
/// @notice Sends ERC20 tokens to a receiver's address on the other chain.
/// @param _localToken Address of the ERC20 on this chain.
/// @param _remoteToken Address of the corresponding token on the remote chain.
/// @param _to Address of the receiver.
/// @param _amount Amount of local tokens to deposit.
/// @param _minGasLimit Minimum amount of gas that the bridge can be relayed with.
/// @param _extraData Extra data to be sent with the transaction. Note that the recipient will
/// not be triggered with this data, but it will be emitted and can be used
/// to identify the transaction.
function _initiateBridgeERC20(
address _localToken,
address _remoteToken,
address _from,
address _to,
uint256 _amount,
uint32 _minGasLimit,
bytes memory _extraData
)
internal
{
if (_isOptimismMintableERC20(_localToken)) {
require(
_isCorrectTokenPair(_localToken, _remoteToken),
"StandardBridge: wrong remote token for Optimism Mintable ERC20 local token"
);
OptimismMintableERC20(_localToken).burn(_from, _amount);
} else {
IERC20(_localToken).safeTransferFrom(_from, address(this), _amount);
deposits[_localToken][_remoteToken] = deposits[_localToken][_remoteToken] + _amount;
}
// Emit the correct events. By default this will be ERC20BridgeInitiated, but child
// contracts may override this function in order to emit legacy events as well.
_emitERC20BridgeInitiated(_localToken, _remoteToken, _from, _to, _amount, _extraData);
messenger.sendMessage({
_target: address(otherBridge),
_message: abi.encodeWithSelector(
this.finalizeBridgeERC20.selector,
// Because this call will be executed on the remote chain, we reverse the order of
// the remote and local token addresses relative to their order in the
// finalizeBridgeERC20 function.
_remoteToken,
_localToken,
_from,
_to,
_amount,
_extraData
),
_minGasLimit: _minGasLimit
});
}
/// @notice Checks if a given address is an OptimismMintableERC20. Not perfect, but good enough.
/// Just the way we like it.
/// @param _token Address of the token to check.
/// @return True if the token is an OptimismMintableERC20.
function _isOptimismMintableERC20(address _token) internal view returns (bool) {
return ERC165Checker.supportsInterface(_token, type(ILegacyMintableERC20).interfaceId)
|| ERC165Checker.supportsInterface(_token, type(IOptimismMintableERC20).interfaceId);
}
/// @notice Checks if the "other token" is the correct pair token for the OptimismMintableERC20.
/// Calls can be saved in the future by combining this logic with
/// `_isOptimismMintableERC20`.
/// @param _mintableToken OptimismMintableERC20 to check against.
/// @param _otherToken Pair token to check.
/// @return True if the other token is the correct pair token for the OptimismMintableERC20.
function _isCorrectTokenPair(address _mintableToken, address _otherToken) internal view returns (bool) {
if (ERC165Checker.supportsInterface(_mintableToken, type(ILegacyMintableERC20).interfaceId)) {
return _otherToken == ILegacyMintableERC20(_mintableToken).l1Token();
} else {
return _otherToken == IOptimismMintableERC20(_mintableToken).remoteToken();
}
}
/// @notice Emits the ETHBridgeInitiated event and if necessary the appropriate legacy event
/// when an ETH bridge is finalized on this chain.
/// @param _from Address of the sender.
/// @param _to Address of the receiver.
/// @param _amount Amount of ETH sent.
/// @param _extraData Extra data sent with the transaction.
function _emitETHBridgeInitiated(
address _from,
address _to,
uint256 _amount,
bytes memory _extraData
)
internal
virtual
{
emit ETHBridgeInitiated(_from, _to, _amount, _extraData);
}
/// @notice Emits the ETHBridgeFinalized and if necessary the appropriate legacy event when an
/// ETH bridge is finalized on this chain.
/// @param _from Address of the sender.
/// @param _to Address of the receiver.
/// @param _amount Amount of ETH sent.
/// @param _extraData Extra data sent with the transaction.
function _emitETHBridgeFinalized(
address _from,
address _to,
uint256 _amount,
bytes memory _extraData
)
internal
virtual
{
emit ETHBridgeFinalized(_from, _to, _amount, _extraData);
}
/// @notice Emits the ERC20BridgeInitiated event and if necessary the appropriate legacy
/// event when an ERC20 bridge is initiated to the other chain.
/// @param _localToken Address of the ERC20 on this chain.
/// @param _remoteToken Address of the ERC20 on the remote chain.
/// @param _from Address of the sender.
/// @param _to Address of the receiver.
/// @param _amount Amount of the ERC20 sent.
/// @param _extraData Extra data sent with the transaction.
function _emitERC20BridgeInitiated(
address _localToken,
address _remoteToken,
address _from,
address _to,
uint256 _amount,
bytes memory _extraData
)
internal
virtual
{
emit ERC20BridgeInitiated(_localToken, _remoteToken, _from, _to, _amount, _extraData);
}
/// @notice Emits the ERC20BridgeFinalized event and if necessary the appropriate legacy
/// event when an ERC20 bridge is initiated to the other chain.
/// @param _localToken Address of the ERC20 on this chain.
/// @param _remoteToken Address of the ERC20 on the remote chain.
/// @param _from Address of the sender.
/// @param _to Address of the receiver.
/// @param _amount Amount of the ERC20 sent.
/// @param _extraData Extra data sent with the transaction.
function _emitERC20BridgeFinalized(
address _localToken,
address _remoteToken,
address _from,
address _to,
uint256 _amount,
bytes memory _extraData
)
internal
virtual
{
emit ERC20BridgeFinalized(_localToken, _remoteToken, _from, _to, _amount, _extraData);
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
/// @title ISemver
/// @notice ISemver is a simple contract for ensuring that contracts are
/// versioned using semantic versioning.
interface ISemver {
/// @notice Getter for the semantic version of the contract. This is not
/// meant to be used onchain but instead meant to be used by offchain
/// tooling.
/// @return Semver contract version as a string.
function version() external view returns (string memory);
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.15;
import { Initializable } from "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol";
import { SafeCall } from "src/libraries/SafeCall.sol";
import { Hashing } from "src/libraries/Hashing.sol";
import { Encoding } from "src/libraries/Encoding.sol";
import { Constants } from "src/libraries/Constants.sol";
/// @custom:legacy
/// @title CrossDomainMessengerLegacySpacer0
/// @notice Contract only exists to add a spacer to the CrossDomainMessenger where the
/// libAddressManager variable used to exist. Must be the first contract in the inheritance
/// tree of the CrossDomainMessenger.
contract CrossDomainMessengerLegacySpacer0 {
/// @custom:legacy
/// @custom:spacer libAddressManager
/// @notice Spacer for backwards compatibility.
address private spacer_0_0_20;
}
/// @custom:legacy
/// @title CrossDomainMessengerLegacySpacer1
/// @notice Contract only exists to add a spacer to the CrossDomainMessenger where the
/// PausableUpgradable and OwnableUpgradeable variables used to exist. Must be
/// the third contract in the inheritance tree of the CrossDomainMessenger.
contract CrossDomainMessengerLegacySpacer1 {
/// @custom:legacy
/// @custom:spacer ContextUpgradable's __gap
/// @notice Spacer for backwards compatibility. Comes from OpenZeppelin
/// ContextUpgradable.
uint256[50] private spacer_1_0_1600;
/// @custom:legacy
/// @custom:spacer OwnableUpgradeable's _owner
/// @notice Spacer for backwards compatibility.
/// Come from OpenZeppelin OwnableUpgradeable.
address private spacer_51_0_20;
/// @custom:legacy
/// @custom:spacer OwnableUpgradeable's __gap
/// @notice Spacer for backwards compatibility. Comes from OpenZeppelin
/// OwnableUpgradeable.
uint256[49] private spacer_52_0_1568;
/// @custom:legacy
/// @custom:spacer PausableUpgradable's _paused
/// @notice Spacer for backwards compatibility. Comes from OpenZeppelin
/// PausableUpgradable.
bool private spacer_101_0_1;
/// @custom:legacy
/// @custom:spacer PausableUpgradable's __gap
/// @notice Spacer for backwards compatibility. Comes from OpenZeppelin
/// PausableUpgradable.
uint256[49] private spacer_102_0_1568;
/// @custom:legacy
/// @custom:spacer ReentrancyGuardUpgradeable's `_status` field.
/// @notice Spacer for backwards compatibility.
uint256 private spacer_151_0_32;
/// @custom:legacy
/// @custom:spacer ReentrancyGuardUpgradeable's __gap
/// @notice Spacer for backwards compatibility.
uint256[49] private spacer_152_0_1568;
/// @custom:legacy
/// @custom:spacer blockedMessages
/// @notice Spacer for backwards compatibility.
mapping(bytes32 => bool) private spacer_201_0_32;
/// @custom:legacy
/// @custom:spacer relayedMessages
/// @notice Spacer for backwards compatibility.
mapping(bytes32 => bool) private spacer_202_0_32;
}
/// @custom:upgradeable
/// @title CrossDomainMessenger
/// @notice CrossDomainMessenger is a base contract that provides the core logic for the L1 and L2
/// cross-chain messenger contracts. It's designed to be a universal interface that only
/// needs to be extended slightly to provide low-level message passing functionality on each
/// chain it's deployed on. Currently only designed for message passing between two paired
/// chains and does not support one-to-many interactions.
/// Any changes to this contract MUST result in a semver bump for contracts that inherit it.
abstract contract CrossDomainMessenger is
CrossDomainMessengerLegacySpacer0,
Initializable,
CrossDomainMessengerLegacySpacer1
{
/// @notice Current message version identifier.
uint16 public constant MESSAGE_VERSION = 1;
/// @notice Constant overhead added to the base gas for a message.
uint64 public constant RELAY_CONSTANT_OVERHEAD = 200_000;
/// @notice Numerator for dynamic overhead added to the base gas for a message.
uint64 public constant MIN_GAS_DYNAMIC_OVERHEAD_NUMERATOR = 64;
/// @notice Denominator for dynamic overhead added to the base gas for a message.
uint64 public constant MIN_GAS_DYNAMIC_OVERHEAD_DENOMINATOR = 63;
/// @notice Extra gas added to base gas for each byte of calldata in a message.
uint64 public constant MIN_GAS_CALLDATA_OVERHEAD = 16;
/// @notice Gas reserved for performing the external call in `relayMessage`.
uint64 public constant RELAY_CALL_OVERHEAD = 40_000;
/// @notice Gas reserved for finalizing the execution of `relayMessage` after the safe call.
uint64 public constant RELAY_RESERVED_GAS = 40_000;
/// @notice Gas reserved for the execution between the `hasMinGas` check and the external
/// call in `relayMessage`.
uint64 public constant RELAY_GAS_CHECK_BUFFER = 5_000;
/// @notice Mapping of message hashes to boolean receipt values. Note that a message will only
/// be present in this mapping if it has successfully been relayed on this chain, and
/// can therefore not be relayed again.
mapping(bytes32 => bool) public successfulMessages;
/// @notice Address of the sender of the currently executing message on the other chain. If the
/// value of this variable is the default value (0x00000000...dead) then no message is
/// currently being executed. Use the xDomainMessageSender getter which will throw an
/// error if this is the case.
address internal xDomainMsgSender;
/// @notice Nonce for the next message to be sent, without the message version applied. Use the
/// messageNonce getter which will insert the message version into the nonce to give you
/// the actual nonce to be used for the message.
uint240 internal msgNonce;
/// @notice Mapping of message hashes to a boolean if and only if the message has failed to be
/// executed at least once. A message will not be present in this mapping if it
/// successfully executed on the first attempt.
mapping(bytes32 => bool) public failedMessages;
/// @notice CrossDomainMessenger contract on the other chain.
/// @custom:network-specific
CrossDomainMessenger public otherMessenger;
/// @notice Reserve extra slots in the storage layout for future upgrades.
/// A gap size of 43 was chosen here, so that the first slot used in a child contract
/// would be 1 plus a multiple of 50.
uint256[43] private __gap;
/// @notice Emitted whenever a message is sent to the other chain.
/// @param target Address of the recipient of the message.
/// @param sender Address of the sender of the message.
/// @param message Message to trigger the recipient address with.
/// @param messageNonce Unique nonce attached to the message.
/// @param gasLimit Minimum gas limit that the message can be executed with.
event SentMessage(address indexed target, address sender, bytes message, uint256 messageNonce, uint256 gasLimit);
/// @notice Additional event data to emit, required as of Bedrock. Cannot be merged with the
/// SentMessage event without breaking the ABI of this contract, this is good enough.
/// @param sender Address of the sender of the message.
/// @param value ETH value sent along with the message to the recipient.
event SentMessageExtension1(address indexed sender, uint256 value);
/// @notice Emitted whenever a message is successfully relayed on this chain.
/// @param msgHash Hash of the message that was relayed.
event RelayedMessage(bytes32 indexed msgHash);
/// @notice Emitted whenever a message fails to be relayed on this chain.
/// @param msgHash Hash of the message that failed to be relayed.
event FailedRelayedMessage(bytes32 indexed msgHash);
/// @notice Sends a message to some target address on the other chain. Note that if the call
/// always reverts, then the message will be unrelayable, and any ETH sent will be
/// permanently locked. The same will occur if the target on the other chain is
/// considered unsafe (see the _isUnsafeTarget() function).
/// @param _target Target contract or wallet address.
/// @param _message Message to trigger the target address with.
/// @param _minGasLimit Minimum gas limit that the message can be executed with.
function sendMessage(address _target, bytes calldata _message, uint32 _minGasLimit) external payable {
// Triggers a message to the other messenger. Note that the amount of gas provided to the
// message is the amount of gas requested by the user PLUS the base gas value. We want to
// guarantee the property that the call to the target contract will always have at least
// the minimum gas limit specified by the user.
