ETH Price: $2,533.02 (-0.69%)

Transaction Decoder

Block:
18763552 at Dec-11-2023 02:26:35 PM +UTC
Transaction Fee:
0.005614300359252192 ETH $14.22
Gas Used:
145,032 Gas / 38.710769756 Gwei

Emitted Events:

393 AlphashardToken.Transfer( from=[Receiver] AlphaStaking2, to=[Sender] 0xc366ea18b234ffb50a1a174a6ee20e9a23636406, value=3495719885711310000000 )
394 AlphaStaking2.Withdraw( staker=[Sender] 0xc366ea18b234ffb50a1a174a6ee20e9a23636406, rewardAmount=3495719885711310000000, poolId=2 )
395 AlphaToken.Transfer( from=[Sender] 0xc366ea18b234ffb50a1a174a6ee20e9a23636406, to=[Receiver] AlphaStaking2, value=15250865000000000000000000 )
396 AlphaToken.Approval( owner=[Sender] 0xc366ea18b234ffb50a1a174a6ee20e9a23636406, spender=[Receiver] AlphaStaking2, value=0 )
397 AlphaStaking2.Staked( staker=[Sender] 0xc366ea18b234ffb50a1a174a6ee20e9a23636406, amount=15250865000000000000000000, poolId=2 )

Account State Difference:

  Address   Before After State Difference Code
0x38f9bb13...b773fEc2F
0x492441Ba...db06E0b1A
0x73b4e067...1f193d783
(Frax Finance: Frx ETH Multisig)
1,511.975043805571697955 Eth1,511.975045981051697955 Eth0.00000217548
0xc366ea18...A23636406
0.129357918063624006 Eth
Nonce: 66
0.123743617704371814 Eth
Nonce: 67
0.005614300359252192

Execution Trace

AlphaStaking2.stake( _amount=15250865000000000000000000, _poolId=2 )
  • AlphashardToken.transfer( recipient=0xc366ea18b234fFb50A1A174a6ee20e9A23636406, amount=3495719885711310000000 ) => ( True )
  • AlphaToken.transferFrom( sender=0xc366ea18b234fFb50A1A174a6ee20e9A23636406, recipient=0x73b4e06749e230fd45Ffb4E68dAf9a41f193d783, amount=15250865000000000000000000 ) => ( True )
    File 1 of 3: AlphaStaking2
    // SPDX-License-Identifier: MIT
    // File: contracts/interfaces/IStaking.sol
    
    
    pragma solidity 0.8.18;
    
    interface IStaking {
        function stake(uint256 amount) external;
    
        function unstake(uint256 amount) external;
    
        function claimReward() external;
    
        function earned(address stakeholder) external view returns (uint256);
    
        function stakingToken() external view returns (address);
    
        function rewardToken() external view returns (address);
    
        function rewardAmount() external view returns (uint256);
    
        function startTime() external view returns (uint256);
    
        function stopTime() external view returns (uint256);
    
        function duration() external view returns (uint256);
    
        function lockTime() external view returns (uint256);
    
        function totalStaked() external view returns (uint256);
    
        function totalStakedRatio() external view returns (uint256);
    
        function getRewardTokenBalance() external view returns (uint256);
    
        function getStakingTokenBalance() external view returns (uint256);
    }
    
    // File: @openzeppelin/contracts/utils/Context.sol
    
    
    // OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
    
    pragma solidity ^0.8.0;
    
    /**
     * @dev Provides information about the current execution context, including the
     * sender of the transaction and its data. While these are generally available
     * via msg.sender and msg.data, they should not be accessed in such a direct
     * manner, since when dealing with meta-transactions the account sending and
     * paying for execution may not be the actual sender (as far as an application
     * is concerned).
     *
     * This contract is only required for intermediate, library-like contracts.
     */
    abstract contract Context {
        function _msgSender() internal view virtual returns (address) {
            return msg.sender;
        }
    
        function _msgData() internal view virtual returns (bytes calldata) {
            return msg.data;
        }
    }
    
    // File: @openzeppelin/contracts/security/Pausable.sol
    
    
    // OpenZeppelin Contracts v4.4.1 (security/Pausable.sol)
    
    pragma solidity ^0.8.0;
    
    
    /**
     * @dev Contract module which allows children to implement an emergency stop
     * mechanism that can be triggered by an authorized account.
     *
     * This module is used through inheritance. It will make available the
     * modifiers `whenNotPaused` and `whenPaused`, which can be applied to
     * the functions of your contract. Note that they will not be pausable by
     * simply including this module, only once the modifiers are put in place.
     */
    abstract contract Pausable is Context {
        /**
         * @dev Emitted when the pause is triggered by `account`.
         */
        event Paused(address account);
    
        /**
         * @dev Emitted when the pause is lifted by `account`.
         */
        event Unpaused(address account);
    
        bool private _paused;
    
        /**
         * @dev Initializes the contract in unpaused state.
         */
        constructor() {
            _paused = false;
        }
    
        /**
         * @dev Returns true if the contract is paused, and false otherwise.
         */
        function paused() public view virtual returns (bool) {
            return _paused;
        }
    
        /**
         * @dev Modifier to make a function callable only when the contract is not paused.
         *
         * Requirements:
         *
         * - The contract must not be paused.
         */
        modifier whenNotPaused() {
            require(!paused(), "Pausable: paused");
            _;
        }
    
        /**
         * @dev Modifier to make a function callable only when the contract is paused.
         *
         * Requirements:
         *
         * - The contract must be paused.
         */
        modifier whenPaused() {
            require(paused(), "Pausable: not paused");
            _;
        }
    
        /**
         * @dev Triggers stopped state.
         *
         * Requirements:
         *
         * - The contract must not be paused.
         */
        function _pause() internal virtual whenNotPaused {
            _paused = true;
            emit Paused(_msgSender());
        }
    
        /**
         * @dev Returns to normal state.
         *
         * Requirements:
         *
         * - The contract must be paused.
         */
        function _unpause() internal virtual whenPaused {
            _paused = false;
            emit Unpaused(_msgSender());
        }
    }
    
    // File: @openzeppelin/contracts/access/Ownable.sol
    
    
    // OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol)
    
    pragma solidity ^0.8.0;
    
    
    /**
     * @dev Contract module which provides a basic access control mechanism, where
     * there is an account (an owner) that can be granted exclusive access to
     * specific functions.
     *
     * By default, the owner account will be the one that deploys the contract. This
     * can later be changed with {transferOwnership}.
     *
     * This module is used through inheritance. It will make available the modifier
     * `onlyOwner`, which can be applied to your functions to restrict their use to
     * the owner.
     */
    abstract contract Ownable is Context {
        address private _owner;
    
        event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
    
        /**
         * @dev Initializes the contract setting the deployer as the initial owner.
         */
        constructor() {
            _transferOwnership(_msgSender());
        }
    
        /**
         * @dev Throws if called by any account other than the owner.
         */
        modifier onlyOwner() {
            _checkOwner();
            _;
        }
    
        /**
         * @dev Returns the address of the current owner.
         */
        function owner() public view virtual returns (address) {
            return _owner;
        }
    
        /**
         * @dev Throws if the sender is not the owner.
         */
        function _checkOwner() internal view virtual {
            require(owner() == _msgSender(), "Ownable: caller is not the owner");
        }
    
        /**
         * @dev Leaves the contract without owner. It will not be possible to call
         * `onlyOwner` functions anymore. Can only be called by the current owner.
         *
         * NOTE: Renouncing ownership will leave the contract without an owner,
         * thereby removing any functionality that is only available to the owner.
         */
        function renounceOwnership() public virtual onlyOwner {
            _transferOwnership(address(0));
        }
    
        /**
         * @dev Transfers ownership of the contract to a new account (`newOwner`).
         * Can only be called by the current owner.
         */
        function transferOwnership(address newOwner) public virtual onlyOwner {
            require(newOwner != address(0), "Ownable: new owner is the zero address");
            _transferOwnership(newOwner);
        }
    
        /**
         * @dev Transfers ownership of the contract to a new account (`newOwner`).
         * Internal function without access restriction.
         */
        function _transferOwnership(address newOwner) internal virtual {
            address oldOwner = _owner;
            _owner = newOwner;
            emit OwnershipTransferred(oldOwner, newOwner);
        }
    }
    
    // File: @openzeppelin/contracts/utils/structs/EnumerableSet.sol
    
    
    // OpenZeppelin Contracts (last updated v4.7.0) (utils/structs/EnumerableSet.sol)
    
    pragma solidity ^0.8.0;
    
    /**
     * @dev Library for managing
     * https://en.wikipedia.org/wiki/Set_(abstract_data_type)[sets] of primitive
     * types.
     *
     * Sets have the following properties:
     *
     * - Elements are added, removed, and checked for existence in constant time
     * (O(1)).
     * - Elements are enumerated in O(n). No guarantees are made on the ordering.
     *
     * ```
     * contract Example {
     *     // Add the library methods
     *     using EnumerableSet for EnumerableSet.AddressSet;
     *
     *     // Declare a set state variable
     *     EnumerableSet.AddressSet private mySet;
     * }
     * ```
     *
     * As of v3.3.0, sets of type `bytes32` (`Bytes32Set`), `address` (`AddressSet`)
     * and `uint256` (`UintSet`) are supported.
     *
     * [WARNING]
     * ====
     *  Trying to delete such a structure from storage will likely result in data corruption, rendering the structure unusable.
     *  See https://github.com/ethereum/solidity/pull/11843[ethereum/solidity#11843] for more info.
     *
     *  In order to clean an EnumerableSet, you can either remove all elements one by one or create a fresh instance using an array of EnumerableSet.
     * ====
     */
    library EnumerableSet {
        // To implement this library for multiple types with as little code
        // repetition as possible, we write it in terms of a generic Set type with
        // bytes32 values.
        // The Set implementation uses private functions, and user-facing
        // implementations (such as AddressSet) are just wrappers around the
        // underlying Set.
        // This means that we can only create new EnumerableSets for types that fit
        // in bytes32.
    
        struct Set {
            // Storage of set values
            bytes32[] _values;
            // Position of the value in the `values` array, plus 1 because index 0
            // means a value is not in the set.
            mapping(bytes32 => uint256) _indexes;
        }
    
