ETH Price: $3,922.92 (+1.16%)

Transaction Decoder

Block:
21620475 at Jan-14-2025 04:56:59 AM +UTC
Transaction Fee:
0.000400844789450507 ETH $1.57
Gas Used:
161,849 Gas / 2.476659043 Gwei

Emitted Events:

142 KIP.Transfer( from=UprisingAirdropDistributorAfterInit, to=[Sender] 0xf0705f1b1ef7bace1324264132a88910241afcf7, value=1448300000000000000000 )
143 UprisingAirdropDistributorAfterInit.Claimed( caller=[Sender] 0xf0705f1b1ef7bace1324264132a88910241afcf7, userVestingId=000000000000000000000000F0705F1B1EF7BACE1324264132A88910241AFCF7, recipient=[Sender] 0xf0705f1b1ef7bace1324264132a88910241afcf7, amount=1448300000000000000000 )
144 BatchDistributor.BatchClaimed( caller=[Sender] 0xf0705f1b1ef7bace1324264132a88910241afcf7, distributors=[0x014E49891531Ef2C30545Fc726B17903db8FbFbc], recipient=[Sender] 0xf0705f1b1ef7bace1324264132a88910241afcf7 )

Account State Difference:

  Address   Before After State Difference Code
0x014E4989...3db8FbFbc
0x946fb081...fd26cd374
(beaverbuild)
17.505856304772472588 Eth17.505937229272472588 Eth0.0000809245
0xF0705F1b...0241AFCF7
0.008628657771523357 Eth
Nonce: 91
0.00822781298207285 Eth
Nonce: 92
0.000400844789450507

Execution Trace

BatchDistributor.batchClaim( params=, recipient=0xF0705F1b1ef7BACE1324264132A88910241AFCF7 )
  • UprisingAirdropDistributorAfterInit.claim( caller=0xF0705F1b1ef7BACE1324264132A88910241AFCF7, userVestingId=000000000000000000000000F0705F1B1EF7BACE1324264132A88910241AFCF7, recipient=0xF0705F1b1ef7BACE1324264132A88910241AFCF7 )
    • UprisingAirdropDistributorAfterInit.slotInfos( userVestingId=000000000000000000000000F0705F1B1EF7BACE1324264132A88910241AFCF7 ) => ( [{name:amount, type:uint256, order:1, indexed:false, value:10345000000000000000000, valueString:10345000000000000000000}, {name:claimed, type:uint256, order:2, indexed:false, value:3103500000000000000000, valueString:3103500000000000000000}, {name:initDeadline, type:uint128, order:3, indexed:false, value:1736474700, valueString:1736474700}, {name:startTime, type:uint128, order:4, indexed:false, value:1733814899, valueString:1733814899}, {name:initClaimPercent, type:uint32, order:5, indexed:false, value:3000, valueString:3000}, {name:intervalPercent, type:uint32, order:6, indexed:false, value:1400, valueString:1400}, {name:intervalDays, type:uint32, order:7, indexed:false, value:30, valueString:30}, {name:initialized, type:bool, order:8, indexed:false, value:true, valueString:True}] )
      • UprisingAirdropDistributor.slotInfos( 000000000000000000000000F0705F1B1EF7BACE1324264132A88910241AFCF7 ) => ( amount=10345000000000000000000, claimed=3103500000000000000000, initDeadline=1736474700, startTime=1733814899, initClaimPercent=3000, intervalPercent=1400, intervalDays=30, initialized=True )
      • KIP.transfer( to=0xF0705F1b1ef7BACE1324264132A88910241AFCF7, value=1448300000000000000000 ) => ( True )
        File 1 of 4: BatchDistributor
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.1.0) (utils/ReentrancyGuard.sol)
        pragma solidity ^0.8.20;
        /**
         * @dev Contract module that helps prevent reentrant calls to a function.
         *
         * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
         * available, which can be applied to functions to make sure there are no nested
         * (reentrant) calls to them.
         *
         * Note that because there is a single `nonReentrant` guard, functions marked as
         * `nonReentrant` may not call one another. This can be worked around by making
         * those functions `private`, and then adding `external` `nonReentrant` entry
         * points to them.
         *
         * TIP: If EIP-1153 (transient storage) is available on the chain you're deploying at,
         * consider using {ReentrancyGuardTransient} instead.
         *
         * TIP: If you would like to learn more about reentrancy and alternative ways
         * to protect against it, check out our blog post
         * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
         */
        abstract contract ReentrancyGuard {
            // Booleans are more expensive than uint256 or any type that takes up a full
            // word because each write operation emits an extra SLOAD to first read the
            // slot's contents, replace the bits taken up by the boolean, and then write
            // back. This is the compiler's defense against contract upgrades and
            // pointer aliasing, and it cannot be disabled.
            // The values being non-zero value makes deployment a bit more expensive,
            // but in exchange the refund on every call to nonReentrant will be lower in
            // amount. Since refunds are capped to a percentage of the total
            // transaction's gas, it is best to keep them low in cases like this one, to
            // increase the likelihood of the full refund coming into effect.
            uint256 private constant NOT_ENTERED = 1;
            uint256 private constant ENTERED = 2;
            uint256 private _status;
            /**
             * @dev Unauthorized reentrant call.
             */
            error ReentrancyGuardReentrantCall();
            constructor() {
                _status = NOT_ENTERED;
            }
            /**
             * @dev Prevents a contract from calling itself, directly or indirectly.
             * Calling a `nonReentrant` function from another `nonReentrant`
             * function is not supported. It is possible to prevent this from happening
             * by making the `nonReentrant` function external, and making it call a
             * `private` function that does the actual work.
             */
            modifier nonReentrant() {
                _nonReentrantBefore();
                _;
                _nonReentrantAfter();
            }
            function _nonReentrantBefore() private {
                // On the first call to nonReentrant, _status will be NOT_ENTERED
                if (_status == ENTERED) {
                    revert ReentrancyGuardReentrantCall();
                }
                // Any calls to nonReentrant after this point will fail
                _status = ENTERED;
            }
            function _nonReentrantAfter() private {
                // By storing the original value once again, a refund is triggered (see
                // https://eips.ethereum.org/EIPS/eip-2200)
                _status = NOT_ENTERED;
            }
            /**
             * @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
             * `nonReentrant` function in the call stack.
             */
            function _reentrancyGuardEntered() internal view returns (bool) {
                return _status == ENTERED;
            }
        }
        // SPDX-License-Identifier: UNLICENSED
        pragma solidity ^0.8.20;
        error InvalidSignature();
        error AlreadyClaimed();
        error ZeroAddress();
        error DeadlinePassed();
        error InvalidProofs();
        error RootHashAlreadySet();
        error SlotExists();
        error InvalidRecipient();
        error InvalidCaller();
        error VestingConfigNotSet();
        error InvalidVestingConfig();
        error EmptyArray();
        error InvalidUserVestingId();// SPDX-License-Identifier: UNLICENSED
        pragma solidity ^0.8.20;
        import "../Errors.sol";
        interface IDistributor {
            function initClaim(address caller, bytes calldata proofs, address recipient) external;
            function claim(address caller, bytes32 userVestingId, address recipient) external;
        }// SPDX-License-Identifier: UNLICENSED
        pragma solidity ^0.8.20;
        import "@openzeppelin/contracts/utils/ReentrancyGuard.sol";
        import "../interfaces/IDistributor.sol";
        import "../Errors.sol";
        /**
         * @title BatchDistributor
         * @author @trmaphi
         * @notice This contract is used to claim airdrops for multiple users in one call.
         */
        contract BatchDistributor is ReentrancyGuard {
            struct BatchClaimParams {
                address distributorContract;
                bool isInit;
                bytes32 userVestingId;
                bytes proof;
            }
            event BatchClaimed(address indexed caller, address[] distributors, address recipient);
            constructor() {
            }
            /**
             * Claim for multiple airdrops
             * @param params BatchClaimParams[]
             * @param recipient address
             */
            function batchClaim(BatchClaimParams[] calldata params, address recipient) external nonReentrant {
                if (params.length == 0) revert EmptyArray();
                if (recipient != msg.sender) revert InvalidRecipient();
                address[] memory distributors = new address[](params.length);
                for (uint256 i = 0; i < params.length; i++) {
                    BatchClaimParams memory param = params[i];
                    distributors[i] = param.distributorContract;
                    IDistributor distributor = IDistributor(param.distributorContract);
                    
                    if (param.isInit) {
                        if (param.proof.length == 0) revert InvalidProofs();
                        distributor.initClaim(
                            msg.sender,
                            param.proof,
                            recipient
                        );
                    } else {
                        distributor.claim(
                            msg.sender,
                            param.userVestingId,
                            recipient
                        );
                    }
                }
                emit BatchClaimed(msg.sender, distributors, recipient);
            }
        }

