Transaction Hash:
Block:
19575632 at Apr-03-2024 01:46:35 PM +UTC
Transaction Fee:
0.0113431347654507 ETH
$28.40
Gas Used:
224,733 Gas / 50.4738279 Gwei
Emitted Events:
44 |
GPv2Settlement.Trade( owner=0x26B8F277649249fFDA5085334d6418C35318F3eD, sellToken=[Receiver] TetherToken, buyToken=0xEeeeeEee...eeeeeEEeE, sellAmount=3300000000, buyAmount=989664032037868947, feeAmount=0, orderUid=0x4382F4D342DF8A637B569596062C35BAFF015EFE2B57E01EDBA5E4119589644B26B8F277649249FFDA5085334D6418C35318F3ED660D6495 )
|
45 |
TetherToken.Transfer( from=0x26B8F277649249fFDA5085334d6418C35318F3eD, to=[Receiver] GPv2Settlement, value=3300000000 )
|
46 |
WETH9.Transfer( src=UniswapV3Pool, dst=[Receiver] GPv2Settlement, wad=998732855646333738 )
|
47 |
TetherToken.Transfer( from=[Receiver] GPv2Settlement, to=UniswapV3Pool, value=3300000000 )
|
48 |
UniswapV3Pool.Swap( sender=ZeroEx, recipient=[Receiver] GPv2Settlement, amount0=-998732855646333738, amount1=3300000000, sqrtPriceX96=4553101030528261546465750, liquidity=3113560673556671807, tick=-195296 )
|
49 |
GPv2Settlement.Interaction( target=ZeroEx, value=0, selector=System.Byte[] )
|
50 |
WETH9.Withdrawal( src=[Receiver] GPv2Settlement, wad=989664032037868947 )
|
51 |
GPv2Settlement.Interaction( target=WETH9, value=0, selector=System.Byte[] )
|
52 |
GPv2Settlement.Settlement( solver=[Sender] 0xc74b656bd2ebe313d26d1ac02bcf95b137d1c857 )
|
Account State Difference:
Address | Before | After | State Difference | ||
---|---|---|---|---|---|
0x11b815ef...14B7697F6 | (Uniswap V3: USDT 3) | ||||
0x26B8F277...35318F3eD | 0.039797368725346264 Eth | 1.029461400763215211 Eth | 0.989664032037868947 | ||
0x4838B106...B0BAD5f97
Miner
| (Titan Builder) | 13.344184879324143782 Eth | 13.345220012289000779 Eth | 0.001035132964856997 | |
0x9008D19f...10560ab41 | (CoW Protocol: GPv2Settlement) | ||||
0xC02aaA39...83C756Cc2 | 2,998,774.341558176074398686 Eth | 2,998,773.351894144036529739 Eth | 0.989664032037868947 | ||
0xc74b656b...137D1C857 |
28.879596183131033054 Eth
Nonce: 3725
|
28.868253048365582354 Eth
Nonce: 3726
| 0.0113431347654507 | ||
0xdAC17F95...13D831ec7 |
Execution Trace
GPv2Settlement.13d79a0b( )
EIP173Proxy.02cc250d( )
-
GPv2AllowListAuthentication.isSolver( prospectiveSolver=0xc74b656bd2EBe313D26d1ac02BcF95b137D1C857 ) => ( True )
-
-
Null: 0x000...001.4382f4d3( )
GPv2VaultRelayer.transferFromAccounts( transfers= )
-
TetherToken.transferFrom( _from=0x26B8F277649249fFDA5085334d6418C35318F3eD, _to=0x9008D19f58AAbD9eD0D60971565AA8510560ab41, _value=3300000000 )
-
ZeroEx.6af479b2( )
UniswapV3Feature.sellTokenForTokenToUniswapV3( encodedPath=0xDAC17F958D2EE523A2206206994597C13D831EC70001F4C02AAA39B223FE8D0A0E5C4F27EAD9083C756CC2, sellAmount=3300000000, minBuyAmount=995736657079394698, recipient=0x0000000000000000000000000000000000000000 ) => ( buyAmount=998732855646333738 )
UniswapV3Pool.swap( recipient=0x9008D19f58AAbD9eD0D60971565AA8510560ab41, zeroForOne=False, amountSpecified=3300000000, sqrtPriceLimitX96=1461446703485210103287273052203988822378723970341, data=0x000000000000000000000000DAC17F958D2EE523A2206206994597C13D831EC7000000000000000000000000C02AAA39B223FE8D0A0E5C4F27EAD9083C756CC200000000000000000000000000000000000000000000000000000000000001F40000000000000000000000009008D19F58AABD9ED0D60971565AA8510560AB41 ) => ( amount0=-998732855646333738, amount1=3300000000 )
-
WETH9.transfer( dst=0x9008D19f58AAbD9eD0D60971565AA8510560ab41, wad=998732855646333738 ) => ( True )
-
TetherToken.balanceOf( who=0x11b815efB8f581194ae79006d24E0d814B7697F6 ) => ( 12204057524201 )
ZeroEx.fa461e33( )
UniswapV3Feature.uniswapV3SwapCallback( amount0Delta=-998732855646333738, amount1Delta=3300000000, data=0x000000000000000000000000DAC17F958D2EE523A2206206994597C13D831EC7000000000000000000000000C02AAA39B223FE8D0A0E5C4F27EAD9083C756CC200000000000000000000000000000000000000000000000000000000000001F40000000000000000000000009008D19F58AABD9ED0D60971565AA8510560AB41 )
-
TetherToken.transferFrom( _from=0x9008D19f58AAbD9eD0D60971565AA8510560ab41, _to=0x11b815efB8f581194ae79006d24E0d814B7697F6, _value=3300000000 )
-
-
TetherToken.balanceOf( who=0x11b815efB8f581194ae79006d24E0d814B7697F6 ) => ( 12207357524201 )
-
WETH9.withdraw( wad=989664032037868947 )
- ETH 0.989664032037868947
GPv2Settlement.CALL( )
- ETH 0.989664032037868947
- ETH 0.989664032037868947
0x26b8f277649249ffda5085334d6418c35318f3ed.CALL( )
File 1 of 9: GPv2Settlement
File 2 of 9: TetherToken
File 3 of 9: UniswapV3Pool
File 4 of 9: WETH9
File 5 of 9: EIP173Proxy
File 6 of 9: GPv2AllowListAuthentication
File 7 of 9: GPv2VaultRelayer
File 8 of 9: ZeroEx
File 9 of 9: UniswapV3Feature
// SPDX-License-Identifier: LGPL-3.0-or-later pragma solidity ^0.7.6; pragma abicoder v2; import "./GPv2VaultRelayer.sol"; import "./interfaces/GPv2Authentication.sol"; import "./interfaces/IERC20.sol"; import "./interfaces/IVault.sol"; import "./libraries/GPv2Interaction.sol"; import "./libraries/GPv2Order.sol"; import "./libraries/GPv2Trade.sol"; import "./libraries/GPv2Transfer.sol"; import "./libraries/SafeCast.sol"; import "./libraries/SafeMath.sol"; import "./mixins/GPv2Signing.sol"; import "./mixins/ReentrancyGuard.sol"; import "./mixins/StorageAccessible.sol"; /// @title Gnosis Protocol v2 Settlement Contract /// @author Gnosis Developers contract GPv2Settlement is GPv2Signing, ReentrancyGuard, StorageAccessible { using GPv2Order for bytes; using GPv2Transfer for IVault; using SafeCast for int256; using SafeCast for uint256; using SafeMath for uint256; /// @dev The authenticator is used to determine who can call the settle function. /// That is, only authorised solvers have the ability to invoke settlements. /// Any valid authenticator implements an isSolver method called by the onlySolver /// modifier below. GPv2Authentication public immutable authenticator; /// @dev The Balancer Vault the protocol uses for managing user funds. IVault public immutable vault; /// @dev The Balancer Vault relayer which can interact on behalf of users. /// This contract is created during deployment GPv2VaultRelayer public immutable vaultRelayer; /// @dev Map each user order by UID to the amount that has been filled so /// far. If this amount is larger than or equal to the amount traded in the /// order (amount sold for sell orders, amount bought for buy orders) then /// the order cannot be traded anymore. If the order is fill or kill, then /// this value is only used to determine whether the order has already been /// executed. mapping(bytes => uint256) public filledAmount; /// @dev Event emitted for each executed trade. event Trade( address indexed owner, IERC20 sellToken, IERC20 buyToken, uint256 sellAmount, uint256 buyAmount, uint256 feeAmount, bytes orderUid ); /// @dev Event emitted for each executed interaction. /// /// For gas effeciency, only the interaction calldata selector (first 4 /// bytes) is included in the event. For interactions without calldata or /// whose calldata is shorter than 4 bytes, the selector will be `0`. event Interaction(address indexed target, uint256 value, bytes4 selector); /// @dev Event emitted when a settlement complets event Settlement(address indexed solver); /// @dev Event emitted when an order is invalidated. event OrderInvalidated(address indexed owner, bytes orderUid); constructor(GPv2Authentication authenticator_, IVault vault_) { authenticator = authenticator_; vault = vault_; vaultRelayer = new GPv2VaultRelayer(vault_); } // solhint-disable-next-line no-empty-blocks receive() external payable { // NOTE: Include an empty receive function so that the settlement // contract can receive Ether from contract interactions. } /// @dev This modifier is called by settle function to block any non-listed /// senders from settling batches. modifier onlySolver { require(authenticator.isSolver(msg.sender), "GPv2: not a solver"); _; } /// @dev Modifier to ensure that an external function is only callable as a /// settlement interaction. modifier onlyInteraction { require(address(this) == msg.sender, "GPv2: not an interaction"); _; } /// @dev Settle the specified orders at a clearing price. Note that it is /// the responsibility of the caller to ensure that all GPv2 invariants are /// upheld for the input settlement, otherwise this call will revert. /// Namely: /// - All orders are valid and signed /// - Accounts have sufficient balance and approval. /// - Settlement contract has sufficient balance to execute trades. Note /// this implies that the accumulated fees held in the contract can also /// be used for settlement. This is OK since: /// - Solvers need to be authorized /// - Misbehaving solvers will be slashed for abusing accumulated fees for /// settlement /// - Critically, user orders are entirely protected /// /// @param tokens An array of ERC20 tokens to be traded in the settlement. /// Trades encode tokens as indices into this array. /// @param clearingPrices An array of clearing prices where the `i`-th price /// is for the `i`-th token in the [`tokens`] array. /// @param trades Trades for signed orders. /// @param interactions Smart contract interactions split into three /// separate lists to be run before the settlement, during the settlement /// and after the settlement respectively. function settle( IERC20[] calldata tokens, uint256[] calldata clearingPrices, GPv2Trade.Data[] calldata trades, GPv2Interaction.Data[][3] calldata interactions ) external nonReentrant onlySolver { executeInteractions(interactions[0]); ( GPv2Transfer.Data[] memory inTransfers, GPv2Transfer.Data[] memory outTransfers ) = computeTradeExecutions(tokens, clearingPrices, trades); vaultRelayer.transferFromAccounts(inTransfers); executeInteractions(interactions[1]); vault.transferToAccounts(outTransfers); executeInteractions(interactions[2]); emit Settlement(msg.sender); } /// @dev Settle an order directly against Balancer V2 pools. /// /// @param swaps The Balancer V2 swap steps to use for trading. /// @param tokens An array of ERC20 tokens to be traded in the settlement. /// Swaps and the trade encode tokens as indices into this array. /// @param trade The trade to match directly against Balancer liquidity. The /// order will always be fully executed, so the trade's `executedAmount` /// field is used to represent a swap limit amount. function swap( IVault.BatchSwapStep[] calldata swaps, IERC20[] calldata tokens, GPv2Trade.Data calldata trade ) external nonReentrant onlySolver { RecoveredOrder memory recoveredOrder = allocateRecoveredOrder(); GPv2Order.Data memory order = recoveredOrder.data; recoverOrderFromTrade(recoveredOrder, tokens, trade); IVault.SwapKind kind = order.kind == GPv2Order.KIND_SELL ? IVault.SwapKind.GIVEN_IN : IVault.SwapKind.GIVEN_OUT; IVault.FundManagement memory funds; funds.sender = recoveredOrder.owner; funds.fromInternalBalance = order.sellTokenBalance == GPv2Order.BALANCE_INTERNAL; funds.recipient = payable(recoveredOrder.receiver); funds.toInternalBalance = order.buyTokenBalance == GPv2Order.BALANCE_INTERNAL; int256[] memory limits = new int256[](tokens.length); uint256 limitAmount = trade.executedAmount; // NOTE: Array allocation initializes elements to 0, so we only need to // set the limits we care about. This ensures that the swap will respect // the order's limit price. if (order.kind == GPv2Order.KIND_SELL) { require(limitAmount >= order.buyAmount, "GPv2: limit too low"); limits[trade.sellTokenIndex] = order.sellAmount.toInt256(); limits[trade.buyTokenIndex] = -limitAmount.toInt256(); } else { require(limitAmount <= order.sellAmount, "GPv2: limit too high"); limits[trade.sellTokenIndex] = limitAmount.toInt256(); limits[trade.buyTokenIndex] = -order.buyAmount.toInt256(); } GPv2Transfer.Data memory feeTransfer; feeTransfer.account = recoveredOrder.owner; feeTransfer.token = order.sellToken; feeTransfer.amount = order.feeAmount; feeTransfer.balance = order.sellTokenBalance; int256[] memory tokenDeltas = vaultRelayer.batchSwapWithFee( kind, swaps, tokens, funds, limits, // NOTE: Specify a deadline to ensure that an expire order // cannot be used to trade. order.validTo, feeTransfer ); bytes memory orderUid = recoveredOrder.uid; uint256 executedSellAmount = tokenDeltas[trade.sellTokenIndex].toUint256(); uint256 executedBuyAmount = (-tokenDeltas[trade.buyTokenIndex]).toUint256(); // NOTE: Check that the orders were completely filled and update their // filled amounts to avoid replaying them. The limit price and order // validity have already been verified when executing the swap through // the `limit` and `deadline` parameters. require(filledAmount[orderUid] == 0, "GPv2: order filled"); if (order.kind == GPv2Order.KIND_SELL) { require( executedSellAmount == order.sellAmount, "GPv2: sell amount not respected" ); filledAmount[orderUid] = order.sellAmount; } else { require( executedBuyAmount == order.buyAmount, "GPv2: buy amount not respected" ); filledAmount[orderUid] = order.buyAmount; } emit Trade( recoveredOrder.owner, order.sellToken, order.buyToken, executedSellAmount, executedBuyAmount, order.feeAmount, orderUid ); emit Settlement(msg.sender); } /// @dev Invalidate onchain an order that has been signed offline. /// /// @param orderUid The unique identifier of the order that is to be made /// invalid after calling this function. The user that created the order /// must be the the sender of this message. See [`extractOrderUidParams`] /// for details on orderUid. function invalidateOrder(bytes calldata orderUid) external { (, address owner, ) = orderUid.extractOrderUidParams(); require(owner == msg.sender, "GPv2: caller does not own order"); filledAmount[orderUid] = uint256(-1); emit OrderInvalidated(owner, orderUid); } /// @dev Free storage from the filled amounts of **expired** orders to claim /// a gas refund. This method can only be called as an interaction. /// /// @param orderUids The unique identifiers of the expired order to free /// storage for. function freeFilledAmountStorage(bytes[] calldata orderUids) external onlyInteraction { freeOrderStorage(filledAmount, orderUids); } /// @dev Free storage from the pre signatures of **expired** orders to claim /// a gas refund. This method can only be called as an interaction. /// /// @param orderUids The unique identifiers of the expired order to free /// storage for. function freePreSignatureStorage(bytes[] calldata orderUids) external onlyInteraction { freeOrderStorage(preSignature, orderUids); } /// @dev Process all trades one at a time returning the computed net in and /// out transfers for the trades. /// /// This method reverts if processing of any single trade fails. See /// [`computeTradeExecution`] for more details. /// /// @param tokens An array of ERC20 tokens to be traded in the settlement. /// @param clearingPrices An array of token clearing prices. /// @param trades Trades for signed orders. /// @return inTransfers Array of in transfers of executed sell amounts. /// @return outTransfers Array of out transfers of executed buy amounts. function computeTradeExecutions( IERC20[] calldata tokens, uint256[] calldata clearingPrices, GPv2Trade.Data[] calldata trades ) internal returns ( GPv2Transfer.Data[] memory inTransfers, GPv2Transfer.Data[] memory outTransfers ) { RecoveredOrder memory recoveredOrder = allocateRecoveredOrder(); inTransfers = new GPv2Transfer.Data[](trades.length); outTransfers = new GPv2Transfer.Data[](trades.length); for (uint256 i = 0; i < trades.length; i++) { GPv2Trade.Data calldata trade = trades[i]; recoverOrderFromTrade(recoveredOrder, tokens, trade); computeTradeExecution( recoveredOrder, clearingPrices[trade.sellTokenIndex], clearingPrices[trade.buyTokenIndex], trade.executedAmount, inTransfers[i], outTransfers[i] ); } } /// @dev Compute the in and out transfer amounts for a single trade. /// This function reverts if: /// - The order has expired /// - The order's limit price is not respected /// - The order gets over-filled /// - The fee discount is larger than the executed fee /// /// @param recoveredOrder The recovered order to process. /// @param sellPrice The price of the order's sell token. /// @param buyPrice The price of the order's buy token. /// @param executedAmount The portion of the order to execute. This will be /// ignored for fill-or-kill orders. /// @param inTransfer Memory location for computed executed sell amount /// transfer. /// @param outTransfer Memory location for computed executed buy amount /// transfer. function computeTradeExecution( RecoveredOrder memory recoveredOrder, uint256 sellPrice, uint256 buyPrice, uint256 executedAmount, GPv2Transfer.Data memory inTransfer, GPv2Transfer.Data memory outTransfer ) internal { GPv2Order.Data memory order = recoveredOrder.data; bytes memory orderUid = recoveredOrder.uid; // solhint-disable-next-line not-rely-on-time require(order.validTo >= block.timestamp, "GPv2: order expired"); // NOTE: The following computation is derived from the equation: // ``` // amount_x * price_x = amount_y * price_y // ``` // Intuitively, if a chocolate bar is 0,50€ and a beer is 4€, 1 beer // is roughly worth 8 chocolate bars (`1 * 4 = 8 * 0.5`). From this // equation, we can derive: // - The limit price for selling `x` and buying `y` is respected iff // ``` // limit_x * price_x >= limit_y * price_y // ``` // - The executed amount of token `y` given some amount of `x` and // clearing prices is: // ``` // amount_y = amount_x * price_x / price_y // ``` require( order.sellAmount.mul(sellPrice) >= order.buyAmount.mul(buyPrice), "GPv2: limit price not respected" ); uint256 executedSellAmount; uint256 executedBuyAmount; uint256 executedFeeAmount; uint256 currentFilledAmount; if (order.kind == GPv2Order.KIND_SELL) { if (order.partiallyFillable) { executedSellAmount = executedAmount; executedFeeAmount = order.feeAmount.mul(executedSellAmount).div( order.sellAmount ); } else { executedSellAmount = order.sellAmount; executedFeeAmount = order.feeAmount; } executedBuyAmount = executedSellAmount.mul(sellPrice).ceilDiv( buyPrice ); currentFilledAmount = filledAmount[orderUid].add( executedSellAmount ); require( currentFilledAmount <= order.sellAmount, "GPv2: order filled" ); } else { if (order.partiallyFillable) { executedBuyAmount = executedAmount; executedFeeAmount = order.feeAmount.mul(executedBuyAmount).div( order.buyAmount ); } else { executedBuyAmount = order.buyAmount; executedFeeAmount = order.feeAmount; } executedSellAmount = executedBuyAmount.mul(buyPrice).div(sellPrice); currentFilledAmount = filledAmount[orderUid].add(executedBuyAmount); require( currentFilledAmount <= order.buyAmount, "GPv2: order filled" ); } executedSellAmount = executedSellAmount.add(executedFeeAmount); filledAmount[orderUid] = currentFilledAmount; emit Trade( recoveredOrder.owner, order.sellToken, order.buyToken, executedSellAmount, executedBuyAmount, executedFeeAmount, orderUid ); inTransfer.account = recoveredOrder.owner; inTransfer.token = order.sellToken; inTransfer.amount = executedSellAmount; inTransfer.balance = order.sellTokenBalance; outTransfer.account = recoveredOrder.receiver; outTransfer.token = order.buyToken; outTransfer.amount = executedBuyAmount; outTransfer.balance = order.buyTokenBalance; } /// @dev Execute a list of arbitrary contract calls from this contract. /// @param interactions The list of interactions to execute. function executeInteractions(GPv2Interaction.Data[] calldata interactions) internal { for (uint256 i; i < interactions.length; i++) { GPv2Interaction.Data calldata interaction = interactions[i]; // To prevent possible attack on user funds, we explicitly disable // any interactions with the vault relayer contract. require( interaction.target != address(vaultRelayer), "GPv2: forbidden interaction" ); GPv2Interaction.execute(interaction); emit Interaction( interaction.target, interaction.value, GPv2Interaction.selector(interaction) ); } } /// @dev Claims refund for the specified storage and order UIDs. /// /// This method reverts if any of the orders are still valid. /// /// @param orderUids Order refund data for freeing storage. /// @param orderStorage Order storage mapped on a UID. function freeOrderStorage( mapping(bytes => uint256) storage orderStorage, bytes[] calldata orderUids ) internal { for (uint256 i = 0; i < orderUids.length; i++) { bytes calldata orderUid = orderUids[i]; (, , uint32 validTo) = orderUid.extractOrderUidParams(); // solhint-disable-next-line not-rely-on-time require(validTo < block.timestamp, "GPv2: order still valid"); orderStorage[orderUid] = 0; } } } // SPDX-License-Identifier: LGPL-3.0-or-later pragma solidity ^0.7.6; pragma abicoder v2; import "./interfaces/IERC20.sol"; import "./interfaces/IVault.sol"; import "./libraries/GPv2Transfer.sol"; /// @title Gnosis Protocol v2 Vault Relayer Contract /// @author Gnosis Developers contract GPv2VaultRelayer { using GPv2Transfer for IVault; /// @dev The creator of the contract which has special permissions. This /// value is set at creation time and cannot change. address private immutable creator; /// @dev The vault this relayer is for. IVault private immutable vault; constructor(IVault vault_) { creator = msg.sender; vault = vault_; } /// @dev Modifier that ensures that a function can only be called by the /// creator of this contract. modifier onlyCreator { require(msg.sender == creator, "GPv2: not creator"); _; } /// @dev Transfers all sell amounts for the executed trades from their /// owners to the caller. /// /// This function reverts if: /// - The caller is not the creator of the vault relayer /// - Any ERC20 transfer fails /// /// @param transfers The transfers to execute. function transferFromAccounts(GPv2Transfer.Data[] calldata transfers) external onlyCreator { vault.transferFromAccounts(transfers, msg.sender); } /// @dev Performs a Balancer batched swap on behalf of a user and sends a /// fee to the caller. /// /// This function reverts if: /// - The caller is not the creator of the vault relayer /// - The swap fails /// - The fee transfer fails /// /// @param kind The Balancer swap kind, this can either be `GIVEN_IN` for /// sell orders or `GIVEN_OUT` for buy orders. /// @param swaps The swaps to perform. /// @param tokens The tokens for the swaps. Swaps encode to and from tokens /// as indices into this array. /// @param funds The fund management settings, specifying the user the swap /// is being performed for as well as the recipient of the proceeds. /// @param limits Swap limits for encoding limit prices. /// @param deadline The deadline for the swap. /// @param feeTransfer The transfer data for the caller fee. /// @return tokenDeltas The executed swap amounts. function batchSwapWithFee( IVault.SwapKind kind, IVault.BatchSwapStep[] calldata swaps, IERC20[] memory tokens, IVault.FundManagement memory funds, int256[] memory limits, uint256 deadline, GPv2Transfer.Data calldata feeTransfer ) external onlyCreator returns (int256[] memory tokenDeltas) { tokenDeltas = vault.batchSwap( kind, swaps, tokens, funds, limits, deadline ); vault.fastTransferFromAccount(feeTransfer, msg.sender); } } // SPDX-License-Identifier: LGPL-3.0-or-later pragma solidity ^0.7.6; /// @title Gnosis Protocol v2 Authentication Interface /// @author Gnosis Developers interface GPv2Authentication { /// @dev determines whether the provided address is an authenticated solver. /// @param prospectiveSolver the address of prospective solver. /// @return true when prospectiveSolver is an authenticated solver, otherwise false. function isSolver(address prospectiveSolver) external view returns (bool); } // SPDX-License-Identifier: LGPL-3.0-or-later pragma solidity ^0.7.6; library GPv2EIP1271 { /// @dev Value returned by a call to `isValidSignature` if the signature /// was verified successfully. The value is defined in EIP-1271 as: /// bytes4(keccak256("isValidSignature(bytes32,bytes)")) bytes4 internal constant MAGICVALUE = 0x1626ba7e; } /// @title EIP1271 Interface /// @dev Standardized interface for an implementation of smart contract /// signatures as described in EIP-1271. The code that follows is identical to /// the code in the standard with the exception of formatting and syntax /// changes to adapt the code to our Solidity version. interface EIP1271Verifier { /// @dev Should return whether the signature provided is valid for the /// provided data /// @param _hash Hash of the data to be signed /// @param _signature Signature byte array associated with _data /// /// MUST return the bytes4 magic value 0x1626ba7e when function passes. /// MUST NOT modify state (using STATICCALL for solc < 0.5, view modifier for /// solc > 0.5) /// MUST allow external calls /// function isValidSignature(bytes32 _hash, bytes memory _signature) external view returns (bytes4 magicValue); } // SPDX-License-Identifier: MIT // Vendored from OpenZeppelin contracts with minor modifications: // - Modified Solidity version // - Formatted code // - Added `name`, `symbol` and `decimals` function declarations // <https://github.com/OpenZeppelin/openzeppelin-contracts/blob/v3.4.0/contracts/token/ERC20/IERC20.sol> pragma solidity ^0.7.6; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Returns the name of the token. */ function name() external view returns (string memory); /** * @dev Returns the symbol of the token. */ function symbol() external view returns (string memory); /** * @dev Returns the number of decimals the token uses. */ function decimals() external view returns (uint8); /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `recipient`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address recipient, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `sender` to `recipient` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom( address sender, address recipient, uint256 amount ) external returns (bool); /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval( address indexed owner, address indexed spender, uint256 value ); } // SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.6; pragma abicoder v2; import "./IERC20.sol"; /** * @dev Minimal interface for the Vault core contract only containing methods * used by Gnosis Protocol V2. Original source: * <https://github.com/balancer-labs/balancer-core-v2/blob/v1.0.0/contracts/vault/interfaces/IVault.sol> */ interface IVault { // Internal Balance // // Users can deposit tokens into the Vault, where they are allocated to their Internal Balance, and later // transferred or withdrawn. It can also be used as a source of tokens when joining Pools, as a destination // when exiting them, and as either when performing swaps. This usage of Internal Balance results in greatly reduced // gas costs when compared to relying on plain ERC20 transfers, leading to large savings for frequent users. // // Internal Balance management features batching, which means a single contract call can be used to perform multiple // operations of different kinds, with different senders and recipients, at once. /** * @dev Performs a set of user balance operations, which involve Internal Balance (deposit, withdraw or transfer) * and plain ERC20 transfers using the Vault's allowance. This last feature is particularly useful for relayers, as * it lets integrators reuse a user's Vault allowance. * * For each operation, if the caller is not `sender`, it must be an authorized relayer for them. */ function manageUserBalance(UserBalanceOp[] memory ops) external payable; /** * @dev Data for `manageUserBalance` operations, which include the possibility for ETH to be sent and received without manual WETH wrapping or unwrapping. */ struct UserBalanceOp { UserBalanceOpKind kind; IERC20 asset; uint256 amount; address sender; address payable recipient; } // There are four possible operations in `manageUserBalance`: // // - DEPOSIT_INTERNAL // Increases the Internal Balance of the `recipient` account by transferring tokens from the corresponding // `sender`. The sender must have allowed the Vault to use their tokens via `IERC20.approve()`. // // ETH can be used by passing the ETH sentinel value as the asset and forwarding ETH in the call: it will be wrapped // and deposited as WETH. Any ETH amount remaining will be sent back to the caller (not the sender, which is // relevant for relayers). // // Emits an `InternalBalanceChanged` event. // // // - WITHDRAW_INTERNAL // Decreases the Internal Balance of the `sender` account by transferring tokens to the `recipient`. // // ETH can be used by passing the ETH sentinel value as the asset. This will deduct WETH instead, unwrap it and send // it to the recipient as ETH. // // Emits an `InternalBalanceChanged` event. // // // - TRANSFER_INTERNAL // Transfers tokens from the Internal Balance of the `sender` account to the Internal Balance of `recipient`. // // Reverts if the ETH sentinel value is passed. // // Emits an `InternalBalanceChanged` event. // // // - TRANSFER_EXTERNAL // Transfers tokens from `sender` to `recipient`, using the Vault's ERC20 allowance. This is typically used by // relayers, as it lets them reuse a user's Vault allowance. // // Reverts if the ETH sentinel value is passed. // // Emits an `ExternalBalanceTransfer` event. enum UserBalanceOpKind { DEPOSIT_INTERNAL, WITHDRAW_INTERNAL, TRANSFER_INTERNAL, TRANSFER_EXTERNAL } // Swaps // // Users can swap tokens with Pools by calling the `swap` and `batchSwap` functions. To do this, // they need not trust Pool contracts in any way: all security checks are made by the Vault. They must however be // aware of the Pools' pricing algorithms in order to estimate the prices Pools will quote. // // The `swap` function executes a single swap, while `batchSwap` can perform multiple swaps in sequence. // In each individual swap, tokens of one kind are sent from the sender to the Pool (this is the 'token in'), // and tokens of another kind are sent from the Pool to the recipient in exchange (this is the 'token out'). // More complex swaps, such as one token in to multiple tokens out can be achieved by batching together // individual swaps. // // There are two swap kinds: // - 'given in' swaps, where the amount of tokens in (sent to the Pool) is known, and the Pool determines (via the // `onSwap` hook) the amount of tokens out (to send to the recipient). // - 'given out' swaps, where the amount of tokens out (received from the Pool) is known, and the Pool determines // (via the `onSwap` hook) the amount of tokens in (to receive from the sender). // // Additionally, it is possible to chain swaps using a placeholder input amount, which the Vault replaces with // the calculated output of the previous swap. If the previous swap was 'given in', this will be the calculated // tokenOut amount. If the previous swap was 'given out', it will use the calculated tokenIn amount. These extended // swaps are known as 'multihop' swaps, since they 'hop' through a number of intermediate tokens before arriving at // the final intended token. // // In all cases, tokens are only transferred in and out of the Vault (or withdrawn from and deposited into Internal // Balance) after all individual swaps have been completed, and the net token balance change computed. This makes // certain swap patterns, such as multihops, or swaps that interact with the same token pair in multiple Pools, cost // much less gas than they would otherwise. // // It also means that under certain conditions it is possible to perform arbitrage by swapping with multiple // Pools in a way that results in net token movement out of the Vault (profit), with no tokens being sent in (only // updating the Pool's internal accounting). // // To protect users from front-running or the market changing rapidly, they supply a list of 'limits' for each token // involved in the swap, where either the maximum number of tokens to send (by passing a positive value) or the // minimum amount of tokens to receive (by passing a negative value) is specified. // // Additionally, a 'deadline' timestamp can also be provided, forcing the swap to fail if it occurs after // this point in time (e.g. if the transaction failed to be included in a block promptly). // // If interacting with Pools that hold WETH, it is possible to both send and receive ETH directly: the Vault will do // the wrapping and unwrapping. To enable this mechanism, the IAsset sentinel value (the zero address) must be // passed in the `assets` array instead of the WETH address. Note that it is possible to combine ETH and WETH in the // same swap. Any excess ETH will be sent back to the caller (not the sender, which is relevant for relayers). // // Finally, Internal Balance can be used when either sending or receiving tokens. enum SwapKind {GIVEN_IN, GIVEN_OUT} /** * @dev Performs a swap with a single Pool. * * If the swap is 'given in' (the number of tokens to send to the Pool is known), it returns the amount of tokens * taken from the Pool, which must be greater than or equal to `limit`. * * If the swap is 'given out' (the number of tokens to take from the Pool is known), it returns the amount of tokens * sent to the Pool, which must be less than or equal to `limit`. * * Internal Balance usage and the recipient are determined by the `funds` struct. * * Emits a `Swap` event. */ function swap( SingleSwap memory singleSwap, FundManagement memory funds, uint256 limit, uint256 deadline ) external payable returns (uint256); /** * @dev Data for a single swap executed by `swap`. `amount` is either `amountIn` or `amountOut` depending on * the `kind` value. * * `assetIn` and `assetOut` are either token addresses, or the IAsset sentinel value for ETH (the zero address). * Note that Pools never interact with ETH directly: it will be wrapped to or unwrapped from WETH by the Vault. * * The `userData` field is ignored by the Vault, but forwarded to the Pool in the `onSwap` hook, and may be * used to extend swap behavior. */ struct SingleSwap { bytes32 poolId; SwapKind kind; IERC20 assetIn; IERC20 assetOut; uint256 amount; bytes userData; } /** * @dev Performs a series of swaps with one or multiple Pools. In each individual swap, the caller determines either * the amount of tokens sent to or received from the Pool, depending on the `kind` value. * * Returns an array with the net Vault asset balance deltas. Positive amounts represent tokens (or ETH) sent to the * Vault, and negative amounts represent tokens (or ETH) sent by the Vault. Each delta corresponds to the asset at * the same index in the `assets` array. * * Swaps are executed sequentially, in the order specified by the `swaps` array. Each array element describes a * Pool, the token to be sent to this Pool, the token to receive from it, and an amount that is either `amountIn` or * `amountOut` depending on the swap kind. * * Multihop swaps can be executed by passing an `amount` value of zero for a swap. This will cause the amount in/out * of the previous swap to be used as the amount in for the current one. In a 'given in' swap, 'tokenIn' must equal * the previous swap's `tokenOut`. For a 'given out' swap, `tokenOut` must equal the previous swap's `tokenIn`. * * The `assets` array contains the addresses of all assets involved in the swaps. These are either token addresses, * or the IAsset sentinel value for ETH (the zero address). Each entry in the `swaps` array specifies tokens in and * out by referencing an index in `assets`. Note that Pools never interact with ETH directly: it will be wrapped to * or unwrapped from WETH by the Vault. * * Internal Balance usage, sender, and recipient are determined by the `funds` struct. The `limits` array specifies * the minimum or maximum amount of each token the vault is allowed to transfer. * * `batchSwap` can be used to make a single swap, like `swap` does, but doing so requires more gas than the * equivalent `swap` call. * * Emits `Swap` events. */ function batchSwap( SwapKind kind, BatchSwapStep[] memory swaps, IERC20[] memory assets, FundManagement memory funds, int256[] memory limits, uint256 deadline ) external payable returns (int256[] memory); /** * @dev Data for each individual swap executed by `batchSwap`. The asset in and out fields are indexes into the * `assets` array passed to that function, and ETH assets are converted to WETH. * * If `amount` is zero, the multihop mechanism is used to determine the actual amount based on the amount in/out * from the previous swap, depending on the swap kind. * * The `userData` field is ignored by the Vault, but forwarded to the Pool in the `onSwap` hook, and may be * used to extend swap behavior. */ struct BatchSwapStep { bytes32 poolId; uint256 assetInIndex; uint256 assetOutIndex; uint256 amount; bytes userData; } /** * @dev All tokens in a swap are either sent from the `sender` account to the Vault, or from the Vault to the * `recipient` account. * * If the caller is not `sender`, it must be an authorized relayer for them. * * If `fromInternalBalance` is true, the `sender`'s Internal Balance will be preferred, performing an ERC20 * transfer for the difference between the requested amount and the User's Internal Balance (if any). The `sender` * must have allowed the Vault to use their tokens via `IERC20.approve()`. This matches the behavior of * `joinPool`. * * If `toInternalBalance` is true, tokens will be deposited to `recipient`'s internal balance instead of * transferred. This matches the behavior of `exitPool`. * * Note that ETH cannot be deposited to or withdrawn from Internal Balance: attempting to do so will trigger a * revert. */ struct FundManagement { address sender; bool fromInternalBalance; address payable recipient; bool toInternalBalance; } } // SPDX-License-Identifier: LGPL-3.0-or-later pragma solidity ^0.7.6; /// @title Gnosis Protocol v2 Interaction Library /// @author Gnosis Developers library GPv2Interaction { /// @dev Interaction data for performing arbitrary contract interactions. /// Submitted to [`GPv2Settlement.settle`] for code execution. struct Data { address target; uint256 value; bytes callData; } /// @dev Execute an arbitrary contract interaction. /// /// @param interaction Interaction data. function execute(Data calldata interaction) internal { address target = interaction.target; uint256 value = interaction.value; bytes calldata callData = interaction.callData; // NOTE: Use assembly to call the interaction instead of a low level // call for two reasons: // - We don't want to copy the return data, since we discard it for // interactions. // - Solidity will under certain conditions generate code to copy input // calldata twice to memory (the second being a "memcopy loop"). // <https://github.com/gnosis/gp-v2-contracts/pull/417#issuecomment-775091258> // solhint-disable-next-line no-inline-assembly assembly { let freeMemoryPointer := mload(0x40) calldatacopy(freeMemoryPointer, callData.offset, callData.length) if iszero( call( gas(), target, value, freeMemoryPointer, callData.length, 0, 0 ) ) { returndatacopy(0, 0, returndatasize()) revert(0, returndatasize()) } } } /// @dev Extracts the Solidity ABI selector for the specified interaction. /// /// @param interaction Interaction data. /// @return result The 4 byte function selector of the call encoded in /// this interaction. function selector(Data calldata interaction) internal pure returns (bytes4 result) { bytes calldata callData = interaction.callData; if (callData.length >= 4) { // NOTE: Read the first word of the interaction's calldata. The // value does not need to be shifted since `bytesN` values are left // aligned, and the value does not need to be masked since masking // occurs when the value is accessed and not stored: // <https://docs.soliditylang.org/en/v0.7.6/abi-spec.html#encoding-of-indexed-event-parameters> // <https://docs.soliditylang.org/en/v0.7.6/assembly.html#access-to-external-variables-functions-and-libraries> // solhint-disable-next-line no-inline-assembly assembly { result := calldataload(callData.offset) } } } } // SPDX-License-Identifier: LGPL-3.0-or-later pragma solidity ^0.7.6; import "../interfaces/IERC20.sol"; /// @title Gnosis Protocol v2 Order Library /// @author Gnosis Developers library GPv2Order { /// @dev The complete data for a Gnosis Protocol order. This struct contains /// all order parameters that are signed for submitting to GP. struct Data { IERC20 sellToken; IERC20 buyToken; address receiver; uint256 sellAmount; uint256 buyAmount; uint32 validTo; bytes32 appData; uint256 feeAmount; bytes32 kind; bool partiallyFillable; bytes32 sellTokenBalance; bytes32 buyTokenBalance; } /// @dev The order EIP-712 type hash for the [`GPv2Order.Data`] struct. /// /// This value is pre-computed from the following expression: /// ``` /// keccak256( /// "Order(" + /// "address sellToken," + /// "address buyToken," + /// "address receiver," + /// "uint256 sellAmount," + /// "uint256 buyAmount," + /// "uint32 validTo," + /// "bytes32 appData," + /// "uint256 feeAmount," + /// "string kind," + /// "bool partiallyFillable" + /// "string sellTokenBalance" + /// "string buyTokenBalance" + /// ")" /// ) /// ``` bytes32 internal constant TYPE_HASH = hex"d5a25ba2e97094ad7d83dc28a6572da797d6b3e7fc6663bd93efb789fc17e489"; /// @dev The marker value for a sell order for computing the order struct /// hash. This allows the EIP-712 compatible wallets to display a /// descriptive string for the order kind (instead of 0 or 1). /// /// This value is pre-computed from the following expression: /// ``` /// keccak256("sell") /// ``` bytes32 internal constant KIND_SELL = hex"f3b277728b3fee749481eb3e0b3b48980dbbab78658fc419025cb16eee346775"; /// @dev The OrderKind marker value for a buy order for computing the order /// struct hash. /// /// This value is pre-computed from the following expression: /// ``` /// keccak256("buy") /// ``` bytes32 internal constant KIND_BUY = hex"6ed88e868af0a1983e3886d5f3e95a2fafbd6c3450bc229e27342283dc429ccc"; /// @dev The TokenBalance marker value for using direct ERC20 balances for /// computing the order struct hash. /// /// This value is pre-computed from the following expression: /// ``` /// keccak256("erc20") /// ``` bytes32 internal constant BALANCE_ERC20 = hex"5a28e9363bb942b639270062aa6bb295f434bcdfc42c97267bf003f272060dc9"; /// @dev The TokenBalance marker value for using Balancer Vault external /// balances (in order to re-use Vault ERC20 approvals) for computing the /// order struct hash. /// /// This value is pre-computed from the following expression: /// ``` /// keccak256("external") /// ``` bytes32 internal constant BALANCE_EXTERNAL = hex"abee3b73373acd583a130924aad6dc38cfdc44ba0555ba94ce2ff63980ea0632"; /// @dev The TokenBalance marker value for using Balancer Vault internal /// balances for computing the order struct hash. /// /// This value is pre-computed from the following expression: /// ``` /// keccak256("internal") /// ``` bytes32 internal constant BALANCE_INTERNAL = hex"4ac99ace14ee0a5ef932dc609df0943ab7ac16b7583634612f8dc35a4289a6ce"; /// @dev Marker address used to indicate that the receiver of the trade /// proceeds should the owner of the order. /// /// This is chosen to be `address(0)` for gas efficiency as it is expected /// to be the most common case. address internal constant RECEIVER_SAME_AS_OWNER = address(0); /// @dev The byte length of an order unique identifier. uint256 internal constant UID_LENGTH = 56; /// @dev Returns the actual receiver for an order. This function checks /// whether or not the [`receiver`] field uses the marker value to indicate /// it is the same as the order owner. /// /// @return receiver The actual receiver of trade proceeds. function actualReceiver(Data memory order, address owner) internal pure returns (address receiver) { if (order.receiver == RECEIVER_SAME_AS_OWNER) { receiver = owner; } else { receiver = order.receiver; } } /// @dev Return the EIP-712 signing hash for the specified order. /// /// @param order The order to compute the EIP-712 signing hash for. /// @param domainSeparator The EIP-712 domain separator to use. /// @return orderDigest The 32 byte EIP-712 struct hash. function hash(Data memory order, bytes32 domainSeparator) internal pure returns (bytes32 orderDigest) { bytes32 structHash; // NOTE: Compute the EIP-712 order struct hash in place. As suggested // in the EIP proposal, noting that the order struct has 10 fields, and // including the type hash `(12 + 1) * 32 = 416` bytes to hash. // <https://github.com/ethereum/EIPs/blob/master/EIPS/eip-712.md#rationale-for-encodedata> // solhint-disable-next-line no-inline-assembly assembly { let dataStart := sub(order, 32) let temp := mload(dataStart) mstore(dataStart, TYPE_HASH) structHash := keccak256(dataStart, 416) mstore(dataStart, temp) } // NOTE: Now that we have the struct hash, compute the EIP-712 signing // hash using scratch memory past the free memory pointer. The signing // hash is computed from `"\\x19\\x01" || domainSeparator || structHash`. // <https://docs.soliditylang.org/en/v0.7.6/internals/layout_in_memory.html#layout-in-memory> // <https://github.com/ethereum/EIPs/blob/master/EIPS/eip-712.md#specification> // solhint-disable-next-line no-inline-assembly assembly { let freeMemoryPointer := mload(0x40) mstore(freeMemoryPointer, "\\x19\\x01") mstore(add(freeMemoryPointer, 2), domainSeparator) mstore(add(freeMemoryPointer, 34), structHash) orderDigest := keccak256(freeMemoryPointer, 66) } } /// @dev Packs order UID parameters into the specified memory location. The /// result is equivalent to `abi.encodePacked(...)