        /**
         * @dev Add a value to a set. O(1).
         *
         * Returns true if the value was added to the set, that is if it was not
         * already present.
         */
        function _add(Set storage set, bytes32 value) private returns (bool) {
            if (!_contains(set, value)) {
                set._values.push(value);
                // The value is stored at length-1, but we add 1 to all indexes
                // and use 0 as a sentinel value
                set._indexes[value] = set._values.length;
                return true;
            } else {
                return false;
            }
        }
    
        /**
         * @dev Removes a value from a set. O(1).
         *
         * Returns true if the value was removed from the set, that is if it was
         * present.
         */
        function _remove(Set storage set, bytes32 value) private returns (bool) {
            // We read and store the value's index to prevent multiple reads from the same storage slot
            uint256 valueIndex = set._indexes[value];
    
            if (valueIndex != 0) {
                // Equivalent to contains(set, value)
                // To delete an element from the _values array in O(1), we swap the element to delete with the last one in
                // the array, and then remove the last element (sometimes called as 'swap and pop').
                // This modifies the order of the array, as noted in {at}.
    
                uint256 toDeleteIndex = valueIndex - 1;
                uint256 lastIndex = set._values.length - 1;
    
                if (lastIndex != toDeleteIndex) {
                    bytes32 lastValue = set._values[lastIndex];
    
                    // Move the last value to the index where the value to delete is
                    set._values[toDeleteIndex] = lastValue;
                    // Update the index for the moved value
                    set._indexes[lastValue] = valueIndex; // Replace lastValue's index to valueIndex
                }
    
                // Delete the slot where the moved value was stored
                set._values.pop();
    
                // Delete the index for the deleted slot
                delete set._indexes[value];
    
                return true;
            } else {
                return false;
            }
        }
    
        /**
         * @dev Returns true if the value is in the set. O(1).
         */
        function _contains(Set storage set, bytes32 value) private view returns (bool) {
            return set._indexes[value] != 0;
        }
    
        /**
         * @dev Returns the number of values on the set. O(1).
         */
        function _length(Set storage set) private view returns (uint256) {
            return set._values.length;
        }
    
        /**
         * @dev Returns the value stored at position `index` in the set. O(1).
         *
         * Note that there are no guarantees on the ordering of values inside the
         * array, and it may change when more values are added or removed.
         *
         * Requirements:
         *
         * - `index` must be strictly less than {length}.
         */
        function _at(Set storage set, uint256 index) private view returns (bytes32) {
            return set._values[index];
        }
    
        /**
         * @dev Return the entire set in an array
         *
         * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
         * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
         * this function has an unbounded cost, and using it as part of a state-changing function may render the function
         * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
         */
        function _values(Set storage set) private view returns (bytes32[] memory) {
            return set._values;
        }
    
        // Bytes32Set
    
        struct Bytes32Set {
            Set _inner;
        }
    
        /**
         * @dev Add a value to a set. O(1).
         *
         * Returns true if the value was added to the set, that is if it was not
         * already present.
         */
        function add(Bytes32Set storage set, bytes32 value) internal returns (bool) {
            return _add(set._inner, value);
        }
    
        /**
         * @dev Removes a value from a set. O(1).
         *
         * Returns true if the value was removed from the set, that is if it was
         * present.
         */
        function remove(Bytes32Set storage set, bytes32 value) internal returns (bool) {
            return _remove(set._inner, value);
        }
    
        /**
         * @dev Returns true if the value is in the set. O(1).
         */
        function contains(Bytes32Set storage set, bytes32 value) internal view returns (bool) {
            return _contains(set._inner, value);
        }
    
        /**
         * @dev Returns the number of values in the set. O(1).
         */
        function length(Bytes32Set storage set) internal view returns (uint256) {
            return _length(set._inner);
        }
    
        /**
         * @dev Returns the value stored at position `index` in the set. O(1).
         *
         * Note that there are no guarantees on the ordering of values inside the
         * array, and it may change when more values are added or removed.
         *
         * Requirements:
         *
         * - `index` must be strictly less than {length}.
         */
        function at(Bytes32Set storage set, uint256 index) internal view returns (bytes32) {
            return _at(set._inner, index);
        }
    
        /**
         * @dev Return the entire set in an array
         *
         * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
         * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
         * this function has an unbounded cost, and using it as part of a state-changing function may render the function
         * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
         */
        function values(Bytes32Set storage set) internal view returns (bytes32[] memory) {
            return _values(set._inner);
        }
    
        // AddressSet
    
        struct AddressSet {
            Set _inner;
        }
    
        /**
         * @dev Add a value to a set. O(1).
         *
         * Returns true if the value was added to the set, that is if it was not
         * already present.
         */
        function add(AddressSet storage set, address value) internal returns (bool) {
            return _add(set._inner, bytes32(uint256(uint160(value))));
        }
    
        /**
         * @dev Removes a value from a set. O(1).
         *
         * Returns true if the value was removed from the set, that is if it was
         * present.
         */
        function remove(AddressSet storage set, address value) internal returns (bool) {
            return _remove(set._inner, bytes32(uint256(uint160(value))));
        }
    
        /**
         * @dev Returns true if the value is in the set. O(1).
         */
        function contains(AddressSet storage set, address value) internal view returns (bool) {
            return _contains(set._inner, bytes32(uint256(uint160(value))));
        }
    
        /**
         * @dev Returns the number of values in the set. O(1).
         */
        function length(AddressSet storage set) internal view returns (uint256) {
            return _length(set._inner);
        }
    
        /**
         * @dev Returns the value stored at position `index` in the set. O(1).
         *
         * Note that there are no guarantees on the ordering of values inside the
         * array, and it may change when more values are added or removed.
         *
         * Requirements:
         *
         * - `index` must be strictly less than {length}.
         */
        function at(AddressSet storage set, uint256 index) internal view returns (address) {
            return address(uint160(uint256(_at(set._inner, index))));
        }
    
        /**
         * @dev Return the entire set in an array
         *
         * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
         * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
         * this function has an unbounded cost, and using it as part of a state-changing function may render the function
         * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
         */
        function values(AddressSet storage set) internal view returns (address[] memory) {
            bytes32[] memory store = _values(set._inner);
            address[] memory result;
    
            /// @solidity memory-safe-assembly
            assembly {
                result := store
            }
    
            return result;
        }
    
        // UintSet
    
        struct UintSet {
            Set _inner;
        }
    
        /**
         * @dev Add a value to a set. O(1).
         *
         * Returns true if the value was added to the set, that is if it was not
         * already present.
         */
        function add(UintSet storage set, uint256 value) internal returns (bool) {
            return _add(set._inner, bytes32(value));
        }
    
        /**
         * @dev Removes a value from a set. O(1).
         *
         * Returns true if the value was removed from the set, that is if it was
         * present.
         */
        function remove(UintSet storage set, uint256 value) internal returns (bool) {
            return _remove(set._inner, bytes32(value));
        }
    
        /**
         * @dev Returns true if the value is in the set. O(1).
         */
        function contains(UintSet storage set, uint256 value) internal view returns (bool) {
            return _contains(set._inner, bytes32(value));
        }
    
        /**
         * @dev Returns the number of values on the set. O(1).
         */
        function length(UintSet storage set) internal view returns (uint256) {
            return _length(set._inner);
        }
    
        /**
         * @dev Returns the value stored at position `index` in the set. O(1).
         *
         * Note that there are no guarantees on the ordering of values inside the
         * array, and it may change when more values are added or removed.
         *
         * Requirements:
         *
         * - `index` must be strictly less than {length}.
         */
        function at(UintSet storage set, uint256 index) internal view returns (uint256) {
            return uint256(_at(set._inner, index));
        }
    
        /**
         * @dev Return the entire set in an array
         *
         * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
         * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
         * this function has an unbounded cost, and using it as part of a state-changing function may render the function
         * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
         */
        function values(UintSet storage set) internal view returns (uint256[] memory) {
            bytes32[] memory store = _values(set._inner);
            uint256[] memory result;
    
            /// @solidity memory-safe-assembly
            assembly {
                result := store
            }
    
            return result;
        }
    }
    
    // File: @openzeppelin/contracts/token/ERC20/extensions/draft-IERC20Permit.sol
    
    
    // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/draft-IERC20Permit.sol)
    
    pragma solidity ^0.8.0;
    
    /**
     * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
     * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
     *
     * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
     * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
     * need to send a transaction, and thus is not required to hold Ether at all.
     */
    interface IERC20Permit {
        /**
         * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
         * given ``owner``'s signed approval.
         *
         * IMPORTANT: The same issues {IERC20-approve} has related to transaction
         * ordering also apply here.
         *
         * Emits an {Approval} event.
         *
         * Requirements:
         *
         * - `spender` cannot be the zero address.
         * - `deadline` must be a timestamp in the future.
         * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
         * over the EIP712-formatted function arguments.
         * - the signature must use ``owner``'s current nonce (see {nonces}).
         *
         * For more information on the signature format, see the
         * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
         * section].
         */
        function permit(
            address owner,
            address spender,
            uint256 value,
            uint256 deadline,
            uint8 v,
            bytes32 r,
            bytes32 s
        ) external;
    
        /**
         * @dev Returns the current nonce for `owner`. This value must be
         * included whenever a signature is generated for {permit}.
         *
         * Every successful call to {permit} increases ``owner``'s nonce by one. This
         * prevents a signature from being used multiple times.
         */
        function nonces(address owner) external view returns (uint256);
    
        /**
         * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
         */
        // solhint-disable-next-line func-name-mixedcase
        function DOMAIN_SEPARATOR() external view returns (bytes32);
    }
    
    // File: @openzeppelin/contracts/token/ERC20/IERC20.sol
    
    
    // OpenZeppelin Contracts v4.4.1 (token/ERC20/IERC20.sol)
    
    pragma solidity ^0.8.0;
    
    /**
     * @dev Interface of the ERC20 standard as defined in the EIP.
     */
    interface IERC20 {
        /**
         * @dev Returns the amount of tokens in existence.
         */
        function totalSupply() external view returns (uint256);
    
        /**
         * @dev Returns the amount of tokens owned by `account`.
         */
        function balanceOf(address account) external view returns (uint256);
    
        /**
         * @dev Moves `amount` tokens from the caller's account to `recipient`.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * Emits a {Transfer} event.
         */
        function transfer(address recipient, uint256 amount) external returns (bool);
    