        File 2 of 4: UprisingAirdropDistributorAfterInit
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)
        pragma solidity ^0.8.20;
        import {Context} from "../utils/Context.sol";
        /**
         * @dev Contract module which provides a basic access control mechanism, where
         * there is an account (an owner) that can be granted exclusive access to
         * specific functions.
         *
         * The initial owner is set to the address provided by the deployer. This can
         * later be changed with {transferOwnership}.
         *
         * This module is used through inheritance. It will make available the modifier
         * `onlyOwner`, which can be applied to your functions to restrict their use to
         * the owner.
         */
        abstract contract Ownable is Context {
            address private _owner;
            /**
             * @dev The caller account is not authorized to perform an operation.
             */
            error OwnableUnauthorizedAccount(address account);
            /**
             * @dev The owner is not a valid owner account. (eg. `address(0)`)
             */
            error OwnableInvalidOwner(address owner);
            event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
            /**
             * @dev Initializes the contract setting the address provided by the deployer as the initial owner.
             */
            constructor(address initialOwner) {
                if (initialOwner == address(0)) {
                    revert OwnableInvalidOwner(address(0));
                }
                _transferOwnership(initialOwner);
            }
            /**
             * @dev Throws if called by any account other than the owner.
             */
            modifier onlyOwner() {
                _checkOwner();
                _;
            }
            /**
             * @dev Returns the address of the current owner.
             */
            function owner() public view virtual returns (address) {
                return _owner;
            }
            /**
             * @dev Throws if the sender is not the owner.
             */
            function _checkOwner() internal view virtual {
                if (owner() != _msgSender()) {
                    revert OwnableUnauthorizedAccount(_msgSender());
                }
            }
            /**
             * @dev Leaves the contract without owner. It will not be possible to call
             * `onlyOwner` functions. Can only be called by the current owner.
             *
             * NOTE: Renouncing ownership will leave the contract without an owner,
             * thereby disabling any functionality that is only available to the owner.
             */
            function renounceOwnership() public virtual onlyOwner {
                _transferOwnership(address(0));
            }
            /**
             * @dev Transfers ownership of the contract to a new account (`newOwner`).
             * Can only be called by the current owner.
             */
            function transferOwnership(address newOwner) public virtual onlyOwner {
                if (newOwner == address(0)) {
                    revert OwnableInvalidOwner(address(0));
                }
                _transferOwnership(newOwner);
            }
            /**
             * @dev Transfers ownership of the contract to a new account (`newOwner`).
             * Internal function without access restriction.
             */
            function _transferOwnership(address newOwner) internal virtual {
                address oldOwner = _owner;
                _owner = newOwner;
                emit OwnershipTransferred(oldOwner, newOwner);
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.1.0) (interfaces/IERC1363.sol)
        pragma solidity ^0.8.20;
        import {IERC20} from "./IERC20.sol";
        import {IERC165} from "./IERC165.sol";
        /**
         * @title IERC1363
         * @dev Interface of the ERC-1363 standard as defined in the https://eips.ethereum.org/EIPS/eip-1363[ERC-1363].
         *
         * Defines an extension interface for ERC-20 tokens that supports executing code on a recipient contract
         * after `transfer` or `transferFrom`, or code on a spender contract after `approve`, in a single transaction.
         */
        interface IERC1363 is IERC20, IERC165 {
            /*
             * Note: the ERC-165 identifier for this interface is 0xb0202a11.
             * 0xb0202a11 ===
             *   bytes4(keccak256('transferAndCall(address,uint256)')) ^
             *   bytes4(keccak256('transferAndCall(address,uint256,bytes)')) ^
             *   bytes4(keccak256('transferFromAndCall(address,address,uint256)')) ^
             *   bytes4(keccak256('transferFromAndCall(address,address,uint256,bytes)')) ^
             *   bytes4(keccak256('approveAndCall(address,uint256)')) ^
             *   bytes4(keccak256('approveAndCall(address,uint256,bytes)'))
             */
            /**
             * @dev Moves a `value` amount of tokens from the caller's account to `to`
             * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
             * @param to The address which you want to transfer to.
             * @param value The amount of tokens to be transferred.
             * @return A boolean value indicating whether the operation succeeded unless throwing.
             */
            function transferAndCall(address to, uint256 value) external returns (bool);
            /**
             * @dev Moves a `value` amount of tokens from the caller's account to `to`
             * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
             * @param to The address which you want to transfer to.
             * @param value The amount of tokens to be transferred.
             * @param data Additional data with no specified format, sent in call to `to`.
             * @return A boolean value indicating whether the operation succeeded unless throwing.
             */
            function transferAndCall(address to, uint256 value, bytes calldata data) external returns (bool);
            /**
             * @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
             * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
             * @param from The address which you want to send tokens from.
             * @param to The address which you want to transfer to.
             * @param value The amount of tokens to be transferred.
             * @return A boolean value indicating whether the operation succeeded unless throwing.
             */
            function transferFromAndCall(address from, address to, uint256 value) external returns (bool);
            /**
             * @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
             * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
             * @param from The address which you want to send tokens from.
             * @param to The address which you want to transfer to.
             * @param value The amount of tokens to be transferred.
             * @param data Additional data with no specified format, sent in call to `to`.
             * @return A boolean value indicating whether the operation succeeded unless throwing.
             */
            function transferFromAndCall(address from, address to, uint256 value, bytes calldata data) external returns (bool);
            /**
             * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
             * caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
             * @param spender The address which will spend the funds.
             * @param value The amount of tokens to be spent.
             * @return A boolean value indicating whether the operation succeeded unless throwing.
             */
            function approveAndCall(address spender, uint256 value) external returns (bool);
            /**
             * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
             * caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
             * @param spender The address which will spend the funds.
             * @param value The amount of tokens to be spent.
             * @param data Additional data with no specified format, sent in call to `spender`.
             * @return A boolean value indicating whether the operation succeeded unless throwing.
             */
            function approveAndCall(address spender, uint256 value, bytes calldata data) external returns (bool);
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC165.sol)
        pragma solidity ^0.8.20;
        import {IERC165} from "../utils/introspection/IERC165.sol";
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC20.sol)
        pragma solidity ^0.8.20;
        import {IERC20} from "../token/ERC20/IERC20.sol";
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/IERC20.sol)
        pragma solidity ^0.8.20;
        /**
         * @dev Interface of the ERC-20 standard as defined in the ERC.
         */
        interface IERC20 {
            /**
             * @dev Emitted when `value` tokens are moved from one account (`from`) to
             * another (`to`).
             *
             * Note that `value` may be zero.
             */
            event Transfer(address indexed from, address indexed to, uint256 value);
            /**
             * @dev Emitted when the allowance of a `spender` for an `owner` is set by
             * a call to {approve}. `value` is the new allowance.
             */
            event Approval(address indexed owner, address indexed spender, uint256 value);
            /**
             * @dev Returns the value of tokens in existence.
             */
            function totalSupply() external view returns (uint256);
            /**
             * @dev Returns the value of tokens owned by `account`.
             */
            function balanceOf(address account) external view returns (uint256);
            /**
             * @dev Moves a `value` amount of tokens from the caller's account to `to`.
             *
             * Returns a boolean value indicating whether the operation succeeded.
             *
             * Emits a {Transfer} event.
             */
            function transfer(address to, uint256 value) external returns (bool);
            /**
             * @dev Returns the remaining number of tokens that `spender` will be
             * allowed to spend on behalf of `owner` through {transferFrom}. This is
             * zero by default.
             *
             * This value changes when {approve} or {transferFrom} are called.
             */
            function allowance(address owner, address spender) external view returns (uint256);
            /**
             * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
             * caller's tokens.
             *
             * Returns a boolean value indicating whether the operation succeeded.
             *
             * IMPORTANT: Beware that changing an allowance with this method brings the risk
             * that someone may use both the old and the new allowance by unfortunate
             * transaction ordering. One possible solution to mitigate this race
             * condition is to first reduce the spender's allowance to 0 and set the
             * desired value afterwards:
             * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
             *
             * Emits an {Approval} event.
             */
            function approve(address spender, uint256 value) external returns (bool);
            /**
             * @dev Moves a `value` amount of tokens from `from` to `to` using the
             * allowance mechanism. `value` is then deducted from the caller's
             * allowance.
             *
             * Returns a boolean value indicating whether the operation succeeded.
             *
             * Emits a {Transfer} event.
             */
            function transferFrom(address from, address to, uint256 value) external returns (bool);
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/utils/SafeERC20.sol)
        pragma solidity ^0.8.20;
        import {IERC20} from "../IERC20.sol";
        import {IERC1363} from "../../../interfaces/IERC1363.sol";
        import {Address} from "../../../utils/Address.sol";
        /**
         * @title SafeERC20
         * @dev Wrappers around ERC-20 operations that throw on failure (when the token
         * contract returns false). Tokens that return no value (and instead revert or
         * throw on failure) are also supported, non-reverting calls are assumed to be
         * successful.
         * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
         * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
         */
        library SafeERC20 {
            /**
             * @dev An operation with an ERC-20 token failed.
             */
            error SafeERC20FailedOperation(address token);
            /**
             * @dev Indicates a failed `decreaseAllowance` request.
             */
            error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);
            /**
             * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
             * non-reverting calls are assumed to be successful.
             */
            function safeTransfer(IERC20 token, address to, uint256 value) internal {
                _callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
            }
            /**
             * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
             * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
             */
            function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
                _callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
            }
            /**
             * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
             * non-reverting calls are assumed to be successful.
             *
             * IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
             * smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
             * this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
             * that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
             */
            function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
                uint256 oldAllowance = token.allowance(address(this), spender);
                forceApprove(token, spender, oldAllowance + value);
            }
            /**
             * @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
             * value, non-reverting calls are assumed to be successful.
             *
             * IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
             * smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
             * this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
             * that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
             */
            function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
                unchecked {
                    uint256 currentAllowance = token.allowance(address(this), spender);
                    if (currentAllowance < requestedDecrease) {
                        revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
                    }
                    forceApprove(token, spender, currentAllowance - requestedDecrease);
                }
            }
            /**
             * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
             * non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
             * to be set to zero before setting it to a non-zero value, such as USDT.
             *
             * NOTE: If the token implements ERC-7674, this function will not modify any temporary allowance. This function
             * only sets the "standard" allowance. Any temporary allowance will remain active, in addition to the value being
             * set here.
             */
            function forceApprove(IERC20 token, address spender, uint256 value) internal {
                bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));
                if (!_callOptionalReturnBool(token, approvalCall)) {
                    _callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
                    _callOptionalReturn(token, approvalCall);
                }
            }
            /**
             * @dev Performs an {ERC1363} transferAndCall, with a fallback to the simple {ERC20} transfer if the target has no
             * code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
             * targeting contracts.
             *
             * Reverts if the returned value is other than `true`.
             */
            function transferAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
                if (to.code.length == 0) {
                    safeTransfer(token, to, value);
                } else if (!token.transferAndCall(to, value, data)) {
                    revert SafeERC20FailedOperation(address(token));
                }
            }
            /**
             * @dev Performs an {ERC1363} transferFromAndCall, with a fallback to the simple {ERC20} transferFrom if the target
             * has no code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
             * targeting contracts.
             *
             * Reverts if the returned value is other than `true`.
             */
            function transferFromAndCallRelaxed(
                IERC1363 token,
                address from,
                address to,
                uint256 value,
                bytes memory data
            ) internal {
                if (to.code.length == 0) {
                    safeTransferFrom(token, from, to, value);
                } else if (!token.transferFromAndCall(from, to, value, data)) {
                    revert SafeERC20FailedOperation(address(token));
                }
            }
            /**
             * @dev Performs an {ERC1363} approveAndCall, with a fallback to the simple {ERC20} approve if the target has no
             * code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
             * targeting contracts.
             *
             * NOTE: When the recipient address (`to`) has no code (i.e. is an EOA), this function behaves as {forceApprove}.
             * Opposedly, when the recipient address (`to`) has code, this function only attempts to call {ERC1363-approveAndCall}
             * once without retrying, and relies on the returned value to be true.
             *
             * Reverts if the returned value is other than `true`.
             */
            function approveAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
                if (to.code.length == 0) {
                    forceApprove(token, to, value);
                } else if (!token.approveAndCall(to, value, data)) {
                    revert SafeERC20FailedOperation(address(token));
                }
            }
            /**
             * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
             * on the return value: the return value is optional (but if data is returned, it must not be false).
             * @param token The token targeted by the call.
             * @param data The call data (encoded using abi.encode or one of its variants).
             *
             * This is a variant of {_callOptionalReturnBool} that reverts if call fails to meet the requirements.
             */
            function _callOptionalReturn(IERC20 token, bytes memory data) private {
                uint256 returnSize;
                uint256 returnValue;
                assembly ("memory-safe") {
                    let success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20)
                    // bubble errors
                    if iszero(success) {
                        let ptr := mload(0x40)
                        returndatacopy(ptr, 0, returndatasize())
                        revert(ptr, returndatasize())
                    }
                    returnSize := returndatasize()
                    returnValue := mload(0)
                }
                if (returnSize == 0 ? address(token).code.length == 0 : returnValue != 1) {
                    revert SafeERC20FailedOperation(address(token));
                }
            }
            /**
             * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
             * on the return value: the return value is optional (but if data is returned, it must not be false).
             * @param token The token targeted by the call.
             * @param data The call data (encoded using abi.encode or one of its variants).
             *
             * This is a variant of {_callOptionalReturn} that silently catches all reverts and returns a bool instead.
             */
            function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
                bool success;
                uint256 returnSize;
                uint256 returnValue;
                assembly ("memory-safe") {
                    success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20)
                    returnSize := returndatasize()
                    returnValue := mload(0)
                }
                return success && (returnSize == 0 ? address(token).code.length > 0 : returnValue == 1);
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.1.0) (utils/Address.sol)
        pragma solidity ^0.8.20;
        import {Errors} from "./Errors.sol";
        /**
         * @dev Collection of functions related to the address type
         */
        library Address {
            /**
             * @dev There's no code at `target` (it is not a contract).
             */
            error AddressEmptyCode(address target);
            /**
             * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
             * `recipient`, forwarding all available gas and reverting on errors.
             *
             * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
             * of certain opcodes, possibly making contracts go over the 2300 gas limit
             * imposed by `transfer`, making them unable to receive funds via
             * `transfer`. {sendValue} removes this limitation.
             *
             * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
             *
             * IMPORTANT: because control is transferred to `recipient`, care must be
             * taken to not create reentrancy vulnerabilities. Consider using
             * {ReentrancyGuard} or the
             * https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
             */
            function sendValue(address payable recipient, uint256 amount) internal {
                if (address(this).balance < amount) {
                    revert Errors.InsufficientBalance(address(this).balance, amount);
                }
                (bool success, ) = recipient.call{value: amount}("");
                if (!success) {
                    revert Errors.FailedCall();
                }
            }
            /**
             * @dev Performs a Solidity function call using a low level `call`. A
             * plain `call` is an unsafe replacement for a function call: use this
             * function instead.
             *
             * If `target` reverts with a revert reason or custom error, it is bubbled
             * up by this function (like regular Solidity function calls). However, if
             * the call reverted with no returned reason, this function reverts with a
             * {Errors.FailedCall} error.
             *
             * Returns the raw returned data. To convert to the expected return value,
             * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
             *
             * Requirements:
             *
             * - `target` must be a contract.
             * - calling `target` with `data` must not revert.
             */
            function functionCall(address target, bytes memory data) internal returns (bytes memory) {
                return functionCallWithValue(target, data, 0);
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
             * but also transferring `value` wei to `target`.
             *
             * Requirements:
             *
             * - the calling contract must have an ETH balance of at least `value`.
             * - the called Solidity function must be `payable`.
             */
            function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
                if (address(this).balance < value) {
                    revert Errors.InsufficientBalance(address(this).balance, value);
                }
                (bool success, bytes memory returndata) = target.call{value: value}(data);
                return verifyCallResultFromTarget(target, success, returndata);
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
             * but performing a static call.
             */
            function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
                (bool success, bytes memory returndata) = target.staticcall(data);
                return verifyCallResultFromTarget(target, success, returndata);
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
             * but performing a delegate call.
             */
            function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
                (bool success, bytes memory returndata) = target.delegatecall(data);
                return verifyCallResultFromTarget(target, success, returndata);
            }
            /**
             * @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target
             * was not a contract or bubbling up the revert reason (falling back to {Errors.FailedCall}) in case
             * of an unsuccessful call.
             */
            function verifyCallResultFromTarget(
                address target,
                bool success,
                bytes memory returndata
            ) internal view returns (bytes memory) {
                if (!success) {
                    _revert(returndata);
                } else {
                    // only check if target is a contract if the call was successful and the return data is empty
                    // otherwise we already know that it was a contract
                    if (returndata.length == 0 && target.code.length == 0) {
                        revert AddressEmptyCode(target);
                    }
                    return returndata;
                }
            }
            /**
             * @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the
             * revert reason or with a default {Errors.FailedCall} error.
             */
            function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) {
                if (!success) {
                    _revert(returndata);
                } else {
                    return returndata;
                }
            }
            /**
             * @dev Reverts with returndata if present. Otherwise reverts with {Errors.FailedCall}.
             */
            function _revert(bytes memory returndata) private pure {
                // Look for revert reason and bubble it up if present
                if (returndata.length > 0) {
                    // The easiest way to bubble the revert reason is using memory via assembly
                    assembly ("memory-safe") {
                        let returndata_size := mload(returndata)
                        revert(add(32, returndata), returndata_size)
                    }
                } else {
                    revert Errors.FailedCall();
                }
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)
        pragma solidity ^0.8.20;
        /**
         * @dev Provides information about the current execution context, including the
         * sender of the transaction and its data. While these are generally available
         * via msg.sender and msg.data, they should not be accessed in such a direct
         * manner, since when dealing with meta-transactions the account sending and
         * paying for execution may not be the actual sender (as far as an application
         * is concerned).
         *
         * This contract is only required for intermediate, library-like contracts.
         */
        abstract contract Context {
            function _msgSender() internal view virtual returns (address) {
                return msg.sender;
            }
            function _msgData() internal view virtual returns (bytes calldata) {
                return msg.data;
            }
            function _contextSuffixLength() internal view virtual returns (uint256) {
                return 0;
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/ECDSA.sol)
        pragma solidity ^0.8.20;
        /**
         * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
         *
         * These functions can be used to verify that a message was signed by the holder
         * of the private keys of a given address.
         */
        library ECDSA {
            enum RecoverError {
                NoError,
                InvalidSignature,
                InvalidSignatureLength,
                InvalidSignatureS
            }
            /**
             * @dev The signature derives the `address(0)`.
             */
            error ECDSAInvalidSignature();
            /**
             * @dev The signature has an invalid length.
             */
            error ECDSAInvalidSignatureLength(uint256 length);
            /**
             * @dev The signature has an S value that is in the upper half order.
             */
            error ECDSAInvalidSignatureS(bytes32 s);
            /**
             * @dev Returns the address that signed a hashed message (`hash`) with `signature` or an error. This will not
             * return address(0) without also returning an error description. Errors are documented using an enum (error type)
             * and a bytes32 providing additional information about the error.
             *
             * If no error is returned, then the address can be used for verification purposes.
             *
             * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
             * this function rejects them by requiring the `s` value to be in the lower
             * half order, and the `v` value to be either 27 or 28.
             *
             * IMPORTANT: `hash` _must_ be the result of a hash operation for the
             * verification to be secure: it is possible to craft signatures that
             * recover to arbitrary addresses for non-hashed data. A safe way to ensure
             * this is by receiving a hash of the original message (which may otherwise
             * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
             *
             * Documentation for signature generation:
             * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
             * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
             */
            function tryRecover(
                bytes32 hash,
                bytes memory signature
            ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
                if (signature.length == 65) {
                    bytes32 r;
                    bytes32 s;
                    uint8 v;
                    // ecrecover takes the signature parameters, and the only way to get them
                    // currently is to use assembly.
                    assembly ("memory-safe") {
                        r := mload(add(signature, 0x20))
                        s := mload(add(signature, 0x40))
                        v := byte(0, mload(add(signature, 0x60)))
                    }
                    return tryRecover(hash, v, r, s);
                } else {
                    return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length));
                }
            }
            /**
             * @dev Returns the address that signed a hashed message (`hash`) with
             * `signature`. This address can then be used for verification purposes.
             *
             * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
             * this function rejects them by requiring the `s` value to be in the lower
             * half order, and the `v` value to be either 27 or 28.
             *
             * IMPORTANT: `hash` _must_ be the result of a hash operation for the
             * verification to be secure: it is possible to craft signatures that
             * recover to arbitrary addresses for non-hashed data. A safe way to ensure
             * this is by receiving a hash of the original message (which may otherwise
             * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
             */
            function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
                (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, signature);
                _throwError(error, errorArg);
                return recovered;
            }
            /**
             * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
             *
             * See https://eips.ethereum.org/EIPS/eip-2098[ERC-2098 short signatures]
             */
            function tryRecover(
                bytes32 hash,
                bytes32 r,
                bytes32 vs
            ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
                unchecked {
                    bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
                    // We do not check for an overflow here since the shift operation results in 0 or 1.
                    uint8 v = uint8((uint256(vs) >> 255) + 27);
                    return tryRecover(hash, v, r, s);
                }
            }
            /**
             * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
             */
            function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
                (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, r, vs);
                _throwError(error, errorArg);
                return recovered;
            }
            /**
             * @dev Overload of {ECDSA-tryRecover} that receives the `v`,
             * `r` and `s` signature fields separately.
             */
            function tryRecover(
                bytes32 hash,
                uint8 v,
                bytes32 r,
                bytes32 s
            ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
                // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
                // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
                // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
                // signatures from current libraries generate a unique signature with an s-value in the lower half order.
                //
                // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
                // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
                // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
                // these malleable signatures as well.
                if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
                    return (address(0), RecoverError.InvalidSignatureS, s);
                }
                // If the signature is valid (and not malleable), return the signer address
                address signer = ecrecover(hash, v, r, s);
                if (signer == address(0)) {
                    return (address(0), RecoverError.InvalidSignature, bytes32(0));
                }
                return (signer, RecoverError.NoError, bytes32(0));
            }
            /**
             * @dev Overload of {ECDSA-recover} that receives the `v`,
             * `r` and `s` signature fields separately.
             */
            function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
                (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, v, r, s);
                _throwError(error, errorArg);
                return recovered;
            }
            /**
             * @dev Optionally reverts with the corresponding custom error according to the `error` argument provided.
             */
            function _throwError(RecoverError error, bytes32 errorArg) private pure {
                if (error == RecoverError.NoError) {
                    return; // no error: do nothing
                } else if (error == RecoverError.InvalidSignature) {
                    revert ECDSAInvalidSignature();
                } else if (error == RecoverError.InvalidSignatureLength) {
                    revert ECDSAInvalidSignatureLength(uint256(errorArg));
                } else if (error == RecoverError.InvalidSignatureS) {
                    revert ECDSAInvalidSignatureS(errorArg);
                }
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/Hashes.sol)
        pragma solidity ^0.8.20;
        /**
         * @dev Library of standard hash functions.
         *
         * _Available since v5.1._
         */
        library Hashes {
            /**
             * @dev Commutative Keccak256 hash of a sorted pair of bytes32. Frequently used when working with merkle proofs.
             *
             * NOTE: Equivalent to the `standardNodeHash` in our https://github.com/OpenZeppelin/merkle-tree[JavaScript library].
             */
            function commutativeKeccak256(bytes32 a, bytes32 b) internal pure returns (bytes32) {
                return a < b ? _efficientKeccak256(a, b) : _efficientKeccak256(b, a);
            }
            /**
             * @dev Implementation of keccak256(abi.encode(a, b)) that doesn't allocate or expand memory.
             */
            function _efficientKeccak256(bytes32 a, bytes32 b) private pure returns (bytes32 value) {
                assembly ("memory-safe") {
                    mstore(0x00, a)
                    mstore(0x20, b)
                    value := keccak256(0x00, 0x40)
                }
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/MerkleProof.sol)
        // This file was procedurally generated from scripts/generate/templates/MerkleProof.js.
        pragma solidity ^0.8.20;
        import {Hashes} from "./Hashes.sol";
        /**
         * @dev These functions deal with verification of Merkle Tree proofs.
         *
         * The tree and the proofs can be generated using our
         * https://github.com/OpenZeppelin/merkle-tree[JavaScript library].
         * You will find a quickstart guide in the readme.
         *
         * WARNING: You should avoid using leaf values that are 64 bytes long prior to
         * hashing, or use a hash function other than keccak256 for hashing leaves.
         * This is because the concatenation of a sorted pair of internal nodes in
         * the Merkle tree could be reinterpreted as a leaf value.
         * OpenZeppelin's JavaScript library generates Merkle trees that are safe
         * against this attack out of the box.
         *
         * IMPORTANT: Consider memory side-effects when using custom hashing functions
         * that access memory in an unsafe way.
         *
         * NOTE: This library supports proof verification for merkle trees built using
         * custom _commutative_ hashing functions (i.e. `H(a, b) == H(b, a)`). Proving
         * leaf inclusion in trees built using non-commutative hashing functions requires
         * additional logic that is not supported by this library.
         */
        library MerkleProof {
            /**
             *@dev The multiproof provided is not valid.
             */
            error MerkleProofInvalidMultiproof();
            /**
             * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
             * defined by `root`. For this, a `proof` must be provided, containing
             * sibling hashes on the branch from the leaf to the root of the tree. Each
             * pair of leaves and each pair of pre-images are assumed to be sorted.
             *
             * This version handles proofs in memory with the default hashing function.
             */
            function verify(bytes32[] memory proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {
                return processProof(proof, leaf) == root;
            }
            /**
             * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
             * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
             * hash matches the root of the tree. When processing the proof, the pairs
             * of leaves & pre-images are assumed to be sorted.
             *
             * This version handles proofs in memory with the default hashing function.
             */
            function processProof(bytes32[] memory proof, bytes32 leaf) internal pure returns (bytes32) {
                bytes32 computedHash = leaf;
                for (uint256 i = 0; i < proof.length; i++) {
                    computedHash = Hashes.commutativeKeccak256(computedHash, proof[i]);
                }
                return computedHash;
            }
            /**
             * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
             * defined by `root`. For this, a `proof` must be provided, containing
             * sibling hashes on the branch from the leaf to the root of the tree. Each
             * pair of leaves and each pair of pre-images are assumed to be sorted.
             *
             * This version handles proofs in memory with a custom hashing function.
             */
            function verify(
                bytes32[] memory proof,
                bytes32 root,
                bytes32 leaf,
                function(bytes32, bytes32) view returns (bytes32) hasher
            ) internal view returns (bool) {
                return processProof(proof, leaf, hasher) == root;
            }
            /**
             * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
             * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
             * hash matches the root of the tree. When processing the proof, the pairs
             * of leaves & pre-images are assumed to be sorted.
             *
             * This version handles proofs in memory with a custom hashing function.
             */
            function processProof(
                bytes32[] memory proof,
                bytes32 leaf,
                function(bytes32, bytes32) view returns (bytes32) hasher
            ) internal view returns (bytes32) {
                bytes32 computedHash = leaf;
                for (uint256 i = 0; i < proof.length; i++) {
                    computedHash = hasher(computedHash, proof[i]);
                }
                return computedHash;
            }
            /**
             * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
             * defined by `root`. For this, a `proof` must be provided, containing
             * sibling hashes on the branch from the leaf to the root of the tree. Each
             * pair of leaves and each pair of pre-images are assumed to be sorted.
             *
             * This version handles proofs in calldata with the default hashing function.
             */
            function verifyCalldata(bytes32[] calldata proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {
                return processProofCalldata(proof, leaf) == root;
            }
            /**
             * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
             * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
             * hash matches the root of the tree. When processing the proof, the pairs
             * of leaves & pre-images are assumed to be sorted.
             *
             * This version handles proofs in calldata with the default hashing function.
             */
            function processProofCalldata(bytes32[] calldata proof, bytes32 leaf) internal pure returns (bytes32) {
                bytes32 computedHash = leaf;
                for (uint256 i = 0; i < proof.length; i++) {
                    computedHash = Hashes.commutativeKeccak256(computedHash, proof[i]);
                }
                return computedHash;
            }
            /**
             * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
             * defined by `root`. For this, a `proof` must be provided, containing
             * sibling hashes on the branch from the leaf to the root of the tree. Each
             * pair of leaves and each pair of pre-images are assumed to be sorted.
             *
             * This version handles proofs in calldata with a custom hashing function.
             */
            function verifyCalldata(
                bytes32[] calldata proof,
                bytes32 root,
                bytes32 leaf,
                function(bytes32, bytes32) view returns (bytes32) hasher
            ) internal view returns (bool) {
                return processProofCalldata(proof, leaf, hasher) == root;
            }
            /**
             * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
             * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
             * hash matches the root of the tree. When processing the proof, the pairs
             * of leaves & pre-images are assumed to be sorted.
             *
             * This version handles proofs in calldata with a custom hashing function.
             */
            function processProofCalldata(
                bytes32[] calldata proof,
                bytes32 leaf,
                function(bytes32, bytes32) view returns (bytes32) hasher
            ) internal view returns (bytes32) {
                bytes32 computedHash = leaf;
                for (uint256 i = 0; i < proof.length; i++) {
                    computedHash = hasher(computedHash, proof[i]);
                }
                return computedHash;
            }
            /**
             * @dev Returns true if the `leaves` can be simultaneously proven to be a part of a Merkle tree defined by
             * `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
             *
             * This version handles multiproofs in memory with the default hashing function.
             *
             * CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
             *
             * NOTE: Consider the case where `root == proof[0] && leaves.length == 0` as it will return `true`.
             * The `leaves` must be validated independently. See {processMultiProof}.
             */
            function multiProofVerify(
                bytes32[] memory proof,
                bool[] memory proofFlags,
                bytes32 root,
                bytes32[] memory leaves
            ) internal pure returns (bool) {
                return processMultiProof(proof, proofFlags, leaves) == root;
            }
            /**
             * @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
             * proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
             * leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
             * respectively.
             *
             * This version handles multiproofs in memory with the default hashing function.
             *
             * CAUTION: Not all Merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
             * is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
             * tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
             *
             * NOTE: The _empty set_ (i.e. the case where `proof.length == 1 && leaves.length == 0`) is considered a no-op,
             * and therefore a valid multiproof (i.e. it returns `proof[0]`). Consider disallowing this case if you're not
             * validating the leaves elsewhere.
             */
            function processMultiProof(
                bytes32[] memory proof,
                bool[] memory proofFlags,
                bytes32[] memory leaves
            ) internal pure returns (bytes32 merkleRoot) {
                // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
                // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
                // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
                // the Merkle tree.
                uint256 leavesLen = leaves.length;
                uint256 proofFlagsLen = proofFlags.length;
                // Check proof validity.
                if (leavesLen + proof.length != proofFlagsLen + 1) {
                    revert MerkleProofInvalidMultiproof();
                }
                // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
                // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
                bytes32[] memory hashes = new bytes32[](proofFlagsLen);
                uint256 leafPos = 0;
                uint256 hashPos = 0;
                uint256 proofPos = 0;
                // At each step, we compute the next hash using two values:
                // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
                //   get the next hash.
                // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
                //   `proof` array.
                for (uint256 i = 0; i < proofFlagsLen; i++) {
                    bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
                    bytes32 b = proofFlags[i]
                        ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
                        : proof[proofPos++];
                    hashes[i] = Hashes.commutativeKeccak256(a, b);
                }
                if (proofFlagsLen > 0) {
                    if (proofPos != proof.length) {
                        revert MerkleProofInvalidMultiproof();
                    }
                    unchecked {
                        return hashes[proofFlagsLen - 1];
                    }
                } else if (leavesLen > 0) {
                    return leaves[0];
                } else {
                    return proof[0];
                }
            }
            /**
             * @dev Returns true if the `leaves` can be simultaneously proven to be a part of a Merkle tree defined by
             * `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
             *
             * This version handles multiproofs in memory with a custom hashing function.
             *
             * CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
             *
             * NOTE: Consider the case where `root == proof[0] && leaves.length == 0` as it will return `true`.
             * The `leaves` must be validated independently. See {processMultiProof}.
             */
            function multiProofVerify(
                bytes32[] memory proof,
                bool[] memory proofFlags,
                bytes32 root,
                bytes32[] memory leaves,
                function(bytes32, bytes32) view returns (bytes32) hasher
            ) internal view returns (bool) {
                return processMultiProof(proof, proofFlags, leaves, hasher) == root;
            }
            /**
             * @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
             * proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
             * leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
             * respectively.
             *
             * This version handles multiproofs in memory with a custom hashing function.
             *
             * CAUTION: Not all Merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
             * is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
             * tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
             *
             * NOTE: The _empty set_ (i.e. the case where `proof.length == 1 && leaves.length == 0`) is considered a no-op,
             * and therefore a valid multiproof (i.e. it returns `proof[0]`). Consider disallowing this case if you're not
             * validating the leaves elsewhere.
             */
            function processMultiProof(
                bytes32[] memory proof,
                bool[] memory proofFlags,
                bytes32[] memory leaves,
                function(bytes32, bytes32) view returns (bytes32) hasher
            ) internal view returns (bytes32 merkleRoot) {
                // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
                // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
                // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
                // the Merkle tree.
                uint256 leavesLen = leaves.length;
                uint256 proofFlagsLen = proofFlags.length;
                // Check proof validity.
                if (leavesLen + proof.length != proofFlagsLen + 1) {
                    revert MerkleProofInvalidMultiproof();
                }
                // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
                // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
                bytes32[] memory hashes = new bytes32[](proofFlagsLen);
                uint256 leafPos = 0;
                uint256 hashPos = 0;
                uint256 proofPos = 0;
                // At each step, we compute the next hash using two values:
                // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
                //   get the next hash.
                // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
                //   `proof` array.
                for (uint256 i = 0; i < proofFlagsLen; i++) {
                    bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
                    bytes32 b = proofFlags[i]
                        ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
                        : proof[proofPos++];
                    hashes[i] = hasher(a, b);
                }
                if (proofFlagsLen > 0) {
                    if (proofPos != proof.length) {
                        revert MerkleProofInvalidMultiproof();
                    }
                    unchecked {
                        return hashes[proofFlagsLen - 1];
                    }
                } else if (leavesLen > 0) {
                    return leaves[0];
                } else {
                    return proof[0];
                }
            }
            /**
             * @dev Returns true if the `leaves` can be simultaneously proven to be a part of a Merkle tree defined by
             * `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
             *
             * This version handles multiproofs in calldata with the default hashing function.
             *
             * CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
             *
             * NOTE: Consider the case where `root == proof[0] && leaves.length == 0` as it will return `true`.
             * The `leaves` must be validated independently. See {processMultiProofCalldata}.
             */
            function multiProofVerifyCalldata(
                bytes32[] calldata proof,
                bool[] calldata proofFlags,
                bytes32 root,
                bytes32[] memory leaves
            ) internal pure returns (bool) {
                return processMultiProofCalldata(proof, proofFlags, leaves) == root;
            }
            /**
             * @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
             * proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
             * leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
             * respectively.
             *
             * This version handles multiproofs in calldata with the default hashing function.
             *
             * CAUTION: Not all Merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
             * is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
             * tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
             *
             * NOTE: The _empty set_ (i.e. the case where `proof.length == 1 && leaves.length == 0`) is considered a no-op,
             * and therefore a valid multiproof (i.e. it returns `proof[0]`). Consider disallowing this case if you're not
             * validating the leaves elsewhere.
             */
            function processMultiProofCalldata(
                bytes32[] calldata proof,
                bool[] calldata proofFlags,
                bytes32[] memory leaves
            ) internal pure returns (bytes32 merkleRoot) {
                // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
                // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
                // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
                // the Merkle tree.
                uint256 leavesLen = leaves.length;
                uint256 proofFlagsLen = proofFlags.length;
                // Check proof validity.
                if (leavesLen + proof.length != proofFlagsLen + 1) {
                    revert MerkleProofInvalidMultiproof();
                }
                // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
                // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
                bytes32[] memory hashes = new bytes32[](proofFlagsLen);
                uint256 leafPos = 0;
                uint256 hashPos = 0;
                uint256 proofPos = 0;
                // At each step, we compute the next hash using two values:
                // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
                //   get the next hash.
                // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
                //   `proof` array.
                for (uint256 i = 0; i < proofFlagsLen; i++) {
                    bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
                    bytes32 b = proofFlags[i]
                        ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
                        : proof[proofPos++];
                    hashes[i] = Hashes.commutativeKeccak256(a, b);
                }
                if (proofFlagsLen > 0) {
                    if (proofPos != proof.length) {
                        revert MerkleProofInvalidMultiproof();
                    }
                    unchecked {
                        return hashes[proofFlagsLen - 1];
                    }
                } else if (leavesLen > 0) {
                    return leaves[0];
                } else {
                    return proof[0];
                }
            }
            /**
             * @dev Returns true if the `leaves` can be simultaneously proven to be a part of a Merkle tree defined by
             * `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
             *
             * This version handles multiproofs in calldata with a custom hashing function.
             *
             * CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
             *
             * NOTE: Consider the case where `root == proof[0] && leaves.length == 0` as it will return `true`.
             * The `leaves` must be validated independently. See {processMultiProofCalldata}.
             */
            function multiProofVerifyCalldata(
                bytes32[] calldata proof,
                bool[] calldata proofFlags,
                bytes32 root,
                bytes32[] memory leaves,
                function(bytes32, bytes32) view returns (bytes32) hasher
            ) internal view returns (bool) {
                return processMultiProofCalldata(proof, proofFlags, leaves, hasher) == root;
            }
            /**
             * @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
             * proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
             * leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
             * respectively.
             *
             * This version handles multiproofs in calldata with a custom hashing function.
             *
             * CAUTION: Not all Merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
             * is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
             * tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
             *
             * NOTE: The _empty set_ (i.e. the case where `proof.length == 1 && leaves.length == 0`) is considered a no-op,
             * and therefore a valid multiproof (i.e. it returns `proof[0]`). Consider disallowing this case if you're not
             * validating the leaves elsewhere.
             */
            function processMultiProofCalldata(
                bytes32[] calldata proof,
                bool[] calldata proofFlags,
                bytes32[] memory leaves,
                function(bytes32, bytes32) view returns (bytes32) hasher
            ) internal view returns (bytes32 merkleRoot) {
                // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
                // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
                // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
                // the Merkle tree.
                uint256 leavesLen = leaves.length;
                uint256 proofFlagsLen = proofFlags.length;
                // Check proof validity.
                if (leavesLen + proof.length != proofFlagsLen + 1) {
                    revert MerkleProofInvalidMultiproof();
                }
                // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
                // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
                bytes32[] memory hashes = new bytes32[](proofFlagsLen);
                uint256 leafPos = 0;
                uint256 hashPos = 0;
                uint256 proofPos = 0;
                // At each step, we compute the next hash using two values:
                // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
                //   get the next hash.
                // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
                //   `proof` array.
                for (uint256 i = 0; i < proofFlagsLen; i++) {
                    bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
                    bytes32 b = proofFlags[i]
                        ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
                        : proof[proofPos++];
                    hashes[i] = hasher(a, b);
                }
                if (proofFlagsLen > 0) {
                    if (proofPos != proof.length) {
                        revert MerkleProofInvalidMultiproof();
                    }
                    unchecked {
                        return hashes[proofFlagsLen - 1];
                    }
                } else if (leavesLen > 0) {
                    return leaves[0];
                } else {
                    return proof[0];
                }
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.1.0) (utils/Errors.sol)
        pragma solidity ^0.8.20;
        /**
         * @dev Collection of common custom errors used in multiple contracts
         *
         * IMPORTANT: Backwards compatibility is not guaranteed in future versions of the library.
         * It is recommended to avoid relying on the error API for critical functionality.
         *
         * _Available since v5.1._
         */
        library Errors {
            /**
             * @dev The ETH balance of the account is not enough to perform the operation.
             */
            error InsufficientBalance(uint256 balance, uint256 needed);
            /**
             * @dev A call to an address target failed. The target may have reverted.
             */
            error FailedCall();
            /**
             * @dev The deployment failed.
             */
            error FailedDeployment();
            /**
             * @dev A necessary precompile is missing.
             */
            error MissingPrecompile(address);
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.1.0) (utils/introspection/IERC165.sol)
        pragma solidity ^0.8.20;
        /**
         * @dev Interface of the ERC-165 standard, as defined in the
         * https://eips.ethereum.org/EIPS/eip-165[ERC].
         *
         * Implementers can declare support of contract interfaces, which can then be
         * queried by others ({ERC165Checker}).
         *
         * For an implementation, see {ERC165}.
         */
        interface IERC165 {
            /**
             * @dev Returns true if this contract implements the interface defined by
             * `interfaceId`. See the corresponding
             * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[ERC section]
             * to learn more about how these ids are created.
             *
             * This function call must use less than 30 000 gas.
             */
            function supportsInterface(bytes4 interfaceId) external view returns (bool);
        }
        // SPDX-License-Identifier: UNLICENSED
        pragma solidity ^0.8.20;
        error InvalidSignature();
        error AlreadyClaimed();
        error ZeroAddress();
        error DeadlinePassed();
        error InvalidProofs();
        error RootHashAlreadySet();
        error SlotExists();
        error InvalidRecipient();
        error InvalidCaller();
        error VestingConfigNotSet();
        error InvalidVestingConfig();
        error EmptyArray();
        error InvalidUserVestingId();// SPDX-License-Identifier: UNLICENSED
        pragma solidity ^0.8.20;
        import "@openzeppelin/contracts/access/Ownable.sol";
        import "@openzeppelin/contracts/utils/cryptography/MerkleProof.sol";
        import "@openzeppelin/contracts/utils/cryptography/ECDSA.sol";
        import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
        import "../VestingUtils.sol";
        import "../Errors.sol";
        interface IOldDistributor {
            function slotInfos(bytes32 userVestingId) external view returns (uint256, uint256, uint128, uint128, uint32, uint32, uint32, bool);
        }
        /**
         * @title UprisingAirdropDistributor
         * @author @trmaphi
         * @notice This contract is used to patch the old uprising airdrop distributor.
         */
        contract UprisingAirdropDistributorAfterInit is Ownable {
            /// From Distributor    
            using SafeERC20 for IERC20;
            address public batchDistributor;
            IERC20 public immutable paymentToken;
            IOldDistributor public oldDistributor;
            // userVestingId => SlotInfo
            mapping(bytes32 => SlotInfo) public _slotInfos;
            // 10_000 = 100%
            uint256 public constant BASIC_POINT_DECIMALS = 10_000;
            struct VestingConfig {
                uint32 initClaimPercent;
                uint32 intervalPercent;
                uint32 intervalDays;
                uint128 initDeadline;
            }
            