_sendMessage({
_to: address(otherMessenger),
_gasLimit: baseGas(_message, _minGasLimit),
_value: msg.value,
_data: abi.encodeWithSelector(
this.relayMessage.selector, messageNonce(), msg.sender, _target, msg.value, _minGasLimit, _message
)
});
emit SentMessage(_target, msg.sender, _message, messageNonce(), _minGasLimit);
emit SentMessageExtension1(msg.sender, msg.value);
unchecked {
++msgNonce;
}
}
/// @notice Relays a message that was sent by the other CrossDomainMessenger contract. Can only
/// be executed via cross-chain call from the other messenger OR if the message was
/// already received once and is currently being replayed.
/// @param _nonce Nonce of the message being relayed.
/// @param _sender Address of the user who sent the message.
/// @param _target Address that the message is targeted at.
/// @param _value ETH value to send with the message.
/// @param _minGasLimit Minimum amount of gas that the message can be executed with.
/// @param _message Message to send to the target.
function relayMessage(
uint256 _nonce,
address _sender,
address _target,
uint256 _value,
uint256 _minGasLimit,
bytes calldata _message
)
external
payable
{
// On L1 this function will check the Portal for its paused status.
// On L2 this function should be a no-op, because paused will always return false.
require(paused() == false, "CrossDomainMessenger: paused");
(, uint16 version) = Encoding.decodeVersionedNonce(_nonce);
require(version < 2, "CrossDomainMessenger: only version 0 or 1 messages are supported at this time");
// If the message is version 0, then it's a migrated legacy withdrawal. We therefore need
// to check that the legacy version of the message has not already been relayed.
if (version == 0) {
bytes32 oldHash = Hashing.hashCrossDomainMessageV0(_target, _sender, _message, _nonce);
require(successfulMessages[oldHash] == false, "CrossDomainMessenger: legacy withdrawal already relayed");
}
// We use the v1 message hash as the unique identifier for the message because it commits
// to the value and minimum gas limit of the message.
bytes32 versionedHash =
Hashing.hashCrossDomainMessageV1(_nonce, _sender, _target, _value, _minGasLimit, _message);
if (_isOtherMessenger()) {
// These properties should always hold when the message is first submitted (as
// opposed to being replayed).
assert(msg.value == _value);
assert(!failedMessages[versionedHash]);
} else {
require(msg.value == 0, "CrossDomainMessenger: value must be zero unless message is from a system address");
require(failedMessages[versionedHash], "CrossDomainMessenger: message cannot be replayed");
}
require(
_isUnsafeTarget(_target) == false, "CrossDomainMessenger: cannot send message to blocked system address"
);
require(successfulMessages[versionedHash] == false, "CrossDomainMessenger: message has already been relayed");
// If there is not enough gas left to perform the external call and finish the execution,
// return early and assign the message to the failedMessages mapping.
// We are asserting that we have enough gas to:
// 1. Call the target contract (_minGasLimit + RELAY_CALL_OVERHEAD + RELAY_GAS_CHECK_BUFFER)
// 1.a. The RELAY_CALL_OVERHEAD is included in `hasMinGas`.
// 2. Finish the execution after the external call (RELAY_RESERVED_GAS).
//
// If `xDomainMsgSender` is not the default L2 sender, this function
// is being re-entered. This marks the message as failed to allow it to be replayed.
if (
!SafeCall.hasMinGas(_minGasLimit, RELAY_RESERVED_GAS + RELAY_GAS_CHECK_BUFFER)
|| xDomainMsgSender != Constants.DEFAULT_L2_SENDER
) {
failedMessages[versionedHash] = true;
emit FailedRelayedMessage(versionedHash);
// Revert in this case if the transaction was triggered by the estimation address. This
// should only be possible during gas estimation or we have bigger problems. Reverting
// here will make the behavior of gas estimation change such that the gas limit
// computed will be the amount required to relay the message, even if that amount is
// greater than the minimum gas limit specified by the user.
if (tx.origin == Constants.ESTIMATION_ADDRESS) {
revert("CrossDomainMessenger: failed to relay message");
}
return;
}
xDomainMsgSender = _sender;
bool success = SafeCall.call(_target, gasleft() - RELAY_RESERVED_GAS, _value, _message);
xDomainMsgSender = Constants.DEFAULT_L2_SENDER;
if (success) {
// This check is identical to one above, but it ensures that the same message cannot be relayed
// twice, and adds a layer of protection against rentrancy.
assert(successfulMessages[versionedHash] == false);
successfulMessages[versionedHash] = true;
emit RelayedMessage(versionedHash);
} else {
failedMessages[versionedHash] = true;
emit FailedRelayedMessage(versionedHash);
// Revert in this case if the transaction was triggered by the estimation address. This
// should only be possible during gas estimation or we have bigger problems. Reverting
// here will make the behavior of gas estimation change such that the gas limit
// computed will be the amount required to relay the message, even if that amount is
// greater than the minimum gas limit specified by the user.
if (tx.origin == Constants.ESTIMATION_ADDRESS) {
revert("CrossDomainMessenger: failed to relay message");
}
}
}
/// @notice Retrieves the address of the contract or wallet that initiated the currently
/// executing message on the other chain. Will throw an error if there is no message
/// currently being executed. Allows the recipient of a call to see who triggered it.
/// @return Address of the sender of the currently executing message on the other chain.
function xDomainMessageSender() external view returns (address) {
require(
xDomainMsgSender != Constants.DEFAULT_L2_SENDER, "CrossDomainMessenger: xDomainMessageSender is not set"
);
return xDomainMsgSender;
}
/// @notice Retrieves the address of the paired CrossDomainMessenger contract on the other chain
/// Public getter is legacy and will be removed in the future. Use `otherMessenger()` instead.
/// @return CrossDomainMessenger contract on the other chain.
/// @custom:legacy
function OTHER_MESSENGER() public view returns (CrossDomainMessenger) {
return otherMessenger;
}
/// @notice Retrieves the next message nonce. Message version will be added to the upper two
/// bytes of the message nonce. Message version allows us to treat messages as having
/// different structures.
/// @return Nonce of the next message to be sent, with added message version.
function messageNonce() public view returns (uint256) {
return Encoding.encodeVersionedNonce(msgNonce, MESSAGE_VERSION);
}
/// @notice Computes the amount of gas required to guarantee that a given message will be
/// received on the other chain without running out of gas. Guaranteeing that a message
/// will not run out of gas is important because this ensures that a message can always
/// be replayed on the other chain if it fails to execute completely.
/// @param _message Message to compute the amount of required gas for.
/// @param _minGasLimit Minimum desired gas limit when message goes to target.
/// @return Amount of gas required to guarantee message receipt.
function baseGas(bytes calldata _message, uint32 _minGasLimit) public pure returns (uint64) {
return
// Constant overhead
RELAY_CONSTANT_OVERHEAD
// Calldata overhead
+ (uint64(_message.length) * MIN_GAS_CALLDATA_OVERHEAD)
// Dynamic overhead (EIP-150)
+ ((_minGasLimit * MIN_GAS_DYNAMIC_OVERHEAD_NUMERATOR) / MIN_GAS_DYNAMIC_OVERHEAD_DENOMINATOR)
// Gas reserved for the worst-case cost of 3/5 of the `CALL` opcode's dynamic gas
// factors. (Conservative)
+ RELAY_CALL_OVERHEAD
// Relay reserved gas (to ensure execution of `relayMessage` completes after the
// subcontext finishes executing) (Conservative)
+ RELAY_RESERVED_GAS
// Gas reserved for the execution between the `hasMinGas` check and the `CALL`
// opcode. (Conservative)
+ RELAY_GAS_CHECK_BUFFER;
}
/// @notice Initializer.
/// @param _otherMessenger CrossDomainMessenger contract on the other chain.
// solhint-disable-next-line func-name-mixedcase
function __CrossDomainMessenger_init(CrossDomainMessenger _otherMessenger) internal onlyInitializing {
// We only want to set the xDomainMsgSender to the default value if it hasn't been initialized yet,
// meaning that this is a fresh contract deployment.
// This prevents resetting the xDomainMsgSender to the default value during an upgrade, which would enable
// a reentrant withdrawal to sandwhich the upgrade replay a withdrawal twice.
if (xDomainMsgSender == address(0)) {
xDomainMsgSender = Constants.DEFAULT_L2_SENDER;
}
otherMessenger = _otherMessenger;
}
/// @notice Sends a low-level message to the other messenger. Needs to be implemented by child
/// contracts because the logic for this depends on the network where the messenger is
/// being deployed.
/// @param _to Recipient of the message on the other chain.
/// @param _gasLimit Minimum gas limit the message can be executed with.
/// @param _value Amount of ETH to send with the message.
/// @param _data Message data.
function _sendMessage(address _to, uint64 _gasLimit, uint256 _value, bytes memory _data) internal virtual;
/// @notice Checks whether the message is coming from the other messenger. Implemented by child
/// contracts because the logic for this depends on the network where the messenger is
/// being deployed.
/// @return Whether the message is coming from the other messenger.
function _isOtherMessenger() internal view virtual returns (bool);
/// @notice Checks whether a given call target is a system address that could cause the
/// messenger to peform an unsafe action. This is NOT a mechanism for blocking user
/// addresses. This is ONLY used to prevent the execution of messages to specific
/// system addresses that could cause security issues, e.g., having the
/// CrossDomainMessenger send messages to itself.
/// @param _target Address of the contract to check.
/// @return Whether or not the address is an unsafe system address.
function _isUnsafeTarget(address _target) internal view virtual returns (bool);
/// @notice This function should return true if the contract is paused.
/// On L1 this function will check the SuperchainConfig for its paused status.
/// On L2 this function should be a no-op.
/// @return Whether or not the contract is paused.
function paused() public view virtual returns (bool) {
return false;
}
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.15;
import { Initializable } from "@openzeppelin/contracts/proxy/utils/Initializable.sol";
import { ISemver } from "src/universal/ISemver.sol";
import { Storage } from "src/libraries/Storage.sol";
/// @custom:audit none This contracts is not yet audited.
/// @title SuperchainConfig
/// @notice The SuperchainConfig contract is used to manage configuration of global superchain values.
contract SuperchainConfig is Initializable, ISemver {
/// @notice Enum representing different types of updates.
/// @custom:value GUARDIAN Represents an update to the guardian.
enum UpdateType {
GUARDIAN
}
/// @notice Whether or not the Superchain is paused.
bytes32 public constant PAUSED_SLOT = bytes32(uint256(keccak256("superchainConfig.paused")) - 1);
/// @notice The address of the guardian, which can pause withdrawals from the System.
/// It can only be modified by an upgrade.
bytes32 public constant GUARDIAN_SLOT = bytes32(uint256(keccak256("superchainConfig.guardian")) - 1);
/// @notice Emitted when the pause is triggered.
/// @param identifier A string helping to identify provenance of the pause transaction.
event Paused(string identifier);
/// @notice Emitted when the pause is lifted.
event Unpaused();
/// @notice Emitted when configuration is updated.
/// @param updateType Type of update.
/// @param data Encoded update data.
event ConfigUpdate(UpdateType indexed updateType, bytes data);
/// @notice Semantic version.
/// @custom:semver 1.1.0
string public constant version = "1.1.0";
/// @notice Constructs the SuperchainConfig contract.
constructor() {
initialize({ _guardian: address(0), _paused: false });
}
/// @notice Initializer.
/// @param _guardian Address of the guardian, can pause the OptimismPortal.
/// @param _paused Initial paused status.
function initialize(address _guardian, bool _paused) public initializer {
_setGuardian(_guardian);
if (_paused) {
_pause("Initializer paused");
}
}
/// @notice Getter for the guardian address.
function guardian() public view returns (address guardian_) {
guardian_ = Storage.getAddress(GUARDIAN_SLOT);
}
/// @notice Getter for the current paused status.
function paused() public view returns (bool paused_) {
paused_ = Storage.getBool(PAUSED_SLOT);
}
/// @notice Pauses withdrawals.
/// @param _identifier (Optional) A string to identify provenance of the pause transaction.
function pause(string memory _identifier) external {
require(msg.sender == guardian(), "SuperchainConfig: only guardian can pause");
_pause(_identifier);
}
/// @notice Pauses withdrawals.
/// @param _identifier (Optional) A string to identify provenance of the pause transaction.
function _pause(string memory _identifier) internal {
Storage.setBool(PAUSED_SLOT, true);
emit Paused(_identifier);
}
/// @notice Unpauses withdrawals.
function unpause() external {
require(msg.sender == guardian(), "SuperchainConfig: only guardian can unpause");
Storage.setBool(PAUSED_SLOT, false);
emit Unpaused();
}
/// @notice Sets the guardian address. This is only callable during initialization, so an upgrade
/// will be required to change the guardian.
/// @param _guardian The new guardian address.
function _setGuardian(address _guardian) internal {
Storage.setAddress(GUARDIAN_SLOT, _guardian);
emit ConfigUpdate(UpdateType.GUARDIAN, abi.encode(_guardian));
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import { ResourceMetering } from "src/L1/ResourceMetering.sol";
/// @title Constants
/// @notice Constants is a library for storing constants. Simple! Don't put everything in here, just
/// the stuff used in multiple contracts. Constants that only apply to a single contract
/// should be defined in that contract instead.
library Constants {
/// @notice Special address to be used as the tx origin for gas estimation calls in the
/// OptimismPortal and CrossDomainMessenger calls. You only need to use this address if
/// the minimum gas limit specified by the user is not actually enough to execute the
/// given message and you're attempting to estimate the actual necessary gas limit. We
/// use address(1) because it's the ecrecover precompile and therefore guaranteed to
/// never have any code on any EVM chain.
address internal constant ESTIMATION_ADDRESS = address(1);
/// @notice Value used for the L2 sender storage slot in both the OptimismPortal and the
/// CrossDomainMessenger contracts before an actual sender is set. This value is
/// non-zero to reduce the gas cost of message passing transactions.
address internal constant DEFAULT_L2_SENDER = 0x000000000000000000000000000000000000dEaD;
/// @notice The storage slot that holds the address of a proxy implementation.