        /**
         * @dev Returns the remaining number of tokens that `spender` will be
         * allowed to spend on behalf of `owner` through {transferFrom}. This is
         * zero by default.
         *
         * This value changes when {approve} or {transferFrom} are called.
         */
        function allowance(address owner, address spender) external view returns (uint256);
    
        /**
         * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * IMPORTANT: Beware that changing an allowance with this method brings the risk
         * that someone may use both the old and the new allowance by unfortunate
         * transaction ordering. One possible solution to mitigate this race
         * condition is to first reduce the spender's allowance to 0 and set the
         * desired value afterwards:
         * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
         *
         * Emits an {Approval} event.
         */
        function approve(address spender, uint256 amount) external returns (bool);
    
        /**
         * @dev Moves `amount` tokens from `sender` to `recipient` using the
         * allowance mechanism. `amount` is then deducted from the caller's
         * allowance.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * Emits a {Transfer} event.
         */
        function transferFrom(
            address sender,
            address recipient,
            uint256 amount
        ) external returns (bool);
    
        /**
         * @dev Emitted when `value` tokens are moved from one account (`from`) to
         * another (`to`).
         *
         * Note that `value` may be zero.
         */
        event Transfer(address indexed from, address indexed to, uint256 value);
    
        /**
         * @dev Emitted when the allowance of a `spender` for an `owner` is set by
         * a call to {approve}. `value` is the new allowance.
         */
        event Approval(address indexed owner, address indexed spender, uint256 value);
    }
    
    // File: @openzeppelin/contracts/utils/Address.sol
    
    
    // OpenZeppelin Contracts (last updated v4.8.0) (utils/Address.sol)
    
    pragma solidity ^0.8.1;
    
    /**
     * @dev Collection of functions related to the address type
     */
    library Address {
        /**
         * @dev Returns true if `account` is a contract.
         *
         * [IMPORTANT]
         * ====
         * It is unsafe to assume that an address for which this function returns
         * false is an externally-owned account (EOA) and not a contract.
         *
         * Among others, `isContract` will return false for the following
         * types of addresses:
         *
         *  - an externally-owned account
         *  - a contract in construction
         *  - an address where a contract will be created
         *  - an address where a contract lived, but was destroyed
         * ====
         *
         * [IMPORTANT]
         * ====
         * You shouldn't rely on `isContract` to protect against flash loan attacks!
         *
         * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
         * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
         * constructor.
         * ====
         */
        function isContract(address account) internal view returns (bool) {
            // This method relies on extcodesize/address.code.length, which returns 0
            // for contracts in construction, since the code is only stored at the end
            // of the constructor execution.
    
            return account.code.length > 0;
        }
    
        /**
         * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
         * `recipient`, forwarding all available gas and reverting on errors.
         *
         * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
         * of certain opcodes, possibly making contracts go over the 2300 gas limit
         * imposed by `transfer`, making them unable to receive funds via
         * `transfer`. {sendValue} removes this limitation.
         *
         * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
         *
         * IMPORTANT: because control is transferred to `recipient`, care must be
         * taken to not create reentrancy vulnerabilities. Consider using
         * {ReentrancyGuard} or the
         * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
         */
        function sendValue(address payable recipient, uint256 amount) internal {
            require(address(this).balance >= amount, "Address: insufficient balance");
    
            (bool success, ) = recipient.call{value: amount}("");
            require(success, "Address: unable to send value, recipient may have reverted");
        }
    
        /**
         * @dev Performs a Solidity function call using a low level `call`. A
         * plain `call` is an unsafe replacement for a function call: use this
         * function instead.
         *
         * If `target` reverts with a revert reason, it is bubbled up by this
         * function (like regular Solidity function calls).
         *
         * Returns the raw returned data. To convert to the expected return value,
         * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
         *
         * Requirements:
         *
         * - `target` must be a contract.
         * - calling `target` with `data` must not revert.
         *
         * _Available since v3.1._
         */
        function functionCall(address target, bytes memory data) internal returns (bytes memory) {
            return functionCallWithValue(target, data, 0, "Address: low-level call failed");
        }
    
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
         * `errorMessage` as a fallback revert reason when `target` reverts.
         *
         * _Available since v3.1._
         */
        function functionCall(
            address target,
            bytes memory data,
            string memory errorMessage
        ) internal returns (bytes memory) {
            return functionCallWithValue(target, data, 0, errorMessage);
        }
    
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
         * but also transferring `value` wei to `target`.
         *
         * Requirements:
         *
         * - the calling contract must have an ETH balance of at least `value`.
         * - the called Solidity function must be `payable`.
         *
         * _Available since v3.1._
         */
        function functionCallWithValue(
            address target,
            bytes memory data,
            uint256 value
        ) internal returns (bytes memory) {
            return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
        }
    
        /**
         * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
         * with `errorMessage` as a fallback revert reason when `target` reverts.
         *
         * _Available since v3.1._
         */
        function functionCallWithValue(
            address target,
            bytes memory data,
            uint256 value,
            string memory errorMessage
        ) internal returns (bytes memory) {
            require(address(this).balance >= value, "Address: insufficient balance for call");
            (bool success, bytes memory returndata) = target.call{value: value}(data);
            return verifyCallResultFromTarget(target, success, returndata, errorMessage);
        }
    
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
         * but performing a static call.
         *
         * _Available since v3.3._
         */
        function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
            return functionStaticCall(target, data, "Address: low-level static call failed");
        }
    
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
         * but performing a static call.
         *
         * _Available since v3.3._
         */
        function functionStaticCall(
            address target,
            bytes memory data,
            string memory errorMessage
        ) internal view returns (bytes memory) {
            (bool success, bytes memory returndata) = target.staticcall(data);
            return verifyCallResultFromTarget(target, success, returndata, errorMessage);
        }
    
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
         * but performing a delegate call.
         *
         * _Available since v3.4._
         */
        function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
            return functionDelegateCall(target, data, "Address: low-level delegate call failed");
        }
    
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
         * but performing a delegate call.
         *
         * _Available since v3.4._
         */
        function functionDelegateCall(
            address target,
            bytes memory data,
            string memory errorMessage
        ) internal returns (bytes memory) {
            (bool success, bytes memory returndata) = target.delegatecall(data);
            return verifyCallResultFromTarget(target, success, returndata, errorMessage);
        }
    
        /**
         * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
         * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
         *
         * _Available since v4.8._
         */
        function verifyCallResultFromTarget(
            address target,
            bool success,
            bytes memory returndata,
            string memory errorMessage
        ) internal view returns (bytes memory) {
            if (success) {
                if (returndata.length == 0) {
                    // only check isContract if the call was successful and the return data is empty
                    // otherwise we already know that it was a contract
                    require(isContract(target), "Address: call to non-contract");
                }
                return returndata;
            } else {
                _revert(returndata, errorMessage);
            }
        }
    
        /**
         * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
         * revert reason or using the provided one.
         *
         * _Available since v4.3._
         */
        function verifyCallResult(
            bool success,
            bytes memory returndata,
            string memory errorMessage
        ) internal pure returns (bytes memory) {
            if (success) {
                return returndata;
            } else {
                _revert(returndata, errorMessage);
            }
        }
    
        function _revert(bytes memory returndata, string memory errorMessage) private pure {
            // Look for revert reason and bubble it up if present
            if (returndata.length > 0) {
                // The easiest way to bubble the revert reason is using memory via assembly
                /// @solidity memory-safe-assembly
                assembly {
                    let returndata_size := mload(returndata)
                    revert(add(32, returndata), returndata_size)
                }
            } else {
                revert(errorMessage);
            }
        }
    }
    
    // File: @openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol
    
    
    // OpenZeppelin Contracts (last updated v4.8.0) (token/ERC20/utils/SafeERC20.sol)
    
    pragma solidity ^0.8.0;
    
    
    
    
    /**
     * @title SafeERC20
     * @dev Wrappers around ERC20 operations that throw on failure (when the token
     * contract returns false). Tokens that return no value (and instead revert or
     * throw on failure) are also supported, non-reverting calls are assumed to be
     * successful.
     * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
     * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
     */
    library SafeERC20 {
        using Address for address;
    
        function safeTransfer(
            IERC20 token,
            address to,
            uint256 value
        ) internal {
            _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
        }
    
        function safeTransferFrom(
            IERC20 token,
            address from,
            address to,
            uint256 value
        ) internal {
            _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
        }
    
        /**
         * @dev Deprecated. This function has issues similar to the ones found in
         * {IERC20-approve}, and its usage is discouraged.
         *
         * Whenever possible, use {safeIncreaseAllowance} and
         * {safeDecreaseAllowance} instead.
         */
        function safeApprove(
            IERC20 token,
            address spender,
            uint256 value
        ) internal {
            // safeApprove should only be called when setting an initial allowance,
            // or when resetting it to zero. To increase and decrease it, use
            // 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
            require(
                (value == 0) || (token.allowance(address(this), spender) == 0),
                "SafeERC20: approve from non-zero to non-zero allowance"
            );
            _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
        }
    
        function safeIncreaseAllowance(
            IERC20 token,
            address spender,
            uint256 value
        ) internal {
            uint256 newAllowance = token.allowance(address(this), spender) + value;
            _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
        }
    
        function safeDecreaseAllowance(
            IERC20 token,
            address spender,
            uint256 value
        ) internal {
            unchecked {
                uint256 oldAllowance = token.allowance(address(this), spender);
                require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
                uint256 newAllowance = oldAllowance - value;
                _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
            }
        }
    
        function safePermit(
            IERC20Permit token,
            address owner,
            address spender,
            uint256 value,
            uint256 deadline,
            uint8 v,
            bytes32 r,
            bytes32 s
        ) internal {
            uint256 nonceBefore = token.nonces(owner);
            token.permit(owner, spender, value, deadline, v, r, s);
            uint256 nonceAfter = token.nonces(owner);
            require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
        }
    
        /**
         * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
         * on the return value: the return value is optional (but if data is returned, it must not be false).
         * @param token The token targeted by the call.
         * @param data The call data (encoded using abi.encode or one of its variants).
         */
        function _callOptionalReturn(IERC20 token, bytes memory data) private {
            // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
            // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
            // the target address contains contract code and also asserts for success in the low-level call.
    
            bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
            if (returndata.length > 0) {
                // Return data is optional
                require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
            }
        }
    }
    
    // File: @openzeppelin/contracts/security/ReentrancyGuard.sol
    
    
    // OpenZeppelin Contracts v4.4.1 (security/ReentrancyGuard.sol)
    
    pragma solidity ^0.8.0;
    
    /**
     * @dev Contract module that helps prevent reentrant calls to a function.
     *
     * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
     * available, which can be applied to functions to make sure there are no nested
     * (reentrant) calls to them.
     *
     * Note that because there is a single `nonReentrant` guard, functions marked as
     * `nonReentrant` may not call one another. This can be worked around by making
     * those functions `private`, and then adding `external` `nonReentrant` entry
     * points to them.
     *
     * TIP: If you would like to learn more about reentrancy and alternative ways
     * to protect against it, check out our blog post
     * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
     */
    abstract contract ReentrancyGuard {
        // Booleans are more expensive than uint256 or any type that takes up a full
        // word because each write operation emits an extra SLOAD to first read the
        // slot's contents, replace the bits taken up by the boolean, and then write
        // back. This is the compiler's defense against contract upgrades and
        // pointer aliasing, and it cannot be disabled.
    