            struct SlotInfo {
                uint256 amount;
                uint256 claimed;
                uint128 initDeadline; // The timestamp of the deadline of the airdrop even with amount still available, user won't be able to claim
                uint128 startTime;
                uint32 initClaimPercent;
                uint32 intervalPercent;
                uint32 intervalDays;
                bool initialized;
            }
            
            event DistributorUpdated(address indexed oldDistributor, address indexed newDistributor);
            event Claimed(address indexed caller, bytes32 indexed userVestingId, address indexed recipient, uint256 amount);
            /// From Distributor
            event SlotInitialized(address indexed initializer, address indexed recipient, uint256 amount);
            constructor(address _paymentToken, address _oldDistributor) Ownable(msg.sender) {
                if (_paymentToken == address(0) || _oldDistributor == address(0)) revert ZeroAddress();
                paymentToken = IERC20(_paymentToken);
                oldDistributor = IOldDistributor(_oldDistributor);
            }
            modifier onlyBatchDistributor() {
                require(batchDistributor == msg.sender, "Caller is not the batch distributor");
                _;
            }
            /**
             * Get the slot info of a user, using the old distributor if the slot is not initialized
             * @param userVestingId The user vesting id
             * @return The slot info
             */
            function slotInfos(bytes32 userVestingId) external view returns (SlotInfo memory) {
                if (_slotInfos[userVestingId].amount == 0) {
                    (
                        uint256 amount,
                        uint256 claimed,
                        uint128 initDeadline,
                        uint128 startTime,
                        uint32 initClaimPercent,
                        uint32 intervalPercent,
                        uint32 intervalDays,
                        bool initialized
                    ) = oldDistributor.slotInfos(userVestingId);
                    return SlotInfo({
                        amount: amount,
                        claimed: claimed,
                        initDeadline: initDeadline,
                        startTime: startTime,
                        initClaimPercent: initClaimPercent,
                        intervalPercent: intervalPercent,
                        intervalDays: intervalDays,
                        initialized: initialized
                    });
                }
                
                return _slotInfos[userVestingId];
            }
            /**
             * @notice Claim the airdrop
             */
            function setBatchDistributor(address newDistributor) external onlyOwner {        
                batchDistributor = newDistributor;
                emit DistributorUpdated(batchDistributor, newDistributor);
            }
            /**
             * @notice Initialize the claim for a user
             * @param caller The caller of the function forwarded from the batch distributor
             * @param proofs The merkle proof for the user
             * @param recipient The recipient of the airdrop
             */
            function initClaim(address caller, bytes calldata proofs, address recipient) external onlyBatchDistributor {
                revert DeadlinePassed();
            }
            /**
             * @notice Claim the airdrop
             * @dev
             * - Requirement:
             *      - Caller MUST be the one initialized the claim
             */
            function _verifyCaller(address caller, bytes32 userVestingId) internal view {
                if (caller != VestingUtils.bytes32ToAddress(userVestingId)) revert InvalidCaller();
            }
            /**
             * @notice Claim the airdrop for a user
             * @param caller The caller of the function forwarded from the batch distributor
             * @param userVestingId The user vesting id
             * @param recipient The recipient of the airdrop
             */
            function claim(address caller, bytes32 userVestingId, address recipient) external onlyBatchDistributor {
                SlotInfo memory slot = this.slotInfos(userVestingId);
                if (_slotInfos[userVestingId].amount == 0) {
                    _slotInfos[userVestingId] = slot;
                }
                // Check if the slot is initialized
                if (!slot.initialized) revert DeadlinePassed();
                if (_slotInfos[userVestingId].claimed >= _slotInfos[userVestingId].amount) revert AlreadyClaimed();
                _verifyCaller(caller, userVestingId);
                uint256 claimAmount = _calculateClaimAmount(userVestingId);
                if (claimAmount == 0) revert AlreadyClaimed();
                _transferToRecipient(userVestingId, recipient, claimAmount);
                emit Claimed(caller, userVestingId, recipient, claimAmount);
            }
            /**
             * @notice Calculate the claimable amount for a user
             * @param userVestingId The user vesting id
             * @return The claimable amount
             */
            function _calculateClaimAmount(bytes32 userVestingId) internal view returns (uint256) {
                SlotInfo memory slot = _slotInfos[userVestingId];        
                // Calculate time elapsed since vesting started
                uint256 timeElapsed = (block.timestamp - slot.startTime) / (slot.intervalDays * 1 days);
                
                // Calculate total percentage
                uint256 currentPercent = (timeElapsed * slot.intervalPercent) + slot.initClaimPercent;
                if (currentPercent > BASIC_POINT_DECIMALS) currentPercent = BASIC_POINT_DECIMALS;
                // Calculate total vested amount
                uint256 totalVestedAmount = (slot.amount * currentPercent) / BASIC_POINT_DECIMALS;
                
                // Calculate remaining claimable amount
                uint256 amountToClaim = totalVestedAmount - slot.claimed;
                
                return amountToClaim;
            }
            /**
             * @notice Transfer the airdrop to the recipient
             * @param userVestingId The user vesting id
             * @param recipient The recipient of the airdrop
             * @param amount The amount to transfer
             */
            function _transferToRecipient(bytes32 userVestingId, address recipient, uint256 amount) internal {
                _slotInfos[userVestingId].claimed += amount;
                paymentToken.safeTransfer(recipient, amount);
            }
            /**
             * @notice Emergency function to recover wrong tokens
             * @param _token The token to recover
             * @param _amount The amount to recover
             */
            function recoverToken(address _token, uint256 _amount) external onlyOwner {
                IERC20(_token).safeTransfer(owner(), _amount);
            }
        }// SPDX-License-Identifier: UNLICENSED
        pragma solidity ^0.8.20;
        library VestingUtils {
            /**
             * @dev Converts an address to bytes32.
             * @param _addr The address to convert.
             * @return The bytes32 representation of the address.
             */
            function addressToBytes32(address _addr) internal pure returns (bytes32) {
                return bytes32(uint256(uint160(_addr)));
            }
            /**
             * @dev Converts bytes32 to an address.
             * @param _b The bytes32 value to convert.
             * @return The address representation of bytes32.
             */
            function bytes32ToAddress(bytes32 _b) internal pure returns (address) {
                return address(uint160(uint256(_b)));
            }
        }

        File 3 of 4: KIP
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.22;
        import {ERC20} from "@openzeppelin/contracts/token/ERC20/ERC20.sol";
        contract KIP is ERC20 {
            constructor(address beneficiary) ERC20("KIP Protocol", "KIP") {
                _mint(beneficiary, 10000000000 * 10 ** decimals());
            }
        }// SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/ERC20.sol)
        pragma solidity ^0.8.20;
        import {IERC20} from "./IERC20.sol";
        import {IERC20Metadata} from "./extensions/IERC20Metadata.sol";
        import {Context} from "../../utils/Context.sol";
        import {IERC20Errors} from "../../interfaces/draft-IERC6093.sol";
        /**
         * @dev Implementation of the {IERC20} interface.
         *
         * This implementation is agnostic to the way tokens are created. This means
         * that a supply mechanism has to be added in a derived contract using {_mint}.
         *
         * TIP: For a detailed writeup see our guide
         * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
         * to implement supply mechanisms].
         *
         * The default value of {decimals} is 18. To change this, you should override
         * this function so it returns a different value.
         *
         * We have followed general OpenZeppelin Contracts guidelines: functions revert
         * instead returning `false` on failure. This behavior is nonetheless
         * conventional and does not conflict with the expectations of ERC-20
         * applications.
         */
        abstract contract ERC20 is Context, IERC20, IERC20Metadata, IERC20Errors {
            mapping(address account => uint256) private _balances;
            mapping(address account => mapping(address spender => uint256)) private _allowances;
            uint256 private _totalSupply;
            string private _name;
            string private _symbol;
            /**
             * @dev Sets the values for {name} and {symbol}.
             *
             * All two of these values are immutable: they can only be set once during
             * construction.
             */
            constructor(string memory name_, string memory symbol_) {
                _name = name_;
                _symbol = symbol_;
            }
            /**
             * @dev Returns the name of the token.
             */
            function name() public view virtual returns (string memory) {
                return _name;
            }
            /**
             * @dev Returns the symbol of the token, usually a shorter version of the
             * name.
             */
            function symbol() public view virtual returns (string memory) {
                return _symbol;
            }
            /**
             * @dev Returns the number of decimals used to get its user representation.
             * For example, if `decimals` equals `2`, a balance of `505` tokens should
             * be displayed to a user as `5.05` (`505 / 10 ** 2`).
             *
             * Tokens usually opt for a value of 18, imitating the relationship between
             * Ether and Wei. This is the default value returned by this function, unless
             * it's overridden.
             *
             * NOTE: This information is only used for _display_ purposes: it in
             * no way affects any of the arithmetic of the contract, including
             * {IERC20-balanceOf} and {IERC20-transfer}.
             */
            function decimals() public view virtual returns (uint8) {
                return 18;
            }
            /**
             * @dev See {IERC20-totalSupply}.
             */
            function totalSupply() public view virtual returns (uint256) {
                return _totalSupply;
            }
            /**
             * @dev See {IERC20-balanceOf}.
             */
            function balanceOf(address account) public view virtual returns (uint256) {
                return _balances[account];
            }
            /**
             * @dev See {IERC20-transfer}.
             *
             * Requirements:
             *
             * - `to` cannot be the zero address.
             * - the caller must have a balance of at least `value`.
             */
            function transfer(address to, uint256 value) public virtual returns (bool) {
                address owner = _msgSender();
                _transfer(owner, to, value);
                return true;
            }
            /**
             * @dev See {IERC20-allowance}.
             */
            function allowance(address owner, address spender) public view virtual returns (uint256) {
                return _allowances[owner][spender];
            }
            /**
             * @dev See {IERC20-approve}.
             *
             * NOTE: If `value` is the maximum `uint256`, the allowance is not updated on
             * `transferFrom`. This is semantically equivalent to an infinite approval.
             *
             * Requirements:
             *
             * - `spender` cannot be the zero address.
             */
            function approve(address spender, uint256 value) public virtual returns (bool) {
                address owner = _msgSender();
                _approve(owner, spender, value);
                return true;
            }
            /**
             * @dev See {IERC20-transferFrom}.
             *
             * Skips emitting an {Approval} event indicating an allowance update. This is not
             * required by the ERC. See {xref-ERC20-_approve-address-address-uint256-bool-}[_approve].
             *
             * NOTE: Does not update the allowance if the current allowance
             * is the maximum `uint256`.
             *
             * Requirements:
             *
             * - `from` and `to` cannot be the zero address.
             * - `from` must have a balance of at least `value`.
             * - the caller must have allowance for ``from``'s tokens of at least
             * `value`.
             */
            function transferFrom(address from, address to, uint256 value) public virtual returns (bool) {
                address spender = _msgSender();
                _spendAllowance(from, spender, value);
                _transfer(from, to, value);
                return true;
            }
            /**
             * @dev Moves a `value` amount of tokens from `from` to `to`.
             *
             * This internal function is equivalent to {transfer}, and can be used to
             * e.g. implement automatic token fees, slashing mechanisms, etc.
             *
             * Emits a {Transfer} event.
             *
             * NOTE: This function is not virtual, {_update} should be overridden instead.
             */
            function _transfer(address from, address to, uint256 value) internal {
                if (from == address(0)) {
                    revert ERC20InvalidSender(address(0));
                }
                if (to == address(0)) {
                    revert ERC20InvalidReceiver(address(0));
                }
                _update(from, to, value);
            }
            /**
             * @dev Transfers a `value` amount of tokens from `from` to `to`, or alternatively mints (or burns) if `from`
             * (or `to`) is the zero address. All customizations to transfers, mints, and burns should be done by overriding
             * this function.
             *
             * Emits a {Transfer} event.
             */
            function _update(address from, address to, uint256 value) internal virtual {
                if (from == address(0)) {
                    // Overflow check required: The rest of the code assumes that totalSupply never overflows
                    _totalSupply += value;
                } else {
                    uint256 fromBalance = _balances[from];
                    if (fromBalance < value) {
                        revert ERC20InsufficientBalance(from, fromBalance, value);
                    }
                    unchecked {
                        // Overflow not possible: value <= fromBalance <= totalSupply.
                        _balances[from] = fromBalance - value;
                    }
                }
                if (to == address(0)) {
                    unchecked {
                        // Overflow not possible: value <= totalSupply or value <= fromBalance <= totalSupply.
                        _totalSupply -= value;
                    }
                } else {
                    unchecked {
                        // Overflow not possible: balance + value is at most totalSupply, which we know fits into a uint256.
                        _balances[to] += value;
                    }
                }
                emit Transfer(from, to, value);
            }
            /**
             * @dev Creates a `value` amount of tokens and assigns them to `account`, by transferring it from address(0).
             * Relies on the `_update` mechanism
             *
             * Emits a {Transfer} event with `from` set to the zero address.
             *
             * NOTE: This function is not virtual, {_update} should be overridden instead.
             */
            function _mint(address account, uint256 value) internal {
                if (account == address(0)) {
                    revert ERC20InvalidReceiver(address(0));
                }
                _update(address(0), account, value);
            }
            /**
             * @dev Destroys a `value` amount of tokens from `account`, lowering the total supply.
             * Relies on the `_update` mechanism.
             *
             * Emits a {Transfer} event with `to` set to the zero address.
             *
             * NOTE: This function is not virtual, {_update} should be overridden instead
             */
            function _burn(address account, uint256 value) internal {
                if (account == address(0)) {
                    revert ERC20InvalidSender(address(0));
                }
                _update(account, address(0), value);
            }
            /**
             * @dev Sets `value` as the allowance of `spender` over the `owner` s tokens.
             *
             * This internal function is equivalent to `approve`, and can be used to
             * e.g. set automatic allowances for certain subsystems, etc.
             *
             * Emits an {Approval} event.
             *
             * Requirements:
             *
             * - `owner` cannot be the zero address.
             * - `spender` cannot be the zero address.
             *
             * Overrides to this logic should be done to the variant with an additional `bool emitEvent` argument.
             */
            function _approve(address owner, address spender, uint256 value) internal {
                _approve(owner, spender, value, true);
            }
            /**
             * @dev Variant of {_approve} with an optional flag to enable or disable the {Approval} event.
             *
             * By default (when calling {_approve}) the flag is set to true. On the other hand, approval changes made by
             * `_spendAllowance` during the `transferFrom` operation set the flag to false. This saves gas by not emitting any
             * `Approval` event during `transferFrom` operations.
             *
             * Anyone who wishes to continue emitting `Approval` events on the`transferFrom` operation can force the flag to
             * true using the following override:
             *
             * ```solidity
             * function _approve(address owner, address spender, uint256 value, bool) internal virtual override {
             *     super._approve(owner, spender, value, true);
             * }
             * ```
             *
             * Requirements are the same as {_approve}.
             */
            function _approve(address owner, address spender, uint256 value, bool emitEvent) internal virtual {
                if (owner == address(0)) {
                    revert ERC20InvalidApprover(address(0));
                }
                if (spender == address(0)) {
                    revert ERC20InvalidSpender(address(0));
                }
                _allowances[owner][spender] = value;
                if (emitEvent) {
                    emit Approval(owner, spender, value);
                }
            }
            /**
             * @dev Updates `owner` s allowance for `spender` based on spent `value`.
             *
             * Does not update the allowance value in case of infinite allowance.
             * Revert if not enough allowance is available.
             *
             * Does not emit an {Approval} event.
             */
            function _spendAllowance(address owner, address spender, uint256 value) internal virtual {
                uint256 currentAllowance = allowance(owner, spender);
                if (currentAllowance != type(uint256).max) {
                    if (currentAllowance < value) {
                        revert ERC20InsufficientAllowance(spender, currentAllowance, value);
                    }
                    unchecked {
                        _approve(owner, spender, currentAllowance - value, false);
                    }
                }
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.1.0) (interfaces/draft-IERC6093.sol)
        pragma solidity ^0.8.20;
        /**
         * @dev Standard ERC-20 Errors
         * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-20 tokens.
         */
        interface IERC20Errors {
            /**
             * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
             * @param sender Address whose tokens are being transferred.
             * @param balance Current balance for the interacting account.
             * @param needed Minimum amount required to perform a transfer.
             */
            error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed);
            /**
             * @dev Indicates a failure with the token `sender`. Used in transfers.
             * @param sender Address whose tokens are being transferred.
             */
            error ERC20InvalidSender(address sender);
            /**
             * @dev Indicates a failure with the token `receiver`. Used in transfers.
             * @param receiver Address to which tokens are being transferred.
             */
            error ERC20InvalidReceiver(address receiver);
            /**
             * @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers.
             * @param spender Address that may be allowed to operate on tokens without being their owner.
             * @param allowance Amount of tokens a `spender` is allowed to operate with.
             * @param needed Minimum amount required to perform a transfer.
             */
            error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed);
            /**
             * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
             * @param approver Address initiating an approval operation.
             */
            error ERC20InvalidApprover(address approver);
            /**
             * @dev Indicates a failure with the `spender` to be approved. Used in approvals.
             * @param spender Address that may be allowed to operate on tokens without being their owner.
             */
            error ERC20InvalidSpender(address spender);
        }
        /**
         * @dev Standard ERC-721 Errors
         * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-721 tokens.
         */
        interface IERC721Errors {
            /**
             * @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in ERC-20.
             * Used in balance queries.
             * @param owner Address of the current owner of a token.
             */
            error ERC721InvalidOwner(address owner);
            /**
             * @dev Indicates a `tokenId` whose `owner` is the zero address.
             * @param tokenId Identifier number of a token.
             */
            error ERC721NonexistentToken(uint256 tokenId);
            /**
             * @dev Indicates an error related to the ownership over a particular token. Used in transfers.
             * @param sender Address whose tokens are being transferred.
             * @param tokenId Identifier number of a token.
             * @param owner Address of the current owner of a token.
             */
            error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner);
            /**
             * @dev Indicates a failure with the token `sender`. Used in transfers.
             * @param sender Address whose tokens are being transferred.
             */
            error ERC721InvalidSender(address sender);
            /**
             * @dev Indicates a failure with the token `receiver`. Used in transfers.
             * @param receiver Address to which tokens are being transferred.
             */
            error ERC721InvalidReceiver(address receiver);
            /**
             * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
             * @param operator Address that may be allowed to operate on tokens without being their owner.
             * @param tokenId Identifier number of a token.
             */
            error ERC721InsufficientApproval(address operator, uint256 tokenId);
            /**
             * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
             * @param approver Address initiating an approval operation.
             */
            error ERC721InvalidApprover(address approver);
            /**
             * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
             * @param operator Address that may be allowed to operate on tokens without being their owner.
             */
            error ERC721InvalidOperator(address operator);
        }
        /**
         * @dev Standard ERC-1155 Errors
         * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-1155 tokens.
         */
        interface IERC1155Errors {
            /**
             * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
             * @param sender Address whose tokens are being transferred.
             * @param balance Current balance for the interacting account.
             * @param needed Minimum amount required to perform a transfer.
             * @param tokenId Identifier number of a token.
             */
            error ERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId);
            /**
             * @dev Indicates a failure with the token `sender`. Used in transfers.
             * @param sender Address whose tokens are being transferred.
             */
            error ERC1155InvalidSender(address sender);
            /**
             * @dev Indicates a failure with the token `receiver`. Used in transfers.
             * @param receiver Address to which tokens are being transferred.
             */
            error ERC1155InvalidReceiver(address receiver);
            /**
             * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
             * @param operator Address that may be allowed to operate on tokens without being their owner.
             * @param owner Address of the current owner of a token.
             */
            error ERC1155MissingApprovalForAll(address operator, address owner);
            /**
             * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
             * @param approver Address initiating an approval operation.
             */
            error ERC1155InvalidApprover(address approver);
            /**
             * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
             * @param operator Address that may be allowed to operate on tokens without being their owner.
             */
            error ERC1155InvalidOperator(address operator);
            /**
             * @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation.
             * Used in batch transfers.
             * @param idsLength Length of the array of token identifiers
             * @param valuesLength Length of the array of token amounts
             */
            error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength);
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)
        pragma solidity ^0.8.20;
        /**
         * @dev Provides information about the current execution context, including the
         * sender of the transaction and its data. While these are generally available
         * via msg.sender and msg.data, they should not be accessed in such a direct
         * manner, since when dealing with meta-transactions the account sending and
         * paying for execution may not be the actual sender (as far as an application
         * is concerned).
         *
         * This contract is only required for intermediate, library-like contracts.
         */
        abstract contract Context {
            function _msgSender() internal view virtual returns (address) {
                return msg.sender;
            }
            function _msgData() internal view virtual returns (bytes calldata) {
                return msg.data;
            }
            function _contextSuffixLength() internal view virtual returns (uint256) {
                return 0;
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/extensions/IERC20Metadata.sol)
        pragma solidity ^0.8.20;
        import {IERC20} from "../IERC20.sol";
        /**
         * @dev Interface for the optional metadata functions from the ERC-20 standard.
         */
        interface IERC20Metadata is IERC20 {
            /**
             * @dev Returns the name of the token.
             */
            function name() external view returns (string memory);
            /**
             * @dev Returns the symbol of the token.
             */
            function symbol() external view returns (string memory);
            /**
             * @dev Returns the decimals places of the token.
             */
            function decimals() external view returns (uint8);
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/IERC20.sol)
        pragma solidity ^0.8.20;
        /**
         * @dev Interface of the ERC-20 standard as defined in the ERC.
         */
        interface IERC20 {
            /**
             * @dev Emitted when `value` tokens are moved from one account (`from`) to
             * another (`to`).
             *
             * Note that `value` may be zero.
             */
            event Transfer(address indexed from, address indexed to, uint256 value);
            /**
             * @dev Emitted when the allowance of a `spender` for an `owner` is set by
             * a call to {approve}. `value` is the new allowance.
             */
            event Approval(address indexed owner, address indexed spender, uint256 value);
            /**
             * @dev Returns the value of tokens in existence.
             */
            function totalSupply() external view returns (uint256);
            /**
             * @dev Returns the value of tokens owned by `account`.
             */
            function balanceOf(address account) external view returns (uint256);
            /**
             * @dev Moves a `value` amount of tokens from the caller's account to `to`.
             *
             * Returns a boolean value indicating whether the operation succeeded.
             *
             * Emits a {Transfer} event.
             */
            function transfer(address to, uint256 value) external returns (bool);
            /**
             * @dev Returns the remaining number of tokens that `spender` will be
             * allowed to spend on behalf of `owner` through {transferFrom}. This is
             * zero by default.
             *
             * This value changes when {approve} or {transferFrom} are called.
             */
            function allowance(address owner, address spender) external view returns (uint256);
            /**
             * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
             * caller's tokens.
             *
             * Returns a boolean value indicating whether the operation succeeded.
             *
             * IMPORTANT: Beware that changing an allowance with this method brings the risk
             * that someone may use both the old and the new allowance by unfortunate
             * transaction ordering. One possible solution to mitigate this race
             * condition is to first reduce the spender's allowance to 0 and set the
             * desired value afterwards:
             * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
             *
             * Emits an {Approval} event.
             */
            function approve(address spender, uint256 value) external returns (bool);
            /**
             * @dev Moves a `value` amount of tokens from `from` to `to` using the
             * allowance mechanism. `value` is then deducted from the caller's
             * allowance.
             *
             * Returns a boolean value indicating whether the operation succeeded.
             *
             * Emits a {Transfer} event.
             */
            function transferFrom(address from, address to, uint256 value) external returns (bool);
        }
        