/// @dev `bytes32(uint256(keccak256('eip1967.proxy.implementation')) - 1)`
bytes32 internal constant PROXY_IMPLEMENTATION_ADDRESS =
0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
/// @notice The storage slot that holds the address of the owner.
/// @dev `bytes32(uint256(keccak256('eip1967.proxy.admin')) - 1)`
bytes32 internal constant PROXY_OWNER_ADDRESS = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
/// @notice Returns the default values for the ResourceConfig. These are the recommended values
/// for a production network.
function DEFAULT_RESOURCE_CONFIG() internal pure returns (ResourceMetering.ResourceConfig memory) {
ResourceMetering.ResourceConfig memory config = ResourceMetering.ResourceConfig({
maxResourceLimit: 20_000_000,
elasticityMultiplier: 10,
baseFeeMaxChangeDenominator: 8,
minimumBaseFee: 1 gwei,
systemTxMaxGas: 1_000_000,
maximumBaseFee: type(uint128).max
});
return config;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `from` to `to` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(
address from,
address to,
uint256 amount
) external returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.2) (utils/introspection/ERC165Checker.sol)
pragma solidity ^0.8.0;
import "./IERC165.sol";
/**
* @dev Library used to query support of an interface declared via {IERC165}.
*
* Note that these functions return the actual result of the query: they do not
* `revert` if an interface is not supported. It is up to the caller to decide
* what to do in these cases.
*/
library ERC165Checker {
// As per the EIP-165 spec, no interface should ever match 0xffffffff
bytes4 private constant _INTERFACE_ID_INVALID = 0xffffffff;
/**
* @dev Returns true if `account` supports the {IERC165} interface,
*/
function supportsERC165(address account) internal view returns (bool) {
// Any contract that implements ERC165 must explicitly indicate support of
// InterfaceId_ERC165 and explicitly indicate non-support of InterfaceId_Invalid
return
_supportsERC165Interface(account, type(IERC165).interfaceId) &&
!_supportsERC165Interface(account, _INTERFACE_ID_INVALID);
}
/**
* @dev Returns true if `account` supports the interface defined by
* `interfaceId`. Support for {IERC165} itself is queried automatically.
*
* See {IERC165-supportsInterface}.
*/
function supportsInterface(address account, bytes4 interfaceId) internal view returns (bool) {
// query support of both ERC165 as per the spec and support of _interfaceId
return supportsERC165(account) && _supportsERC165Interface(account, interfaceId);
}
/**
* @dev Returns a boolean array where each value corresponds to the
* interfaces passed in and whether they're supported or not. This allows
* you to batch check interfaces for a contract where your expectation
* is that some interfaces may not be supported.
*
* See {IERC165-supportsInterface}.
*
* _Available since v3.4._
*/
function getSupportedInterfaces(address account, bytes4[] memory interfaceIds)
internal
view
returns (bool[] memory)
{
// an array of booleans corresponding to interfaceIds and whether they're supported or not
bool[] memory interfaceIdsSupported = new bool[](interfaceIds.length);
// query support of ERC165 itself
if (supportsERC165(account)) {
// query support of each interface in interfaceIds
for (uint256 i = 0; i < interfaceIds.length; i++) {
interfaceIdsSupported[i] = _supportsERC165Interface(account, interfaceIds[i]);
}
}
return interfaceIdsSupported;
}
/**
* @dev Returns true if `account` supports all the interfaces defined in
* `interfaceIds`. Support for {IERC165} itself is queried automatically.
*
* Batch-querying can lead to gas savings by skipping repeated checks for
* {IERC165} support.
*
* See {IERC165-supportsInterface}.
*/
function supportsAllInterfaces(address account, bytes4[] memory interfaceIds) internal view returns (bool) {
// query support of ERC165 itself
if (!supportsERC165(account)) {
return false;
}
// query support of each interface in _interfaceIds
for (uint256 i = 0; i < interfaceIds.length; i++) {
if (!_supportsERC165Interface(account, interfaceIds[i])) {
return false;
}
}
// all interfaces supported
return true;
}
/**
* @notice Query if a contract implements an interface, does not check ERC165 support
* @param account The address of the contract to query for support of an interface
* @param interfaceId The interface identifier, as specified in ERC-165
* @return true if the contract at account indicates support of the interface with
* identifier interfaceId, false otherwise
* @dev Assumes that account contains a contract that supports ERC165, otherwise
* the behavior of this method is undefined. This precondition can be checked
* with {supportsERC165}.
* Interface identification is specified in ERC-165.
*/
function _supportsERC165Interface(address account, bytes4 interfaceId) private view returns (bool) {
// prepare call
bytes memory encodedParams = abi.encodeWithSelector(IERC165.supportsInterface.selector, interfaceId);
// perform static call
bool success;
uint256 returnSize;
uint256 returnValue;
assembly {
success := staticcall(30000, account, add(encodedParams, 0x20), mload(encodedParams), 0x00, 0x20)
returnSize := returndatasize()
returnValue := mload(0x00)
}
return success && returnSize >= 0x20 && returnValue > 0;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (utils/Address.sol)
pragma solidity ^0.8.1;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
* ====
*
* [IMPORTANT]
* ====
* You shouldn't rely on `isContract` to protect against flash loan attacks!
*
* Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
* like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
* constructor.
* ====
*/
function isContract(address account) internal view returns (bool) {
// This method relies on extcodesize/address.code.length, which returns 0
// for contracts in construction, since the code is only stored at the end
// of the constructor execution.
return account.code.length > 0;
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
(bool success, ) = recipient.call{value: amount}("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCall(target, data, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value
) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value,
string memory errorMessage
) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
require(isContract(target), "Address: call to non-contract");
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResult(success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
return functionStaticCall(target, data, "Address: low-level static call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(
address target,
bytes memory data,
string memory errorMessage
) internal view returns (bytes memory) {
require(isContract(target), "Address: static call to non-contract");
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResult(success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
return functionDelegateCall(target, data, "Address: low-level delegate call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
require(isContract(target), "Address: delegate call to non-contract");
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResult(success, returndata, errorMessage);
}
/**
* @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the
* revert reason using the provided one.
*
* _Available since v4.3._
*/
function verifyCallResult(
bool success,
bytes memory returndata,
string memory errorMessage
) internal pure returns (bytes memory) {
if (success) {
return returndata;
} else {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
/// @solidity memory-safe-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (token/ERC20/utils/SafeERC20.sol)
pragma solidity ^0.8.0;
import "../IERC20.sol";
import "../extensions/draft-IERC20Permit.sol";
import "../../../utils/Address.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using Address for address;
function safeTransfer(
IERC20 token,
address to,
uint256 value
) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
}
function safeTransferFrom(
IERC20 token,
address from,
address to,
uint256 value
) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
}
/**
* @dev Deprecated. This function has issues similar to the ones found in
* {IERC20-approve}, and its usage is discouraged.
*
* Whenever possible, use {safeIncreaseAllowance} and
* {safeDecreaseAllowance} instead.
*/
function safeApprove(
IERC20 token,
address spender,
uint256 value
) internal {
// safeApprove should only be called when setting an initial allowance,
// or when resetting it to zero. To increase and decrease it, use
// 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
require(
(value == 0) || (token.allowance(address(this), spender) == 0),
"SafeERC20: approve from non-zero to non-zero allowance"
);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
}
function safeIncreaseAllowance(
IERC20 token,
address spender,
uint256 value
) internal {
uint256 newAllowance = token.allowance(address(this), spender) + value;
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
}
function safeDecreaseAllowance(
IERC20 token,
address spender,
uint256 value
) internal {
unchecked {
uint256 oldAllowance = token.allowance(address(this), spender);
require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
uint256 newAllowance = oldAllowance - value;
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
}
}
function safePermit(
IERC20Permit token,
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) internal {
uint256 nonceBefore = token.nonces(owner);
token.permit(owner, spender, value, deadline, v, r, s);
uint256 nonceAfter = token.nonces(owner);
require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that
// the target address contains contract code and also asserts for success in the low-level call.
bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
if (returndata.length > 0) {
// Return data is optional
require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.15;
/// @title SafeCall
/// @notice Perform low level safe calls
library SafeCall {
/// @notice Performs a low level call without copying any returndata.
/// @dev Passes no calldata to the call context.
/// @param _target Address to call
/// @param _gas Amount of gas to pass to the call
/// @param _value Amount of value to pass to the call
function send(address _target, uint256 _gas, uint256 _value) internal returns (bool) {
bool _success;
assembly {
_success :=
call(
_gas, // gas
_target, // recipient
_value, // ether value
0, // inloc
0, // inlen
0, // outloc
0 // outlen
)
}
return _success;
}
/// @notice Perform a low level call without copying any returndata
/// @param _target Address to call
/// @param _gas Amount of gas to pass to the call
/// @param _value Amount of value to pass to the call
/// @param _calldata Calldata to pass to the call
function call(address _target, uint256 _gas, uint256 _value, bytes memory _calldata) internal returns (bool) {
bool _success;
assembly {
_success :=
call(
_gas, // gas
_target, // recipient
_value, // ether value
add(_calldata, 32), // inloc
mload(_calldata), // inlen
0, // outloc
0 // outlen
)
}
return _success;
}
/// @notice Helper function to determine if there is sufficient gas remaining within the context
/// to guarantee that the minimum gas requirement for a call will be met as well as
/// optionally reserving a specified amount of gas for after the call has concluded.
/// @param _minGas The minimum amount of gas that may be passed to the target context.
/// @param _reservedGas Optional amount of gas to reserve for the caller after the execution
/// of the target context.
/// @return `true` if there is enough gas remaining to safely supply `_minGas` to the target
/// context as well as reserve `_reservedGas` for the caller after the execution of
/// the target context.
/// @dev !!!!! FOOTGUN ALERT !!!!!
/// 1.) The 40_000 base buffer is to account for the worst case of the dynamic cost of the
/// `CALL` opcode's `address_access_cost`, `positive_value_cost`, and
/// `value_to_empty_account_cost` factors with an added buffer of 5,700 gas. It is
/// still possible to self-rekt by initiating a withdrawal with a minimum gas limit
/// that does not account for the `memory_expansion_cost` & `code_execution_cost`
/// factors of the dynamic cost of the `CALL` opcode.
/// 2.) This function should *directly* precede the external call if possible. There is an
/// added buffer to account for gas consumed between this check and the call, but it
/// is only 5,700 gas.
/// 3.) Because EIP-150 ensures that a maximum of 63/64ths of the remaining gas in the call
/// frame may be passed to a subcontext, we need to ensure that the gas will not be
/// truncated.
/// 4.) Use wisely. This function is not a silver bullet.
function hasMinGas(uint256 _minGas, uint256 _reservedGas) internal view returns (bool) {
bool _hasMinGas;
assembly {
// Equation: gas × 63 ≥ minGas × 64 + 63(40_000 + reservedGas)
_hasMinGas := iszero(lt(mul(gas(), 63), add(mul(_minGas, 64), mul(add(40000, _reservedGas), 63))))
}
return _hasMinGas;
}
/// @notice Perform a low level call without copying any returndata. This function
/// will revert if the call cannot be performed with the specified minimum
/// gas.
/// @param _target Address to call
/// @param _minGas The minimum amount of gas that may be passed to the call
/// @param _value Amount of value to pass to the call
/// @param _calldata Calldata to pass to the call
function callWithMinGas(
address _target,
uint256 _minGas,
uint256 _value,
bytes memory _calldata
)
internal
returns (bool)
{
bool _success;
bool _hasMinGas = hasMinGas(_minGas, 0);
assembly {
// Assertion: gasleft() >= (_minGas * 64) / 63 + 40_000
if iszero(_hasMinGas) {
// Store the "Error(string)" selector in scratch space.
mstore(0, 0x08c379a0)
// Store the pointer to the string length in scratch space.
mstore(32, 32)
// Store the string.
//
// SAFETY:
// - We pad the beginning of the string with two zero bytes as well as the
// length (24) to ensure that we override the free memory pointer at offset
// 0x40. This is necessary because the free memory pointer is likely to
// be greater than 1 byte when this function is called, but it is incredibly
// unlikely that it will be greater than 3 bytes. As for the data within
// 0x60, it is ensured that it is 0 due to 0x60 being the zero offset.
// - It's fine to clobber the free memory pointer, we're reverting.
mstore(88, 0x0000185361666543616c6c3a204e6f7420656e6f75676820676173)
// Revert with 'Error("SafeCall: Not enough gas")'
revert(28, 100)
}
// The call will be supplied at least ((_minGas * 64) / 63) gas due to the
// above assertion. This ensures that, in all circumstances (except for when the
// `_minGas` does not account for the `memory_expansion_cost` and `code_execution_cost`
// factors of the dynamic cost of the `CALL` opcode), the call will receive at least
// the minimum amount of gas specified.
_success :=
call(
gas(), // gas
_target, // recipient
_value, // ether value
add(_calldata, 32), // inloc
mload(_calldata), // inlen
0x00, // outloc
0x00 // outlen
)
}
return _success;
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import { IERC165 } from "@openzeppelin/contracts/utils/introspection/IERC165.sol";
/// @title IOptimismMintableERC20
/// @notice This interface is available on the OptimismMintableERC20 contract.
/// We declare it as a separate interface so that it can be used in
/// custom implementations of OptimismMintableERC20.
interface IOptimismMintableERC20 is IERC165 {
function remoteToken() external view returns (address);
function bridge() external returns (address);
function mint(address _to, uint256 _amount) external;
function burn(address _from, uint256 _amount) external;
}
/// @custom:legacy
/// @title ILegacyMintableERC20
/// @notice This interface was available on the legacy L2StandardERC20 contract.