        // The values being non-zero value makes deployment a bit more expensive,
        // but in exchange the refund on every call to nonReentrant will be lower in
        // amount. Since refunds are capped to a percentage of the total
        // transaction's gas, it is best to keep them low in cases like this one, to
        // increase the likelihood of the full refund coming into effect.
        uint256 private constant _NOT_ENTERED = 1;
        uint256 private constant _ENTERED = 2;
    
        uint256 private _status;
    
        constructor() {
            _status = _NOT_ENTERED;
        }
    
        /**
         * @dev Prevents a contract from calling itself, directly or indirectly.
         * Calling a `nonReentrant` function from another `nonReentrant`
         * function is not supported. It is possible to prevent this from happening
         * by making the `nonReentrant` function external, and making it call a
         * `private` function that does the actual work.
         */
        modifier nonReentrant() {
            // On the first call to nonReentrant, _notEntered will be true
            require(_status != _ENTERED, "ReentrancyGuard: reentrant call");
    
            // Any calls to nonReentrant after this point will fail
            _status = _ENTERED;
    
            _;
    
            // By storing the original value once again, a refund is triggered (see
            // https://eips.ethereum.org/EIPS/eip-2200)
            _status = _NOT_ENTERED;
        }
    }
    
    // File: contracts/AlphaStaking2.sol
    
    
    pragma solidity ^0.8.18;
    
    
    
    
    
    
    
    
    
    contract AlphaStaking2 is Ownable, Pausable, ReentrancyGuard {
        using SafeERC20 for IERC20;
        using Address for address;
    
        struct Stakeholder {
            uint256 staked; // amount of staked tokens
            uint256 timestamp;
            uint256 earnedRewards;
            uint256 rewardDebt;
            uint256 totalRewardsClaimed;
        }
    
        struct Pool {
            address stakingToken;
            address rewardToken;
            uint256 rewardAmount;
            uint256 startTime;
            uint256 stopTime;
            uint256 duration;
            uint256 lockTime;
            uint256 totalStaked;
            uint256 rewardPerSecond;
            uint256 accRewardPerShare;
            uint256 lastRewardTimestamp;
            mapping(address => Stakeholder) stakeholders;
        }
    
        Pool[] Pools;
        
        uint256 private constant REWARDS_PRECISION = 1e12;
    
        event Staked(address indexed staker, uint256 amount, uint256 poolId);
        event Withdraw(address indexed staker, uint256 rewardAmount, uint256 poolId);
        event Recover(address indexed token, uint256 amount);
    
        constructor(
        ) {
        }
    
        function loadReward(uint256 _poolId) external onlyOwner {
            Pool storage pool = Pools[_poolId];
            IERC20(pool.rewardToken).safeTransferFrom(msg.sender, address(this), pool.rewardAmount);
    
        }
    
        function recoverTokens(IERC20 _token) external onlyOwner {
            uint256 balance = _token.balanceOf(address(this));
            _token.transfer(owner(), balance);
            emit Recover(address(_token), balance);
        }
    
        function pause() external onlyOwner {
            _pause();
        }
    
        function unpause() external onlyOwner {
            _unpause();
        }
    
        function addPool(address _stakingToken,
            address _rewardToken,
            uint256 _rewardAmount,
            uint256 _startTime,
            uint256 _stopTime,
            uint256 _lockTime) external onlyOwner
        {
            require(_stakingToken.isContract(), "Staking: stakingToken not a contract address");
            require(_rewardToken.isContract(), "Staking: rewardToken not a contract address");
            require(_rewardAmount > 0, "Staking: rewardAmount must be greater than zero");
            require(_startTime > block.timestamp && _startTime < _stopTime, "Staking: incorrect timestamps");
            require(_lockTime > 0, "Staking: lockTime must be greater than zero");
    
            Pool storage newPool = Pools.push();
    
            newPool.stakingToken = _stakingToken;
            newPool.rewardToken = _rewardToken;
            newPool.rewardAmount = _rewardAmount;
            newPool.startTime = _startTime;
            newPool.stopTime = _stopTime;
            newPool.duration = _stopTime - _startTime;
            newPool.lockTime = _lockTime;
            newPool.rewardPerSecond = _rewardAmount / (_stopTime - _startTime);
            newPool.lastRewardTimestamp = _startTime;
            newPool.accRewardPerShare = 0;
        }
    
        function stake(uint256 _amount, uint256 _poolId) external whenNotPaused {
            updatePoolRewards(_poolId);
            Pool storage pool = Pools[_poolId];
            
            require(block.timestamp >= pool.startTime, "Staking: staking not started");
            require(block.timestamp <= pool.stopTime, "Staking: staking period over");
            require(_amount > 0, "Staking: amount can't be 0");
    
            Stakeholder storage stakeholder = pool.stakeholders[msg.sender];
    
            if(stakeholder.staked > 0){
                uint256 accumulatedReward = stakeholder.staked * pool.accRewardPerShare / REWARDS_PRECISION;
                uint256 pendingReward = accumulatedReward - stakeholder.rewardDebt;
                _withdrawReward(msg.sender, _poolId, pendingReward);
            }
            stakeholder.staked += _amount;
            stakeholder.rewardDebt = stakeholder.staked * pool.accRewardPerShare / REWARDS_PRECISION;
    
            stakeholder.timestamp = block.timestamp;
    
            pool.totalStaked += _amount;
    
            IERC20(pool.stakingToken).safeTransferFrom(msg.sender, address(this), _amount);
    
            emit Staked(msg.sender, _amount, _poolId);
        }
    
        function unstake(uint256 _amount, uint256 _poolId) external whenNotPaused nonReentrant{
            updatePoolRewards(_poolId);
            Pool storage pool = Pools[_poolId];
    
            require(_amount > 0, "_amount have to be bigger than 0");
            Stakeholder storage stakeholder = pool.stakeholders[msg.sender];
            require(stakeholder.staked > 0, "Staking: you have not participated in staking");
            require(stakeholder.staked >= _amount, "Staking: cannot unstake more than your balance");
            uint256 accumulatedReward = stakeholder.staked * pool.accRewardPerShare / REWARDS_PRECISION;
            uint256 pendingReward = accumulatedReward - stakeholder.rewardDebt;
    
            stakeholder.rewardDebt = accumulatedReward - (_amount * pool.accRewardPerShare / REWARDS_PRECISION);
            stakeholder.staked -= _amount;
            
            pool.totalStaked -= _amount;
            _withdrawReward(msg.sender, _poolId, pendingReward);
            _withdrawStaked(msg.sender, _amount, pool.stakingToken);
        }
    
        function claimRewards(uint256 _poolId) external whenNotPaused nonReentrant {
            updatePoolRewards(_poolId);
            Pool storage pool = Pools[_poolId];
            Stakeholder storage stakeholder = pool.stakeholders[msg.sender];
            uint256 rewardsToHarvest = (stakeholder.staked * pool.accRewardPerShare / REWARDS_PRECISION) - stakeholder.rewardDebt;
            if (rewardsToHarvest == 0) {
                stakeholder.rewardDebt = stakeholder.staked * pool.accRewardPerShare / REWARDS_PRECISION;
                return;
            }
            stakeholder.rewardDebt = stakeholder.staked * pool.accRewardPerShare / REWARDS_PRECISION;
            _withdrawReward(msg.sender, _poolId, rewardsToHarvest);
        }
    
    
        function updatePoolRewards(uint256 pid) public {
            Pool storage pool = Pools[pid];
            uint256 currentTimestamp = block.timestamp > pool.stopTime ? pool.stopTime : block.timestamp;
            if (currentTimestamp > pool.lastRewardTimestamp) {
                uint256 lpSupply = pool.totalStaked;
                if (lpSupply > 0) {
                    uint256 timestamps = currentTimestamp - pool.lastRewardTimestamp;
                    uint256 rewards = timestamps * pool.rewardPerSecond;
                    pool.accRewardPerShare = pool.accRewardPerShare + (rewards * REWARDS_PRECISION / pool.totalStaked);
                }
                pool.lastRewardTimestamp = currentTimestamp;
            }
        }
        
    
        function earned(address _stakeholder, uint256 _poolId) public view returns (uint256) {
            Pool storage pool = Pools[_poolId];
            Stakeholder memory stakeholder = pool.stakeholders[_stakeholder];
            if (stakeholder.staked == 0) return 0;
    
            uint256 accRewardPerShare = pool.accRewardPerShare;
            uint256 lpSupply = pool.totalStaked;
            if (block.timestamp > pool.lastRewardTimestamp && lpSupply != 0) {
                uint256 timestampSinceLastReward = (block.timestamp < pool.stopTime ? block.timestamp : pool.stopTime) - pool.lastRewardTimestamp;
                uint256 rewards = timestampSinceLastReward * pool.rewardPerSecond;
                accRewardPerShare = accRewardPerShare + ((rewards * REWARDS_PRECISION) / lpSupply);
            }
            uint256 pending = (stakeholder.staked * accRewardPerShare) / REWARDS_PRECISION - stakeholder.rewardDebt;
    
            return pending;
        }
    
        function getStartTime(uint256 _poolId) external view returns (uint256) {
            Pool storage pool = Pools[_poolId];
            return pool.startTime;
        }
    
        function getStopTime(uint256 _poolId) external view returns (uint256) {
            Pool storage pool = Pools[_poolId];
            return pool.stopTime;
        }
    