        File 4 of 4: UprisingAirdropDistributor
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)
        pragma solidity ^0.8.20;
        import {Context} from "../utils/Context.sol";
        /**
         * @dev Contract module which provides a basic access control mechanism, where
         * there is an account (an owner) that can be granted exclusive access to
         * specific functions.
         *
         * The initial owner is set to the address provided by the deployer. This can
         * later be changed with {transferOwnership}.
         *
         * This module is used through inheritance. It will make available the modifier
         * `onlyOwner`, which can be applied to your functions to restrict their use to
         * the owner.
         */
        abstract contract Ownable is Context {
            address private _owner;
            /**
             * @dev The caller account is not authorized to perform an operation.
             */
            error OwnableUnauthorizedAccount(address account);
            /**
             * @dev The owner is not a valid owner account. (eg. `address(0)`)
             */
            error OwnableInvalidOwner(address owner);
            event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
            /**
             * @dev Initializes the contract setting the address provided by the deployer as the initial owner.
             */
            constructor(address initialOwner) {
                if (initialOwner == address(0)) {
                    revert OwnableInvalidOwner(address(0));
                }
                _transferOwnership(initialOwner);
            }
            /**
             * @dev Throws if called by any account other than the owner.
             */
            modifier onlyOwner() {
                _checkOwner();
                _;
            }
            /**
             * @dev Returns the address of the current owner.
             */
            function owner() public view virtual returns (address) {
                return _owner;
            }
            /**
             * @dev Throws if the sender is not the owner.
             */
            function _checkOwner() internal view virtual {
                if (owner() != _msgSender()) {
                    revert OwnableUnauthorizedAccount(_msgSender());
                }
            }
            /**
             * @dev Leaves the contract without owner. It will not be possible to call
             * `onlyOwner` functions. Can only be called by the current owner.
             *
             * NOTE: Renouncing ownership will leave the contract without an owner,
             * thereby disabling any functionality that is only available to the owner.
             */
            function renounceOwnership() public virtual onlyOwner {
                _transferOwnership(address(0));
            }
            /**
             * @dev Transfers ownership of the contract to a new account (`newOwner`).
             * Can only be called by the current owner.
             */
            function transferOwnership(address newOwner) public virtual onlyOwner {
                if (newOwner == address(0)) {
                    revert OwnableInvalidOwner(address(0));
                }
                _transferOwnership(newOwner);
            }
            /**
             * @dev Transfers ownership of the contract to a new account (`newOwner`).
             * Internal function without access restriction.
             */
            function _transferOwnership(address newOwner) internal virtual {
                address oldOwner = _owner;
                _owner = newOwner;
                emit OwnershipTransferred(oldOwner, newOwner);
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.1.0) (interfaces/IERC1363.sol)
        pragma solidity ^0.8.20;
        import {IERC20} from "./IERC20.sol";
        import {IERC165} from "./IERC165.sol";
        /**
         * @title IERC1363
         * @dev Interface of the ERC-1363 standard as defined in the https://eips.ethereum.org/EIPS/eip-1363[ERC-1363].
         *
         * Defines an extension interface for ERC-20 tokens that supports executing code on a recipient contract
         * after `transfer` or `transferFrom`, or code on a spender contract after `approve`, in a single transaction.
         */
        interface IERC1363 is IERC20, IERC165 {
            /*
             * Note: the ERC-165 identifier for this interface is 0xb0202a11.
             * 0xb0202a11 ===
             *   bytes4(keccak256('transferAndCall(address,uint256)')) ^
             *   bytes4(keccak256('transferAndCall(address,uint256,bytes)')) ^
             *   bytes4(keccak256('transferFromAndCall(address,address,uint256)')) ^
             *   bytes4(keccak256('transferFromAndCall(address,address,uint256,bytes)')) ^
             *   bytes4(keccak256('approveAndCall(address,uint256)')) ^
             *   bytes4(keccak256('approveAndCall(address,uint256,bytes)'))
             */
            /**
             * @dev Moves a `value` amount of tokens from the caller's account to `to`
             * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
             * @param to The address which you want to transfer to.
             * @param value The amount of tokens to be transferred.
             * @return A boolean value indicating whether the operation succeeded unless throwing.
             */
            function transferAndCall(address to, uint256 value) external returns (bool);
            /**
             * @dev Moves a `value` amount of tokens from the caller's account to `to`
             * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
             * @param to The address which you want to transfer to.
             * @param value The amount of tokens to be transferred.
             * @param data Additional data with no specified format, sent in call to `to`.
             * @return A boolean value indicating whether the operation succeeded unless throwing.
             */
            function transferAndCall(address to, uint256 value, bytes calldata data) external returns (bool);
            /**
             * @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
             * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
             * @param from The address which you want to send tokens from.
             * @param to The address which you want to transfer to.
             * @param value The amount of tokens to be transferred.
             * @return A boolean value indicating whether the operation succeeded unless throwing.
             */
            function transferFromAndCall(address from, address to, uint256 value) external returns (bool);
            /**
             * @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
             * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
             * @param from The address which you want to send tokens from.
             * @param to The address which you want to transfer to.
             * @param value The amount of tokens to be transferred.
             * @param data Additional data with no specified format, sent in call to `to`.
             * @return A boolean value indicating whether the operation succeeded unless throwing.
             */
            function transferFromAndCall(address from, address to, uint256 value, bytes calldata data) external returns (bool);
            /**
             * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
             * caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
             * @param spender The address which will spend the funds.
             * @param value The amount of tokens to be spent.
             * @return A boolean value indicating whether the operation succeeded unless throwing.
             */
            function approveAndCall(address spender, uint256 value) external returns (bool);
            /**
             * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
             * caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
             * @param spender The address which will spend the funds.
             * @param value The amount of tokens to be spent.
             * @param data Additional data with no specified format, sent in call to `spender`.
             * @return A boolean value indicating whether the operation succeeded unless throwing.
             */
            function approveAndCall(address spender, uint256 value, bytes calldata data) external returns (bool);
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC165.sol)
        pragma solidity ^0.8.20;
        import {IERC165} from "../utils/introspection/IERC165.sol";
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC20.sol)
        pragma solidity ^0.8.20;
        import {IERC20} from "../token/ERC20/IERC20.sol";
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC5267.sol)
        pragma solidity ^0.8.20;
        interface IERC5267 {
            /**
             * @dev MAY be emitted to signal that the domain could have changed.
             */
            event EIP712DomainChanged();
            /**
             * @dev returns the fields and values that describe the domain separator used by this contract for EIP-712
             * signature.
             */
            function eip712Domain()
                external
                view
                returns (
                    bytes1 fields,
                    string memory name,
                    string memory version,
                    uint256 chainId,
                    address verifyingContract,
                    bytes32 salt,
                    uint256[] memory extensions
                );
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/IERC20.sol)
        pragma solidity ^0.8.20;
        /**
         * @dev Interface of the ERC-20 standard as defined in the ERC.
         */
        interface IERC20 {
            /**
             * @dev Emitted when `value` tokens are moved from one account (`from`) to
             * another (`to`).
             *
             * Note that `value` may be zero.
             */
            event Transfer(address indexed from, address indexed to, uint256 value);
            /**
             * @dev Emitted when the allowance of a `spender` for an `owner` is set by
             * a call to {approve}. `value` is the new allowance.
             */
            event Approval(address indexed owner, address indexed spender, uint256 value);
            /**
             * @dev Returns the value of tokens in existence.
             */
            function totalSupply() external view returns (uint256);
            /**
             * @dev Returns the value of tokens owned by `account`.
             */
            function balanceOf(address account) external view returns (uint256);
            /**
             * @dev Moves a `value` amount of tokens from the caller's account to `to`.
             *
             * Returns a boolean value indicating whether the operation succeeded.
             *
             * Emits a {Transfer} event.
             */
            function transfer(address to, uint256 value) external returns (bool);
            /**
             * @dev Returns the remaining number of tokens that `spender` will be
             * allowed to spend on behalf of `owner` through {transferFrom}. This is
             * zero by default.
             *
             * This value changes when {approve} or {transferFrom} are called.
             */
            function allowance(address owner, address spender) external view returns (uint256);
            /**
             * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
             * caller's tokens.
             *
             * Returns a boolean value indicating whether the operation succeeded.
             *
             * IMPORTANT: Beware that changing an allowance with this method brings the risk
             * that someone may use both the old and the new allowance by unfortunate
             * transaction ordering. One possible solution to mitigate this race
             * condition is to first reduce the spender's allowance to 0 and set the
             * desired value afterwards:
             * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
             *
             * Emits an {Approval} event.
             */
            function approve(address spender, uint256 value) external returns (bool);
            /**
             * @dev Moves a `value` amount of tokens from `from` to `to` using the
             * allowance mechanism. `value` is then deducted from the caller's
             * allowance.
             *
             * Returns a boolean value indicating whether the operation succeeded.
             *
             * Emits a {Transfer} event.
             */
            function transferFrom(address from, address to, uint256 value) external returns (bool);
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/utils/SafeERC20.sol)
        pragma solidity ^0.8.20;
        import {IERC20} from "../IERC20.sol";
        import {IERC1363} from "../../../interfaces/IERC1363.sol";
        import {Address} from "../../../utils/Address.sol";
        /**
         * @title SafeERC20
         * @dev Wrappers around ERC-20 operations that throw on failure (when the token
         * contract returns false). Tokens that return no value (and instead revert or
         * throw on failure) are also supported, non-reverting calls are assumed to be
         * successful.
         * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
         * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
         */
        library SafeERC20 {
            /**
             * @dev An operation with an ERC-20 token failed.
             */
            error SafeERC20FailedOperation(address token);
            /**
             * @dev Indicates a failed `decreaseAllowance` request.
             */
            error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);
            /**
             * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
             * non-reverting calls are assumed to be successful.
             */
            function safeTransfer(IERC20 token, address to, uint256 value) internal {
                _callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
            }
            /**
             * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
             * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
             */
            function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
                _callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
            }
            /**
             * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
             * non-reverting calls are assumed to be successful.
             *
             * IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
             * smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
             * this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
             * that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
             */
            function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
                uint256 oldAllowance = token.allowance(address(this), spender);
                forceApprove(token, spender, oldAllowance + value);
            }
            /**
             * @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
             * value, non-reverting calls are assumed to be successful.
             *
             * IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
             * smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
             * this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
             * that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
             */
            function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
                unchecked {
                    uint256 currentAllowance = token.allowance(address(this), spender);
                    if (currentAllowance < requestedDecrease) {
                        revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
                    }
                    forceApprove(token, spender, currentAllowance - requestedDecrease);
                }
            }
            /**
             * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
             * non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
             * to be set to zero before setting it to a non-zero value, such as USDT.
             *
             * NOTE: If the token implements ERC-7674, this function will not modify any temporary allowance. This function
             * only sets the "standard" allowance. Any temporary allowance will remain active, in addition to the value being
             * set here.
             */
            function forceApprove(IERC20 token, address spender, uint256 value) internal {
                bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));
                if (!_callOptionalReturnBool(token, approvalCall)) {
                    _callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
                    _callOptionalReturn(token, approvalCall);
                }
            }
            /**
             * @dev Performs an {ERC1363} transferAndCall, with a fallback to the simple {ERC20} transfer if the target has no
             * code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
             * targeting contracts.
             *
             * Reverts if the returned value is other than `true`.
             */
            function transferAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
                if (to.code.length == 0) {
                    safeTransfer(token, to, value);
                } else if (!token.transferAndCall(to, value, data)) {
                    revert SafeERC20FailedOperation(address(token));
                }
            }
            /**
             * @dev Performs an {ERC1363} transferFromAndCall, with a fallback to the simple {ERC20} transferFrom if the target
             * has no code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
             * targeting contracts.
             *
             * Reverts if the returned value is other than `true`.
             */
            function transferFromAndCallRelaxed(
                IERC1363 token,
                address from,
                address to,
                uint256 value,
                bytes memory data
            ) internal {
                if (to.code.length == 0) {
                    safeTransferFrom(token, from, to, value);
                } else if (!token.transferFromAndCall(from, to, value, data)) {
                    revert SafeERC20FailedOperation(address(token));
                }
            }
            /**
             * @dev Performs an {ERC1363} approveAndCall, with a fallback to the simple {ERC20} approve if the target has no
             * code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
             * targeting contracts.
             *
             * NOTE: When the recipient address (`to`) has no code (i.e. is an EOA), this function behaves as {forceApprove}.
             * Opposedly, when the recipient address (`to`) has code, this function only attempts to call {ERC1363-approveAndCall}
             * once without retrying, and relies on the returned value to be true.
             *
             * Reverts if the returned value is other than `true`.
             */
            function approveAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
                if (to.code.length == 0) {
                    forceApprove(token, to, value);
                } else if (!token.approveAndCall(to, value, data)) {
                    revert SafeERC20FailedOperation(address(token));
                }
            }
            /**
             * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
             * on the return value: the return value is optional (but if data is returned, it must not be false).
             * @param token The token targeted by the call.
             * @param data The call data (encoded using abi.encode or one of its variants).
             *
             * This is a variant of {_callOptionalReturnBool} that reverts if call fails to meet the requirements.
             */
            function _callOptionalReturn(IERC20 token, bytes memory data) private {
                uint256 returnSize;
                uint256 returnValue;
                assembly ("memory-safe") {
                    let success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20)
                    // bubble errors
                    if iszero(success) {
                        let ptr := mload(0x40)
                        returndatacopy(ptr, 0, returndatasize())
                        revert(ptr, returndatasize())
                    }
                    returnSize := returndatasize()
                    returnValue := mload(0)
                }
                if (returnSize == 0 ? address(token).code.length == 0 : returnValue != 1) {
                    revert SafeERC20FailedOperation(address(token));
                }
            }
            /**
             * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
             * on the return value: the return value is optional (but if data is returned, it must not be false).
             * @param token The token targeted by the call.
             * @param data The call data (encoded using abi.encode or one of its variants).
             *
             * This is a variant of {_callOptionalReturn} that silently catches all reverts and returns a bool instead.
             */
            function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
                bool success;
                uint256 returnSize;
                uint256 returnValue;
                assembly ("memory-safe") {
                    success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20)
                    returnSize := returndatasize()
                    returnValue := mload(0)
                }
                return success && (returnSize == 0 ? address(token).code.length > 0 : returnValue == 1);
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.1.0) (utils/Address.sol)
        pragma solidity ^0.8.20;
        import {Errors} from "./Errors.sol";
        /**
         * @dev Collection of functions related to the address type
         */
        library Address {
            /**
             * @dev There's no code at `target` (it is not a contract).
             */
            error AddressEmptyCode(address target);
            /**
             * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
             * `recipient`, forwarding all available gas and reverting on errors.
             *
             * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
             * of certain opcodes, possibly making contracts go over the 2300 gas limit
             * imposed by `transfer`, making them unable to receive funds via
             * `transfer`. {sendValue} removes this limitation.
             *
             * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
             *
             * IMPORTANT: because control is transferred to `recipient`, care must be
             * taken to not create reentrancy vulnerabilities. Consider using
             * {ReentrancyGuard} or the
             * https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
             */
            function sendValue(address payable recipient, uint256 amount) internal {
                if (address(this).balance < amount) {
                    revert Errors.InsufficientBalance(address(this).balance, amount);
                }
                (bool success, ) = recipient.call{value: amount}("");
                if (!success) {
                    revert Errors.FailedCall();
                }
            }
            /**
             * @dev Performs a Solidity function call using a low level `call`. A
             * plain `call` is an unsafe replacement for a function call: use this
             * function instead.
             *
             * If `target` reverts with a revert reason or custom error, it is bubbled
             * up by this function (like regular Solidity function calls). However, if
             * the call reverted with no returned reason, this function reverts with a
             * {Errors.FailedCall} error.
             *
             * Returns the raw returned data. To convert to the expected return value,
             * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
             *
             * Requirements:
             *
             * - `target` must be a contract.
             * - calling `target` with `data` must not revert.
             */
            function functionCall(address target, bytes memory data) internal returns (bytes memory) {
                return functionCallWithValue(target, data, 0);
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
             * but also transferring `value` wei to `target`.
             *
             * Requirements:
             *
             * - the calling contract must have an ETH balance of at least `value`.
             * - the called Solidity function must be `payable`.
             */
            function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
                if (address(this).balance < value) {
                    revert Errors.InsufficientBalance(address(this).balance, value);
                }
                (bool success, bytes memory returndata) = target.call{value: value}(data);
                return verifyCallResultFromTarget(target, success, returndata);
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
             * but performing a static call.
             */
            function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
                (bool success, bytes memory returndata) = target.staticcall(data);
                return verifyCallResultFromTarget(target, success, returndata);
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
             * but performing a delegate call.
             */
            function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
                (bool success, bytes memory returndata) = target.delegatecall(data);
                return verifyCallResultFromTarget(target, success, returndata);
            }
            /**
             * @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target
             * was not a contract or bubbling up the revert reason (falling back to {Errors.FailedCall}) in case
             * of an unsuccessful call.
             */
            function verifyCallResultFromTarget(
                address target,
                bool success,
                bytes memory returndata
            ) internal view returns (bytes memory) {
                if (!success) {
                    _revert(returndata);
                } else {
                    // only check if target is a contract if the call was successful and the return data is empty
                    // otherwise we already know that it was a contract
                    if (returndata.length == 0 && target.code.length == 0) {
                        revert AddressEmptyCode(target);
                    }
                    return returndata;
                }
            }
            /**
             * @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the
             * revert reason or with a default {Errors.FailedCall} error.
             */
            function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) {
                if (!success) {
                    _revert(returndata);
                } else {
                    return returndata;
                }
            }
            /**
             * @dev Reverts with returndata if present. Otherwise reverts with {Errors.FailedCall}.
             */
            function _revert(bytes memory returndata) private pure {
                // Look for revert reason and bubble it up if present
                if (returndata.length > 0) {
                    // The easiest way to bubble the revert reason is using memory via assembly
                    assembly ("memory-safe") {
                        let returndata_size := mload(returndata)
                        revert(add(32, returndata), returndata_size)
                    }
                } else {
                    revert Errors.FailedCall();
                }
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)
        pragma solidity ^0.8.20;
        /**
         * @dev Provides information about the current execution context, including the
         * sender of the transaction and its data. While these are generally available
         * via msg.sender and msg.data, they should not be accessed in such a direct
         * manner, since when dealing with meta-transactions the account sending and
         * paying for execution may not be the actual sender (as far as an application
         * is concerned).
         *
         * This contract is only required for intermediate, library-like contracts.
         */
        abstract contract Context {
            function _msgSender() internal view virtual returns (address) {
                return msg.sender;
            }
            function _msgData() internal view virtual returns (bytes calldata) {
                return msg.data;
            }
            function _contextSuffixLength() internal view virtual returns (uint256) {
                return 0;
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/ECDSA.sol)
        pragma solidity ^0.8.20;
        /**
         * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
         *
         * These functions can be used to verify that a message was signed by the holder
         * of the private keys of a given address.
         */
        library ECDSA {
            enum RecoverError {
                NoError,
                InvalidSignature,
                InvalidSignatureLength,
                InvalidSignatureS
            }
            /**
             * @dev The signature derives the `address(0)`.
             */
            error ECDSAInvalidSignature();
            /**
             * @dev The signature has an invalid length.
             */
            error ECDSAInvalidSignatureLength(uint256 length);
            /**
             * @dev The signature has an S value that is in the upper half order.
             */
            error ECDSAInvalidSignatureS(bytes32 s);
            /**
             * @dev Returns the address that signed a hashed message (`hash`) with `signature` or an error. This will not
             * return address(0) without also returning an error description. Errors are documented using an enum (error type)
             * and a bytes32 providing additional information about the error.
             *
             * If no error is returned, then the address can be used for verification purposes.
             *
             * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
             * this function rejects them by requiring the `s` value to be in the lower
             * half order, and the `v` value to be either 27 or 28.
             *
             * IMPORTANT: `hash` _must_ be the result of a hash operation for the
             * verification to be secure: it is possible to craft signatures that
             * recover to arbitrary addresses for non-hashed data. A safe way to ensure
             * this is by receiving a hash of the original message (which may otherwise
             * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
             *
             * Documentation for signature generation:
             * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
             * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
             */
            function tryRecover(
                bytes32 hash,
                bytes memory signature
            ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
                if (signature.length == 65) {
                    bytes32 r;
                    bytes32 s;
                    uint8 v;
                    // ecrecover takes the signature parameters, and the only way to get them
                    // currently is to use assembly.
                    assembly ("memory-safe") {
                        r := mload(add(signature, 0x20))
                        s := mload(add(signature, 0x40))
                        v := byte(0, mload(add(signature, 0x60)))
                    }
                    return tryRecover(hash, v, r, s);
                } else {
                    return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length));
                }
            }
            /**
             * @dev Returns the address that signed a hashed message (`hash`) with
             * `signature`. This address can then be used for verification purposes.
             *
             * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
             * this function rejects them by requiring the `s` value to be in the lower
             * half order, and the `v` value to be either 27 or 28.
             *
             * IMPORTANT: `hash` _must_ be the result of a hash operation for the
             * verification to be secure: it is possible to craft signatures that
             * recover to arbitrary addresses for non-hashed data. A safe way to ensure
             * this is by receiving a hash of the original message (which may otherwise
             * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
             */
            function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
                (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, signature);
                _throwError(error, errorArg);
                return recovered;
            }
            /**
             * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
             *
             * See https://eips.ethereum.org/EIPS/eip-2098[ERC-2098 short signatures]
             */
            function tryRecover(
                bytes32 hash,
                bytes32 r,
                bytes32 vs
            ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
                unchecked {
                    bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
                    // We do not check for an overflow here since the shift operation results in 0 or 1.
                    uint8 v = uint8((uint256(vs) >> 255) + 27);
                    return tryRecover(hash, v, r, s);
                }
            }
            /**
             * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
             */
            function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
                (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, r, vs);
                _throwError(error, errorArg);
                return recovered;
            }
            /**
             * @dev Overload of {ECDSA-tryRecover} that receives the `v`,
             * `r` and `s` signature fields separately.
             */
            function tryRecover(
                bytes32 hash,
                uint8 v,
                bytes32 r,
                bytes32 s
            ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
                // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
                // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
                // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
                // signatures from current libraries generate a unique signature with an s-value in the lower half order.
                //
                // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
                // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
                // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
                // these malleable signatures as well.
                if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
                    return (address(0), RecoverError.InvalidSignatureS, s);
                }
                // If the signature is valid (and not malleable), return the signer address
                address signer = ecrecover(hash, v, r, s);
                if (signer == address(0)) {
                    return (address(0), RecoverError.InvalidSignature, bytes32(0));
                }
                return (signer, RecoverError.NoError, bytes32(0));
            }
            /**
             * @dev Overload of {ECDSA-recover} that receives the `v`,
             * `r` and `s` signature fields separately.
             */
            function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
                (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, v, r, s);
                _throwError(error, errorArg);
                return recovered;
            }
            /**
             * @dev Optionally reverts with the corresponding custom error according to the `error` argument provided.
             */
            function _throwError(RecoverError error, bytes32 errorArg) private pure {
                if (error == RecoverError.NoError) {
                    return; // no error: do nothing
                } else if (error == RecoverError.InvalidSignature) {
                    revert ECDSAInvalidSignature();
                } else if (error == RecoverError.InvalidSignatureLength) {
                    revert ECDSAInvalidSignatureLength(uint256(errorArg));
                } else if (error == RecoverError.InvalidSignatureS) {
                    revert ECDSAInvalidSignatureS(errorArg);
                }
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/EIP712.sol)
        pragma solidity ^0.8.20;
        import {MessageHashUtils} from "./MessageHashUtils.sol";
        import {ShortStrings, ShortString} from "../ShortStrings.sol";
        import {IERC5267} from "../../interfaces/IERC5267.sol";
        /**
         * @dev https://eips.ethereum.org/EIPS/eip-712[EIP-712] is a standard for hashing and signing of typed structured data.
         *
         * The encoding scheme specified in the EIP requires a domain separator and a hash of the typed structured data, whose
         * encoding is very generic and therefore its implementation in Solidity is not feasible, thus this contract
         * does not implement the encoding itself. Protocols need to implement the type-specific encoding they need in order to
         * produce the hash of their typed data using a combination of `abi.encode` and `keccak256`.
         *
         * This contract implements the EIP-712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding
         * scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA
         * ({_hashTypedDataV4}).
         *
         * The implementation of the domain separator was designed to be as efficient as possible while still properly updating
         * the chain id to protect against replay attacks on an eventual fork of the chain.
         *
         * NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method
         * https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask].
         *
         * NOTE: In the upgradeable version of this contract, the cached values will correspond to the address, and the domain
         * separator of the implementation contract. This will cause the {_domainSeparatorV4} function to always rebuild the
         * separator from the immutable values, which is cheaper than accessing a cached version in cold storage.
         *
         * @custom:oz-upgrades-unsafe-allow state-variable-immutable
         */
        abstract contract EIP712 is IERC5267 {
            using ShortStrings for *;
            bytes32 private constant TYPE_HASH =
                keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)");
            // Cache the domain separator as an immutable value, but also store the chain id that it corresponds to, in order to
            // invalidate the cached domain separator if the chain id changes.
            bytes32 private immutable _cachedDomainSeparator;
            uint256 private immutable _cachedChainId;
            address private immutable _cachedThis;
            bytes32 private immutable _hashedName;
            bytes32 private immutable _hashedVersion;
            ShortString private immutable _name;
            ShortString private immutable _version;
            string private _nameFallback;
            string private _versionFallback;
            /**
             * @dev Initializes the domain separator and parameter caches.
             *
             * The meaning of `name` and `version` is specified in
             * https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP-712]:
             *
             * - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol.
             * - `version`: the current major version of the signing domain.
             *
             * NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart
             * contract upgrade].
             */
            constructor(string memory name, string memory version) {
                _name = name.toShortStringWithFallback(_nameFallback);
                _version = version.toShortStringWithFallback(_versionFallback);
                _hashedName = keccak256(bytes(name));
                _hashedVersion = keccak256(bytes(version));
                _cachedChainId = block.chainid;
                _cachedDomainSeparator = _buildDomainSeparator();
                _cachedThis = address(this);
            }
            /**
             * @dev Returns the domain separator for the current chain.
             */
            function _domainSeparatorV4() internal view returns (bytes32) {
                if (address(this) == _cachedThis && block.chainid == _cachedChainId) {
                    return _cachedDomainSeparator;
                } else {
                    return _buildDomainSeparator();
                }
            }
            function _buildDomainSeparator() private view returns (bytes32) {
                return keccak256(abi.encode(TYPE_HASH, _hashedName, _hashedVersion, block.chainid, address(this)));
            }
            /**
             * @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this
             * function returns the hash of the fully encoded EIP712 message for this domain.
             *
             * This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example:
             *
             * ```solidity
             * bytes32 digest = _hashTypedDataV4(keccak256(abi.encode(
             *     keccak256("Mail(address to,string contents)"),
             *     mailTo,
             *     keccak256(bytes(mailContents))
             * )));
             * address signer = ECDSA.recover(digest, signature);
             * ```
             */
            function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) {
                return MessageHashUtils.toTypedDataHash(_domainSeparatorV4(), structHash);
            }
            /**
             * @dev See {IERC-5267}.
             */
            function eip712Domain()
                public
                view
                virtual
                returns (
                    bytes1 fields,
                    string memory name,
                    string memory version,
                    uint256 chainId,
                    address verifyingContract,
                    bytes32 salt,
                    uint256[] memory extensions
                )
            {
                return (
                    hex"0f", // 01111
                    _EIP712Name(),
                    _EIP712Version(),
                    block.chainid,
                    address(this),
                    bytes32(0),
                    new uint256[](0)
                );
            }
            /**
             * @dev The name parameter for the EIP712 domain.
             *
             * NOTE: By default this function reads _name which is an immutable value.
             * It only reads from storage if necessary (in case the value is too large to fit in a ShortString).
             */
            // solhint-disable-next-line func-name-mixedcase
            function _EIP712Name() internal view returns (string memory) {
                return _name.toStringWithFallback(_nameFallback);
            }
            /**
             * @dev The version parameter for the EIP712 domain.
             *
             * NOTE: By default this function reads _version which is an immutable value.
             * It only reads from storage if necessary (in case the value is too large to fit in a ShortString).
             */
            // solhint-disable-next-line func-name-mixedcase
            function _EIP712Version() internal view returns (string memory) {
                return _version.toStringWithFallback(_versionFallback);
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/Hashes.sol)
        pragma solidity ^0.8.20;
        /**
         * @dev Library of standard hash functions.
         *
         * _Available since v5.1._
         */
        library Hashes {
            /**
             * @dev Commutative Keccak256 hash of a sorted pair of bytes32. Frequently used when working with merkle proofs.
             *
             * NOTE: Equivalent to the `standardNodeHash` in our https://github.com/OpenZeppelin/merkle-tree[JavaScript library].
             */
            function commutativeKeccak256(bytes32 a, bytes32 b) internal pure returns (bytes32) {
                return a < b ? _efficientKeccak256(a, b) : _efficientKeccak256(b, a);
            }
            /**
             * @dev Implementation of keccak256(abi.encode(a, b)) that doesn't allocate or expand memory.
             */
            function _efficientKeccak256(bytes32 a, bytes32 b) private pure returns (bytes32 value) {
                assembly ("memory-safe") {
                    mstore(0x00, a)
                    mstore(0x20, b)
                    value := keccak256(0x00, 0x40)
                }
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/MerkleProof.sol)
        // This file was procedurally generated from scripts/generate/templates/MerkleProof.js.
        pragma solidity ^0.8.20;
        import {Hashes} from "./Hashes.sol";
        /**
         * @dev These functions deal with verification of Merkle Tree proofs.
         *
         * The tree and the proofs can be generated using our
         * https://github.com/OpenZeppelin/merkle-tree[JavaScript library].
         * You will find a quickstart guide in the readme.
         *
         * WARNING: You should avoid using leaf values that are 64 bytes long prior to
         * hashing, or use a hash function other than keccak256 for hashing leaves.
         * This is because the concatenation of a sorted pair of internal nodes in
         * the Merkle tree could be reinterpreted as a leaf value.
         * OpenZeppelin's JavaScript library generates Merkle trees that are safe
         * against this attack out of the box.
         *
         * IMPORTANT: Consider memory side-effects when using custom hashing functions
         * that access memory in an unsafe way.
         *
         * NOTE: This library supports proof verification for merkle trees built using
         * custom _commutative_ hashing functions (i.e. `H(a, b) == H(b, a)`). Proving
         * leaf inclusion in trees built using non-commutative hashing functions requires
         * additional logic that is not supported by this library.
         */
        library MerkleProof {
            /**
             *@dev The multiproof provided is not valid.
             */
            error MerkleProofInvalidMultiproof();
            /**
             * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
             * defined by `root`. For this, a `proof` must be provided, containing
             * sibling hashes on the branch from the leaf to the root of the tree. Each
             * pair of leaves and each pair of pre-images are assumed to be sorted.
             *
             * This version handles proofs in memory with the default hashing function.
             */
            function verify(bytes32[] memory proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {
                return processProof(proof, leaf) == root;
            }
            /**
             * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
             * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
             * hash matches the root of the tree. When processing the proof, the pairs
             * of leaves & pre-images are assumed to be sorted.
             *
             * This version handles proofs in memory with the default hashing function.
             */
            function processProof(bytes32[] memory proof, bytes32 leaf) internal pure returns (bytes32) {
                bytes32 computedHash = leaf;
                for (uint256 i = 0; i < proof.length; i++) {
                    computedHash = Hashes.commutativeKeccak256(computedHash, proof[i]);
                }
                return computedHash;
            }
            /**
             * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
             * defined by `root`. For this, a `proof` must be provided, containing
             * sibling hashes on the branch from the leaf to the root of the tree. Each
             * pair of leaves and each pair of pre-images are assumed to be sorted.
             *
             * This version handles proofs in memory with a custom hashing function.
             */
            function verify(
                bytes32[] memory proof,
                bytes32 root,
                bytes32 leaf,
                function(bytes32, bytes32) view returns (bytes32) hasher
            ) internal view returns (bool) {
                return processProof(proof, leaf, hasher) == root;
            }
            /**
             * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
             * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
             * hash matches the root of the tree. When processing the proof, the pairs
             * of leaves & pre-images are assumed to be sorted.
             *
             * This version handles proofs in memory with a custom hashing function.
             */
            function processProof(
                bytes32[] memory proof,
                bytes32 leaf,
                function(bytes32, bytes32) view returns (bytes32) hasher
            ) internal view returns (bytes32) {
                bytes32 computedHash = leaf;
                for (uint256 i = 0; i < proof.length; i++) {
                    computedHash = hasher(computedHash, proof[i]);
                }
                return computedHash;
            }
            /**
             * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
             * defined by `root`. For this, a `proof` must be provided, containing
             * sibling hashes on the branch from the leaf to the root of the tree. Each
             * pair of leaves and each pair of pre-images are assumed to be sorted.
             *
             * This version handles proofs in calldata with the default hashing function.
             */
            function verifyCalldata(bytes32[] calldata proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {
                return processProofCalldata(proof, leaf) == root;
            }
            /**
             * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
             * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
             * hash matches the root of the tree. When processing the proof, the pairs
             * of leaves & pre-images are assumed to be sorted.
             *
             * This version handles proofs in calldata with the default hashing function.
             */
            function processProofCalldata(bytes32[] calldata proof, bytes32 leaf) internal pure returns (bytes32) {
                bytes32 computedHash = leaf;
                for (uint256 i = 0; i < proof.length; i++) {
                    computedHash = Hashes.commutativeKeccak256(computedHash, proof[i]);
                }
                return computedHash;
            }
            /**
             * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
             * defined by `root`. For this, a `proof` must be provided, containing
             * sibling hashes on the branch from the leaf to the root of the tree. Each
             * pair of leaves and each pair of pre-images are assumed to be sorted.
             *
             * This version handles proofs in calldata with a custom hashing function.
             */
            function verifyCalldata(
                bytes32[] calldata proof,
                bytes32 root,
                bytes32 leaf,
                function(bytes32, bytes32) view returns (bytes32) hasher
            ) internal view returns (bool) {
                return processProofCalldata(proof, leaf, hasher) == root;
            }
            /**
             * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
             * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
             * hash matches the root of the tree. When processing the proof, the pairs
             * of leaves & pre-images are assumed to be sorted.
             *
             * This version handles proofs in calldata with a custom hashing function.
             */
            function processProofCalldata(
                bytes32[] calldata proof,
                bytes32 leaf,
                function(bytes32, bytes32) view returns (bytes32) hasher
            ) internal view returns (bytes32) {
                bytes32 computedHash = leaf;
                for (uint256 i = 0; i < proof.length; i++) {
                    computedHash = hasher(computedHash, proof[i]);
                }
                return computedHash;
            }
            /**
             * @dev Returns true if the `leaves` can be simultaneously proven to be a part of a Merkle tree defined by
             * `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
             *
             * This version handles multiproofs in memory with the default hashing function.
             *
             * CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
             *
             * NOTE: Consider the case where `root == proof[0] && leaves.length == 0` as it will return `true`.
             * The `leaves` must be validated independently. See {processMultiProof}.
             */
            function multiProofVerify(
                bytes32[] memory proof,
                bool[] memory proofFlags,
                bytes32 root,
                bytes32[] memory leaves
            ) internal pure returns (bool) {
                return processMultiProof(proof, proofFlags, leaves) == root;
            }
            /**
             * @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
             * proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
             * leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
             * respectively.
             *
             * This version handles multiproofs in memory with the default hashing function.
             *
             * CAUTION: Not all Merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
             * is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
             * tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
             *
             * NOTE: The _empty set_ (i.e. the case where `proof.length == 1 && leaves.length == 0`) is considered a no-op,
             * and therefore a valid multiproof (i.e. it returns `proof[0]`). Consider disallowing this case if you're not
             * validating the leaves elsewhere.
             */
            function processMultiProof(
                bytes32[] memory proof,
                bool[] memory proofFlags,
                bytes32[] memory leaves
            ) internal pure returns (bytes32 merkleRoot) {
                // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
                // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
                // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
                // the Merkle tree.
                uint256 leavesLen = leaves.length;
                uint256 proofFlagsLen = proofFlags.length;
                // Check proof validity.
                if (leavesLen + proof.length != proofFlagsLen + 1) {
                    revert MerkleProofInvalidMultiproof();
                }
                // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
                // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
                bytes32[] memory hashes = new bytes32[](proofFlagsLen);