/// It remains available on the OptimismMintableERC20 contract for
/// backwards compatibility.
interface ILegacyMintableERC20 is IERC165 {
function l1Token() external view returns (address);
function mint(address _to, uint256 _amount) external;
function burn(address _from, uint256 _amount) external;
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.15;
import { ERC20 } from "@openzeppelin/contracts/token/ERC20/ERC20.sol";
import { IERC165 } from "@openzeppelin/contracts/utils/introspection/IERC165.sol";
import { ILegacyMintableERC20, IOptimismMintableERC20 } from "src/universal/IOptimismMintableERC20.sol";
import { ISemver } from "src/universal/ISemver.sol";
/// @title OptimismMintableERC20
/// @notice OptimismMintableERC20 is a standard extension of the base ERC20 token contract designed
/// to allow the StandardBridge contracts to mint and burn tokens. This makes it possible to
/// use an OptimismMintablERC20 as the L2 representation of an L1 token, or vice-versa.
/// Designed to be backwards compatible with the older StandardL2ERC20 token which was only
/// meant for use on L2.
contract OptimismMintableERC20 is IOptimismMintableERC20, ILegacyMintableERC20, ERC20, ISemver {
/// @notice Address of the corresponding version of this token on the remote chain.
address public immutable REMOTE_TOKEN;
/// @notice Address of the StandardBridge on this network.
address public immutable BRIDGE;
/// @notice Decimals of the token
uint8 private immutable DECIMALS;
/// @notice Emitted whenever tokens are minted for an account.
/// @param account Address of the account tokens are being minted for.
/// @param amount Amount of tokens minted.
event Mint(address indexed account, uint256 amount);
/// @notice Emitted whenever tokens are burned from an account.
/// @param account Address of the account tokens are being burned from.
/// @param amount Amount of tokens burned.
event Burn(address indexed account, uint256 amount);
/// @notice A modifier that only allows the bridge to call
modifier onlyBridge() {
require(msg.sender == BRIDGE, "OptimismMintableERC20: only bridge can mint and burn");
_;
}
/// @notice Semantic version.
/// @custom:semver 1.3.0
string public constant version = "1.3.0";
/// @param _bridge Address of the L2 standard bridge.
/// @param _remoteToken Address of the corresponding L1 token.
/// @param _name ERC20 name.
/// @param _symbol ERC20 symbol.
constructor(
address _bridge,
address _remoteToken,
string memory _name,
string memory _symbol,
uint8 _decimals
)
ERC20(_name, _symbol)
{
REMOTE_TOKEN = _remoteToken;
BRIDGE = _bridge;
DECIMALS = _decimals;
}
/// @notice Allows the StandardBridge on this network to mint tokens.
/// @param _to Address to mint tokens to.
/// @param _amount Amount of tokens to mint.
function mint(
address _to,
uint256 _amount
)
external
virtual
override(IOptimismMintableERC20, ILegacyMintableERC20)
onlyBridge
{
_mint(_to, _amount);
emit Mint(_to, _amount);
}
/// @notice Allows the StandardBridge on this network to burn tokens.
/// @param _from Address to burn tokens from.
/// @param _amount Amount of tokens to burn.
function burn(
address _from,
uint256 _amount
)
external
virtual
override(IOptimismMintableERC20, ILegacyMintableERC20)
onlyBridge
{
_burn(_from, _amount);
emit Burn(_from, _amount);
}
/// @notice ERC165 interface check function.
/// @param _interfaceId Interface ID to check.
/// @return Whether or not the interface is supported by this contract.
function supportsInterface(bytes4 _interfaceId) external pure virtual returns (bool) {
bytes4 iface1 = type(IERC165).interfaceId;
// Interface corresponding to the legacy L2StandardERC20.
bytes4 iface2 = type(ILegacyMintableERC20).interfaceId;
// Interface corresponding to the updated OptimismMintableERC20 (this contract).
bytes4 iface3 = type(IOptimismMintableERC20).interfaceId;
return _interfaceId == iface1 || _interfaceId == iface2 || _interfaceId == iface3;
}
/// @custom:legacy
/// @notice Legacy getter for the remote token. Use REMOTE_TOKEN going forward.
function l1Token() public view returns (address) {
return REMOTE_TOKEN;
}
/// @custom:legacy
/// @notice Legacy getter for the bridge. Use BRIDGE going forward.
function l2Bridge() public view returns (address) {
return BRIDGE;
}
/// @custom:legacy
/// @notice Legacy getter for REMOTE_TOKEN.
function remoteToken() public view returns (address) {
return REMOTE_TOKEN;
}
/// @custom:legacy
/// @notice Legacy getter for BRIDGE.
function bridge() public view returns (address) {
return BRIDGE;
}
/// @dev Returns the number of decimals used to get its user representation.
/// For example, if `decimals` equals `2`, a balance of `505` tokens should
/// be displayed to a user as `5.05` (`505 / 10 ** 2`).
/// NOTE: This information is only used for _display_ purposes: it in
/// no way affects any of the arithmetic of the contract, including
/// {IERC20-balanceOf} and {IERC20-transfer}.
function decimals() public view override returns (uint8) {
return DECIMALS;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (proxy/utils/Initializable.sol)
pragma solidity ^0.8.2;
import "../../utils/Address.sol";
/**
* @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
* behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
* external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
* function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
*
* The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
* reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
* case an upgrade adds a module that needs to be initialized.
*
* For example:
*
* [.hljs-theme-light.nopadding]
* ```
* contract MyToken is ERC20Upgradeable {
* function initialize() initializer public {
* __ERC20_init("MyToken", "MTK");
* }
* }
* contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
* function initializeV2() reinitializer(2) public {
* __ERC20Permit_init("MyToken");
* }
* }
* ```
*
* TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
* possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
*
* CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
* that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
*
* [CAUTION]
* ====
* Avoid leaving a contract uninitialized.
*
* An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
* contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
* the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
*
* [.hljs-theme-light.nopadding]
* ```
* /// @custom:oz-upgrades-unsafe-allow constructor
* constructor() {
* _disableInitializers();
* }
* ```
* ====
*/
abstract contract Initializable {
/**
* @dev Indicates that the contract has been initialized.
* @custom:oz-retyped-from bool
*/
uint8 private _initialized;
/**
* @dev Indicates that the contract is in the process of being initialized.
*/
bool private _initializing;
/**
* @dev Triggered when the contract has been initialized or reinitialized.
*/
event Initialized(uint8 version);
/**
* @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
* `onlyInitializing` functions can be used to initialize parent contracts. Equivalent to `reinitializer(1)`.
*/
modifier initializer() {
bool isTopLevelCall = !_initializing;
require(
(isTopLevelCall && _initialized < 1) || (!Address.isContract(address(this)) && _initialized == 1),
"Initializable: contract is already initialized"
);
_initialized = 1;
if (isTopLevelCall) {
_initializing = true;
}
_;
if (isTopLevelCall) {
_initializing = false;
emit Initialized(1);
}
}
/**
* @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
* contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
* used to initialize parent contracts.
*
* `initializer` is equivalent to `reinitializer(1)`, so a reinitializer may be used after the original
* initialization step. This is essential to configure modules that are added through upgrades and that require
* initialization.
*
* Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
* a contract, executing them in the right order is up to the developer or operator.
*/
modifier reinitializer(uint8 version) {
require(!_initializing && _initialized < version, "Initializable: contract is already initialized");
_initialized = version;
_initializing = true;
_;
_initializing = false;
emit Initialized(version);
}
/**
* @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
* {initializer} and {reinitializer} modifiers, directly or indirectly.
*/
modifier onlyInitializing() {
require(_initializing, "Initializable: contract is not initializing");
_;
}
/**
* @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
* Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
* to any version. It is recommended to use this to lock implementation contracts that are designed to be called
* through proxies.
*/
function _disableInitializers() internal virtual {
require(!_initializing, "Initializable: contract is initializing");
if (_initialized < type(uint8).max) {
_initialized = type(uint8).max;
emit Initialized(type(uint8).max);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (proxy/utils/Initializable.sol)
pragma solidity ^0.8.2;
import "../../utils/AddressUpgradeable.sol";
/**
* @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
* behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
* external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
* function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
*
* The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
* reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
* case an upgrade adds a module that needs to be initialized.
*
* For example:
*
* [.hljs-theme-light.nopadding]
* ```
* contract MyToken is ERC20Upgradeable {
* function initialize() initializer public {
* __ERC20_init("MyToken", "MTK");
* }
* }
* contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
* function initializeV2() reinitializer(2) public {
* __ERC20Permit_init("MyToken");
* }
* }
* ```
*
* TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
* possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
*
* CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
* that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
*
* [CAUTION]
* ====
* Avoid leaving a contract uninitialized.
*
* An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
* contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
* the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
*
* [.hljs-theme-light.nopadding]
* ```
* /// @custom:oz-upgrades-unsafe-allow constructor
* constructor() {
* _disableInitializers();
* }
* ```
* ====
*/
abstract contract Initializable {
/**
* @dev Indicates that the contract has been initialized.
* @custom:oz-retyped-from bool
*/
uint8 private _initialized;
/**
* @dev Indicates that the contract is in the process of being initialized.
*/
bool private _initializing;
/**
* @dev Triggered when the contract has been initialized or reinitialized.
*/
event Initialized(uint8 version);
/**
* @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
* `onlyInitializing` functions can be used to initialize parent contracts. Equivalent to `reinitializer(1)`.
*/
modifier initializer() {
bool isTopLevelCall = !_initializing;
require(
(isTopLevelCall && _initialized < 1) || (!AddressUpgradeable.isContract(address(this)) && _initialized == 1),
"Initializable: contract is already initialized"
);
_initialized = 1;
if (isTopLevelCall) {
_initializing = true;
}
_;
if (isTopLevelCall) {
_initializing = false;
emit Initialized(1);
}
}
/**
* @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
* contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
* used to initialize parent contracts.
*
* `initializer` is equivalent to `reinitializer(1)`, so a reinitializer may be used after the original
* initialization step. This is essential to configure modules that are added through upgrades and that require
* initialization.
*
* Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
* a contract, executing them in the right order is up to the developer or operator.
*/
modifier reinitializer(uint8 version) {
require(!_initializing && _initialized < version, "Initializable: contract is already initialized");
_initialized = version;
_initializing = true;
_;
_initializing = false;
emit Initialized(version);
}
/**
* @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
* {initializer} and {reinitializer} modifiers, directly or indirectly.
*/
modifier onlyInitializing() {
require(_initializing, "Initializable: contract is not initializing");
_;
}
/**
* @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
* Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
* to any version. It is recommended to use this to lock implementation contracts that are designed to be called
* through proxies.
*/
function _disableInitializers() internal virtual {
require(!_initializing, "Initializable: contract is initializing");
if (_initialized < type(uint8).max) {
_initialized = type(uint8).max;
emit Initialized(type(uint8).max);
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import { Types } from "src/libraries/Types.sol";
import { Encoding } from "src/libraries/Encoding.sol";
/// @title Hashing
/// @notice Hashing handles Optimism's various different hashing schemes.
library Hashing {
/// @notice Computes the hash of the RLP encoded L2 transaction that would be generated when a
/// given deposit is sent to the L2 system. Useful for searching for a deposit in the L2
/// system.
/// @param _tx User deposit transaction to hash.
/// @return Hash of the RLP encoded L2 deposit transaction.
function hashDepositTransaction(Types.UserDepositTransaction memory _tx) internal pure returns (bytes32) {
return keccak256(Encoding.encodeDepositTransaction(_tx));
}
/// @notice Computes the deposit transaction's "source hash", a value that guarantees the hash
/// of the L2 transaction that corresponds to a deposit is unique and is
/// deterministically generated from L1 transaction data.
/// @param _l1BlockHash Hash of the L1 block where the deposit was included.
/// @param _logIndex The index of the log that created the deposit transaction.
/// @return Hash of the deposit transaction's "source hash".
function hashDepositSource(bytes32 _l1BlockHash, uint256 _logIndex) internal pure returns (bytes32) {
bytes32 depositId = keccak256(abi.encode(_l1BlockHash, _logIndex));
return keccak256(abi.encode(bytes32(0), depositId));
}
/// @notice Hashes the cross domain message based on the version that is encoded into the
/// message nonce.
/// @param _nonce Message nonce with version encoded into the first two bytes.
/// @param _sender Address of the sender of the message.
/// @param _target Address of the target of the message.
/// @param _value ETH value to send to the target.
/// @param _gasLimit Gas limit to use for the message.
/// @param _data Data to send with the message.
/// @return Hashed cross domain message.
function hashCrossDomainMessage(
uint256 _nonce,
address _sender,
address _target,
uint256 _value,
uint256 _gasLimit,
bytes memory _data
)
internal
pure
returns (bytes32)
{
(, uint16 version) = Encoding.decodeVersionedNonce(_nonce);
if (version == 0) {
return hashCrossDomainMessageV0(_target, _sender, _data, _nonce);
} else if (version == 1) {
return hashCrossDomainMessageV1(_nonce, _sender, _target, _value, _gasLimit, _data);
} else {
revert("Hashing: unknown cross domain message version");
}
}
/// @notice Hashes a cross domain message based on the V0 (legacy) encoding.
/// @param _target Address of the target of the message.
/// @param _sender Address of the sender of the message.
/// @param _data Data to send with the message.
/// @param _nonce Message nonce.
/// @return Hashed cross domain message.
function hashCrossDomainMessageV0(
address _target,
address _sender,
bytes memory _data,
uint256 _nonce
)
internal
pure
returns (bytes32)
{
return keccak256(Encoding.encodeCrossDomainMessageV0(_target, _sender, _data, _nonce));
}
/// @notice Hashes a cross domain message based on the V1 (current) encoding.
/// @param _nonce Message nonce.
/// @param _sender Address of the sender of the message.
/// @param _target Address of the target of the message.
/// @param _value ETH value to send to the target.