        function getLockTime(uint256 _poolId) external view returns (uint256) {
            Pool storage pool = Pools[_poolId];
            return pool.lockTime;
        }
    
        function getDuration(uint256 _poolId) external view returns (uint256) {
            Pool storage pool = Pools[_poolId];
            return pool.duration;
        }
    
        function getTotalStaked(uint256 _poolId) external view returns (uint256) {
            Pool storage pool = Pools[_poolId];
            return pool.totalStaked;
        }
    
        function getRewardTokenBalance(uint256 _poolId) external view returns (uint256) {
            Pool storage pool = Pools[_poolId];
            return IERC20(pool.rewardToken).balanceOf(address(this));
        }
    
        function getStakingTokenBalance(uint256 _poolId) external view returns (uint256) {
            Pool storage pool = Pools[_poolId];
            return IERC20(pool.stakingToken).balanceOf(address(this));
        }
    
        function getStakingTokenBalancebyAddress(uint256 _poolId, address _userAddress) external view returns (uint256) {
            Pool storage pool = Pools[_poolId];
            Stakeholder memory stakeholder = pool.stakeholders[_userAddress];
            return stakeholder.staked;
        }
    
        function getTimeRemaining(uint256 _poolId) public view returns (uint256) {
            Pool storage pool = Pools[_poolId];
            uint256 timeRemaining = block.timestamp <= pool.stopTime
                ? block.timestamp >= pool.startTime ? pool.stopTime - block.timestamp : pool.duration
                : 0;
            return timeRemaining;
        }
    
        function getTimeElapsed(uint256 _poolId) external view returns (uint256) {
            Pool storage pool = Pools[_poolId];
            uint256 timeElapsed = block.timestamp >= pool.startTime
                ? block.timestamp <= pool.stopTime ? block.timestamp - pool.startTime : pool.duration
                : 0;
            return timeElapsed;
        }
    
        function getStaked(address _stakeholder, uint256 _poolId) external view returns (uint256) {
            Pool storage pool = Pools[_poolId];
            return pool.stakeholders[_stakeholder].staked;
        }
    
        function getStakedLock(address _stakeholder, uint256 _poolId) external view returns (uint256) {
            Pool storage pool = Pools[_poolId];
            return pool.stakeholders[_stakeholder].timestamp;
        }
    
        function getRewardShare(uint256 _poolId) external view returns (uint256) {
            Pool storage pool = Pools[_poolId];
            return pool.accRewardPerShare;
        }
    
        function getRewardperSecond(uint256 _poolId) external view returns (uint256) {
            Pool storage pool = Pools[_poolId];
            return pool.rewardPerSecond;
        }
    
        function getLastReward(uint256 _poolId) external view returns (uint256) {
            Pool storage pool = Pools[_poolId];
            return pool.lastRewardTimestamp;
        }
    
        function getTotalRewardsClaimed(address _stakeholder, uint256 _poolId) external view returns (uint256) {
            Pool storage pool = Pools[_poolId];
            return pool.stakeholders[_stakeholder].totalRewardsClaimed;
        }
    
        function _withdrawStaked(address _to, uint256 _amount, address _stakingToken) internal {
            IERC20(_stakingToken).safeTransfer(_to, _amount);
        }
    
        function _withdrawReward(address _to, uint256 _poolId, uint256 _reward) internal {
            Pool storage pool = Pools[_poolId];
            IERC20(pool.rewardToken).safeTransfer(_to, _reward);
            pool.stakeholders[_to].totalRewardsClaimed += _reward;
    
            emit Withdraw(msg.sender, _reward, _poolId);
        }
    }

    File 2 of 3: AlphashardToken
    // SPDX-License-Identifier: MIT
    // File: @openzeppelin/contracts/token/ERC20/IERC20.sol
    
    
    // OpenZeppelin Contracts v4.4.1 (token/ERC20/IERC20.sol)
    
    pragma solidity ^0.8.0;
    
    /**
     * @dev Interface of the ERC20 standard as defined in the EIP.
     */
    interface IERC20 {
        /**
         * @dev Returns the amount of tokens in existence.
         */
        function totalSupply() external view returns (uint256);
    
        /**
         * @dev Returns the amount of tokens owned by `account`.
         */
        function balanceOf(address account) external view returns (uint256);
    
        /**
         * @dev Moves `amount` tokens from the caller's account to `recipient`.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * Emits a {Transfer} event.
         */
        function transfer(address recipient, uint256 amount) external returns (bool);
    
        /**
         * @dev Returns the remaining number of tokens that `spender` will be
         * allowed to spend on behalf of `owner` through {transferFrom}. This is
         * zero by default.
         *
         * This value changes when {approve} or {transferFrom} are called.
         */
        function allowance(address owner, address spender) external view returns (uint256);
    
        /**
         * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * IMPORTANT: Beware that changing an allowance with this method brings the risk
         * that someone may use both the old and the new allowance by unfortunate
         * transaction ordering. One possible solution to mitigate this race
         * condition is to first reduce the spender's allowance to 0 and set the
         * desired value afterwards:
         * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
         *
         * Emits an {Approval} event.
         */
        function approve(address spender, uint256 amount) external returns (bool);
    
        /**
         * @dev Moves `amount` tokens from `sender` to `recipient` using the
         * allowance mechanism. `amount` is then deducted from the caller's
         * allowance.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * Emits a {Transfer} event.
         */
        function transferFrom(
            address sender,
            address recipient,
            uint256 amount
        ) external returns (bool);
    
        /**
         * @dev Emitted when `value` tokens are moved from one account (`from`) to
         * another (`to`).
         *
         * Note that `value` may be zero.
         */
        event Transfer(address indexed from, address indexed to, uint256 value);
    
        /**
         * @dev Emitted when the allowance of a `spender` for an `owner` is set by
         * a call to {approve}. `value` is the new allowance.
         */
        event Approval(address indexed owner, address indexed spender, uint256 value);
    }
    
    // File: @openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol
    
    
    // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol)
    
    pragma solidity ^0.8.0;
    
    
    /**
     * @dev Interface for the optional metadata functions from the ERC20 standard.
     *
     * _Available since v4.1._
     */
    interface IERC20Metadata is IERC20 {
        /**
         * @dev Returns the name of the token.
         */
        function name() external view returns (string memory);
    
        /**
         * @dev Returns the symbol of the token.
         */
        function symbol() external view returns (string memory);
    
        /**
         * @dev Returns the decimals places of the token.
         */
        function decimals() external view returns (uint8);
    }
    
    // File: @openzeppelin/contracts/utils/Context.sol
    
    
    // OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
    
    pragma solidity ^0.8.0;
    
    /**
     * @dev Provides information about the current execution context, including the
     * sender of the transaction and its data. While these are generally available
     * via msg.sender and msg.data, they should not be accessed in such a direct
     * manner, since when dealing with meta-transactions the account sending and
     * paying for execution may not be the actual sender (as far as an application
     * is concerned).
     *
     * This contract is only required for intermediate, library-like contracts.
     */
    abstract contract Context {
        function _msgSender() internal view virtual returns (address) {
            return msg.sender;
        }
    
        function _msgData() internal view virtual returns (bytes calldata) {
            return msg.data;
        }
    }
    
    // File: @openzeppelin/contracts/token/ERC20/ERC20.sol
    
    
    // OpenZeppelin Contracts v4.4.1 (token/ERC20/ERC20.sol)
    
    pragma solidity ^0.8.0;
    
    
    
    
    /**
     * @dev Implementation of the {IERC20} interface.
     *
     * This implementation is agnostic to the way tokens are created. This means
     * that a supply mechanism has to be added in a derived contract using {_mint}.
     * For a generic mechanism see {ERC20PresetMinterPauser}.
     *
     * TIP: For a detailed writeup see our guide
     * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How
     * to implement supply mechanisms].
     *
     * We have followed general OpenZeppelin Contracts guidelines: functions revert
     * instead returning `false` on failure. This behavior is nonetheless
     * conventional and does not conflict with the expectations of ERC20
     * applications.
     *
     * Additionally, an {Approval} event is emitted on calls to {transferFrom}.
     * This allows applications to reconstruct the allowance for all accounts just
     * by listening to said events. Other implementations of the EIP may not emit
     * these events, as it isn't required by the specification.
     *
     * Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
     * functions have been added to mitigate the well-known issues around setting
     * allowances. See {IERC20-approve}.
     */
    contract ERC20 is Context, IERC20, IERC20Metadata {
        mapping(address => uint256) private _balances;
    
        mapping(address => mapping(address => uint256)) private _allowances;
    
        uint256 private _totalSupply;
    
        string private _name;
        string private _symbol;
    
        /**
         * @dev Sets the values for {name} and {symbol}.
         *
         * The default value of {decimals} is 18. To select a different value for
         * {decimals} you should overload it.
         *
         * All two of these values are immutable: they can only be set once during
         * construction.
         */
        constructor(string memory name_, string memory symbol_) {
            _name = name_;
            _symbol = symbol_;
        }
    
        /**
         * @dev Returns the name of the token.
         */
        function name() public view virtual override returns (string memory) {
            return _name;
        }
    
        /**
         * @dev Returns the symbol of the token, usually a shorter version of the
         * name.
         */
        function symbol() public view virtual override returns (string memory) {
            return _symbol;
        }
    
        /**
         * @dev Returns the number of decimals used to get its user representation.
         * For example, if `decimals` equals `2`, a balance of `505` tokens should
         * be displayed to a user as `5.05` (`505 / 10 ** 2`).
         *
         * Tokens usually opt for a value of 18, imitating the relationship between
         * Ether and Wei. This is the value {ERC20} uses, unless this function is
         * overridden;
         *
         * NOTE: This information is only used for _display_ purposes: it in
         * no way affects any of the arithmetic of the contract, including
         * {IERC20-balanceOf} and {IERC20-transfer}.
         */
        function decimals() public view virtual override returns (uint8) {
            return 18;
        }
    
        /**
         * @dev See {IERC20-totalSupply}.
         */
        function totalSupply() public view virtual override returns (uint256) {
            return _totalSupply;
        }
    
        /**
         * @dev See {IERC20-balanceOf}.
         */
        function balanceOf(address account) public view virtual override returns (uint256) {
            return _balances[account];
        }
    