` with the difference that /// it allows re-using the memory for packing the order UID. /// /// This function reverts if the order UID buffer is not the correct size. /// /// @param orderUid The buffer pack the order UID parameters into. /// @param orderDigest The EIP-712 struct digest derived from the order /// parameters. /// @param owner The address of the user who owns this order. /// @param validTo The epoch time at which the order will stop being valid. function packOrderUidParams( bytes memory orderUid, bytes32 orderDigest, address owner, uint32 validTo ) internal pure { require(orderUid.length == UID_LENGTH, "GPv2: uid buffer overflow"); // NOTE: Write the order UID to the allocated memory buffer. The order // parameters are written to memory in **reverse order** as memory // operations write 32-bytes at a time and we want to use a packed // encoding. This means, for example, that after writing the value of // `owner` to bytes `20:52`, writing the `orderDigest` to bytes `0:32` // will **overwrite** bytes `20:32`. This is desirable as addresses are // only 20 bytes and `20:32` should be `0`s: // // | 1111111111222222222233333333334444444444555555 // byte | 01234567890123456789012345678901234567890123456789012345 // -------+--------------------------------------------------------- // field | [.........orderDigest..........][......owner.......][vT] // -------+--------------------------------------------------------- // mstore | [000000000000000000000000000.vT] // | [00000000000.......owner.......] // | [.........orderDigest..........] // // Additionally, since Solidity `bytes memory` are length prefixed, // 32 needs to be added to all the offsets. // // solhint-disable-next-line no-inline-assembly assembly { mstore(add(orderUid, 56), validTo) mstore(add(orderUid, 52), owner) mstore(add(orderUid, 32), orderDigest) } } /// @dev Extracts specific order information from the standardized unique /// order id of the protocol. /// /// @param orderUid The unique identifier used to represent an order in /// the protocol. This uid is the packed concatenation of the order digest, /// the validTo order parameter and the address of the user who created the /// order. It is used by the user to interface with the contract directly, /// and not by calls that are triggered by the solvers. /// @return orderDigest The EIP-712 signing digest derived from the order /// parameters. /// @return owner The address of the user who owns this order. /// @return validTo The epoch time at which the order will stop being valid. function extractOrderUidParams(bytes calldata orderUid) internal pure returns ( bytes32 orderDigest, address owner, uint32 validTo ) { require(orderUid.length == UID_LENGTH, "GPv2: invalid uid"); // Use assembly to efficiently decode packed calldata. // solhint-disable-next-line no-inline-assembly assembly { orderDigest := calldataload(orderUid.offset) owner := shr(96, calldataload(add(orderUid.offset, 32))) validTo := shr(224, calldataload(add(orderUid.offset, 52))) } } } // SPDX-License-Identifier: LGPL-3.0-or-later pragma solidity ^0.7.6; import "../interfaces/IERC20.sol"; /// @title Gnosis Protocol v2 Safe ERC20 Transfer Library /// @author Gnosis Developers /// @dev Gas-efficient version of Openzeppelin's SafeERC20 contract that notably /// does not revert when calling a non-contract. library GPv2SafeERC20 { /// @dev Wrapper around a call to the ERC20 function `transfer` that reverts /// also when the token returns `false`. function safeTransfer( IERC20 token, address to, uint256 value ) internal { bytes4 selector_ = token.transfer.selector; // solhint-disable-next-line no-inline-assembly assembly { let freeMemoryPointer := mload(0x40) mstore(freeMemoryPointer, selector_) mstore( add(freeMemoryPointer, 4), and(to, 0xffffffffffffffffffffffffffffffffffffffff) ) mstore(add(freeMemoryPointer, 36), value) if iszero(call(gas(), token, 0, freeMemoryPointer, 68, 0, 0)) { returndatacopy(0, 0, returndatasize()) revert(0, returndatasize()) } } require(getLastTansferResult(token), "GPv2: failed transfer"); } /// @dev Wrapper around a call to the ERC20 function `transferFrom` that /// reverts also when the token returns `false`. function safeTransferFrom( IERC20 token, address from, address to, uint256 value ) internal { bytes4 selector_ = token.transferFrom.selector; // solhint-disable-next-line no-inline-assembly assembly { let freeMemoryPointer := mload(0x40) mstore(freeMemoryPointer, selector_) mstore( add(freeMemoryPointer, 4), and(from, 0xffffffffffffffffffffffffffffffffffffffff) ) mstore( add(freeMemoryPointer, 36), and(to, 0xffffffffffffffffffffffffffffffffffffffff) ) mstore(add(freeMemoryPointer, 68), value) if iszero(call(gas(), token, 0, freeMemoryPointer, 100, 0, 0)) { returndatacopy(0, 0, returndatasize()) revert(0, returndatasize()) } } require(getLastTansferResult(token), "GPv2: failed transferFrom"); } /// @dev Verifies that the last return was a successful `transfer*` call. /// This is done by checking that the return data is either empty, or /// is a valid ABI encoded boolean. function getLastTansferResult(IERC20 token) private view returns (bool success) { // NOTE: Inspecting previous return data requires assembly. Note that // we write the return data to memory 0 in the case where the return // data size is 32, this is OK since the first 64 bytes of memory are // reserved by Solidy as a scratch space that can be used within // assembly blocks. // <https://docs.soliditylang.org/en/v0.7.6/internals/layout_in_memory.html> // solhint-disable-next-line no-inline-assembly assembly { /// @dev Revert with an ABI encoded Solidity error with a message /// that fits into 32-bytes. /// /// An ABI encoded Solidity error has the following memory layout: /// /// ------------+---------------------------------- /// byte range | value /// ------------+---------------------------------- /// 0x00..0x04 | selector("Error(string)") /// 0x04..0x24 | string offset (always 0x20) /// 0x24..0x44 | string length /// 0x44..0x64 | string value, padded to 32-bytes function revertWithMessage(length, message) { mstore(0x00, "\\x08\\xc3\\x79\\xa0") mstore(0x04, 0x20) mstore(0x24, length) mstore(0x44, message) revert(0x00, 0x64) } switch returndatasize() // Non-standard ERC20 transfer without return. case 0 { // NOTE: When the return data size is 0, verify that there // is code at the address. This is done in order to maintain // compatibility with Solidity calling conventions. // <https://docs.soliditylang.org/en/v0.7.6/control-structures.html#external-function-calls> if iszero(extcodesize(token)) { revertWithMessage(20, "GPv2: not a contract") } success := 1 } // Standard ERC20 transfer returning boolean success value. case 32 { returndatacopy(0, 0, returndatasize()) // NOTE: For ABI encoding v1, any non-zero value is accepted // as `true` for a boolean. In order to stay compatible with // OpenZeppelin's `SafeERC20` library which is known to work // with the existing ERC20 implementation we care about, // make sure we return success for any non-zero return value // from the `transfer*` call. success := iszero(iszero(mload(0))) } default { revertWithMessage(31, "GPv2: malformed transfer result") } } } } // SPDX-License-Identifier: LGPL-3.0-or-later pragma solidity ^0.7.6; import "../interfaces/IERC20.sol"; import "../mixins/GPv2Signing.sol"; import "./GPv2Order.sol"; /// @title Gnosis Protocol v2 Trade Library. /// @author Gnosis Developers library GPv2Trade { using GPv2Order for GPv2Order.Data; using GPv2Order for bytes; /// @dev A struct representing a trade to be executed as part a batch /// settlement. struct Data { uint256 sellTokenIndex; uint256 buyTokenIndex; address receiver; uint256 sellAmount; uint256 buyAmount; uint32 validTo; bytes32 appData; uint256 feeAmount; uint256 flags; uint256 executedAmount; bytes signature; } /// @dev Extracts the order data and signing scheme for the specified trade. /// /// @param trade The trade. /// @param tokens The list of tokens included in the settlement. The token /// indices in the trade parameters map to tokens in this array. /// @param order The memory location to extract the order data to. function extractOrder( Data calldata trade, IERC20[] calldata tokens, GPv2Order.Data memory order ) internal pure returns (GPv2Signing.Scheme signingScheme) { order.sellToken = tokens[trade.sellTokenIndex]; order.buyToken = tokens[trade.buyTokenIndex]; order.receiver = trade.receiver; order.sellAmount = trade.sellAmount; order.buyAmount = trade.buyAmount; order.validTo = trade.validTo; order.appData = trade.appData; order.feeAmount = trade.feeAmount; ( order.kind, order.partiallyFillable, order.sellTokenBalance, order.buyTokenBalance, signingScheme ) = extractFlags(trade.flags); } /// @dev Decodes trade flags. /// /// Trade flags are used to tightly encode information on how to decode /// an order. Examples that directly affect the structure of an order are /// the kind of order (either a sell or a buy order) as well as whether the /// order is partially fillable or if it is a "fill-or-kill" order. It also /// encodes the signature scheme used to validate the order. As the most /// likely values are fill-or-kill sell orders by an externally owned /// account, the flags are chosen such that `0x00` represents this kind of /// order. The flags byte uses the following format: /// /// ``` /// bit | 31 ... | 6 | 5 | 4 | 3 | 2 | 1 | 0 | /// ----+----------+---+---+-------+---+---+ /// | reserved | * * | * | * * | * | * | /// | | | | | | | /// | | | | | | +---- order kind bit, 0 for a sell order /// | | | | | | and 1 for a buy order /// | | | | | | /// | | | | | +-------- order fill bit, 0 for fill-or-kill /// | | | | | and 1 for a partially fillable order /// | | | | | /// | | | +---+------------ use internal sell token balance bit: /// | | | 0x: ERC20 token balance /// | | | 10: external Balancer Vault balance /// | | | 11: internal Balancer Vault balance /// | | | /// | | +-------------------- use buy token balance bit /// | | 0: ERC20 token balance /// | | 1: internal Balancer Vault balance /// | | /// +---+------------------------ signature scheme bits: /// 00: EIP-712 /// 01: eth_sign /// 10: EIP-1271 /// 11: pre_sign /// ``` function extractFlags(uint256 flags) internal pure returns ( bytes32 kind, bool partiallyFillable, bytes32 sellTokenBalance, bytes32 buyTokenBalance, GPv2Signing.Scheme signingScheme ) { if (flags & 0x01 == 0) { kind = GPv2Order.KIND_SELL; } else { kind = GPv2Order.KIND_BUY; } partiallyFillable = flags & 0x02 != 0; if (flags & 0x08 == 0) { sellTokenBalance = GPv2Order.BALANCE_ERC20; } else if (flags & 0x04 == 0) { sellTokenBalance = GPv2Order.BALANCE_EXTERNAL; } else { sellTokenBalance = GPv2Order.BALANCE_INTERNAL; } if (flags & 0x10 == 0) { buyTokenBalance = GPv2Order.BALANCE_ERC20; } else { buyTokenBalance = GPv2Order.BALANCE_INTERNAL; } // NOTE: Take advantage of the fact that Solidity will revert if the // following expression does not produce a valid enum value. This means // we check here that the leading reserved bits must be 0. signingScheme = GPv2Signing.Scheme(flags >> 5); } } // SPDX-License-Identifier: LGPL-3.0-or-later pragma solidity ^0.7.6; pragma abicoder v2; import "../interfaces/IERC20.sol"; import "../interfaces/IVault.sol"; import "./GPv2Order.sol"; import "./GPv2SafeERC20.sol"; /// @title Gnosis Protocol v2 Transfers /// @author Gnosis Developers library GPv2Transfer { using GPv2SafeERC20 for IERC20; /// @dev Transfer data. struct Data { address account; IERC20 token; uint256 amount; bytes32 balance; } /// @dev Ether marker address used to indicate an Ether transfer. address internal constant BUY_ETH_ADDRESS = 0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE; /// @dev Execute the specified transfer from the specified account to a /// recipient. The recipient will either receive internal Vault balances or /// ERC20 token balances depending on whether the account is using internal /// balances or not. /// /// This method is used for transferring fees to the settlement contract /// when settling a single order directly with Balancer. /// /// Note that this method is subtly different from `transferFromAccounts` /// with a single transfer with respect to how it deals with internal /// balances. Specifically, this method will perform an **internal balance /// transfer to the settlement contract instead of a withdrawal to the /// external balance of the settlement contract** for trades that specify /// trading with internal balances. This is done as a gas optimization in /// the single order "fast-path". /// /// @param vault The Balancer vault to use. /// @param transfer The transfer to perform specifying the sender account. /// @param recipient The recipient for the transfer. function fastTransferFromAccount( IVault vault, Data calldata transfer, address recipient ) internal { require( address(transfer.token) != BUY_ETH_ADDRESS, "GPv2: cannot transfer native ETH" ); if (transfer.balance == GPv2Order.BALANCE_ERC20) { transfer.token.safeTransferFrom( transfer.account, recipient, transfer.amount ); } else { IVault.UserBalanceOp[] memory balanceOps = new IVault.UserBalanceOp[](1); IVault.UserBalanceOp memory balanceOp = balanceOps[0]; balanceOp.kind = transfer.balance == GPv2Order.BALANCE_EXTERNAL ? IVault.UserBalanceOpKind.TRANSFER_EXTERNAL : IVault.UserBalanceOpKind.TRANSFER_INTERNAL; balanceOp.asset = transfer.token; balanceOp.amount = transfer.amount; balanceOp.sender = transfer.account; balanceOp.recipient = payable(recipient); vault.manageUserBalance(balanceOps); } } /// @dev Execute the specified transfers from the specified accounts to a /// single recipient. The recipient will receive all transfers as ERC20 /// token balances, regardless of whether or not the accounts are using /// internal Vault balances. /// /// This method is used for accumulating user balances into the settlement /// contract. /// /// @param vault The Balancer vault to use. /// @param transfers The batched transfers to perform specifying the /// sender accounts. /// @param recipient The single recipient for all the transfers. function transferFromAccounts( IVault vault, Data[] calldata transfers, address recipient ) internal { // NOTE: Allocate buffer of Vault balance operations large enough to // hold all GP transfers. This is done to avoid re-allocations (which // are gas inefficient) while still allowing all transfers to be batched // into a single Vault call. IVault.UserBalanceOp[] memory balanceOps = new IVault.UserBalanceOp[](transfers.length); uint256 balanceOpCount = 0; for (uint256 i = 0; i < transfers.length; i++) { Data calldata transfer = transfers[i]; require( address(transfer.token) != BUY_ETH_ADDRESS, "GPv2: cannot transfer native ETH" ); if (transfer.balance == GPv2Order.BALANCE_ERC20) { transfer.token.safeTransferFrom( transfer.account, recipient, transfer.amount ); } else { IVault.UserBalanceOp memory balanceOp = balanceOps[balanceOpCount++]; balanceOp.kind = transfer.balance == GPv2Order.BALANCE_EXTERNAL ? IVault.UserBalanceOpKind.TRANSFER_EXTERNAL : IVault.UserBalanceOpKind.WITHDRAW_INTERNAL; balanceOp.asset = transfer.token; balanceOp.amount = transfer.amount; balanceOp.sender = transfer.account; balanceOp.recipient = payable(recipient); } } if (balanceOpCount > 0) { truncateBalanceOpsArray(balanceOps, balanceOpCount); vault.manageUserBalance(balanceOps); } } /// @dev Execute the specified transfers to their respective accounts. /// /// This method is used for paying out trade proceeds from the settlement /// contract. /// /// @param vault The Balancer vault to use. /// @param transfers The batched transfers to perform. function transferToAccounts(IVault vault, Data[] memory transfers) internal { IVault.UserBalanceOp[] memory balanceOps = new IVault.UserBalanceOp[](transfers.length); uint256 balanceOpCount = 0; for (uint256 i = 0; i < transfers.length; i++) { Data memory transfer = transfers[i]; if (address(transfer.token) == BUY_ETH_ADDRESS) { require( transfer.balance != GPv2Order.BALANCE_INTERNAL, "GPv2: unsupported internal ETH" ); payable(transfer.account).transfer(transfer.amount); } else if (transfer.balance == GPv2Order.BALANCE_ERC20) { transfer.token.safeTransfer(transfer.account, transfer.amount); } else { IVault.UserBalanceOp memory balanceOp = balanceOps[balanceOpCount++]; balanceOp.kind = IVault.UserBalanceOpKind.DEPOSIT_INTERNAL; balanceOp.asset = transfer.token; balanceOp.amount = transfer.amount; balanceOp.sender = address(this); balanceOp.recipient = payable(transfer.account); } } if (balanceOpCount > 0) { truncateBalanceOpsArray(balanceOps, balanceOpCount); vault.manageUserBalance(balanceOps); } } /// @dev Truncate a Vault balance operation array to its actual size. /// /// This method **does not** check whether or not the new length is valid, /// and specifying a size that is larger than the array's actual length is /// undefined behaviour. /// /// @param balanceOps The memory array of balance operations to truncate. /// @param newLength The new length to set. function truncateBalanceOpsArray( IVault.UserBalanceOp[] memory balanceOps, uint256 newLength ) private pure { // NOTE: Truncate the vault transfers array to the specified length. // This is done by setting the array's length which occupies the first // word in memory pointed to by the `balanceOps` memory variable. // <https://docs.soliditylang.org/en/v0.7.6/internals/layout_in_memory.html> // solhint-disable-next-line no-inline-assembly assembly { mstore(balanceOps, newLength) } } } // SPDX-License-Identifier: MIT // Vendored from OpenZeppelin contracts with minor modifications: // - Modified Solidity version // - Formatted code // - Shortened revert messages // - Removed unused methods // - Convert to `type(*).*` notation // <https://github.com/OpenZeppelin/openzeppelin-contracts/blob/v3.4.0/contracts/utils/SafeCast.sol> pragma solidity ^0.7.6; /** * @dev Wrappers over Solidity's uintXX/intXX casting operators with added overflow * checks. * * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can * easily result in undesired exploitation or bugs, since developers usually * assume that overflows raise errors. `SafeCast` restores this intuition by * reverting the transaction when such an operation overflows. * * Using this library instead of the unchecked operations eliminates an entire * class of bugs, so it's recommended to use it always. * * Can be combined with {SafeMath} and {SignedSafeMath} to extend it to smaller types, by performing * all math on `uint256` and `int256` and then downcasting. */ library SafeCast { /** * @dev Converts a signed int256 into an unsigned uint256. * * Requirements: * * - input must be greater than or equal to 0. */ function toUint256(int256 value) internal pure returns (uint256) { require(value >= 0, "SafeCast: not positive"); return uint256(value); } /** * @dev Converts an unsigned uint256 into a signed int256. * * Requirements: * * - input must be less than or equal to maxInt256. */ function toInt256(uint256 value) internal pure returns (int256) { require( value <= uint256(type(int256).max), "SafeCast: int256 overflow" ); return int256(value); } } // SPDX-License-Identifier: MIT // Vendored from OpenZeppelin contracts with minor modifications: // - Modified Solidity version // - Formatted code // - Shortened some revert messages // - Removed unused methods // - Added `ceilDiv` method // <https://github.com/OpenZeppelin/openzeppelin-contracts/blob/v3.4.0/contracts/math/SafeMath.sol> pragma solidity ^0.7.6; /** * @dev Wrappers over Solidity's arithmetic operations with added overflow * checks. * * Arithmetic operations in Solidity wrap on overflow. This can easily result * in bugs, because programmers usually assume that an overflow raises an * error, which is the standard behavior in high level programming languages. * `SafeMath` restores this intuition by reverting the transaction when an * operation overflows. * * Using this library instead of the unchecked operations eliminates an entire * class of bugs, so it's recommended to use it always. */ library SafeMath { /** * @dev Returns the addition of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `+` operator. * * Requirements: * * - Addition cannot overflow. */ function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; require(c >= a, "SafeMath: addition overflow"); return c; } /** * @dev Returns the subtraction of two unsigned integers, reverting on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b) internal pure returns (uint256) { require(b <= a, "SafeMath: subtraction overflow"); return a - b; } /** * @dev Returns the multiplication of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `*` operator. * * Requirements: * * - Multiplication cannot overflow. */ function mul(uint256 a, uint256 b) internal pure returns (uint256) { if (a == 0) return 0; uint256 c = a * b; require(c / a == b, "SafeMath: mul overflow"); return c; } /** * @dev Returns the integer division of two unsigned integers, reverting on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function div(uint256 a, uint256 b) internal pure returns (uint256) { require(b > 0, "SafeMath: division by 0"); return a / b; } /** * @dev Returns the ceiling integer division of two unsigned integers, * reverting on division by zero. The result is rounded towards up the * nearest integer, instead of truncating the fractional part. * * Requirements: * * - The divisor cannot be zero. * - The sum of the dividend and divisor cannot overflow. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { require(b > 0, "SafeMath: ceiling division by 0"); return a / b + (a % b == 0 ? 0 : 1); } } // SPDX-License-Identifier: LGPL-3.0-or-later pragma solidity ^0.7.6; import "../interfaces/GPv2EIP1271.sol"; import "../libraries/GPv2Order.sol"; import "../libraries/GPv2Trade.sol"; /// @title Gnosis Protocol v2 Signing Library. /// @author Gnosis Developers abstract contract GPv2Signing { using GPv2Order for GPv2Order.Data; using GPv2Order for bytes; /// @dev Recovered trade data containing the extracted order and the /// recovered owner address. struct RecoveredOrder { GPv2Order.Data data; bytes uid; address owner; address receiver; } /// @dev Signing scheme used for recovery. enum Scheme {Eip712, EthSign, Eip1271, PreSign} /// @dev The EIP-712 domain type hash used for computing the domain /// separator. bytes32 private constant DOMAIN_TYPE_HASH = keccak256( "EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)" ); /// @dev The EIP-712 domain name used for computing the domain separator. bytes32 private constant DOMAIN_NAME = keccak256("Gnosis Protocol"); /// @dev The EIP-712 domain version used for computing the domain separator. bytes32 private constant DOMAIN_VERSION = keccak256("v2"); /// @dev Marker value indicating an order is pre-signed. uint256 private constant PRE_SIGNED = uint256(keccak256("GPv2Signing.Scheme.PreSign")); /// @dev The domain separator used for signing orders that gets mixed in /// making signatures for different domains incompatible. This domain /// separator is computed following the EIP-712 standard and has replay /// protection mixed in so that signed orders are only valid for specific /// GPv2 contracts. bytes32 public immutable domainSeparator; /// @dev Storage indicating whether or not an order has been signed by a /// particular address. mapping(bytes => uint256) public preSignature; /// @dev Event that is emitted when an account either pre-signs an order or /// revokes an existing pre-signature. event PreSignature(address indexed owner, bytes orderUid, bool signed); constructor() { // NOTE: Currently, the only way to get the chain ID in solidity is // using assembly. uint256 chainId; // solhint-disable-next-line no-inline-assembly assembly { chainId := chainid() } domainSeparator = keccak256( abi.encode( DOMAIN_TYPE_HASH, DOMAIN_NAME, DOMAIN_VERSION, chainId, address(this) ) ); } /// @dev Sets a presignature for the specified order UID. /// /// @param orderUid The unique identifier of the order to pre-sign. function setPreSignature(bytes calldata orderUid, bool signed) external { (, address owner, ) = orderUid.extractOrderUidParams(); require(owner == msg.sender, "GPv2: cannot presign order"); if (signed) { preSignature[orderUid] = PRE_SIGNED; } else { preSignature[orderUid] = 0; } emit PreSignature(owner, orderUid, signed); } /// @dev Returns an empty recovered order with a pre-allocated buffer for /// packing the unique identifier. /// /// @return recoveredOrder The empty recovered order data. function allocateRecoveredOrder() internal pure returns (RecoveredOrder memory recoveredOrder) { recoveredOrder.uid = new bytes(GPv2Order.UID_LENGTH); } /// @dev Extracts order data and recovers the signer from the specified /// trade. /// /// @param recoveredOrder Memory location used for writing the recovered order data. /// @param tokens The list of tokens included in the settlement. The token /// indices in the trade parameters map to tokens in this array. /// @param trade The trade data to recover the order data from. function recoverOrderFromTrade( RecoveredOrder memory recoveredOrder, IERC20[] calldata tokens, GPv2Trade.Data calldata trade ) internal view { GPv2Order.Data memory order = recoveredOrder.data; Scheme signingScheme = GPv2Trade.extractOrder(trade, tokens, order); (bytes32 orderDigest, address owner) = recoverOrderSigner(order, signingScheme, trade.signature); recoveredOrder.uid.packOrderUidParams( orderDigest, owner, order.validTo ); recoveredOrder.owner = owner; recoveredOrder.receiver = order.actualReceiver(owner); } /// @dev The length of any signature from an externally owned account. uint256 private constant ECDSA_SIGNATURE_LENGTH = 65; /// @dev Recovers an order's signer from the specified order and signature. /// /// @param order The order to recover a signature for. /// @param signingScheme The signing scheme. /// @param signature The signature bytes. /// @return orderDigest The computed order hash. /// @return owner The recovered address from the specified signature. function recoverOrderSigner( GPv2Order.Data memory order, Scheme signingScheme, bytes calldata signature ) internal view returns (bytes32 orderDigest, address owner) { orderDigest = order.hash(domainSeparator); if (signingScheme == Scheme.Eip712) { owner = recoverEip712Signer(orderDigest, signature); } else if (signingScheme == Scheme.EthSign) { owner = recoverEthsignSigner(orderDigest, signature); } else if (signingScheme == Scheme.Eip1271) { owner = recoverEip1271Signer(orderDigest, signature); } else { // signingScheme == Scheme.PreSign owner = recoverPreSigner(orderDigest, signature, order.validTo); } } /// @dev Perform an ECDSA recover for the specified message and calldata /// signature. /// /// The signature is encoded by tighyly packing the following struct: /// ``` /// struct EncodedSignature { /// bytes32 r; /// bytes32 s; /// uint8 v; /// } /// ``` /// /// @param message The signed message. /// @param encodedSignature The encoded signature. function ecdsaRecover(bytes32 message, bytes calldata encodedSignature) internal pure returns (address signer) { require( encodedSignature.length == ECDSA_SIGNATURE_LENGTH, "GPv2: malformed ecdsa signature" ); bytes32 r; bytes32 s; uint8 v; // NOTE: Use assembly to efficiently decode signature data. // solhint-disable-next-line no-inline-assembly assembly { // r = uint256(encodedSignature[0:32]) r := calldataload(encodedSignature.offset) // s = uint256(encodedSignature[32:64]) s := calldataload(add(encodedSignature.offset, 32)) // v = uint8(encodedSignature[64]) v := shr(248, calldataload(add(encodedSignature.offset, 64))) } signer = ecrecover(message, v, r, s); require(signer != address(0), "GPv2: invalid ecdsa signature"); } /// @dev Decodes signature bytes originating from an EIP-712-encoded /// signature. /// /// EIP-712 signs typed data. The specifications are described in the /// related EIP (<https://eips.ethereum.org/EIPS/eip-712>). /// /// EIP-712 signatures are encoded as standard ECDSA signatures as described /// in the corresponding decoding function [`ecdsaRecover`]. /// /// @param orderDigest The EIP-712 signing digest derived from the order /// parameters. /// @param encodedSignature Calldata pointing to tightly packed signature /// bytes. /// @return owner The address of the signer. function recoverEip712Signer( bytes32 orderDigest, bytes calldata encodedSignature ) internal pure returns (address owner) { owner = ecdsaRecover(orderDigest, encodedSignature); } /// @dev Decodes signature bytes originating from the output of the eth_sign /// RPC call. /// /// The specifications are described in the Ethereum documentation /// (<https://eth.wiki/json-rpc/API#eth_sign>). /// /// eth_sign signatures are encoded as standard ECDSA signatures as /// described in the corresponding decoding function /// [`ecdsaRecover`]. /// /// @param orderDigest The EIP-712 signing digest derived from the order /// parameters. /// @param encodedSignature Calldata pointing to tightly packed signature /// bytes. /// @return owner The address of the signer. function recoverEthsignSigner( bytes32 orderDigest, bytes calldata encodedSignature ) internal pure returns (address owner) { // The signed message is encoded as: // `"\\x19Ethereum Signed Message:\ " || length || data`, where // the length is a constant (32 bytes) and the data is defined as: // `orderDigest`. bytes32 ethsignDigest = keccak256( abi.encodePacked( "\\x19Ethereum Signed Message:\ 32", orderDigest ) ); owner = ecdsaRecover(ethsignDigest, encodedSignature); } /// @dev Verifies the input calldata as an EIP-1271 contract signature and /// returns the address of the signer. /// /// The encoded signature tightly packs the following struct: /// /// ``` /// struct EncodedEip1271Signature { /// address owner; /// bytes signature; /// } /// ``` /// /// This function enforces that the encoded data stores enough bytes to /// cover the full length of the decoded signature. /// /// @param encodedSignature The encoded EIP-1271 signature. /// @param orderDigest The EIP-712 signing digest derived from the order /// parameters. /// @return owner The address of the signer. function recoverEip1271Signer( bytes32 orderDigest, bytes calldata encodedSignature ) internal view returns (address owner) { // NOTE: Use assembly to read the verifier address from the encoded // signature bytes. // solhint-disable-next-line no-inline-assembly assembly { // owner = address(encodedSignature[0:20]) owner := shr(96, calldataload(encodedSignature.offset)) } // NOTE: Configure prettier to ignore the following line as it causes // a panic in the Solidity plugin. // prettier-ignore bytes calldata signature = encodedSignature[20:]; require( EIP1271Verifier(owner).isValidSignature(orderDigest, signature) == GPv2EIP1271.MAGICVALUE, "GPv2: invalid eip1271 signature" ); } /// @dev Verifies the order has been pre-signed. The signature is the /// address of the signer of the order. /// /// @param orderDigest The EIP-712 signing digest derived from the order /// parameters. /// @param encodedSignature The pre-sign signature reprenting the order UID. /// @param validTo The order expiry timestamp. /// @return owner The address of the signer. function recoverPreSigner( bytes32 orderDigest, bytes calldata encodedSignature, uint32 validTo ) internal view returns (address owner) { require(encodedSignature.length == 20, "GPv2: malformed presignature"); // NOTE: Use assembly to read the owner address from the encoded // signature bytes. // solhint-disable-next-line no-inline-assembly assembly { // owner = address(encodedSignature[0:20]) owner := shr(96, calldataload(encodedSignature.offset)) } bytes memory orderUid = new bytes(GPv2Order.UID_LENGTH); orderUid.packOrderUidParams(orderDigest, owner, validTo); require( preSignature[orderUid] == PRE_SIGNED, "GPv2: order not presigned" ); } } // SPDX-License-Identifier: MIT // Vendored from OpenZeppelin contracts with minor modifications: // - Modified Solidity version // - Formatted code // <https://github.com/OpenZeppelin/openzeppelin-contracts/blob/v3.4.0/contracts/utils/ReentrancyGuard.sol> pragma solidity ^0.7.6; /** * @dev Contract module that helps prevent reentrant calls to a function. * * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier * available, which can be applied to functions to make sure there are no nested * (reentrant) calls to them. * * Note that because there is a single `nonReentrant` guard, functions marked as * `nonReentrant` may not call one another. This can be worked around by making * those functions `private`, and then adding `external` `nonReentrant` entry * points to them. * * TIP: If you would like to learn more about reentrancy and alternative ways * to protect against it, check out our blog post * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul]. */ abstract contract ReentrancyGuard { // Booleans are more expensive than uint256 or any type that takes up a full // word because each write operation emits an extra SLOAD to first read the // slot's contents, replace the bits taken up by the boolean, and then write // back. This is the compiler's defense against contract upgrades and // pointer aliasing, and it cannot be disabled. // The values being non-zero value makes deployment a bit more expensive, // but in exchange the refund on every call to nonReentrant will be lower in // amount. Since refunds are capped to a percentage of the total // transaction's gas, it is best to keep them low in cases like this one, to // increase the likelihood of the full refund coming into effect. uint256 private constant _NOT_ENTERED = 1; uint256 private constant _ENTERED = 2; uint256 private _status; constructor() { _status = _NOT_ENTERED; } /** * @dev Prevents a contract from calling itself, directly or indirectly. * Calling a `nonReentrant` function from another `nonReentrant` * function is not supported. It is possible to prevent this from happening * by making the `nonReentrant` function external, and make it call a * `private` function that does the actual work. */ modifier nonReentrant() { // On the first call to nonReentrant, _notEntered will be true require(_status != _ENTERED, "ReentrancyGuard: reentrant call"); // Any calls to nonReentrant after this point will fail _status = _ENTERED; _; // By storing the original value once again, a refund is triggered (see // https://eips.ethereum.org/EIPS/eip-2200) _status = _NOT_ENTERED; } } // SPDX-License-Identifier: LGPL-3.0-only // Vendored from Gnosis utility contracts with minor modifications: // - Modified Solidity version // - Formatted code // - Added linter directives to ignore low level call and assembly warnings // <https://github.com/gnosis/util-contracts/blob/v3.1.0-solc-7/contracts/StorageAccessible.sol> pragma solidity ^0.7.6; /// @title ViewStorageAccessible - Interface on top of StorageAccessible base class to allow simulations from view functions interface ViewStorageAccessible { /** * @dev Same as `simulateDelegatecall` on StorageAccessible. Marked as view so that it can be called from external contracts * that want to run simulations from within view functions. Will revert if the invoked simulation attempts to change state. */ function simulateDelegatecall( address targetContract, bytes memory calldataPayload ) external view returns (bytes memory); /** * @dev Same as `getStorageAt` on StorageAccessible. This method allows reading aribtrary ranges of storage. */ function getStorageAt(uint256 offset, uint256 length) external view returns (bytes memory); } /// @title StorageAccessible - generic base contract that allows callers to access all internal storage. contract StorageAccessible { /** * @dev Reads `length` bytes of storage in the currents contract * @param offset - the offset in the current contract's storage in words to start reading from * @param length - the number of words (32 bytes) of data to read * @return the bytes that were read. */ function getStorageAt(uint256 offset, uint256 length) external view returns (bytes memory) { bytes memory result = new bytes(length * 32); for (uint256 index = 0; index < length; index++) { // solhint-disable-next-line no-inline-assembly assembly { let word := sload(add(offset, index)) mstore(add(add(result, 0x20), mul(index, 0x20)), word) } } return result; } /** * @dev Performs a delegetecall on a targetContract in the context of self. * Internally reverts execution to avoid side effects (making it static). Catches revert and returns encoded result as bytes. * @param targetContract Address of the contract containing the code to execute. * @param calldataPayload Calldata that should be sent to the target contract (encoded method name and arguments). */ function simulateDelegatecall( address targetContract, bytes memory calldataPayload ) public returns (bytes memory response) { bytes memory innerCall = abi.encodeWithSelector( this.simulateDelegatecallInternal.selector, targetContract, calldataPayload ); // solhint-disable-next-line avoid-low-level-calls (, response) = address(this).call(innerCall); bool innerSuccess = response[response.length - 1] == 0x01; setLength(response, response.length - 1); if (innerSuccess) { return response; } else { revertWith(response); } } /** * @dev Performs a delegetecall on a targetContract in the context of self. * Internally reverts execution to avoid side effects (making it static). Returns encoded result as revert message * concatenated with the success flag of the inner call as a last byte. * @param targetContract Address of the contract containing the code to execute. * @param calldataPayload Calldata that should be sent to the target contract (encoded method name and arguments). */ function simulateDelegatecallInternal( address targetContract, bytes memory calldataPayload ) external returns (bytes memory response) { bool success; // solhint-disable-next-line avoid-low-level-calls (success, response) = targetContract.delegatecall(calldataPayload); revertWith(abi.encodePacked(response, success)); } function revertWith(bytes memory response) internal pure { // solhint-disable-next-line no-inline-assembly assembly { revert(add(response, 0x20), mload(response)) } } function setLength(bytes memory buffer, uint256 length) internal pure { // solhint-disable-next-line no-inline-assembly assembly { mstore(buffer, length) } } }
File 2 of 9: TetherToken
pragma solidity ^0.4.17; /** * @title SafeMath * @dev Math operations with safety checks that throw on error */ library SafeMath { function mul(uint256 a, uint256 b) internal pure returns (uint256) { if (a == 0) { return 0; } uint256 c = a * b; assert(c / a == b); return c; } function div(uint256 a, uint256 b) internal pure returns (uint256) { // assert(b > 0); // Solidity automatically throws when dividing by 0 uint256 c = a / b; // assert(a == b * c + a % b); // There is no case in which this doesn't hold return c; } function sub(uint256 a, uint256 b) internal pure returns (uint256) { assert(b <= a); return a - b; } function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; assert(c >= a); return c; } } /** * @title Ownable * @dev The Ownable contract has an owner address, and provides basic authorization control * functions, this simplifies the implementation of "user permissions". */ contract Ownable { address public owner; /** * @dev The Ownable constructor sets the original `owner` of the contract to the sender * account. */ function Ownable() public { owner = msg.sender; } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { require(msg.sender == owner); _; } /** * @dev Allows the current owner to transfer control of the contract to a newOwner. * @param newOwner The address to transfer ownership to. */ function transferOwnership(address newOwner) public onlyOwner { if (newOwner != address(0)) { owner = newOwner; } } } /** * @title ERC20Basic * @dev Simpler version of ERC20 interface * @dev see https://github.com/ethereum/EIPs/issues/20 */ contract ERC20Basic { uint public _totalSupply; function totalSupply() public constant returns (uint); function balanceOf(address who) public constant returns (uint); function transfer(address to, uint value) public; event Transfer(address indexed from, address indexed to, uint value); } /** * @title ERC20 interface * @dev see https://github.com/ethereum/EIPs/issues/20 */ contract ERC20 is ERC20Basic { function allowance(address owner, address spender) public constant returns (uint); function transferFrom(address from, address to, uint value) public; function approve(address spender, uint value) public; event Approval(address indexed owner, address indexed spender, uint value); } /** * @title Basic token * @dev Basic version of StandardToken, with no allowances. */ contract BasicToken is Ownable, ERC20Basic { using SafeMath for uint; mapping(address => uint) public balances; // additional variables for use if transaction fees ever became necessary uint public basisPointsRate = 0; uint public maximumFee = 0; /** * @dev Fix for the ERC20 short address attack. */ modifier onlyPayloadSize(uint size) { require(!(msg.data.length < size + 4)); _; } /** * @dev transfer token for a specified address * @param _to The address to transfer to. * @param _value The amount to be transferred. */ function transfer(address _to, uint _value) public onlyPayloadSize(2 * 32) { uint fee = (_value.mul(basisPointsRate)).div(10000); if (fee > maximumFee) { fee = maximumFee; } uint sendAmount = _value.sub(fee); balances[msg.sender] = balances[msg.sender].sub(_value); balances[_to] = balances[_to].add(sendAmount); if (fee > 0) { balances[owner] = balances[owner].add(fee); Transfer(msg.sender, owner, fee); } Transfer(msg.sender, _to, sendAmount); } /** * @dev Gets the balance of the specified address. * @param _owner The address to query the the balance of. * @return An uint representing the amount owned by the passed address. */ function balanceOf(address _owner) public constant returns (uint balance) { return balances[_owner]; } } /** * @title Standard ERC20 token * * @dev Implementation of the basic standard token. * @dev https://github.com/ethereum/EIPs/issues/20 * @dev Based oncode by FirstBlood: https://github.com/Firstbloodio/token/blob/master/smart_contract/FirstBloodToken.sol */ contract StandardToken is BasicToken, ERC20 { mapping (address => mapping (address => uint)) public allowed; uint public constant MAX_UINT = 2**256 - 1; /** * @dev Transfer tokens from one address to another * @param _from address The address which you want to send tokens from * @param _to address The address which you want to transfer to * @param _value uint the amount of tokens to be transferred */ function transferFrom(address _from, address _to, uint _value) public onlyPayloadSize(3 * 32) { var _allowance = allowed[_from][msg.sender]; // Check is not needed because sub(_allowance, _value) will already throw if this condition is not met // if (_value > _allowance) throw; uint fee = (_value.mul(basisPointsRate)).div(10000); if (fee > maximumFee) { fee = maximumFee; } if (_allowance < MAX_UINT) { allowed[_from][msg.sender] = _allowance.sub(_value); } uint sendAmount = _value.sub(fee); balances[_from] = balances[_from].sub(_value); balances[_to] = balances[_to].add(sendAmount); if (fee > 0) { balances[owner] = balances[owner].add(fee); Transfer(_from, owner, fee); } Transfer(_from, _to, sendAmount); } /** * @dev Approve the passed address to spend the specified amount of tokens on behalf of msg.sender. * @param _spender The address which will spend the funds. * @param _value The amount of tokens to be spent. */ function approve(address _spender, uint _value) public onlyPayloadSize(2 * 32) { // To change the approve amount you first have to reduce the addresses` // allowance to zero by calling `approve(_spender, 0)` if it is not // already 0 to mitigate the race condition described here: // https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 require(!((_value != 0) && (allowed[msg.sender][_spender] != 0))); allowed[msg.sender][_spender] = _value; Approval(msg.sender, _spender, _value); } /** * @dev Function to check the amount of tokens than an owner allowed to a spender. * @param _owner address The address which owns the funds. * @param _spender address The address which will spend the funds. * @return A uint specifying the amount of tokens still available for the spender. */ function allowance(address _owner, address _spender) public constant returns (uint remaining) { return allowed[_owner][_spender]; } } /** * @title Pausable * @dev Base contract which allows children to implement an emergency stop mechanism. */ contract Pausable is Ownable { event Pause(); event Unpause(); bool public paused = false; /** * @dev Modifier to make a function callable only when the contract is not paused. */ modifier whenNotPaused() { require(!paused); _; } /** * @dev Modifier to make a function callable only when the contract is paused. */ modifier whenPaused() { require(paused); _; } /** * @dev called by the owner to pause, triggers stopped state */ function pause() onlyOwner whenNotPaused public { paused = true; Pause(); } /** * @dev called by the owner to unpause, returns to normal state */ function unpause() onlyOwner whenPaused public { paused = false; Unpause(); } } contract BlackList is Ownable, BasicToken { /////// Getters to allow the same blacklist to be used also by other contracts (including upgraded Tether) /////// function getBlackListStatus(address _maker) external constant returns (bool) { return isBlackListed[_maker]; } function getOwner() external constant returns (address) { return owner; } mapping (address => bool) public isBlackListed; function addBlackList (address _evilUser) public onlyOwner { isBlackListed[_evilUser] = true; AddedBlackList(_evilUser); } function removeBlackList (address _clearedUser) public onlyOwner { isBlackListed[_clearedUser] = false; RemovedBlackList(_clearedUser); } function destroyBlackFunds (address _blackListedUser) public onlyOwner { require(isBlackListed[_blackListedUser]); uint dirtyFunds = balanceOf(_blackListedUser); balances[_blackListedUser] = 0; _totalSupply -= dirtyFunds; DestroyedBlackFunds(_blackListedUser, dirtyFunds); } event DestroyedBlackFunds(address _blackListedUser, uint _balance); event AddedBlackList(address _user); event RemovedBlackList(address _user); } contract UpgradedStandardToken is StandardToken{ // those methods are called by the legacy contract // and they must ensure msg.sender to be the contract address function transferByLegacy(address from, address to, uint value) public; function transferFromByLegacy(address sender, address from, address spender, uint value) public; function approveByLegacy(address from, address spender, uint value) public; } contract TetherToken is Pausable, StandardToken, BlackList { string public name; string public symbol; uint public decimals; address public upgradedAddress; bool public deprecated; // The contract can be initialized with a number of tokens // All the tokens are deposited to the owner address // // @param _balance Initial supply of the contract // @param _name Token Name // @param _symbol Token symbol // @param _decimals Token decimals function TetherToken(uint _initialSupply, string _name, string _symbol, uint _decimals) public { _totalSupply = _initialSupply; name = _name; symbol = _symbol; decimals = _decimals; balances[owner] = _initialSupply; deprecated = false; } // Forward ERC20 methods to upgraded contract if this one is deprecated function transfer(address _to, uint _value) public whenNotPaused { require(!isBlackListed[msg.sender]); if (deprecated) { return UpgradedStandardToken(upgradedAddress).transferByLegacy(msg.sender, _to, _value); } else { return super.transfer(_to, _value); } } // Forward ERC20 methods to upgraded contract if this one is deprecated function transferFrom(address _from, address _to, uint _value) public whenNotPaused { require(!isBlackListed[_from]); if (deprecated) { return UpgradedStandardToken(upgradedAddress).transferFromByLegacy(msg.sender, _from, _to, _value); } else { return super.transferFrom(_from, _to, _value); } } // Forward ERC20 methods to upgraded contract if this one is deprecated function balanceOf(address who) public constant returns (uint) { if (deprecated) { return UpgradedStandardToken(upgradedAddress).balanceOf(who); } else { return super.balanceOf(who); } } // Forward ERC20 methods to upgraded contract if this one is deprecated function approve(address _spender, uint _value) public onlyPayloadSize(2 * 32) { if (deprecated) { return UpgradedStandardToken(upgradedAddress).approveByLegacy(msg.sender, _spender, _value); } else { return super.approve(_spender, _value); } } // Forward ERC20 methods to upgraded contract if this one is deprecated function allowance(address _owner, address _spender) public constant returns (uint remaining) { if (deprecated) { return StandardToken(upgradedAddress).allowance(_owner, _spender); } else { return super.allowance(_owner, _spender); } } // deprecate current contract in favour of a new one function deprecate(address _upgradedAddress) public onlyOwner { deprecated = true; upgradedAddress = _upgradedAddress; Deprecate(_upgradedAddress); } // deprecate current contract if favour of a new one function totalSupply() public constant returns (uint) { if (deprecated) { return StandardToken(upgradedAddress).totalSupply(); } else { return _totalSupply; } } // Issue a new amount of tokens // these tokens are deposited into the owner address // // @param _amount Number of tokens to be issued function issue(uint amount) public onlyOwner { require(_totalSupply + amount > _totalSupply); require(balances[owner] + amount > balances[owner]); balances[owner] += amount; _totalSupply += amount; Issue(amount); } // Redeem tokens. // These tokens are withdrawn from the owner address // if the balance must be enough to cover the redeem // or the call will fail. // @param _amount Number of tokens to be issued function redeem(uint amount) public onlyOwner { require(_totalSupply >= amount); require(balances[owner] >= amount); _totalSupply -= amount; balances[owner] -= amount; Redeem(amount); } function setParams(uint newBasisPoints, uint newMaxFee) public onlyOwner { // Ensure transparency by hardcoding limit beyond which fees can never be added require(newBasisPoints < 20); require(newMaxFee < 50); basisPointsRate = newBasisPoints; maximumFee = newMaxFee.mul(10**decimals); Params(basisPointsRate, maximumFee); } // Called when new token are issued event Issue(uint amount); // Called when tokens are redeemed event Redeem(uint amount); // Called when contract is deprecated event Deprecate(address newAddress); // Called if contract ever adds fees event Params(uint feeBasisPoints, uint maxFee); }
File 3 of 9: UniswapV3Pool