/// @param _gasLimit Gas limit to use for the message.
/// @param _data Data to send with the message.
/// @return Hashed cross domain message.
function hashCrossDomainMessageV1(
uint256 _nonce,
address _sender,
address _target,
uint256 _value,
uint256 _gasLimit,
bytes memory _data
)
internal
pure
returns (bytes32)
{
return keccak256(Encoding.encodeCrossDomainMessageV1(_nonce, _sender, _target, _value, _gasLimit, _data));
}
/// @notice Derives the withdrawal hash according to the encoding in the L2 Withdrawer contract
/// @param _tx Withdrawal transaction to hash.
/// @return Hashed withdrawal transaction.
function hashWithdrawal(Types.WithdrawalTransaction memory _tx) internal pure returns (bytes32) {
return keccak256(abi.encode(_tx.nonce, _tx.sender, _tx.target, _tx.value, _tx.gasLimit, _tx.data));
}
/// @notice Hashes the various elements of an output root proof into an output root hash which
/// can be used to check if the proof is valid.
/// @param _outputRootProof Output root proof which should hash to an output root.
/// @return Hashed output root proof.
function hashOutputRootProof(Types.OutputRootProof memory _outputRootProof) internal pure returns (bytes32) {
return keccak256(
abi.encode(
_outputRootProof.version,
_outputRootProof.stateRoot,
_outputRootProof.messagePasserStorageRoot,
_outputRootProof.latestBlockhash
)
);
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import { Types } from "src/libraries/Types.sol";
import { Hashing } from "src/libraries/Hashing.sol";
import { RLPWriter } from "src/libraries/rlp/RLPWriter.sol";
/// @title Encoding
/// @notice Encoding handles Optimism's various different encoding schemes.
library Encoding {
/// @notice RLP encodes the L2 transaction that would be generated when a given deposit is sent
/// to the L2 system. Useful for searching for a deposit in the L2 system. The
/// transaction is prefixed with 0x7e to identify its EIP-2718 type.
/// @param _tx User deposit transaction to encode.
/// @return RLP encoded L2 deposit transaction.
function encodeDepositTransaction(Types.UserDepositTransaction memory _tx) internal pure returns (bytes memory) {
bytes32 source = Hashing.hashDepositSource(_tx.l1BlockHash, _tx.logIndex);
bytes[] memory raw = new bytes[](8);
raw[0] = RLPWriter.writeBytes(abi.encodePacked(source));
raw[1] = RLPWriter.writeAddress(_tx.from);
raw[2] = _tx.isCreation ? RLPWriter.writeBytes("") : RLPWriter.writeAddress(_tx.to);
raw[3] = RLPWriter.writeUint(_tx.mint);
raw[4] = RLPWriter.writeUint(_tx.value);
raw[5] = RLPWriter.writeUint(uint256(_tx.gasLimit));
raw[6] = RLPWriter.writeBool(false);
raw[7] = RLPWriter.writeBytes(_tx.data);
return abi.encodePacked(uint8(0x7e), RLPWriter.writeList(raw));
}
/// @notice Encodes the cross domain message based on the version that is encoded into the
/// message nonce.
/// @param _nonce Message nonce with version encoded into the first two bytes.
/// @param _sender Address of the sender of the message.
/// @param _target Address of the target of the message.
/// @param _value ETH value to send to the target.
/// @param _gasLimit Gas limit to use for the message.
/// @param _data Data to send with the message.
/// @return Encoded cross domain message.
function encodeCrossDomainMessage(
uint256 _nonce,
address _sender,
address _target,
uint256 _value,
uint256 _gasLimit,
bytes memory _data
)
internal
pure
returns (bytes memory)
{
(, uint16 version) = decodeVersionedNonce(_nonce);
if (version == 0) {
return encodeCrossDomainMessageV0(_target, _sender, _data, _nonce);
} else if (version == 1) {
return encodeCrossDomainMessageV1(_nonce, _sender, _target, _value, _gasLimit, _data);
} else {
revert("Encoding: unknown cross domain message version");
}
}
/// @notice Encodes a cross domain message based on the V0 (legacy) encoding.
/// @param _target Address of the target of the message.
/// @param _sender Address of the sender of the message.
/// @param _data Data to send with the message.
/// @param _nonce Message nonce.
/// @return Encoded cross domain message.
function encodeCrossDomainMessageV0(
address _target,
address _sender,
bytes memory _data,
uint256 _nonce
)
internal
pure
returns (bytes memory)
{
return abi.encodeWithSignature("relayMessage(address,address,bytes,uint256)", _target, _sender, _data, _nonce);
}
/// @notice Encodes a cross domain message based on the V1 (current) encoding.
/// @param _nonce Message nonce.
/// @param _sender Address of the sender of the message.
/// @param _target Address of the target of the message.
/// @param _value ETH value to send to the target.
/// @param _gasLimit Gas limit to use for the message.
/// @param _data Data to send with the message.
/// @return Encoded cross domain message.
function encodeCrossDomainMessageV1(
uint256 _nonce,
address _sender,
address _target,
uint256 _value,
uint256 _gasLimit,
bytes memory _data
)
internal
pure
returns (bytes memory)
{
return abi.encodeWithSignature(
"relayMessage(uint256,address,address,uint256,uint256,bytes)",
_nonce,
_sender,
_target,
_value,
_gasLimit,
_data
);
}
/// @notice Adds a version number into the first two bytes of a message nonce.
/// @param _nonce Message nonce to encode into.
/// @param _version Version number to encode into the message nonce.
/// @return Message nonce with version encoded into the first two bytes.
function encodeVersionedNonce(uint240 _nonce, uint16 _version) internal pure returns (uint256) {
uint256 nonce;
assembly {
nonce := or(shl(240, _version), _nonce)
}
return nonce;
}
/// @notice Pulls the version out of a version-encoded nonce.
/// @param _nonce Message nonce with version encoded into the first two bytes.
/// @return Nonce without encoded version.
/// @return Version of the message.
function decodeVersionedNonce(uint256 _nonce) internal pure returns (uint240, uint16) {
uint240 nonce;
uint16 version;
assembly {
nonce := and(_nonce, 0x0000ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff)
version := shr(240, _nonce)
}
return (nonce, version);
}
/// @notice Returns an appropriately encoded call to L1Block.setL1BlockValuesEcotone
/// @param baseFeeScalar L1 base fee Scalar
/// @param blobBaseFeeScalar L1 blob base fee Scalar
/// @param sequenceNumber Number of L2 blocks since epoch start.
/// @param timestamp L1 timestamp.
/// @param number L1 blocknumber.
/// @param baseFee L1 base fee.
/// @param blobBaseFee L1 blob base fee.
/// @param hash L1 blockhash.
/// @param batcherHash Versioned hash to authenticate batcher by.
function encodeSetL1BlockValuesEcotone(
uint32 baseFeeScalar,
uint32 blobBaseFeeScalar,
uint64 sequenceNumber,
uint64 timestamp,
uint64 number,
uint256 baseFee,
uint256 blobBaseFee,
bytes32 hash,
bytes32 batcherHash
)
internal
pure
returns (bytes memory)
{
bytes4 functionSignature = bytes4(keccak256("setL1BlockValuesEcotone()"));
return abi.encodePacked(
functionSignature,
baseFeeScalar,
blobBaseFeeScalar,
sequenceNumber,
timestamp,
number,
baseFee,
blobBaseFee,
hash,
batcherHash
);
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
/// @title Storage
/// @notice Storage handles reading and writing to arbitary storage locations
library Storage {
/// @notice Returns an address stored in an arbitrary storage slot.
/// These storage slots decouple the storage layout from
/// solc's automation.
/// @param _slot The storage slot to retrieve the address from.
function getAddress(bytes32 _slot) internal view returns (address addr_) {
assembly {
addr_ := sload(_slot)
}
}
/// @notice Stores an address in an arbitrary storage slot, `_slot`.
/// @param _slot The storage slot to store the address in.
/// @param _address The protocol version to store
/// @dev WARNING! This function must be used cautiously, as it allows for overwriting addresses
/// in arbitrary storage slots.
function setAddress(bytes32 _slot, address _address) internal {
assembly {
sstore(_slot, _address)
}
}
/// @notice Returns a uint256 stored in an arbitrary storage slot.
/// These storage slots decouple the storage layout from
/// solc's automation.
/// @param _slot The storage slot to retrieve the address from.
function getUint(bytes32 _slot) internal view returns (uint256 value_) {
assembly {
value_ := sload(_slot)
}
}
/// @notice Stores a value in an arbitrary storage slot, `_slot`.
/// @param _slot The storage slot to store the address in.
/// @param _value The protocol version to store
/// @dev WARNING! This function must be used cautiously, as it allows for overwriting values
/// in arbitrary storage slots.
function setUint(bytes32 _slot, uint256 _value) internal {
assembly {
sstore(_slot, _value)
}
}
/// @notice Returns a bytes32 stored in an arbitrary storage slot.
/// These storage slots decouple the storage layout from
/// solc's automation.
/// @param _slot The storage slot to retrieve the address from.
function getBytes32(bytes32 _slot) internal view returns (bytes32 value_) {
assembly {
value_ := sload(_slot)
}
}
/// @notice Stores a bytes32 value in an arbitrary storage slot, `_slot`.
/// @param _slot The storage slot to store the address in.
/// @param _value The bytes32 value to store.
/// @dev WARNING! This function must be used cautiously, as it allows for overwriting values
/// in arbitrary storage slots.
function setBytes32(bytes32 _slot, bytes32 _value) internal {
assembly {
sstore(_slot, _value)
}
}
/// @notice Stores a bool value in an arbitrary storage slot, `_slot`.
/// @param _slot The storage slot to store the bool in.
/// @param _value The bool value to store
/// @dev WARNING! This function must be used cautiously, as it allows for overwriting values
/// in arbitrary storage slots.
function setBool(bytes32 _slot, bool _value) internal {
assembly {
sstore(_slot, _value)
}
}
/// @notice Returns a bool stored in an arbitrary storage slot.
/// @param _slot The storage slot to retrieve the bool from.
function getBool(bytes32 _slot) internal view returns (bool value_) {
assembly {
value_ := sload(_slot)
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.15;
import { Initializable } from "@openzeppelin/contracts/proxy/utils/Initializable.sol";
import { Math } from "@openzeppelin/contracts/utils/math/Math.sol";
import { Burn } from "src/libraries/Burn.sol";
import { Arithmetic } from "src/libraries/Arithmetic.sol";
/// @custom:upgradeable
/// @title ResourceMetering
/// @notice ResourceMetering implements an EIP-1559 style resource metering system where pricing
/// updates automatically based on current demand.
abstract contract ResourceMetering is Initializable {
/// @notice Represents the various parameters that control the way in which resources are
/// metered. Corresponds to the EIP-1559 resource metering system.
/// @custom:field prevBaseFee Base fee from the previous block(s).
/// @custom:field prevBoughtGas Amount of gas bought so far in the current block.
/// @custom:field prevBlockNum Last block number that the base fee was updated.
struct ResourceParams {
uint128 prevBaseFee;
uint64 prevBoughtGas;
uint64 prevBlockNum;
}
/// @notice Represents the configuration for the EIP-1559 based curve for the deposit gas
/// market. These values should be set with care as it is possible to set them in
/// a way that breaks the deposit gas market. The target resource limit is defined as
/// maxResourceLimit / elasticityMultiplier. This struct was designed to fit within a
/// single word. There is additional space for additions in the future.
/// @custom:field maxResourceLimit Represents the maximum amount of deposit gas that
/// can be purchased per block.
/// @custom:field elasticityMultiplier Determines the target resource limit along with
/// the resource limit.
/// @custom:field baseFeeMaxChangeDenominator Determines max change on fee per block.
/// @custom:field minimumBaseFee The min deposit base fee, it is clamped to this
/// value.
/// @custom:field systemTxMaxGas The amount of gas supplied to the system
/// transaction. This should be set to the same
/// number that the op-node sets as the gas limit
/// for the system transaction.
/// @custom:field maximumBaseFee The max deposit base fee, it is clamped to this
/// value.
struct ResourceConfig {
uint32 maxResourceLimit;
uint8 elasticityMultiplier;
uint8 baseFeeMaxChangeDenominator;
uint32 minimumBaseFee;
uint32 systemTxMaxGas;
uint128 maximumBaseFee;
}
/// @notice EIP-1559 style gas parameters.
ResourceParams public params;
/// @notice Reserve extra slots (to a total of 50) in the storage layout for future upgrades.
uint256[48] private __gap;
/// @notice Meters access to a function based an amount of a requested resource.
/// @param _amount Amount of the resource requested.
modifier metered(uint64 _amount) {
// Record initial gas amount so we can refund for it later.
uint256 initialGas = gasleft();
// Run the underlying function.
_;
// Run the metering function.
_metered(_amount, initialGas);
}
/// @notice An internal function that holds all of the logic for metering a resource.
/// @param _amount Amount of the resource requested.
/// @param _initialGas The amount of gas before any modifier execution.
function _metered(uint64 _amount, uint256 _initialGas) internal {
// Update block number and base fee if necessary.
uint256 blockDiff = block.number - params.prevBlockNum;
ResourceConfig memory config = _resourceConfig();
int256 targetResourceLimit =
int256(uint256(config.maxResourceLimit)) / int256(uint256(config.elasticityMultiplier));
if (blockDiff > 0) {
// Handle updating EIP-1559 style gas parameters. We use EIP-1559 to restrict the rate
// at which deposits can be created and therefore limit the potential for deposits to
// spam the L2 system. Fee scheme is very similar to EIP-1559 with minor changes.
int256 gasUsedDelta = int256(uint256(params.prevBoughtGas)) - targetResourceLimit;
int256 baseFeeDelta = (int256(uint256(params.prevBaseFee)) * gasUsedDelta)
/ (targetResourceLimit * int256(uint256(config.baseFeeMaxChangeDenominator)));
// Update base fee by adding the base fee delta and clamp the resulting value between
// min and max.
int256 newBaseFee = Arithmetic.clamp({
_value: int256(uint256(params.prevBaseFee)) + baseFeeDelta,
_min: int256(uint256(config.minimumBaseFee)),
_max: int256(uint256(config.maximumBaseFee))
});
// If we skipped more than one block, we also need to account for every empty block.