        /**
         * @dev See {IERC20-transfer}.
         *
         * Requirements:
         *
         * - `recipient` cannot be the zero address.
         * - the caller must have a balance of at least `amount`.
         */
        function transfer(address recipient, uint256 amount) public virtual override returns (bool) {
            _transfer(_msgSender(), recipient, amount);
            return true;
        }
    
        /**
         * @dev See {IERC20-allowance}.
         */
        function allowance(address owner, address spender) public view virtual override returns (uint256) {
            return _allowances[owner][spender];
        }
    
        /**
         * @dev See {IERC20-approve}.
         *
         * Requirements:
         *
         * - `spender` cannot be the zero address.
         */
        function approve(address spender, uint256 amount) public virtual override returns (bool) {
            _approve(_msgSender(), spender, amount);
            return true;
        }
    
        /**
         * @dev See {IERC20-transferFrom}.
         *
         * Emits an {Approval} event indicating the updated allowance. This is not
         * required by the EIP. See the note at the beginning of {ERC20}.
         *
         * Requirements:
         *
         * - `sender` and `recipient` cannot be the zero address.
         * - `sender` must have a balance of at least `amount`.
         * - the caller must have allowance for ``sender``'s tokens of at least
         * `amount`.
         */
        function transferFrom(
            address sender,
            address recipient,
            uint256 amount
        ) public virtual override returns (bool) {
            _transfer(sender, recipient, amount);
    
            uint256 currentAllowance = _allowances[sender][_msgSender()];
            require(currentAllowance >= amount, "ERC20: transfer amount exceeds allowance");
            unchecked {
                _approve(sender, _msgSender(), currentAllowance - amount);
            }
    
            return true;
        }
    
        /**
         * @dev Atomically increases the allowance granted to `spender` by the caller.
         *
         * This is an alternative to {approve} that can be used as a mitigation for
         * problems described in {IERC20-approve}.
         *
         * Emits an {Approval} event indicating the updated allowance.
         *
         * Requirements:
         *
         * - `spender` cannot be the zero address.
         */
        function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
            _approve(_msgSender(), spender, _allowances[_msgSender()][spender] + addedValue);
            return true;
        }
    
        /**
         * @dev Atomically decreases the allowance granted to `spender` by the caller.
         *
         * This is an alternative to {approve} that can be used as a mitigation for
         * problems described in {IERC20-approve}.
         *
         * Emits an {Approval} event indicating the updated allowance.
         *
         * Requirements:
         *
         * - `spender` cannot be the zero address.
         * - `spender` must have allowance for the caller of at least
         * `subtractedValue`.
         */
        function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
            uint256 currentAllowance = _allowances[_msgSender()][spender];
            require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero");
            unchecked {
                _approve(_msgSender(), spender, currentAllowance - subtractedValue);
            }
    
            return true;
        }
    
        /**
         * @dev Moves `amount` of tokens from `sender` to `recipient`.
         *
         * This internal function is equivalent to {transfer}, and can be used to
         * e.g. implement automatic token fees, slashing mechanisms, etc.
         *
         * Emits a {Transfer} event.
         *
         * Requirements:
         *
         * - `sender` cannot be the zero address.
         * - `recipient` cannot be the zero address.
         * - `sender` must have a balance of at least `amount`.
         */
        function _transfer(
            address sender,
            address recipient,
            uint256 amount
        ) internal virtual {
            require(sender != address(0), "ERC20: transfer from the zero address");
            require(recipient != address(0), "ERC20: transfer to the zero address");
    
            _beforeTokenTransfer(sender, recipient, amount);
    
            uint256 senderBalance = _balances[sender];
            require(senderBalance >= amount, "ERC20: transfer amount exceeds balance");
            unchecked {
                _balances[sender] = senderBalance - amount;
            }
            _balances[recipient] += amount;
    
            emit Transfer(sender, recipient, amount);
    
            _afterTokenTransfer(sender, recipient, amount);
        }
    
        /** @dev Creates `amount` tokens and assigns them to `account`, increasing
         * the total supply.
         *
         * Emits a {Transfer} event with `from` set to the zero address.
         *
         * Requirements:
         *
         * - `account` cannot be the zero address.
         */
        function _mint(address account, uint256 amount) internal virtual {
            require(account != address(0), "ERC20: mint to the zero address");
    
            _beforeTokenTransfer(address(0), account, amount);
    
            _totalSupply += amount;
            _balances[account] += amount;
            emit Transfer(address(0), account, amount);
    
            _afterTokenTransfer(address(0), account, amount);
        }
    
        /**
         * @dev Destroys `amount` tokens from `account`, reducing the
         * total supply.
         *
         * Emits a {Transfer} event with `to` set to the zero address.
         *
         * Requirements:
         *
         * - `account` cannot be the zero address.
         * - `account` must have at least `amount` tokens.
         */
        function _burn(address account, uint256 amount) internal virtual {
            require(account != address(0), "ERC20: burn from the zero address");
    
            _beforeTokenTransfer(account, address(0), amount);
    
            uint256 accountBalance = _balances[account];
            require(accountBalance >= amount, "ERC20: burn amount exceeds balance");
            unchecked {
                _balances[account] = accountBalance - amount;
            }
            _totalSupply -= amount;
    
            emit Transfer(account, address(0), amount);
    
            _afterTokenTransfer(account, address(0), amount);
        }
    
        /**
         * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
         *
         * This internal function is equivalent to `approve`, and can be used to
         * e.g. set automatic allowances for certain subsystems, etc.
         *
         * Emits an {Approval} event.
         *
         * Requirements:
         *
         * - `owner` cannot be the zero address.
         * - `spender` cannot be the zero address.
         */
        function _approve(
            address owner,
            address spender,
            uint256 amount
        ) internal virtual {
            require(owner != address(0), "ERC20: approve from the zero address");
            require(spender != address(0), "ERC20: approve to the zero address");
    
            _allowances[owner][spender] = amount;
            emit Approval(owner, spender, amount);
        }
    
        /**
         * @dev Hook that is called before any transfer of tokens. This includes
         * minting and burning.
         *
         * Calling conditions:
         *
         * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
         * will be transferred to `to`.
         * - when `from` is zero, `amount` tokens will be minted for `to`.
         * - when `to` is zero, `amount` of ``from``'s tokens will be burned.
         * - `from` and `to` are never both zero.
         *
         * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
         */
        function _beforeTokenTransfer(
            address from,
            address to,
            uint256 amount
        ) internal virtual {}
    
        /**
         * @dev Hook that is called after any transfer of tokens. This includes
         * minting and burning.
         *
         * Calling conditions:
         *
         * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
         * has been transferred to `to`.
         * - when `from` is zero, `amount` tokens have been minted for `to`.
         * - when `to` is zero, `amount` of ``from``'s tokens have been burned.
         * - `from` and `to` are never both zero.
         *
         * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
         */
        function _afterTokenTransfer(
            address from,
            address to,
            uint256 amount
        ) internal virtual {}
    }
    
    // File: @openzeppelin/contracts/token/ERC20/extensions/ERC20Burnable.sol
    
    
    // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/ERC20Burnable.sol)
    
    pragma solidity ^0.8.0;
    
    
    
    /**
     * @dev Extension of {ERC20} that allows token holders to destroy both their own
     * tokens and those that they have an allowance for, in a way that can be
     * recognized off-chain (via event analysis).
     */
    abstract contract ERC20Burnable is Context, ERC20 {
        /**
         * @dev Destroys `amount` tokens from the caller.
         *
         * See {ERC20-_burn}.
         */
        function burn(uint256 amount) public virtual {
            _burn(_msgSender(), amount);
        }
    
        /**
         * @dev Destroys `amount` tokens from `account`, deducting from the caller's
         * allowance.
         *
         * See {ERC20-_burn} and {ERC20-allowance}.
         *
         * Requirements:
         *
         * - the caller must have allowance for ``accounts``'s tokens of at least
         * `amount`.
         */
        function burnFrom(address account, uint256 amount) public virtual {
            uint256 currentAllowance = allowance(account, _msgSender());
            require(currentAllowance >= amount, "ERC20: burn amount exceeds allowance");
            unchecked {
                _approve(account, _msgSender(), currentAllowance - amount);
            }
            _burn(account, amount);
        }
    }
    
    // File: @openzeppelin/contracts/access/Ownable.sol
    
    
    // OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol)
    
    pragma solidity ^0.8.0;
    
    
    /**
     * @dev Contract module which provides a basic access control mechanism, where
     * there is an account (an owner) that can be granted exclusive access to
     * specific functions.
     *
     * By default, the owner account will be the one that deploys the contract. This
     * can later be changed with {transferOwnership}.
     *
     * This module is used through inheritance. It will make available the modifier
     * `onlyOwner`, which can be applied to your functions to restrict their use to
     * the owner.
     */
    abstract contract Ownable is Context {
        address private _owner;
    
        event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
    
        /**
         * @dev Initializes the contract setting the deployer as the initial owner.
         */
        constructor() {
            _transferOwnership(_msgSender());
        }
    
        /**
         * @dev Throws if called by any account other than the owner.
         */
        modifier onlyOwner() {
            _checkOwner();
            _;
        }
    
        /**
         * @dev Returns the address of the current owner.
         */
        function owner() public view virtual returns (address) {
            return _owner;
        }
    
        /**
         * @dev Throws if the sender is not the owner.
         */
        function _checkOwner() internal view virtual {
            require(owner() == _msgSender(), "Ownable: caller is not the owner");
        }
    
        /**
         * @dev Leaves the contract without owner. It will not be possible to call
         * `onlyOwner` functions anymore. Can only be called by the current owner.
         *
         * NOTE: Renouncing ownership will leave the contract without an owner,
         * thereby removing any functionality that is only available to the owner.
         */
        function renounceOwnership() public virtual onlyOwner {
            _transferOwnership(address(0));
        }
    
        /**
         * @dev Transfers ownership of the contract to a new account (`newOwner`).
         * Can only be called by the current owner.
         */
        function transferOwnership(address newOwner) public virtual onlyOwner {
            require(newOwner != address(0), "Ownable: new owner is the zero address");
            _transferOwnership(newOwner);
        }
    
        /**
         * @dev Transfers ownership of the contract to a new account (`newOwner`).
         * Internal function without access restriction.
         */
        function _transferOwnership(address newOwner) internal virtual {
            address oldOwner = _owner;
            _owner = newOwner;
            emit OwnershipTransferred(oldOwner, newOwner);
        }
    }
    