// SPDX-License-Identifier: BUSL-1.1 pragma solidity =0.7.6; import './interfaces/IUniswapV3Pool.sol'; import './NoDelegateCall.sol'; import './libraries/LowGasSafeMath.sol'; import './libraries/SafeCast.sol'; import './libraries/Tick.sol'; import './libraries/TickBitmap.sol'; import './libraries/Position.sol'; import './libraries/Oracle.sol'; import './libraries/FullMath.sol'; import './libraries/FixedPoint128.sol'; import './libraries/TransferHelper.sol'; import './libraries/TickMath.sol'; import './libraries/LiquidityMath.sol'; import './libraries/SqrtPriceMath.sol'; import './libraries/SwapMath.sol'; import './interfaces/IUniswapV3PoolDeployer.sol'; import './interfaces/IUniswapV3Factory.sol'; import './interfaces/IERC20Minimal.sol'; import './interfaces/callback/IUniswapV3MintCallback.sol'; import './interfaces/callback/IUniswapV3SwapCallback.sol'; import './interfaces/callback/IUniswapV3FlashCallback.sol'; contract UniswapV3Pool is IUniswapV3Pool, NoDelegateCall { using LowGasSafeMath for uint256; using LowGasSafeMath for int256; using SafeCast for uint256; using SafeCast for int256; using Tick for mapping(int24 => Tick.Info); using TickBitmap for mapping(int16 => uint256); using Position for mapping(bytes32 => Position.Info); using Position for Position.Info; using Oracle for Oracle.Observation[65535]; /// @inheritdoc IUniswapV3PoolImmutables address public immutable override factory; /// @inheritdoc IUniswapV3PoolImmutables address public immutable override token0; /// @inheritdoc IUniswapV3PoolImmutables address public immutable override token1; /// @inheritdoc IUniswapV3PoolImmutables uint24 public immutable override fee; /// @inheritdoc IUniswapV3PoolImmutables int24 public immutable override tickSpacing; /// @inheritdoc IUniswapV3PoolImmutables uint128 public immutable override maxLiquidityPerTick; struct Slot0 { // the current price uint160 sqrtPriceX96; // the current tick int24 tick; // the most-recently updated index of the observations array uint16 observationIndex; // the current maximum number of observations that are being stored uint16 observationCardinality; // the next maximum number of observations to store, triggered in observations.write uint16 observationCardinalityNext; // the current protocol fee as a percentage of the swap fee taken on withdrawal // represented as an integer denominator (1/x)% uint8 feeProtocol; // whether the pool is locked bool unlocked; } /// @inheritdoc IUniswapV3PoolState Slot0 public override slot0; /// @inheritdoc IUniswapV3PoolState uint256 public override feeGrowthGlobal0X128; /// @inheritdoc IUniswapV3PoolState uint256 public override feeGrowthGlobal1X128; // accumulated protocol fees in token0/token1 units struct ProtocolFees { uint128 token0; uint128 token1; } /// @inheritdoc IUniswapV3PoolState ProtocolFees public override protocolFees; /// @inheritdoc IUniswapV3PoolState uint128 public override liquidity; /// @inheritdoc IUniswapV3PoolState mapping(int24 => Tick.Info) public override ticks; /// @inheritdoc IUniswapV3PoolState mapping(int16 => uint256) public override tickBitmap; /// @inheritdoc IUniswapV3PoolState mapping(bytes32 => Position.Info) public override positions; /// @inheritdoc IUniswapV3PoolState Oracle.Observation[65535] public override observations; /// @dev Mutually exclusive reentrancy protection into the pool to/from a method. This method also prevents entrance /// to a function before the pool is initialized. The reentrancy guard is required throughout the contract because /// we use balance checks to determine the payment status of interactions such as mint, swap and flash. modifier lock() { require(slot0.unlocked, 'LOK'); slot0.unlocked = false; _; slot0.unlocked = true; } /// @dev Prevents calling a function from anyone except the address returned by IUniswapV3Factory#owner() modifier onlyFactoryOwner() { require(msg.sender == IUniswapV3Factory(factory).owner()); _; } constructor() { int24 _tickSpacing; (factory, token0, token1, fee, _tickSpacing) = IUniswapV3PoolDeployer(msg.sender).parameters(); tickSpacing = _tickSpacing; maxLiquidityPerTick = Tick.tickSpacingToMaxLiquidityPerTick(_tickSpacing); } /// @dev Common checks for valid tick inputs. function checkTicks(int24 tickLower, int24 tickUpper) private pure { require(tickLower < tickUpper, 'TLU'); require(tickLower >= TickMath.MIN_TICK, 'TLM'); require(tickUpper <= TickMath.MAX_TICK, 'TUM'); } /// @dev Returns the block timestamp truncated to 32 bits, i.e. mod 2**32. This method is overridden in tests. function _blockTimestamp() internal view virtual returns (uint32) { return uint32(block.timestamp); // truncation is desired } /// @dev Get the pool's balance of token0 /// @dev This function is gas optimized to avoid a redundant extcodesize check in addition to the returndatasize /// check function balance0() private view returns (uint256) { (bool success, bytes memory data) = token0.staticcall(abi.encodeWithSelector(IERC20Minimal.balanceOf.selector, address(this))); require(success && data.length >= 32); return abi.decode(data, (uint256)); } /// @dev Get the pool's balance of token1 /// @dev This function is gas optimized to avoid a redundant extcodesize check in addition to the returndatasize /// check function balance1() private view returns (uint256) { (bool success, bytes memory data) = token1.staticcall(abi.encodeWithSelector(IERC20Minimal.balanceOf.selector, address(this))); require(success && data.length >= 32); return abi.decode(data, (uint256)); } /// @inheritdoc IUniswapV3PoolDerivedState function snapshotCumulativesInside(int24 tickLower, int24 tickUpper) external view override noDelegateCall returns ( int56 tickCumulativeInside, uint160 secondsPerLiquidityInsideX128, uint32 secondsInside ) { checkTicks(tickLower, tickUpper); int56 tickCumulativeLower; int56 tickCumulativeUpper; uint160 secondsPerLiquidityOutsideLowerX128; uint160 secondsPerLiquidityOutsideUpperX128; uint32 secondsOutsideLower; uint32 secondsOutsideUpper; { Tick.Info storage lower = ticks[tickLower]; Tick.Info storage upper = ticks[tickUpper]; bool initializedLower; (tickCumulativeLower, secondsPerLiquidityOutsideLowerX128, secondsOutsideLower, initializedLower) = ( lower.tickCumulativeOutside, lower.secondsPerLiquidityOutsideX128, lower.secondsOutside, lower.initialized ); require(initializedLower); bool initializedUpper; (tickCumulativeUpper, secondsPerLiquidityOutsideUpperX128, secondsOutsideUpper, initializedUpper) = ( upper.tickCumulativeOutside, upper.secondsPerLiquidityOutsideX128, upper.secondsOutside, upper.initialized ); require(initializedUpper); } Slot0 memory _slot0 = slot0; if (_slot0.tick < tickLower) { return ( tickCumulativeLower - tickCumulativeUpper, secondsPerLiquidityOutsideLowerX128 - secondsPerLiquidityOutsideUpperX128, secondsOutsideLower - secondsOutsideUpper ); } else if (_slot0.tick < tickUpper) { uint32 time = _blockTimestamp(); (int56 tickCumulative, uint160 secondsPerLiquidityCumulativeX128) = observations.observeSingle( time, 0, _slot0.tick, _slot0.observationIndex, liquidity, _slot0.observationCardinality ); return ( tickCumulative - tickCumulativeLower - tickCumulativeUpper, secondsPerLiquidityCumulativeX128 - secondsPerLiquidityOutsideLowerX128 - secondsPerLiquidityOutsideUpperX128, time - secondsOutsideLower - secondsOutsideUpper ); } else { return ( tickCumulativeUpper - tickCumulativeLower, secondsPerLiquidityOutsideUpperX128 - secondsPerLiquidityOutsideLowerX128, secondsOutsideUpper - secondsOutsideLower ); } } /// @inheritdoc IUniswapV3PoolDerivedState function observe(uint32[] calldata secondsAgos) external view override noDelegateCall returns (int56[] memory tickCumulatives, uint160[] memory secondsPerLiquidityCumulativeX128s) { return observations.observe( _blockTimestamp(), secondsAgos, slot0.tick, slot0.observationIndex, liquidity, slot0.observationCardinality ); } /// @inheritdoc IUniswapV3PoolActions function increaseObservationCardinalityNext(uint16 observationCardinalityNext) external override lock noDelegateCall { uint16 observationCardinalityNextOld = slot0.observationCardinalityNext; // for the event uint16 observationCardinalityNextNew = observations.grow(observationCardinalityNextOld, observationCardinalityNext); slot0.observationCardinalityNext = observationCardinalityNextNew; if (observationCardinalityNextOld != observationCardinalityNextNew) emit IncreaseObservationCardinalityNext(observationCardinalityNextOld, observationCardinalityNextNew); } /// @inheritdoc IUniswapV3PoolActions /// @dev not locked because it initializes unlocked function initialize(uint160 sqrtPriceX96) external override { require(slot0.sqrtPriceX96 == 0, 'AI'); int24 tick = TickMath.getTickAtSqrtRatio(sqrtPriceX96); (uint16 cardinality, uint16 cardinalityNext) = observations.initialize(_blockTimestamp()); slot0 = Slot0({ sqrtPriceX96: sqrtPriceX96, tick: tick, observationIndex: 0, observationCardinality: cardinality, observationCardinalityNext: cardinalityNext, feeProtocol: 0, unlocked: true }); emit Initialize(sqrtPriceX96, tick); } struct ModifyPositionParams { // the address that owns the position address owner; // the lower and upper tick of the position int24 tickLower; int24 tickUpper; // any change in liquidity int128 liquidityDelta; } /// @dev Effect some changes to a position /// @param params the position details and the change to the position's liquidity to effect /// @return position a storage pointer referencing the position with the given owner and tick range /// @return amount0 the amount of token0 owed to the pool, negative if the pool should pay the recipient /// @return amount1 the amount of token1 owed to the pool, negative if the pool should pay the recipient function _modifyPosition(ModifyPositionParams memory params) private noDelegateCall returns ( Position.Info storage position, int256 amount0, int256 amount1 ) { checkTicks(params.tickLower, params.tickUpper); Slot0 memory _slot0 = slot0; // SLOAD for gas optimization position = _updatePosition( params.owner, params.tickLower, params.tickUpper, params.liquidityDelta, _slot0.tick ); if (params.liquidityDelta != 0) { if (_slot0.tick < params.tickLower) { // current tick is below the passed range; liquidity can only become in range by crossing from left to // right, when we'll need _more_ token0 (it's becoming more valuable) so user must provide it amount0 = SqrtPriceMath.getAmount0Delta( TickMath.getSqrtRatioAtTick(params.tickLower), TickMath.getSqrtRatioAtTick(params.tickUpper), params.liquidityDelta ); } else if (_slot0.tick < params.tickUpper) { // current tick is inside the passed range uint128 liquidityBefore = liquidity; // SLOAD for gas optimization // write an oracle entry (slot0.observationIndex, slot0.observationCardinality) = observations.write( _slot0.observationIndex, _blockTimestamp(), _slot0.tick, liquidityBefore, _slot0.observationCardinality, _slot0.observationCardinalityNext ); amount0 = SqrtPriceMath.getAmount0Delta( _slot0.sqrtPriceX96, TickMath.getSqrtRatioAtTick(params.tickUpper), params.liquidityDelta ); amount1 = SqrtPriceMath.getAmount1Delta( TickMath.getSqrtRatioAtTick(params.tickLower), _slot0.sqrtPriceX96, params.liquidityDelta ); liquidity = LiquidityMath.addDelta(liquidityBefore, params.liquidityDelta); } else { // current tick is above the passed range; liquidity can only become in range by crossing from right to // left, when we'll need _more_ token1 (it's becoming more valuable) so user must provide it amount1 = SqrtPriceMath.getAmount1Delta( TickMath.getSqrtRatioAtTick(params.tickLower), TickMath.getSqrtRatioAtTick(params.tickUpper), params.liquidityDelta ); } } } /// @dev Gets and updates a position with the given liquidity delta /// @param owner the owner of the position /// @param tickLower the lower tick of the position's tick range /// @param tickUpper the upper tick of the position's tick range /// @param tick the current tick, passed to avoid sloads function _updatePosition( address owner, int24 tickLower, int24 tickUpper, int128 liquidityDelta, int24 tick ) private returns (Position.Info storage position) { position = positions.get(owner, tickLower, tickUpper); uint256 _feeGrowthGlobal0X128 = feeGrowthGlobal0X128; // SLOAD for gas optimization uint256 _feeGrowthGlobal1X128 = feeGrowthGlobal1X128; // SLOAD for gas optimization // if we need to update the ticks, do it bool flippedLower; bool flippedUpper; if (liquidityDelta != 0) { uint32 time = _blockTimestamp(); (int56 tickCumulative, uint160 secondsPerLiquidityCumulativeX128) = observations.observeSingle( time, 0, slot0.tick, slot0.observationIndex, liquidity, slot0.observationCardinality ); flippedLower = ticks.update( tickLower, tick, liquidityDelta, _feeGrowthGlobal0X128, _feeGrowthGlobal1X128, secondsPerLiquidityCumulativeX128, tickCumulative, time, false, maxLiquidityPerTick ); flippedUpper = ticks.update( tickUpper, tick, liquidityDelta, _feeGrowthGlobal0X128, _feeGrowthGlobal1X128, secondsPerLiquidityCumulativeX128, tickCumulative, time, true, maxLiquidityPerTick ); if (flippedLower) { tickBitmap.flipTick(tickLower, tickSpacing); } if (flippedUpper) { tickBitmap.flipTick(tickUpper, tickSpacing); } } (uint256 feeGrowthInside0X128, uint256 feeGrowthInside1X128) = ticks.getFeeGrowthInside(tickLower, tickUpper, tick, _feeGrowthGlobal0X128, _feeGrowthGlobal1X128); position.update(liquidityDelta, feeGrowthInside0X128, feeGrowthInside1X128); // clear any tick data that is no longer needed if (liquidityDelta < 0) { if (flippedLower) { ticks.clear(tickLower); } if (flippedUpper) { ticks.clear(tickUpper); } } } /// @inheritdoc IUniswapV3PoolActions /// @dev noDelegateCall is applied indirectly via _modifyPosition function mint( address recipient, int24 tickLower, int24 tickUpper, uint128 amount, bytes calldata data ) external override lock returns (uint256 amount0, uint256 amount1) { require(amount > 0); (, int256 amount0Int, int256 amount1Int) = _modifyPosition( ModifyPositionParams({ owner: recipient, tickLower: tickLower, tickUpper: tickUpper, liquidityDelta: int256(amount).toInt128() }) ); amount0 = uint256(amount0Int); amount1 = uint256(amount1Int); uint256 balance0Before; uint256 balance1Before; if (amount0 > 0) balance0Before = balance0(); if (amount1 > 0) balance1Before = balance1(); IUniswapV3MintCallback(msg.sender).uniswapV3MintCallback(amount0, amount1, data); if (amount0 > 0) require(balance0Before.add(amount0) <= balance0(), 'M0'); if (amount1 > 0) require(balance1Before.add(amount1) <= balance1(), 'M1'); emit Mint(msg.sender, recipient, tickLower, tickUpper, amount, amount0, amount1); } /// @inheritdoc IUniswapV3PoolActions function collect( address recipient, int24 tickLower, int24 tickUpper, uint128 amount0Requested, uint128 amount1Requested ) external override lock returns (uint128 amount0, uint128 amount1) { // we don't need to checkTicks here, because invalid positions will never have non-zero tokensOwed{0,1} Position.Info storage position = positions.get(msg.sender, tickLower, tickUpper); amount0 = amount0Requested > position.tokensOwed0 ? position.tokensOwed0 : amount0Requested; amount1 = amount1Requested > position.tokensOwed1 ? position.tokensOwed1 : amount1Requested; if (amount0 > 0) { position.tokensOwed0 -= amount0; TransferHelper.safeTransfer(token0, recipient, amount0); } if (amount1 > 0) { position.tokensOwed1 -= amount1; TransferHelper.safeTransfer(token1, recipient, amount1); } emit Collect(msg.sender, recipient, tickLower, tickUpper, amount0, amount1); } /// @inheritdoc IUniswapV3PoolActions /// @dev noDelegateCall is applied indirectly via _modifyPosition function burn( int24 tickLower, int24 tickUpper, uint128 amount ) external override lock returns (uint256 amount0, uint256 amount1) { (Position.Info storage position, int256 amount0Int, int256 amount1Int) = _modifyPosition( ModifyPositionParams({ owner: msg.sender, tickLower: tickLower, tickUpper: tickUpper, liquidityDelta: -int256(amount).toInt128() }) ); amount0 = uint256(-amount0Int); amount1 = uint256(-amount1Int); if (amount0 > 0 || amount1 > 0) { (position.tokensOwed0, position.tokensOwed1) = ( position.tokensOwed0 + uint128(amount0), position.tokensOwed1 + uint128(amount1) ); } emit Burn(msg.sender, tickLower, tickUpper, amount, amount0, amount1); } struct SwapCache { // the protocol fee for the input token uint8 feeProtocol; // liquidity at the beginning of the swap uint128 liquidityStart; // the timestamp of the current block uint32 blockTimestamp; // the current value of the tick accumulator, computed only if we cross an initialized tick int56 tickCumulative; // the current value of seconds per liquidity accumulator, computed only if we cross an initialized tick uint160 secondsPerLiquidityCumulativeX128; // whether we've computed and cached the above two accumulators bool computedLatestObservation; } // the top level state of the swap, the results of which are recorded in storage at the end struct SwapState { // the amount remaining to be swapped in/out of the input/output asset int256 amountSpecifiedRemaining; // the amount already swapped out/in of the output/input asset int256 amountCalculated; // current sqrt(price) uint160 sqrtPriceX96; // the tick associated with the current price int24 tick; // the global fee growth of the input token uint256 feeGrowthGlobalX128; // amount of input token paid as protocol fee uint128 protocolFee; // the current liquidity in range uint128 liquidity; } struct StepComputations { // the price at the beginning of the step uint160 sqrtPriceStartX96; // the next tick to swap to from the current tick in the swap direction int24 tickNext; // whether tickNext is initialized or not bool initialized; // sqrt(price) for the next tick (1/0) uint160 sqrtPriceNextX96; // how much is being swapped in in this step uint256 amountIn; // how much is being swapped out uint256 amountOut; // how much fee is being paid in uint256 feeAmount; } /// @inheritdoc IUniswapV3PoolActions function swap( address recipient, bool zeroForOne, int256 amountSpecified, uint160 sqrtPriceLimitX96, bytes calldata data ) external override noDelegateCall returns (int256 amount0, int256 amount1) { require(amountSpecified != 0, 'AS'); Slot0 memory slot0Start = slot0; require(slot0Start.unlocked, 'LOK'); require( zeroForOne ? sqrtPriceLimitX96 < slot0Start.sqrtPriceX96 && sqrtPriceLimitX96 > TickMath.MIN_SQRT_RATIO : sqrtPriceLimitX96 > slot0Start.sqrtPriceX96 && sqrtPriceLimitX96 < TickMath.MAX_SQRT_RATIO, 'SPL' ); slot0.unlocked = false; SwapCache memory cache = SwapCache({ liquidityStart: liquidity, blockTimestamp: _blockTimestamp(), feeProtocol: zeroForOne ? (slot0Start.feeProtocol % 16) : (slot0Start.feeProtocol >> 4), secondsPerLiquidityCumulativeX128: 0, tickCumulative: 0, computedLatestObservation: false }); bool exactInput = amountSpecified > 0; SwapState memory state = SwapState({ amountSpecifiedRemaining: amountSpecified, amountCalculated: 0, sqrtPriceX96: slot0Start.sqrtPriceX96, tick: slot0Start.tick, feeGrowthGlobalX128: zeroForOne ? feeGrowthGlobal0X128 : feeGrowthGlobal1X128, protocolFee: 0, liquidity: cache.liquidityStart }); // continue swapping as long as we haven't used the entire input/output and haven't reached the price limit while (state.amountSpecifiedRemaining != 0 && state.sqrtPriceX96 != sqrtPriceLimitX96) { StepComputations memory step; step.sqrtPriceStartX96 = state.sqrtPriceX96; (step.tickNext, step.initialized) = tickBitmap.nextInitializedTickWithinOneWord( state.tick, tickSpacing, zeroForOne ); // ensure that we do not overshoot the min/max tick, as the tick bitmap is not aware of these bounds if (step.tickNext < TickMath.MIN_TICK) { step.tickNext = TickMath.MIN_TICK; } else if (step.tickNext > TickMath.MAX_TICK) { step.tickNext = TickMath.MAX_TICK; } // get the price for the next tick step.sqrtPriceNextX96 = TickMath.getSqrtRatioAtTick(step.tickNext); // compute values to swap to the target tick, price limit, or point where input/output amount is exhausted (state.sqrtPriceX96, step.amountIn, step.amountOut, step.feeAmount) = SwapMath.computeSwapStep( state.sqrtPriceX96, (zeroForOne ? step.sqrtPriceNextX96 < sqrtPriceLimitX96 : step.sqrtPriceNextX96 > sqrtPriceLimitX96) ? sqrtPriceLimitX96 : step.sqrtPriceNextX96, state.liquidity, state.amountSpecifiedRemaining, fee ); if (exactInput) { state.amountSpecifiedRemaining -= (step.amountIn + step.feeAmount).toInt256(); state.amountCalculated = state.amountCalculated.sub(step.amountOut.toInt256()); } else { state.amountSpecifiedRemaining += step.amountOut.toInt256(); state.amountCalculated = state.amountCalculated.add((step.amountIn + step.feeAmount).toInt256()); } // if the protocol fee is on, calculate how much is owed, decrement feeAmount, and increment protocolFee if (cache.feeProtocol > 0) { uint256 delta = step.feeAmount / cache.feeProtocol; step.feeAmount -= delta; state.protocolFee += uint128(delta); } // update global fee tracker if (state.liquidity > 0) state.feeGrowthGlobalX128 += FullMath.mulDiv(step.feeAmount, FixedPoint128.Q128, state.liquidity); // shift tick if we reached the next price if (state.sqrtPriceX96 == step.sqrtPriceNextX96) { // if the tick is initialized, run the tick transition if (step.initialized) { // check for the placeholder value, which we replace with the actual value the first time the swap // crosses an initialized tick if (!cache.computedLatestObservation) { (cache.tickCumulative, cache.secondsPerLiquidityCumulativeX128) = observations.observeSingle( cache.blockTimestamp, 0, slot0Start.tick, slot0Start.observationIndex, cache.liquidityStart, slot0Start.observationCardinality ); cache.computedLatestObservation = true; } int128 liquidityNet = ticks.cross( step.tickNext, (zeroForOne ? state.feeGrowthGlobalX128 : feeGrowthGlobal0X128), (zeroForOne ? feeGrowthGlobal1X128 : state.feeGrowthGlobalX128), cache.secondsPerLiquidityCumulativeX128, cache.tickCumulative, cache.blockTimestamp ); // if we're moving leftward, we interpret liquidityNet as the opposite sign // safe because liquidityNet cannot be type(int128).min if (zeroForOne) liquidityNet = -liquidityNet; state.liquidity = LiquidityMath.addDelta(state.liquidity, liquidityNet); } state.tick = zeroForOne ? step.tickNext - 1 : step.tickNext; } else if (state.sqrtPriceX96 != step.sqrtPriceStartX96) { // recompute unless we're on a lower tick boundary (i.e. already transitioned ticks), and haven't moved state.tick = TickMath.getTickAtSqrtRatio(state.sqrtPriceX96); } } // update tick and write an oracle entry if the tick change if (state.tick != slot0Start.tick) { (uint16 observationIndex, uint16 observationCardinality) = observations.write( slot0Start.observationIndex, cache.blockTimestamp, slot0Start.tick, cache.liquidityStart, slot0Start.observationCardinality, slot0Start.observationCardinalityNext ); (slot0.sqrtPriceX96, slot0.tick, slot0.observationIndex, slot0.observationCardinality) = ( state.sqrtPriceX96, state.tick, observationIndex, observationCardinality ); } else { // otherwise just update the price slot0.sqrtPriceX96 = state.sqrtPriceX96; } // update liquidity if it changed if (cache.liquidityStart != state.liquidity) liquidity = state.liquidity; // update fee growth global and, if necessary, protocol fees // overflow is acceptable, protocol has to withdraw before it hits type(uint128).max fees if (zeroForOne) { feeGrowthGlobal0X128 = state.feeGrowthGlobalX128; if (state.protocolFee > 0) protocolFees.token0 += state.protocolFee; } else { feeGrowthGlobal1X128 = state.feeGrowthGlobalX128; if (state.protocolFee > 0) protocolFees.token1 += state.protocolFee; } (amount0, amount1) = zeroForOne == exactInput ? (amountSpecified - state.amountSpecifiedRemaining, state.amountCalculated) : (state.amountCalculated, amountSpecified - state.amountSpecifiedRemaining); // do the transfers and collect payment if (zeroForOne) { if (amount1 < 0) TransferHelper.safeTransfer(token1, recipient, uint256(-amount1)); uint256 balance0Before = balance0(); IUniswapV3SwapCallback(msg.sender).uniswapV3SwapCallback(amount0, amount1, data); require(balance0Before.add(uint256(amount0)) <= balance0(), 'IIA'); } else { if (amount0 < 0) TransferHelper.safeTransfer(token0, recipient, uint256(-amount0)); uint256 balance1Before = balance1(); IUniswapV3SwapCallback(msg.sender).uniswapV3SwapCallback(amount0, amount1, data); require(balance1Before.add(uint256(amount1)) <= balance1(), 'IIA'); } emit Swap(msg.sender, recipient, amount0, amount1, state.sqrtPriceX96, state.liquidity, state.tick); slot0.unlocked = true; } /// @inheritdoc IUniswapV3PoolActions function flash( address recipient, uint256 amount0, uint256 amount1, bytes calldata data ) external override lock noDelegateCall { uint128 _liquidity = liquidity; require(_liquidity > 0, 'L'); uint256 fee0 = FullMath.mulDivRoundingUp(amount0, fee, 1e6); uint256 fee1 = FullMath.mulDivRoundingUp(amount1, fee, 1e6); uint256 balance0Before = balance0(); uint256 balance1Before = balance1(); if (amount0 > 0) TransferHelper.safeTransfer(token0, recipient, amount0); if (amount1 > 0) TransferHelper.safeTransfer(token1, recipient, amount1); IUniswapV3FlashCallback(msg.sender).uniswapV3FlashCallback(fee0, fee1, data); uint256 balance0After = balance0(); uint256 balance1After = balance1(); require(balance0Before.add(fee0) <= balance0After, 'F0'); require(balance1Before.add(fee1) <= balance1After, 'F1'); // sub is safe because we know balanceAfter is gt balanceBefore by at least fee uint256 paid0 = balance0After - balance0Before; uint256 paid1 = balance1After - balance1Before; if (paid0 > 0) { uint8 feeProtocol0 = slot0.feeProtocol % 16; uint256 fees0 = feeProtocol0 == 0 ? 0 : paid0 / feeProtocol0; if (uint128(fees0) > 0) protocolFees.token0 += uint128(fees0); feeGrowthGlobal0X128 += FullMath.mulDiv(paid0 - fees0, FixedPoint128.Q128, _liquidity); } if (paid1 > 0) { uint8 feeProtocol1 = slot0.feeProtocol >> 4; uint256 fees1 = feeProtocol1 == 0 ? 0 : paid1 / feeProtocol1; if (uint128(fees1) > 0) protocolFees.token1 += uint128(fees1); feeGrowthGlobal1X128 += FullMath.mulDiv(paid1 - fees1, FixedPoint128.Q128, _liquidity); } emit Flash(msg.sender, recipient, amount0, amount1, paid0, paid1); } /// @inheritdoc IUniswapV3PoolOwnerActions function setFeeProtocol(uint8 feeProtocol0, uint8 feeProtocol1) external override lock onlyFactoryOwner { require( (feeProtocol0 == 0 || (feeProtocol0 >= 4 && feeProtocol0 <= 10)) && (feeProtocol1 == 0 || (feeProtocol1 >= 4 && feeProtocol1 <= 10)) ); uint8 feeProtocolOld = slot0.feeProtocol; slot0.feeProtocol = feeProtocol0 + (feeProtocol1 << 4); emit SetFeeProtocol(feeProtocolOld % 16, feeProtocolOld >> 4, feeProtocol0, feeProtocol1); } /// @inheritdoc IUniswapV3PoolOwnerActions function collectProtocol( address recipient, uint128 amount0Requested, uint128 amount1Requested ) external override lock onlyFactoryOwner returns (uint128 amount0, uint128 amount1) { amount0 = amount0Requested > protocolFees.token0 ? protocolFees.token0 : amount0Requested; amount1 = amount1Requested > protocolFees.token1 ? protocolFees.token1 : amount1Requested; if (amount0 > 0) { if (amount0 == protocolFees.token0) amount0--; // ensure that the slot is not cleared, for gas savings protocolFees.token0 -= amount0; TransferHelper.safeTransfer(token0, recipient, amount0); } if (amount1 > 0) { if (amount1 == protocolFees.token1) amount1--; // ensure that the slot is not cleared, for gas savings protocolFees.token1 -= amount1; TransferHelper.safeTransfer(token1, recipient, amount1); } emit CollectProtocol(msg.sender, recipient, amount0, amount1); } } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; import './pool/IUniswapV3PoolImmutables.sol'; import './pool/IUniswapV3PoolState.sol'; import './pool/IUniswapV3PoolDerivedState.sol'; import './pool/IUniswapV3PoolActions.sol'; import './pool/IUniswapV3PoolOwnerActions.sol'; import './pool/IUniswapV3PoolEvents.sol'; /// @title The interface for a Uniswap V3 Pool /// @notice A Uniswap pool facilitates swapping and automated market making between any two assets that strictly conform /// to the ERC20 specification /// @dev The pool interface is broken up into many smaller pieces interface IUniswapV3Pool is IUniswapV3PoolImmutables, IUniswapV3PoolState, IUniswapV3PoolDerivedState, IUniswapV3PoolActions, IUniswapV3PoolOwnerActions, IUniswapV3PoolEvents { } // SPDX-License-Identifier: BUSL-1.1 pragma solidity =0.7.6; /// @title Prevents delegatecall to a contract /// @notice Base contract that provides a modifier for preventing delegatecall to methods in a child contract abstract contract NoDelegateCall { /// @dev The original address of this contract address private immutable original; constructor() { // Immutables are computed in the init code of the contract, and then inlined into the deployed bytecode. // In other words, this variable won't change when it's checked at runtime. original = address(this); } /// @dev Private method is used instead of inlining into modifier because modifiers are copied into each method, /// and the use of immutable means the address bytes are copied in every place the modifier is used. function checkNotDelegateCall() private view { require(address(this) == original); } /// @notice Prevents delegatecall into the modified method modifier noDelegateCall() { checkNotDelegateCall(); _; } } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.7.0; /// @title Optimized overflow and underflow safe math operations /// @notice Contains methods for doing math operations that revert on overflow or underflow for minimal gas cost library LowGasSafeMath { /// @notice Returns x + y, reverts if sum overflows uint256 /// @param x The augend /// @param y The addend /// @return z The sum of x and y function add(uint256 x, uint256 y) internal pure returns (uint256 z) { require((z = x + y) >= x); } /// @notice Returns x - y, reverts if underflows /// @param x The minuend /// @param y The subtrahend /// @return z The difference of x and y function sub(uint256 x, uint256 y) internal pure returns (uint256 z) { require((z = x - y) <= x); } /// @notice Returns x * y, reverts if overflows /// @param x The multiplicand /// @param y The multiplier /// @return z The product of x and y function mul(uint256 x, uint256 y) internal pure returns (uint256 z) { require(x == 0 || (z = x * y) / x == y); } /// @notice Returns x + y, reverts if overflows or underflows /// @param x The augend /// @param y The addend /// @return z The sum of x and y function add(int256 x, int256 y) internal pure returns (int256 z) { require((z = x + y) >= x == (y >= 0)); } /// @notice Returns x - y, reverts if overflows or underflows /// @param x The minuend /// @param y The subtrahend /// @return z The difference of x and y function sub(int256 x, int256 y) internal pure returns (int256 z) { require((z = x - y) <= x == (y >= 0)); } } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; /// @title Safe casting methods /// @notice Contains methods for safely casting between types library SafeCast { /// @notice Cast a uint256 to a uint160, revert on overflow /// @param y The uint256 to be downcasted /// @return z The downcasted integer, now type uint160 function toUint160(uint256 y) internal pure returns (uint160 z) { require((z = uint160(y)) == y); } /// @notice Cast a int256 to a int128, revert on overflow or underflow /// @param y The int256 to be downcasted /// @return z The downcasted integer, now type int128 function toInt128(int256 y) internal pure returns (int128 z) { require((z = int128(y)) == y); } /// @notice Cast a uint256 to a int256, revert on overflow /// @param y The uint256 to be casted /// @return z The casted integer, now type int256 function toInt256(uint256 y) internal pure returns (int256 z) { require(y < 2**255); z = int256(y); } } // SPDX-License-Identifier: BUSL-1.1 pragma solidity >=0.5.0; import './LowGasSafeMath.sol'; import './SafeCast.sol'; import './TickMath.sol'; import './LiquidityMath.sol'; /// @title Tick /// @notice Contains functions for managing tick processes and relevant calculations library Tick { using LowGasSafeMath for int256; using SafeCast for int256; // info stored for each initialized individual tick struct Info { // the total position liquidity that references this tick uint128 liquidityGross; // amount of net liquidity added (subtracted) when tick is crossed from left to right (right to left), int128 liquidityNet; // fee growth per unit of liquidity on the _other_ side of this tick (relative to the current tick) // only has relative meaning, not absolute — the value depends on when the tick is initialized uint256 feeGrowthOutside0X128; uint256 feeGrowthOutside1X128; // the cumulative tick value on the other side of the tick int56 tickCumulativeOutside; // the seconds per unit of liquidity on the _other_ side of this tick (relative to the current tick) // only has relative meaning, not absolute — the value depends on when the tick is initialized uint160 secondsPerLiquidityOutsideX128; // the seconds spent on the other side of the tick (relative to the current tick) // only has relative meaning, not absolute — the value depends on when the tick is initialized uint32 secondsOutside; // true iff the tick is initialized, i.e. the value is exactly equivalent to the expression liquidityGross != 0 // these 8 bits are set to prevent fresh sstores when crossing newly initialized ticks bool initialized; } /// @notice Derives max liquidity per tick from given tick spacing /// @dev Executed within the pool constructor /// @param tickSpacing The amount of required tick separation, realized in multiples of `tickSpacing` /// e.g., a tickSpacing of 3 requires ticks to be initialized every 3rd tick i.e., ..., -6, -3, 0, 3, 6, ... /// @return The max liquidity per tick function tickSpacingToMaxLiquidityPerTick(int24 tickSpacing) internal pure returns (uint128) { int24 minTick = (TickMath.MIN_TICK / tickSpacing) * tickSpacing; int24 maxTick = (TickMath.MAX_TICK / tickSpacing) * tickSpacing; uint24 numTicks = uint24((maxTick - minTick) / tickSpacing) + 1; return type(uint128).max / numTicks; } /// @notice Retrieves fee growth data /// @param self The mapping containing all tick information for initialized ticks /// @param tickLower The lower tick boundary of the position /// @param tickUpper The upper tick boundary of the position /// @param tickCurrent The current tick /// @param feeGrowthGlobal0X128 The all-time global fee growth, per unit of liquidity, in token0 /// @param feeGrowthGlobal1X128 The all-time global fee growth, per unit of liquidity, in token1 /// @return feeGrowthInside0X128 The all-time fee growth in token0, per unit of liquidity, inside the position's tick boundaries /// @return feeGrowthInside1X128 The all-time fee growth in token1, per unit of liquidity, inside the position's tick boundaries function getFeeGrowthInside( mapping(int24 => Tick.Info) storage self, int24 tickLower, int24 tickUpper, int24 tickCurrent, uint256 feeGrowthGlobal0X128, uint256 feeGrowthGlobal1X128 ) internal view returns (uint256 feeGrowthInside0X128, uint256 feeGrowthInside1X128) { Info storage lower = self[tickLower]; Info storage upper = self[tickUpper]; // calculate fee growth below uint256 feeGrowthBelow0X128; uint256 feeGrowthBelow1X128; if (tickCurrent >= tickLower) { feeGrowthBelow0X128 = lower.feeGrowthOutside0X128; feeGrowthBelow1X128 = lower.feeGrowthOutside1X128; } else { feeGrowthBelow0X128 = feeGrowthGlobal0X128 - lower.feeGrowthOutside0X128; feeGrowthBelow1X128 = feeGrowthGlobal1X128 - lower.feeGrowthOutside1X128; } // calculate fee growth above uint256 feeGrowthAbove0X128; uint256 feeGrowthAbove1X128; if (tickCurrent < tickUpper) { feeGrowthAbove0X128 = upper.feeGrowthOutside0X128; feeGrowthAbove1X128 = upper.feeGrowthOutside1X128; } else { feeGrowthAbove0X128 = feeGrowthGlobal0X128 - upper.feeGrowthOutside0X128; feeGrowthAbove1X128 = feeGrowthGlobal1X128 - upper.feeGrowthOutside1X128; } feeGrowthInside0X128 = feeGrowthGlobal0X128 - feeGrowthBelow0X128 - feeGrowthAbove0X128; feeGrowthInside1X128 = feeGrowthGlobal1X128 - feeGrowthBelow1X128 - feeGrowthAbove1X128; } /// @notice Updates a tick and returns true if the tick was flipped from initialized to uninitialized, or vice versa /// @param self The mapping containing all tick information for initialized ticks /// @param tick The tick that will be updated /// @param tickCurrent The current tick /// @param liquidityDelta A new amount of liquidity to be added (subtracted) when tick is crossed from left to right (right to left) /// @param feeGrowthGlobal0X128 The all-time global fee growth, per unit of liquidity, in token0 /// @param feeGrowthGlobal1X128 The all-time global fee growth, per unit of liquidity, in token1 /// @param secondsPerLiquidityCumulativeX128 The all-time seconds per max(1, liquidity) of the pool /// @param time The current block timestamp cast to a uint32 /// @param upper true for updating a position's upper tick, or false for updating a position's lower tick /// @param maxLiquidity The maximum liquidity allocation for a single tick /// @return flipped Whether the tick was flipped from initialized to uninitialized, or vice versa function update( mapping(int24 => Tick.Info) storage self, int24 tick, int24 tickCurrent, int128 liquidityDelta, uint256 feeGrowthGlobal0X128, uint256 feeGrowthGlobal1X128, uint160 secondsPerLiquidityCumulativeX128, int56 tickCumulative, uint32 time, bool upper, uint128 maxLiquidity ) internal returns (bool flipped) { Tick.Info storage info = self[tick]; uint128 liquidityGrossBefore = info.liquidityGross; uint128 liquidityGrossAfter = LiquidityMath.addDelta(liquidityGrossBefore, liquidityDelta); require(liquidityGrossAfter <= maxLiquidity, 'LO'); flipped = (liquidityGrossAfter == 0) != (liquidityGrossBefore == 0); if (liquidityGrossBefore == 0) { // by convention, we assume that all growth before a tick was initialized happened _below_ the tick if (tick <= tickCurrent) { info.feeGrowthOutside0X128 = feeGrowthGlobal0X128; info.feeGrowthOutside1X128 = feeGrowthGlobal1X128; info.secondsPerLiquidityOutsideX128 = secondsPerLiquidityCumulativeX128; info.tickCumulativeOutside = tickCumulative; info.secondsOutside = time; } info.initialized = true; } info.liquidityGross = liquidityGrossAfter; // when the lower (upper) tick is crossed left to right (right to left), liquidity must be added (removed) info.liquidityNet = upper ? int256(info.liquidityNet).sub(liquidityDelta).toInt128() : int256(info.liquidityNet).add(liquidityDelta).toInt128(); } /// @notice Clears tick data /// @param self The mapping containing all initialized tick information for initialized ticks /// @param tick The tick that will be cleared function clear(mapping(int24 => Tick.Info) storage self, int24 tick) internal { delete self[tick]; } /// @notice Transitions to next tick as needed by price movement /// @param self The mapping containing all tick information for initialized ticks /// @param tick The destination tick of the transition /// @param feeGrowthGlobal0X128 The all-time global fee growth, per unit of liquidity, in token0 /// @param feeGrowthGlobal1X128 The all-time global fee growth, per unit of liquidity, in token1 /// @param secondsPerLiquidityCumulativeX128 The current seconds per liquidity /// @param time The current block.timestamp /// @return liquidityNet The amount of liquidity added (subtracted) when tick is crossed from left to right (right to left) function cross( mapping(int24 => Tick.Info) storage self, int24 tick, uint256 feeGrowthGlobal0X128, uint256 feeGrowthGlobal1X128, uint160 secondsPerLiquidityCumulativeX128, int56 tickCumulative, uint32 time ) internal returns (int128 liquidityNet) { Tick.Info storage info = self[tick]; info.feeGrowthOutside0X128 = feeGrowthGlobal0X128 - info.feeGrowthOutside0X128; info.feeGrowthOutside1X128 = feeGrowthGlobal1X128 - info.feeGrowthOutside1X128; info.secondsPerLiquidityOutsideX128 = secondsPerLiquidityCumulativeX128 - info.secondsPerLiquidityOutsideX128; info.tickCumulativeOutside = tickCumulative - info.tickCumulativeOutside; info.secondsOutside = time - info.secondsOutside; liquidityNet = info.liquidityNet; } } // SPDX-License-Identifier: BUSL-1.1 pragma solidity >=0.5.0; import './BitMath.sol'; /// @title Packed tick initialized state library /// @notice Stores a packed mapping of tick index to its initialized state /// @dev The mapping uses int16 for keys since ticks are represented as int24 and there are 256 (2^8) values per word. library TickBitmap { /// @notice Computes the position in the mapping where the initialized bit for a tick lives /// @param tick The tick for which to compute the position /// @return wordPos The key in the mapping containing the word in which the bit is stored /// @return bitPos The bit position in the word where the flag is stored function position(int24 tick) private pure returns (int16 wordPos, uint8 bitPos) { wordPos = int16(tick >> 8); bitPos = uint8(tick % 256); } /// @notice Flips the initialized state for a given tick from false to true, or vice versa /// @param self The mapping in which to flip the tick /// @param tick The tick to flip /// @param tickSpacing The spacing between usable ticks function flipTick( mapping(int16 => uint256) storage self, int24 tick, int24 tickSpacing ) internal { require(tick % tickSpacing == 0); // ensure that the tick is spaced (int16 wordPos, uint8 bitPos) = position(tick / tickSpacing); uint256 mask = 1 << bitPos; self[wordPos] ^= mask; } /// @notice Returns the next initialized tick contained in the same word (or adjacent word) as the tick that is either /// to the left (less than or equal to) or right (greater than) of the given tick /// @param self The mapping in which to compute the next initialized tick /// @param tick The starting tick /// @param tickSpacing The spacing between usable ticks /// @param lte Whether to search for the next initialized tick to the left (less than or equal to the starting tick) /// @return next The next initialized or uninitialized tick up to 256 ticks away from the current tick /// @return initialized Whether the next tick is initialized, as the function only searches within up to 256 ticks function nextInitializedTickWithinOneWord( mapping(int16 => uint256) storage self, int24 tick, int24 tickSpacing, bool lte ) internal view returns (int24 next, bool initialized) { int24 compressed = tick / tickSpacing; if (tick < 0 && tick % tickSpacing != 0) compressed--; // round towards negative infinity if (lte) { (int16 wordPos, uint8 bitPos) = position(compressed); // all the 1s at or to the right of the current bitPos uint256 mask = (1 << bitPos) - 1 + (1 << bitPos); uint256 masked = self[wordPos] & mask; // if there are no initialized ticks to the right of or at the current tick, return rightmost in the word initialized = masked != 0; // overflow/underflow is possible, but prevented externally by limiting both tickSpacing and tick next = initialized ? (compressed - int24(bitPos - BitMath.mostSignificantBit(masked))) * tickSpacing : (compressed - int24(bitPos)) * tickSpacing; } else { // start from the word of the next tick, since the current tick state doesn't matter (int16 wordPos, uint8 bitPos) = position(compressed + 1); // all the 1s at or to the left of the bitPos uint256 mask = ~((1 << bitPos) - 1); uint256 masked = self[wordPos] & mask; // if there are no initialized ticks to the left of the current tick, return leftmost in the word initialized = masked != 0; // overflow/underflow is possible, but prevented externally by limiting both tickSpacing and tick next = initialized ? (compressed + 1 + int24(BitMath.leastSignificantBit(masked) - bitPos)) * tickSpacing : (compressed + 1 + int24(type(uint8).max - bitPos)) * tickSpacing; } } } // SPDX-License-Identifier: BUSL-1.1 pragma solidity >=0.5.0; import './FullMath.sol'; import './FixedPoint128.sol'; import './LiquidityMath.sol'; /// @title Position /// @notice Positions represent an owner address' liquidity between a lower and upper tick boundary /// @dev Positions store additional state for tracking fees owed to the position library Position { // info stored for each user's position struct Info { // the amount of liquidity owned by this position uint128 liquidity; // fee growth per unit of liquidity as of the last update to liquidity or fees owed uint256 feeGrowthInside0LastX128; uint256 feeGrowthInside1LastX128; // the fees owed to the position owner in token0/token1 uint128 tokensOwed0; uint128 tokensOwed1; } /// @notice Returns the Info struct of a position, given an owner and position boundaries /// @param self The mapping containing all user positions /// @param owner The address of the position owner /// @param tickLower The lower tick boundary of the position /// @param tickUpper The upper tick boundary of the position /// @return position The position info struct of the given owners' position function get( mapping(bytes32 => Info) storage self, address owner, int24 tickLower, int24 tickUpper ) internal view returns (Position.Info storage position) { position = self[keccak256(abi.encodePacked(owner, tickLower, tickUpper))]; } /// @notice Credits accumulated fees to a user's position /// @param self The individual position to update /// @param liquidityDelta The change in pool liquidity as a result of the position update /// @param feeGrowthInside0X128 The all-time fee growth in token0, per unit of liquidity, inside the position's tick boundaries /// @param feeGrowthInside1X128 The all-time fee growth in token1, per unit of liquidity, inside the position's tick boundaries function update( Info storage self, int128 liquidityDelta, uint256 feeGrowthInside0X128, uint256 feeGrowthInside1X128 ) internal { Info memory _self = self; uint128 liquidityNext; if (liquidityDelta == 0) { require(_self.liquidity > 0, 'NP'); // disallow pokes for 0 liquidity positions liquidityNext = _self.liquidity; } else { liquidityNext = LiquidityMath.addDelta(_self.liquidity, liquidityDelta); } // calculate accumulated fees uint128 tokensOwed0 = uint128( FullMath.mulDiv( feeGrowthInside0X128 - _self.feeGrowthInside0LastX128, _self.liquidity, FixedPoint128.Q128 ) ); uint128 tokensOwed1 = uint128( FullMath.mulDiv( feeGrowthInside1X128 - _self.feeGrowthInside1LastX128, _self.liquidity, FixedPoint128.Q128 ) ); // update the position if (liquidityDelta != 0) self.liquidity = liquidityNext; self.feeGrowthInside0LastX128 = feeGrowthInside0X128; self.feeGrowthInside1LastX128 = feeGrowthInside1X128; if (tokensOwed0 > 0 || tokensOwed1 > 0) { // overflow is acceptable, have to withdraw before you hit type(uint128).max fees self.tokensOwed0 += tokensOwed0; self.tokensOwed1 += tokensOwed1; } } } // SPDX-License-Identifier: BUSL-1.1 pragma solidity >=0.5.0; /// @title Oracle /// @notice Provides price and liquidity data useful for a wide variety of system designs /// @dev Instances of stored oracle data, "observations", are collected in the oracle array /// Every pool is initialized with an oracle array length of 1. Anyone can pay the SSTOREs to increase the /// maximum length of the oracle array. New slots will be added when the array is fully populated. /// Observations are overwritten when the full length of the oracle array is populated. /// The most recent observation is available, independent of the length of the oracle array, by passing 0 to observe() library Oracle { struct Observation { // the block timestamp of the observation uint32 blockTimestamp; // the tick accumulator, i.e. tick * time elapsed since the pool was first initialized int56 tickCumulative; // the seconds per liquidity, i.e. seconds elapsed / max(1, liquidity) since the pool was first initialized uint160 secondsPerLiquidityCumulativeX128; // whether or not the observation is initialized bool initialized; } /// @notice Transforms a previous observation into a new observation, given the passage of time and the current tick and liquidity values /// @dev blockTimestamp _must_ be chronologically equal to or greater than last.blockTimestamp, safe for 0 or 1 overflows /// @param last The specified observation to be transformed /// @param blockTimestamp The timestamp of the new observation /// @param tick The active tick at the time of the new observation /// @param liquidity The total in-range liquidity at the time of the new observation /// @return Observation The newly populated observation function transform( Observation memory last, uint32 blockTimestamp, int24 tick, uint128 liquidity ) private pure returns (Observation memory) { uint32 delta = blockTimestamp - last.blockTimestamp; return Observation({ blockTimestamp: blockTimestamp, tickCumulative: last.tickCumulative + int56(tick) * delta, secondsPerLiquidityCumulativeX128: last.secondsPerLiquidityCumulativeX128 + ((uint160(delta) << 128) / (liquidity > 0 ? liquidity : 1)), initialized: true }); } /// @notice Initialize the oracle array by writing the first slot. Called once for the lifecycle of the observations array /// @param self The stored oracle array /// @param time The time of the oracle initialization, via block.timestamp truncated to uint32 /// @return cardinality The number of populated elements in the oracle array /// @return cardinalityNext The new length of the oracle array, independent of population function initialize(Observation[65535] storage self, uint32 time) internal returns (uint16 cardinality, uint16 cardinalityNext) { self[0] = Observation({ blockTimestamp: time, tickCumulative: 0, secondsPerLiquidityCumulativeX128: 0, initialized: true }); return (1, 1); } /// @notice Writes an oracle observation to the array /// @dev Writable at most once per block. Index represents the most recently written element. cardinality and index must be tracked externally. /// If the index is at the end of the allowable array length (according to cardinality), and the next cardinality /// is greater than the current one, cardinality may be increased. This restriction is created to preserve ordering. /// @param self The stored oracle array /// @param index The index