// Empty block means there was no demand for deposits in that block, so we should
// reflect this lack of demand in the fee.
if (blockDiff > 1) {
// Update the base fee by repeatedly applying the exponent 1-(1/change_denominator)
// blockDiff - 1 times. Simulates multiple empty blocks. Clamp the resulting value
// between min and max.
newBaseFee = Arithmetic.clamp({
_value: Arithmetic.cdexp({
_coefficient: newBaseFee,
_denominator: int256(uint256(config.baseFeeMaxChangeDenominator)),
_exponent: int256(blockDiff - 1)
}),
_min: int256(uint256(config.minimumBaseFee)),
_max: int256(uint256(config.maximumBaseFee))
});
}
// Update new base fee, reset bought gas, and update block number.
params.prevBaseFee = uint128(uint256(newBaseFee));
params.prevBoughtGas = 0;
params.prevBlockNum = uint64(block.number);
}
// Make sure we can actually buy the resource amount requested by the user.
params.prevBoughtGas += _amount;
require(
int256(uint256(params.prevBoughtGas)) <= int256(uint256(config.maxResourceLimit)),
"ResourceMetering: cannot buy more gas than available gas limit"
);
// Determine the amount of ETH to be paid.
uint256 resourceCost = uint256(_amount) * uint256(params.prevBaseFee);
// We currently charge for this ETH amount as an L1 gas burn, so we convert the ETH amount
// into gas by dividing by the L1 base fee. We assume a minimum base fee of 1 gwei to avoid
// division by zero for L1s that don't support 1559 or to avoid excessive gas burns during
// periods of extremely low L1 demand. One-day average gas fee hasn't dipped below 1 gwei
// during any 1 day period in the last 5 years, so should be fine.
uint256 gasCost = resourceCost / Math.max(block.basefee, 1 gwei);
// Give the user a refund based on the amount of gas they used to do all of the work up to
// this point. Since we're at the end of the modifier, this should be pretty accurate. Acts
// effectively like a dynamic stipend (with a minimum value).
uint256 usedGas = _initialGas - gasleft();
if (gasCost > usedGas) {
Burn.gas(gasCost - usedGas);
}
}
/// @notice Virtual function that returns the resource config.
/// Contracts that inherit this contract must implement this function.
/// @return ResourceConfig
function _resourceConfig() internal virtual returns (ResourceConfig memory);
/// @notice Sets initial resource parameter values.
/// This function must either be called by the initializer function of an upgradeable
/// child contract.
// solhint-disable-next-line func-name-mixedcase
function __ResourceMetering_init() internal onlyInitializing {
if (params.prevBlockNum == 0) {
params = ResourceParams({ prevBaseFee: 1 gwei, prevBoughtGas: 0, prevBlockNum: uint64(block.number) });
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC165 standard, as defined in the
* https://eips.ethereum.org/EIPS/eip-165[EIP].
*
* Implementers can declare support of contract interfaces, which can then be
* queried by others ({ERC165Checker}).
*
* For an implementation, see {ERC165}.
*/
interface IERC165 {
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
* to learn more about how these ids are created.
*
* This function call must use less than 30 000 gas.
*/
function supportsInterface(bytes4 interfaceId) external view returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/draft-IERC20Permit.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
* https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
*
* Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
* presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
* need to send a transaction, and thus is not required to hold Ether at all.
*/
interface IERC20Permit {
/**
* @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
* given ``owner``'s signed approval.
*
* IMPORTANT: The same issues {IERC20-approve} has related to transaction
* ordering also apply here.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `deadline` must be a timestamp in the future.
* - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
* over the EIP712-formatted function arguments.
* - the signature must use ``owner``'s current nonce (see {nonces}).
*
* For more information on the signature format, see the
* https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
* section].
*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external;
/**
* @dev Returns the current nonce for `owner`. This value must be
* included whenever a signature is generated for {permit}.
*
* Every successful call to {permit} increases ``owner``'s nonce by one. This
* prevents a signature from being used multiple times.
*/
function nonces(address owner) external view returns (uint256);
/**
* @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
*/
// solhint-disable-next-line func-name-mixedcase
function DOMAIN_SEPARATOR() external view returns (bytes32);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (token/ERC20/ERC20.sol)
pragma solidity ^0.8.0;
import "./IERC20.sol";
import "./extensions/IERC20Metadata.sol";
import "../../utils/Context.sol";
/**
* @dev Implementation of the {IERC20} interface.
*
* This implementation is agnostic to the way tokens are created. This means
* that a supply mechanism has to be added in a derived contract using {_mint}.
* For a generic mechanism see {ERC20PresetMinterPauser}.
*
* TIP: For a detailed writeup see our guide
* https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How
* to implement supply mechanisms].
*
* We have followed general OpenZeppelin Contracts guidelines: functions revert
* instead returning `false` on failure. This behavior is nonetheless
* conventional and does not conflict with the expectations of ERC20
* applications.
*
* Additionally, an {Approval} event is emitted on calls to {transferFrom}.
* This allows applications to reconstruct the allowance for all accounts just
* by listening to said events. Other implementations of the EIP may not emit
* these events, as it isn't required by the specification.
*
* Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
* functions have been added to mitigate the well-known issues around setting
* allowances. See {IERC20-approve}.
*/
contract ERC20 is Context, IERC20, IERC20Metadata {
mapping(address => uint256) private _balances;
mapping(address => mapping(address => uint256)) private _allowances;
uint256 private _totalSupply;
string private _name;
string private _symbol;
/**
* @dev Sets the values for {name} and {symbol}.
*
* The default value of {decimals} is 18. To select a different value for
* {decimals} you should overload it.
*
* All two of these values are immutable: they can only be set once during
* construction.
*/
constructor(string memory name_, string memory symbol_) {
_name = name_;
_symbol = symbol_;
}
/**
* @dev Returns the name of the token.
*/
function name() public view virtual override returns (string memory) {
return _name;
}
/**
* @dev Returns the symbol of the token, usually a shorter version of the
* name.
*/
function symbol() public view virtual override returns (string memory) {
return _symbol;
}
/**
* @dev Returns the number of decimals used to get its user representation.
* For example, if `decimals` equals `2`, a balance of `505` tokens should
* be displayed to a user as `5.05` (`505 / 10 ** 2`).
*
* Tokens usually opt for a value of 18, imitating the relationship between
* Ether and Wei. This is the value {ERC20} uses, unless this function is
* overridden;
*
* NOTE: This information is only used for _display_ purposes: it in
* no way affects any of the arithmetic of the contract, including
* {IERC20-balanceOf} and {IERC20-transfer}.
*/
function decimals() public view virtual override returns (uint8) {
return 18;
}
/**
* @dev See {IERC20-totalSupply}.
*/
function totalSupply() public view virtual override returns (uint256) {
return _totalSupply;
}
/**
* @dev See {IERC20-balanceOf}.
*/
function balanceOf(address account) public view virtual override returns (uint256) {
return _balances[account];
}
/**
* @dev See {IERC20-transfer}.
*
* Requirements:
*
* - `to` cannot be the zero address.
* - the caller must have a balance of at least `amount`.
*/
function transfer(address to, uint256 amount) public virtual override returns (bool) {
address owner = _msgSender();
_transfer(owner, to, amount);
return true;
}
/**
* @dev See {IERC20-allowance}.
*/
function allowance(address owner, address spender) public view virtual override returns (uint256) {
return _allowances[owner][spender];
}
/**
* @dev See {IERC20-approve}.
*
* NOTE: If `amount` is the maximum `uint256`, the allowance is not updated on
* `transferFrom`. This is semantically equivalent to an infinite approval.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function approve(address spender, uint256 amount) public virtual override returns (bool) {
address owner = _msgSender();
_approve(owner, spender, amount);
return true;
}
/**
* @dev See {IERC20-transferFrom}.
*
* Emits an {Approval} event indicating the updated allowance. This is not
* required by the EIP. See the note at the beginning of {ERC20}.
*
* NOTE: Does not update the allowance if the current allowance
* is the maximum `uint256`.
*
* Requirements:
*
* - `from` and `to` cannot be the zero address.
* - `from` must have a balance of at least `amount`.
* - the caller must have allowance for ``from``'s tokens of at least
* `amount`.
*/
function transferFrom(
address from,
address to,
uint256 amount
) public virtual override returns (bool) {
address spender = _msgSender();
_spendAllowance(from, spender, amount);
_transfer(from, to, amount);
return true;
}
/**
* @dev Atomically increases the allowance granted to `spender` by the caller.
*
* This is an alternative to {approve} that can be used as a mitigation for
* problems described in {IERC20-approve}.
*
* Emits an {Approval} event indicating the updated allowance.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
address owner = _msgSender();
_approve(owner, spender, allowance(owner, spender) + addedValue);
return true;
}
/**
* @dev Atomically decreases the allowance granted to `spender` by the caller.
*
* This is an alternative to {approve} that can be used as a mitigation for
* problems described in {IERC20-approve}.
*
* Emits an {Approval} event indicating the updated allowance.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `spender` must have allowance for the caller of at least
* `subtractedValue`.
*/
function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
address owner = _msgSender();
uint256 currentAllowance = allowance(owner, spender);
require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero");
unchecked {
_approve(owner, spender, currentAllowance - subtractedValue);
}
return true;
}
/**
* @dev Moves `amount` of tokens from `from` to `to`.
*
* This internal function is equivalent to {transfer}, and can be used to
* e.g. implement automatic token fees, slashing mechanisms, etc.
*
* Emits a {Transfer} event.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `from` must have a balance of at least `amount`.
*/
function _transfer(
address from,
address to,
uint256 amount
) internal virtual {
require(from != address(0), "ERC20: transfer from the zero address");
require(to != address(0), "ERC20: transfer to the zero address");
_beforeTokenTransfer(from, to, amount);
uint256 fromBalance = _balances[from];
require(fromBalance >= amount, "ERC20: transfer amount exceeds balance");
unchecked {
_balances[from] = fromBalance - amount;
}
_balances[to] += amount;
emit Transfer(from, to, amount);
_afterTokenTransfer(from, to, amount);
}
/** @dev Creates `amount` tokens and assigns them to `account`, increasing
* the total supply.
*
* Emits a {Transfer} event with `from` set to the zero address.
*
* Requirements:
*
* - `account` cannot be the zero address.
*/
function _mint(address account, uint256 amount) internal virtual {
require(account != address(0), "ERC20: mint to the zero address");
_beforeTokenTransfer(address(0), account, amount);
_totalSupply += amount;
_balances[account] += amount;
emit Transfer(address(0), account, amount);
_afterTokenTransfer(address(0), account, amount);
}
/**
* @dev Destroys `amount` tokens from `account`, reducing the
* total supply.
*
* Emits a {Transfer} event with `to` set to the zero address.
*
* Requirements:
*
* - `account` cannot be the zero address.
* - `account` must have at least `amount` tokens.
*/
function _burn(address account, uint256 amount) internal virtual {
require(account != address(0), "ERC20: burn from the zero address");
_beforeTokenTransfer(account, address(0), amount);
uint256 accountBalance = _balances[account];
require(accountBalance >= amount, "ERC20: burn amount exceeds balance");
unchecked {
_balances[account] = accountBalance - amount;
}
_totalSupply -= amount;
emit Transfer(account, address(0), amount);
_afterTokenTransfer(account, address(0), amount);
}
/**
* @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
*
* This internal function is equivalent to `approve`, and can be used to
* e.g. set automatic allowances for certain subsystems, etc.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `owner` cannot be the zero address.
* - `spender` cannot be the zero address.
*/
function _approve(
address owner,
address spender,
uint256 amount
) internal virtual {
require(owner != address(0), "ERC20: approve from the zero address");
require(spender != address(0), "ERC20: approve to the zero address");
_allowances[owner][spender] = amount;
emit Approval(owner, spender, amount);
}
/**
* @dev Updates `owner` s allowance for `spender` based on spent `amount`.
*
* Does not update the allowance amount in case of infinite allowance.
* Revert if not enough allowance is available.
*
* Might emit an {Approval} event.
*/
function _spendAllowance(
address owner,
address spender,
uint256 amount
) internal virtual {
uint256 currentAllowance = allowance(owner, spender);
if (currentAllowance != type(uint256).max) {
require(currentAllowance >= amount, "ERC20: insufficient allowance");
unchecked {
_approve(owner, spender, currentAllowance - amount);
}
}
}
/**
* @dev Hook that is called before any transfer of tokens. This includes
* minting and burning.
*
* Calling conditions:
*
* - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
* will be transferred to `to`.
* - when `from` is zero, `amount` tokens will be minted for `to`.
* - when `to` is zero, `amount` of ``from``'s tokens will be burned.
* - `from` and `to` are never both zero.
*
* To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
*/
function _beforeTokenTransfer(
address from,
address to,
uint256 amount
) internal virtual {}
/**
* @dev Hook that is called after any transfer of tokens. This includes
* minting and burning.
*
* Calling conditions:
*
* - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
* has been transferred to `to`.
* - when `from` is zero, `amount` tokens have been minted for `to`.
* - when `to` is zero, `amount` of ``from``'s tokens have been burned.
* - `from` and `to` are never both zero.
*
* To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
*/
function _afterTokenTransfer(
address from,
address to,
uint256 amount
) internal virtual {}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (utils/Address.sol)
pragma solidity ^0.8.1;
/**
* @dev Collection of functions related to the address type
*/
library AddressUpgradeable {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
* ====
*
* [IMPORTANT]
* ====
* You shouldn't rely on `isContract` to protect against flash loan attacks!