    // File: contracts/AlphashardToken.sol
    
    
    pragma solidity ^0.8.18;
    
    
    
    
    contract AlphashardToken is Ownable, ERC20, ERC20Burnable {
       mapping(address => bool) public blacklists;
    
       constructor() ERC20("Alphashard", "ALPHASHARD") {
          _mint(msg.sender, 100_000_000_000_000_000_000_000_000_000);
       }
    
       function mint(uint256 _amount) external onlyOwner {
          _mint(msg.sender, _amount);
       }
    
       function blacklist(address _address, bool _isBlacklist) external onlyOwner {
          blacklists[_address] = _isBlacklist;
       }
    
       function _beforeTokenTransfer(
          address from,
          address to,
          uint256 /* amount */
       ) override internal virtual {
    
          require(!blacklists[from] && !blacklists[to], "your account is blacklisted");
    
       }
    }

    File 3 of 3: AlphaToken
    // SPDX-License-Identifier: MIT
    // File: @openzeppelin/contracts/token/ERC20/IERC20.sol
    
    
    // OpenZeppelin Contracts v4.4.1 (token/ERC20/IERC20.sol)
    
    pragma solidity ^0.8.0;
    
    /**
     * @dev Interface of the ERC20 standard as defined in the EIP.
     */
    interface IERC20 {
        /**
         * @dev Returns the amount of tokens in existence.
         */
        function totalSupply() external view returns (uint256);
    
        /**
         * @dev Returns the amount of tokens owned by `account`.
         */
        function balanceOf(address account) external view returns (uint256);
    
        /**
         * @dev Moves `amount` tokens from the caller's account to `recipient`.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * Emits a {Transfer} event.
         */
        function transfer(address recipient, uint256 amount) external returns (bool);
    
        /**
         * @dev Returns the remaining number of tokens that `spender` will be
         * allowed to spend on behalf of `owner` through {transferFrom}. This is
         * zero by default.
         *
         * This value changes when {approve} or {transferFrom} are called.
         */
        function allowance(address owner, address spender) external view returns (uint256);
    
        /**
         * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * IMPORTANT: Beware that changing an allowance with this method brings the risk
         * that someone may use both the old and the new allowance by unfortunate
         * transaction ordering. One possible solution to mitigate this race
         * condition is to first reduce the spender's allowance to 0 and set the
         * desired value afterwards:
         * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
         *
         * Emits an {Approval} event.
         */
        function approve(address spender, uint256 amount) external returns (bool);
    
        /**
         * @dev Moves `amount` tokens from `sender` to `recipient` using the
         * allowance mechanism. `amount` is then deducted from the caller's
         * allowance.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * Emits a {Transfer} event.
         */
        function transferFrom(
            address sender,
            address recipient,
            uint256 amount
        ) external returns (bool);
    
        /**
         * @dev Emitted when `value` tokens are moved from one account (`from`) to
         * another (`to`).
         *
         * Note that `value` may be zero.
         */
        event Transfer(address indexed from, address indexed to, uint256 value);
    
        /**
         * @dev Emitted when the allowance of a `spender` for an `owner` is set by
         * a call to {approve}. `value` is the new allowance.
         */
        event Approval(address indexed owner, address indexed spender, uint256 value);
    }
    
    // File: @openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol
    
    
    // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol)
    
    pragma solidity ^0.8.0;
    
    
    /**
     * @dev Interface for the optional metadata functions from the ERC20 standard.
     *
     * _Available since v4.1._
     */
    interface IERC20Metadata is IERC20 {
        /**
         * @dev Returns the name of the token.
         */
        function name() external view returns (string memory);
    
        /**
         * @dev Returns the symbol of the token.
         */
        function symbol() external view returns (string memory);
    
        /**
         * @dev Returns the decimals places of the token.
         */
        function decimals() external view returns (uint8);
    }
    
    // File: @openzeppelin/contracts/utils/Context.sol
    
    
    // OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
    
    pragma solidity ^0.8.0;
    
    /**
     * @dev Provides information about the current execution context, including the
     * sender of the transaction and its data. While these are generally available
     * via msg.sender and msg.data, they should not be accessed in such a direct
     * manner, since when dealing with meta-transactions the account sending and
     * paying for execution may not be the actual sender (as far as an application
     * is concerned).
     *
     * This contract is only required for intermediate, library-like contracts.
     */
    abstract contract Context {
        function _msgSender() internal view virtual returns (address) {
            return msg.sender;
        }
    
        function _msgData() internal view virtual returns (bytes calldata) {
            return msg.data;
        }
    }
    
    // File: @openzeppelin/contracts/token/ERC20/ERC20.sol
    
    
    // OpenZeppelin Contracts v4.4.1 (token/ERC20/ERC20.sol)
    
    pragma solidity ^0.8.0;
    
    
    
    
    /**
     * @dev Implementation of the {IERC20} interface.
     *
     * This implementation is agnostic to the way tokens are created. This means
     * that a supply mechanism has to be added in a derived contract using {_mint}.
     * For a generic mechanism see {ERC20PresetMinterPauser}.
     *
     * TIP: For a detailed writeup see our guide
     * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How
     * to implement supply mechanisms].
     *
     * We have followed general OpenZeppelin Contracts guidelines: functions revert
     * instead returning `false` on failure. This behavior is nonetheless
     * conventional and does not conflict with the expectations of ERC20
     * applications.
     *
     * Additionally, an {Approval} event is emitted on calls to {transferFrom}.
     * This allows applications to reconstruct the allowance for all accounts just
     * by listening to said events. Other implementations of the EIP may not emit
     * these events, as it isn't required by the specification.
     *
     * Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
     * functions have been added to mitigate the well-known issues around setting
     * allowances. See {IERC20-approve}.
     */
    contract ERC20 is Context, IERC20, IERC20Metadata {
        mapping(address => uint256) private _balances;
    
        mapping(address => mapping(address => uint256)) private _allowances;
    
        uint256 private _totalSupply;
    
        string private _name;
        string private _symbol;
    
        /**
         * @dev Sets the values for {name} and {symbol}.
         *
         * The default value of {decimals} is 18. To select a different value for
         * {decimals} you should overload it.
         *
         * All two of these values are immutable: they can only be set once during
         * construction.
         */
        constructor(string memory name_, string memory symbol_) {
            _name = name_;
            _symbol = symbol_;
        }
    
        /**
         * @dev Returns the name of the token.
         */
        function name() public view virtual override returns (string memory) {
            return _name;
        }
    
        /**
         * @dev Returns the symbol of the token, usually a shorter version of the
         * name.
         */
        function symbol() public view virtual override returns (string memory) {
            return _symbol;
        }
    
        /**
         * @dev Returns the number of decimals used to get its user representation.
         * For example, if `decimals` equals `2`, a balance of `505` tokens should
         * be displayed to a user as `5.05` (`505 / 10 ** 2`).
         *
         * Tokens usually opt for a value of 18, imitating the relationship between
         * Ether and Wei. This is the value {ERC20} uses, unless this function is
         * overridden;
         *
         * NOTE: This information is only used for _display_ purposes: it in
         * no way affects any of the arithmetic of the contract, including
         * {IERC20-balanceOf} and {IERC20-transfer}.
         */
        function decimals() public view virtual override returns (uint8) {
            return 18;
        }
    
        /**
         * @dev See {IERC20-totalSupply}.
         */
        function totalSupply() public view virtual override returns (uint256) {
            return _totalSupply;
        }
    
        /**
         * @dev See {IERC20-balanceOf}.
         */
        function balanceOf(address account) public view virtual override returns (uint256) {
            return _balances[account];
        }
    
        /**
         * @dev See {IERC20-transfer}.
         *
         * Requirements:
         *
         * - `recipient` cannot be the zero address.
         * - the caller must have a balance of at least `amount`.
         */
        function transfer(address recipient, uint256 amount) public virtual override returns (bool) {
            _transfer(_msgSender(), recipient, amount);
            return true;
        }
    
        /**
         * @dev See {IERC20-allowance}.
         */
        function allowance(address owner, address spender) public view virtual override returns (uint256) {
            return _allowances[owner][spender];
        }
    
        /**
         * @dev See {IERC20-approve}.
         *
         * Requirements:
         *
         * - `spender` cannot be the zero address.
         */
        function approve(address spender, uint256 amount) public virtual override returns (bool) {
            _approve(_msgSender(), spender, amount);
            return true;
        }
    
        /**
         * @dev See {IERC20-transferFrom}.
         *
         * Emits an {Approval} event indicating the updated allowance. This is not
         * required by the EIP. See the note at the beginning of {ERC20}.
         *
         * Requirements:
         *
         * - `sender` and `recipient` cannot be the zero address.
         * - `sender` must have a balance of at least `amount`.
         * - the caller must have allowance for ``sender``'s tokens of at least
         * `amount`.
         */
        function transferFrom(
            address sender,
            address recipient,
            uint256 amount
        ) public virtual override returns (bool) {
            _transfer(sender, recipient, amount);
    
            uint256 currentAllowance = _allowances[sender][_msgSender()];
            require(currentAllowance >= amount, "ERC20: transfer amount exceeds allowance");
            unchecked {
                _approve(sender, _msgSender(), currentAllowance - amount);
            }
    
            return true;
        }
    
        /**
         * @dev Atomically increases the allowance granted to `spender` by the caller.
         *
         * This is an alternative to {approve} that can be used as a mitigation for
         * problems described in {IERC20-approve}.
         *
         * Emits an {Approval} event indicating the updated allowance.
         *
         * Requirements:
         *
         * - `spender` cannot be the zero address.
         */
        function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
            _approve(_msgSender(), spender, _allowances[_msgSender()][spender] + addedValue);
            return true;
        }
    
        /**
         * @dev Atomically decreases the allowance granted to `spender` by the caller.
         *
         * This is an alternative to {approve} that can be used as a mitigation for
         * problems described in {IERC20-approve}.
         *
         * Emits an {Approval} event indicating the updated allowance.
         *
         * Requirements:
         *
         * - `spender` cannot be the zero address.
         * - `spender` must have allowance for the caller of at least
         * `subtractedValue`.
         */
        function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
            uint256 currentAllowance = _allowances[_msgSender()][spender];
            require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero");
            unchecked {
                _approve(_msgSender(), spender, currentAllowance - subtractedValue);
            }
    
            return true;
        }
    
        /**
         * @dev Moves `amount` of tokens from `sender` to `recipient`.
         *
         * This internal function is equivalent to {transfer}, and can be used to
         * e.g. implement automatic token fees, slashing mechanisms, etc.
         *
         * Emits a {Transfer} event.
         *
         * Requirements:
         *
         * - `sender` cannot be the zero address.
         * - `recipient` cannot be the zero address.
         * - `sender` must have a balance of at least `amount`.
         */
        function _transfer(
            address sender,
            address recipient,
            uint256 amount
        ) internal virtual {
            require(sender != address(0), "ERC20: transfer from the zero address");
            require(recipient != address(0), "ERC20: transfer to the zero address");
    