                uint256 leafPos = 0;
                uint256 hashPos = 0;
                uint256 proofPos = 0;
                // At each step, we compute the next hash using two values:
                // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
                //   get the next hash.
                // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
                //   `proof` array.
                for (uint256 i = 0; i < proofFlagsLen; i++) {
                    bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
                    bytes32 b = proofFlags[i]
                        ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
                        : proof[proofPos++];
                    hashes[i] = Hashes.commutativeKeccak256(a, b);
                }
                if (proofFlagsLen > 0) {
                    if (proofPos != proof.length) {
                        revert MerkleProofInvalidMultiproof();
                    }
                    unchecked {
                        return hashes[proofFlagsLen - 1];
                    }
                } else if (leavesLen > 0) {
                    return leaves[0];
                } else {
                    return proof[0];
                }
            }
            /**
             * @dev Returns true if the `leaves` can be simultaneously proven to be a part of a Merkle tree defined by
             * `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
             *
             * This version handles multiproofs in memory with a custom hashing function.
             *
             * CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
             *
             * NOTE: Consider the case where `root == proof[0] && leaves.length == 0` as it will return `true`.
             * The `leaves` must be validated independently. See {processMultiProof}.
             */
            function multiProofVerify(
                bytes32[] memory proof,
                bool[] memory proofFlags,
                bytes32 root,
                bytes32[] memory leaves,
                function(bytes32, bytes32) view returns (bytes32) hasher
            ) internal view returns (bool) {
                return processMultiProof(proof, proofFlags, leaves, hasher) == root;
            }
            /**
             * @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
             * proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
             * leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
             * respectively.
             *
             * This version handles multiproofs in memory with a custom hashing function.
             *
             * CAUTION: Not all Merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
             * is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
             * tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
             *
             * NOTE: The _empty set_ (i.e. the case where `proof.length == 1 && leaves.length == 0`) is considered a no-op,
             * and therefore a valid multiproof (i.e. it returns `proof[0]`). Consider disallowing this case if you're not
             * validating the leaves elsewhere.
             */
            function processMultiProof(
                bytes32[] memory proof,
                bool[] memory proofFlags,
                bytes32[] memory leaves,
                function(bytes32, bytes32) view returns (bytes32) hasher
            ) internal view returns (bytes32 merkleRoot) {
                // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
                // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
                // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
                // the Merkle tree.
                uint256 leavesLen = leaves.length;
                uint256 proofFlagsLen = proofFlags.length;
                // Check proof validity.
                if (leavesLen + proof.length != proofFlagsLen + 1) {
                    revert MerkleProofInvalidMultiproof();
                }
                // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
                // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
                bytes32[] memory hashes = new bytes32[](proofFlagsLen);
                uint256 leafPos = 0;
                uint256 hashPos = 0;
                uint256 proofPos = 0;
                // At each step, we compute the next hash using two values:
                // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
                //   get the next hash.
                // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
                //   `proof` array.
                for (uint256 i = 0; i < proofFlagsLen; i++) {
                    bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
                    bytes32 b = proofFlags[i]
                        ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
                        : proof[proofPos++];
                    hashes[i] = hasher(a, b);
                }
                if (proofFlagsLen > 0) {
                    if (proofPos != proof.length) {
                        revert MerkleProofInvalidMultiproof();
                    }
                    unchecked {
                        return hashes[proofFlagsLen - 1];
                    }
                } else if (leavesLen > 0) {
                    return leaves[0];
                } else {
                    return proof[0];
                }
            }
            /**
             * @dev Returns true if the `leaves` can be simultaneously proven to be a part of a Merkle tree defined by
             * `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
             *
             * This version handles multiproofs in calldata with the default hashing function.
             *
             * CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
             *
             * NOTE: Consider the case where `root == proof[0] && leaves.length == 0` as it will return `true`.
             * The `leaves` must be validated independently. See {processMultiProofCalldata}.
             */
            function multiProofVerifyCalldata(
                bytes32[] calldata proof,
                bool[] calldata proofFlags,
                bytes32 root,
                bytes32[] memory leaves
            ) internal pure returns (bool) {
                return processMultiProofCalldata(proof, proofFlags, leaves) == root;
            }
            /**
             * @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
             * proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
             * leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
             * respectively.
             *
             * This version handles multiproofs in calldata with the default hashing function.
             *
             * CAUTION: Not all Merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
             * is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
             * tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
             *
             * NOTE: The _empty set_ (i.e. the case where `proof.length == 1 && leaves.length == 0`) is considered a no-op,
             * and therefore a valid multiproof (i.e. it returns `proof[0]`). Consider disallowing this case if you're not
             * validating the leaves elsewhere.
             */
            function processMultiProofCalldata(
                bytes32[] calldata proof,
                bool[] calldata proofFlags,
                bytes32[] memory leaves
            ) internal pure returns (bytes32 merkleRoot) {
                // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
                // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
                // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
                // the Merkle tree.
                uint256 leavesLen = leaves.length;
                uint256 proofFlagsLen = proofFlags.length;
                // Check proof validity.
                if (leavesLen + proof.length != proofFlagsLen + 1) {
                    revert MerkleProofInvalidMultiproof();
                }
                // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
                // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
                bytes32[] memory hashes = new bytes32[](proofFlagsLen);
                uint256 leafPos = 0;
                uint256 hashPos = 0;
                uint256 proofPos = 0;
                // At each step, we compute the next hash using two values:
                // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
                //   get the next hash.
                // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
                //   `proof` array.
                for (uint256 i = 0; i < proofFlagsLen; i++) {
                    bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
                    bytes32 b = proofFlags[i]
                        ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
                        : proof[proofPos++];
                    hashes[i] = Hashes.commutativeKeccak256(a, b);
                }
                if (proofFlagsLen > 0) {
                    if (proofPos != proof.length) {
                        revert MerkleProofInvalidMultiproof();
                    }
                    unchecked {
                        return hashes[proofFlagsLen - 1];
                    }
                } else if (leavesLen > 0) {
                    return leaves[0];
                } else {
                    return proof[0];
                }
            }
            /**
             * @dev Returns true if the `leaves` can be simultaneously proven to be a part of a Merkle tree defined by
             * `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
             *
             * This version handles multiproofs in calldata with a custom hashing function.
             *
             * CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
             *
             * NOTE: Consider the case where `root == proof[0] && leaves.length == 0` as it will return `true`.
             * The `leaves` must be validated independently. See {processMultiProofCalldata}.
             */
            function multiProofVerifyCalldata(
                bytes32[] calldata proof,
                bool[] calldata proofFlags,
                bytes32 root,
                bytes32[] memory leaves,
                function(bytes32, bytes32) view returns (bytes32) hasher
            ) internal view returns (bool) {
                return processMultiProofCalldata(proof, proofFlags, leaves, hasher) == root;
            }
            /**
             * @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
             * proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
             * leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
             * respectively.
             *
             * This version handles multiproofs in calldata with a custom hashing function.
             *
             * CAUTION: Not all Merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
             * is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
             * tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
             *
             * NOTE: The _empty set_ (i.e. the case where `proof.length == 1 && leaves.length == 0`) is considered a no-op,
             * and therefore a valid multiproof (i.e. it returns `proof[0]`). Consider disallowing this case if you're not
             * validating the leaves elsewhere.
             */
            function processMultiProofCalldata(
                bytes32[] calldata proof,
                bool[] calldata proofFlags,
                bytes32[] memory leaves,
                function(bytes32, bytes32) view returns (bytes32) hasher
            ) internal view returns (bytes32 merkleRoot) {
                // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
                // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
                // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
                // the Merkle tree.
                uint256 leavesLen = leaves.length;
                uint256 proofFlagsLen = proofFlags.length;
                // Check proof validity.
                if (leavesLen + proof.length != proofFlagsLen + 1) {
                    revert MerkleProofInvalidMultiproof();
                }
                // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
                // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
                bytes32[] memory hashes = new bytes32[](proofFlagsLen);
                uint256 leafPos = 0;
                uint256 hashPos = 0;
                uint256 proofPos = 0;
                // At each step, we compute the next hash using two values:
                // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
                //   get the next hash.
                // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
                //   `proof` array.
                for (uint256 i = 0; i < proofFlagsLen; i++) {
                    bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
                    bytes32 b = proofFlags[i]
                        ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
                        : proof[proofPos++];
                    hashes[i] = hasher(a, b);
                }
                if (proofFlagsLen > 0) {
                    if (proofPos != proof.length) {
                        revert MerkleProofInvalidMultiproof();
                    }
                    unchecked {
                        return hashes[proofFlagsLen - 1];
                    }
                } else if (leavesLen > 0) {
                    return leaves[0];
                } else {
                    return proof[0];
                }
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/MessageHashUtils.sol)
        pragma solidity ^0.8.20;
        import {Strings} from "../Strings.sol";
        /**
         * @dev Signature message hash utilities for producing digests to be consumed by {ECDSA} recovery or signing.
         *
         * The library provides methods for generating a hash of a message that conforms to the
         * https://eips.ethereum.org/EIPS/eip-191[ERC-191] and https://eips.ethereum.org/EIPS/eip-712[EIP 712]
         * specifications.
         */
        library MessageHashUtils {
            /**
             * @dev Returns the keccak256 digest of an ERC-191 signed data with version
             * `0x45` (`personal_sign` messages).
             *
             * The digest is calculated by prefixing a bytes32 `messageHash` with
             * `"\\x19Ethereum Signed Message:\
        32"` and hashing the result. It corresponds with the
             * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method.
             *
             * NOTE: The `messageHash` parameter is intended to be the result of hashing a raw message with
             * keccak256, although any bytes32 value can be safely used because the final digest will
             * be re-hashed.
             *
             * See {ECDSA-recover}.
             */
            function toEthSignedMessageHash(bytes32 messageHash) internal pure returns (bytes32 digest) {
                assembly ("memory-safe") {
                    mstore(0x00, "\\x19Ethereum Signed Message:\
        32") // 32 is the bytes-length of messageHash
                    mstore(0x1c, messageHash) // 0x1c (28) is the length of the prefix
                    digest := keccak256(0x00, 0x3c) // 0x3c is the length of the prefix (0x1c) + messageHash (0x20)
                }
            }
            /**
             * @dev Returns the keccak256 digest of an ERC-191 signed data with version
             * `0x45` (`personal_sign` messages).
             *
             * The digest is calculated by prefixing an arbitrary `message` with
             * `"\\x19Ethereum Signed Message:\
        " + len(message)` and hashing the result. It corresponds with the
             * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method.
             *
             * See {ECDSA-recover}.
             */
            function toEthSignedMessageHash(bytes memory message) internal pure returns (bytes32) {
                return
                    keccak256(bytes.concat("\\x19Ethereum Signed Message:\
        ", bytes(Strings.toString(message.length)), message));
            }
            /**
             * @dev Returns the keccak256 digest of an ERC-191 signed data with version
             * `0x00` (data with intended validator).
             *
             * The digest is calculated by prefixing an arbitrary `data` with `"\\x19\\x00"` and the intended
             * `validator` address. Then hashing the result.
             *
             * See {ECDSA-recover}.
             */
            function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
                return keccak256(abi.encodePacked(hex"19_00", validator, data));
            }
            /**
             * @dev Returns the keccak256 digest of an EIP-712 typed data (ERC-191 version `0x01`).
             *
             * The digest is calculated from a `domainSeparator` and a `structHash`, by prefixing them with
             * `\\x19\\x01` and hashing the result. It corresponds to the hash signed by the
             * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] JSON-RPC method as part of EIP-712.
             *
             * See {ECDSA-recover}.
             */
            function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 digest) {
                assembly ("memory-safe") {
                    let ptr := mload(0x40)
                    mstore(ptr, hex"19_01")
                    mstore(add(ptr, 0x02), domainSeparator)
                    mstore(add(ptr, 0x22), structHash)
                    digest := keccak256(ptr, 0x42)
                }
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.1.0) (utils/Errors.sol)
        pragma solidity ^0.8.20;
        /**
         * @dev Collection of common custom errors used in multiple contracts
         *
         * IMPORTANT: Backwards compatibility is not guaranteed in future versions of the library.
         * It is recommended to avoid relying on the error API for critical functionality.
         *
         * _Available since v5.1._
         */
        library Errors {
            /**
             * @dev The ETH balance of the account is not enough to perform the operation.
             */
            error InsufficientBalance(uint256 balance, uint256 needed);
            /**
             * @dev A call to an address target failed. The target may have reverted.
             */
            error FailedCall();
            /**
             * @dev The deployment failed.
             */
            error FailedDeployment();
            /**
             * @dev A necessary precompile is missing.
             */
            error MissingPrecompile(address);
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.1.0) (utils/introspection/IERC165.sol)
        pragma solidity ^0.8.20;
        /**
         * @dev Interface of the ERC-165 standard, as defined in the
         * https://eips.ethereum.org/EIPS/eip-165[ERC].
         *
         * Implementers can declare support of contract interfaces, which can then be
         * queried by others ({ERC165Checker}).
         *
         * For an implementation, see {ERC165}.
         */
        interface IERC165 {
            /**
             * @dev Returns true if this contract implements the interface defined by
             * `interfaceId`. See the corresponding
             * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[ERC section]
             * to learn more about how these ids are created.
             *
             * This function call must use less than 30 000 gas.
             */
            function supportsInterface(bytes4 interfaceId) external view returns (bool);
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.1.0) (utils/math/Math.sol)
        pragma solidity ^0.8.20;
        import {Panic} from "../Panic.sol";
        import {SafeCast} from "./SafeCast.sol";
        /**
         * @dev Standard math utilities missing in the Solidity language.
         */
        library Math {
            enum Rounding {
                Floor, // Toward negative infinity
                Ceil, // Toward positive infinity
                Trunc, // Toward zero
                Expand // Away from zero
            }
            /**
             * @dev Returns the addition of two unsigned integers, with an success flag (no overflow).
             */
            function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
                unchecked {
                    uint256 c = a + b;
                    if (c < a) return (false, 0);
                    return (true, c);
                }
            }
            /**
             * @dev Returns the subtraction of two unsigned integers, with an success flag (no overflow).
             */
            function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
                unchecked {
                    if (b > a) return (false, 0);
                    return (true, a - b);
                }
            }
            /**
             * @dev Returns the multiplication of two unsigned integers, with an success flag (no overflow).
             */
            function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
                unchecked {
                    // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
                    // benefit is lost if 'b' is also tested.
                    // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
                    if (a == 0) return (true, 0);
                    uint256 c = a * b;
                    if (c / a != b) return (false, 0);
                    return (true, c);
                }
            }
            /**
             * @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
             */
            function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
                unchecked {
                    if (b == 0) return (false, 0);
                    return (true, a / b);
                }
            }
            /**
             * @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
             */
            function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
                unchecked {
                    if (b == 0) return (false, 0);
                    return (true, a % b);
                }
            }
            /**
             * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
             *
             * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
             * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
             * one branch when needed, making this function more expensive.
             */
            function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) {
                unchecked {
                    // branchless ternary works because:
                    // b ^ (a ^ b) == a
                    // b ^ 0 == b
                    return b ^ ((a ^ b) * SafeCast.toUint(condition));
                }
            }
            /**
             * @dev Returns the largest of two numbers.
             */
            function max(uint256 a, uint256 b) internal pure returns (uint256) {
                return ternary(a > b, a, b);
            }
            /**
             * @dev Returns the smallest of two numbers.
             */
            function min(uint256 a, uint256 b) internal pure returns (uint256) {
                return ternary(a < b, a, b);
            }
            /**
             * @dev Returns the average of two numbers. The result is rounded towards
             * zero.
             */
            function average(uint256 a, uint256 b) internal pure returns (uint256) {
                // (a + b) / 2 can overflow.
                return (a & b) + (a ^ b) / 2;
            }
            /**
             * @dev Returns the ceiling of the division of two numbers.
             *
             * This differs from standard division with `/` in that it rounds towards infinity instead
             * of rounding towards zero.
             */
            function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
                if (b == 0) {
                    // Guarantee the same behavior as in a regular Solidity division.
                    Panic.panic(Panic.DIVISION_BY_ZERO);
                }
                // The following calculation ensures accurate ceiling division without overflow.
                // Since a is non-zero, (a - 1) / b will not overflow.
                // The largest possible result occurs when (a - 1) / b is type(uint256).max,
                // but the largest value we can obtain is type(uint256).max - 1, which happens
                // when a = type(uint256).max and b = 1.
                unchecked {
                    return SafeCast.toUint(a > 0) * ((a - 1) / b + 1);
                }
            }
            /**
             * @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
             * denominator == 0.
             *
             * Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
             * Uniswap Labs also under MIT license.
             */
            function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
                unchecked {
                    // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
                    // the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
                    // variables such that product = prod1 * 2²⁵⁶ + prod0.
                    uint256 prod0 = x * y; // Least significant 256 bits of the product
                    uint256 prod1; // Most significant 256 bits of the product
                    assembly {
                        let mm := mulmod(x, y, not(0))
                        prod1 := sub(sub(mm, prod0), lt(mm, prod0))
                    }
                    // Handle non-overflow cases, 256 by 256 division.
                    if (prod1 == 0) {
                        // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                        // The surrounding unchecked block does not change this fact.
                        // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                        return prod0 / denominator;
                    }
                    // Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
                    if (denominator <= prod1) {
                        Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW));
                    }
                    ///////////////////////////////////////////////
                    // 512 by 256 division.
                    ///////////////////////////////////////////////
                    // Make division exact by subtracting the remainder from [prod1 prod0].
                    uint256 remainder;
                    assembly {
                        // Compute remainder using mulmod.
                        remainder := mulmod(x, y, denominator)
                        // Subtract 256 bit number from 512 bit number.
                        prod1 := sub(prod1, gt(remainder, prod0))
                        prod0 := sub(prod0, remainder)
                    }
                    // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
                    // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.
                    uint256 twos = denominator & (0 - denominator);
                    assembly {
                        // Divide denominator by twos.
                        denominator := div(denominator, twos)
                        // Divide [prod1 prod0] by twos.
                        prod0 := div(prod0, twos)
                        // Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
                        twos := add(div(sub(0, twos), twos), 1)
                    }
                    // Shift in bits from prod1 into prod0.
                    prod0 |= prod1 * twos;
                    // Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
                    // that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
                    // four bits. That is, denominator * inv ≡ 1 mod 2⁴.
                    uint256 inverse = (3 * denominator) ^ 2;
                    // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
                    // works in modular arithmetic, doubling the correct bits in each step.
                    inverse *= 2 - denominator * inverse; // inverse mod 2⁸
                    inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
                    inverse *= 2 - denominator * inverse; // inverse mod 2³²
                    inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
                    inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
                    inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶
                    // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
                    // This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
                    // less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and prod1
                    // is no longer required.
                    result = prod0 * inverse;
                    return result;
                }
            }
            /**
             * @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
             */
            function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
                return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
            }
            /**
             * @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
             *
             * If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0.
             * If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
             *
             * If the input value is not inversible, 0 is returned.
             *
             * NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the
             * inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}.
             */
            function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
                unchecked {
                    if (n == 0) return 0;
                    // The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
                    // Used to compute integers x and y such that: ax + ny = gcd(a, n).
                    // When the gcd is 1, then the inverse of a modulo n exists and it's x.
                    // ax + ny = 1
                    // ax = 1 + (-y)n
                    // ax ≡ 1 (mod n) # x is the inverse of a modulo n
                    // If the remainder is 0 the gcd is n right away.
                    uint256 remainder = a % n;
                    uint256 gcd = n;
                    // Therefore the initial coefficients are:
                    // ax + ny = gcd(a, n) = n
                    // 0a + 1n = n
                    int256 x = 0;
                    int256 y = 1;
                    while (remainder != 0) {
                        uint256 quotient = gcd / remainder;
                        (gcd, remainder) = (
                            // The old remainder is the next gcd to try.
                            remainder,
                            // Compute the next remainder.
                            // Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
                            // where gcd is at most n (capped to type(uint256).max)
                            gcd - remainder * quotient
                        );
                        (x, y) = (
                            // Increment the coefficient of a.
                            y,
                            // Decrement the coefficient of n.
                            // Can overflow, but the result is casted to uint256 so that the
                            // next value of y is "wrapped around" to a value between 0 and n - 1.
                            x - y * int256(quotient)
                        );
                    }
                    if (gcd != 1) return 0; // No inverse exists.
                    return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative.
                }
            }
            /**
             * @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`.
             *
             * From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is
             * prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that
             * `a**(p-2)` is the modular multiplicative inverse of a in Fp.
             *
             * NOTE: this function does NOT check that `p` is a prime greater than `2`.
             */
            function invModPrime(uint256 a, uint256 p) internal view returns (uint256) {
                unchecked {
                    return Math.modExp(a, p - 2, p);
                }
            }
            /**
             * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
             *
             * Requirements:
             * - modulus can't be zero
             * - underlying staticcall to precompile must succeed
             *
             * IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
             * sure the chain you're using it on supports the precompiled contract for modular exponentiation
             * at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
             * the underlying function will succeed given the lack of a revert, but the result may be incorrectly
             * interpreted as 0.
             */
            function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
                (bool success, uint256 result) = tryModExp(b, e, m);
                if (!success) {
                    Panic.panic(Panic.DIVISION_BY_ZERO);
                }
                return result;
            }
            /**
             * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
             * It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying
             * to operate modulo 0 or if the underlying precompile reverted.
             *
             * IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
             * you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
             * https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
             * of a revert, but the result may be incorrectly interpreted as 0.
             */
            function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
                if (m == 0) return (false, 0);
                assembly ("memory-safe") {
                    let ptr := mload(0x40)
                    // | Offset    | Content    | Content (Hex)                                                      |
                    // |-----------|------------|--------------------------------------------------------------------|
                    // | 0x00:0x1f | size of b  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
                    // | 0x20:0x3f | size of e  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
                    // | 0x40:0x5f | size of m  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
                    // | 0x60:0x7f | value of b | 0x<.............................................................b> |
                    // | 0x80:0x9f | value of e | 0x<.............................................................e> |
                    // | 0xa0:0xbf | value of m | 0x<.............................................................m> |
                    mstore(ptr, 0x20)
                    mstore(add(ptr, 0x20), 0x20)
                    mstore(add(ptr, 0x40), 0x20)
                    mstore(add(ptr, 0x60), b)
                    mstore(add(ptr, 0x80), e)
                    mstore(add(ptr, 0xa0), m)
                    // Given the result < m, it's guaranteed to fit in 32 bytes,
                    // so we can use the memory scratch space located at offset 0.
                    success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
                    result := mload(0x00)
                }
            }
            /**
             * @dev Variant of {modExp} that supports inputs of arbitrary length.
             */
            function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
                (bool success, bytes memory result) = tryModExp(b, e, m);
                if (!success) {
                    Panic.panic(Panic.DIVISION_BY_ZERO);
                }
                return result;
            }
            /**
             * @dev Variant of {tryModExp} that supports inputs of arbitrary length.
             */
            function tryModExp(
                bytes memory b,
                bytes memory e,
                bytes memory m
            ) internal view returns (bool success, bytes memory result) {
                if (_zeroBytes(m)) return (false, new bytes(0));
                uint256 mLen = m.length;
                // Encode call args in result and move the free memory pointer
                result = abi.encodePacked(b.length, e.length, mLen, b, e, m);
                assembly ("memory-safe") {
                    let dataPtr := add(result, 0x20)
                    // Write result on top of args to avoid allocating extra memory.
                    success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
                    // Overwrite the length.
                    // result.length > returndatasize() is guaranteed because returndatasize() == m.length
                    mstore(result, mLen)
                    // Set the memory pointer after the returned data.
                    mstore(0x40, add(dataPtr, mLen))
                }
            }
            /**
             * @dev Returns whether the provided byte array is zero.
             */
            function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
                for (uint256 i = 0; i < byteArray.length; ++i) {
                    if (byteArray[i] != 0) {
                        return false;
                    }
                }
                return true;
            }
            /**
             * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
             * towards zero.
             *
             * This method is based on Newton's method for computing square roots; the algorithm is restricted to only
             * using integer operations.
             */
            function sqrt(uint256 a) internal pure returns (uint256) {
                unchecked {
                    // Take care of easy edge cases when a == 0 or a == 1
                    if (a <= 1) {
                        return a;
                    }
                    // In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
                    // sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
                    // the current value as `ε_n = | x_n - sqrt(a) |`.
                    //
                    // For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
                    // of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is
                    // bigger than any uint256.
                    //
                    // By noticing that
                    // `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`
                    // we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
                    // to the msb function.
                    uint256 aa = a;
                    uint256 xn = 1;
                    if (aa >= (1 << 128)) {
                        aa >>= 128;
                        xn <<= 64;
                    }
                    if (aa >= (1 << 64)) {
                        aa >>= 64;
                        xn <<= 32;
                    }
                    if (aa >= (1 << 32)) {
                        aa >>= 32;
                        xn <<= 16;
                    }
                    if (aa >= (1 << 16)) {
                        aa >>= 16;
                        xn <<= 8;
                    }
                    if (aa >= (1 << 8)) {
                        aa >>= 8;
                        xn <<= 4;
                    }
                    if (aa >= (1 << 4)) {
                        aa >>= 4;
                        xn <<= 2;
                    }
                    if (aa >= (1 << 2)) {
                        xn <<= 1;
                    }
                    // We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).
                    //
                    // We can refine our estimation by noticing that the middle of that interval minimizes the error.
                    // If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).
                    // This is going to be our x_0 (and ε_0)
                    xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)
                    // From here, Newton's method give us:
                    // x_{n+1} = (x_n + a / x_n) / 2
                    //
                    // One should note that:
                    // x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
                    //              = ((x_n² + a) / (2 * x_n))² - a
                    //              = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a
                    //              = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
                    //              = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)
                    //              = (x_n² - a)² / (2 * x_n)²
                    //              = ((x_n² - a) / (2 * x_n))²
                    //              ≥ 0
                    // Which proves that for all n ≥ 1, sqrt(a) ≤ x_n
                    //
                    // This gives us the proof of quadratic convergence of the sequence:
                    // ε_{n+1} = | x_{n+1} - sqrt(a) |
                    //         = | (x_n + a / x_n) / 2 - sqrt(a) |
                    //         = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
                    //         = | (x_n - sqrt(a))² / (2 * x_n) |
                    //         = | ε_n² / (2 * x_n) |
                    //         = ε_n² / | (2 * x_n) |
                    //
                    // For the first iteration, we have a special case where x_0 is known:
                    // ε_1 = ε_0² / | (2 * x_0) |
                    //     ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
                    //     ≤ 2**(2*e-4) / (3 * 2**(e-1))
                    //     ≤ 2**(e-3) / 3
                    //     ≤ 2**(e-3-log2(3))
                    //     ≤ 2**(e-4.5)
                    //
                    // For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:
                    // ε_{n+1} = ε_n² / | (2 * x_n) |
                    //         ≤ (2**(e-k))² / (2 * 2**(e-1))
                    //         ≤ 2**(2*e-2*k) / 2**e
                    //         ≤ 2**(e-2*k)
                    xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5)  -- special case, see above
                    xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9)    -- general case with k = 4.5
                    xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18)   -- general case with k = 9
                    xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36)   -- general case with k = 18
                    xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72)   -- general case with k = 36
                    xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144)  -- general case with k = 72
                    // Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision
                    // ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
                    // sqrt(a) or sqrt(a) + 1.
                    return xn - SafeCast.toUint(xn > a / xn);
                }
            }
            /**
             * @dev Calculates sqrt(a), following the selected rounding direction.
             */
            function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
                unchecked {
                    uint256 result = sqrt(a);
                    return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
                }
            }
            /**
             * @dev Return the log in base 2 of a positive value rounded towards zero.
             * Returns 0 if given 0.
             */
            function log2(uint256 value) internal pure returns (uint256) {
                uint256 result = 0;
                uint256 exp;
                unchecked {
                    exp = 128 * SafeCast.toUint(value > (1 << 128) - 1);
                    value >>= exp;
                    result += exp;
                    exp = 64 * SafeCast.toUint(value > (1 << 64) - 1);
                    value >>= exp;
                    result += exp;
                    exp = 32 * SafeCast.toUint(value > (1 << 32) - 1);
                    value >>= exp;
                    result += exp;
                    exp = 16 * SafeCast.toUint(value > (1 << 16) - 1);
                    value >>= exp;
                    result += exp;
                    exp = 8 * SafeCast.toUint(value > (1 << 8) - 1);
                    value >>= exp;
                    result += exp;
                    exp = 4 * SafeCast.toUint(value > (1 << 4) - 1);
                    value >>= exp;
                    result += exp;
                    exp = 2 * SafeCast.toUint(value > (1 << 2) - 1);
                    value >>= exp;
                    result += exp;
                    result += SafeCast.toUint(value > 1);
                }
                return result;
            }
            /**
             * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
             * Returns 0 if given 0.
             */
            function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
                unchecked {
                    uint256 result = log2(value);
                    return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
                }
            }
            /**
             * @dev Return the log in base 10 of a positive value rounded towards zero.
             * Returns 0 if given 0.
             */
            function log10(uint256 value) internal pure returns (uint256) {
                uint256 result = 0;
                unchecked {
                    if (value >= 10 ** 64) {
                        value /= 10 ** 64;
                        result += 64;
                    }
                    if (value >= 10 ** 32) {
                        value /= 10 ** 32;
                        result += 32;
                    }
                    if (value >= 10 ** 16) {
                        value /= 10 ** 16;
                        result += 16;
                    }
                    if (value >= 10 ** 8) {
                        value /= 10 ** 8;
                        result += 8;
                    }
                    if (value >= 10 ** 4) {
                        value /= 10 ** 4;
                        result += 4;
                    }
                    if (value >= 10 ** 2) {
                        value /= 10 ** 2;
                        result += 2;
                    }
                    if (value >= 10 ** 1) {
                        result += 1;
                    }
                }
                return result;
            }
            /**
             * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
             * Returns 0 if given 0.
             */
            function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
                unchecked {
                    uint256 result = log10(value);
                    return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
                }
            }
            /**
             * @dev Return the log in base 256 of a positive value rounded towards zero.
             * Returns 0 if given 0.
             *
             * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
             */
            function log256(uint256 value) internal pure returns (uint256) {
                uint256 result = 0;
                uint256 isGt;
                unchecked {
                    isGt = SafeCast.toUint(value > (1 << 128) - 1);
                    value >>= isGt * 128;
                    result += isGt * 16;
                    isGt = SafeCast.toUint(value > (1 << 64) - 1);
                    value >>= isGt * 64;
                    result += isGt * 8;
                    isGt = SafeCast.toUint(value > (1 << 32) - 1);
                    value >>= isGt * 32;
                    result += isGt * 4;
                    isGt = SafeCast.toUint(value > (1 << 16) - 1);
                    value >>= isGt * 16;
                    result += isGt * 2;
                    result += SafeCast.toUint(value > (1 << 8) - 1);
                }
                return result;
            }
            /**
             * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
             * Returns 0 if given 0.
             */
            function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
                unchecked {
                    uint256 result = log256(value);
                    return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
                }
            }
            /**
             * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
             */
            function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
                return uint8(rounding) % 2 == 1;
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol)
        // This file was procedurally generated from scripts/generate/templates/SafeCast.js.
        pragma solidity ^0.8.20;
        /**
         * @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
         * checks.
         *
         * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
         * easily result in undesired exploitation or bugs, since developers usually
         * assume that overflows raise errors. `SafeCast` restores this intuition by
         * reverting the transaction when such an operation overflows.
         *
         * Using this library instead of the unchecked operations eliminates an entire
         * class of bugs, so it's recommended to use it always.
         */
        library SafeCast {
            /**
             * @dev Value doesn't fit in an uint of `bits` size.
             */
            error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);
            /**
             * @dev An int value doesn't fit in an uint of `bits` size.
             */
            error SafeCastOverflowedIntToUint(int256 value);
            /**
             * @dev Value doesn't fit in an int of `bits` size.
             */
            error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);
            /**
             * @dev An uint value doesn't fit in an int of `bits` size.
             */
            error SafeCastOverflowedUintToInt(uint256 value);
            /**
             * @dev Returns the downcasted uint248 from uint256, reverting on
             * overflow (when the input is greater than largest uint248).
             *
             * Counterpart to Solidity's `uint248` operator.
             *
             * Requirements:
             *
             * - input must fit into 248 bits
             */
            function toUint248(uint256 value) internal pure returns (uint248) {
                if (value > type(uint248).max) {
                    revert SafeCastOverflowedUintDowncast(248, value);
                }
                return uint248(value);
            }
            /**
             * @dev Returns the downcasted uint240 from uint256, reverting on
             * overflow (when the input is greater than largest uint240).
             *
             * Counterpart to Solidity's `uint240` operator.
             *
             * Requirements:
             *
             * - input must fit into 240 bits
             */
            function toUint240(uint256 value) internal pure returns (uint240) {
                if (value > type(uint240).max) {
                    revert SafeCastOverflowedUintDowncast(240, value);
                }
                return uint240(value);
            }
            /**
             * @dev Returns the downcasted uint232 from uint256, reverting on
             * overflow (when the input is greater than largest uint232).
             *
             * Counterpart to Solidity's `uint232` operator.
             *
             * Requirements:
             *
             * - input must fit into 232 bits
             */
            function toUint232(uint256 value) internal pure returns (uint232) {
                if (value > type(uint232).max) {
                    revert SafeCastOverflowedUintDowncast(232, value);
                }
                return uint232(value);
            }
            /**
             * @dev Returns the downcasted uint224 from uint256, reverting on
             * overflow (when the input is greater than largest uint224).
             *
             * Counterpart to Solidity's `uint224` operator.
             *
             * Requirements:
             *
             * - input must fit into 224 bits
             */
            function toUint224(uint256 value) internal pure returns (uint224) {
                if (value > type(uint224).max) {
                    revert SafeCastOverflowedUintDowncast(224, value);
                }
                return uint224(value);
            }
            /**
             * @dev Returns the downcasted uint216 from uint256, reverting on
             * overflow (when the input is greater than largest uint216).
             *
             * Counterpart to Solidity's `uint216` operator.
             *
             * Requirements:
             *
             * - input must fit into 216 bits
             */
            function toUint216(uint256 value) internal pure returns (uint216) {
                if (value > type(uint216).max) {
                    revert SafeCastOverflowedUintDowncast(216, value);
                }
                return uint216(value);
            }
            /**
             * @dev Returns the downcasted uint208 from uint256, reverting on
             * overflow (when the input is greater than largest uint208).
             *
             * Counterpart to Solidity's `uint208` operator.
             *
             * Requirements:
             *
             * - input must fit into 208 bits
             */
            function toUint208(uint256 value) internal pure returns (uint208) {
                if (value > type(uint208).max) {
                    revert SafeCastOverflowedUintDowncast(208, value);
                }
                return uint208(value);
            }
            /**
             * @dev Returns the downcasted uint200 from uint256, reverting on
             * overflow (when the input is greater than largest uint200).
             *
             * Counterpart to Solidity's `uint200` operator.
             *
             * Requirements:
             *
             * - input must fit into 200 bits
             */
            function toUint200(uint256 value) internal pure returns (uint200) {
                if (value > type(uint200).max) {
                    revert SafeCastOverflowedUintDowncast(200, value);
                }
                return uint200(value);
            }
            /**
             * @dev Returns the downcasted uint192 from uint256, reverting on
             * overflow (when the input is greater than largest uint192).
             *
             * Counterpart to Solidity's `uint192` operator.
             *
             * Requirements:
             *
             * - input must fit into 192 bits
             */
            function toUint192(uint256 value) internal pure returns (uint192) {
                if (value > type(uint192).max) {
                    revert SafeCastOverflowedUintDowncast(192, value);
                }
                return uint192(value);
            }
            /**
             * @dev Returns the downcasted uint184 from uint256, reverting on
             * overflow (when the input is greater than largest uint184).
             *
             * Counterpart to Solidity's `uint184` operator.
             *
             * Requirements:
             *
             * - input must fit into 184 bits
             */
            function toUint184(uint256 value) internal pure returns (uint184) {
                if (value > type(uint184).max) {
                    revert SafeCastOverflowedUintDowncast(184, value);
                }
                return uint184(value);
            }
            /**