of the observation that was most recently written to the observations array /// @param blockTimestamp The timestamp of the new observation /// @param tick The active tick at the time of the new observation /// @param liquidity The total in-range liquidity at the time of the new observation /// @param cardinality The number of populated elements in the oracle array /// @param cardinalityNext The new length of the oracle array, independent of population /// @return indexUpdated The new index of the most recently written element in the oracle array /// @return cardinalityUpdated The new cardinality of the oracle array function write( Observation[65535] storage self, uint16 index, uint32 blockTimestamp, int24 tick, uint128 liquidity, uint16 cardinality, uint16 cardinalityNext ) internal returns (uint16 indexUpdated, uint16 cardinalityUpdated) { Observation memory last = self[index]; // early return if we've already written an observation this block if (last.blockTimestamp == blockTimestamp) return (index, cardinality); // if the conditions are right, we can bump the cardinality if (cardinalityNext > cardinality && index == (cardinality - 1)) { cardinalityUpdated = cardinalityNext; } else { cardinalityUpdated = cardinality; } indexUpdated = (index + 1) % cardinalityUpdated; self[indexUpdated] = transform(last, blockTimestamp, tick, liquidity); } /// @notice Prepares the oracle array to store up to `next` observations /// @param self The stored oracle array /// @param current The current next cardinality of the oracle array /// @param next The proposed next cardinality which will be populated in the oracle array /// @return next The next cardinality which will be populated in the oracle array function grow( Observation[65535] storage self, uint16 current, uint16 next ) internal returns (uint16) { require(current > 0, 'I'); // no-op if the passed next value isn't greater than the current next value if (next <= current) return current; // store in each slot to prevent fresh SSTOREs in swaps // this data will not be used because the initialized boolean is still false for (uint16 i = current; i < next; i++) self[i].blockTimestamp = 1; return next; } /// @notice comparator for 32-bit timestamps /// @dev safe for 0 or 1 overflows, a and b _must_ be chronologically before or equal to time /// @param time A timestamp truncated to 32 bits /// @param a A comparison timestamp from which to determine the relative position of `time` /// @param b From which to determine the relative position of `time` /// @return bool Whether `a` is chronologically <= `b` function lte( uint32 time, uint32 a, uint32 b ) private pure returns (bool) { // if there hasn't been overflow, no need to adjust if (a <= time && b <= time) return a <= b; uint256 aAdjusted = a > time ? a : a + 2**32; uint256 bAdjusted = b > time ? b : b + 2**32; return aAdjusted <= bAdjusted; } /// @notice Fetches the observations beforeOrAt and atOrAfter a target, i.e. where [beforeOrAt, atOrAfter] is satisfied. /// The result may be the same observation, or adjacent observations. /// @dev The answer must be contained in the array, used when the target is located within the stored observation /// boundaries: older than the most recent observation and younger, or the same age as, the oldest observation /// @param self The stored oracle array /// @param time The current block.timestamp /// @param target The timestamp at which the reserved observation should be for /// @param index The index of the observation that was most recently written to the observations array /// @param cardinality The number of populated elements in the oracle array /// @return beforeOrAt The observation recorded before, or at, the target /// @return atOrAfter The observation recorded at, or after, the target function binarySearch( Observation[65535] storage self, uint32 time, uint32 target, uint16 index, uint16 cardinality ) private view returns (Observation memory beforeOrAt, Observation memory atOrAfter) { uint256 l = (index + 1) % cardinality; // oldest observation uint256 r = l + cardinality - 1; // newest observation uint256 i; while (true) { i = (l + r) / 2; beforeOrAt = self[i % cardinality]; // we've landed on an uninitialized tick, keep searching higher (more recently) if (!beforeOrAt.initialized) { l = i + 1; continue; } atOrAfter = self[(i + 1) % cardinality]; bool targetAtOrAfter = lte(time, beforeOrAt.blockTimestamp, target); // check if we've found the answer! if (targetAtOrAfter && lte(time, target, atOrAfter.blockTimestamp)) break; if (!targetAtOrAfter) r = i - 1; else l = i + 1; } } /// @notice Fetches the observations beforeOrAt and atOrAfter a given target, i.e. where [beforeOrAt, atOrAfter] is satisfied /// @dev Assumes there is at least 1 initialized observation. /// Used by observeSingle() to compute the counterfactual accumulator values as of a given block timestamp. /// @param self The stored oracle array /// @param time The current block.timestamp /// @param target The timestamp at which the reserved observation should be for /// @param tick The active tick at the time of the returned or simulated observation /// @param index The index of the observation that was most recently written to the observations array /// @param liquidity The total pool liquidity at the time of the call /// @param cardinality The number of populated elements in the oracle array /// @return beforeOrAt The observation which occurred at, or before, the given timestamp /// @return atOrAfter The observation which occurred at, or after, the given timestamp function getSurroundingObservations( Observation[65535] storage self, uint32 time, uint32 target, int24 tick, uint16 index, uint128 liquidity, uint16 cardinality ) private view returns (Observation memory beforeOrAt, Observation memory atOrAfter) { // optimistically set before to the newest observation beforeOrAt = self[index]; // if the target is chronologically at or after the newest observation, we can early return if (lte(time, beforeOrAt.blockTimestamp, target)) { if (beforeOrAt.blockTimestamp == target) { // if newest observation equals target, we're in the same block, so we can ignore atOrAfter return (beforeOrAt, atOrAfter); } else { // otherwise, we need to transform return (beforeOrAt, transform(beforeOrAt, target, tick, liquidity)); } } // now, set before to the oldest observation beforeOrAt = self[(index + 1) % cardinality]; if (!beforeOrAt.initialized) beforeOrAt = self[0]; // ensure that the target is chronologically at or after the oldest observation require(lte(time, beforeOrAt.blockTimestamp, target), 'OLD'); // if we've reached this point, we have to binary search return binarySearch(self, time, target, index, cardinality); } /// @dev Reverts if an observation at or before the desired observation timestamp does not exist. /// 0 may be passed as `secondsAgo' to return the current cumulative values. /// If called with a timestamp falling between two observations, returns the counterfactual accumulator values /// at exactly the timestamp between the two observations. /// @param self The stored oracle array /// @param time The current block timestamp /// @param secondsAgo The amount of time to look back, in seconds, at which point to return an observation /// @param tick The current tick /// @param index The index of the observation that was most recently written to the observations array /// @param liquidity The current in-range pool liquidity /// @param cardinality The number of populated elements in the oracle array /// @return tickCumulative The tick * time elapsed since the pool was first initialized, as of `secondsAgo` /// @return secondsPerLiquidityCumulativeX128 The time elapsed / max(1, liquidity) since the pool was first initialized, as of `secondsAgo` function observeSingle( Observation[65535] storage self, uint32 time, uint32 secondsAgo, int24 tick, uint16 index, uint128 liquidity, uint16 cardinality ) internal view returns (int56 tickCumulative, uint160 secondsPerLiquidityCumulativeX128) { if (secondsAgo == 0) { Observation memory last = self[index]; if (last.blockTimestamp != time) last = transform(last, time, tick, liquidity); return (last.tickCumulative, last.secondsPerLiquidityCumulativeX128); } uint32 target = time - secondsAgo; (Observation memory beforeOrAt, Observation memory atOrAfter) = getSurroundingObservations(self, time, target, tick, index, liquidity, cardinality); if (target == beforeOrAt.blockTimestamp) { // we're at the left boundary return (beforeOrAt.tickCumulative, beforeOrAt.secondsPerLiquidityCumulativeX128); } else if (target == atOrAfter.blockTimestamp) { // we're at the right boundary return (atOrAfter.tickCumulative, atOrAfter.secondsPerLiquidityCumulativeX128); } else { // we're in the middle uint32 observationTimeDelta = atOrAfter.blockTimestamp - beforeOrAt.blockTimestamp; uint32 targetDelta = target - beforeOrAt.blockTimestamp; return ( beforeOrAt.tickCumulative + ((atOrAfter.tickCumulative - beforeOrAt.tickCumulative) / observationTimeDelta) * targetDelta, beforeOrAt.secondsPerLiquidityCumulativeX128 + uint160( (uint256( atOrAfter.secondsPerLiquidityCumulativeX128 - beforeOrAt.secondsPerLiquidityCumulativeX128 ) * targetDelta) / observationTimeDelta ) ); } } /// @notice Returns the accumulator values as of each time seconds ago from the given time in the array of `secondsAgos` /// @dev Reverts if `secondsAgos` > oldest observation /// @param self The stored oracle array /// @param time The current block.timestamp /// @param secondsAgos Each amount of time to look back, in seconds, at which point to return an observation /// @param tick The current tick /// @param index The index of the observation that was most recently written to the observations array /// @param liquidity The current in-range pool liquidity /// @param cardinality The number of populated elements in the oracle array /// @return tickCumulatives The tick * time elapsed since the pool was first initialized, as of each `secondsAgo` /// @return secondsPerLiquidityCumulativeX128s The cumulative seconds / max(1, liquidity) since the pool was first initialized, as of each `secondsAgo` function observe( Observation[65535] storage self, uint32 time, uint32[] memory secondsAgos, int24 tick, uint16 index, uint128 liquidity, uint16 cardinality ) internal view returns (int56[] memory tickCumulatives, uint160[] memory secondsPerLiquidityCumulativeX128s) { require(cardinality > 0, 'I'); tickCumulatives = new int56[](secondsAgos.length); secondsPerLiquidityCumulativeX128s = new uint160[](secondsAgos.length); for (uint256 i = 0; i < secondsAgos.length; i++) { (tickCumulatives[i], secondsPerLiquidityCumulativeX128s[i]) = observeSingle( self, time, secondsAgos[i], tick, index, liquidity, cardinality ); } } } // SPDX-License-Identifier: MIT pragma solidity >=0.4.0; /// @title Contains 512-bit math functions /// @notice Facilitates multiplication and division that can have overflow of an intermediate value without any loss of precision /// @dev Handles "phantom overflow" i.e., allows multiplication and division where an intermediate value overflows 256 bits library FullMath { /// @notice Calculates floor(a×b÷denominator) with full precision. Throws if result overflows a uint256 or denominator == 0 /// @param a The multiplicand /// @param b The multiplier /// @param denominator The divisor /// @return result The 256-bit result /// @dev Credit to Remco Bloemen under MIT license https://xn--2-umb.com/21/muldiv function mulDiv( uint256 a, uint256 b, uint256 denominator ) internal pure returns (uint256 result) { // 512-bit multiply [prod1 prod0] = a * b // Compute the product mod 2**256 and mod 2**256 - 1 // then use the Chinese Remainder Theorem to reconstruct // the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2**256 + prod0 uint256 prod0; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(a, b, not(0)) prod0 := mul(a, b) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division if (prod1 == 0) { require(denominator > 0); assembly { result := div(prod0, denominator) } return result; } // Make sure the result is less than 2**256. // Also prevents denominator == 0 require(denominator > prod1); /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0] // Compute remainder using mulmod uint256 remainder; assembly { remainder := mulmod(a, b, denominator) } // Subtract 256 bit number from 512 bit number assembly { prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator // Compute largest power of two divisor of denominator. // Always >= 1. uint256 twos = -denominator & denominator; // Divide denominator by power of two assembly { denominator := div(denominator, twos) } // Divide [prod1 prod0] by the factors of two assembly { prod0 := div(prod0, twos) } // Shift in bits from prod1 into prod0. For this we need // to flip `twos` such that it is 2**256 / twos. // If twos is zero, then it becomes one assembly { twos := add(div(sub(0, twos), twos), 1) } prod0 |= prod1 * twos; // Invert denominator mod 2**256 // Now that denominator is an odd number, it has an inverse // modulo 2**256 such that denominator * inv = 1 mod 2**256. // Compute the inverse by starting with a seed that is correct // correct for four bits. That is, denominator * inv = 1 mod 2**4 uint256 inv = (3 * denominator) ^ 2; // Now use Newton-Raphson iteration to improve the precision. // Thanks to Hensel's lifting lemma, this also works in modular // arithmetic, doubling the correct bits in each step. inv *= 2 - denominator * inv; // inverse mod 2**8 inv *= 2 - denominator * inv; // inverse mod 2**16 inv *= 2 - denominator * inv; // inverse mod 2**32 inv *= 2 - denominator * inv; // inverse mod 2**64 inv *= 2 - denominator * inv; // inverse mod 2**128 inv *= 2 - denominator * inv; // inverse mod 2**256 // Because the division is now exact we can divide by multiplying // with the modular inverse of denominator. This will give us the // correct result modulo 2**256. Since the precoditions guarantee // that the outcome is less than 2**256, this is the final result. // We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inv; return result; } /// @notice Calculates ceil(a×b÷denominator) with full precision. Throws if result overflows a uint256 or denominator == 0 /// @param a The multiplicand /// @param b The multiplier /// @param denominator The divisor /// @return result The 256-bit result function mulDivRoundingUp( uint256 a, uint256 b, uint256 denominator ) internal pure returns (uint256 result) { result = mulDiv(a, b, denominator); if (mulmod(a, b, denominator) > 0) { require(result < type(uint256).max); result++; } } } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.4.0; /// @title FixedPoint128 /// @notice A library for handling binary fixed point numbers, see https://en.wikipedia.org/wiki/Q_(number_format) library FixedPoint128 { uint256 internal constant Q128 = 0x100000000000000000000000000000000; } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.6.0; import '../interfaces/IERC20Minimal.sol'; /// @title TransferHelper /// @notice Contains helper methods for interacting with ERC20 tokens that do not consistently return true/false library TransferHelper { /// @notice Transfers tokens from msg.sender to a recipient /// @dev Calls transfer on token contract, errors with TF if transfer fails /// @param token The contract address of the token which will be transferred /// @param to The recipient of the transfer /// @param value The value of the transfer function safeTransfer( address token, address to, uint256 value ) internal { (bool success, bytes memory data) = token.call(abi.encodeWithSelector(IERC20Minimal.transfer.selector, to, value)); require(success && (data.length == 0 || abi.decode(data, (bool))), 'TF'); } } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; /// @title Math library for computing sqrt prices from ticks and vice versa /// @notice Computes sqrt price for ticks of size 1.0001, i.e. sqrt(1.0001^tick) as fixed point Q64.96 numbers. Supports /// prices between 2**-128 and 2**128 library TickMath { /// @dev The minimum tick that may be passed to #getSqrtRatioAtTick computed from log base 1.0001 of 2**-128 int24 internal constant MIN_TICK = -887272; /// @dev The maximum tick that may be passed to #getSqrtRatioAtTick computed from log base 1.0001 of 2**128 int24 internal constant MAX_TICK = -MIN_TICK; /// @dev The minimum value that can be returned from #getSqrtRatioAtTick. Equivalent to getSqrtRatioAtTick(MIN_TICK) uint160 internal constant MIN_SQRT_RATIO = 4295128739; /// @dev The maximum value that can be returned from #getSqrtRatioAtTick. Equivalent to getSqrtRatioAtTick(MAX_TICK) uint160 internal constant MAX_SQRT_RATIO = 1461446703485210103287273052203988822378723970342; /// @notice Calculates sqrt(1.0001^tick) * 2^96 /// @dev Throws if |tick| > max tick /// @param tick The input tick for the above formula /// @return sqrtPriceX96 A Fixed point Q64.96 number representing the sqrt of the ratio of the two assets (token1/token0) /// at the given tick function getSqrtRatioAtTick(int24 tick) internal pure returns (uint160 sqrtPriceX96) { uint256 absTick = tick < 0 ? uint256(-int256(tick)) : uint256(int256(tick)); require(absTick <= uint256(MAX_TICK), 'T'); uint256 ratio = absTick & 0x1 != 0 ? 0xfffcb933bd6fad37aa2d162d1a594001 : 0x100000000000000000000000000000000; if (absTick & 0x2 != 0) ratio = (ratio * 0xfff97272373d413259a46990580e213a) >> 128; if (absTick & 0x4 != 0) ratio = (ratio * 0xfff2e50f5f656932ef12357cf3c7fdcc) >> 128; if (absTick & 0x8 != 0) ratio = (ratio * 0xffe5caca7e10e4e61c3624eaa0941cd0) >> 128; if (absTick & 0x10 != 0) ratio = (ratio * 0xffcb9843d60f6159c9db58835c926644) >> 128; if (absTick & 0x20 != 0) ratio = (ratio * 0xff973b41fa98c081472e6896dfb254c0) >> 128; if (absTick & 0x40 != 0) ratio = (ratio * 0xff2ea16466c96a3843ec78b326b52861) >> 128; if (absTick & 0x80 != 0) ratio = (ratio * 0xfe5dee046a99a2a811c461f1969c3053) >> 128; if (absTick & 0x100 != 0) ratio = (ratio * 0xfcbe86c7900a88aedcffc83b479aa3a4) >> 128; if (absTick & 0x200 != 0) ratio = (ratio * 0xf987a7253ac413176f2b074cf7815e54) >> 128; if (absTick & 0x400 != 0) ratio = (ratio * 0xf3392b0822b70005940c7a398e4b70f3) >> 128; if (absTick & 0x800 != 0) ratio = (ratio * 0xe7159475a2c29b7443b29c7fa6e889d9) >> 128; if (absTick & 0x1000 != 0) ratio = (ratio * 0xd097f3bdfd2022b8845ad8f792aa5825) >> 128; if (absTick & 0x2000 != 0) ratio = (ratio * 0xa9f746462d870fdf8a65dc1f90e061e5) >> 128; if (absTick & 0x4000 != 0) ratio = (ratio * 0x70d869a156d2a1b890bb3df62baf32f7) >> 128; if (absTick & 0x8000 != 0) ratio = (ratio * 0x31be135f97d08fd981231505542fcfa6) >> 128; if (absTick & 0x10000 != 0) ratio = (ratio * 0x9aa508b5b7a84e1c677de54f3e99bc9) >> 128; if (absTick & 0x20000 != 0) ratio = (ratio * 0x5d6af8dedb81196699c329225ee604) >> 128; if (absTick & 0x40000 != 0) ratio = (ratio * 0x2216e584f5fa1ea926041bedfe98) >> 128; if (absTick & 0x80000 != 0) ratio = (ratio * 0x48a170391f7dc42444e8fa2) >> 128; if (tick > 0) ratio = type(uint256).max / ratio; // this divides by 1<<32 rounding up to go from a Q128.128 to a Q128.96. // we then downcast because we know the result always fits within 160 bits due to our tick input constraint // we round up in the division so getTickAtSqrtRatio of the output price is always consistent sqrtPriceX96 = uint160((ratio >> 32) + (ratio % (1 << 32) == 0 ? 0 : 1)); } /// @notice Calculates the greatest tick value such that getRatioAtTick(tick) <= ratio /// @dev Throws in case sqrtPriceX96 < MIN_SQRT_RATIO, as MIN_SQRT_RATIO is the lowest value getRatioAtTick may /// ever return. /// @param sqrtPriceX96 The sqrt ratio for which to compute the tick as a Q64.96 /// @return tick The greatest tick for which the ratio is less than or equal to the input ratio function getTickAtSqrtRatio(uint160 sqrtPriceX96) internal pure returns (int24 tick) { // second inequality must be < because the price can never reach the price at the max tick require(sqrtPriceX96 >= MIN_SQRT_RATIO && sqrtPriceX96 < MAX_SQRT_RATIO, 'R'); uint256 ratio = uint256(sqrtPriceX96) << 32; uint256 r = ratio; uint256 msb = 0; assembly { let f := shl(7, gt(r, 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF)) msb := or(msb, f) r := shr(f, r) } assembly { let f := shl(6, gt(r, 0xFFFFFFFFFFFFFFFF)) msb := or(msb, f) r := shr(f, r) } assembly { let f := shl(5, gt(r, 0xFFFFFFFF)) msb := or(msb, f) r := shr(f, r) } assembly { let f := shl(4, gt(r, 0xFFFF)) msb := or(msb, f) r := shr(f, r) } assembly { let f := shl(3, gt(r, 0xFF)) msb := or(msb, f) r := shr(f, r) } assembly { let f := shl(2, gt(r, 0xF)) msb := or(msb, f) r := shr(f, r) } assembly { let f := shl(1, gt(r, 0x3)) msb := or(msb, f) r := shr(f, r) } assembly { let f := gt(r, 0x1) msb := or(msb, f) } if (msb >= 128) r = ratio >> (msb - 127); else r = ratio << (127 - msb); int256 log_2 = (int256(msb) - 128) << 64; assembly { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(63, f)) r := shr(f, r) } assembly { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(62, f)) r := shr(f, r) } assembly { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(61, f)) r := shr(f, r) } assembly { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(60, f)) r := shr(f, r) } assembly { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(59, f)) r := shr(f, r) } assembly { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(58, f)) r := shr(f, r) } assembly { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(57, f)) r := shr(f, r) } assembly { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(56, f)) r := shr(f, r) } assembly { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(55, f)) r := shr(f, r) } assembly { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(54, f)) r := shr(f, r) } assembly { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(53, f)) r := shr(f, r) } assembly { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(52, f)) r := shr(f, r) } assembly { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(51, f)) r := shr(f, r) } assembly { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(50, f)) } int256 log_sqrt10001 = log_2 * 255738958999603826347141; // 128.128 number int24 tickLow = int24((log_sqrt10001 - 3402992956809132418596140100660247210) >> 128); int24 tickHi = int24((log_sqrt10001 + 291339464771989622907027621153398088495) >> 128); tick = tickLow == tickHi ? tickLow : getSqrtRatioAtTick(tickHi) <= sqrtPriceX96 ? tickHi : tickLow; } } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; /// @title Math library for liquidity library LiquidityMath { /// @notice Add a signed liquidity delta to liquidity and revert if it overflows or underflows /// @param x The liquidity before change /// @param y The delta by which liquidity should be changed /// @return z The liquidity delta function addDelta(uint128 x, int128 y) internal pure returns (uint128 z) { if (y < 0) { require((z = x - uint128(-y)) < x, 'LS'); } else { require((z = x + uint128(y)) >= x, 'LA'); } } } // SPDX-License-Identifier: BUSL-1.1 pragma solidity >=0.5.0; import './LowGasSafeMath.sol'; import './SafeCast.sol'; import './FullMath.sol'; import './UnsafeMath.sol'; import './FixedPoint96.sol'; /// @title Functions based on Q64.96 sqrt price and liquidity /// @notice Contains the math that uses square root of price as a Q64.96 and liquidity to compute deltas library SqrtPriceMath { using LowGasSafeMath for uint256; using SafeCast for uint256; /// @notice Gets the next sqrt price given a delta of token0 /// @dev Always rounds up, because in the exact output case (increasing price) we need to move the price at least /// far enough to get the desired output amount, and in the exact input case (decreasing price) we need to move the /// price less in order to not send too much output. /// The most precise formula for this is liquidity * sqrtPX96 / (liquidity +- amount * sqrtPX96), /// if this is impossible because of overflow, we calculate liquidity / (liquidity / sqrtPX96 +- amount). /// @param sqrtPX96 The starting price, i.e. before accounting for the token0 delta /// @param liquidity The amount of usable liquidity /// @param amount How much of token0 to add or remove from virtual reserves /// @param add Whether to add or remove the amount of token0 /// @return The price after adding or removing amount, depending on add function getNextSqrtPriceFromAmount0RoundingUp( uint160 sqrtPX96, uint128 liquidity, uint256 amount, bool add ) internal pure returns (uint160) { // we short circuit amount == 0 because the result is otherwise not guaranteed to equal the input price if (amount == 0) return sqrtPX96; uint256 numerator1 = uint256(liquidity) << FixedPoint96.RESOLUTION; if (add) { uint256 product; if ((product = amount * sqrtPX96) / amount == sqrtPX96) { uint256 denominator = numerator1 + product; if (denominator >= numerator1) // always fits in 160 bits return uint160(FullMath.mulDivRoundingUp(numerator1, sqrtPX96, denominator)); } return uint160(UnsafeMath.divRoundingUp(numerator1, (numerator1 / sqrtPX96).add(amount))); } else { uint256 product; // if the product overflows, we know the denominator underflows // in addition, we must check that the denominator does not underflow require((product = amount * sqrtPX96) / amount == sqrtPX96 && numerator1 > product); uint256 denominator = numerator1 - product; return FullMath.mulDivRoundingUp(numerator1, sqrtPX96, denominator).toUint160(); } } /// @notice Gets the next sqrt price given a delta of token1 /// @dev Always rounds down, because in the exact output case (decreasing price) we need to move the price at least /// far enough to get the desired output amount, and in the exact input case (increasing price) we need to move the /// price less in order to not send too much output. /// The formula we compute is within <1 wei of the lossless version: sqrtPX96 +- amount / liquidity /// @param sqrtPX96 The starting price, i.e., before accounting for the token1 delta /// @param liquidity The amount of usable liquidity /// @param amount How much of token1 to add, or remove, from virtual reserves /// @param add Whether to add, or remove, the amount of token1 /// @return The price after adding or removing `amount` function getNextSqrtPriceFromAmount1RoundingDown( uint160 sqrtPX96, uint128 liquidity, uint256 amount, bool add ) internal pure returns (uint160) { // if we're adding (subtracting), rounding down requires rounding the quotient down (up) // in both cases, avoid a mulDiv for most inputs if (add) { uint256 quotient = ( amount <= type(uint160).max ? (amount << FixedPoint96.RESOLUTION) / liquidity : FullMath.mulDiv(amount, FixedPoint96.Q96, liquidity) ); return uint256(sqrtPX96).add(quotient).toUint160(); } else { uint256 quotient = ( amount <= type(uint160).max ? UnsafeMath.divRoundingUp(amount << FixedPoint96.RESOLUTION, liquidity) : FullMath.mulDivRoundingUp(amount, FixedPoint96.Q96, liquidity) ); require(sqrtPX96 > quotient); // always fits 160 bits return uint160(sqrtPX96 - quotient); } } /// @notice Gets the next sqrt price given an input amount of token0 or token1 /// @dev Throws if price or liquidity are 0, or if the next price is out of bounds /// @param sqrtPX96 The starting price, i.e., before accounting for the input amount /// @param liquidity The amount of usable liquidity /// @param amountIn How much of token0, or token1, is being swapped in /// @param zeroForOne Whether the amount in is token0 or token1 /// @return sqrtQX96 The price after adding the input amount to token0 or token1 function getNextSqrtPriceFromInput( uint160 sqrtPX96, uint128 liquidity, uint256 amountIn, bool zeroForOne ) internal pure returns (uint160 sqrtQX96) { require(sqrtPX96 > 0); require(liquidity > 0); // round to make sure that we don't pass the target price return zeroForOne ? getNextSqrtPriceFromAmount0RoundingUp(sqrtPX96, liquidity, amountIn, true) : getNextSqrtPriceFromAmount1RoundingDown(sqrtPX96, liquidity, amountIn, true); } /// @notice Gets the next sqrt price given an output amount of token0 or token1 /// @dev Throws if price or liquidity are 0 or the next price is out of bounds /// @param sqrtPX96 The starting price before accounting for the output amount /// @param liquidity The amount of usable liquidity /// @param amountOut How much of token0, or token1, is being swapped out /// @param zeroForOne Whether the amount out is token0 or token1 /// @return sqrtQX96 The price after removing the output amount of token0 or token1 function getNextSqrtPriceFromOutput( uint160 sqrtPX96, uint128 liquidity, uint256 amountOut, bool zeroForOne ) internal pure returns (uint160 sqrtQX96) { require(sqrtPX96 > 0); require(liquidity > 0); // round to make sure that we pass the target price return zeroForOne ? getNextSqrtPriceFromAmount1RoundingDown(sqrtPX96, liquidity, amountOut, false) : getNextSqrtPriceFromAmount0RoundingUp(sqrtPX96, liquidity, amountOut, false); } /// @notice Gets the amount0 delta between two prices /// @dev Calculates liquidity / sqrt(lower) - liquidity / sqrt(upper), /// i.e. liquidity * (sqrt(upper) - sqrt(lower)) / (sqrt(upper) * sqrt(lower)) /// @param sqrtRatioAX96 A sqrt price /// @param sqrtRatioBX96 Another sqrt price /// @param liquidity The amount of usable liquidity /// @param roundUp Whether to round the amount up or down /// @return amount0 Amount of token0 required to cover a position of size liquidity between the two passed prices function getAmount0Delta( uint160 sqrtRatioAX96, uint160 sqrtRatioBX96, uint128 liquidity, bool roundUp ) internal pure returns (uint256 amount0) { if (sqrtRatioAX96 > sqrtRatioBX96) (sqrtRatioAX96, sqrtRatioBX96) = (sqrtRatioBX96, sqrtRatioAX96); uint256 numerator1 = uint256(liquidity) << FixedPoint96.RESOLUTION; uint256 numerator2 = sqrtRatioBX96 - sqrtRatioAX96; require(sqrtRatioAX96 > 0); return roundUp ? UnsafeMath.divRoundingUp( FullMath.mulDivRoundingUp(numerator1, numerator2, sqrtRatioBX96), sqrtRatioAX96 ) : FullMath.mulDiv(numerator1, numerator2, sqrtRatioBX96) / sqrtRatioAX96; } /// @notice Gets the amount1 delta between two prices /// @dev Calculates liquidity * (sqrt(upper) - sqrt(lower)) /// @param sqrtRatioAX96 A sqrt price /// @param sqrtRatioBX96 Another sqrt price /// @param liquidity The amount of usable liquidity /// @param roundUp Whether to round the amount up, or down /// @return amount1 Amount of token1 required to cover a position of size liquidity between the two passed prices function getAmount1Delta( uint160 sqrtRatioAX96, uint160 sqrtRatioBX96, uint128 liquidity, bool roundUp ) internal pure returns (uint256 amount1) { if (sqrtRatioAX96 > sqrtRatioBX96) (sqrtRatioAX96, sqrtRatioBX96) = (sqrtRatioBX96, sqrtRatioAX96); return roundUp ? FullMath.mulDivRoundingUp(liquidity, sqrtRatioBX96 - sqrtRatioAX96, FixedPoint96.Q96) : FullMath.mulDiv(liquidity, sqrtRatioBX96 - sqrtRatioAX96, FixedPoint96.Q96); } /// @notice Helper that gets signed token0 delta /// @param sqrtRatioAX96 A sqrt price /// @param sqrtRatioBX96 Another sqrt price /// @param liquidity The change in liquidity for which to compute the amount0 delta /// @return amount0 Amount of token0 corresponding to the passed liquidityDelta between the two prices function getAmount0Delta( uint160 sqrtRatioAX96, uint160 sqrtRatioBX96, int128 liquidity ) internal pure returns (int256 amount0) { return liquidity < 0 ? -getAmount0Delta(sqrtRatioAX96, sqrtRatioBX96, uint128(-liquidity), false).toInt256() : getAmount0Delta(sqrtRatioAX96, sqrtRatioBX96, uint128(liquidity), true).toInt256(); } /// @notice Helper that gets signed token1 delta /// @param sqrtRatioAX96 A sqrt price /// @param sqrtRatioBX96 Another sqrt price /// @param liquidity The change in liquidity for which to compute the amount1 delta /// @return amount1 Amount of token1 corresponding to the passed liquidityDelta between the two prices function getAmount1Delta( uint160 sqrtRatioAX96, uint160 sqrtRatioBX96, int128 liquidity ) internal pure returns (int256 amount1) { return liquidity < 0 ? -getAmount1Delta(sqrtRatioAX96, sqrtRatioBX96, uint128(-liquidity), false).toInt256() : getAmount1Delta(sqrtRatioAX96, sqrtRatioBX96, uint128(liquidity), true).toInt256(); } } // SPDX-License-Identifier: BUSL-1.1 pragma solidity >=0.5.0; import './FullMath.sol'; import './SqrtPriceMath.sol'; /// @title Computes the result of a swap within ticks /// @notice Contains methods for computing the result of a swap within a single tick price range, i.e., a single tick. library SwapMath { /// @notice Computes the result of swapping some amount in, or amount out, given the parameters of the swap /// @dev The fee, plus the amount in, will never exceed the amount remaining if the swap's `amountSpecified` is positive /// @param sqrtRatioCurrentX96 The current sqrt price of the pool /// @param sqrtRatioTargetX96 The price that cannot be exceeded, from which the direction of the swap is inferred /// @param liquidity The usable liquidity /// @param amountRemaining How much input or output amount is remaining to be swapped in/out /// @param feePips The fee taken from the input amount, expressed in hundredths of a bip /// @return sqrtRatioNextX96 The price after swapping the amount in/out, not to exceed the price target /// @return amountIn The amount to be swapped in, of either token0 or token1, based on the direction of the swap /// @return amountOut The amount to be received, of either token0 or token1, based on the direction of the swap /// @return feeAmount The amount of input that will be taken as a fee function computeSwapStep( uint160 sqrtRatioCurrentX96, uint160 sqrtRatioTargetX96, uint128 liquidity, int256 amountRemaining, uint24 feePips ) internal pure returns ( uint160 sqrtRatioNextX96, uint256 amountIn, uint256 amountOut, uint256 feeAmount ) { bool zeroForOne = sqrtRatioCurrentX96 >= sqrtRatioTargetX96; bool exactIn = amountRemaining >= 0; if (exactIn) { uint256 amountRemainingLessFee = FullMath.mulDiv(uint256(amountRemaining), 1e6 - feePips, 1e6); amountIn = zeroForOne ? SqrtPriceMath.getAmount0Delta(sqrtRatioTargetX96, sqrtRatioCurrentX96, liquidity, true) : SqrtPriceMath.getAmount1Delta(sqrtRatioCurrentX96, sqrtRatioTargetX96, liquidity, true); if (amountRemainingLessFee >= amountIn) sqrtRatioNextX96 = sqrtRatioTargetX96; else sqrtRatioNextX96 = SqrtPriceMath.getNextSqrtPriceFromInput( sqrtRatioCurrentX96, liquidity, amountRemainingLessFee, zeroForOne ); } else { amountOut = zeroForOne ? SqrtPriceMath.getAmount1Delta(sqrtRatioTargetX96, sqrtRatioCurrentX96, liquidity, false) : SqrtPriceMath.getAmount0Delta(sqrtRatioCurrentX96, sqrtRatioTargetX96, liquidity, false); if (uint256(-amountRemaining) >= amountOut) sqrtRatioNextX96 = sqrtRatioTargetX96; else sqrtRatioNextX96 = SqrtPriceMath.getNextSqrtPriceFromOutput( sqrtRatioCurrentX96, liquidity, uint256(-amountRemaining), zeroForOne ); } bool max = sqrtRatioTargetX96 == sqrtRatioNextX96; // get the input/output amounts if (zeroForOne) { amountIn = max && exactIn ? amountIn : SqrtPriceMath.getAmount0Delta(sqrtRatioNextX96, sqrtRatioCurrentX96, liquidity, true); amountOut = max && !exactIn ? amountOut : SqrtPriceMath.getAmount1Delta(sqrtRatioNextX96, sqrtRatioCurrentX96, liquidity, false); } else { amountIn = max && exactIn ? amountIn : SqrtPriceMath.getAmount1Delta(sqrtRatioCurrentX96, sqrtRatioNextX96, liquidity, true); amountOut = max && !exactIn ? amountOut : SqrtPriceMath.getAmount0Delta(sqrtRatioCurrentX96, sqrtRatioNextX96, liquidity, false); } // cap the output amount to not exceed the remaining output amount if (!exactIn && amountOut > uint256(-amountRemaining)) { amountOut = uint256(-amountRemaining); } if (exactIn && sqrtRatioNextX96 != sqrtRatioTargetX96) { // we didn't reach the target, so take the remainder of the maximum input as fee feeAmount = uint256(amountRemaining) - amountIn; } else { feeAmount = FullMath.mulDivRoundingUp(amountIn, feePips, 1e6 - feePips); } } } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; /// @title An interface for a contract that is capable of deploying Uniswap V3 Pools /// @notice A contract that constructs a pool must implement this to pass arguments to the pool /// @dev This is used to avoid having constructor arguments in the pool contract, which results in the init code hash /// of the pool being constant allowing the CREATE2 address of the pool to be cheaply computed on-chain interface IUniswapV3PoolDeployer { /// @notice Get the parameters to be used in constructing the pool, set transiently during pool creation. /// @dev Called by the pool constructor to fetch the parameters of the pool /// Returns factory The factory address /// Returns token0 The first token of the pool by address sort order /// Returns token1 The second token of the pool by address sort order /// Returns fee The fee collected upon every swap in the pool, denominated in hundredths of a bip /// Returns tickSpacing The minimum number of ticks between initialized ticks function parameters() external view returns ( address factory, address token0, address token1, uint24 fee, int24 tickSpacing ); } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; /// @title The interface for the Uniswap V3 Factory /// @notice The Uniswap V3 Factory facilitates creation of Uniswap V3 pools and control over the protocol fees interface IUniswapV3Factory { /// @notice Emitted when the owner of the factory is changed /// @param oldOwner The owner before the owner was changed /// @param newOwner The owner after the owner was changed event OwnerChanged(address indexed oldOwner, address indexed newOwner); /// @notice Emitted when a pool is created /// @param token0 The first token of the pool by address sort order /// @param token1 The second token of the pool by address sort order /// @param fee The fee collected upon every swap in the pool, denominated in hundredths of a bip /// @param tickSpacing The minimum number of ticks between initialized ticks /// @param pool The address of the created pool event PoolCreated( address indexed token0, address indexed token1, uint24 indexed fee, int24 tickSpacing, address pool ); /// @notice Emitted when a new fee amount is enabled for pool creation via the factory /// @param fee The enabled fee, denominated in hundredths of a bip /// @param tickSpacing The minimum number of ticks between initialized ticks for pools created with the given fee event FeeAmountEnabled(uint24 indexed fee, int24 indexed tickSpacing); /// @notice Returns the current owner of the factory /// @dev Can be changed by the current owner via setOwner /// @return The address of the factory owner function owner() external view returns (address); /// @notice Returns the tick spacing for a given fee amount, if enabled, or 0 if not enabled /// @dev A fee amount can never be removed, so this value should be hard coded or cached in the calling context /// @param fee The enabled fee, denominated in hundredths of a bip. Returns 0 in case of unenabled fee /// @return The tick spacing function feeAmountTickSpacing(uint24 fee) external view returns (int24); /// @notice Returns the pool address for a given pair of tokens and a fee, or address 0 if it does not exist /// @dev tokenA and tokenB may be passed in either token0/token1 or token1/token0 order /// @param tokenA The contract address of either token0 or token1 /// @param tokenB The contract address of the other token /// @param fee The fee collected upon every swap in the pool, denominated in hundredths of a bip /// @return pool The pool address function getPool( address tokenA, address tokenB, uint24 fee ) external view returns (address pool); /// @notice Creates a pool for the given two tokens and fee /// @param tokenA One of the two tokens in the desired pool /// @param tokenB The other of the two tokens in the desired pool /// @param fee The desired fee for the pool /// @dev tokenA and tokenB may be passed in either order: token0/token1 or token1/token0. tickSpacing is retrieved /// from the fee. The call will revert if the pool already exists, the fee is invalid, or the token arguments /// are invalid. /// @return pool The address of the newly created pool function createPool( address tokenA, address tokenB, uint24 fee ) external returns (address pool); /// @notice Updates the owner of the factory /// @dev Must be called by the current owner /// @param _owner The new owner of the factory function setOwner(address _owner) external; /// @notice Enables a fee amount with the given tickSpacing /// @dev Fee amounts may never be removed once enabled /// @param fee The fee amount to enable, denominated in hundredths of a bip (i.e. 1e-6) /// @param tickSpacing The spacing between ticks to be enforced for all pools created with the given fee amount function enableFeeAmount(uint24 fee, int24 tickSpacing) external; } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; /// @title Minimal ERC20 interface for Uniswap /// @notice Contains a subset of the full ERC20 interface that is used in Uniswap V3 interface IERC20Minimal { /// @notice Returns the balance of a token /// @param account The account for which to look up the number of tokens it has, i.e. its balance /// @return The number of tokens held by the account function balanceOf(address account) external view returns (uint256); /// @notice Transfers the amount of token from the `msg.sender` to the recipient /// @param recipient The account that will receive the amount transferred /// @param amount The number of tokens to send from the sender to the recipient /// @return Returns true for a successful transfer, false for an unsuccessful transfer function transfer(address recipient, uint256 amount) external returns (bool); /// @notice Returns the current allowance given to a spender by an owner /// @param owner The account of the token owner /// @param spender The account of the token spender /// @return The current allowance granted by `owner` to `spender` function allowance(address owner, address spender) external view returns (uint256); /// @notice Sets the allowance of a spender from the `msg.sender` to the value `amount` /// @param spender The account which will be allowed to spend a given amount of the owners tokens /// @param amount The amount of tokens allowed to be used by `spender` /// @return Returns true for a successful approval, false for unsuccessful function approve(address spender, uint256 amount) external returns (bool); /// @notice Transfers `amount` tokens from `sender` to `recipient` up to the allowance given to the `msg.sender` /// @param sender The account from which the transfer will be initiated /// @param recipient The recipient of the transfer /// @param amount The amount of the transfer /// @return Returns true for a successful transfer, false for unsuccessful function transferFrom( address sender, address recipient, uint256 amount ) external returns (bool); /// @notice Event emitted when tokens are transferred from one address to another, either via `#transfer` or `#transferFrom`. /// @param from The account from which the tokens were sent, i.e. the balance decreased /// @param to The account to which the tokens were sent, i.e. the balance increased /// @param value The amount of tokens that were transferred event Transfer(address indexed from, address indexed to, uint256 value); /// @notice Event emitted when the approval amount for the spender of a given owner's tokens changes. /// @param owner The account that approved spending of its tokens /// @param spender The account for which the spending allowance was modified /// @param value The new allowance from the owner to the spender event Approval(address indexed owner, address indexed spender, uint256 value); } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; /// @title Callback for IUniswapV3PoolActions#mint /// @notice Any contract that calls IUniswapV3PoolActions#mint must implement this interface interface IUniswapV3MintCallback { /// @notice Called to `msg.sender` after minting liquidity to a position from IUniswapV3Pool#mint. /// @dev In the implementation you must pay the pool tokens owed for the minted liquidity. /// The caller of this method must be checked to be a UniswapV3Pool deployed by the canonical UniswapV3Factory. /// @param amount0Owed The amount of token0 due to the pool for the minted liquidity /// @param amount1Owed The amount of token1 due to the pool for the minted liquidity /// @param data Any data passed through by the caller via the IUniswapV3PoolActions#mint call function uniswapV3MintCallback( uint256 amount0Owed, uint256 amount1Owed, bytes calldata data ) external; } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; /// @title Callback for IUniswapV3PoolActions#swap /// @notice Any contract that calls IUniswapV3PoolActions#swap must implement this interface interface IUniswapV3SwapCallback { /// @notice Called to `msg.sender` after executing a swap via IUniswapV3Pool#swap. /// @dev In the implementation you must pay the pool tokens owed for the swap. /// The caller of this method must be checked to be a UniswapV3Pool deployed by the canonical UniswapV3Factory. /// amount0Delta and amount1Delta can both be 0 if no tokens were swapped. /// @param amount0Delta The amount of token0 that was sent (negative) or must be received (positive) by the pool by /// the end of the swap. If positive, the callback must send that amount of token0 to the pool. /// @param amount1Delta The amount of token1 that was sent (negative) or must be received (positive) by the pool by /// the end of the swap. If positive, the callback must send that amount of token1 to the pool. /// @param data Any data passed through by the caller via the IUniswapV3PoolActions#swap call function uniswapV3SwapCallback( int256 amount0Delta, int256 amount1Delta, bytes calldata data ) external; } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; /// @title Callback for IUniswapV3PoolActions#flash /// @notice Any contract that calls IUniswapV3PoolActions#flash must implement this interface interface IUniswapV3FlashCallback { /// @notice Called to `msg.sender` after transferring to the recipient from IUniswapV3Pool#flash. /// @dev In the implementation you must repay the pool the tokens sent by flash plus the computed fee amounts. /// The caller of this method must be checked to be a UniswapV3Pool deployed by the canonical UniswapV3Factory. /// @param fee0 The fee amount in token0 due to the pool by the end of the flash /// @param fee1 The fee amount in token1 due to the pool by the end of the flash /// @param data Any data passed through by the caller via the IUniswapV3PoolActions#flash call function uniswapV3FlashCallback( uint256 fee0, uint256 fee1, bytes calldata data ) external; } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; /// @title Pool state that never changes /// @notice These parameters are fixed for a pool forever, i.e., the methods will always return the same values interface IUniswapV3PoolImmutables { /// @notice The contract that deployed the pool, which must adhere to the IUniswapV3Factory interface /// @return The contract address function factory() external view returns (address); /// @notice The first of the two tokens of the pool, sorted by address /// @return The token contract address function token0() external view returns (address); /// @notice The second of the two tokens of the pool, sorted by address /// @return The token contract address function token1() external view returns (address); /// @notice The pool's fee in hundredths of a bip, i.e. 1e-6 /// @return The fee function fee() external view returns (uint24); /// @notice The pool tick spacing /// @dev Ticks can only be used at multiples of this value, minimum of 1 and always positive /// e.g.: a tickSpacing of 3 means ticks can be initialized every 3rd tick, i.e., ..., -6, -3, 0, 3, 6, ... /// This value is an int24 to avoid casting even though it is always positive. /// @return The tick spacing function tickSpacing() external view returns (int24); /// @notice The maximum amount of position liquidity that can use any tick in the range /// @dev This parameter is enforced per tick to prevent liquidity from overflowing a uint128 at any point, and /// also prevents out-of-range liquidity from being used to prevent adding in-range liquidity to a pool /// @return The max amount of liquidity per tick function maxLiquidityPerTick() external view returns (uint128); } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; /// @title Pool state that can change /// @notice These methods compose the pool's state, and can change with any frequency including multiple times /// per transaction interface IUniswapV3PoolState { /// @notice The 0th storage slot in the pool stores many values, and is exposed as a single method to save gas /// when accessed