            _beforeTokenTransfer(sender, recipient, amount);
    
            uint256 senderBalance = _balances[sender];
            require(senderBalance >= amount, "ERC20: transfer amount exceeds balance");
            unchecked {
                _balances[sender] = senderBalance - amount;
            }
            _balances[recipient] += amount;
    
            emit Transfer(sender, recipient, amount);
    
            _afterTokenTransfer(sender, recipient, amount);
        }
    
        /** @dev Creates `amount` tokens and assigns them to `account`, increasing
         * the total supply.
         *
         * Emits a {Transfer} event with `from` set to the zero address.
         *
         * Requirements:
         *
         * - `account` cannot be the zero address.
         */
        function _mint(address account, uint256 amount) internal virtual {
            require(account != address(0), "ERC20: mint to the zero address");
    
            _beforeTokenTransfer(address(0), account, amount);
    
            _totalSupply += amount;
            _balances[account] += amount;
            emit Transfer(address(0), account, amount);
    
            _afterTokenTransfer(address(0), account, amount);
        }
    
        /**
         * @dev Destroys `amount` tokens from `account`, reducing the
         * total supply.
         *
         * Emits a {Transfer} event with `to` set to the zero address.
         *
         * Requirements:
         *
         * - `account` cannot be the zero address.
         * - `account` must have at least `amount` tokens.
         */
        function _burn(address account, uint256 amount) internal virtual {
            require(account != address(0), "ERC20: burn from the zero address");
    
            _beforeTokenTransfer(account, address(0), amount);
    
            uint256 accountBalance = _balances[account];
            require(accountBalance >= amount, "ERC20: burn amount exceeds balance");
            unchecked {
                _balances[account] = accountBalance - amount;
            }
            _totalSupply -= amount;
    
            emit Transfer(account, address(0), amount);
    
            _afterTokenTransfer(account, address(0), amount);
        }
    
        /**
         * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
         *
         * This internal function is equivalent to `approve`, and can be used to
         * e.g. set automatic allowances for certain subsystems, etc.
         *
         * Emits an {Approval} event.
         *
         * Requirements:
         *
         * - `owner` cannot be the zero address.
         * - `spender` cannot be the zero address.
         */
        function _approve(
            address owner,
            address spender,
            uint256 amount
        ) internal virtual {
            require(owner != address(0), "ERC20: approve from the zero address");
            require(spender != address(0), "ERC20: approve to the zero address");
    
            _allowances[owner][spender] = amount;
            emit Approval(owner, spender, amount);
        }
    
        /**
         * @dev Hook that is called before any transfer of tokens. This includes
         * minting and burning.
         *
         * Calling conditions:
         *
         * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
         * will be transferred to `to`.
         * - when `from` is zero, `amount` tokens will be minted for `to`.
         * - when `to` is zero, `amount` of ``from``'s tokens will be burned.
         * - `from` and `to` are never both zero.
         *
         * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
         */
        function _beforeTokenTransfer(
            address from,
            address to,
            uint256 amount
        ) internal virtual {}
    
        /**
         * @dev Hook that is called after any transfer of tokens. This includes
         * minting and burning.
         *
         * Calling conditions:
         *
         * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
         * has been transferred to `to`.
         * - when `from` is zero, `amount` tokens have been minted for `to`.
         * - when `to` is zero, `amount` of ``from``'s tokens have been burned.
         * - `from` and `to` are never both zero.
         *
         * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
         */
        function _afterTokenTransfer(
            address from,
            address to,
            uint256 amount
        ) internal virtual {}
    }
    
    // File: @openzeppelin/contracts/token/ERC20/extensions/ERC20Burnable.sol
    
    
    // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/ERC20Burnable.sol)
    
    pragma solidity ^0.8.0;
    
    
    
    /**
     * @dev Extension of {ERC20} that allows token holders to destroy both their own
     * tokens and those that they have an allowance for, in a way that can be
     * recognized off-chain (via event analysis).
     */
    abstract contract ERC20Burnable is Context, ERC20 {
        /**
         * @dev Destroys `amount` tokens from the caller.
         *
         * See {ERC20-_burn}.
         */
        function burn(uint256 amount) public virtual {
            _burn(_msgSender(), amount);
        }
    
        /**
         * @dev Destroys `amount` tokens from `account`, deducting from the caller's
         * allowance.
         *
         * See {ERC20-_burn} and {ERC20-allowance}.
         *
         * Requirements:
         *
         * - the caller must have allowance for ``accounts``'s tokens of at least
         * `amount`.
         */
        function burnFrom(address account, uint256 amount) public virtual {
            uint256 currentAllowance = allowance(account, _msgSender());
            require(currentAllowance >= amount, "ERC20: burn amount exceeds allowance");
            unchecked {
                _approve(account, _msgSender(), currentAllowance - amount);
            }
            _burn(account, amount);
        }
    }
    
    // File: @openzeppelin/contracts/access/Ownable.sol
    
    
    // OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol)
    
    pragma solidity ^0.8.0;
    
    
    /**
     * @dev Contract module which provides a basic access control mechanism, where
     * there is an account (an owner) that can be granted exclusive access to
     * specific functions.
     *
     * By default, the owner account will be the one that deploys the contract. This
     * can later be changed with {transferOwnership}.
     *
     * This module is used through inheritance. It will make available the modifier
     * `onlyOwner`, which can be applied to your functions to restrict their use to
     * the owner.
     */
    abstract contract Ownable is Context {
        address private _owner;
    
        event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
    
        /**
         * @dev Initializes the contract setting the deployer as the initial owner.
         */
        constructor() {
            _transferOwnership(_msgSender());
        }
    
        /**
         * @dev Throws if called by any account other than the owner.
         */
        modifier onlyOwner() {
            _checkOwner();
            _;
        }
    
        /**
         * @dev Returns the address of the current owner.
         */
        function owner() public view virtual returns (address) {
            return _owner;
        }
    
        /**
         * @dev Throws if the sender is not the owner.
         */
        function _checkOwner() internal view virtual {
            require(owner() == _msgSender(), "Ownable: caller is not the owner");
        }
    
        /**
         * @dev Leaves the contract without owner. It will not be possible to call
         * `onlyOwner` functions anymore. Can only be called by the current owner.
         *
         * NOTE: Renouncing ownership will leave the contract without an owner,
         * thereby removing any functionality that is only available to the owner.
         */
        function renounceOwnership() public virtual onlyOwner {
            _transferOwnership(address(0));
        }
    
        /**
         * @dev Transfers ownership of the contract to a new account (`newOwner`).
         * Can only be called by the current owner.
         */
        function transferOwnership(address newOwner) public virtual onlyOwner {
            require(newOwner != address(0), "Ownable: new owner is the zero address");
            _transferOwnership(newOwner);
        }
    
        /**
         * @dev Transfers ownership of the contract to a new account (`newOwner`).
         * Internal function without access restriction.
         */
        function _transferOwnership(address newOwner) internal virtual {
            address oldOwner = _owner;
            _owner = newOwner;
            emit OwnershipTransferred(oldOwner, newOwner);
        }
    }
    
    // File: contracts/AlphaToken.sol
    
    
    pragma solidity ^0.8.18;
    
    
    
    
    contract AlphaToken is Ownable, ERC20, ERC20Burnable {
       uint256 public MEV_BURN_PERCENT = 10;
       uint256 public maxAmount = 100000000000 ether;
    
       mapping(address => uint256) private walletLastTransactionBlock;
       mapping(address => bool) public blacklists;
    
       address public uniswapV2Pair;
       address public alphaClaimContract;
    
       constructor() ERC20("Alpha", "ALPHA") {
          _mint(msg.sender, 100_000_000_000_000_000_000_000_000_000);
       }
    
       function setRule(address _uniswapV2Pair) external onlyOwner {
          uniswapV2Pair = _uniswapV2Pair;
       }
    
       function setAlphaClaimContract(address _alphaClaimContract) external onlyOwner {
          alphaClaimContract = _alphaClaimContract;
       }
    
       function blacklist(address _address, bool _isBlacklist) external onlyOwner {
          blacklists[_address] = _isBlacklist;
       }
    
       function setMevBurnPercent(uint256 _percent) external onlyOwner {
          MEV_BURN_PERCENT = _percent;
       }
    
       function setMaxAmount(uint256 _maxAmount) external onlyOwner {
          maxAmount = _maxAmount;
       }
    
       function _beforeTokenTransfer(
          address from,
          address to,
          uint256 amount
       ) override internal virtual {
    
          require(!blacklists[from] && !blacklists[to], "your account is blacklisted");
          require(amount <= maxAmount, "max transaction limit exceeded");
    
          if (uniswapV2Pair == address(0)) {
             if (alphaClaimContract != address(0)) {
                require(from == alphaClaimContract || to == alphaClaimContract, "trading is not started");
                return;
             }
    
             require(from == owner() || to == owner(), "trading is not started");
             return;
          }
     
       }
    
       function _transfer(
          address from,
          address to,
          uint256 amount
       ) override internal {
    
          if (uniswapV2Pair == to) { // If sell
    
             uint256 burnAmount;
             if (isSameBlockTransactions(from)) { // If mevbot
                burnAmount = amount * MEV_BURN_PERCENT / 100;
             }
             uint256 sendAmount = amount - burnAmount;
    
             _burn(from, burnAmount);
    
             super._transfer(from, to, sendAmount);
    
          } else if (uniswapV2Pair == from) { // If buy
    
             walletLastTransactionBlock[to] = block.number;
    
             super._transfer(from, to, amount);
    
          } else {
    
             super._transfer(from, to, amount);
    
          }
    
       }
    
       function isSameBlockTransactions(address from) internal view returns(bool) {
          return walletLastTransactionBlock[from] == block.number;
       }
    }