             * @dev Returns the downcasted uint176 from uint256, reverting on
             * overflow (when the input is greater than largest uint176).
             *
             * Counterpart to Solidity's `uint176` operator.
             *
             * Requirements:
             *
             * - input must fit into 176 bits
             */
            function toUint176(uint256 value) internal pure returns (uint176) {
                if (value > type(uint176).max) {
                    revert SafeCastOverflowedUintDowncast(176, value);
                }
                return uint176(value);
            }
            /**
             * @dev Returns the downcasted uint168 from uint256, reverting on
             * overflow (when the input is greater than largest uint168).
             *
             * Counterpart to Solidity's `uint168` operator.
             *
             * Requirements:
             *
             * - input must fit into 168 bits
             */
            function toUint168(uint256 value) internal pure returns (uint168) {
                if (value > type(uint168).max) {
                    revert SafeCastOverflowedUintDowncast(168, value);
                }
                return uint168(value);
            }
            /**
             * @dev Returns the downcasted uint160 from uint256, reverting on
             * overflow (when the input is greater than largest uint160).
             *
             * Counterpart to Solidity's `uint160` operator.
             *
             * Requirements:
             *
             * - input must fit into 160 bits
             */
            function toUint160(uint256 value) internal pure returns (uint160) {
                if (value > type(uint160).max) {
                    revert SafeCastOverflowedUintDowncast(160, value);
                }
                return uint160(value);
            }
            /**
             * @dev Returns the downcasted uint152 from uint256, reverting on
             * overflow (when the input is greater than largest uint152).
             *
             * Counterpart to Solidity's `uint152` operator.
             *
             * Requirements:
             *
             * - input must fit into 152 bits
             */
            function toUint152(uint256 value) internal pure returns (uint152) {
                if (value > type(uint152).max) {
                    revert SafeCastOverflowedUintDowncast(152, value);
                }
                return uint152(value);
            }
            /**
             * @dev Returns the downcasted uint144 from uint256, reverting on
             * overflow (when the input is greater than largest uint144).
             *
             * Counterpart to Solidity's `uint144` operator.
             *
             * Requirements:
             *
             * - input must fit into 144 bits
             */
            function toUint144(uint256 value) internal pure returns (uint144) {
                if (value > type(uint144).max) {
                    revert SafeCastOverflowedUintDowncast(144, value);
                }
                return uint144(value);
            }
            /**
             * @dev Returns the downcasted uint136 from uint256, reverting on
             * overflow (when the input is greater than largest uint136).
             *
             * Counterpart to Solidity's `uint136` operator.
             *
             * Requirements:
             *
             * - input must fit into 136 bits
             */
            function toUint136(uint256 value) internal pure returns (uint136) {
                if (value > type(uint136).max) {
                    revert SafeCastOverflowedUintDowncast(136, value);
                }
                return uint136(value);
            }
            /**
             * @dev Returns the downcasted uint128 from uint256, reverting on
             * overflow (when the input is greater than largest uint128).
             *
             * Counterpart to Solidity's `uint128` operator.
             *
             * Requirements:
             *
             * - input must fit into 128 bits
             */
            function toUint128(uint256 value) internal pure returns (uint128) {
                if (value > type(uint128).max) {
                    revert SafeCastOverflowedUintDowncast(128, value);
                }
                return uint128(value);
            }
            /**
             * @dev Returns the downcasted uint120 from uint256, reverting on
             * overflow (when the input is greater than largest uint120).
             *
             * Counterpart to Solidity's `uint120` operator.
             *
             * Requirements:
             *
             * - input must fit into 120 bits
             */
            function toUint120(uint256 value) internal pure returns (uint120) {
                if (value > type(uint120).max) {
                    revert SafeCastOverflowedUintDowncast(120, value);
                }
                return uint120(value);
            }
            /**
             * @dev Returns the downcasted uint112 from uint256, reverting on
             * overflow (when the input is greater than largest uint112).
             *
             * Counterpart to Solidity's `uint112` operator.
             *
             * Requirements:
             *
             * - input must fit into 112 bits
             */
            function toUint112(uint256 value) internal pure returns (uint112) {
                if (value > type(uint112).max) {
                    revert SafeCastOverflowedUintDowncast(112, value);
                }
                return uint112(value);
            }
            /**
             * @dev Returns the downcasted uint104 from uint256, reverting on
             * overflow (when the input is greater than largest uint104).
             *
             * Counterpart to Solidity's `uint104` operator.
             *
             * Requirements:
             *
             * - input must fit into 104 bits
             */
            function toUint104(uint256 value) internal pure returns (uint104) {
                if (value > type(uint104).max) {
                    revert SafeCastOverflowedUintDowncast(104, value);
                }
                return uint104(value);
            }
            /**
             * @dev Returns the downcasted uint96 from uint256, reverting on
             * overflow (when the input is greater than largest uint96).
             *
             * Counterpart to Solidity's `uint96` operator.
             *
             * Requirements:
             *
             * - input must fit into 96 bits
             */
            function toUint96(uint256 value) internal pure returns (uint96) {
                if (value > type(uint96).max) {
                    revert SafeCastOverflowedUintDowncast(96, value);
                }
                return uint96(value);
            }
            /**
             * @dev Returns the downcasted uint88 from uint256, reverting on
             * overflow (when the input is greater than largest uint88).
             *
             * Counterpart to Solidity's `uint88` operator.
             *
             * Requirements:
             *
             * - input must fit into 88 bits
             */
            function toUint88(uint256 value) internal pure returns (uint88) {
                if (value > type(uint88).max) {
                    revert SafeCastOverflowedUintDowncast(88, value);
                }
                return uint88(value);
            }
            /**
             * @dev Returns the downcasted uint80 from uint256, reverting on
             * overflow (when the input is greater than largest uint80).
             *
             * Counterpart to Solidity's `uint80` operator.
             *
             * Requirements:
             *
             * - input must fit into 80 bits
             */
            function toUint80(uint256 value) internal pure returns (uint80) {
                if (value > type(uint80).max) {
                    revert SafeCastOverflowedUintDowncast(80, value);
                }
                return uint80(value);
            }
            /**
             * @dev Returns the downcasted uint72 from uint256, reverting on
             * overflow (when the input is greater than largest uint72).
             *
             * Counterpart to Solidity's `uint72` operator.
             *
             * Requirements:
             *
             * - input must fit into 72 bits
             */
            function toUint72(uint256 value) internal pure returns (uint72) {
                if (value > type(uint72).max) {
                    revert SafeCastOverflowedUintDowncast(72, value);
                }
                return uint72(value);
            }
            /**
             * @dev Returns the downcasted uint64 from uint256, reverting on
             * overflow (when the input is greater than largest uint64).
             *
             * Counterpart to Solidity's `uint64` operator.
             *
             * Requirements:
             *
             * - input must fit into 64 bits
             */
            function toUint64(uint256 value) internal pure returns (uint64) {
                if (value > type(uint64).max) {
                    revert SafeCastOverflowedUintDowncast(64, value);
                }
                return uint64(value);
            }
            /**
             * @dev Returns the downcasted uint56 from uint256, reverting on
             * overflow (when the input is greater than largest uint56).
             *
             * Counterpart to Solidity's `uint56` operator.
             *
             * Requirements:
             *
             * - input must fit into 56 bits
             */
            function toUint56(uint256 value) internal pure returns (uint56) {
                if (value > type(uint56).max) {
                    revert SafeCastOverflowedUintDowncast(56, value);
                }
                return uint56(value);
            }
            /**
             * @dev Returns the downcasted uint48 from uint256, reverting on
             * overflow (when the input is greater than largest uint48).
             *
             * Counterpart to Solidity's `uint48` operator.
             *
             * Requirements:
             *
             * - input must fit into 48 bits
             */
            function toUint48(uint256 value) internal pure returns (uint48) {
                if (value > type(uint48).max) {
                    revert SafeCastOverflowedUintDowncast(48, value);
                }
                return uint48(value);
            }
            /**
             * @dev Returns the downcasted uint40 from uint256, reverting on
             * overflow (when the input is greater than largest uint40).
             *
             * Counterpart to Solidity's `uint40` operator.
             *
             * Requirements:
             *
             * - input must fit into 40 bits
             */
            function toUint40(uint256 value) internal pure returns (uint40) {
                if (value > type(uint40).max) {
                    revert SafeCastOverflowedUintDowncast(40, value);
                }
                return uint40(value);
            }
            /**
             * @dev Returns the downcasted uint32 from uint256, reverting on
             * overflow (when the input is greater than largest uint32).
             *
             * Counterpart to Solidity's `uint32` operator.
             *
             * Requirements:
             *
             * - input must fit into 32 bits
             */
            function toUint32(uint256 value) internal pure returns (uint32) {
                if (value > type(uint32).max) {
                    revert SafeCastOverflowedUintDowncast(32, value);
                }
                return uint32(value);
            }
            /**
             * @dev Returns the downcasted uint24 from uint256, reverting on
             * overflow (when the input is greater than largest uint24).
             *
             * Counterpart to Solidity's `uint24` operator.
             *
             * Requirements:
             *
             * - input must fit into 24 bits
             */
            function toUint24(uint256 value) internal pure returns (uint24) {
                if (value > type(uint24).max) {
                    revert SafeCastOverflowedUintDowncast(24, value);
                }
                return uint24(value);
            }
            /**
             * @dev Returns the downcasted uint16 from uint256, reverting on
             * overflow (when the input is greater than largest uint16).
             *
             * Counterpart to Solidity's `uint16` operator.
             *
             * Requirements:
             *
             * - input must fit into 16 bits
             */
            function toUint16(uint256 value) internal pure returns (uint16) {
                if (value > type(uint16).max) {
                    revert SafeCastOverflowedUintDowncast(16, value);
                }
                return uint16(value);
            }
            /**
             * @dev Returns the downcasted uint8 from uint256, reverting on
             * overflow (when the input is greater than largest uint8).
             *
             * Counterpart to Solidity's `uint8` operator.
             *
             * Requirements:
             *
             * - input must fit into 8 bits
             */
            function toUint8(uint256 value) internal pure returns (uint8) {
                if (value > type(uint8).max) {
                    revert SafeCastOverflowedUintDowncast(8, value);
                }
                return uint8(value);
            }
            /**
             * @dev Converts a signed int256 into an unsigned uint256.
             *
             * Requirements:
             *
             * - input must be greater than or equal to 0.
             */
            function toUint256(int256 value) internal pure returns (uint256) {
                if (value < 0) {
                    revert SafeCastOverflowedIntToUint(value);
                }
                return uint256(value);
            }
            /**
             * @dev Returns the downcasted int248 from int256, reverting on
             * overflow (when the input is less than smallest int248 or
             * greater than largest int248).
             *
             * Counterpart to Solidity's `int248` operator.
             *
             * Requirements:
             *
             * - input must fit into 248 bits
             */
            function toInt248(int256 value) internal pure returns (int248 downcasted) {
                downcasted = int248(value);
                if (downcasted != value) {
                    revert SafeCastOverflowedIntDowncast(248, value);
                }
            }
            /**
             * @dev Returns the downcasted int240 from int256, reverting on
             * overflow (when the input is less than smallest int240 or
             * greater than largest int240).
             *
             * Counterpart to Solidity's `int240` operator.
             *
             * Requirements:
             *
             * - input must fit into 240 bits
             */
            function toInt240(int256 value) internal pure returns (int240 downcasted) {
                downcasted = int240(value);
                if (downcasted != value) {
                    revert SafeCastOverflowedIntDowncast(240, value);
                }
            }
            /**
             * @dev Returns the downcasted int232 from int256, reverting on
             * overflow (when the input is less than smallest int232 or
             * greater than largest int232).
             *
             * Counterpart to Solidity's `int232` operator.
             *
             * Requirements:
             *
             * - input must fit into 232 bits
             */
            function toInt232(int256 value) internal pure returns (int232 downcasted) {
                downcasted = int232(value);
                if (downcasted != value) {
                    revert SafeCastOverflowedIntDowncast(232, value);
                }
            }
            /**
             * @dev Returns the downcasted int224 from int256, reverting on
             * overflow (when the input is less than smallest int224 or
             * greater than largest int224).
             *
             * Counterpart to Solidity's `int224` operator.
             *
             * Requirements:
             *
             * - input must fit into 224 bits
             */
            function toInt224(int256 value) internal pure returns (int224 downcasted) {
                downcasted = int224(value);
                if (downcasted != value) {
                    revert SafeCastOverflowedIntDowncast(224, value);
                }
            }
            /**
             * @dev Returns the downcasted int216 from int256, reverting on
             * overflow (when the input is less than smallest int216 or
             * greater than largest int216).
             *
             * Counterpart to Solidity's `int216` operator.
             *
             * Requirements:
             *
             * - input must fit into 216 bits
             */
            function toInt216(int256 value) internal pure returns (int216 downcasted) {
                downcasted = int216(value);
                if (downcasted != value) {
                    revert SafeCastOverflowedIntDowncast(216, value);
                }
            }
            /**
             * @dev Returns the downcasted int208 from int256, reverting on
             * overflow (when the input is less than smallest int208 or
             * greater than largest int208).
             *
             * Counterpart to Solidity's `int208` operator.
             *
             * Requirements:
             *
             * - input must fit into 208 bits
             */
            function toInt208(int256 value) internal pure returns (int208 downcasted) {
                downcasted = int208(value);
                if (downcasted != value) {
                    revert SafeCastOverflowedIntDowncast(208, value);
                }
            }
            /**
             * @dev Returns the downcasted int200 from int256, reverting on
             * overflow (when the input is less than smallest int200 or
             * greater than largest int200).
             *
             * Counterpart to Solidity's `int200` operator.
             *
             * Requirements:
             *
             * - input must fit into 200 bits
             */
            function toInt200(int256 value) internal pure returns (int200 downcasted) {
                downcasted = int200(value);
                if (downcasted != value) {
                    revert SafeCastOverflowedIntDowncast(200, value);
                }
            }
            /**
             * @dev Returns the downcasted int192 from int256, reverting on
             * overflow (when the input is less than smallest int192 or
             * greater than largest int192).
             *
             * Counterpart to Solidity's `int192` operator.
             *
             * Requirements:
             *
             * - input must fit into 192 bits
             */
            function toInt192(int256 value) internal pure returns (int192 downcasted) {
                downcasted = int192(value);
                if (downcasted != value) {
                    revert SafeCastOverflowedIntDowncast(192, value);
                }
            }
            /**
             * @dev Returns the downcasted int184 from int256, reverting on
             * overflow (when the input is less than smallest int184 or
             * greater than largest int184).
             *
             * Counterpart to Solidity's `int184` operator.
             *
             * Requirements:
             *
             * - input must fit into 184 bits
             */
            function toInt184(int256 value) internal pure returns (int184 downcasted) {
                downcasted = int184(value);
                if (downcasted != value) {
                    revert SafeCastOverflowedIntDowncast(184, value);
                }
            }
            /**
             * @dev Returns the downcasted int176 from int256, reverting on
             * overflow (when the input is less than smallest int176 or
             * greater than largest int176).
             *
             * Counterpart to Solidity's `int176` operator.
             *
             * Requirements:
             *
             * - input must fit into 176 bits
             */
            function toInt176(int256 value) internal pure returns (int176 downcasted) {
                downcasted = int176(value);
                if (downcasted != value) {
                    revert SafeCastOverflowedIntDowncast(176, value);
                }
            }
            /**
             * @dev Returns the downcasted int168 from int256, reverting on
             * overflow (when the input is less than smallest int168 or
             * greater than largest int168).
             *
             * Counterpart to Solidity's `int168` operator.
             *
             * Requirements:
             *
             * - input must fit into 168 bits
             */
            function toInt168(int256 value) internal pure returns (int168 downcasted) {
                downcasted = int168(value);
                if (downcasted != value) {
                    revert SafeCastOverflowedIntDowncast(168, value);
                }
            }
            /**
             * @dev Returns the downcasted int160 from int256, reverting on
             * overflow (when the input is less than smallest int160 or
             * greater than largest int160).
             *
             * Counterpart to Solidity's `int160` operator.
             *
             * Requirements:
             *
             * - input must fit into 160 bits
             */
            function toInt160(int256 value) internal pure returns (int160 downcasted) {
                downcasted = int160(value);
                if (downcasted != value) {
                    revert SafeCastOverflowedIntDowncast(160, value);
                }
            }
            /**
             * @dev Returns the downcasted int152 from int256, reverting on
             * overflow (when the input is less than smallest int152 or
             * greater than largest int152).
             *
             * Counterpart to Solidity's `int152` operator.
             *
             * Requirements:
             *
             * - input must fit into 152 bits
             */
            function toInt152(int256 value) internal pure returns (int152 downcasted) {
                downcasted = int152(value);
                if (downcasted != value) {
                    revert SafeCastOverflowedIntDowncast(152, value);
                }
            }
            /**
             * @dev Returns the downcasted int144 from int256, reverting on
             * overflow (when the input is less than smallest int144 or
             * greater than largest int144).
             *
             * Counterpart to Solidity's `int144` operator.
             *
             * Requirements:
             *
             * - input must fit into 144 bits
             */
            function toInt144(int256 value) internal pure returns (int144 downcasted) {
                downcasted = int144(value);
                if (downcasted != value) {
                    revert SafeCastOverflowedIntDowncast(144, value);
                }
            }
            /**
             * @dev Returns the downcasted int136 from int256, reverting on
             * overflow (when the input is less than smallest int136 or
             * greater than largest int136).
             *
             * Counterpart to Solidity's `int136` operator.
             *
             * Requirements:
             *
             * - input must fit into 136 bits
             */
            function toInt136(int256 value) internal pure returns (int136 downcasted) {
                downcasted = int136(value);
                if (downcasted != value) {
                    revert SafeCastOverflowedIntDowncast(136, value);
                }
            }
            /**
             * @dev Returns the downcasted int128 from int256, reverting on
             * overflow (when the input is less than smallest int128 or
             * greater than largest int128).
             *
             * Counterpart to Solidity's `int128` operator.
             *
             * Requirements:
             *
             * - input must fit into 128 bits
             */
            function toInt128(int256 value) internal pure returns (int128 downcasted) {
                downcasted = int128(value);
                if (downcasted != value) {
                    revert SafeCastOverflowedIntDowncast(128, value);
                }
            }
            /**
             * @dev Returns the downcasted int120 from int256, reverting on
             * overflow (when the input is less than smallest int120 or
             * greater than largest int120).
             *
             * Counterpart to Solidity's `int120` operator.
             *
             * Requirements:
             *
             * - input must fit into 120 bits
             */
            function toInt120(int256 value) internal pure returns (int120 downcasted) {
                downcasted = int120(value);
                if (downcasted != value) {
                    revert SafeCastOverflowedIntDowncast(120, value);
                }
            }
            /**
             * @dev Returns the downcasted int112 from int256, reverting on
             * overflow (when the input is less than smallest int112 or
             * greater than largest int112).
             *
             * Counterpart to Solidity's `int112` operator.
             *
             * Requirements:
             *
             * - input must fit into 112 bits
             */
            function toInt112(int256 value) internal pure returns (int112 downcasted) {
                downcasted = int112(value);
                if (downcasted != value) {
                    revert SafeCastOverflowedIntDowncast(112, value);
                }
            }
            /**
             * @dev Returns the downcasted int104 from int256, reverting on
             * overflow (when the input is less than smallest int104 or
             * greater than largest int104).
             *
             * Counterpart to Solidity's `int104` operator.
             *
             * Requirements:
             *
             * - input must fit into 104 bits
             */
            function toInt104(int256 value) internal pure returns (int104 downcasted) {
                downcasted = int104(value);
                if (downcasted != value) {
                    revert SafeCastOverflowedIntDowncast(104, value);
                }
            }
            /**
             * @dev Returns the downcasted int96 from int256, reverting on
             * overflow (when the input is less than smallest int96 or
             * greater than largest int96).
             *
             * Counterpart to Solidity's `int96` operator.
             *
             * Requirements:
             *
             * - input must fit into 96 bits
             */
            function toInt96(int256 value) internal pure returns (int96 downcasted) {
                downcasted = int96(value);
                if (downcasted != value) {
                    revert SafeCastOverflowedIntDowncast(96, value);
                }
            }
            /**
             * @dev Returns the downcasted int88 from int256, reverting on
             * overflow (when the input is less than smallest int88 or
             * greater than largest int88).
             *
             * Counterpart to Solidity's `int88` operator.
             *
             * Requirements:
             *
             * - input must fit into 88 bits
             */
            function toInt88(int256 value) internal pure returns (int88 downcasted) {
                downcasted = int88(value);
                if (downcasted != value) {
                    revert SafeCastOverflowedIntDowncast(88, value);
                }
            }
            /**
             * @dev Returns the downcasted int80 from int256, reverting on
             * overflow (when the input is less than smallest int80 or
             * greater than largest int80).
             *
             * Counterpart to Solidity's `int80` operator.
             *
             * Requirements:
             *
             * - input must fit into 80 bits
             */
            function toInt80(int256 value) internal pure returns (int80 downcasted) {
                downcasted = int80(value);
                if (downcasted != value) {
                    revert SafeCastOverflowedIntDowncast(80, value);
                }
            }
            /**
             * @dev Returns the downcasted int72 from int256, reverting on
             * overflow (when the input is less than smallest int72 or
             * greater than largest int72).
             *
             * Counterpart to Solidity's `int72` operator.
             *
             * Requirements:
             *
             * - input must fit into 72 bits
             */
            function toInt72(int256 value) internal pure returns (int72 downcasted) {
                downcasted = int72(value);
                if (downcasted != value) {
                    revert SafeCastOverflowedIntDowncast(72, value);
                }
            }
            /**
             * @dev Returns the downcasted int64 from int256, reverting on
             * overflow (when the input is less than smallest int64 or
             * greater than largest int64).
             *
             * Counterpart to Solidity's `int64` operator.
             *
             * Requirements:
             *
             * - input must fit into 64 bits
             */
            function toInt64(int256 value) internal pure returns (int64 downcasted) {
                downcasted = int64(value);
                if (downcasted != value) {
                    revert SafeCastOverflowedIntDowncast(64, value);
                }
            }
            /**
             * @dev Returns the downcasted int56 from int256, reverting on
             * overflow (when the input is less than smallest int56 or
             * greater than largest int56).
             *
             * Counterpart to Solidity's `int56` operator.
             *
             * Requirements:
             *
             * - input must fit into 56 bits
             */
            function toInt56(int256 value) internal pure returns (int56 downcasted) {
                downcasted = int56(value);
                if (downcasted != value) {
                    revert SafeCastOverflowedIntDowncast(56, value);
                }
            }
            /**
             * @dev Returns the downcasted int48 from int256, reverting on
             * overflow (when the input is less than smallest int48 or
             * greater than largest int48).
             *
             * Counterpart to Solidity's `int48` operator.
             *
             * Requirements:
             *
             * - input must fit into 48 bits
             */
            function toInt48(int256 value) internal pure returns (int48 downcasted) {
                downcasted = int48(value);
                if (downcasted != value) {
                    revert SafeCastOverflowedIntDowncast(48, value);
                }
            }
            /**
             * @dev Returns the downcasted int40 from int256, reverting on
             * overflow (when the input is less than smallest int40 or
             * greater than largest int40).
             *
             * Counterpart to Solidity's `int40` operator.
             *
             * Requirements:
             *
             * - input must fit into 40 bits
             */
            function toInt40(int256 value) internal pure returns (int40 downcasted) {
                downcasted = int40(value);
                if (downcasted != value) {
                    revert SafeCastOverflowedIntDowncast(40, value);
                }
            }
            /**
             * @dev Returns the downcasted int32 from int256, reverting on
             * overflow (when the input is less than smallest int32 or
             * greater than largest int32).
             *
             * Counterpart to Solidity's `int32` operator.
             *
             * Requirements:
             *
             * - input must fit into 32 bits
             */
            function toInt32(int256 value) internal pure returns (int32 downcasted) {
                downcasted = int32(value);
                if (downcasted != value) {
                    revert SafeCastOverflowedIntDowncast(32, value);
                }
            }
            /**
             * @dev Returns the downcasted int24 from int256, reverting on
             * overflow (when the input is less than smallest int24 or
             * greater than largest int24).
             *
             * Counterpart to Solidity's `int24` operator.
             *
             * Requirements:
             *
             * - input must fit into 24 bits
             */
            function toInt24(int256 value) internal pure returns (int24 downcasted) {
                downcasted = int24(value);
                if (downcasted != value) {
                    revert SafeCastOverflowedIntDowncast(24, value);
                }
            }
            /**
             * @dev Returns the downcasted int16 from int256, reverting on
             * overflow (when the input is less than smallest int16 or
             * greater than largest int16).
             *
             * Counterpart to Solidity's `int16` operator.
             *
             * Requirements:
             *
             * - input must fit into 16 bits
             */
            function toInt16(int256 value) internal pure returns (int16 downcasted) {
                downcasted = int16(value);
                if (downcasted != value) {
                    revert SafeCastOverflowedIntDowncast(16, value);
                }
            }
            /**
             * @dev Returns the downcasted int8 from int256, reverting on
             * overflow (when the input is less than smallest int8 or
             * greater than largest int8).
             *
             * Counterpart to Solidity's `int8` operator.
             *
             * Requirements:
             *
             * - input must fit into 8 bits
             */
            function toInt8(int256 value) internal pure returns (int8 downcasted) {
                downcasted = int8(value);
                if (downcasted != value) {
                    revert SafeCastOverflowedIntDowncast(8, value);
                }
            }
            /**
             * @dev Converts an unsigned uint256 into a signed int256.
             *
             * Requirements:
             *
             * - input must be less than or equal to maxInt256.
             */
            function toInt256(uint256 value) internal pure returns (int256) {
                // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
                if (value > uint256(type(int256).max)) {
                    revert SafeCastOverflowedUintToInt(value);
                }
                return int256(value);
            }
            /**
             * @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump.
             */
            function toUint(bool b) internal pure returns (uint256 u) {
                assembly ("memory-safe") {
                    u := iszero(iszero(b))
                }
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SignedMath.sol)
        pragma solidity ^0.8.20;
        import {SafeCast} from "./SafeCast.sol";
        /**
         * @dev Standard signed math utilities missing in the Solidity language.
         */
        library SignedMath {
            /**
             * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
             *
             * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
             * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
             * one branch when needed, making this function more expensive.
             */
            function ternary(bool condition, int256 a, int256 b) internal pure returns (int256) {
                unchecked {
                    // branchless ternary works because:
                    // b ^ (a ^ b) == a
                    // b ^ 0 == b
                    return b ^ ((a ^ b) * int256(SafeCast.toUint(condition)));
                }
            }
            /**
             * @dev Returns the largest of two signed numbers.
             */
            function max(int256 a, int256 b) internal pure returns (int256) {
                return ternary(a > b, a, b);
            }
            /**
             * @dev Returns the smallest of two signed numbers.
             */
            function min(int256 a, int256 b) internal pure returns (int256) {
                return ternary(a < b, a, b);
            }
            /**
             * @dev Returns the average of two signed numbers without overflow.
             * The result is rounded towards zero.
             */
            function average(int256 a, int256 b) internal pure returns (int256) {
                // Formula from the book "Hacker's Delight"
                int256 x = (a & b) + ((a ^ b) >> 1);
                return x + (int256(uint256(x) >> 255) & (a ^ b));
            }
            /**
             * @dev Returns the absolute unsigned value of a signed value.
             */
            function abs(int256 n) internal pure returns (uint256) {
                unchecked {
                    // Formula from the "Bit Twiddling Hacks" by Sean Eron Anderson.
                    // Since `n` is a signed integer, the generated bytecode will use the SAR opcode to perform the right shift,
                    // taking advantage of the most significant (or "sign" bit) in two's complement representation.
                    // This opcode adds new most significant bits set to the value of the previous most significant bit. As a result,
                    // the mask will either be `bytes32(0)` (if n is positive) or `~bytes32(0)` (if n is negative).
                    int256 mask = n >> 255;
                    // A `bytes32(0)` mask leaves the input unchanged, while a `~bytes32(0)` mask complements it.
                    return uint256((n + mask) ^ mask);
                }
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol)
        pragma solidity ^0.8.20;
        /**
         * @dev Helper library for emitting standardized panic codes.
         *
         * ```solidity
         * contract Example {
         *      using Panic for uint256;
         *
         *      // Use any of the declared internal constants
         *      function foo() { Panic.GENERIC.panic(); }
         *
         *      // Alternatively
         *      function foo() { Panic.panic(Panic.GENERIC); }
         * }
         * ```
         *
         * Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil].
         *
         * _Available since v5.1._
         */
        // slither-disable-next-line unused-state
        library Panic {
            /// @dev generic / unspecified error
            uint256 internal constant GENERIC = 0x00;
            /// @dev used by the assert() builtin
            uint256 internal constant ASSERT = 0x01;
            /// @dev arithmetic underflow or overflow
            uint256 internal constant UNDER_OVERFLOW = 0x11;
            /// @dev division or modulo by zero
            uint256 internal constant DIVISION_BY_ZERO = 0x12;
            /// @dev enum conversion error
            uint256 internal constant ENUM_CONVERSION_ERROR = 0x21;
            /// @dev invalid encoding in storage
            uint256 internal constant STORAGE_ENCODING_ERROR = 0x22;
            /// @dev empty array pop
            uint256 internal constant EMPTY_ARRAY_POP = 0x31;
            /// @dev array out of bounds access
            uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32;
            /// @dev resource error (too large allocation or too large array)
            uint256 internal constant RESOURCE_ERROR = 0x41;
            /// @dev calling invalid internal function
            uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51;
            /// @dev Reverts with a panic code. Recommended to use with
            /// the internal constants with predefined codes.
            function panic(uint256 code) internal pure {
                assembly ("memory-safe") {
                    mstore(0x00, 0x4e487b71)
                    mstore(0x20, code)
                    revert(0x1c, 0x24)
                }
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.1.0) (utils/ShortStrings.sol)
        pragma solidity ^0.8.20;
        import {StorageSlot} from "./StorageSlot.sol";
        // | string  | 0xAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA   |
        // | length  | 0x                                                              BB |
        type ShortString is bytes32;
        /**
         * @dev This library provides functions to convert short memory strings
         * into a `ShortString` type that can be used as an immutable variable.
         *
         * Strings of arbitrary length can be optimized using this library if
         * they are short enough (up to 31 bytes) by packing them with their
         * length (1 byte) in a single EVM word (32 bytes). Additionally, a
         * fallback mechanism can be used for every other case.
         *
         * Usage example:
         *
         * ```solidity
         * contract Named {
         *     using ShortStrings for *;
         *
         *     ShortString private immutable _name;
         *     string private _nameFallback;
         *
         *     constructor(string memory contractName) {
         *         _name = contractName.toShortStringWithFallback(_nameFallback);
         *     }
         *
         *     function name() external view returns (string memory) {
         *         return _name.toStringWithFallback(_nameFallback);
         *     }
         * }
         * ```
         */
        library ShortStrings {
            // Used as an identifier for strings longer than 31 bytes.
            bytes32 private constant FALLBACK_SENTINEL = 0x00000000000000000000000000000000000000000000000000000000000000FF;
            error StringTooLong(string str);
            error InvalidShortString();
            /**
             * @dev Encode a string of at most 31 chars into a `ShortString`.
             *
             * This will trigger a `StringTooLong` error is the input string is too long.
             */
            function toShortString(string memory str) internal pure returns (ShortString) {
                bytes memory bstr = bytes(str);
                if (bstr.length > 31) {
                    revert StringTooLong(str);
                }
                return ShortString.wrap(bytes32(uint256(bytes32(bstr)) | bstr.length));
            }
            /**
             * @dev Decode a `ShortString` back to a "normal" string.
             */
            function toString(ShortString sstr) internal pure returns (string memory) {
                uint256 len = byteLength(sstr);
                // using `new string(len)` would work locally but is not memory safe.
                string memory str = new string(32);
                assembly ("memory-safe") {
                    mstore(str, len)
                    mstore(add(str, 0x20), sstr)
                }
                return str;
            }
            /**
             * @dev Return the length of a `ShortString`.
             */
            function byteLength(ShortString sstr) internal pure returns (uint256) {
                uint256 result = uint256(ShortString.unwrap(sstr)) & 0xFF;
                if (result > 31) {
                    revert InvalidShortString();
                }
                return result;
            }
            /**
             * @dev Encode a string into a `ShortString`, or write it to storage if it is too long.
             */
            function toShortStringWithFallback(string memory value, string storage store) internal returns (ShortString) {
                if (bytes(value).length < 32) {
                    return toShortString(value);
                } else {
                    StorageSlot.getStringSlot(store).value = value;
                    return ShortString.wrap(FALLBACK_SENTINEL);
                }
            }
            /**
             * @dev Decode a string that was encoded to `ShortString` or written to storage using {setWithFallback}.
             */
            function toStringWithFallback(ShortString value, string storage store) internal pure returns (string memory) {
                if (ShortString.unwrap(value) != FALLBACK_SENTINEL) {
                    return toString(value);
                } else {
                    return store;
                }
            }
            /**
             * @dev Return the length of a string that was encoded to `ShortString` or written to storage using
             * {setWithFallback}.
             *
             * WARNING: This will return the "byte length" of the string. This may not reflect the actual length in terms of
             * actual characters as the UTF-8 encoding of a single character can span over multiple bytes.
             */
            function byteLengthWithFallback(ShortString value, string storage store) internal view returns (uint256) {
                if (ShortString.unwrap(value) != FALLBACK_SENTINEL) {
                    return byteLength(value);
                } else {
                    return bytes(store).length;
                }
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.1.0) (utils/StorageSlot.sol)
        // This file was procedurally generated from scripts/generate/templates/StorageSlot.js.
        pragma solidity ^0.8.20;
        /**
         * @dev Library for reading and writing primitive types to specific storage slots.
         *
         * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
         * This library helps with reading and writing to such slots without the need for inline assembly.
         *
         * The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
         *
         * Example usage to set ERC-1967 implementation slot:
         * ```solidity
         * contract ERC1967 {
         *     // Define the slot. Alternatively, use the SlotDerivation library to derive the slot.
         *     bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
         *
         *     function _getImplementation() internal view returns (address) {
         *         return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
         *     }
         *
         *     function _setImplementation(address newImplementation) internal {
         *         require(newImplementation.code.length > 0);
         *         StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
         *     }
         * }
         * ```
         *
         * TIP: Consider using this library along with {SlotDerivation}.
         */
        library StorageSlot {
            struct AddressSlot {
                address value;
            }
            struct BooleanSlot {
                bool value;
            }
            struct Bytes32Slot {
                bytes32 value;
            }
            struct Uint256Slot {
                uint256 value;
            }
            struct Int256Slot {
                int256 value;
            }
            struct StringSlot {
                string value;
            }
            struct BytesSlot {
                bytes value;
            }
            /**
             * @dev Returns an `AddressSlot` with member `value` located at `slot`.
             */
            function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
                assembly ("memory-safe") {
                    r.slot := slot
                }
            }
            /**
             * @dev Returns a `BooleanSlot` with member `value` located at `slot`.
             */
            function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
                assembly ("memory-safe") {
                    r.slot := slot
                }
            }
            /**
             * @dev Returns a `Bytes32Slot` with member `value` located at `slot`.
             */
            function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
                assembly ("memory-safe") {
                    r.slot := slot
                }
            }
            /**
             * @dev Returns a `Uint256Slot` with member `value` located at `slot`.
             */
            function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
                assembly ("memory-safe") {
                    r.slot := slot
                }
            }
            /**
             * @dev Returns a `Int256Slot` with member `value` located at `slot`.
             */
            function getInt256Slot(bytes32 slot) internal pure returns (Int256Slot storage r) {
                assembly ("memory-safe") {
                    r.slot := slot
                }
            }
            /**
             * @dev Returns a `StringSlot` with member `value` located at `slot`.
             */
            function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
                assembly ("memory-safe") {
                    r.slot := slot
                }
            }
            /**
             * @dev Returns an `StringSlot` representation of the string storage pointer `store`.
             */
            function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
                assembly ("memory-safe") {
                    r.slot := store.slot
                }
            }
            /**
             * @dev Returns a `BytesSlot` with member `value` located at `slot`.
             */
            function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
                assembly ("memory-safe") {
                    r.slot := slot
                }
            }
            /**
             * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
             */
            function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
                assembly ("memory-safe") {
                    r.slot := store.slot
                }
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.1.0) (utils/Strings.sol)
        pragma solidity ^0.8.20;
        import {Math} from "./math/Math.sol";
        import {SignedMath} from "./math/SignedMath.sol";
        /**
         * @dev String operations.
         */
        library Strings {
            bytes16 private constant HEX_DIGITS = "0123456789abcdef";
            uint8 private constant ADDRESS_LENGTH = 20;
            /**
             * @dev The `value` string doesn't fit in the specified `length`.
             */
            error StringsInsufficientHexLength(uint256 value, uint256 length);
            /**
             * @dev Converts a `uint256` to its ASCII `string` decimal representation.
             */
            function toString(uint256 value) internal pure returns (string memory) {
                unchecked {
                    uint256 length = Math.log10(value) + 1;
                    string memory buffer = new string(length);
                    uint256 ptr;
                    assembly ("memory-safe") {
                        ptr := add(buffer, add(32, length))
                    }
                    while (true) {
                        ptr--;
                        assembly ("memory-safe") {
                            mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
                        }
                        value /= 10;
                        if (value == 0) break;
                    }
                    return buffer;
                }
            }
            /**
             * @dev Converts a `int256` to its ASCII `string` decimal representation.
             */
            function toStringSigned(int256 value) internal pure returns (string memory) {
                return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
            }
            /**
             * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
             */
            function toHexString(uint256 value) internal pure returns (string memory) {
                unchecked {
                    return toHexString(value, Math.log256(value) + 1);
                }
            }
            /**
             * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
             */
            function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
                uint256 localValue = value;
                bytes memory buffer = new bytes(2 * length + 2);
                buffer[0] = "0";
                buffer[1] = "x";
                for (uint256 i = 2 * length + 1; i > 1; --i) {
                    buffer[i] = HEX_DIGITS[localValue & 0xf];
                    localValue >>= 4;
                }
                if (localValue != 0) {
                    revert StringsInsufficientHexLength(value, length);
                }
                return string(buffer);
            }
            /**
             * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
             * representation.
             */
            function toHexString(address addr) internal pure returns (string memory) {
                return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
            }
            /**
             * @dev Converts an `address` with fixed length of 20 bytes to its checksummed ASCII `string` hexadecimal
             * representation, according to EIP-55.
             */
            function toChecksumHexString(address addr) internal pure returns (string memory) {
                bytes memory buffer = bytes(toHexString(addr));
                // hash the hex part of buffer (skip length + 2 bytes, length 40)
                uint256 hashValue;
                assembly ("memory-safe") {
                    hashValue := shr(96, keccak256(add(buffer, 0x22), 40))
                }
                for (uint256 i = 41; i > 1; --i) {
                    // possible values for buffer[i] are 48 (0) to 57 (9) and 97 (a) to 102 (f)
                    if (hashValue & 0xf > 7 && uint8(buffer[i]) > 96) {
                        // case shift by xoring with 0x20
                        buffer[i] ^= 0x20;
                    }
                    hashValue >>= 4;
                }
                return string(buffer);
            }
            /**
             * @dev Returns true if the two strings are equal.
             */
            function equal(string memory a, string memory b) internal pure returns (bool) {
                return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
            }
        }
        // SPDX-License-Identifier: UNLICENSED
        pragma solidity ^0.8.20;
        error InvalidSignature();
        error AlreadyClaimed();
        error ZeroAddress();
        error DeadlinePassed();
        error InvalidProofs();
        error RootHashAlreadySet();
        error SlotExists();
        error InvalidRecipient();
        error InvalidCaller();
        error VestingConfigNotSet();
        error InvalidVestingConfig();
        error EmptyArray();
        error InvalidUserVestingId();// SPDX-License-Identifier: UNLICENSED
        pragma solidity ^0.8.20;
        import "@openzeppelin/contracts/access/Ownable.sol";
        import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
        import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
        import "./IDistributor.sol";
        import "../Errors.sol";
        abstract contract Distributor is IDistributor, Ownable {
            using SafeERC20 for IERC20;
            address public batchDistributor;
            IERC20 public immutable paymentToken;
            VestingConfig public vestingConfig;
            // userVestingId => SlotInfo
            mapping(bytes32 => SlotInfo) public slotInfos;
            // 10_000 = 100%
            uint256 public constant BASIC_POINT_DECIMALS = 10_000;
            struct VestingConfig {
                uint32 initClaimPercent;
                uint32 intervalPercent;
                uint32 intervalDays;
                uint128 initDeadline;
            }
            