externally. /// @return sqrtPriceX96 The current price of the pool as a sqrt(token1/token0) Q64.96 value /// tick The current tick of the pool, i.e. according to the last tick transition that was run. /// This value may not always be equal to SqrtTickMath.getTickAtSqrtRatio(sqrtPriceX96) if the price is on a tick /// boundary. /// observationIndex The index of the last oracle observation that was written, /// observationCardinality The current maximum number of observations stored in the pool, /// observationCardinalityNext The next maximum number of observations, to be updated when the observation. /// feeProtocol The protocol fee for both tokens of the pool. /// Encoded as two 4 bit values, where the protocol fee of token1 is shifted 4 bits and the protocol fee of token0 /// is the lower 4 bits. Used as the denominator of a fraction of the swap fee, e.g. 4 means 1/4th of the swap fee. /// unlocked Whether the pool is currently locked to reentrancy function slot0() external view returns ( uint160 sqrtPriceX96, int24 tick, uint16 observationIndex, uint16 observationCardinality, uint16 observationCardinalityNext, uint8 feeProtocol, bool unlocked ); /// @notice The fee growth as a Q128.128 fees of token0 collected per unit of liquidity for the entire life of the pool /// @dev This value can overflow the uint256 function feeGrowthGlobal0X128() external view returns (uint256); /// @notice The fee growth as a Q128.128 fees of token1 collected per unit of liquidity for the entire life of the pool /// @dev This value can overflow the uint256 function feeGrowthGlobal1X128() external view returns (uint256); /// @notice The amounts of token0 and token1 that are owed to the protocol /// @dev Protocol fees will never exceed uint128 max in either token function protocolFees() external view returns (uint128 token0, uint128 token1); /// @notice The currently in range liquidity available to the pool /// @dev This value has no relationship to the total liquidity across all ticks function liquidity() external view returns (uint128); /// @notice Look up information about a specific tick in the pool /// @param tick The tick to look up /// @return liquidityGross the total amount of position liquidity that uses the pool either as tick lower or /// tick upper, /// liquidityNet how much liquidity changes when the pool price crosses the tick, /// feeGrowthOutside0X128 the fee growth on the other side of the tick from the current tick in token0, /// feeGrowthOutside1X128 the fee growth on the other side of the tick from the current tick in token1, /// tickCumulativeOutside the cumulative tick value on the other side of the tick from the current tick /// secondsPerLiquidityOutsideX128 the seconds spent per liquidity on the other side of the tick from the current tick, /// secondsOutside the seconds spent on the other side of the tick from the current tick, /// initialized Set to true if the tick is initialized, i.e. liquidityGross is greater than 0, otherwise equal to false. /// Outside values can only be used if the tick is initialized, i.e. if liquidityGross is greater than 0. /// In addition, these values are only relative and must be used only in comparison to previous snapshots for /// a specific position. function ticks(int24 tick) external view returns ( uint128 liquidityGross, int128 liquidityNet, uint256 feeGrowthOutside0X128, uint256 feeGrowthOutside1X128, int56 tickCumulativeOutside, uint160 secondsPerLiquidityOutsideX128, uint32 secondsOutside, bool initialized ); /// @notice Returns 256 packed tick initialized boolean values. See TickBitmap for more information function tickBitmap(int16 wordPosition) external view returns (uint256); /// @notice Returns the information about a position by the position's key /// @param key The position's key is a hash of a preimage composed by the owner, tickLower and tickUpper /// @return _liquidity The amount of liquidity in the position, /// Returns feeGrowthInside0LastX128 fee growth of token0 inside the tick range as of the last mint/burn/poke, /// Returns feeGrowthInside1LastX128 fee growth of token1 inside the tick range as of the last mint/burn/poke, /// Returns tokensOwed0 the computed amount of token0 owed to the position as of the last mint/burn/poke, /// Returns tokensOwed1 the computed amount of token1 owed to the position as of the last mint/burn/poke function positions(bytes32 key) external view returns ( uint128 _liquidity, uint256 feeGrowthInside0LastX128, uint256 feeGrowthInside1LastX128, uint128 tokensOwed0, uint128 tokensOwed1 ); /// @notice Returns data about a specific observation index /// @param index The element of the observations array to fetch /// @dev You most likely want to use #observe() instead of this method to get an observation as of some amount of time /// ago, rather than at a specific index in the array. /// @return blockTimestamp The timestamp of the observation, /// Returns tickCumulative the tick multiplied by seconds elapsed for the life of the pool as of the observation timestamp, /// Returns secondsPerLiquidityCumulativeX128 the seconds per in range liquidity for the life of the pool as of the observation timestamp, /// Returns initialized whether the observation has been initialized and the values are safe to use function observations(uint256 index) external view returns ( uint32 blockTimestamp, int56 tickCumulative, uint160 secondsPerLiquidityCumulativeX128, bool initialized ); } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; /// @title Pool state that is not stored /// @notice Contains view functions to provide information about the pool that is computed rather than stored on the /// blockchain. The functions here may have variable gas costs. interface IUniswapV3PoolDerivedState { /// @notice Returns the cumulative tick and liquidity as of each timestamp `secondsAgo` from the current block timestamp /// @dev To get a time weighted average tick or liquidity-in-range, you must call this with two values, one representing /// the beginning of the period and another for the end of the period. E.g., to get the last hour time-weighted average tick, /// you must call it with secondsAgos = [3600, 0]. /// @dev The time weighted average tick represents the geometric time weighted average price of the pool, in /// log base sqrt(1.0001) of token1 / token0. The TickMath library can be used to go from a tick value to a ratio. /// @param secondsAgos From how long ago each cumulative tick and liquidity value should be returned /// @return tickCumulatives Cumulative tick values as of each `secondsAgos` from the current block timestamp /// @return secondsPerLiquidityCumulativeX128s Cumulative seconds per liquidity-in-range value as of each `secondsAgos` from the current block /// timestamp function observe(uint32[] calldata secondsAgos) external view returns (int56[] memory tickCumulatives, uint160[] memory secondsPerLiquidityCumulativeX128s); /// @notice Returns a snapshot of the tick cumulative, seconds per liquidity and seconds inside a tick range /// @dev Snapshots must only be compared to other snapshots, taken over a period for which a position existed. /// I.e., snapshots cannot be compared if a position is not held for the entire period between when the first /// snapshot is taken and the second snapshot is taken. /// @param tickLower The lower tick of the range /// @param tickUpper The upper tick of the range /// @return tickCumulativeInside The snapshot of the tick accumulator for the range /// @return secondsPerLiquidityInsideX128 The snapshot of seconds per liquidity for the range /// @return secondsInside The snapshot of seconds per liquidity for the range function snapshotCumulativesInside(int24 tickLower, int24 tickUpper) external view returns ( int56 tickCumulativeInside, uint160 secondsPerLiquidityInsideX128, uint32 secondsInside ); } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; /// @title Permissionless pool actions /// @notice Contains pool methods that can be called by anyone interface IUniswapV3PoolActions { /// @notice Sets the initial price for the pool /// @dev Price is represented as a sqrt(amountToken1/amountToken0) Q64.96 value /// @param sqrtPriceX96 the initial sqrt price of the pool as a Q64.96 function initialize(uint160 sqrtPriceX96) external; /// @notice Adds liquidity for the given recipient/tickLower/tickUpper position /// @dev The caller of this method receives a callback in the form of IUniswapV3MintCallback#uniswapV3MintCallback /// in which they must pay any token0 or token1 owed for the liquidity. The amount of token0/token1 due depends /// on tickLower, tickUpper, the amount of liquidity, and the current price. /// @param recipient The address for which the liquidity will be created /// @param tickLower The lower tick of the position in which to add liquidity /// @param tickUpper The upper tick of the position in which to add liquidity /// @param amount The amount of liquidity to mint /// @param data Any data that should be passed through to the callback /// @return amount0 The amount of token0 that was paid to mint the given amount of liquidity. Matches the value in the callback /// @return amount1 The amount of token1 that was paid to mint the given amount of liquidity. Matches the value in the callback function mint( address recipient, int24 tickLower, int24 tickUpper, uint128 amount, bytes calldata data ) external returns (uint256 amount0, uint256 amount1); /// @notice Collects tokens owed to a position /// @dev Does not recompute fees earned, which must be done either via mint or burn of any amount of liquidity. /// Collect must be called by the position owner. To withdraw only token0 or only token1, amount0Requested or /// amount1Requested may be set to zero. To withdraw all tokens owed, caller may pass any value greater than the /// actual tokens owed, e.g. type(uint128).max. Tokens owed may be from accumulated swap fees or burned liquidity. /// @param recipient The address which should receive the fees collected /// @param tickLower The lower tick of the position for which to collect fees /// @param tickUpper The upper tick of the position for which to collect fees /// @param amount0Requested How much token0 should be withdrawn from the fees owed /// @param amount1Requested How much token1 should be withdrawn from the fees owed /// @return amount0 The amount of fees collected in token0 /// @return amount1 The amount of fees collected in token1 function collect( address recipient, int24 tickLower, int24 tickUpper, uint128 amount0Requested, uint128 amount1Requested ) external returns (uint128 amount0, uint128 amount1); /// @notice Burn liquidity from the sender and account tokens owed for the liquidity to the position /// @dev Can be used to trigger a recalculation of fees owed to a position by calling with an amount of 0 /// @dev Fees must be collected separately via a call to #collect /// @param tickLower The lower tick of the position for which to burn liquidity /// @param tickUpper The upper tick of the position for which to burn liquidity /// @param amount How much liquidity to burn /// @return amount0 The amount of token0 sent to the recipient /// @return amount1 The amount of token1 sent to the recipient function burn( int24 tickLower, int24 tickUpper, uint128 amount ) external returns (uint256 amount0, uint256 amount1); /// @notice Swap token0 for token1, or token1 for token0 /// @dev The caller of this method receives a callback in the form of IUniswapV3SwapCallback#uniswapV3SwapCallback /// @param recipient The address to receive the output of the swap /// @param zeroForOne The direction of the swap, true for token0 to token1, false for token1 to token0 /// @param amountSpecified The amount of the swap, which implicitly configures the swap as exact input (positive), or exact output (negative) /// @param sqrtPriceLimitX96 The Q64.96 sqrt price limit. If zero for one, the price cannot be less than this /// value after the swap. If one for zero, the price cannot be greater than this value after the swap /// @param data Any data to be passed through to the callback /// @return amount0 The delta of the balance of token0 of the pool, exact when negative, minimum when positive /// @return amount1 The delta of the balance of token1 of the pool, exact when negative, minimum when positive function swap( address recipient, bool zeroForOne, int256 amountSpecified, uint160 sqrtPriceLimitX96, bytes calldata data ) external returns (int256 amount0, int256 amount1); /// @notice Receive token0 and/or token1 and pay it back, plus a fee, in the callback /// @dev The caller of this method receives a callback in the form of IUniswapV3FlashCallback#uniswapV3FlashCallback /// @dev Can be used to donate underlying tokens pro-rata to currently in-range liquidity providers by calling /// with 0 amount{0,1} and sending the donation amount(s) from the callback /// @param recipient The address which will receive the token0 and token1 amounts /// @param amount0 The amount of token0 to send /// @param amount1 The amount of token1 to send /// @param data Any data to be passed through to the callback function flash( address recipient, uint256 amount0, uint256 amount1, bytes calldata data ) external; /// @notice Increase the maximum number of price and liquidity observations that this pool will store /// @dev This method is no-op if the pool already has an observationCardinalityNext greater than or equal to /// the input observationCardinalityNext. /// @param observationCardinalityNext The desired minimum number of observations for the pool to store function increaseObservationCardinalityNext(uint16 observationCardinalityNext) external; } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; /// @title Permissioned pool actions /// @notice Contains pool methods that may only be called by the factory owner interface IUniswapV3PoolOwnerActions { /// @notice Set the denominator of the protocol's % share of the fees /// @param feeProtocol0 new protocol fee for token0 of the pool /// @param feeProtocol1 new protocol fee for token1 of the pool function setFeeProtocol(uint8 feeProtocol0, uint8 feeProtocol1) external; /// @notice Collect the protocol fee accrued to the pool /// @param recipient The address to which collected protocol fees should be sent /// @param amount0Requested The maximum amount of token0 to send, can be 0 to collect fees in only token1 /// @param amount1Requested The maximum amount of token1 to send, can be 0 to collect fees in only token0 /// @return amount0 The protocol fee collected in token0 /// @return amount1 The protocol fee collected in token1 function collectProtocol( address recipient, uint128 amount0Requested, uint128 amount1Requested ) external returns (uint128 amount0, uint128 amount1); } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; /// @title Events emitted by a pool /// @notice Contains all events emitted by the pool interface IUniswapV3PoolEvents { /// @notice Emitted exactly once by a pool when #initialize is first called on the pool /// @dev Mint/Burn/Swap cannot be emitted by the pool before Initialize /// @param sqrtPriceX96 The initial sqrt price of the pool, as a Q64.96 /// @param tick The initial tick of the pool, i.e. log base 1.0001 of the starting price of the pool event Initialize(uint160 sqrtPriceX96, int24 tick); /// @notice Emitted when liquidity is minted for a given position /// @param sender The address that minted the liquidity /// @param owner The owner of the position and recipient of any minted liquidity /// @param tickLower The lower tick of the position /// @param tickUpper The upper tick of the position /// @param amount The amount of liquidity minted to the position range /// @param amount0 How much token0 was required for the minted liquidity /// @param amount1 How much token1 was required for the minted liquidity event Mint( address sender, address indexed owner, int24 indexed tickLower, int24 indexed tickUpper, uint128 amount, uint256 amount0, uint256 amount1 ); /// @notice Emitted when fees are collected by the owner of a position /// @dev Collect events may be emitted with zero amount0 and amount1 when the caller chooses not to collect fees /// @param owner The owner of the position for which fees are collected /// @param tickLower The lower tick of the position /// @param tickUpper The upper tick of the position /// @param amount0 The amount of token0 fees collected /// @param amount1 The amount of token1 fees collected event Collect( address indexed owner, address recipient, int24 indexed tickLower, int24 indexed tickUpper, uint128 amount0, uint128 amount1 ); /// @notice Emitted when a position's liquidity is removed /// @dev Does not withdraw any fees earned by the liquidity position, which must be withdrawn via #collect /// @param owner The owner of the position for which liquidity is removed /// @param tickLower The lower tick of the position /// @param tickUpper The upper tick of the position /// @param amount The amount of liquidity to remove /// @param amount0 The amount of token0 withdrawn /// @param amount1 The amount of token1 withdrawn event Burn( address indexed owner, int24 indexed tickLower, int24 indexed tickUpper, uint128 amount, uint256 amount0, uint256 amount1 ); /// @notice Emitted by the pool for any swaps between token0 and token1 /// @param sender The address that initiated the swap call, and that received the callback /// @param recipient The address that received the output of the swap /// @param amount0 The delta of the token0 balance of the pool /// @param amount1 The delta of the token1 balance of the pool /// @param sqrtPriceX96 The sqrt(price) of the pool after the swap, as a Q64.96 /// @param liquidity The liquidity of the pool after the swap /// @param tick The log base 1.0001 of price of the pool after the swap event Swap( address indexed sender, address indexed recipient, int256 amount0, int256 amount1, uint160 sqrtPriceX96, uint128 liquidity, int24 tick ); /// @notice Emitted by the pool for any flashes of token0/token1 /// @param sender The address that initiated the swap call, and that received the callback /// @param recipient The address that received the tokens from flash /// @param amount0 The amount of token0 that was flashed /// @param amount1 The amount of token1 that was flashed /// @param paid0 The amount of token0 paid for the flash, which can exceed the amount0 plus the fee /// @param paid1 The amount of token1 paid for the flash, which can exceed the amount1 plus the fee event Flash( address indexed sender, address indexed recipient, uint256 amount0, uint256 amount1, uint256 paid0, uint256 paid1 ); /// @notice Emitted by the pool for increases to the number of observations that can be stored /// @dev observationCardinalityNext is not the observation cardinality until an observation is written at the index /// just before a mint/swap/burn. /// @param observationCardinalityNextOld The previous value of the next observation cardinality /// @param observationCardinalityNextNew The updated value of the next observation cardinality event IncreaseObservationCardinalityNext( uint16 observationCardinalityNextOld, uint16 observationCardinalityNextNew ); /// @notice Emitted when the protocol fee is changed by the pool /// @param feeProtocol0Old The previous value of the token0 protocol fee /// @param feeProtocol1Old The previous value of the token1 protocol fee /// @param feeProtocol0New The updated value of the token0 protocol fee /// @param feeProtocol1New The updated value of the token1 protocol fee event SetFeeProtocol(uint8 feeProtocol0Old, uint8 feeProtocol1Old, uint8 feeProtocol0New, uint8 feeProtocol1New); /// @notice Emitted when the collected protocol fees are withdrawn by the factory owner /// @param sender The address that collects the protocol fees /// @param recipient The address that receives the collected protocol fees /// @param amount0 The amount of token0 protocol fees that is withdrawn /// @param amount0 The amount of token1 protocol fees that is withdrawn event CollectProtocol(address indexed sender, address indexed recipient, uint128 amount0, uint128 amount1); } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; /// @title BitMath /// @dev This library provides functionality for computing bit properties of an unsigned integer library BitMath { /// @notice Returns the index of the most significant bit of the number, /// where the least significant bit is at index 0 and the most significant bit is at index 255 /// @dev The function satisfies the property: /// x >= 2**mostSignificantBit(x) and x < 2**(mostSignificantBit(x)+1) /// @param x the value for which to compute the most significant bit, must be greater than 0 /// @return r the index of the most significant bit function mostSignificantBit(uint256 x) internal pure returns (uint8 r) { require(x > 0); if (x >= 0x100000000000000000000000000000000) { x >>= 128; r += 128; } if (x >= 0x10000000000000000) { x >>= 64; r += 64; } if (x >= 0x100000000) { x >>= 32; r += 32; } if (x >= 0x10000) { x >>= 16; r += 16; } if (x >= 0x100) { x >>= 8; r += 8; } if (x >= 0x10) { x >>= 4; r += 4; } if (x >= 0x4) { x >>= 2; r += 2; } if (x >= 0x2) r += 1; } /// @notice Returns the index of the least significant bit of the number, /// where the least significant bit is at index 0 and the most significant bit is at index 255 /// @dev The function satisfies the property: /// (x & 2**leastSignificantBit(x)) != 0 and (x & (2**(leastSignificantBit(x)) - 1)) == 0) /// @param x the value for which to compute the least significant bit, must be greater than 0 /// @return r the index of the least significant bit function leastSignificantBit(uint256 x) internal pure returns (uint8 r) { require(x > 0); r = 255; if (x & type(uint128).max > 0) { r -= 128; } else { x >>= 128; } if (x & type(uint64).max > 0) { r -= 64; } else { x >>= 64; } if (x & type(uint32).max > 0) { r -= 32; } else { x >>= 32; } if (x & type(uint16).max > 0) { r -= 16; } else { x >>= 16; } if (x & type(uint8).max > 0) { r -= 8; } else { x >>= 8; } if (x & 0xf > 0) { r -= 4; } else { x >>= 4; } if (x & 0x3 > 0) { r -= 2; } else { x >>= 2; } if (x & 0x1 > 0) r -= 1; } } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; /// @title Math functions that do not check inputs or outputs /// @notice Contains methods that perform common math functions but do not do any overflow or underflow checks library UnsafeMath { /// @notice Returns ceil(x / y) /// @dev division by 0 has unspecified behavior, and must be checked externally /// @param x The dividend /// @param y The divisor /// @return z The quotient, ceil(x / y) function divRoundingUp(uint256 x, uint256 y) internal pure returns (uint256 z) { assembly { z := add(div(x, y), gt(mod(x, y), 0)) } } } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.4.0; /// @title FixedPoint96 /// @notice A library for handling binary fixed point numbers, see https://en.wikipedia.org/wiki/Q_(number_format) /// @dev Used in SqrtPriceMath.sol library FixedPoint96 { uint8 internal constant RESOLUTION = 96; uint256 internal constant Q96 = 0x1000000000000000000000000; }
File 4 of 9: WETH9
// Copyright (C) 2015, 2016, 2017 Dapphub // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.4.18; contract WETH9 { string public name = "Wrapped Ether"; string public symbol = "WETH"; uint8 public decimals = 18; event Approval(address indexed src, address indexed guy, uint wad); event Transfer(address indexed src, address indexed dst, uint wad); event Deposit(address indexed dst, uint wad); event Withdrawal(address indexed src, uint wad); mapping (address => uint) public balanceOf; mapping (address => mapping (address => uint)) public allowance; function() public payable { deposit(); } function deposit() public payable { balanceOf[msg.sender] += msg.value; Deposit(msg.sender, msg.value); } function withdraw(uint wad) public { require(balanceOf[msg.sender] >= wad); balanceOf[msg.sender] -= wad; msg.sender.transfer(wad); Withdrawal(msg.sender, wad); } function totalSupply() public view returns (uint) { return this.balance; } function approve(address guy, uint wad) public returns (bool) { allowance[msg.sender][guy] = wad; Approval(msg.sender, guy, wad); return true; } function transfer(address dst, uint wad) public returns (bool) { return transferFrom(msg.sender, dst, wad); } function transferFrom(address src, address dst, uint wad) public returns (bool) { require(balanceOf[src] >= wad); if (src != msg.sender && allowance[src][msg.sender] != uint(-1)) { require(allowance[src][msg.sender] >= wad); allowance[src][msg.sender] -= wad; } balanceOf[src] -= wad; balanceOf[dst] += wad; Transfer(src, dst, wad); return true; } } /* GNU GENERAL PUBLIC LICENSE Version 3, 29 June 2007 Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/> Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed. Preamble The GNU General Public License is a free, copyleft license for software and other kinds of works. The licenses for most software and other practical works are designed to take away your freedom to share and change the works. By contrast, the GNU General Public License is intended to guarantee your freedom to share and change all versions of a program--to make sure it remains free software for all its users. We, the Free Software Foundation, use the GNU General Public License for most of our software; it applies also to any other work released this way by its authors. You can apply it to your programs, too. When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are designed to make sure that you have the freedom to distribute copies of free software (and charge for them if you wish), that you receive source code or can get it if you want it, that you can change the software or use pieces of it in new free programs, and that you know you can do these things. To protect your rights, we need to prevent others from denying you these rights or asking you to surrender the rights. Therefore, you have certain responsibilities if you distribute copies of the software, or if you modify it: responsibilities to respect the freedom of others. For example, if you distribute copies of such a program, whether gratis or for a fee, you must pass on to the recipients the same freedoms that you received. You must make sure that they, too, receive or can get the source code. And you must show them these terms so they know their rights. Developers that use the GNU GPL protect your rights with two steps: (1) assert copyright on the software, and (2) offer you this License giving you legal permission to copy, distribute and/or modify it. For the developers' and authors' protection, the GPL clearly explains that there is no warranty for this free software. For both users' and authors' sake, the GPL requires that modified versions be marked as changed, so that their problems will not be attributed erroneously to authors of previous versions. Some devices are designed to deny users access to install or run modified versions of the software inside them, although the manufacturer can do so. This is fundamentally incompatible with the aim of protecting users' freedom to change the software. The systematic pattern of such abuse occurs in the area of products for individuals to use, which is precisely where it is most unacceptable. Therefore, we have designed this version of the GPL to prohibit the practice for those products. If such problems arise substantially in other domains, we stand ready to extend this provision to those domains in future versions of the GPL, as needed to protect the freedom of users. Finally, every program is threatened constantly by software patents. States should not allow patents to restrict development and use of software on general-purpose computers, but in those that do, we wish to avoid the special danger that patents applied to a free program could make it effectively proprietary. To prevent this, the GPL assures that patents cannot be used to render the program non-free. The precise terms and conditions for copying, distribution and modification follow. TERMS AND CONDITIONS 0. Definitions. "This License" refers to version 3 of the GNU General Public License. "Copyright" also means copyright-like laws that apply to other kinds of works, such as semiconductor masks. "The Program" refers to any copyrightable work licensed under this License. Each licensee is addressed as "you". "Licensees" and "recipients" may be individuals or organizations. To "modify" a work means to copy from or adapt all or part of the work in a fashion requiring copyright permission, other than the making of an exact copy. The resulting work is called a "modified version" of the earlier work or a work "based on" the earlier work. A "covered work" means either the unmodified Program or a work based on the Program. To "propagate" a work means to do anything with it that, without permission, would make you directly or secondarily liable for infringement under applicable copyright law, except executing it on a computer or modifying a private copy. Propagation includes copying, distribution (with or without modification), making available to the public, and in some countries other activities as well. To "convey" a work means any kind of propagation that enables other parties to make or receive copies. Mere interaction with a user through a computer network, with no transfer of a copy, is not conveying. An interactive user interface displays "Appropriate Legal Notices" to the extent that it includes a convenient and prominently visible feature that (1) displays an appropriate copyright notice, and (2) tells the user that there is no warranty for the work (except to the extent that warranties are provided), that licensees may convey the work under this License, and how to view a copy of this License. If the interface presents a list of user commands or options, such as a menu, a prominent item in the list meets this criterion. 1. Source Code. The "source code" for a work means the preferred form of the work for making modifications to it. "Object code" means any non-source form of a work. A "Standard Interface" means an interface that either is an official standard defined by a recognized standards body, or, in the case of interfaces specified for a particular programming language, one that is widely used among developers working in that language. The "System Libraries" of an executable work include anything, other than the work as a whole, that (a) is included in the normal form of packaging a Major Component, but which is not part of that Major Component, and (b) serves only to enable use of the work with that Major Component, or to implement a Standard Interface for which an implementation is available to the public in source code form. A "Major Component", in this context, means a major essential component (kernel, window system, and so on) of the specific operating system (if any) on which the executable work runs, or a compiler used to produce the work, or an object code interpreter used to run it. The "Corresponding Source" for a work in object code form means all the source code needed to generate, install, and (for an executable work) run the object code and to modify the work, including scripts to control those activities. However, it does not include the work's System Libraries, or general-purpose tools or generally available free programs which are used unmodified in performing those activities but which are not part of the work. For example, Corresponding Source includes interface definition files associated with source files for the work, and the source code for shared libraries and dynamically linked subprograms that the work is specifically designed to require, such as by intimate data communication or control flow between those subprograms and other parts of the work. The Corresponding Source need not include anything that users can regenerate automatically from other parts of the Corresponding Source. The Corresponding Source for a work in source code form is that same work. 2. Basic Permissions. All rights granted under this License are granted for the term of copyright on the Program, and are irrevocable provided the stated conditions are met. This License explicitly affirms your unlimited permission to run the unmodified Program. The output from running a covered work is covered by this License only if the output, given its content, constitutes a covered work. This License acknowledges your rights of fair use or other equivalent, as provided by copyright law. You may make, run and propagate covered works that you do not convey, without conditions so long as your license otherwise remains in force. You may convey covered works to others for the sole purpose of having them make modifications exclusively for you, or provide you with facilities for running those works, provided that you comply with the terms of this License in conveying all material for which you do not control copyright. Those thus making or running the covered works for you must do so exclusively on your behalf, under your direction and control, on terms that prohibit them from making any copies of your copyrighted material outside their relationship with you. Conveying under any other circumstances is permitted solely under the conditions stated below. Sublicensing is not allowed; section 10 makes it unnecessary. 3. Protecting Users' Legal Rights From Anti-Circumvention Law. No covered work shall be deemed part of an effective technological measure under any applicable law fulfilling obligations under article 11 of the WIPO copyright treaty adopted on 20 December 1996, or similar laws prohibiting or restricting circumvention of such measures. When you convey a covered work, you waive any legal power to forbid circumvention of technological measures to the extent such circumvention is effected by exercising rights under this License with respect to the covered work, and you disclaim any intention to limit operation or modification of the work as a means of enforcing, against the work's users, your or third parties' legal rights to forbid circumvention of technological measures. 4. Conveying Verbatim Copies. You may convey verbatim copies of the Program's source code as you receive it, in any medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright notice; keep intact all notices stating that this License and any non-permissive terms added in accord with section 7 apply to the code; keep intact all notices of the absence of any warranty; and give all recipients a copy of this License along with the Program. You may charge any price or no price for each copy that you convey, and you may offer support or warranty protection for a fee. 5. Conveying Modified Source Versions. You may convey a work based on the Program, or the modifications to produce it from the Program, in the form of source code under the terms of section 4, provided that you also meet all of these conditions: a) The work must carry prominent notices stating that you modified it, and giving a relevant date. b) The work must carry prominent notices stating that it is released under this License and any conditions added under section 7. This requirement modifies the requirement in section 4 to "keep intact all notices". c) You must license the entire work, as a whole, under this License to anyone who comes into possession of a copy. This License will therefore apply, along with any applicable section 7 additional terms, to the whole of the work, and all its parts, regardless of how they are packaged. This License gives no permission to license the work in any other way, but it does not invalidate such permission if you have separately received it. d) If the work has interactive user interfaces, each must display Appropriate Legal Notices; however, if the Program has interactive interfaces that do not display Appropriate Legal Notices, your work need not make them do so. A compilation of a covered work with other separate and independent works, which are not by their nature extensions of the covered work, and which are not combined with it such as to form a larger program, in or on a volume of a storage or distribution medium, is called an "aggregate" if the compilation and its resulting copyright are not used to limit the access or legal rights of the compilation's users beyond what the individual works permit. Inclusion of a covered work in an aggregate does not cause this License to apply to the other parts of the aggregate. 6. Conveying Non-Source Forms. You may convey a covered work in object code form under the terms of sections 4 and 5, provided that you also convey the machine-readable Corresponding Source under the terms of this License, in one of these ways: a) Convey the object code in, or embodied in, a physical product (including a physical distribution medium), accompanied by the Corresponding Source fixed on a durable physical medium customarily used for software interchange. b) Convey the object code in, or embodied in, a physical product (including a physical distribution medium), accompanied by a written offer, valid for at least three years and valid for as long as you offer spare parts or customer support for that product model, to give anyone who possesses the object code either (1) a copy of the Corresponding Source for all the software in the product that is covered by this License, on a durable physical medium customarily used for software interchange, for a price no more than your reasonable cost of physically performing this conveying of source, or (2) access to copy the Corresponding Source from a network server at no charge. c) Convey individual copies of the object code with a copy of the written offer to provide the Corresponding Source. This alternative is allowed only occasionally and noncommercially, and only if you received the object code with such an offer, in accord with subsection 6b. d) Convey the object code by offering access from a designated place (gratis or for a charge), and offer equivalent access to the Corresponding Source in the same way through the same place at no further charge. You need not require recipients to copy the Corresponding Source along with the object code. If the place to copy the object code is a network server, the Corresponding Source may be on a different server (operated by you or a third party) that supports equivalent copying facilities, provided you maintain clear directions next to the object code saying where to find the Corresponding Source. Regardless of what server hosts the Corresponding Source, you remain obligated to ensure that it is available for as long as needed to satisfy these requirements. e) Convey the object code using peer-to-peer transmission, provided you inform other peers where the object code and Corresponding Source of the work are being offered to the general public at no charge under subsection 6d. A separable portion of the object code, whose source code is excluded from the Corresponding Source as a System Library, need not be included in conveying the object code work. A "User Product" is either (1) a "consumer product", which means any tangible personal property which is normally used for personal, family, or household purposes, or (2) anything designed or sold for incorporation into a dwelling. In determining whether a product is a consumer product, doubtful cases shall be resolved in favor of coverage. For a particular product received by a particular user, "normally used" refers to a typical or common use of that class of product, regardless of the status of the particular user or of the way in which the particular user actually uses, or expects or is expected to use, the product. A product is a consumer product regardless of whether the product has substantial commercial, industrial or non-consumer uses, unless such uses represent the only significant mode of use of the product. "Installation Information" for a User Product means any methods, procedures, authorization keys, or other information required to install and execute modified versions of a covered work in that User Product from a modified version of its Corresponding Source. The information must suffice to ensure that the continued functioning of the modified object code is in no case prevented or interfered with solely because modification has been made. If you convey an object code work under this section in, or with, or specifically for use in, a User Product, and the conveying occurs as part of a transaction in which the right of possession and use of the User Product is transferred to the recipient in perpetuity or for a fixed term (regardless of how the transaction is characterized), the Corresponding Source conveyed under this section must be accompanied by the Installation Information. But this requirement does not apply if neither you nor any third party retains the ability to install modified object code on the User Product (for example, the work has been installed in ROM). The requirement to provide Installation Information does not include a requirement to continue to provide support service, warranty, or updates for a work that has been modified or installed by the recipient, or for the User Product in which it has been modified or installed. Access to a network may be denied when the modification itself materially and adversely affects the operation of the network or violates the rules and protocols for communication across the network. Corresponding Source conveyed, and Installation Information provided, in accord with this section must be in a format that is publicly documented (and with an implementation available to the public in source code form), and must require no special password or key for unpacking, reading or copying. 7. Additional Terms. "Additional permissions" are terms that supplement the terms of this License by making exceptions from one or more of its conditions. Additional permissions that are applicable to the entire Program shall be treated as though they were included in this License, to the extent that they are valid under applicable law. If additional permissions apply only to part of the Program, that part may be used separately under those permissions, but the entire Program remains governed by this License without regard to the additional permissions. When you convey a copy of a covered work, you may at your option remove any additional permissions from that copy, or from any part of it. (Additional permissions may be written to require their own removal in certain cases when you modify the work.) You may place additional permissions on material, added by you to a covered work, for which you have or can give appropriate copyright permission. Notwithstanding any other provision of this License, for material you add to a covered work, you may (if authorized by the copyright holders of that material) supplement the terms of this License with terms: a) Disclaiming warranty or limiting liability differently from the terms of sections 15 and 16 of this License; or b) Requiring preservation of specified reasonable legal notices or author attributions in that material or in the Appropriate Legal Notices displayed by works containing it; or c) Prohibiting misrepresentation of the origin of that material, or requiring that modified versions of such material be marked in reasonable ways as different from the original version; or d) Limiting the use for publicity purposes of names of licensors or authors of the material; or e) Declining to grant rights under trademark law for use of some trade names, trademarks, or service marks; or f) Requiring indemnification of licensors and authors of that material by anyone who conveys the material (or modified versions of it) with contractual assumptions of liability to the recipient, for any liability that these contractual assumptions directly impose on those licensors and authors. All other non-permissive additional terms are considered "further restrictions" within the meaning of section 10. If the Program as you received it, or any part of it, contains a notice stating that it is governed by this License along with a term that is a further restriction, you may remove that term. If a license document contains a further restriction but permits relicensing or conveying under this License, you may add to a covered work material governed by the terms of that license document, provided that the further restriction does not survive such relicensing or conveying. If you add terms to a covered work in accord with this section, you must place, in the relevant source files, a statement of the additional terms that apply to those files, or a notice indicating where to find the applicable terms. Additional terms, permissive or non-permissive, may be stated in the form of a separately written license, or stated as exceptions; the above requirements apply either way. 8. Termination. You may not propagate or modify a covered work except as expressly provided under this License. Any attempt otherwise to propagate or modify it is void, and will automatically terminate your rights under this License (including any patent licenses granted under the third paragraph of section 11). However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally terminates your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some reasonable means prior to 60 days after the cessation. Moreover, your license from a particular copyright holder is reinstated permanently if the copyright holder notifies you of the violation by some reasonable means, this is the first time you have received notice of violation of this License (for any work) from that copyright holder, and you cure the violation prior to 30 days after your receipt of the notice. Termination of your rights under this section does not terminate the licenses of parties who have received copies or rights from you under this License. If your rights have been terminated and not permanently reinstated, you do not qualify to receive new licenses for the same material under section 10. 9. Acceptance Not Required for Having Copies. You are not required to accept this License in order to receive or run a copy of the Program. Ancillary propagation of a covered work occurring solely as a consequence of using peer-to-peer transmission to receive a copy likewise does not require acceptance. However, nothing other than this License grants you permission to propagate or modify any covered work. These actions infringe copyright if you do not accept this License. Therefore, by modifying or propagating a covered work, you indicate your acceptance of this License to do so. 10. Automatic Licensing of Downstream Recipients. Each time you convey a covered work, the recipient automatically receives a license from the original licensors, to run, modify and propagate that work, subject to this License. You are not responsible for enforcing compliance by third parties with this License. An "entity transaction" is a transaction transferring control of an organization, or substantially all assets of one, or subdividing an organization, or merging organizations. If propagation of a covered work results from an entity transaction, each party to that transaction who receives a copy of the work also receives whatever licenses to the work the party's predecessor in interest had or could give under the previous paragraph, plus a right to possession of the Corresponding Source of the work from the predecessor in interest, if the predecessor has it or can get it with reasonable efforts. You may not impose any further restrictions on the exercise of the rights granted or affirmed under this License. For example, you may not impose a license fee, royalty, or other charge for exercise of rights granted under this License, and you may not initiate litigation (including a cross-claim or counterclaim in a lawsuit) alleging that any patent claim is infringed by making, using, selling, offering for sale, or importing the Program or any portion of it. 11. Patents. A "contributor" is a copyright holder who authorizes use under this License of the Program or a work on which the Program is based. The work thus licensed is called the contributor's "contributor version". A contributor's "essential patent claims" are all patent claims owned or controlled by the contributor, whether already acquired or hereafter acquired, that would be infringed by some manner, permitted by this License, of making, using, or selling its contributor version, but do not include claims that would be infringed only as a consequence of further modification of the contributor version. For purposes of this definition, "control" includes the right to grant patent sublicenses in a manner consistent with the requirements of this License. Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under the contributor's essential patent claims, to make, use, sell, offer for sale, import and otherwise run, modify and propagate the contents of its contributor version. In the following three paragraphs, a "patent license" is any express agreement or commitment, however denominated, not to enforce a patent (such as an express permission to practice a patent or covenant not to sue for patent infringement). To "grant" such a patent license to a party means to make such an agreement or commitment not to enforce a patent against the party. If you convey a covered work, knowingly relying on a patent license, and the Corresponding Source of the work is not available for anyone to copy, free of charge and under the terms of this License, through a publicly available network server or other readily accessible means, then you must either (1) cause the Corresponding Source to be so available, or (2) arrange to deprive yourself of the benefit of the patent license for this particular work, or (3) arrange, in a manner consistent with the requirements of this License, to extend the patent license to downstream recipients. "Knowingly relying" means you have actual knowledge that, but for the patent license, your conveying the covered work in a country, or your recipient's use of the covered work in a country, would infringe one or more identifiable patents in that country that you have reason to believe are valid. If, pursuant to or in connection with a single transaction or arrangement, you convey, or propagate by procuring conveyance of, a covered work, and grant a patent license to some of the parties receiving the covered work authorizing them to use, propagate, modify or convey a specific copy of the covered work, then the patent license you grant is automatically extended to all recipients of the covered work and works based on it. A patent license is "discriminatory" if it does not include within the scope of its coverage, prohibits the exercise of, or is conditioned on the non-exercise of one or more of the rights that are specifically granted under this License. You may not convey a covered work if you are a party to an arrangement with a third party that is in the business of distributing software, under which you make payment to the third party based on the extent of your activity of conveying the work, and under which the third party grants, to any of the parties who would receive the covered work from you, a discriminatory patent license (a) in connection with copies of the covered work conveyed by you (or copies made from those copies), or (b) primarily for and in connection with specific products or compilations that contain the covered work, unless you entered into that arrangement, or that patent license was granted, prior to 28 March 2007. Nothing in this License shall be construed as excluding or limiting any implied license or other defenses to infringement that may otherwise be available to you under applicable patent law. 12. No Surrender of Others' Freedom. If conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the conditions of this License, they do not excuse you from the conditions of this License. If you cannot convey a covered work so as to satisfy simultaneously your obligations under this License and any other pertinent obligations, then as a consequence you may not convey it at all. For example, if you agree to terms that obligate you to collect a royalty for further conveying from those to whom you convey the Program, the only way you could satisfy both those terms and this License would be to refrain entirely from conveying the Program. 13. Use with the GNU Affero General Public License. Notwithstanding any other provision of this License, you have permission to link or combine any covered work with a work licensed under version 3 of the GNU Affero General Public License into a single combined work, and to convey the resulting work. The terms of this License will continue to apply to the part which is the covered work, but the special requirements of the GNU Affero General Public License, section 13, concerning interaction through a network will apply to the combination as such. 14. Revised Versions of this License. The Free Software Foundation may publish revised and/or new versions of the GNU General Public License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. Each version is given a distinguishing version number. If the Program specifies that a certain numbered version of the GNU General Public License "or any later version" applies to it, you have the option of following the terms and conditions either of that numbered version or of any later version published by the Free Software Foundation. If the Program does not specify a version number of the GNU General Public License, you may choose any version ever published by the Free Software Foundation. If the Program specifies that a proxy can decide which future versions of the GNU General Public License can be used, that proxy's public statement of acceptance of a version permanently authorizes you to choose that version for the Program. Later license versions may give you additional or different permissions. However, no additional obligations are imposed on any author or copyright holder as a result of your choosing to follow a later version. 15. Disclaimer of Warranty. THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION. 16. Limitation of Liability. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. 17. Interpretation of Sections 15 and 16. If the disclaimer of warranty and limitation of liability provided above cannot be given local legal effect according to their terms, reviewing courts shall apply local law that most closely approximates an absolute waiver of all civil liability in connection with the Program, unless a warranty or assumption of liability accompanies a copy of the Program in return for a fee. END OF TERMS AND CONDITIONS How to Apply These Terms to Your New Programs If you develop a new program, and you want it to be of the greatest possible use to the public, the best way to achieve this is to make it free software which everyone can redistribute and change under these terms. To do so, attach the following notices to the program. It is safest to attach them to the start of each source file to most effectively state the exclusion of warranty; and each file should have at least the "copyright" line and a pointer to where the full notice is found. <one line to give the program's name and a brief idea of what it does.> Copyright (C) <year> <name of author> This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. Also add information on how to contact you by electronic and paper mail. If the program does terminal interaction, make it output a short notice like this when it starts in an interactive mode: <program> Copyright (C) <year> <name of author> This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'. This is free software, and you are welcome to redistribute it under certain conditions; type `show c' for details. The hypothetical commands `show w' and `show c' should show the appropriate parts of the General Public License. Of course, your program's commands might be different; for a GUI interface, you would use an "about box". You should also get your employer (if you work as a programmer) or school, if any, to sign a "copyright disclaimer" for the program, if necessary. For more information on this, and how to apply and follow the GNU GPL, see <http://www.gnu.org/licenses/>. The GNU General Public License does not permit incorporating your program into proprietary programs. If your program is a subroutine library, you may consider it more useful to permit linking proprietary applications with the library. If this is what you want to do, use the GNU Lesser General Public License instead of this License. But first, please read <http://www.gnu.org/philosophy/why-not-lgpl.html>. */
File 5 of 9: EIP173Proxy
// SPDX-License-Identifier: MIT pragma solidity ^0.7.0; import "./Proxy.sol"; interface ERC165 { function supportsInterface(bytes4 id) external view returns (bool); } ///@notice Proxy implementing EIP173 for ownership management contract EIP173Proxy is Proxy { // ////////////////////////// EVENTS /////////////////////////////////////////////////////////////////////// event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); // /////////////////////// CONSTRUCTOR ////////////////////////////////////////////////////////////////////// constructor( address implementationAddress, address ownerAddress, bytes memory data ) payable { _setImplementation(implementationAddress, data); _setOwner(ownerAddress); } // ///////////////////// EXTERNAL /////////////////////////////////////////////////////////////////////////// function owner() external view returns (address) { return _owner(); } function supportsInterface(bytes4 id) external view returns (bool) { if (id == 0x01ffc9a7 || id == 0x7f5828d0) { return true; } if (id == 0xFFFFFFFF) { return false; } ERC165 implementation; // solhint-disable-next-line security/no-inline-assembly assembly { implementation := sload(0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc) } // Technically this is not standard compliant as ERC-165 require 30,000 gas which that call cannot ensure // because it is itself inside `supportsInterface` that might only get 30,000 gas. // In practise this is unlikely to be an issue. try implementation.supportsInterface(id) returns (bool support) { return support; } catch { return false; } } function transferOwnership(address newOwner) external onlyOwner { _setOwner(newOwner); } function upgradeTo(address newImplementation) external onlyOwner { _setImplementation(newImplementation, ""); } function upgradeToAndCall(address newImplementation, bytes calldata data) external payable onlyOwner { _setImplementation(newImplementation, data); } // /////////////////////// MODIFIERS //////////////////////////////////////////////////////////////////////// modifier onlyOwner() { require(msg.sender == _owner(), "NOT_AUTHORIZED"); _; } // ///////////////////////// INTERNAL ////////////////////////////////////////////////////////////////////// function _owner() internal view returns (address adminAddress) { // solhint-disable-next-line security/no-inline-assembly assembly { adminAddress := sload(0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103) } } function _setOwner(address newOwner) internal { address previousOwner = _owner(); // solhint-disable-next-line security/no-inline-assembly assembly { sstore(0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103, newOwner) } emit OwnershipTransferred(previousOwner, newOwner); } } // SPDX-License-Identifier: MIT pragma solidity ^0.7.0; // EIP-1967 abstract contract Proxy { // /////////////////////// EVENTS /////////////////////////////////////////////////////////////////////////// event ProxyImplementationUpdated(address indexed previousImplementation, address indexed newImplementation); // ///////////////////// EXTERNAL /////////////////////////////////////////////////////////////////////////// receive() external payable virtual { revert("ETHER_REJECTED"); // explicit reject by default } fallback() external payable { _fallback(); } // ///////////////////////// INTERNAL ////////////////////////////////////////////////////////////////////// function _fallback() internal { // solhint-disable-next-line security/no-inline-assembly assembly { let implementationAddress := sload(0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc) calldatacopy(0x0, 0x0, calldatasize()) let success := delegatecall(gas(), implementationAddress, 0x0, calldatasize(), 0, 0) let retSz := returndatasize() returndatacopy(0, 0, retSz) switch success case 0 { revert(0, retSz) } default { return(0, retSz) } } } function _setImplementation(address newImplementation, bytes memory data) internal { address previousImplementation; // solhint-disable-next-line security/no-inline-assembly assembly { previousImplementation := sload(0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc) } // solhint-disable-next-line security/no-inline-assembly assembly { sstore(0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc, newImplementation) } emit ProxyImplementationUpdated(previousImplementation, newImplementation); if (data.length > 0) { (bool success, ) = newImplementation.delegatecall(data); if (!success) { assembly { // This assembly ensure the revert contains the exact string data let returnDataSize := returndatasize() returndatacopy(0, 0, returnDataSize) revert(0, returnDataSize) } } } } } // SPDX-License-Identifier: MIT pragma solidity ^0.7.0; import "./EIP173Proxy.sol"; ///@notice Proxy implementing EIP173 for ownership management that accept ETH via receive contract EIP173ProxyWithReceive is EIP173Proxy { constructor( address implementationAddress, address ownerAddress, bytes memory data ) payable EIP173Proxy(implementationAddress, ownerAddress, data) {} receive() external payable override {} }
File 6 of 9: GPv2AllowListAuthentication
// SPDX-License-Identifier: LGPL-3.0-or-later pragma solidity ^0.7.6; import "./interfaces/GPv2Authentication.sol"; import "./libraries/GPv2EIP1967.sol"; import "./mixins/Initializable.sol"; import "./mixins/StorageAccessible.sol"; /// @title Gnosis Protocol v2 Access Control Contract /// @author Gnosis Developers contract GPv2AllowListAuthentication is GPv2Authentication, Initializable, StorageAccessible { /// @dev The address of the manager that has permissions to add and remove /// solvers. address public manager; /// @dev The set of allowed solvers. Allowed solvers have a value of `true` /// in this mapping. mapping(address => bool) private solvers; /// @dev Event emitted when the manager changes. event ManagerChanged(address newManager, address oldManager); /// @dev Event emitted when a solver gets added. event SolverAdded(address solver); /// @dev Event emitted when a solver gets removed. event SolverRemoved(address solver); /// @dev Initialize the manager to a value. /// /// This method is a contract initializer that is called exactly once after /// creation. An initializer is used instead of a constructor so that this /// contract can be used behind a proxy. /// /// This initializer is idempotent. /// /// @param manager_ The manager to initialize the contract with. function initializeManager(address manager_) external initializer { manager = manager_; emit ManagerChanged(manager_, address(0)); } /// @dev Modifier that ensures a method can only be called by the contract /// manager. Reverts if called by other addresses. modifier onlyManager() { require(manager == msg.sender, "GPv2: caller not manager"); _; } /// @dev Modifier that ensures method can be either called by the contract /// manager or the proxy owner. /// /// This modifier assumes that the proxy uses an EIP-1967 compliant storage /// slot for the admin. modifier onlyManagerOrOwner() { require( manager == msg.sender || GPv2EIP1967.getAdmin() == msg.sender, "GPv2: not authorized" ); _; } /// @dev Set the manager for this contract. /// /// This method can be called by the current manager (if they want to to /// reliquish the role and give it to another address) or the contract /// owner (i.e. the proxy admin). /// /// @param manager_ The new contract manager address. function setManager(address manager_) external onlyManagerOrOwner { address oldManager = manager; manager = manager_; emit ManagerChanged(manager_, oldManager); } /// @dev Add an address to the set of allowed solvers. This method can only /// be called by the contract manager. /// /// This function is idempotent. /// /// @param solver The solver address to add. function addSolver(address solver) external onlyManager { solvers[solver] = true; emit SolverAdded(solver); } /// @dev Removes an address to the set of allowed solvers. This method can /// only be called by the contract manager. /// /// This function is idempotent. /// /// @param solver The solver address to remove. function removeSolver(address solver) external onlyManager { solvers[solver] = false; emit SolverRemoved(solver); } /// @inheritdoc GPv2Authentication function isSolver(address prospectiveSolver) external view override returns (bool) { return solvers[prospectiveSolver]; } } // SPDX-License-Identifier: LGPL-3.0-or-later pragma solidity ^0.7.6; /// @title Gnosis Protocol v2 Authentication Interface /// @author Gnosis Developers interface GPv2Authentication { /// @dev determines whether the provided address is an authenticated solver. /// @param prospectiveSolver the address of prospective solver. /// @return true when prospectiveSolver is an authenticated solver, otherwise false. function isSolver(address prospectiveSolver) external view returns (bool); } // SPDX-License-Identifier: LGPL-3.0-or-later pragma solidity ^0.7.6; library GPv2EIP1967 { /// @dev The storage slot where the proxy administrator is stored, defined /// as `keccak256('eip1967.proxy.admin') - 1`. bytes32 internal constant ADMIN_SLOT = hex"b53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103"; /// @dev Returns the address stored in the EIP-1967 administrator storage /// slot for the current contract. If this method is not called from an /// contract behind an EIP-1967 proxy, then it will most likely return /// `address(0)`, as the implementation slot is likely to be unset. /// /// @return admin The administrator address. function getAdmin() internal view returns (address admin) { // solhint-disable-next-line no-inline-assembly assembly { admin := sload(ADMIN_SLOT) } } /// @dev Sets the storage at the EIP-1967 administrator slot to be the /// specified address. /// /// @param admin The administrator address to set. function setAdmin(address admin) internal { // solhint-disable-next-line no-inline-assembly assembly { sstore(ADMIN_SLOT, admin) } } } // SPDX-License-Identifier: MIT // Vendored from OpenZeppelin contracts with minor modifications: // - Modified Solidity version // - Formatted code // - Shortned revert messages // - Inlined `Address.isContract` implementation // <https://github.com/OpenZeppelin/openzeppelin-contracts/blob/v3.4.0/contracts/proxy/Initializable.sol> pragma solidity ^0.7.6; /** * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed * behind a proxy. Since a proxied contract can't have a constructor, it's common to move constructor logic to an * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect. * * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as * possible by providing the encoded function call as the `_data` argument to {UpgradeableProxy-constructor}. * * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity. */ abstract contract Initializable { /** * @dev Indicates that the contract has been initialized. */ bool private _initialized; /** * @dev Indicates that the contract is in the process of being initialized. */ bool private _initializing; /** * @dev Modifier to protect an initializer function from being invoked twice. */ modifier initializer() { require( _initializing || _isConstructor() || !_initialized, "Initializable: initialized" ); bool isTopLevelCall = !_initializing; if (isTopLevelCall) { _initializing = true; _initialized = true; } _; if (isTopLevelCall) { _initializing = false; } } /// @dev Returns true if and only if the function is running in the constructor function _isConstructor() private view returns (bool) { uint256 size; // solhint-disable-next-line no-inline-assembly assembly { size := extcodesize(address()) } return size == 0; } } // SPDX-License-Identifier: LGPL-3.0-only // Vendored from Gnosis utility contracts with minor modifications: // - Modified Solidity version // - Formatted code // - Added linter directives to ignore low level call and assembly warnings // <https://github.com/gnosis/util-contracts/blob/v3.1.0-solc-7/contracts/StorageAccessible.sol> pragma solidity ^0.7.6; /// @title ViewStorageAccessible - Interface on top of StorageAccessible base class to allow simulations from view functions interface ViewStorageAccessible { /** * @dev Same as `simulateDelegatecall` on StorageAccessible. Marked as view so that it can be called from external contracts * that want to run simulations from within view functions. Will revert if the invoked simulation attempts to change state. */ function simulateDelegatecall( address targetContract, bytes memory calldataPayload ) external view returns (bytes memory); /** * @dev Same as `getStorageAt` on StorageAccessible. This method allows reading aribtrary ranges of storage. */ function getStorageAt(uint256 offset, uint256 length) external view returns (bytes memory); } /// @title StorageAccessible - generic base contract that allows callers to access all internal storage. contract StorageAccessible { /** * @dev Reads `length` bytes of storage in the currents contract * @param offset - the offset in the current contract's storage in words to start reading from * @param length - the number of words (32 bytes) of data to read * @return the bytes that were read. */ function getStorageAt(uint256 offset, uint256 length) external view returns (bytes memory) { bytes memory result = new bytes(length * 32); for (uint256 index = 0; index < length; index++) { // solhint-disable-next-line no-inline-assembly assembly { let word := sload(add(offset, index)) mstore(add(add(result, 0x20), mul(index, 0x20)), word) } } return result; } /** * @dev Performs a delegetecall on a targetContract in the context of self. * Internally reverts execution to avoid side effects (making it static). Catches revert and returns encoded result as bytes. * @param targetContract Address of the contract containing the code to execute. * @param calldataPayload Calldata that should be sent to the target contract (encoded method name and arguments). */ function simulateDelegatecall( address targetContract, bytes memory calldataPayload ) public returns (bytes memory response) { bytes memory innerCall = abi.encodeWithSelector( this.simulateDelegatecallInternal.selector, targetContract, calldataPayload ); // solhint-disable-next-line avoid-low-level-calls (, response) = address(this).call(innerCall); bool innerSuccess = response[response.length - 1] == 0x01; setLength(response, response.length - 1); if (innerSuccess) { return response; } else { revertWith(response); } } /** * @dev Performs a delegetecall on a targetContract in the context of self. * Internally reverts execution to avoid side effects (making it static). Returns encoded result as revert message * concatenated with the success flag of the inner call as a last byte. * @param targetContract Address of the contract containing the code to execute. * @param calldataPayload Calldata that should be sent to the target contract (encoded method name and arguments). */ function simulateDelegatecallInternal( address targetContract, bytes memory calldataPayload ) external returns (bytes memory response) { bool success; // solhint-disable-next-line avoid-low-level-calls (success, response) = targetContract.delegatecall(calldataPayload); revertWith(abi.encodePacked(response, success)); } function revertWith(bytes memory response) internal pure { // solhint-disable-next-line no-inline-assembly assembly { revert(add(response, 0x20), mload(response)) } } function setLength(bytes memory buffer, uint256 length) internal pure { // solhint-disable-next-line no-inline-assembly assembly { mstore(buffer, length) } } }
File 7 of 9: GPv2VaultRelayer
// SPDX-License-Identifier: LGPL-3.0-or-later pragma solidity ^0.7.6; import "./interfaces/GPv2Authentication.sol"; import "./libraries/GPv2EIP1967.sol"; import "./mixins/Initializable.sol"; import "./mixins/StorageAccessible.sol"; /// @title Gnosis Protocol v2 Access Control Contract /// @author Gnosis Developers contract GPv2AllowListAuthentication is GPv2Authentication, Initializable, StorageAccessible { /// @dev The address of the manager that has permissions to add and remove /// solvers. address public manager; /// @dev The set of allowed solvers. Allowed solvers have a value of `true` /// in this mapping. mapping(address => bool) private solvers; /// @dev Event emitted when the manager changes. event ManagerChanged(address newManager, address oldManager); /// @dev Event emitted when a solver gets added. event SolverAdded(address solver); /// @dev Event emitted when a solver gets removed. event SolverRemoved(address solver); /// @dev Initialize the manager to a value. /// /// This method is a contract initializer that is called exactly once after /// creation. An initializer is used instead of a constructor so that this /// contract can be used behind a proxy. /// /// This initializer is idempotent. /// /// @param manager_ The manager to initialize the contract with. function initializeManager(address manager_) external initializer { manager = manager_; emit ManagerChanged(manager_, address(0)); } /// @dev Modifier that ensures a method can only be called by the contract /// manager. Reverts if called by other addresses. modifier onlyManager() { require(manager == msg.sender, "GPv2: caller not manager"); _; } /// @dev Modifier that ensures method can be either called by the contract /// manager or the proxy owner. /// /// This modifier assumes that the proxy uses an EIP-1967 compliant storage /// slot for the admin. modifier onlyManagerOrOwner() { require( manager == msg.sender || GPv2EIP1967.getAdmin() == msg.sender, "GPv2: not authorized" ); _; } /// @dev Set the manager for this contract. /// /// This method can be called by the current manager (if they want to to /// reliquish the role and give it to another address) or the contract /// owner (i.e. the proxy admin). /// /// @param manager_ The new contract manager address. function setManager(address manager_) external onlyManagerOrOwner { address oldManager = manager; manager = manager_; emit ManagerChanged(manager_, oldManager); } /// @dev Add an address to the set of allowed solvers. This method can only /// be called by the contract manager. /// /// This function is idempotent. /// /// @param solver The solver address to add. function addSolver(address solver) external onlyManager { solvers[solver] = true; emit SolverAdded(solver); } /// @dev Removes an address to the set of allowed solvers. This method can /// only be called by the contract manager. /// /// This function is idempotent. /// /// @param solver The solver address to remove. function removeSolver(address solver) external onlyManager { solvers[solver] = false; emit SolverRemoved(solver); } /// @inheritdoc GPv2Authentication function isSolver(address prospectiveSolver) external view override returns (bool) { return solvers[prospectiveSolver]; } } // SPDX-License-Identifier: LGPL-3.0-or-later pragma solidity ^0.7.6; /// @title Gnosis Protocol v2 Authentication Interface /// @author Gnosis Developers interface GPv2Authentication { /// @dev determines whether the provided address is an authenticated solver. /// @param prospectiveSolver the address of prospective solver. /// @return true when prospectiveSolver is an authenticated solver, otherwise false. function isSolver(address prospectiveSolver) external view returns (bool); } // SPDX-License-Identifier: LGPL-3.0-or-later pragma solidity ^0.7.6; library GPv2EIP1967 { /// @dev The storage slot where the proxy administrator is stored, defined /// as `keccak256('eip1967.proxy.admin') - 1`. bytes32 internal constant ADMIN_SLOT = hex"b53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103"; /// @dev Returns the address stored in the EIP-1967 administrator storage /// slot for the current contract. If this method is not called from an /// contract behind an EIP-1967 proxy, then it will most likely return /// `address(0)`, as the implementation slot is likely to be unset. /// /// @return admin The administrator address. function getAdmin() internal view returns (address admin) { // solhint-disable-next-line no-inline-assembly assembly { admin := sload(ADMIN_SLOT) } } /// @dev Sets the storage at the EIP-1967 administrator slot to be the /// specified address. /// /// @param admin The administrator address to set. function setAdmin(address admin) internal { // solhint-disable-next-line no-inline-assembly assembly { sstore(ADMIN_SLOT, admin) } } } // SPDX-License-Identifier: MIT // Vendored from OpenZeppelin contracts with minor modifications: // - Modified Solidity version // - Formatted code // - Shortned revert messages // - Inlined `Address.isContract` implementation // <https://github.com/OpenZeppelin/openzeppelin-contracts/blob/v3.4.0/contracts/proxy/Initializable.sol> pragma solidity ^0.7.6; /** * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed * behind a proxy. Since a proxied contract can't have a constructor, it's common to move constructor logic to an * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect. * * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as * possible by providing the encoded function call as the `_data` argument to {UpgradeableProxy-constructor}. * * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity. */ abstract contract Initializable { /** * @dev Indicates that the contract has been initialized. */ bool private _initialized; /** * @dev Indicates that the contract is in the process of being initialized. */ bool private _initializing; /** * @dev Modifier to protect an initializer function from being invoked twice. */ modifier initializer() { require( _initializing || _isConstructor() || !_initialized, "Initializable: initialized" ); bool isTopLevelCall = !_initializing; if (isTopLevelCall) { _initializing = true; _initialized = true; } _; if (isTopLevelCall) { _initializing = false; } } /// @dev Returns true if and only if the function is running in the constructor function _isConstructor() private view returns (bool) { uint256 size; // solhint-disable-next-line no-inline-assembly assembly { size := extcodesize(address()) } return size == 0; } } // SPDX-License-Identifier: LGPL-3.0-only // Vendored from Gnosis utility contracts with minor modifications: // - Modified Solidity version // - Formatted code // - Added linter directives to ignore low level call and assembly warnings // <https://github.com/gnosis/util-contracts/blob/v3.1.0-solc-7/contracts/StorageAccessible.sol> pragma solidity ^0.7.6; /// @title ViewStorageAccessible - Interface on top of StorageAccessible base class to allow simulations from view functions interface ViewStorageAccessible { /** * @dev Same as `simulateDelegatecall` on StorageAccessible. Marked as view so that it can be called from external contracts * that want to run simulations from within view functions. Will revert if the invoked simulation attempts to change state. */ function simulateDelegatecall( address targetContract, bytes memory calldataPayload ) external view returns (bytes memory); /** * @dev Same as `getStorageAt` on StorageAccessible. This method allows reading aribtrary ranges of storage. */ function getStorageAt(uint256 offset, uint256 length) external view returns (bytes memory); } /// @title StorageAccessible - generic base contract that allows callers to access all internal storage. contract StorageAccessible { /** * @dev Reads `length` bytes of storage in the currents contract * @param offset - the offset in the current contract's storage in words to start reading from * @param length - the number of words (32 bytes) of data to read * @return the bytes that were read. */ function getStorageAt(uint256 offset, uint256 length) external view returns (bytes memory) { bytes memory result = new bytes(length * 32); for (uint256 index = 0; index < length; index++) { // solhint-disable-next-line no-inline-assembly assembly { let word := sload(add(offset, index)) mstore(add(add(result, 0x20), mul(index, 0x20)), word) } } return result; } /** * @dev Performs a delegetecall on a targetContract in the context of self. * Internally reverts execution to avoid side effects (making it static). Catches revert and returns encoded result as bytes. * @param targetContract Address of the contract containing the code to execute. * @param calldataPayload Calldata that should be sent to the target contract (encoded method name and arguments). */ function simulateDelegatecall( address targetContract, bytes memory calldataPayload ) public returns (bytes memory response) { bytes memory innerCall = abi.encodeWithSelector( this.simulateDelegatecallInternal.selector, targetContract, calldataPayload ); // solhint-disable-next-line avoid-low-level-calls (, response) = address(this).call(innerCall); bool innerSuccess = response[response.length - 1] == 0x01; setLength(response, response.length - 1); if (innerSuccess) { return response; } else { revertWith(response); } } /** * @dev Performs a delegetecall on a targetContract in the context of self. * Internally reverts execution to avoid side effects (making it static). Returns encoded result as revert message * concatenated with the success flag of the inner call as a last byte. * @param targetContract Address of the contract containing the code to execute. * @param calldataPayload Calldata that should be sent to the target contract (encoded method name and arguments). */ function simulateDelegatecallInternal( address targetContract, bytes memory calldataPayload ) external returns (bytes memory response) { bool success; // solhint-disable-next-line avoid-low-level-calls (success, response) = targetContract.delegatecall(calldataPayload); revertWith(abi.encodePacked(response, success)); } function revertWith(bytes memory response) internal pure { // solhint-disable-next-line no-inline-assembly assembly { revert(add(response, 0x20), mload(response)) } } function setLength(bytes memory buffer, uint256 length) internal pure { // solhint-disable-next-line no-inline-assembly assembly { mstore(buffer, length) } } } // SPDX-License-Identifier: LGPL-3.0-or-later pragma solidity ^0.7.6; import "../GPv2AllowListAuthentication.sol"; contract GPv2AllowListAuthenticationV2 is GPv2AllowListAuthentication { function newMethod() external pure returns (uint256) { return 1337; } } // SPDX-License-Identifier: LGPL-3.0-or-later pragma solidity ^0.7.6; import "../GPv2AllowListAuthentication.sol"; import "../libraries/GPv2EIP1967.sol"; contract GPv2AllowListAuthenticationTestInterface is GPv2AllowListAuthentication { constructor(address owner) { GPv2EIP1967.setAdmin(owner); } } // SPDX-License-Identifier: LGPL-3.0-or-later pragma solidity ^0.7.6; pragma abicoder v2; import "./GPv2VaultRelayer.sol"; import "./interfaces/GPv2Authentication.sol"; import "./interfaces/IERC20.sol"; import "./interfaces/IVault.sol"; import "./libraries/GPv2Interaction.sol"; import "./libraries/GPv2Order.sol"; import "./libraries/GPv2Trade.sol"; import "./libraries/GPv2Transfer.sol"; import "./libraries/SafeCast.sol"; import "./libraries/SafeMath.sol"; import "./mixins/GPv2Signing.sol"; import "./mixins/ReentrancyGuard.sol"; import "./mixins/StorageAccessible.sol"; /// @title Gnosis Protocol v2 Settlement Contract /// @author Gnosis Developers contract GPv2Settlement is GPv2Signing, ReentrancyGuard, StorageAccessible { using GPv2Order for bytes; using GPv2Transfer for IVault; using SafeCast for int256; using SafeCast for uint256; using SafeMath for uint256; /// @dev The authenticator is used to determine who can call the settle function. /// That is, only authorised solvers have the ability to invoke settlements. /// Any valid authenticator implements an isSolver method called by the onlySolver /// modifier below. GPv2Authentication public immutable authenticator; /// @dev The Balancer Vault the protocol uses for managing user funds. IVault public immutable vault; /// @dev The Balancer Vault relayer which can interact on behalf of users. /// This contract is created during deployment GPv2VaultRelayer public immutable vaultRelayer; /// @dev Map each user order by UID to the amount that has been filled so /// far. If this amount is larger than or equal to the amount traded in the /// order (amount sold for sell orders, amount bought for buy orders) then /// the order cannot be traded anymore. If the order is fill or kill, then /// this value is only used to determine whether the order has already been /// executed. mapping(bytes => uint256) public filledAmount; /// @dev Event emitted for each executed trade. event Trade( address indexed owner, IERC20 sellToken, IERC20 buyToken, uint256 sellAmount, uint256 buyAmount, uint256 feeAmount, bytes orderUid ); /// @dev Event emitted for each executed interaction. /// /// For gas effeciency, only the interaction calldata selector (first 4 /// bytes) is included in the event. For interactions without calldata or /// whose calldata is shorter than 4 bytes, the selector will be `0`. event Interaction(address indexed target, uint256 value, bytes4 selector); /// @dev Event emitted when a settlement complets event Settlement(address indexed solver); /// @dev Event emitted when an order is invalidated. event OrderInvalidated(address indexed owner, bytes orderUid); constructor(GPv2Authentication authenticator_, IVault vault_) { authenticator = authenticator_; vault = vault_; vaultRelayer = new GPv2VaultRelayer(vault_); } // solhint-disable-next-line no-empty-blocks receive() external payable { // NOTE: Include an empty receive function so that the settlement // contract can receive Ether from contract interactions. } /// @dev This modifier is called by settle function to block any non-listed /// senders from settling batches. modifier onlySolver { require(authenticator.isSolver(msg.sender), "GPv2: not a solver"); _; } /// @dev Modifier to ensure that an external function is only callable as a /// settlement interaction. modifier onlyInteraction { require(address(this) == msg.sender, "GPv2: not an interaction"); _; } /// @dev Settle the specified orders at a clearing price. Note that it is /// the responsibility of the caller to ensure that all GPv2 invariants are /// upheld for the input settlement, otherwise this call will revert. /// Namely: /// - All orders are valid and signed /// - Accounts have sufficient balance and approval. /// - Settlement contract has sufficient balance to execute trades. Note /// this implies that the accumulated fees held in the contract can also /// be used for settlement. This is OK since: /// - Solvers need to be authorized /// - Misbehaving solvers will be slashed for abusing accumulated fees for /// settlement /// - Critically, user orders are entirely protected /// /// @param tokens An array of ERC20 tokens to be traded in the settlement. /// Trades encode tokens as indices into this array. /// @param clearingPrices An array of clearing prices where the `i`-th price /// is for the `i`-th token in the [`tokens`] array. /// @param trades Trades for signed orders. /// @param interactions Smart contract interactions split into three /// separate lists to be run before the settlement, during the settlement /// and after the settlement respectively. function settle( IERC20[] calldata tokens, uint256[] calldata clearingPrices, GPv2Trade.Data[] calldata trades, GPv2Interaction.Data[][3] calldata interactions ) external nonReentrant onlySolver { executeInteractions(interactions[0]); ( GPv2Transfer.Data[] memory inTransfers, GPv2Transfer.Data[] memory outTransfers ) = computeTradeExecutions(tokens, clearingPrices, trades); vaultRelayer.transferFromAccounts(inTransfers); executeInteractions(interactions[1]); vault.transferToAccounts(outTransfers); executeInteractions(interactions[2]); emit Settlement(msg.sender); } /// @dev Settle an order directly against Balancer V2 pools. /// /// @param swaps The Balancer V2 swap steps to use for trading. /// @param tokens An array of ERC20 tokens to be traded in the settlement. /// Swaps and the trade encode tokens as indices into this array. /// @param trade The trade to match directly against Balancer liquidity. The /// order will always be fully executed, so the trade's `executedAmount` /// field is used to represent a swap limit amount. function swap( IVault.BatchSwapStep[] calldata swaps, IERC20[] calldata tokens, GPv2Trade.Data calldata trade ) external nonReentrant onlySolver { RecoveredOrder memory recoveredOrder = allocateRecoveredOrder(); GPv2Order.Data memory order = recoveredOrder.data; recoverOrderFromTrade(recoveredOrder, tokens, trade); IVault.SwapKind kind = order.kind == GPv2Order.KIND_SELL ? IVault.SwapKind.GIVEN_IN : IVault.SwapKind.GIVEN_OUT; IVault.FundManagement memory funds; funds.sender = recoveredOrder.owner; funds.fromInternalBalance = order.sellTokenBalance == GPv2Order.BALANCE_INTERNAL; funds.recipient = payable(recoveredOrder.receiver); funds.toInternalBalance = order.buyTokenBalance == GPv2Order.BALANCE_INTERNAL; int256[] memory limits = new int256[](tokens.length); uint256 limitAmount = trade.executedAmount; // NOTE: Array allocation initializes elements to 0, so we only need to // set the limits we care about. This ensures that the swap will respect // the order's limit price. if (order.kind == GPv2Order.KIND_SELL) { require(limitAmount >= order.buyAmount, "GPv2: limit too low"); limits[trade.sellTokenIndex] = order.sellAmount.toInt256(); limits[trade.buyTokenIndex] = -limitAmount.toInt256(); } else { require(limitAmount <= order.sellAmount, "GPv2: limit too high"); limits[trade.sellTokenIndex] = limitAmount.toInt256(); limits[trade.buyTokenIndex] = -order.buyAmount.toInt256(); } GPv2Transfer.Data memory feeTransfer; feeTransfer.account = recoveredOrder.owner; feeTransfer.token = order.sellToken; feeTransfer.amount = order.feeAmount; feeTransfer.balance = order.sellTokenBalance; int256[] memory tokenDeltas = vaultRelayer.batchSwapWithFee( kind, swaps, tokens, funds, limits, // NOTE: Specify a deadline to ensure that an expire order // cannot be used to trade. order.validTo, feeTransfer ); bytes memory orderUid = recoveredOrder.uid; uint256 executedSellAmount = tokenDeltas[trade.sellTokenIndex].toUint256(); uint256 executedBuyAmount = (-tokenDeltas[trade.buyTokenIndex]).toUint256(); // NOTE: Check that the orders were completely filled and update their // filled amounts to avoid replaying them. The limit price and order // validity have already been verified when executing the swap through // the `limit` and `deadline` parameters. require(filledAmount[orderUid] == 0, "GPv2: order filled"); if (order.kind == GPv2Order.KIND_SELL) { require( executedSellAmount == order.sellAmount, "GPv2: sell amount not respected" ); filledAmount[orderUid] = order.sellAmount; } else { require( executedBuyAmount == order.buyAmount, "GPv2: buy amount not respected" ); filledAmount[orderUid] = order.buyAmount; } emit Trade( recoveredOrder.owner, order.sellToken, order.buyToken, executedSellAmount, executedBuyAmount, order.feeAmount, orderUid ); emit Settlement(msg.sender); } /// @dev Invalidate onchain an order that has been signed offline. /// /// @param orderUid The unique identifier of the order that is to be made /// invalid after calling this function. The user that created the order /// must be the the sender of this message. See [`extractOrderUidParams`] /// for details on orderUid. function invalidateOrder(bytes calldata orderUid) external { (, address owner, ) = orderUid.extractOrderUidParams(); require(owner == msg.sender, "GPv2: caller does not own order"); filledAmount[orderUid] = uint256(-1); emit OrderInvalidated(owner, orderUid); } /// @dev Free storage from the filled amounts of **expired** orders to claim /// a gas refund. This method can only be called as an interaction. /// /// @param orderUids The unique identifiers of the expired order to free /// storage for. function freeFilledAmountStorage(bytes[] calldata orderUids) external onlyInteraction { freeOrderStorage(filledAmount, orderUids); } /// @dev Free storage from the pre signatures of **expired** orders to claim /// a gas refund. This method can only be called as an interaction. /// /// @param orderUids The unique identifiers of the expired order to free /// storage for. function freePreSignatureStorage(bytes[] calldata orderUids) external onlyInteraction { freeOrderStorage(preSignature, orderUids); } /// @dev Process all trades one at a time returning the computed net in and /// out transfers for the trades. /// /// This method reverts if processing of any single trade fails. See /// [`computeTradeExecution`] for more details. /// /// @param tokens An array of ERC20 tokens to be traded in the settlement. /// @param clearingPrices An array of token clearing prices. /// @param trades Trades for signed orders. /// @return inTransfers Array of in transfers of executed sell amounts. /// @return outTransfers Array of out transfers of executed buy amounts. function computeTradeExecutions( IERC20[] calldata tokens, uint256[] calldata clearingPrices, GPv2Trade.Data[] calldata trades ) internal returns ( GPv2Transfer.Data[] memory inTransfers, GPv2Transfer.Data[] memory outTransfers ) { RecoveredOrder memory recoveredOrder = allocateRecoveredOrder(); inTransfers = new GPv2Transfer.Data[](trades.length); outTransfers = new GPv2Transfer.Data[](trades.length); for (uint256 i = 0; i < trades.length; i++) { GPv2Trade.Data calldata trade = trades[i]; recoverOrderFromTrade(recoveredOrder, tokens, trade); computeTradeExecution( recoveredOrder, clearingPrices[trade.sellTokenIndex], clearingPrices[trade.buyTokenIndex], trade.executedAmount, inTransfers[i], outTransfers[i] ); } } /// @dev Compute the in and out transfer amounts for a single trade. /// This function reverts if: /// - The order has expired /// - The order's limit price is not respected /// - The order gets over-filled /// - The fee discount is larger than the executed fee /// /// @param recoveredOrder The recovered order to process. /// @param sellPrice The price of the order's sell token. /// @param buyPrice The price of the order's buy token. /// @param executedAmount The portion of the order to execute. This will be /// ignored for fill-or-kill orders. /// @param inTransfer Memory location for computed executed sell amount /// transfer. /// @param outTransfer Memory location for computed executed buy amount /// transfer. function computeTradeExecution( RecoveredOrder memory recoveredOrder, uint256 sellPrice, uint256 buyPrice, uint256 executedAmount, GPv2Transfer.Data memory inTransfer, GPv2Transfer.Data memory outTransfer ) internal { GPv2Order.Data memory order = recoveredOrder.data; bytes memory orderUid = recoveredOrder.uid; // solhint-disable-next-line not-rely-on-time require(order.validTo >= block.timestamp, "GPv2: order expired"); // NOTE: The following computation is derived from the equation: // ``` // amount_x * price_x = amount_y * price_y // ``` // Intuitively, if a chocolate bar is 0,50€ and a beer is 4€, 1 beer // is roughly worth 8 chocolate bars (`1 * 4 = 8 * 0.5`). From this // equation, we can derive: // - The limit price for selling `x` and buying `y` is respected iff // ``` // limit_x * price_x >= limit_y * price_y // ``` // - The executed amount of token `y` given some amount of `x` and // clearing prices is: // ``` // amount_y = amount_x * price_x / price_y // ``` require( order.sellAmount.mul(sellPrice) >= order.buyAmount.mul(buyPrice), "GPv2: limit price not respected" ); uint256 executedSellAmount; uint256 executedBuyAmount; uint256 executedFeeAmount; uint256 currentFilledAmount; if (order.kind == GPv2Order.KIND_SELL) { if (order.partiallyFillable) { executedSellAmount = executedAmount; executedFeeAmount = order.feeAmount.mul(executedSellAmount).div( order.sellAmount ); } else { executedSellAmount = order.sellAmount; executedFeeAmount = order.feeAmount; } executedBuyAmount = executedSellAmount.mul(sellPrice).ceilDiv( buyPrice ); currentFilledAmount = filledAmount[orderUid].add( executedSellAmount ); require( currentFilledAmount <= order.sellAmount, "GPv2: order filled" ); } else { if (order.partiallyFillable) { executedBuyAmount = executedAmount; executedFeeAmount = order.feeAmount.mul(executedBuyAmount).div( order.buyAmount ); } else { executedBuyAmount = order.buyAmount; executedFeeAmount = order.feeAmount; } executedSellAmount = executedBuyAmount.mul(buyPrice).div(sellPrice); currentFilledAmount = filledAmount[orderUid].add(executedBuyAmount); require( currentFilledAmount <= order.buyAmount, "GPv2: order filled" ); } executedSellAmount = executedSellAmount.add(executedFeeAmount); filledAmount[orderUid] = currentFilledAmount; emit Trade( recoveredOrder.owner, order.sellToken, order.buyToken, executedSellAmount, executedBuyAmount, executedFeeAmount, orderUid ); inTransfer.account = recoveredOrder.owner; inTransfer.token = order.sellToken; inTransfer.amount = executedSellAmount; inTransfer.balance = order.sellTokenBalance; outTransfer.account = recoveredOrder.receiver; outTransfer.token = order.buyToken; outTransfer.amount = executedBuyAmount; outTransfer.balance = order.buyTokenBalance; } /// @dev Execute a list of arbitrary contract calls from this contract. /// @param interactions The list of interactions to execute. function executeInteractions(GPv2Interaction.Data[] calldata interactions) internal { for (uint256 i; i < interactions.length; i++) { GPv2Interaction.Data calldata interaction = interactions[i]; // To prevent possible attack on user funds, we explicitly disable // any interactions with the vault relayer contract. require( interaction.target != address(vaultRelayer), "GPv2: forbidden interaction" ); GPv2Interaction.execute(interaction); emit Interaction( interaction.target, interaction.value, GPv2Interaction.selector(interaction) ); } } /// @dev Claims refund for the specified storage and order UIDs. /// /// This method reverts if any of the orders are still valid. /// /// @param orderUids Order refund data for freeing storage. /// @param orderStorage Order storage mapped on a UID. function freeOrderStorage( mapping(bytes => uint256) storage orderStorage, bytes[] calldata orderUids ) internal { for (uint256 i = 0; i < orderUids.length; i++) { bytes calldata orderUid = orderUids[i]; (, , uint32 validTo) = orderUid.extractOrderUidParams(); // solhint-disable-next-line not-rely-on-time require(validTo < block.timestamp, "GPv2: order still valid"); orderStorage[orderUid] = 0; } } } // SPDX-License-Identifier: LGPL-3.0-or-later pragma solidity ^0.7.6; pragma abicoder v2; import "./interfaces/IERC20.sol"; import "./interfaces/IVault.sol"; import "./libraries/GPv2Transfer.sol"; /// @title Gnosis Protocol v2 Vault Relayer Contract /// @author Gnosis Developers contract GPv2VaultRelayer { using GPv2Transfer for IVault; /// @dev The creator of the contract which has special permissions. This /// value is set at creation time and cannot change. address private immutable creator; /// @dev The vault this relayer is for. IVault private immutable vault; constructor(IVault vault_) { creator = msg.sender; vault = vault_; } /// @dev Modifier that ensures that a function can only be called by the /// creator of this contract. modifier onlyCreator { require(msg.sender == creator, "GPv2: not creator"); _; } /// @dev Transfers all sell amounts for the executed trades from their /// owners to the caller. /// /// This function reverts if: /// - The caller is not the creator of the vault relayer /// - Any ERC20 transfer fails /// /// @param transfers The transfers to execute. function transferFromAccounts(GPv2Transfer.Data[] calldata transfers) external onlyCreator { vault.transferFromAccounts(transfers, msg.sender); } /// @dev Performs a Balancer batched swap on behalf of a user and sends a /// fee to the caller. /// /// This function reverts if: /// - The caller is not the creator of the vault relayer /// - The swap fails /// - The fee transfer fails /// /// @param kind The Balancer swap kind, this can either be `GIVEN_IN` for /// sell orders or `GIVEN_OUT` for buy orders. /// @param swaps The swaps to perform. /// @param tokens The tokens for the swaps. Swaps encode to and from tokens /// as indices into this array. /// @param funds The fund management settings, specifying the user the swap /// is being performed for as well as the recipient of the proceeds. /// @param limits Swap limits for encoding limit prices. /// @param deadline The deadline for the swap. /// @param feeTransfer The transfer data for the caller fee. /// @return tokenDeltas The executed swap amounts. function batchSwapWithFee( IVault.SwapKind kind, IVault.BatchSwapStep[] calldata swaps, IERC20[] memory tokens, IVault.FundManagement memory funds, int256[] memory limits, uint256 deadline, GPv2Transfer.Data calldata feeTransfer ) external onlyCreator returns (int256[] memory tokenDeltas) { tokenDeltas = vault.batchSwap( kind, swaps, tokens, funds, limits, deadline ); vault.fastTransferFromAccount(feeTransfer, msg.sender); } } // SPDX-License-Identifier: MIT // Vendored from OpenZeppelin contracts with minor modifications: // - Modified Solidity version // - Formatted code // - Added `name`, `symbol` and `decimals` function declarations // <https://github.com/OpenZeppelin/openzeppelin-contracts/blob/v3.4.0/contracts/token/ERC20/IERC20.sol> pragma solidity ^0.7.6; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Returns the name of the token. */ function name() external view returns (string memory); /** * @dev Returns the symbol of the token. */ function symbol() external view returns (string memory); /** * @dev Returns the number of decimals the token uses. */ function decimals() external view returns (uint8); /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `recipient`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address recipient, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `sender` to `recipient` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom( address sender, address recipient, uint256 amount ) external returns (bool); /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval( address indexed owner, address indexed spender, uint256 value ); } // SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.6; pragma abicoder v2; import "./IERC20.sol"; /** * @dev Minimal interface for the Vault core contract only containing methods * used by Gnosis Protocol V2. Original source: * <https://github.com/balancer-labs/balancer-core-v2/blob/v1.0.0/contracts/vault/interfaces/IVault.sol> */ interface IVault { // Internal Balance // // Users can deposit tokens into the Vault, where they are allocated to their Internal Balance, and later // transferred or withdrawn. It can also be used as a source of tokens when joining Pools, as a destination // when exiting them, and as either when performing swaps. This usage of Internal Balance results in greatly reduced // gas costs when compared to relying on plain ERC20 transfers, leading to large savings for frequent users. // // Internal Balance management features batching, which means a single contract call can be used to perform multiple // operations of different kinds, with different senders and recipients, at once. /** * @dev Performs a set of user balance operations, which involve Internal Balance (deposit, withdraw or transfer) * and plain ERC20 transfers using the Vault's allowance. This last feature is particularly useful for relayers, as * it lets integrators reuse a user's Vault allowance. * * For each operation, if the caller is not `sender`, it must be an authorized relayer for them. */ function manageUserBalance(UserBalanceOp[] memory ops) external payable; /** * @dev Data for `manageUserBalance` operations, which include the possibility for ETH to be sent and received without manual WETH wrapping or unwrapping. */ struct UserBalanceOp { UserBalanceOpKind kind; IERC20 asset; uint256 amount; address sender; address payable recipient; } // There are four possible operations in `manageUserBalance`: // // - DEPOSIT_INTERNAL // Increases the Internal Balance of the `recipient` account by transferring tokens from the corresponding // `sender`. The sender must have allowed the Vault to use their tokens via `IERC20.approve()`. // // ETH can be used by passing the ETH sentinel value as the asset and forwarding ETH in the call: it will be wrapped // and deposited as WETH. Any ETH amount remaining will be sent back to the caller (not the sender, which is // relevant for relayers). // // Emits an `InternalBalanceChanged` event. // // // - WITHDRAW_INTERNAL // Decreases the Internal Balance of the `sender` account by transferring tokens to the `recipient`. // // ETH can be used by passing the ETH sentinel value as the asset. This will deduct WETH instead, unwrap it and send // it to the recipient as ETH. // // Emits an `InternalBalanceChanged` event. // // // - TRANSFER_INTERNAL // Transfers tokens from the Internal Balance of the `sender` account to the Internal Balance of `recipient`. // // Reverts if the ETH sentinel value is passed. // // Emits an `InternalBalanceChanged` event. // // // - TRANSFER_EXTERNAL // Transfers tokens from `sender` to `recipient`, using the Vault's ERC20 allowance. This is typically used by // relayers, as it lets them reuse a user's Vault allowance. // // Reverts if the ETH sentinel value is passed. // // Emits an `ExternalBalanceTransfer` event. enum UserBalanceOpKind { DEPOSIT_INTERNAL, WITHDRAW_INTERNAL, TRANSFER_INTERNAL, TRANSFER_EXTERNAL } // Swaps // // Users can swap tokens with Pools by calling the `swap` and `batchSwap` functions. To do this, // they need not trust Pool contracts in any way: all security checks are made by the Vault. They must however be // aware of the Pools' pricing algorithms in order to estimate the prices Pools will quote. // // The `swap` function executes a single swap, while `batchSwap` can perform multiple swaps in sequence. // In each individual swap, tokens of one kind are sent from the sender to the Pool (this is the 'token in'), // and tokens of another kind are sent from the Pool to the recipient in exchange (this is the 'token out'). // More complex swaps, such as one token in to multiple tokens out can be achieved by batching together // individual swaps. // // There are two swap kinds: // - 'given in' swaps, where the amount of tokens in (sent to the Pool) is known, and the Pool determines (via the // `onSwap` hook) the amount of tokens out (to send to the recipient). // - 'given out' swaps, where the amount of tokens out (received from the Pool) is known, and the Pool determines // (via the `onSwap` hook) the amount of tokens in (to receive from the sender). // // Additionally, it is possible to chain swaps using a placeholder input amount, which the Vault replaces with // the calculated output of the previous swap. If the previous swap was 'given in', this will be the calculated // tokenOut amount. If the previous swap was 'given out', it will use the calculated tokenIn amount. These extended // swaps are known as 'multihop' swaps, since they 'hop' through a number of intermediate tokens before arriving at // the final intended token. // // In all cases, tokens are only transferred in and out of the Vault (or withdrawn from and deposited into Internal // Balance) after all individual swaps have been completed, and the net token balance change computed. This makes // certain swap patterns, such as multihops, or swaps that interact with the same token pair in multiple Pools, cost // much less gas than they would otherwise. // // It also means that under certain conditions it is possible to perform arbitrage by swapping with multiple // Pools in a way that results in net token movement out of the Vault (profit), with no tokens being sent in (only // updating the Pool's internal accounting). // // To protect users from front-running or the market changing rapidly, they supply a list of 'limits' for each token // involved in the swap, where either the maximum number of tokens to send (by passing a positive value) or the // minimum amount of tokens to receive (by passing a negative value) is specified. // // Additionally, a 'deadline' timestamp can also be provided, forcing the swap to fail if it occurs after // this point in time (e.g. if the transaction failed to be included in a block promptly). // // If interacting with Pools that hold WETH, it is possible to both send and receive ETH directly: the Vault will do // the wrapping and unwrapping. To enable this mechanism, the IAsset sentinel value (the zero address) must be // passed in the `assets` array instead of the WETH address. Note that it is possible to combine ETH and WETH in the // same swap. Any excess ETH will be sent back to the caller (not the sender, which is relevant for relayers). // // Finally, Internal Balance can be used when either sending or receiving tokens. enum SwapKind {GIVEN_IN, GIVEN_OUT} /** * @dev Performs a swap with a single Pool. * * If the swap is 'given in' (the number of tokens to send to the Pool is known), it returns the amount of tokens * taken from the Pool, which must be greater than or equal to `limit`. * * If the swap is 'given out' (the number of tokens to take from the Pool is known), it returns the amount of tokens * sent to the Pool, which must be less than or equal to `limit`. * * Internal Balance usage and the recipient are determined by the `funds` struct. * * Emits a `Swap` event. */ function swap( SingleSwap memory singleSwap, FundManagement memory funds, uint256 limit, uint256 deadline ) external payable returns (uint256); /** * @dev Data for a single swap executed by `swap`. `amount` is either `amountIn` or `amountOut` depending on * the `kind` value. * * `assetIn` and `assetOut` are either token addresses, or the IAsset sentinel value for ETH (the zero address). * Note that Pools never interact with ETH directly: it will be wrapped to or unwrapped from WETH by the Vault. * * The `userData` field is ignored by the Vault, but forwarded to the Pool in the `onSwap` hook, and may be * used to extend swap behavior. */ struct SingleSwap { bytes32 poolId; SwapKind kind; IERC20 assetIn; IERC20 assetOut; uint256 amount; bytes userData; } /** * @dev Performs a series of swaps with one or multiple Pools. In each individual swap, the caller determines either * the amount of tokens sent to or received from the Pool, depending on the `kind` value. * * Returns an array with the net Vault asset balance deltas. Positive amounts represent tokens (or ETH) sent to the * Vault, and negative amounts represent tokens (or ETH) sent by the Vault. Each delta corresponds to the asset at * the same index in the `assets` array. * * Swaps are executed sequentially, in the order specified by the `swaps` array. Each array element describes a * Pool, the token to be sent to this Pool, the token to receive from it, and an amount that is either `amountIn` or * `amountOut` depending on the swap kind. * * Multihop swaps can be executed by passing an `amount` value of zero for a swap. This will cause the amount in/out * of the previous swap to be used as the amount in for the current one. In a 'given in' swap, 'tokenIn' must equal * the previous swap's `tokenOut`. For a 'given out' swap, `tokenOut` must equal the previous swap's `tokenIn`. * * The `assets` array contains the addresses of all assets involved in the swaps. These are either token addresses, * or the IAsset sentinel value for ETH (the zero address). Each entry in the `swaps` array specifies tokens in and * out by referencing an index in `assets`. Note that Pools never interact with ETH directly: it will be wrapped to * or unwrapped from WETH by the Vault. * * Internal Balance usage, sender, and recipient are determined by the `funds` struct. The `limits` array specifies * the minimum or maximum amount of each token the vault is allowed to transfer. * * `batchSwap` can be used to make a single swap, like `swap` does, but doing so requires more gas than the * equivalent `swap` call. * * Emits `Swap` events. */ function batchSwap( SwapKind kind, BatchSwapStep[] memory swaps, IERC20[] memory assets, FundManagement memory funds, int256[] memory limits, uint256 deadline ) external payable returns (int256[] memory); /** * @dev Data for each individual swap executed by `batchSwap`. The asset in and out fields are indexes into the * `assets` array passed to that function, and ETH assets are converted to WETH. * * If `amount` is zero, the multihop mechanism is used to determine the actual amount based on the amount in/out * from the previous swap, depending on the swap kind. * * The `userData` field is ignored by the Vault, but forwarded to the Pool in the `onSwap` hook, and may be * used to extend swap behavior. */ struct BatchSwapStep { bytes32 poolId; uint256 assetInIndex; uint256 assetOutIndex; uint256 amount; bytes userData; } /** * @dev All tokens in a swap are either sent from the `sender` account to the Vault, or from the Vault to the * `recipient` account. * * If the caller is not `sender`, it must be an authorized relayer for them. * * If `fromInternalBalance` is true, the `sender`'s Internal Balance will be preferred, performing an ERC20 * transfer for the difference between the requested amount and the User's Internal Balance (if any). The `sender` * must have allowed the Vault to use their tokens via `IERC20.approve()`. This matches the behavior of * `joinPool`. * * If `toInternalBalance` is true, tokens will be deposited to `recipient`'s internal balance instead of * transferred. This matches the behavior of `exitPool`. * * Note that ETH cannot be deposited to or withdrawn from Internal Balance: attempting to do so will trigger a * revert. */ struct FundManagement { address sender; bool fromInternalBalance; address payable recipient; bool toInternalBalance; } } // SPDX-License-Identifier: LGPL-3.0-or-later pragma solidity ^0.7.6; /// @title Gnosis Protocol v2 Interaction Library /// @author Gnosis Developers library GPv2Interaction { /// @dev Interaction data for performing arbitrary contract interactions. /// Submitted to [`GPv2Settlement.settle`] for code execution. struct Data { address target; uint256 value; bytes callData; } /// @dev Execute an arbitrary contract interaction. /// /// @param interaction Interaction data. function execute(Data calldata interaction) internal { address target = interaction.target; uint256 value = interaction.value; bytes calldata callData = interaction.callData; // NOTE: Use assembly to call the interaction instead of a low level // call for two reasons: // - We don't want to copy the return data, since we discard it for // interactions. // - Solidity will under certain conditions generate code to copy input // calldata twice to memory (the second being a "memcopy loop"). // <https://github.com/gnosis/gp-v2-contracts/pull/417#issuecomment-775091258> // solhint-disable-next-line no-inline-assembly assembly { let freeMemoryPointer := mload(0x40) calldatacopy(freeMemoryPointer, callData.offset, callData.length) if iszero( call( gas(), target, value, freeMemoryPointer, callData.length, 0, 0 ) ) { returndatacopy(0, 0, returndatasize()) revert(0, returndatasize()) } } } /// @dev Extracts the Solidity ABI selector for the specified interaction. /// /// @param interaction Interaction data. /// @return result The 4 byte function selector of the call encoded in /// this interaction. function selector(Data calldata interaction) internal pure returns (bytes4 result) { bytes calldata callData = interaction.callData; if (callData.length >= 4) { // NOTE: Read the first word of the interaction's calldata. The // value does not need to be shifted since `bytesN` values are left // aligned, and the value does not need to be masked since masking // occurs when the value is accessed and not stored: // <https://docs.soliditylang.org/en/v0.7.6/abi-spec.html#encoding-of-indexed-event-parameters> // <https://docs.soliditylang.org/en/v0.7.6/assembly.html#access-to-external-variables-functions-and-libraries> // solhint-disable-next-line no-inline-assembly assembly { result := calldataload(callData.offset) } } } } // SPDX-License-Identifier: LGPL-3.0-or-later pragma solidity ^0.7.6; import "../interfaces/IERC20.sol"; /// @title Gnosis Protocol v2 Order Library /// @author Gnosis Developers library GPv2Order { /// @dev The complete data for a Gnosis Protocol order. This struct contains /// all order parameters that are signed for submitting to GP. struct Data { IERC20 sellToken; IERC20 buyToken; address receiver; uint256 sellAmount; uint256 buyAmount; uint32 validTo; bytes32 appData; uint256 feeAmount; bytes32 kind; bool partiallyFillable; bytes32 sellTokenBalance; bytes32 buyTokenBalance; } /// @dev The order EIP-712 type hash for the [`GPv2Order.Data`] struct. /// /// This value is pre-computed from the following expression: /// ``` /// keccak256( /// "Order(" + /// "address sellToken," + /// "address buyToken," + /// "address receiver," + /// "uint256 sellAmount," + /// "uint256 buyAmount," + /// "uint32 validTo," + /// "bytes32 appData," + /// "uint256 feeAmount," + /// "string kind," + /// "bool partiallyFillable" + /// "string sellTokenBalance" + /// "string buyTokenBalance" + /// ")" /// ) /// ``` bytes32 internal constant TYPE_HASH = hex"d5a25ba2e97094ad7d83dc28a6572da797d6b3e7fc6663bd93efb789fc17e489"; /// @dev The marker value for a sell order for computing the order struct /// hash. This allows the EIP-712 compatible wallets to display a /// descriptive string for the order kind (instead of 0 or 1). /// /// This value is pre-computed from the following expression: /// ``` /// keccak256("sell") /// ``` bytes32 internal constant KIND_SELL = hex"f3b277728b3fee749481eb3e0b3b48980dbbab78658fc419025cb16eee346775"; /// @dev The OrderKind marker value for a buy order for computing the order /// struct hash. /// /// This value is pre-computed from the following expression: /// ``` /// keccak256("buy") /// ``` bytes32 internal constant KIND_BUY = hex"6ed88e868af0a1983e3886d5f3e95a2fafbd6c3450bc229e27342283dc429ccc"; /// @dev The TokenBalance marker value for using direct ERC20 balances for /// computing the order struct hash. /// /// This value is pre-computed from the following expression: /// ``` /// keccak256("erc20") /// ``` bytes32 internal constant BALANCE_ERC20 = hex"5a28e9363bb942b639270062aa6bb295f434bcdfc42c97267bf003f272060dc9"; /// @dev The TokenBalance marker value for using Balancer Vault external /// balances (in order to re-use Vault ERC20 approvals) for computing the /// order struct hash. /// /// This value is pre-computed from the following expression: /// ``` /// keccak256("external") /// ``` bytes32 internal constant BALANCE_EXTERNAL = hex"abee3b73373acd583a130924aad6dc38cfdc44ba0555ba94ce2ff63980ea0632"; /// @dev The TokenBalance marker value for using Balancer Vault internal /// balances for computing the order struct hash. /// /// This value is pre-computed from the following expression: /// ``` /// keccak256("internal") /// ``` bytes32 internal constant BALANCE_INTERNAL = hex"4ac99ace14ee0a5ef932dc609df0943ab7ac16b7583634612f8dc35a4289a6ce"; /// @dev Marker address used to indicate that the receiver of the trade /// proceeds should the owner of the order. /// /// This is chosen to be `address(0)` for gas efficiency as it is expected /// to be the most common case. address internal constant RECEIVER_SAME_AS_OWNER = address(0); /// @dev The byte length of an order unique identifier. uint256 internal constant UID_LENGTH = 56; /// @dev Returns the actual receiver for an order. This function checks /// whether or not the [`receiver`] field uses the marker value to indicate /// it is the same as the order owner. /// /// @return receiver The actual receiver of trade proceeds. function actualReceiver(Data memory order, address owner) internal pure returns (address receiver) { if (order.receiver == RECEIVER_SAME_AS_OWNER) { receiver = owner; } else { receiver = order.receiver; } } /// @dev Return the EIP-712 signing hash for the specified order. /// /// @param order The order to compute the EIP-712 signing hash for. /// @param domainSeparator The EIP-712 domain separator to use. /// @return orderDigest The 32 byte EIP-712 struct hash. function hash(Data memory order, bytes32 domainSeparator) internal pure returns (bytes32 orderDigest) { bytes32 structHash; // NOTE: Compute the EIP-712 order struct hash in place. As suggested // in the EIP proposal, noting that the order struct has 10 fields, and // including the type hash `(12 + 1) * 32 = 416` bytes to hash. // <https://github.com/ethereum/EIPs/blob/master/EIPS/eip-712.md#rationale-for-encodedata> // solhint-disable-next-line no-inline-assembly assembly { let dataStart := sub(order, 32) let temp := mload(dataStart) mstore(dataStart, TYPE_HASH) structHash := keccak256(dataStart, 416) mstore(dataStart, temp) } // NOTE: Now that we have the struct hash, compute the EIP-712 signing // hash using scratch memory past the free memory pointer. The signing // hash is computed from `"\\x19\\x01" || domainSeparator || structHash`. // <https://docs.soliditylang.org/en/v0.7.6/internals/layout_in_memory.html#layout-in-memory> // <https://github.com/ethereum/EIPs/blob/master/EIPS/eip-712.md#specification> // solhint-disable-next-line no-inline-assembly assembly { let freeMemoryPointer := mload(0x40) mstore(freeMemoryPointer, "\\x19\\x01") mstore(add(freeMemoryPointer, 2), domainSeparator) mstore(add(freeMemoryPointer, 34), structHash) orderDigest := keccak256(freeMemoryPointer, 66) } } /// @dev Packs order UID parameters into the specified memory location. The /// result is equivalent to `abi.encodePacked(...)` with the difference that /// it allows re-using the memory for packing the order UID. /// /// This function reverts if the order UID buffer is not the correct size. /// /// @param orderUid The buffer pack the order UID parameters into. /// @param orderDigest The EIP-712 struct digest derived from the order /// parameters. /// @param owner The address of the user who owns this order. /// @param validTo The epoch time at which the order will stop being valid. function packOrderUidParams( bytes memory orderUid, bytes32 orderDigest, address owner, uint32 validTo ) internal pure { require(orderUid.length == UID_LENGTH, "GPv2: uid buffer overflow"); // NOTE: Write the order UID to the allocated memory buffer. The order // parameters are written to memory in **reverse order** as memory // operations write 32-bytes at a time and we want to use a packed // encoding. This means, for example, that after writing the value of // `owner` to bytes `20:52`, writing the `orderDigest` to bytes `0:32` // will **overwrite** bytes `20:32`. This is desirable as addresses are // only 20 bytes and `20:32` should be `0`s: // // | 1111111111222222222233333333334444444444555555 // byte | 01234567890123456789012345678901234567890123456789012345 // -------+--------------------------------------------------------- // field | [.........orderDigest..........][......owner.......][vT] // -------+--------------------------------------------------------- // mstore | [000000000000000000000000000.vT] // | [00000000000.......owner.......] // | [.........orderDigest..........] // // Additionally, since Solidity `bytes memory` are length prefixed, // 32 needs to be added to all the offsets. // // solhint-disable-next-line no-inline-assembly assembly { mstore(add(orderUid, 56), validTo) mstore(add(orderUid, 52), owner) mstore(add(orderUid, 32), orderDigest) } } /// @dev Extracts specific order information from the standardized unique /// order id of the protocol. /// /// @param orderUid The unique identifier used to represent an order in /// the protocol. This uid is the packed concatenation of the order digest, /// the validTo order parameter and the address of the user who created the /// order. It is used by the user to interface with the contract directly, /// and not by calls that are triggered by the solvers. /// @return orderDigest The EIP-712 signing digest derived from the order /// parameters. /// @return owner The address of the user who owns this order. /// @return validTo The epoch time at which the order will stop being valid. function extractOrderUidParams(bytes calldata orderUid) internal pure returns ( bytes32 orderDigest, address owner, uint32 validTo ) { require(orderUid.length == UID_LENGTH, "GPv2: invalid uid"); // Use assembly to efficiently decode packed calldata. // solhint-disable-next-line no-inline-assembly assembly { orderDigest := calldataload(orderUid.offset) owner := shr(96, calldataload(add(orderUid.offset, 32))) validTo := shr(224, calldataload(add(orderUid.offset, 52))) } } } // SPDX-License-Identifier: LGPL-3.0-or-later pragma solidity ^0.7.6; import "../interfaces/IERC20.sol"; import "../mixins/GPv2Signing.sol"; import "./GPv2Order.sol"; /// @title Gnosis Protocol v2 Trade Library. /// @author Gnosis Developers library GPv2Trade { using GPv2Order for GPv2Order.Data; using GPv2Order for bytes; /// @dev A struct representing a trade to be executed as part a batch /// settlement. struct Data { uint256 sellTokenIndex; uint256 buyTokenIndex; address receiver; uint256 sellAmount; uint256 buyAmount; uint32 validTo; bytes32 appData; uint256 feeAmount; uint256 flags; uint256 executedAmount; bytes signature; } /// @dev Extracts the order data and signing scheme for the specified trade. /// /// @param trade The trade. /// @param tokens The list of tokens included in the settlement. The token /// indices in the trade parameters map to tokens in this array. /// @param order The memory location to extract the order data to. function extractOrder( Data calldata trade, IERC20[] calldata tokens, GPv2Order.Data memory order ) internal pure returns (GPv2Signing.Scheme signingScheme) { order.sellToken = tokens[trade.sellTokenIndex]; order.buyToken = tokens[trade.buyTokenIndex]; order.receiver = trade.receiver; order.sellAmount = trade.sellAmount; order.buyAmount = trade.buyAmount; order.validTo = trade.validTo; order.appData = trade.appData; order.feeAmount = trade.feeAmount; ( order.kind, order.partiallyFillable, order.sellTokenBalance, order.buyTokenBalance, signingScheme ) = extractFlags(trade.flags); } /// @dev Decodes trade flags. /// /// Trade flags are used to tightly encode information on how to decode /// an order. Examples that directly affect the structure of an order are /// the kind of order (either a sell or a buy order) as well as whether the /// order is partially fillable or if it is a "fill-or-kill" order. It also /// encodes the signature scheme used to validate the order. As the most /// likely values are fill-or-kill sell orders by an externally owned /// account, the flags are chosen such that `0x00` represents this kind of /// order. The flags byte uses the following format: /// /// ``` /// bit | 31 ... | 6 | 5 | 4 | 3 | 2 | 1 | 0 | /// ----+----------+---+---+-------+---+---+ /// | reserved | * * | * | * * | * | * | /// | | | | | | | /// | | | | | | +---- order kind bit, 0 for a sell order /// | | | | | | and 1 for a buy order /// | | | | | | /// | | | | | +-------- order fill bit, 0 for fill-or-kill /// | | | | | and 1 for a partially fillable order /// | | | | | /// | | | +---+------------ use internal sell token balance bit: /// | | | 0x: ERC20 token balance /// | | | 10: external Balancer Vault balance /// | | | 11: internal Balancer Vault balance /// | | | /// | | +-------------------- use buy token balance bit /// | | 0: ERC20 token balance /// | | 1: internal Balancer Vault balance /// | | /// +---+------------------------ signature scheme bits: /// 00: EIP-712 /// 01: eth_sign /// 10: EIP-1271 /// 11: pre_sign /// ``` function extractFlags(uint256 flags) internal pure returns ( bytes32 kind, bool partiallyFillable, bytes32 sellTokenBalance, bytes32 buyTokenBalance, GPv2Signing.Scheme signingScheme ) { if (flags & 0x01 == 0) { kind = GPv2Order.KIND_SELL; } else { kind = GPv2Order.KIND_BUY; } partiallyFillable = flags & 0x02 != 0; if (flags & 0x08 == 0) { sellTokenBalance = GPv2Order.BALANCE_ERC20; } else if (flags & 0x04 == 0) { sellTokenBalance = GPv2Order.BALANCE_EXTERNAL; } else { sellTokenBalance = GPv2Order.BALANCE_INTERNAL; } if (flags & 0x10 == 0) { buyTokenBalance = GPv2Order.BALANCE_ERC20; } else { buyTokenBalance = GPv2Order.BALANCE_INTERNAL; } // NOTE: Take advantage of the fact that Solidity will revert if the // following expression does not produce a valid enum value. This means // we check here that the leading reserved bits must be 0. signingScheme = GPv2Signing.Scheme(flags >> 5); } } // SPDX-License-Identifier: LGPL-3.0-or-later pragma solidity ^0.7.6; pragma abicoder v2; import "../interfaces/IERC20.sol"; import "../interfaces/IVault.sol"; import "./GPv2Order.sol"; import "./GPv2SafeERC20.sol"; /// @title Gnosis Protocol v2 Transfers /// @author Gnosis Developers library GPv2Transfer { using GPv2SafeERC20 for IERC20; /// @dev Transfer data. struct Data { address account; IERC20 token; uint256 amount; bytes32 balance; } /// @dev Ether marker address used to indicate an Ether transfer. address internal constant BUY_ETH_ADDRESS = 0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE; /// @dev Execute the specified transfer from the specified account to a /// recipient. The recipient will either receive internal Vault balances or /// ERC20 token balances depending on whether the account is using internal /// balances or not. /// /// This method is used for transferring fees to the settlement contract /// when settling a single order directly with Balancer. /// /// Note that this method is subtly different from `transferFromAccounts` /// with a single transfer with respect to how it deals with internal /// balances. Specifically, this method will perform an **internal balance /// transfer to the settlement contract instead of a withdrawal to the /// external balance of the settlement contract** for trades that specify /// trading with internal balances. This is done as a gas optimization in /// the single order "fast-path". /// /// @param vault The Balancer vault to use. /// @param transfer The transfer to perform specifying the sender account. /// @param recipient The recipient for the transfer. function fastTransferFromAccount( IVault vault, Data calldata transfer, address recipient ) internal { require( address(transfer.token) != BUY_ETH_ADDRESS, "GPv2: cannot transfer native ETH" ); if (transfer.balance == GPv2Order.BALANCE_ERC20) { transfer.token.safeTransferFrom( transfer.account, recipient, transfer.amount ); } else { IVault.UserBalanceOp[] memory balanceOps = new IVault.UserBalanceOp[](1); IVault.UserBalanceOp memory balanceOp = balanceOps[0]; balanceOp.kind = transfer.balance == GPv2Order.BALANCE_EXTERNAL ? IVault.UserBalanceOpKind.TRANSFER_EXTERNAL : IVault.UserBalanceOpKind.TRANSFER_INTERNAL; balanceOp.asset = transfer.token; balanceOp.amount = transfer.amount; balanceOp.sender = transfer.account; balanceOp.recipient = payable(recipient); vault.manageUserBalance(balanceOps); } } /// @dev Execute the specified transfers from the specified accounts to a /// single recipient. The recipient will receive all transfers as ERC20 /// token balances, regardless of whether or not the accounts are using /// internal Vault balances. /// /// This method is used for accumulating user balances into the settlement /// contract. /// /// @param vault The Balancer vault to use. /// @param transfers The batched transfers to perform specifying the /// sender accounts. /// @param recipient The single recipient for all the transfers. function transferFromAccounts( IVault vault, Data[] calldata transfers, address recipient ) internal { // NOTE: Allocate buffer of Vault balance operations large enough to // hold all GP transfers. This is done to avoid re-allocations (which // are gas inefficient) while still allowing all transfers to be batched // into a single Vault call. IVault.UserBalanceOp[] memory balanceOps = new IVault.UserBalanceOp[](transfers.length); uint256 balanceOpCount = 0; for (uint256 i = 0; i < transfers.length; i++) { Data calldata transfer = transfers[i]; require( address(transfer.token) != BUY_ETH_ADDRESS, "GPv2: cannot transfer native ETH" ); if (transfer.balance == GPv2Order.BALANCE_ERC20) { transfer.token.safeTransferFrom( transfer.account, recipient, transfer.amount ); } else { IVault.UserBalanceOp memory balanceOp = balanceOps[balanceOpCount++]; balanceOp.kind = transfer.balance == GPv2Order.BALANCE_EXTERNAL ? IVault.UserBalanceOpKind.TRANSFER_EXTERNAL : IVault.UserBalanceOpKind.WITHDRAW_INTERNAL; balanceOp.asset = transfer.token; balanceOp.amount = transfer.amount; balanceOp.sender = transfer.account; balanceOp.recipient = payable(recipient); } } if (balanceOpCount > 0) { truncateBalanceOpsArray(balanceOps, balanceOpCount); vault.manageUserBalance(balanceOps); } } /// @dev Execute the specified transfers to their respective accounts. /// /// This method is used for paying out trade proceeds from the settlement /// contract. /// /// @param vault The Balancer vault to use. /// @param transfers The batched transfers to perform. function transferToAccounts(IVault vault, Data[] memory transfers) internal { IVault.UserBalanceOp[] memory balanceOps = new IVault.UserBalanceOp[](transfers.length); uint256 balanceOpCount = 0; for (uint256 i = 0; i < transfers.length; i++) { Data memory transfer = transfers[i]; if (address(transfer.token) == BUY_ETH_ADDRESS) { require( transfer.balance != GPv2Order.BALANCE_INTERNAL, "GPv2: unsupported internal ETH" ); payable(transfer.account).transfer(transfer.amount); } else if (transfer.balance == GPv2Order.BALANCE_ERC20) { transfer.token.safeTransfer(transfer.account, transfer.amount); } else { IVault.UserBalanceOp memory balanceOp = balanceOps[balanceOpCount++]; balanceOp.kind = IVault.UserBalanceOpKind.DEPOSIT_INTERNAL; balanceOp.asset = transfer.token; balanceOp.amount = transfer.amount; balanceOp.sender = address(this); balanceOp.recipient = payable(transfer.account); } } if (balanceOpCount > 0) { truncateBalanceOpsArray(balanceOps, balanceOpCount); vault.manageUserBalance(balanceOps); } } /// @dev Truncate a Vault balance operation array to its actual size. /// /// This method **does not** check whether or not the new length is valid, /// and specifying a size that is larger than the array's actual length is /// undefined behaviour. /// /// @param balanceOps The memory array of balance operations to truncate. /// @param newLength The new length to set. function truncateBalanceOpsArray( IVault.UserBalanceOp[] memory balanceOps, uint256 newLength ) private pure { // NOTE: Truncate the vault transfers array to the specified length. // This is done by setting the array's length which occupies the first // word in memory pointed to by the `balanceOps` memory variable. // <https://docs.soliditylang.org/en/v0.7.6/internals/layout_in_memory.html> // solhint-disable-next-line no-inline-assembly assembly { mstore(balanceOps, newLength) } } } // SPDX-License-Identifier: MIT // Vendored from OpenZeppelin contracts with minor modifications: // - Modified Solidity version // - Formatted code // - Shortened revert messages // - Removed unused methods // - Convert to `type(*).*` notation // <https://github.com/OpenZeppelin/openzeppelin-contracts/blob/v3.4.0/contracts/utils/SafeCast.sol> pragma solidity ^0.7.6; /** * @dev Wrappers over Solidity's uintXX/intXX casting operators with added overflow * checks. * * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can * easily result in undesired exploitation or bugs, since developers usually * assume that overflows raise errors. `SafeCast` restores this intuition by * reverting the transaction when such an operation overflows. * * Using this library instead of the unchecked operations eliminates an entire * class of bugs, so it's recommended to use it always. * * Can be combined with {SafeMath} and {SignedSafeMath} to extend it to smaller types, by performing * all math on `uint256` and `int256` and then downcasting. */ library SafeCast { /** * @dev Converts a signed int256 into an unsigned uint256. * * Requirements: * * - input must be greater than or equal to 0. */ function toUint256(int256 value) internal pure returns (uint256) { require(value >= 0, "SafeCast: not positive"); return uint256(value); } /** * @dev Converts an unsigned uint256 into a signed int256. * * Requirements: * * - input must be less than or equal to maxInt256. */ function toInt256(uint256 value) internal pure returns (int256) { require( value <= uint256(type(int256).max), "SafeCast: int256 overflow" ); return int256(value); } } // SPDX-License-Identifier: MIT // Vendored from OpenZeppelin contracts with minor modifications: // - Modified Solidity version // - Formatted code // - Shortened some revert messages // - Removed unused methods // - Added `ceilDiv` method // <https://github.com/OpenZeppelin/openzeppelin-contracts/blob/v3.4.0/contracts/math/SafeMath.sol> pragma solidity ^0.7.6; /** * @dev Wrappers over Solidity's arithmetic operations with added overflow * checks. * * Arithmetic operations in Solidity wrap on overflow. This can easily result * in bugs, because programmers usually assume that an overflow raises an * error, which is the standard behavior in high level programming languages. * `SafeMath` restores this intuition by reverting the transaction when an * operation overflows. * * Using this library instead of the unchecked operations eliminates an entire * class of bugs, so it's recommended to use it always. */ library SafeMath { /** * @dev Returns the addition of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `+` operator. * * Requirements: * * - Addition cannot overflow. */ function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; require(c >= a, "SafeMath: addition overflow"); return c; } /** * @dev Returns the subtraction of two unsigned integers, reverting on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b) internal pure returns (uint256) { require(b <= a, "SafeMath: subtraction overflow"); return a - b; } /** * @dev Returns the multiplication of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `*` operator. * * Requirements: * * - Multiplication cannot overflow. */ function mul(uint256 a, uint256 b) internal pure returns (uint256) { if (a == 0) return 0; uint256 c = a * b; require(c / a == b, "SafeMath: mul overflow"); return c; } /** * @dev Returns the integer division of two unsigned integers, reverting on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function div(uint256 a, uint256 b) internal pure returns (uint256) { require(b > 0, "SafeMath: division by 0"); return a / b; } /** * @dev Returns the ceiling integer division of two unsigned integers, * reverting on division by zero. The result is rounded towards up the * nearest integer, instead of truncating the fractional part. * * Requirements: * * - The divisor cannot be zero. * - The sum of the dividend and divisor cannot overflow. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { require(b > 0, "SafeMath: ceiling division by 0"); return a / b + (a % b == 0 ? 