ETH Price: $2,736.24 (-2.46%)

Transaction Decoder

Block:
19385573 at Mar-07-2024 08:06:35 PM +UTC
Transaction Fee:
0.003384918500288904 ETH $9.26
Gas Used:
46,344 Gas / 73.038980241 Gwei

Emitted Events:

363 Jupiter.Approval( tokenOwner=[Sender] 0x1e69c51714af080283ca97b1c2b98df7eaa48bba, spender=0xDef1C0de...027b25EfF, tokens=115792089237316195423570985008687907853269984665640564039457584007913129639935 )

Account State Difference:

  Address   Before After State Difference Code
0x1e69C517...7EaA48bbA
0.015505133650922658 Eth
Nonce: 5
0.012120215150633754 Eth
Nonce: 6
0.003384918500288904
0x4B1E80cA...1Ae9C2Be8
(beaverbuild)
15.894664580335139724 Eth15.894664626679139724 Eth0.000000046344

Execution Trace

Jupiter.approve( delegate=0xDef1C0ded9bec7F1a1670819833240f027b25EfF, numTokens=115792089237316195423570985008687907853269984665640564039457584007913129639935 ) => ( True )
pragma solidity ^0.6.0;
//
// SPDX-License-Identifier: MIT
//

contract Jupiter {

    string public constant name = "Jupiter";
    string public constant symbol = "JUP";
    uint8 public constant decimals = 18;  


    event Approval(address indexed tokenOwner, address indexed spender, uint tokens);
    event Transfer(address indexed from, address indexed to, uint tokens);


    mapping(address => uint256) balances;

    mapping(address => mapping (address => uint256)) allowed;
    
    uint256 totalSupply_;

    using SafeMath for uint256;


   constructor(uint256 total) public {  
	totalSupply_ = total;
	balances[msg.sender] = totalSupply_;
    }  

    function totalSupply() public view returns (uint256) {
	return totalSupply_;
    }
    
    function balanceOf(address tokenOwner) public view returns (uint) {
        return balances[tokenOwner];
    }

    function transfer(address receiver, uint numTokens) public returns (bool) {
        require(numTokens <= balances[msg.sender]);
        balances[msg.sender] = balances[msg.sender].sub(numTokens);
        balances[receiver] = balances[receiver].add(numTokens);
        emit Transfer(msg.sender, receiver, numTokens);
        return true;
    }

    function approve(address delegate, uint numTokens) public returns (bool) {
        allowed[msg.sender][delegate] = numTokens;
        Approval(msg.sender, delegate, numTokens);
        return true;
    }

    function allowance(address owner, address delegate) public view returns (uint) {
        return allowed[owner][delegate];
    }

    function transferFrom(address owner, address buyer, uint numTokens) public returns (bool) {
        require(numTokens <= balances[owner]);    
        require(numTokens <= allowed[owner][msg.sender]);
    
        balances[owner] = balances[owner].sub(numTokens);
        allowed[owner][msg.sender] = allowed[owner][msg.sender].sub(numTokens);
        balances[buyer] = balances[buyer].add(numTokens);
        Transfer(owner, buyer, numTokens);
        return true;
    }
}

// 
/**
 * @dev Wrappers over Solidity's arithmetic operations with added overflow
 * checks.
 *
 * Arithmetic operations in Solidity wrap on overflow. This can easily result
 * in bugs, because programmers usually assume that an overflow raises an
 * error, which is the standard behavior in high level programming languages.
 * `SafeMath` restores this intuition by reverting the transaction when an
 * operation overflows.
 *
 * Using this library instead of the unchecked operations eliminates an entire
 * class of bugs, so it's recommended to use it always.
 */
library SafeMath {
    /**
     * @dev Returns the addition of two unsigned integers, reverting on
     * overflow.
     *
     * Counterpart to Solidity's `+` operator.
     *
     * Requirements:
     *
     * - Addition cannot overflow.
     */
    function add(uint256 a, uint256 b) internal pure returns (uint256) {
        uint256 c = a + b;
        require(c >= a, "SafeMath: addition overflow");

        return c;
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, reverting on
     * overflow (when the result is negative).
     *
     * Counterpart to Solidity's `-` operator.
     *
     * Requirements:
     *
     * - Subtraction cannot overflow.
     */
    function sub(uint256 a, uint256 b) internal pure returns (uint256) {
        return sub(a, b, "SafeMath: subtraction overflow");
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, reverting with custom message on
     * overflow (when the result is negative).
     *
     * Counterpart to Solidity's `-` operator.
     *
     * Requirements:
     *
     * - Subtraction cannot overflow.
     */
    function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
        require(b <= a, errorMessage);
        uint256 c = a - b;

        return c;
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, reverting on
     * overflow.
     *
     * Counterpart to Solidity's `*` operator.
     *
     * Requirements:
     *
     * - Multiplication cannot overflow.
     */
    function mul(uint256 a, uint256 b) internal pure returns (uint256) {
        // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
        // benefit is lost if 'b' is also tested.
        // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
        if (a == 0) {
            return 0;
        }

        uint256 c = a * b;
        require(c / a == b, "SafeMath: multiplication overflow");

        return c;
    }

    /**
     * @dev Returns the integer division of two unsigned integers. Reverts on
     * division by zero. The result is rounded towards zero.
     *
     * Counterpart to Solidity's `/` operator. Note: this function uses a
     * `revert` opcode (which leaves remaining gas untouched) while Solidity
     * uses an invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function div(uint256 a, uint256 b) internal pure returns (uint256) {
        return div(a, b, "SafeMath: division by zero");
    }

    /**
     * @dev Returns the integer division of two unsigned integers. Reverts with custom message on
     * division by zero. The result is rounded towards zero.
     *
     * Counterpart to Solidity's `/` operator. Note: this function uses a
     * `revert` opcode (which leaves remaining gas untouched) while Solidity
     * uses an invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
        require(b > 0, errorMessage);
        uint256 c = a / b;
        // assert(a == b * c + a % b); // There is no case in which this doesn't hold

        return c;
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
     * Reverts when dividing by zero.
     *
     * Counterpart to Solidity's `%` operator. This function uses a `revert`
     * opcode (which leaves remaining gas untouched) while Solidity uses an
     * invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function mod(uint256 a, uint256 b) internal pure returns (uint256) {
        return mod(a, b, "SafeMath: modulo by zero");
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
     * Reverts with custom message when dividing by zero.
     *
     * Counterpart to Solidity's `%` operator. This function uses a `revert`
     * opcode (which leaves remaining gas untouched) while Solidity uses an
     * invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
        require(b != 0, errorMessage);
        return a % b;
    }
}

// library SafeMath { 
//     function sub(uint256 a, uint256 b) internal pure returns (uint256) {
//       assert(b <= a);
//       return a - b;
//     }
    
//     function add(uint256 a, uint256 b) internal pure returns (uint256) {
//       uint256 c = a + b;
//       assert(c >= a);
//       return c;
//     }
// }