            struct SlotInfo {
                uint256 amount;
                uint256 claimed;
                uint128 initDeadline; // The timestamp of the deadline of the airdrop even with amount still available, user won't be able to claim
                uint128 startTime;
                uint32 initClaimPercent;
                uint32 intervalPercent;
                uint32 intervalDays;
                bool initialized;
            }
            
            event DistributorUpdated(address indexed oldDistributor, address indexed newDistributor);
            event Claimed(address indexed caller, bytes32 indexed userVestingId, address indexed recipient, uint256 amount);
            event Initialized(address indexed caller, bytes32 indexed userVestingId, uint256 amount);
            event VestingConfigUpdated(uint32 initClaimPercent, uint32 intervalPercent, uint32 intervalDays, uint128 deadline);
            modifier onlyBatchDistributor() {
                require(batchDistributor == msg.sender, "Caller is not the batch distributor");
                _;
            }
            constructor(address _paymentToken) Ownable(msg.sender) {
                if (_paymentToken == address(0)) revert ZeroAddress();
                paymentToken = IERC20(_paymentToken);
            }
            // Add setDistributor function
            function setBatchDistributor(address newDistributor) external onlyOwner {        
                batchDistributor = newDistributor;
                emit DistributorUpdated(batchDistributor, newDistributor);
            }
            function _validateVestingConfig(uint256 initClaimPercent, uint256 intervalPercent, uint256 intervalDays, uint256 deadline) internal view {
                if (intervalDays == 0) revert InvalidVestingConfig();
                if (initClaimPercent > BASIC_POINT_DECIMALS || intervalPercent > BASIC_POINT_DECIMALS) revert InvalidVestingConfig();
                if (deadline != 0 && deadline < block.timestamp) revert InvalidVestingConfig();
            }
            /**
             * @notice Set the vesting config
             * @param initClaimPercent     Initial claim percent
             * @param intervalPercent     Interval percent
             * @param intervalDays     Interval days
             * @param initDeadline     Init deadline
             */
            function setVestingConfig(uint32 initClaimPercent, uint32 intervalPercent, uint32 intervalDays, uint128 initDeadline) external onlyOwner {
                _validateVestingConfig(initClaimPercent, intervalPercent, intervalDays, initDeadline);
                vestingConfig = VestingConfig({
                    initClaimPercent: uint32(initClaimPercent),
                    intervalPercent: uint32(intervalPercent),
                    intervalDays: intervalDays,
                    initDeadline: uint128(initDeadline)
                });
                emit VestingConfigUpdated(uint32(initClaimPercent), uint32(intervalPercent), uint32(intervalDays), uint128(initDeadline));
            }
            /**
             * @notice Initialize the claim for a user
             * @param caller The caller of the function forwarded from the batch distributor
             * @param proofs The merkle proof for the user
             * @param recipient The recipient of the airdrop
             */
            function initClaim(address caller, bytes calldata proofs, address recipient) external onlyBatchDistributor {
                if (vestingConfig.initDeadline != 0 && vestingConfig.initDeadline < block.timestamp) revert DeadlinePassed();
                (bytes32 userVestingId, uint256 amount) = _initClaim(caller, proofs);
                if (slotInfos[userVestingId].initialized) revert SlotExists();
                slotInfos[userVestingId] = SlotInfo({
                    initClaimPercent: vestingConfig.initClaimPercent,
                    intervalPercent: vestingConfig.intervalPercent,
                    intervalDays: vestingConfig.intervalDays,
                    initDeadline: vestingConfig.initDeadline,
                    amount: amount,
                    claimed: 0,
                    startTime: uint128(block.timestamp),
                    initialized: true
                });
                uint256 claimAmount = _calculateClaimAmount(userVestingId);
                _transferToRecipient(userVestingId, recipient, claimAmount);
                emit Initialized(caller, userVestingId, slotInfos[userVestingId].amount);
            }
            function _initClaim(address caller, bytes calldata proofs) internal virtual returns (bytes32, uint256);
            /**
             * @notice Claim the airdrop for a user
             * @param caller The caller of the function forwarded from the batch distributor
             * @param userVestingId The user vesting id
             * @param recipient The recipient of the airdrop
             */
            function claim(address caller, bytes32 userVestingId, address recipient) external onlyBatchDistributor {
                if (slotInfos[userVestingId].initDeadline != 0 && slotInfos[userVestingId].initDeadline < block.timestamp) revert DeadlinePassed();
                if (slotInfos[userVestingId].claimed >= slotInfos[userVestingId].amount) revert AlreadyClaimed();
                _verifyCaller(caller, userVestingId);
                uint256 claimAmount = _calculateClaimAmount(userVestingId);
                if (claimAmount == 0) revert AlreadyClaimed();
                _transferToRecipient(userVestingId, recipient, claimAmount);
                emit Claimed(caller, userVestingId, recipient, claimAmount);
            }
            function _verifyCaller(address caller, bytes32 userVestingId) internal virtual;
            /**
             * @notice Calculate the claimable amount for a user
             * @param userVestingId The user vesting id
             * @return The claimable amount
             */
            function _calculateClaimAmount(bytes32 userVestingId) internal view returns (uint256) {
                SlotInfo memory slot = slotInfos[userVestingId];        
                // Calculate time elapsed since vesting started
                uint256 timeElapsed = (block.timestamp - slot.startTime) / (slot.intervalDays * 1 days);
                