*
* Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
* like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
* constructor.
* ====
*/
function isContract(address account) internal view returns (bool) {
// This method relies on extcodesize/address.code.length, which returns 0
// for contracts in construction, since the code is only stored at the end
// of the constructor execution.
return account.code.length > 0;
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
(bool success, ) = recipient.call{value: amount}("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCall(target, data, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value
) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value,
string memory errorMessage
) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
require(isContract(target), "Address: call to non-contract");
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResult(success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
return functionStaticCall(target, data, "Address: low-level static call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(
address target,
bytes memory data,
string memory errorMessage
) internal view returns (bytes memory) {
require(isContract(target), "Address: static call to non-contract");
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResult(success, returndata, errorMessage);
}
/**
* @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the
* revert reason using the provided one.
*
* _Available since v4.3._
*/
function verifyCallResult(
bool success,
bytes memory returndata,
string memory errorMessage
) internal pure returns (bytes memory) {
if (success) {
return returndata;
} else {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
/// @solidity memory-safe-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
/// @title Types
/// @notice Contains various types used throughout the Optimism contract system.
library Types {
/// @notice OutputProposal represents a commitment to the L2 state. The timestamp is the L1
/// timestamp that the output root is posted. This timestamp is used to verify that the
/// finalization period has passed since the output root was submitted.
/// @custom:field outputRoot Hash of the L2 output.
/// @custom:field timestamp Timestamp of the L1 block that the output root was submitted in.
/// @custom:field l2BlockNumber L2 block number that the output corresponds to.
struct OutputProposal {
bytes32 outputRoot;
uint128 timestamp;
uint128 l2BlockNumber;
}
/// @notice Struct representing the elements that are hashed together to generate an output root
/// which itself represents a snapshot of the L2 state.
/// @custom:field version Version of the output root.
/// @custom:field stateRoot Root of the state trie at the block of this output.
/// @custom:field messagePasserStorageRoot Root of the message passer storage trie.
/// @custom:field latestBlockhash Hash of the block this output was generated from.
struct OutputRootProof {
bytes32 version;
bytes32 stateRoot;
bytes32 messagePasserStorageRoot;
bytes32 latestBlockhash;
}
/// @notice Struct representing a deposit transaction (L1 => L2 transaction) created by an end
/// user (as opposed to a system deposit transaction generated by the system).
/// @custom:field from Address of the sender of the transaction.
/// @custom:field to Address of the recipient of the transaction.
/// @custom:field isCreation True if the transaction is a contract creation.
/// @custom:field value Value to send to the recipient.
/// @custom:field mint Amount of ETH to mint.
/// @custom:field gasLimit Gas limit of the transaction.
/// @custom:field data Data of the transaction.
/// @custom:field l1BlockHash Hash of the block the transaction was submitted in.
/// @custom:field logIndex Index of the log in the block the transaction was submitted in.
struct UserDepositTransaction {
address from;
address to;
bool isCreation;
uint256 value;
uint256 mint;
uint64 gasLimit;
bytes data;
bytes32 l1BlockHash;
uint256 logIndex;
}
/// @notice Struct representing a withdrawal transaction.
/// @custom:field nonce Nonce of the withdrawal transaction
/// @custom:field sender Address of the sender of the transaction.
/// @custom:field target Address of the recipient of the transaction.
/// @custom:field value Value to send to the recipient.
/// @custom:field gasLimit Gas limit of the transaction.
/// @custom:field data Data of the transaction.
struct WithdrawalTransaction {
uint256 nonce;
address sender;
address target;
uint256 value;
uint256 gasLimit;
bytes data;
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
/// @custom:attribution https://github.com/bakaoh/solidity-rlp-encode
/// @title RLPWriter
/// @author RLPWriter is a library for encoding Solidity types to RLP bytes. Adapted from Bakaoh's
/// RLPEncode library (https://github.com/bakaoh/solidity-rlp-encode) with minor
/// modifications to improve legibility.
library RLPWriter {
/// @notice RLP encodes a byte string.
/// @param _in The byte string to encode.
/// @return out_ The RLP encoded string in bytes.
function writeBytes(bytes memory _in) internal pure returns (bytes memory out_) {
if (_in.length == 1 && uint8(_in[0]) < 128) {
out_ = _in;
} else {
out_ = abi.encodePacked(_writeLength(_in.length, 128), _in);
}
}
/// @notice RLP encodes a list of RLP encoded byte byte strings.
/// @param _in The list of RLP encoded byte strings.
/// @return list_ The RLP encoded list of items in bytes.
function writeList(bytes[] memory _in) internal pure returns (bytes memory list_) {
list_ = _flatten(_in);
list_ = abi.encodePacked(_writeLength(list_.length, 192), list_);
}
/// @notice RLP encodes a string.
/// @param _in The string to encode.
/// @return out_ The RLP encoded string in bytes.
function writeString(string memory _in) internal pure returns (bytes memory out_) {
out_ = writeBytes(bytes(_in));
}
/// @notice RLP encodes an address.
/// @param _in The address to encode.
/// @return out_ The RLP encoded address in bytes.
function writeAddress(address _in) internal pure returns (bytes memory out_) {
out_ = writeBytes(abi.encodePacked(_in));
}
/// @notice RLP encodes a uint.
/// @param _in The uint256 to encode.
/// @return out_ The RLP encoded uint256 in bytes.
function writeUint(uint256 _in) internal pure returns (bytes memory out_) {
out_ = writeBytes(_toBinary(_in));
}
/// @notice RLP encodes a bool.
/// @param _in The bool to encode.
/// @return out_ The RLP encoded bool in bytes.
function writeBool(bool _in) internal pure returns (bytes memory out_) {
out_ = new bytes(1);
out_[0] = (_in ? bytes1(0x01) : bytes1(0x80));
}
/// @notice Encode the first byte and then the `len` in binary form if `length` is more than 55.
/// @param _len The length of the string or the payload.
/// @param _offset 128 if item is string, 192 if item is list.
/// @return out_ RLP encoded bytes.
function _writeLength(uint256 _len, uint256 _offset) private pure returns (bytes memory out_) {
if (_len < 56) {
out_ = new bytes(1);
out_[0] = bytes1(uint8(_len) + uint8(_offset));
} else {
uint256 lenLen;
uint256 i = 1;
while (_len / i != 0) {
lenLen++;
i *= 256;
}
out_ = new bytes(lenLen + 1);
out_[0] = bytes1(uint8(lenLen) + uint8(_offset) + 55);
for (i = 1; i <= lenLen; i++) {
out_[i] = bytes1(uint8((_len / (256 ** (lenLen - i))) % 256));
}
}
}
/// @notice Encode integer in big endian binary form with no leading zeroes.
/// @param _x The integer to encode.
/// @return out_ RLP encoded bytes.
function _toBinary(uint256 _x) private pure returns (bytes memory out_) {
bytes memory b = abi.encodePacked(_x);
uint256 i = 0;
for (; i < 32; i++) {
if (b[i] != 0) {
break;
}
}
out_ = new bytes(32 - i);
for (uint256 j = 0; j < out_.length; j++) {
out_[j] = b[i++];
}
}
/// @custom:attribution https://github.com/Arachnid/solidity-stringutils
/// @notice Copies a piece of memory to another location.
/// @param _dest Destination location.
/// @param _src Source location.
/// @param _len Length of memory to copy.
function _memcpy(uint256 _dest, uint256 _src, uint256 _len) private pure {
uint256 dest = _dest;
uint256 src = _src;
uint256 len = _len;
for (; len >= 32; len -= 32) {
assembly {
mstore(dest, mload(src))
}
dest += 32;
src += 32;
}
uint256 mask;
unchecked {
mask = 256 ** (32 - len) - 1;
}
assembly {
let srcpart := and(mload(src), not(mask))
let destpart := and(mload(dest), mask)
mstore(dest, or(destpart, srcpart))
}
}
/// @custom:attribution https://github.com/sammayo/solidity-rlp-encoder
/// @notice Flattens a list of byte strings into one byte string.
/// @param _list List of byte strings to flatten.
/// @return out_ The flattened byte string.
function _flatten(bytes[] memory _list) private pure returns (bytes memory out_) {
if (_list.length == 0) {
return new bytes(0);
}
uint256 len;
uint256 i = 0;
for (; i < _list.length; i++) {
len += _list[i].length;
}
out_ = new bytes(len);
uint256 flattenedPtr;
assembly {
flattenedPtr := add(out_, 0x20)
}
for (i = 0; i < _list.length; i++) {
bytes memory item = _list[i];
uint256 listPtr;
assembly {
listPtr := add(item, 0x20)
}
_memcpy(flattenedPtr, listPtr, item.length);
flattenedPtr += _list[i].length;
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (utils/math/Math.sol)
pragma solidity ^0.8.0;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Down, // Toward negative infinity
Up, // Toward infinity
Zero // Toward zero
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a >= b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds up instead
* of rounding down.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b - 1) / b can overflow on addition, so we distribute.
return a == 0 ? 0 : (a - 1) / b + 1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
* with further edits by Uniswap Labs also under MIT license.
*/
function mulDiv(
uint256 x,
uint256 y,
uint256 denominator
) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod0 := mul(x, y)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
require(denominator > prod1);
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
// See https://cs.stackexchange.com/q/138556/92363.
// Does not overflow because the denominator cannot be zero at this stage in the function.
uint256 twos = denominator & (~denominator + 1);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
// in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(
uint256 x,
uint256 y,
uint256 denominator,
Rounding rounding
) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
result += 1;
}
return result;
}
/**
* @dev Returns the square root of a number. It the number is not a perfect square, the value is rounded down.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`.
// We also know that `k`, the position of the most significant bit, is such that `msb(a) = 2**k`.
// This gives `2**k < a <= 2**(k+1)` → `2**(k/2) <= sqrt(a) < 2 ** (k/2+1)`.
// Using an algorithm similar to the msb conmputation, we are able to compute `result = 2**(k/2)` which is a
// good first aproximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1;
uint256 x = a;
if (x >> 128 > 0) {
x >>= 128;
result <<= 64;
}
if (x >> 64 > 0) {
x >>= 64;
result <<= 32;
}
if (x >> 32 > 0) {
x >>= 32;
result <<= 16;
}
if (x >> 16 > 0) {
x >>= 16;
result <<= 8;
}
if (x >> 8 > 0) {
x >>= 8;
result <<= 4;
}
if (x >> 4 > 0) {
x >>= 4;
result <<= 2;
}
if (x >> 2 > 0) {
result <<= 1;
}
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
// into the expected uint128 result.
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
uint256 result = sqrt(a);
if (rounding == Rounding.Up && result * result < a) {
result += 1;
}
return result;
}
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.15;
/// @title Burn
/// @notice Utilities for burning stuff.
library Burn {
/// @notice Burns a given amount of ETH.
/// @param _amount Amount of ETH to burn.
function eth(uint256 _amount) internal {
new Burner{ value: _amount }();
}
/// @notice Burns a given amount of gas.
/// @param _amount Amount of gas to burn.
function gas(uint256 _amount) internal view {
uint256 i = 0;
uint256 initialGas = gasleft();
while (initialGas - gasleft() < _amount) {
++i;
}
}
}
/// @title Burner
/// @notice Burner self-destructs on creation and sends all ETH to itself, removing all ETH given to
/// the contract from the circulating supply. Self-destructing is the only way to remove ETH
/// from the circulating supply.
contract Burner {
constructor() payable {
selfdestruct(payable(address(this)));
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import { SignedMath } from "@openzeppelin/contracts/utils/math/SignedMath.sol";
import { FixedPointMathLib } from "@rari-capital/solmate/src/utils/FixedPointMathLib.sol";
/// @title Arithmetic
/// @notice Even more math than before.
library Arithmetic {
/// @notice Clamps a value between a minimum and maximum.
/// @param _value The value to clamp.
/// @param _min The minimum value.
/// @param _max The maximum value.
/// @return The clamped value.
function clamp(int256 _value, int256 _min, int256 _max) internal pure returns (int256) {
return SignedMath.min(SignedMath.max(_value, _min), _max);
}
/// @notice (c)oefficient (d)enominator (exp)onentiation function.
/// Returns the result of: c * (1 - 1/d)^exp.
/// @param _coefficient Coefficient of the function.
/// @param _denominator Fractional denominator.
/// @param _exponent Power function exponent.
/// @return Result of c * (1 - 1/d)^exp.
function cdexp(int256 _coefficient, int256 _denominator, int256 _exponent) internal pure returns (int256) {
return (_coefficient * (FixedPointMathLib.powWad(1e18 - (1e18 / _denominator), _exponent * 1e18))) / 1e18;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol)
pragma solidity ^0.8.0;
import "../IERC20.sol";
/**
* @dev Interface for the optional metadata functions from the ERC20 standard.
*
* _Available since v4.1._
*/
interface IERC20Metadata is IERC20 {
/**
* @dev Returns the name of the token.
*/
function name() external view returns (string memory);
/**
* @dev Returns the symbol of the token.
*/
function symbol() external view returns (string memory);
/**
* @dev Returns the decimals places of the token.
*/
function decimals() external view returns (uint8);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
pragma solidity ^0.8.0;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.5.0) (utils/math/SignedMath.sol)
pragma solidity ^0.8.0;
/**
* @dev Standard signed math utilities missing in the Solidity language.
*/
library SignedMath {
/**
* @dev Returns the largest of two signed numbers.
*/
function max(int256 a, int256 b) internal pure returns (int256) {
return a >= b ? a : b;
}
/**
* @dev Returns the smallest of two signed numbers.
*/
function min(int256 a, int256 b) internal pure returns (int256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two signed numbers without overflow.
* The result is rounded towards zero.