                // Calculate total percentage
                uint256 currentPercent = (timeElapsed * slot.intervalPercent) + slot.initClaimPercent;
                if (currentPercent > BASIC_POINT_DECIMALS) currentPercent = BASIC_POINT_DECIMALS;
                // Calculate total vested amount
                uint256 totalVestedAmount = (slot.amount * currentPercent) / BASIC_POINT_DECIMALS;
                
                // Calculate remaining claimable amount
                uint256 amountToClaim = totalVestedAmount - slot.claimed;
                
                return amountToClaim;
            }
            /**
             * @notice Transfer the airdrop to the recipient
             * @param userVestingId The user vesting id
             * @param recipient The recipient of the airdrop
             * @param amount The amount to transfer
             */
            function _transferToRecipient(bytes32 userVestingId, address recipient, uint256 amount) internal {
                slotInfos[userVestingId].claimed += amount;
                paymentToken.safeTransfer(recipient, amount);
            }
            /**
             * @notice Emergency function to recover wrong tokens
             * @param _token The token to recover
             * @param _amount The amount to recover
             */
            function recoverToken(address _token, uint256 _amount) external onlyOwner {
                IERC20(_token).safeTransfer(owner(), _amount);
            }
        }// SPDX-License-Identifier: UNLICENSED
        pragma solidity ^0.8.20;
        import "../Errors.sol";
        interface IDistributor {
            function initClaim(address caller, bytes calldata proofs, address recipient) external;
            function claim(address caller, bytes32 userVestingId, address recipient) external;
        }// SPDX-License-Identifier: UNLICENSED
        pragma solidity ^0.8.20;
        import "@openzeppelin/contracts/utils/cryptography/MerkleProof.sol";
        import "@openzeppelin/contracts/utils/cryptography/EIP712.sol";
        import "@openzeppelin/contracts/utils/cryptography/ECDSA.sol";
        import "../VestingUtils.sol";
        import "../interfaces/Distributor.sol";
        import "../Errors.sol";
        /**
         * @title UprisingAirdropDistributor
         * @author @trmaphi
         * @notice This contract is used to claim airdrops for Uprising holders, using backend signatures.
         */
        contract UprisingAirdropDistributor is Distributor, EIP712 {
            // Domain Separator constants
            string private constant SIGNING_DOMAIN = "UprisingAirdropDistributor";
            string private constant SIGNATURE_VERSION = "v1.0.0";
            // Type hash for the UprisingPoint struct
            bytes32 private constant _UPRISINGPOINT_TYPEHASH = 
                keccak256("UprisingAirdropDistributor(address recipient,uint256 amount)");
            mapping(address => bool) public authorizers;
            event SlotInitialized(address indexed initializer, address indexed recipient, uint256 amount);
            event SetAuthorizer(address indexed account, bool isAuthorizer);
            constructor(address _paymentToken)
                Distributor(_paymentToken)
                EIP712(SIGNING_DOMAIN, SIGNATURE_VERSION)
            {
            }
            /** 
            @notice Set/Remove `Authorizer` role of an account
            @dev
            - Requirement:
                - Caller MUST be `owner`
            - Params:
                - account          Account's address to be updated
                - isAuthorizer     Boolean flag (true = set, false = remove)
            */
            function setAuthorizer(
                address account,
                bool isAuthorizer
            ) external onlyOwner {
                authorizers[account] = isAuthorizer;
                emit SetAuthorizer(account, isAuthorizer);
            }
            function hashUprisingPoint(address recipient, uint256 amount) internal view returns (bytes32) {
                return _hashTypedDataV4(keccak256(abi.encode(
                    _UPRISINGPOINT_TYPEHASH,
                    recipient,
                    amount
                )));
            }
            function verifySignature(
                address recipient,
                uint256 amount,
                bytes memory signature
            ) internal view {
                bytes32 digest = hashUprisingPoint(recipient, amount);
                address signer = ECDSA.recover(digest, signature);
                if (!authorizers[signer]) revert InvalidSignature();
            }
            /**
             * @notice Initialize the claim
             * @dev
             * - Requirement:
             *      - Recipient must be known by authorizer
             * - Params:
             *      - caller           Caller's address
             *      - proofs           Proofs
             */
            function _initClaim(address caller, bytes calldata proofs) internal override returns (bytes32, uint256) {
                (address _recipient, uint256 amount, bytes memory signature) = abi.decode(proofs, (address, uint256, bytes));
                if (_recipient != caller) revert InvalidCaller();
                bytes32 userVestingId = VestingUtils.addressToBytes32(caller);
                // Verify the signature
                verifySignature(caller, amount, signature);
                return (userVestingId, amount);
            }
            /**
             * @notice Claim the airdrop
             * @dev
             * - Requirement:
             *      - Caller MUST be the one initialized the claim
             */
            function _verifyCaller(address caller, bytes32 userVestingId) internal view override {
                if (caller != VestingUtils.bytes32ToAddress(userVestingId)) revert InvalidCaller();
            }
        }// SPDX-License-Identifier: UNLICENSED
        pragma solidity ^0.8.20;
        library VestingUtils {
            /**
             * @dev Converts an address to bytes32.
             * @param _addr The address to convert.
             * @return The bytes32 representation of the address.
             */
            function addressToBytes32(address _addr) internal pure returns (bytes32) {
                return bytes32(uint256(uint160(_addr)));
            }
            /**
             * @dev Converts bytes32 to an address.
             * @param _b The bytes32 value to convert.
             * @return The address representation of bytes32.
             */
            function bytes32ToAddress(bytes32 _b) internal pure returns (address) {
                return address(uint160(uint256(_b)));
            }
        }