*/
function average(int256 a, int256 b) internal pure returns (int256) {
// Formula from the book "Hacker's Delight"
int256 x = (a & b) + ((a ^ b) >> 1);
return x + (int256(uint256(x) >> 255) & (a ^ b));
}
/**
* @dev Returns the absolute unsigned value of a signed value.
*/
function abs(int256 n) internal pure returns (uint256) {
unchecked {
// must be unchecked in order to support `n = type(int256).min`
return uint256(n >= 0 ? n : -n);
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.0;
/// @notice Arithmetic library with operations for fixed-point numbers.
/// @author Solmate (https://github.com/Rari-Capital/solmate/blob/main/src/utils/FixedPointMathLib.sol)
library FixedPointMathLib {
/*//////////////////////////////////////////////////////////////
SIMPLIFIED FIXED POINT OPERATIONS
//////////////////////////////////////////////////////////////*/
uint256 internal constant WAD = 1e18; // The scalar of ETH and most ERC20s.
function mulWadDown(uint256 x, uint256 y) internal pure returns (uint256) {
return mulDivDown(x, y, WAD); // Equivalent to (x * y) / WAD rounded down.
}
function mulWadUp(uint256 x, uint256 y) internal pure returns (uint256) {
return mulDivUp(x, y, WAD); // Equivalent to (x * y) / WAD rounded up.
}
function divWadDown(uint256 x, uint256 y) internal pure returns (uint256) {
return mulDivDown(x, WAD, y); // Equivalent to (x * WAD) / y rounded down.
}
function divWadUp(uint256 x, uint256 y) internal pure returns (uint256) {
return mulDivUp(x, WAD, y); // Equivalent to (x * WAD) / y rounded up.
}
function powWad(int256 x, int256 y) internal pure returns (int256) {
// Equivalent to x to the power of y because x ** y = (e ** ln(x)) ** y = e ** (ln(x) * y)
return expWad((lnWad(x) * y) / int256(WAD)); // Using ln(x) means x must be greater than 0.
}
function expWad(int256 x) internal pure returns (int256 r) {
unchecked {
// When the result is < 0.5 we return zero. This happens when
// x <= floor(log(0.5e18) * 1e18) ~ -42e18
if (x <= -42139678854452767551) return 0;
// When the result is > (2**255 - 1) / 1e18 we can not represent it as an
// int. This happens when x >= floor(log((2**255 - 1) / 1e18) * 1e18) ~ 135.
if (x >= 135305999368893231589) revert("EXP_OVERFLOW");
// x is now in the range (-42, 136) * 1e18. Convert to (-42, 136) * 2**96
// for more intermediate precision and a binary basis. This base conversion
// is a multiplication by 1e18 / 2**96 = 5**18 / 2**78.
x = (x << 78) / 5**18;
// Reduce range of x to (-½ ln 2, ½ ln 2) * 2**96 by factoring out powers
// of two such that exp(x) = exp(x') * 2**k, where k is an integer.
// Solving this gives k = round(x / log(2)) and x' = x - k * log(2).
int256 k = ((x << 96) / 54916777467707473351141471128 + 2**95) >> 96;
x = x - k * 54916777467707473351141471128;
// k is in the range [-61, 195].
// Evaluate using a (6, 7)-term rational approximation.
// p is made monic, we'll multiply by a scale factor later.
int256 y = x + 1346386616545796478920950773328;
y = ((y * x) >> 96) + 57155421227552351082224309758442;
int256 p = y + x - 94201549194550492254356042504812;
p = ((p * y) >> 96) + 28719021644029726153956944680412240;
p = p * x + (4385272521454847904659076985693276 << 96);
// We leave p in 2**192 basis so we don't need to scale it back up for the division.
int256 q = x - 2855989394907223263936484059900;
q = ((q * x) >> 96) + 50020603652535783019961831881945;
q = ((q * x) >> 96) - 533845033583426703283633433725380;
q = ((q * x) >> 96) + 3604857256930695427073651918091429;
q = ((q * x) >> 96) - 14423608567350463180887372962807573;
q = ((q * x) >> 96) + 26449188498355588339934803723976023;
assembly {
// Div in assembly because solidity adds a zero check despite the unchecked.
// The q polynomial won't have zeros in the domain as all its roots are complex.
// No scaling is necessary because p is already 2**96 too large.
r := sdiv(p, q)
}
// r should be in the range (0.09, 0.25) * 2**96.
// We now need to multiply r by:
// * the scale factor s = ~6.031367120.
// * the 2**k factor from the range reduction.
// * the 1e18 / 2**96 factor for base conversion.
// We do this all at once, with an intermediate result in 2**213
// basis, so the final right shift is always by a positive amount.
r = int256((uint256(r) * 3822833074963236453042738258902158003155416615667) >> uint256(195 - k));
}
}
function lnWad(int256 x) internal pure returns (int256 r) {
unchecked {
require(x > 0, "UNDEFINED");
// We want to convert x from 10**18 fixed point to 2**96 fixed point.
// We do this by multiplying by 2**96 / 10**18. But since
// ln(x * C) = ln(x) + ln(C), we can simply do nothing here
// and add ln(2**96 / 10**18) at the end.
// Reduce range of x to (1, 2) * 2**96
// ln(2^k * x) = k * ln(2) + ln(x)
int256 k = int256(log2(uint256(x))) - 96;
x <<= uint256(159 - k);
x = int256(uint256(x) >> 159);
// Evaluate using a (8, 8)-term rational approximation.
// p is made monic, we will multiply by a scale factor later.
int256 p = x + 3273285459638523848632254066296;
p = ((p * x) >> 96) + 24828157081833163892658089445524;
p = ((p * x) >> 96) + 43456485725739037958740375743393;
p = ((p * x) >> 96) - 11111509109440967052023855526967;
p = ((p * x) >> 96) - 45023709667254063763336534515857;
p = ((p * x) >> 96) - 14706773417378608786704636184526;
p = p * x - (795164235651350426258249787498 << 96);
// We leave p in 2**192 basis so we don't need to scale it back up for the division.
// q is monic by convention.
int256 q = x + 5573035233440673466300451813936;
q = ((q * x) >> 96) + 71694874799317883764090561454958;
q = ((q * x) >> 96) + 283447036172924575727196451306956;
q = ((q * x) >> 96) + 401686690394027663651624208769553;
q = ((q * x) >> 96) + 204048457590392012362485061816622;
q = ((q * x) >> 96) + 31853899698501571402653359427138;
q = ((q * x) >> 96) + 909429971244387300277376558375;
assembly {
// Div in assembly because solidity adds a zero check despite the unchecked.
// The q polynomial is known not to have zeros in the domain.
// No scaling required because p is already 2**96 too large.
r := sdiv(p, q)
}
// r is in the range (0, 0.125) * 2**96
// Finalization, we need to:
// * multiply by the scale factor s = 5.549…
// * add ln(2**96 / 10**18)
// * add k * ln(2)
// * multiply by 10**18 / 2**96 = 5**18 >> 78
// mul s * 5e18 * 2**96, base is now 5**18 * 2**192
r *= 1677202110996718588342820967067443963516166;
// add ln(2) * k * 5e18 * 2**192
r += 16597577552685614221487285958193947469193820559219878177908093499208371 * k;
// add ln(2**96 / 10**18) * 5e18 * 2**192
r += 600920179829731861736702779321621459595472258049074101567377883020018308;
// base conversion: mul 2**18 / 2**192
r >>= 174;
}
}
/*//////////////////////////////////////////////////////////////
LOW LEVEL FIXED POINT OPERATIONS
//////////////////////////////////////////////////////////////*/
function mulDivDown(
uint256 x,
uint256 y,
uint256 denominator
) internal pure returns (uint256 z) {
assembly {
// Store x * y in z for now.
z := mul(x, y)
// Equivalent to require(denominator != 0 && (x == 0 || (x * y) / x == y))
if iszero(and(iszero(iszero(denominator)), or(iszero(x), eq(div(z, x), y)))) {
revert(0, 0)
}
// Divide z by the denominator.
z := div(z, denominator)
}
}
function mulDivUp(
uint256 x,
uint256 y,
uint256 denominator
) internal pure returns (uint256 z) {
assembly {
// Store x * y in z for now.
z := mul(x, y)
// Equivalent to require(denominator != 0 && (x == 0 || (x * y) / x == y))
if iszero(and(iszero(iszero(denominator)), or(iszero(x), eq(div(z, x), y)))) {
revert(0, 0)
}
// First, divide z - 1 by the denominator and add 1.
// We allow z - 1 to underflow if z is 0, because we multiply the
// end result by 0 if z is zero, ensuring we return 0 if z is zero.
z := mul(iszero(iszero(z)), add(div(sub(z, 1), denominator), 1))
}
}
function rpow(
uint256 x,
uint256 n,
uint256 scalar
) internal pure returns (uint256 z) {
assembly {
switch x
case 0 {
switch n
case 0 {
// 0 ** 0 = 1
z := scalar
}
default {
// 0 ** n = 0
z := 0
}
}
default {
switch mod(n, 2)
case 0 {
// If n is even, store scalar in z for now.
z := scalar
}
default {
// If n is odd, store x in z for now.
z := x
}
// Shifting right by 1 is like dividing by 2.
let half := shr(1, scalar)
for {
// Shift n right by 1 before looping to halve it.
n := shr(1, n)
} n {
// Shift n right by 1 each iteration to halve it.
n := shr(1, n)
} {
// Revert immediately if x ** 2 would overflow.
// Equivalent to iszero(eq(div(xx, x), x)) here.
if shr(128, x) {
revert(0, 0)
}
// Store x squared.
let xx := mul(x, x)
// Round to the nearest number.
let xxRound := add(xx, half)
// Revert if xx + half overflowed.
if lt(xxRound, xx) {
revert(0, 0)
}
// Set x to scaled xxRound.
x := div(xxRound, scalar)
// If n is even:
if mod(n, 2) {
// Compute z * x.
let zx := mul(z, x)
// If z * x overflowed:
if iszero(eq(div(zx, x), z)) {
// Revert if x is non-zero.
if iszero(iszero(x)) {
revert(0, 0)
}
}
// Round to the nearest number.
let zxRound := add(zx, half)
// Revert if zx + half overflowed.
if lt(zxRound, zx) {
revert(0, 0)
}
// Return properly scaled zxRound.
z := div(zxRound, scalar)
}
}
}
}
}
/*//////////////////////////////////////////////////////////////
GENERAL NUMBER UTILITIES
//////////////////////////////////////////////////////////////*/
function sqrt(uint256 x) internal pure returns (uint256 z) {
assembly {
let y := x // We start y at x, which will help us make our initial estimate.
z := 181 // The "correct" value is 1, but this saves a multiplication later.
// This segment is to get a reasonable initial estimate for the Babylonian method. With a bad
// start, the correct # of bits increases ~linearly each iteration instead of ~quadratically.
// We check y >= 2^(k + 8) but shift right by k bits
// each branch to ensure that if x >= 256, then y >= 256.
if iszero(lt(y, 0x10000000000000000000000000000000000)) {
y := shr(128, y)
z := shl(64, z)
}
if iszero(lt(y, 0x1000000000000000000)) {
y := shr(64, y)
z := shl(32, z)
}
if iszero(lt(y, 0x10000000000)) {
y := shr(32, y)
z := shl(16, z)
}
if iszero(lt(y, 0x1000000)) {
y := shr(16, y)
z := shl(8, z)
}
// Goal was to get z*z*y within a small factor of x. More iterations could
// get y in a tighter range. Currently, we will have y in [256, 256*2^16).
// We ensured y >= 256 so that the relative difference between y and y+1 is small.
// That's not possible if x < 256 but we can just verify those cases exhaustively.
// Now, z*z*y <= x < z*z*(y+1), and y <= 2^(16+8), and either y >= 256, or x < 256.
// Correctness can be checked exhaustively for x < 256, so we assume y >= 256.
// Then z*sqrt(y) is within sqrt(257)/sqrt(256) of sqrt(x), or about 20bps.
// For s in the range [1/256, 256], the estimate f(s) = (181/1024) * (s+1) is in the range
// (1/2.84 * sqrt(s), 2.84 * sqrt(s)), with largest error when s = 1 and when s = 256 or 1/256.
// Since y is in [256, 256*2^16), let a = y/65536, so that a is in [1/256, 256). Then we can estimate
// sqrt(y) using sqrt(65536) * 181/1024 * (a + 1) = 181/4 * (y + 65536)/65536 = 181 * (y + 65536)/2^18.
// There is no overflow risk here since y < 2^136 after the first branch above.
z := shr(18, mul(z, add(y, 65536))) // A mul() is saved from starting z at 181.
// Given the worst case multiplicative error of 2.84 above, 7 iterations should be enough.
z := shr(1, add(z, div(x, z)))
z := shr(1, add(z, div(x, z)))
z := shr(1, add(z, div(x, z)))
z := shr(1, add(z, div(x, z)))
z := shr(1, add(z, div(x, z)))
z := shr(1, add(z, div(x, z)))
z := shr(1, add(z, div(x, z)))
// If x+1 is a perfect square, the Babylonian method cycles between
// floor(sqrt(x)) and ceil(sqrt(x)). This statement ensures we return floor.
// See: https://en.wikipedia.org/wiki/Integer_square_root#Using_only_integer_division
// Since the ceil is rare, we save gas on the assignment and repeat division in the rare case.
// If you don't care whether the floor or ceil square root is returned, you can remove this statement.
z := sub(z, lt(div(x, z), z))
}
}
function log2(uint256 x) internal pure returns (uint256 r) {
require(x > 0, "UNDEFINED");
assembly {
r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
r := or(r, shl(4, lt(0xffff, shr(r, x))))
r := or(r, shl(3, lt(0xff, shr(r, x))))
r := or(r, shl(2, lt(0xf, shr(r, x))))
r := or(r, shl(1, lt(0x3, shr(r, x))))
r := or(r, lt(0x1, shr(r, x)))
}
}
}