0 : 1); } } // SPDX-License-Identifier: LGPL-3.0-or-later pragma solidity ^0.7.6; import "../interfaces/GPv2EIP1271.sol"; import "../libraries/GPv2Order.sol"; import "../libraries/GPv2Trade.sol"; /// @title Gnosis Protocol v2 Signing Library. /// @author Gnosis Developers abstract contract GPv2Signing { using GPv2Order for GPv2Order.Data; using GPv2Order for bytes; /// @dev Recovered trade data containing the extracted order and the /// recovered owner address. struct RecoveredOrder { GPv2Order.Data data; bytes uid; address owner; address receiver; } /// @dev Signing scheme used for recovery. enum Scheme {Eip712, EthSign, Eip1271, PreSign} /// @dev The EIP-712 domain type hash used for computing the domain /// separator. bytes32 private constant DOMAIN_TYPE_HASH = keccak256( "EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)" ); /// @dev The EIP-712 domain name used for computing the domain separator. bytes32 private constant DOMAIN_NAME = keccak256("Gnosis Protocol"); /// @dev The EIP-712 domain version used for computing the domain separator. bytes32 private constant DOMAIN_VERSION = keccak256("v2"); /// @dev Marker value indicating an order is pre-signed. uint256 private constant PRE_SIGNED = uint256(keccak256("GPv2Signing.Scheme.PreSign")); /// @dev The domain separator used for signing orders that gets mixed in /// making signatures for different domains incompatible. This domain /// separator is computed following the EIP-712 standard and has replay /// protection mixed in so that signed orders are only valid for specific /// GPv2 contracts. bytes32 public immutable domainSeparator; /// @dev Storage indicating whether or not an order has been signed by a /// particular address. mapping(bytes => uint256) public preSignature; /// @dev Event that is emitted when an account either pre-signs an order or /// revokes an existing pre-signature. event PreSignature(address indexed owner, bytes orderUid, bool signed); constructor() { // NOTE: Currently, the only way to get the chain ID in solidity is // using assembly. uint256 chainId; // solhint-disable-next-line no-inline-assembly assembly { chainId := chainid() } domainSeparator = keccak256( abi.encode( DOMAIN_TYPE_HASH, DOMAIN_NAME, DOMAIN_VERSION, chainId, address(this) ) ); } /// @dev Sets a presignature for the specified order UID. /// /// @param orderUid The unique identifier of the order to pre-sign. function setPreSignature(bytes calldata orderUid, bool signed) external { (, address owner, ) = orderUid.extractOrderUidParams(); require(owner == msg.sender, "GPv2: cannot presign order"); if (signed) { preSignature[orderUid] = PRE_SIGNED; } else { preSignature[orderUid] = 0; } emit PreSignature(owner, orderUid, signed); } /// @dev Returns an empty recovered order with a pre-allocated buffer for /// packing the unique identifier. /// /// @return recoveredOrder The empty recovered order data. function allocateRecoveredOrder() internal pure returns (RecoveredOrder memory recoveredOrder) { recoveredOrder.uid = new bytes(GPv2Order.UID_LENGTH); } /// @dev Extracts order data and recovers the signer from the specified /// trade. /// /// @param recoveredOrder Memory location used for writing the recovered order data. /// @param tokens The list of tokens included in the settlement. The token /// indices in the trade parameters map to tokens in this array. /// @param trade The trade data to recover the order data from. function recoverOrderFromTrade( RecoveredOrder memory recoveredOrder, IERC20[] calldata tokens, GPv2Trade.Data calldata trade ) internal view { GPv2Order.Data memory order = recoveredOrder.data; Scheme signingScheme = GPv2Trade.extractOrder(trade, tokens, order); (bytes32 orderDigest, address owner) = recoverOrderSigner(order, signingScheme, trade.signature); recoveredOrder.uid.packOrderUidParams( orderDigest, owner, order.validTo ); recoveredOrder.owner = owner; recoveredOrder.receiver = order.actualReceiver(owner); } /// @dev The length of any signature from an externally owned account. uint256 private constant ECDSA_SIGNATURE_LENGTH = 65; /// @dev Recovers an order's signer from the specified order and signature. /// /// @param order The order to recover a signature for. /// @param signingScheme The signing scheme. /// @param signature The signature bytes. /// @return orderDigest The computed order hash. /// @return owner The recovered address from the specified signature. function recoverOrderSigner( GPv2Order.Data memory order, Scheme signingScheme, bytes calldata signature ) internal view returns (bytes32 orderDigest, address owner) { orderDigest = order.hash(domainSeparator); if (signingScheme == Scheme.Eip712) { owner = recoverEip712Signer(orderDigest, signature); } else if (signingScheme == Scheme.EthSign) { owner = recoverEthsignSigner(orderDigest, signature); } else if (signingScheme == Scheme.Eip1271) { owner = recoverEip1271Signer(orderDigest, signature); } else { // signingScheme == Scheme.PreSign owner = recoverPreSigner(orderDigest, signature, order.validTo); } } /// @dev Perform an ECDSA recover for the specified message and calldata /// signature. /// /// The signature is encoded by tighyly packing the following struct: /// ``` /// struct EncodedSignature { /// bytes32 r; /// bytes32 s; /// uint8 v; /// } /// ``` /// /// @param message The signed message. /// @param encodedSignature The encoded signature. function ecdsaRecover(bytes32 message, bytes calldata encodedSignature) internal pure returns (address signer) { require( encodedSignature.length == ECDSA_SIGNATURE_LENGTH, "GPv2: malformed ecdsa signature" ); bytes32 r; bytes32 s; uint8 v; // NOTE: Use assembly to efficiently decode signature data. // solhint-disable-next-line no-inline-assembly assembly { // r = uint256(encodedSignature[0:32]) r := calldataload(encodedSignature.offset) // s = uint256(encodedSignature[32:64]) s := calldataload(add(encodedSignature.offset, 32)) // v = uint8(encodedSignature[64]) v := shr(248, calldataload(add(encodedSignature.offset, 64))) } signer = ecrecover(message, v, r, s); require(signer != address(0), "GPv2: invalid ecdsa signature"); } /// @dev Decodes signature bytes originating from an EIP-712-encoded /// signature. /// /// EIP-712 signs typed data. The specifications are described in the /// related EIP (<https://eips.ethereum.org/EIPS/eip-712>). /// /// EIP-712 signatures are encoded as standard ECDSA signatures as described /// in the corresponding decoding function [`ecdsaRecover`]. /// /// @param orderDigest The EIP-712 signing digest derived from the order /// parameters. /// @param encodedSignature Calldata pointing to tightly packed signature /// bytes. /// @return owner The address of the signer. function recoverEip712Signer( bytes32 orderDigest, bytes calldata encodedSignature ) internal pure returns (address owner) { owner = ecdsaRecover(orderDigest, encodedSignature); } /// @dev Decodes signature bytes originating from the output of the eth_sign /// RPC call. /// /// The specifications are described in the Ethereum documentation /// (<https://eth.wiki/json-rpc/API#eth_sign>). /// /// eth_sign signatures are encoded as standard ECDSA signatures as /// described in the corresponding decoding function /// [`ecdsaRecover`]. /// /// @param orderDigest The EIP-712 signing digest derived from the order /// parameters. /// @param encodedSignature Calldata pointing to tightly packed signature /// bytes. /// @return owner The address of the signer. function recoverEthsignSigner( bytes32 orderDigest, bytes calldata encodedSignature ) internal pure returns (address owner) { // The signed message is encoded as: // `"\\x19Ethereum Signed Message:\ " || length || data`, where // the length is a constant (32 bytes) and the data is defined as: // `orderDigest`. bytes32 ethsignDigest = keccak256( abi.encodePacked( "\\x19Ethereum Signed Message:\ 32", orderDigest ) ); owner = ecdsaRecover(ethsignDigest, encodedSignature); } /// @dev Verifies the input calldata as an EIP-1271 contract signature and /// returns the address of the signer. /// /// The encoded signature tightly packs the following struct: /// /// ``` /// struct EncodedEip1271Signature { /// address owner; /// bytes signature; /// } /// ``` /// /// This function enforces that the encoded data stores enough bytes to /// cover the full length of the decoded signature. /// /// @param encodedSignature The encoded EIP-1271 signature. /// @param orderDigest The EIP-712 signing digest derived from the order /// parameters. /// @return owner The address of the signer. function recoverEip1271Signer( bytes32 orderDigest, bytes calldata encodedSignature ) internal view returns (address owner) { // NOTE: Use assembly to read the verifier address from the encoded // signature bytes. // solhint-disable-next-line no-inline-assembly assembly { // owner = address(encodedSignature[0:20]) owner := shr(96, calldataload(encodedSignature.offset)) } // NOTE: Configure prettier to ignore the following line as it causes // a panic in the Solidity plugin. // prettier-ignore bytes calldata signature = encodedSignature[20:]; require( EIP1271Verifier(owner).isValidSignature(orderDigest, signature) == GPv2EIP1271.MAGICVALUE, "GPv2: invalid eip1271 signature" ); } /// @dev Verifies the order has been pre-signed. The signature is the /// address of the signer of the order. /// /// @param orderDigest The EIP-712 signing digest derived from the order /// parameters. /// @param encodedSignature The pre-sign signature reprenting the order UID. /// @param validTo The order expiry timestamp. /// @return owner The address of the signer. function recoverPreSigner( bytes32 orderDigest, bytes calldata encodedSignature, uint32 validTo ) internal view returns (address owner) { require(encodedSignature.length == 20, "GPv2: malformed presignature"); // NOTE: Use assembly to read the owner address from the encoded // signature bytes. // solhint-disable-next-line no-inline-assembly assembly { // owner = address(encodedSignature[0:20]) owner := shr(96, calldataload(encodedSignature.offset)) } bytes memory orderUid = new bytes(GPv2Order.UID_LENGTH); orderUid.packOrderUidParams(orderDigest, owner, validTo); require( preSignature[orderUid] == PRE_SIGNED, "GPv2: order not presigned" ); } } // SPDX-License-Identifier: MIT // Vendored from OpenZeppelin contracts with minor modifications: // - Modified Solidity version // - Formatted code // <https://github.com/OpenZeppelin/openzeppelin-contracts/blob/v3.4.0/contracts/utils/ReentrancyGuard.sol> pragma solidity ^0.7.6; /** * @dev Contract module that helps prevent reentrant calls to a function. * * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier * available, which can be applied to functions to make sure there are no nested * (reentrant) calls to them. * * Note that because there is a single `nonReentrant` guard, functions marked as * `nonReentrant` may not call one another. This can be worked around by making * those functions `private`, and then adding `external` `nonReentrant` entry * points to them. * * TIP: If you would like to learn more about reentrancy and alternative ways * to protect against it, check out our blog post * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul]. */ abstract contract ReentrancyGuard { // Booleans are more expensive than uint256 or any type that takes up a full // word because each write operation emits an extra SLOAD to first read the // slot's contents, replace the bits taken up by the boolean, and then write // back. This is the compiler's defense against contract upgrades and // pointer aliasing, and it cannot be disabled. // The values being non-zero value makes deployment a bit more expensive, // but in exchange the refund on every call to nonReentrant will be lower in // amount. Since refunds are capped to a percentage of the total // transaction's gas, it is best to keep them low in cases like this one, to // increase the likelihood of the full refund coming into effect. uint256 private constant _NOT_ENTERED = 1; uint256 private constant _ENTERED = 2; uint256 private _status; constructor() { _status = _NOT_ENTERED; } /** * @dev Prevents a contract from calling itself, directly or indirectly. * Calling a `nonReentrant` function from another `nonReentrant` * function is not supported. It is possible to prevent this from happening * by making the `nonReentrant` function external, and make it call a * `private` function that does the actual work. */ modifier nonReentrant() { // On the first call to nonReentrant, _notEntered will be true require(_status != _ENTERED, "ReentrancyGuard: reentrant call"); // Any calls to nonReentrant after this point will fail _status = _ENTERED; _; // By storing the original value once again, a refund is triggered (see // https://eips.ethereum.org/EIPS/eip-2200) _status = _NOT_ENTERED; } } // SPDX-License-Identifier: LGPL-3.0-or-later pragma solidity ^0.7.6; import "../interfaces/IERC20.sol"; /// @title Gnosis Protocol v2 Safe ERC20 Transfer Library /// @author Gnosis Developers /// @dev Gas-efficient version of Openzeppelin's SafeERC20 contract that notably /// does not revert when calling a non-contract. library GPv2SafeERC20 { /// @dev Wrapper around a call to the ERC20 function `transfer` that reverts /// also when the token returns `false`. function safeTransfer( IERC20 token, address to, uint256 value ) internal { bytes4 selector_ = token.transfer.selector; // solhint-disable-next-line no-inline-assembly assembly { let freeMemoryPointer := mload(0x40) mstore(freeMemoryPointer, selector_) mstore( add(freeMemoryPointer, 4), and(to, 0xffffffffffffffffffffffffffffffffffffffff) ) mstore(add(freeMemoryPointer, 36), value) if iszero(call(gas(), token, 0, freeMemoryPointer, 68, 0, 0)) { returndatacopy(0, 0, returndatasize()) revert(0, returndatasize()) } } require(getLastTansferResult(token), "GPv2: failed transfer"); } /// @dev Wrapper around a call to the ERC20 function `transferFrom` that /// reverts also when the token returns `false`. function safeTransferFrom( IERC20 token, address from, address to, uint256 value ) internal { bytes4 selector_ = token.transferFrom.selector; // solhint-disable-next-line no-inline-assembly assembly { let freeMemoryPointer := mload(0x40) mstore(freeMemoryPointer, selector_) mstore( add(freeMemoryPointer, 4), and(from, 0xffffffffffffffffffffffffffffffffffffffff) ) mstore( add(freeMemoryPointer, 36), and(to, 0xffffffffffffffffffffffffffffffffffffffff) ) mstore(add(freeMemoryPointer, 68), value) if iszero(call(gas(), token, 0, freeMemoryPointer, 100, 0, 0)) { returndatacopy(0, 0, returndatasize()) revert(0, returndatasize()) } } require(getLastTansferResult(token), "GPv2: failed transferFrom"); } /// @dev Verifies that the last return was a successful `transfer*` call. /// This is done by checking that the return data is either empty, or /// is a valid ABI encoded boolean. function getLastTansferResult(IERC20 token) private view returns (bool success) { // NOTE: Inspecting previous return data requires assembly. Note that // we write the return data to memory 0 in the case where the return // data size is 32, this is OK since the first 64 bytes of memory are // reserved by Solidy as a scratch space that can be used within // assembly blocks. // <https://docs.soliditylang.org/en/v0.7.6/internals/layout_in_memory.html> // solhint-disable-next-line no-inline-assembly assembly { /// @dev Revert with an ABI encoded Solidity error with a message /// that fits into 32-bytes. /// /// An ABI encoded Solidity error has the following memory layout: /// /// ------------+---------------------------------- /// byte range | value /// ------------+---------------------------------- /// 0x00..0x04 | selector("Error(string)") /// 0x04..0x24 | string offset (always 0x20) /// 0x24..0x44 | string length /// 0x44..0x64 | string value, padded to 32-bytes function revertWithMessage(length, message) { mstore(0x00, "\\x08\\xc3\\x79\\xa0") mstore(0x04, 0x20) mstore(0x24, length) mstore(0x44, message) revert(0x00, 0x64) } switch returndatasize() // Non-standard ERC20 transfer without return. case 0 { // NOTE: When the return data size is 0, verify that there // is code at the address. This is done in order to maintain // compatibility with Solidity calling conventions. // <https://docs.soliditylang.org/en/v0.7.6/control-structures.html#external-function-calls> if iszero(extcodesize(token)) { revertWithMessage(20, "GPv2: not a contract") } success := 1 } // Standard ERC20 transfer returning boolean success value. case 32 { returndatacopy(0, 0, returndatasize()) // NOTE: For ABI encoding v1, any non-zero value is accepted // as `true` for a boolean. In order to stay compatible with // OpenZeppelin's `SafeERC20` library which is known to work // with the existing ERC20 implementation we care about, // make sure we return success for any non-zero return value // from the `transfer*` call. success := iszero(iszero(mload(0))) } default { revertWithMessage(31, "GPv2: malformed transfer result") } } } } // SPDX-License-Identifier: LGPL-3.0-or-later pragma solidity ^0.7.6; library GPv2EIP1271 { /// @dev Value returned by a call to `isValidSignature` if the signature /// was verified successfully. The value is defined in EIP-1271 as: /// bytes4(keccak256("isValidSignature(bytes32,bytes)")) bytes4 internal constant MAGICVALUE = 0x1626ba7e; } /// @title EIP1271 Interface /// @dev Standardized interface for an implementation of smart contract /// signatures as described in EIP-1271. The code that follows is identical to /// the code in the standard with the exception of formatting and syntax /// changes to adapt the code to our Solidity version. interface EIP1271Verifier { /// @dev Should return whether the signature provided is valid for the /// provided data /// @param _hash Hash of the data to be signed /// @param _signature Signature byte array associated with _data /// /// MUST return the bytes4 magic value 0x1626ba7e when function passes. /// MUST NOT modify state (using STATICCALL for solc < 0.5, view modifier for /// solc > 0.5) /// MUST allow external calls /// function isValidSignature(bytes32 _hash, bytes memory _signature) external view returns (bytes4 magicValue); } // SPDX-License-Identifier: LGPL-3.0-or-later pragma solidity ^0.7.6; pragma abicoder v2; import "../interfaces/GPv2EIP1271.sol"; import "../interfaces/IERC20.sol"; import "../libraries/GPv2Order.sol"; import "../libraries/GPv2SafeERC20.sol"; import "../libraries/SafeMath.sol"; import "../GPv2Settlement.sol"; /// @title Proof of Concept Smart Order /// @author Gnosis Developers contract SmartSellOrder is EIP1271Verifier { using GPv2Order for GPv2Order.Data; using GPv2SafeERC20 for IERC20; using SafeMath for uint256; bytes32 public constant APPDATA = keccak256("SmartSellOrder"); address public immutable owner; bytes32 public immutable domainSeparator; IERC20 public immutable sellToken; IERC20 public immutable buyToken; uint256 public immutable totalSellAmount; uint256 public immutable totalFeeAmount; uint32 public immutable validTo; constructor( GPv2Settlement settlement, IERC20 sellToken_, IERC20 buyToken_, uint32 validTo_, uint256 totalSellAmount_, uint256 totalFeeAmount_ ) { owner = msg.sender; domainSeparator = settlement.domainSeparator(); sellToken = sellToken_; buyToken = buyToken_; validTo = validTo_; totalSellAmount = totalSellAmount_; totalFeeAmount = totalFeeAmount_; sellToken_.approve( address(settlement.vaultRelayer()), type(uint256).max ); } modifier onlyOwner { require(msg.sender == owner, "not owner"); _; } function withdraw(uint256 amount) external onlyOwner { sellToken.safeTransfer(owner, amount); } function close() external onlyOwner { uint256 balance = sellToken.balanceOf(address(this)); if (balance != 0) { sellToken.safeTransfer(owner, balance); } selfdestruct(payable(owner)); } function isValidSignature(bytes32 hash, bytes memory signature) external view override returns (bytes4 magicValue) { uint256 sellAmount = abi.decode(signature, (uint256)); GPv2Order.Data memory order = orderForSellAmount(sellAmount); if (order.hash(domainSeparator) == hash) { magicValue = GPv2EIP1271.MAGICVALUE; } } function orderForSellAmount(uint256 sellAmount) public view returns (GPv2Order.Data memory order) { order.sellToken = sellToken; order.buyToken = buyToken; order.receiver = owner; order.sellAmount = sellAmount; order.buyAmount = buyAmountForSellAmount(sellAmount); order.validTo = validTo; order.appData = APPDATA; order.feeAmount = totalFeeAmount.mul(sellAmount).div(totalSellAmount); order.kind = GPv2Order.KIND_SELL; // NOTE: We counter-intuitively set `partiallyFillable` to `false`, even // if the smart order as a whole acts like a partially fillable order. // This is done since, once a settlement commits to a specific sell // amount, then it is expected to use it completely and not partially. order.partiallyFillable = false; order.sellTokenBalance = GPv2Order.BALANCE_ERC20; order.buyTokenBalance = GPv2Order.BALANCE_ERC20; } function buyAmountForSellAmount(uint256 sellAmount) private view returns (uint256 buyAmount) { uint256 feeAdjustedBalance = sellToken.balanceOf(address(this)).mul(totalSellAmount).div( totalSellAmount.add(totalFeeAmount) ); uint256 soldAmount = totalSellAmount > feeAdjustedBalance ? totalSellAmount - feeAdjustedBalance : 0; // NOTE: This is currently a silly price strategy where the xrate // increases linearly from 1:1 to 1:2 as the smart order gets filled. // This can be extended to more complex "price curves". buyAmount = sellAmount .mul(totalSellAmount.add(sellAmount).add(soldAmount)) .div(totalSellAmount); } } // SPDX-License-Identifier: LGPL-3.0-or-later pragma solidity ^0.7.6; import "../libraries/SafeMath.sol"; abstract contract NonStandardERC20 { using SafeMath for uint256; mapping(address => uint256) public balanceOf; mapping(address => mapping(address => uint256)) public allowance; function mint(address to, uint256 amount) external { balanceOf[to] = balanceOf[to].add(amount); } function approve(address spender, uint256 amount) external { allowance[msg.sender][spender] = amount; } function transfer_(address to, uint256 amount) internal { balanceOf[msg.sender] = balanceOf[msg.sender].sub(amount); balanceOf[to] = balanceOf[to].add(amount); } function transferFrom_( address from, address to, uint256 amount ) internal { allowance[from][msg.sender] = allowance[from][msg.sender].sub(amount); balanceOf[from] = balanceOf[from].sub(amount); balanceOf[to] = balanceOf[to].add(amount); } } contract ERC20NoReturn is NonStandardERC20 { function transfer(address to, uint256 amount) external { transfer_(to, amount); } function transferFrom( address from, address to, uint256 amount ) external { transferFrom_(from, to, amount); } } contract ERC20ReturningUint is NonStandardERC20 { // Largest 256-bit prime :) uint256 private constant OK = 115792089237316195423570985008687907853269984665640564039457584007913129639747; function transfer(address to, uint256 amount) external returns (uint256) { transfer_(to, amount); return OK; } function transferFrom( address from, address to, uint256 amount ) external returns (uint256) { transferFrom_(from, to, amount); return OK; } } // SPDX-License-Identifier: LGPL-3.0-or-later pragma solidity ^0.7.6; pragma abicoder v2; import "../interfaces/IERC20.sol"; import "../libraries/GPv2SafeERC20.sol"; contract GPv2SafeERC20TestInterface { using GPv2SafeERC20 for IERC20; function transfer( IERC20 token, address to, uint256 value ) public { token.safeTransfer(to, value); } function transferFrom( IERC20 token, address from, address to, uint256 value ) public { token.safeTransferFrom(from, to, value); } } // SPDX-License-Identifier: LGPL-3.0-or-later pragma solidity ^0.7.6; pragma abicoder v2; import "../libraries/GPv2Order.sol"; import "../libraries/GPv2Trade.sol"; contract GPv2TradeTestInterface { function extractOrderTest( IERC20[] calldata tokens, GPv2Trade.Data calldata trade ) external pure returns (GPv2Order.Data memory order) { GPv2Trade.extractOrder(trade, tokens, order); } function extractFlagsTest(uint256 flags) external pure returns ( bytes32 kind, bool partiallyFillable, bytes32 sellTokenBalance, bytes32 buyTokenBalance, GPv2Signing.Scheme signingScheme ) { return GPv2Trade.extractFlags(flags); } } // SPDX-License-Identifier: LGPL-3.0-or-later pragma solidity ^0.7.6; pragma abicoder v2; import "../libraries/GPv2Order.sol"; import "../libraries/GPv2Trade.sol"; import "../mixins/GPv2Signing.sol"; contract GPv2SigningTestInterface is GPv2Signing { function recoverOrderFromTradeTest( IERC20[] calldata tokens, GPv2Trade.Data calldata trade ) external view returns (RecoveredOrder memory recoveredOrder) { recoveredOrder = allocateRecoveredOrder(); recoverOrderFromTrade(recoveredOrder, tokens, trade); } function recoverOrderSignerTest( GPv2Order.Data memory order, GPv2Signing.Scheme signingScheme, bytes calldata signature ) external view returns (address owner) { (, owner) = recoverOrderSigner(order, signingScheme, signature); } } // SPDX-License-Identifier: LGPL-3.0-or-later pragma solidity ^0.7.6; import "../interfaces/GPv2EIP1271.sol"; /// @dev This contract implements the standard described in EIP-1271 with the /// minor change that the verification function changes the state. This is /// forbidden by the standard specifications. contract StateChangingEIP1271 { uint256 public state = 0; // solhint-disable-next-line no-unused-vars function isValidSignature(bytes32 _hash, bytes memory _signature) public returns (bytes4 magicValue) { state += 1; magicValue = GPv2EIP1271.MAGICVALUE; // The following lines are here to suppress no-unused-var compiler-time // warnings when compiling the contracts. The warning is forwarded by // Hardhat from Solc. It is currently not possible to selectively // ignore Solc warinings: // <https://github.com/ethereum/solidity/issues/269> _hash; _signature; } } // SPDX-License-Identifier: LGPL-3.0-or-later pragma solidity ^0.7.6; pragma abicoder v2; import "../libraries/GPv2Order.sol"; contract GPv2OrderTestInterface { using GPv2Order for GPv2Order.Data; using GPv2Order for bytes; function typeHashTest() external pure returns (bytes32) { return GPv2Order.TYPE_HASH; } function hashTest(GPv2Order.Data memory order, bytes32 domainSeparator) external pure returns (bytes32 orderDigest) { orderDigest = order.hash(domainSeparator); } function packOrderUidParamsTest( uint256 bufferLength, bytes32 orderDigest, address owner, uint32 validTo ) external pure returns (bytes memory orderUid) { orderUid = new bytes(bufferLength); orderUid.packOrderUidParams(orderDigest, owner, validTo); } function extractOrderUidParamsTest(bytes calldata orderUid) external pure returns ( bytes32 orderDigest, address owner, uint32 validTo ) { return orderUid.extractOrderUidParams(); } } // SPDX-License-Identifier: LGPL-3.0-or-later pragma solidity ^0.7.6; pragma abicoder v2; import "../libraries/GPv2Transfer.sol"; contract GPv2TransferTestInterface { function fastTransferFromAccountTest( IVault vault, GPv2Transfer.Data calldata transfer, address recipient ) external { GPv2Transfer.fastTransferFromAccount(vault, transfer, recipient); } function transferFromAccountsTest( IVault vault, GPv2Transfer.Data[] calldata transfers, address recipient ) external { GPv2Transfer.transferFromAccounts(vault, transfers, recipient); } function transferToAccountsTest( IVault vault, GPv2Transfer.Data[] memory transfers ) external { GPv2Transfer.transferToAccounts(vault, transfers); } // solhint-disable-next-line no-empty-blocks receive() external payable {} } // SPDX-License-Identifier: LGPL-3.0-or-later pragma solidity ^0.7.6; pragma abicoder v2; import "../GPv2Settlement.sol"; import "../libraries/GPv2Interaction.sol"; import "../libraries/GPv2Trade.sol"; import "../libraries/GPv2Transfer.sol"; contract GPv2SettlementTestInterface is GPv2Settlement { constructor(GPv2Authentication authenticator_, IVault vault) GPv2Settlement(authenticator_, vault) // solhint-disable-next-line no-empty-blocks { } function setFilledAmount(bytes calldata orderUid, uint256 amount) external { filledAmount[orderUid] = amount; } function computeTradeExecutionsTest( IERC20[] calldata tokens, uint256[] calldata clearingPrices, GPv2Trade.Data[] calldata trades ) external returns ( GPv2Transfer.Data[] memory inTransfers, GPv2Transfer.Data[] memory outTransfers ) { (inTransfers, outTransfers) = computeTradeExecutions( tokens, clearingPrices, trades ); } function computeTradeExecutionMemoryTest() external returns (uint256 mem) { RecoveredOrder memory recoveredOrder; GPv2Transfer.Data memory inTransfer; GPv2Transfer.Data memory outTransfer; // NOTE: Solidity stores the free memory pointer at address 0x40. Read // it before and after calling `processOrder` to ensure that there are // no memory allocations. // solhint-disable-next-line no-inline-assembly assembly { mem := mload(0x40) } // solhint-disable-next-line not-rely-on-time recoveredOrder.data.validTo = uint32(block.timestamp); computeTradeExecution(recoveredOrder, 1, 1, 0, inTransfer, outTransfer); // solhint-disable-next-line no-inline-assembly assembly { mem := sub(mload(0x40), mem) } } function executeInteractionsTest( GPv2Interaction.Data[] calldata interactions ) external { executeInteractions(interactions); } function freeFilledAmountStorageTest(bytes[] calldata orderUids) external { this.freeFilledAmountStorage(orderUids); } function freePreSignatureStorageTest(bytes[] calldata orderUids) external { this.freePreSignatureStorage(orderUids); } } // SPDX-License-Identifier: LGPL-3.0-or-later pragma solidity ^0.7.6; pragma abicoder v2; import "../libraries/GPv2Interaction.sol"; contract GPv2InteractionTestInterface { // solhint-disable-next-line no-empty-blocks receive() external payable {} function executeTest(GPv2Interaction.Data calldata interaction) external { GPv2Interaction.execute(interaction); } function selectorTest(GPv2Interaction.Data calldata interaction) external pure returns (bytes4) { return GPv2Interaction.selector(interaction); } }
File 8 of 9: ZeroEx
/* Copyright 2020 ZeroEx Intl. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ pragma solidity ^0.6.5; pragma experimental ABIEncoderV2; import "@0x/contracts-utils/contracts/src/v06/LibBytesV06.sol"; import "./migrations/LibBootstrap.sol"; import "./features/Bootstrap.sol"; import "./storage/LibProxyStorage.sol"; import "./errors/LibProxyRichErrors.sol"; /// @dev An extensible proxy contract that serves as a universal entry point for /// interacting with the 0x protocol. contract ZeroEx { // solhint-disable separate-by-one-line-in-contract,indent,var-name-mixedcase using LibBytesV06 for bytes; /// @dev Construct this contract and register the `Bootstrap` feature. /// After constructing this contract, `bootstrap()` should be called /// to seed the initial feature set. constructor() public { // Temporarily create and register the bootstrap feature. // It will deregister itself after `bootstrap()` has been called. Bootstrap bootstrap = new Bootstrap(msg.sender); LibProxyStorage.getStorage().impls[bootstrap.bootstrap.selector] = address(bootstrap); } // solhint-disable state-visibility /// @dev Forwards calls to the appropriate implementation contract. fallback() external payable { bytes4 selector = msg.data.readBytes4(0); address impl = getFunctionImplementation(selector); if (impl == address(0)) { _revertWithData(LibProxyRichErrors.NotImplementedError(selector)); } (bool success, bytes memory resultData) = impl.delegatecall(msg.data); if (!success) { _revertWithData(resultData); } _returnWithData(resultData); } /// @dev Fallback for just receiving ether. receive() external payable {} // solhint-enable state-visibility /// @dev Get the implementation contract of a registered function. /// @param selector The function selector. /// @return impl The implementation contract address. function getFunctionImplementation(bytes4 selector) public view returns (address impl) { return LibProxyStorage.getStorage().impls[selector]; } /// @dev Revert with arbitrary bytes. /// @param data Revert data. function _revertWithData(bytes memory data) private pure { assembly { revert(add(data, 32), mload(data)) } } /// @dev Return with arbitrary bytes. /// @param data Return data. function _returnWithData(bytes memory data) private pure { assembly { return(add(data, 32), mload(data)) } } } /* Copyright 2020 ZeroEx Intl. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ pragma solidity ^0.6.5; import "./errors/LibBytesRichErrorsV06.sol"; import "./errors/LibRichErrorsV06.sol"; library LibBytesV06 { using LibBytesV06 for bytes; /// @dev Gets the memory address for a byte array. /// @param input Byte array to lookup. /// @return memoryAddress Memory address of byte array. This /// points to the header of the byte array which contains /// the length. function rawAddress(bytes memory input) internal pure returns (uint256 memoryAddress) { assembly { memoryAddress := input } return memoryAddress; } /// @dev Gets the memory address for the contents of a byte array. /// @param input Byte array to lookup. /// @return memoryAddress Memory address of the contents of the byte array. function contentAddress(bytes memory input) internal pure returns (uint256 memoryAddress) { assembly { memoryAddress := add(input, 32) } return memoryAddress; } /// @dev Copies `length` bytes from memory location `source` to `dest`. /// @param dest memory address to copy bytes to. /// @param source memory address to copy bytes from. /// @param length number of bytes to copy. function memCopy( uint256 dest, uint256 source, uint256 length ) internal pure { if (length < 32) { // Handle a partial word by reading destination and masking // off the bits we are interested in. // This correctly handles overlap, zero lengths and source == dest assembly { let mask := sub(exp(256, sub(32, length)), 1) let s := and(mload(source), not(mask)) let d := and(mload(dest), mask) mstore(dest, or(s, d)) } } else { // Skip the O(length) loop when source == dest. if (source == dest) { return; } // For large copies we copy whole words at a time. The final // word is aligned to the end of the range (instead of after the // previous) to handle partial words. So a copy will look like this: // // #### // #### // #### // #### // // We handle overlap in the source and destination range by // changing the copying direction. This prevents us from // overwriting parts of source that we still need to copy. // // This correctly handles source == dest // if (source > dest) { assembly { // We subtract 32 from `sEnd` and `dEnd` because it // is easier to compare with in the loop, and these // are also the addresses we need for copying the // last bytes. length := sub(length, 32) let sEnd := add(source, length) let dEnd := add(dest, length) // Remember the last 32 bytes of source // This needs to be done here and not after the loop // because we may have overwritten the last bytes in // source already due to overlap. let last := mload(sEnd) // Copy whole words front to back // Note: the first check is always true, // this could have been a do-while loop. // solhint-disable-next-line no-empty-blocks for {} lt(source, sEnd) {} { mstore(dest, mload(source)) source := add(source, 32) dest := add(dest, 32) } // Write the last 32 bytes mstore(dEnd, last) } } else { assembly { // We subtract 32 from `sEnd` and `dEnd` because those // are the starting points when copying a word at the end. length := sub(length, 32) let sEnd := add(source, length) let dEnd := add(dest, length) // Remember the first 32 bytes of source // This needs to be done here and not after the loop // because we may have overwritten the first bytes in // source already due to overlap. let first := mload(source) // Copy whole words back to front // We use a signed comparisson here to allow dEnd to become // negative (happens when source and dest < 32). Valid // addresses in local memory will never be larger than // 2**255, so they can be safely re-interpreted as signed. // Note: the first check is always true, // this could have been a do-while loop. // solhint-disable-next-line no-empty-blocks for {} slt(dest, dEnd) {} { mstore(dEnd, mload(sEnd)) sEnd := sub(sEnd, 32) dEnd := sub(dEnd, 32) } // Write the first 32 bytes mstore(dest, first) } } } } /// @dev Returns a slices from a byte array. /// @param b The byte array to take a slice from. /// @param from The starting index for the slice (inclusive). /// @param to The final index for the slice (exclusive). /// @return result The slice containing bytes at indices [from, to) function slice( bytes memory b, uint256 from, uint256 to ) internal pure returns (bytes memory result) { // Ensure that the from and to positions are valid positions for a slice within // the byte array that is being used. if (from > to) { LibRichErrorsV06.rrevert(LibBytesRichErrorsV06.InvalidByteOperationError( LibBytesRichErrorsV06.InvalidByteOperationErrorCodes.FromLessThanOrEqualsToRequired, from, to )); } if (to > b.length) { LibRichErrorsV06.rrevert(LibBytesRichErrorsV06.InvalidByteOperationError( LibBytesRichErrorsV06.InvalidByteOperationErrorCodes.ToLessThanOrEqualsLengthRequired, to, b.length )); } // Create a new bytes structure and copy contents result = new bytes(to - from); memCopy( result.contentAddress(), b.contentAddress() + from, result.length ); return result; } /// @dev Returns a slice from a byte array without preserving the input. /// When `from == 0`, the original array will match the slice. /// In other cases its state will be corrupted. /// @param b The byte array to take a slice from. Will be destroyed in the process. /// @param from The starting index for the slice (inclusive). /// @param to The final index for the slice (exclusive). /// @return result The slice containing bytes at indices [from, to) function sliceDestructive( bytes memory b, uint256 from, uint256 to ) internal pure returns (bytes memory result) { // Ensure that the from and to positions are valid positions for a slice within // the byte array that is being used. if (from > to) { LibRichErrorsV06.rrevert(LibBytesRichErrorsV06.InvalidByteOperationError( LibBytesRichErrorsV06.InvalidByteOperationErrorCodes.FromLessThanOrEqualsToRequired, from, to )); } if (to > b.length) { LibRichErrorsV06.rrevert(LibBytesRichErrorsV06.InvalidByteOperationError( LibBytesRichErrorsV06.InvalidByteOperationErrorCodes.ToLessThanOrEqualsLengthRequired, to, b.length )); } // Create a new bytes structure around [from, to) in-place. assembly { result := add(b, from) mstore(result, sub(to, from)) } return result; } /// @dev Pops the last byte off of a byte array by modifying its length. /// @param b Byte array that will be modified. /// @return result The byte that was popped off. function popLastByte(bytes memory b) internal pure returns (bytes1 result) { if (b.length == 0) { LibRichErrorsV06.rrevert(LibBytesRichErrorsV06.InvalidByteOperationError( LibBytesRichErrorsV06.InvalidByteOperationErrorCodes.LengthGreaterThanZeroRequired, b.length, 0 )); } // Store last byte. result = b[b.length - 1]; assembly { // Decrement length of byte array. let newLen := sub(mload(b), 1) mstore(b, newLen) } return result; } /// @dev Tests equality of two byte arrays. /// @param lhs First byte array to compare. /// @param rhs Second byte array to compare. /// @return equal True if arrays are the same. False otherwise. function equals( bytes memory lhs, bytes memory rhs ) internal pure returns (bool equal) { // Keccak gas cost is 30 + numWords * 6. This is a cheap way to compare. // We early exit on unequal lengths, but keccak would also correctly // handle this. return lhs.length == rhs.length && keccak256(lhs) == keccak256(rhs); } /// @dev Reads an address from a position in a byte array. /// @param b Byte array containing an address. /// @param index Index in byte array of address. /// @return result address from byte array. function readAddress( bytes memory b, uint256 index ) internal pure returns (address result) { if (b.length < index + 20) { LibRichErrorsV06.rrevert(LibBytesRichErrorsV06.InvalidByteOperationError( LibBytesRichErrorsV06.InvalidByteOperationErrorCodes.LengthGreaterThanOrEqualsTwentyRequired, b.length, index + 20 // 20 is length of address )); } // Add offset to index: // 1. Arrays are prefixed by 32-byte length parameter (add 32 to index) // 2. Account for size difference between address length and 32-byte storage word (subtract 12 from index) index += 20; // Read address from array memory assembly { // 1. Add index to address of bytes array // 2. Load 32-byte word from memory // 3. Apply 20-byte mask to obtain address result := and(mload(add(b, index)), 0xffffffffffffffffffffffffffffffffffffffff) } return result; } /// @dev Writes an address into a specific position in a byte array. /// @param b Byte array to insert address into. /// @param index Index in byte array of address. /// @param input Address to put into byte array. function writeAddress( bytes memory b, uint256 index, address input ) internal pure { if (b.length < index + 20) { LibRichErrorsV06.rrevert(LibBytesRichErrorsV06.InvalidByteOperationError( LibBytesRichErrorsV06.InvalidByteOperationErrorCodes.LengthGreaterThanOrEqualsTwentyRequired, b.length, index + 20 // 20 is length of address )); } // Add offset to index: // 1. Arrays are prefixed by 32-byte length parameter (add 32 to index) // 2. Account for size difference between address length and 32-byte storage word (subtract 12 from index) index += 20; // Store address into array memory assembly { // The address occupies 20 bytes and mstore stores 32 bytes. // First fetch the 32-byte word where we'll be storing the address, then // apply a mask so we have only the bytes in the word that the address will not occupy. // Then combine these bytes with the address and store the 32 bytes back to memory with mstore. // 1. Add index to address of bytes array // 2. Load 32-byte word from memory // 3. Apply 12-byte mask to obtain extra bytes occupying word of memory where we'll store the address let neighbors := and( mload(add(b, index)), 0xffffffffffffffffffffffff0000000000000000000000000000000000000000 ) // Make sure input address is clean. // (Solidity does not guarantee this) input := and(input, 0xffffffffffffffffffffffffffffffffffffffff) // Store the neighbors and address into memory mstore(add(b, index), xor(input, neighbors)) } } /// @dev Reads a bytes32 value from a position in a byte array. /// @param b Byte array containing a bytes32 value. /// @param index Index in byte array of bytes32 value. /// @return result bytes32 value from byte array. function readBytes32( bytes memory b, uint256 index ) internal pure returns (bytes32 result) { if (b.length < index + 32) { LibRichErrorsV06.rrevert(LibBytesRichErrorsV06.InvalidByteOperationError( LibBytesRichErrorsV06.InvalidByteOperationErrorCodes.LengthGreaterThanOrEqualsThirtyTwoRequired, b.length, index + 32 )); } // Arrays are prefixed by a 256 bit length parameter index += 32; // Read the bytes32 from array memory assembly { result := mload(add(b, index)) } return result; } /// @dev Writes a bytes32 into a specific position in a byte array. /// @param b Byte array to insert <input> into. /// @param index Index in byte array of <input>. /// @param input bytes32 to put into byte array. function writeBytes32( bytes memory b, uint256 index, bytes32 input ) internal pure { if (b.length < index + 32) { LibRichErrorsV06.rrevert(LibBytesRichErrorsV06.InvalidByteOperationError( LibBytesRichErrorsV06.InvalidByteOperationErrorCodes.LengthGreaterThanOrEqualsThirtyTwoRequired, b.length, index + 32 )); } // Arrays are prefixed by a 256 bit length parameter index += 32; // Read the bytes32 from array memory assembly { mstore(add(b, index), input) } } /// @dev Reads a uint256 value from a position in a byte array. /// @param b Byte array containing a uint256 value. /// @param index Index in byte array of uint256 value. /// @return result uint256 value from byte array. function readUint256( bytes memory b, uint256 index ) internal pure returns (uint256 result) { result = uint256(readBytes32(b, index)); return result; } /// @dev Writes a uint256 into a specific position in a byte array. /// @param b Byte array to insert <input> into. /// @param index Index in byte array of <input>. /// @param input uint256 to put into byte array. function writeUint256( bytes memory b, uint256 index, uint256 input ) internal pure { writeBytes32(b, index, bytes32(input)); } /// @dev Reads an unpadded bytes4 value from a position in a byte array. /// @param b Byte array containing a bytes4 value. /// @param index Index in byte array of bytes4 value. /// @return result bytes4 value from byte array. function readBytes4( bytes memory b, uint256 index ) internal pure returns (bytes4 result) { if (b.length < index + 4) { LibRichErrorsV06.rrevert(LibBytesRichErrorsV06.InvalidByteOperationError( LibBytesRichErrorsV06.InvalidByteOperationErrorCodes.LengthGreaterThanOrEqualsFourRequired, b.length, index + 4 )); } // Arrays are prefixed by a 32 byte length field index += 32; // Read the bytes4 from array memory assembly { result := mload(add(b, index)) // Solidity does not require us to clean the trailing bytes. // We do it anyway result := and(result, 0xFFFFFFFF00000000000000000000000000000000000000000000000000000000) } return result; } /// @dev Writes a new length to a byte array. /// Decreasing length will lead to removing the corresponding lower order bytes from the byte array. /// Increasing length may lead to appending adjacent in-memory bytes to the end of the byte array. /// @param b Bytes array to write new length to. /// @param length New length of byte array. function writeLength(bytes memory b, uint256 length) internal pure { assembly { mstore(b, length) } } } /* Copyright 2020 ZeroEx Intl. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ pragma solidity ^0.6.5; library LibBytesRichErrorsV06 { enum InvalidByteOperationErrorCodes { FromLessThanOrEqualsToRequired, ToLessThanOrEqualsLengthRequired, LengthGreaterThanZeroRequired, LengthGreaterThanOrEqualsFourRequired, LengthGreaterThanOrEqualsTwentyRequired, LengthGreaterThanOrEqualsThirtyTwoRequired, LengthGreaterThanOrEqualsNestedBytesLengthRequired, DestinationLengthGreaterThanOrEqualSourceLengthRequired } // bytes4(keccak256("InvalidByteOperationError(uint8,uint256,uint256)")) bytes4 internal constant INVALID_BYTE_OPERATION_ERROR_SELECTOR = 0x28006595; // solhint-disable func-name-mixedcase function InvalidByteOperationError( InvalidByteOperationErrorCodes errorCode, uint256 offset, uint256 required ) internal pure returns (bytes memory) { return abi.encodeWithSelector( INVALID_BYTE_OPERATION_ERROR_SELECTOR, errorCode, offset, required ); } } /* Copyright 2020 ZeroEx Intl. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ pragma solidity ^0.6.5; library LibRichErrorsV06 { // bytes4(keccak256("Error(string)")) bytes4 internal constant STANDARD_ERROR_SELECTOR = 0x08c379a0; // solhint-disable func-name-mixedcase /// @dev ABI encode a standard, string revert error payload. /// This is the same payload that would be included by a `revert(string)` /// solidity statement. It has the function signature `Error(string)`. /// @param message The error string. /// @return The ABI encoded error. function StandardError(string memory message) internal pure returns (bytes memory) { return abi.encodeWithSelector( STANDARD_ERROR_SELECTOR, bytes(message) ); } // solhint-enable func-name-mixedcase /// @dev Reverts an encoded rich revert reason `errorData`. /// @param errorData ABI encoded error data. function rrevert(bytes memory errorData) internal pure { assembly { revert(add(errorData, 0x20), mload(errorData)) } } } /* Copyright 2020 ZeroEx Intl. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ pragma solidity ^0.6.5; pragma experimental ABIEncoderV2; import "@0x/contracts-utils/contracts/src/v06/errors/LibRichErrorsV06.sol"; import "../errors/LibProxyRichErrors.sol"; library LibBootstrap { /// @dev Magic bytes returned by the bootstrapper to indicate success. /// This is `keccack('BOOTSTRAP_SUCCESS')`. bytes4 internal constant BOOTSTRAP_SUCCESS = 0xd150751b; using LibRichErrorsV06 for bytes; /// @dev Perform a delegatecall and ensure it returns the magic bytes. /// @param target The call target. /// @param data The call data. function delegatecallBootstrapFunction( address target, bytes memory data ) internal { (bool success, bytes memory resultData) = target.delegatecall(data); if (!success || resultData.length != 32 || abi.decode(resultData, (bytes4)) != BOOTSTRAP_SUCCESS) { LibProxyRichErrors.BootstrapCallFailedError(target, resultData).rrevert(); } } } /* Copyright 2020 ZeroEx Intl. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ pragma solidity ^0.6.5; library LibProxyRichErrors { // solhint-disable func-name-mixedcase function NotImplementedError(bytes4 selector) internal pure returns (bytes memory) { return abi.encodeWithSelector( bytes4(keccak256("NotImplementedError(bytes4)")), selector ); } function InvalidBootstrapCallerError(address actual, address expected) internal pure returns (bytes memory) { return abi.encodeWithSelector( bytes4(keccak256("InvalidBootstrapCallerError(address,address)")), actual, expected ); } function InvalidDieCallerError(address actual, address expected) internal pure returns (bytes memory) { return abi.encodeWithSelector( bytes4(keccak256("InvalidDieCallerError(address,address)")), actual, expected ); } function BootstrapCallFailedError(address target, bytes memory resultData) internal pure returns (bytes memory) { return abi.encodeWithSelector( bytes4(keccak256("BootstrapCallFailedError(address,bytes)")), target, resultData ); } } /* Copyright 2020 ZeroEx Intl. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ pragma solidity ^0.6.5; pragma experimental ABIEncoderV2; import "@0x/contracts-utils/contracts/src/v06/errors/LibRichErrorsV06.sol"; import "../migrations/LibBootstrap.sol"; import "../storage/LibProxyStorage.sol"; import "./IBootstrap.sol"; /// @dev Detachable `bootstrap()` feature. contract Bootstrap is IBootstrap { // solhint-disable state-visibility,indent /// @dev The ZeroEx contract. /// This has to be immutable to persist across delegatecalls. address immutable private _deployer; /// @dev The implementation address of this contract. /// This has to be immutable to persist across delegatecalls. address immutable private _implementation; /// @dev The deployer. /// This has to be immutable to persist across delegatecalls. address immutable private _bootstrapCaller; // solhint-enable state-visibility,indent using LibRichErrorsV06 for bytes; /// @dev Construct this contract and set the bootstrap migration contract. /// After constructing this contract, `bootstrap()` should be called /// to seed the initial feature set. /// @param bootstrapCaller The allowed caller of `bootstrap()`. constructor(address bootstrapCaller) public { _deployer = msg.sender; _implementation = address(this); _bootstrapCaller = bootstrapCaller; } /// @dev Bootstrap the initial feature set of this contract by delegatecalling /// into `target`. Before exiting the `bootstrap()` function will /// deregister itself from the proxy to prevent being called again. /// @param target The bootstrapper contract address. /// @param callData The call data to execute on `target`. function bootstrap(address target, bytes calldata callData) external override { // Only the bootstrap caller can call this function. if (msg.sender != _bootstrapCaller) { LibProxyRichErrors.InvalidBootstrapCallerError( msg.sender, _bootstrapCaller ).rrevert(); } // Deregister. LibProxyStorage.getStorage().impls[this.bootstrap.selector] = address(0); // Self-destruct. Bootstrap(_implementation).die(); // Call the bootstrapper. LibBootstrap.delegatecallBootstrapFunction(target, callData); } /// @dev Self-destructs this contract. /// Can only be called by the deployer. function die() external { if (msg.sender != _deployer) { LibProxyRichErrors.InvalidDieCallerError(msg.sender, _deployer).rrevert(); } selfdestruct(msg.sender); } } /* Copyright 2020 ZeroEx Intl. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ pragma solidity ^0.6.5; pragma experimental ABIEncoderV2; import "./LibStorage.sol"; /// @dev Storage helpers for the proxy contract. library LibProxyStorage { /// @dev Storage bucket for proxy contract. struct Storage { // Mapping of function selector -> function implementation mapping(bytes4 => address) impls; // The owner of the proxy contract. address owner; } /// @dev Get the storage bucket for this contract. function getStorage() internal pure returns (Storage storage stor) { uint256 storageSlot = LibStorage.getStorageSlot( LibStorage.StorageId.Proxy ); // Dip into assembly to change the slot pointed to by the local // variable `stor`. // See https://solidity.readthedocs.io/en/v0.6.8/assembly.html?highlight=slot#access-to-external-variables-functions-and-libraries assembly { stor_slot := storageSlot } } } /* Copyright 2020 ZeroEx Intl. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ pragma solidity ^0.6.5; pragma experimental ABIEncoderV2; /// @dev Common storage helpers library LibStorage { /// @dev What to bit-shift a storage ID by to get its slot. /// This gives us a maximum of 2**128 inline fields in each bucket. uint256 private constant STORAGE_SLOT_EXP = 128; /// @dev Storage IDs for feature storage buckets. /// WARNING: APPEND-ONLY. enum StorageId { Proxy, SimpleFunctionRegistry, Ownable, TokenSpender, TransformERC20 } /// @dev Get the storage slot given a storage ID. We assign unique, well-spaced /// slots to storage bucket variables to ensure they do not overlap. /// See: https://solidity.readthedocs.io/en/v0.6.6/assembly.html#access-to-external-variables-functions-and-libraries /// @param storageId An entry in `StorageId` /// @return slot The storage slot. function getStorageSlot(StorageId storageId) internal pure returns (uint256 slot) { // This should never overflow with a reasonable `STORAGE_SLOT_EXP` // because Solidity will do a range check on `storageId` during the cast. return (uint256(storageId) + 1) << STORAGE_SLOT_EXP; } } /* Copyright 2020 ZeroEx Intl. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ pragma solidity ^0.6.5; pragma experimental ABIEncoderV2; /// @dev Detachable `bootstrap()` feature. interface IBootstrap { /// @dev Bootstrap the initial feature set of this contract by delegatecalling /// into `target`. Before exiting the `bootstrap()` function will /// deregister itself from the proxy to prevent being called again. /// @param target The bootstrapper contract address. /// @param callData The call data to execute on `target`. function bootstrap(address target, bytes calldata callData) external; } /* Copyright 2020 ZeroEx Intl. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ pragma solidity ^0.6.5; library LibCommonRichErrors { // solhint-disable func-name-mixedcase function OnlyCallableBySelfError(address sender) internal pure returns (bytes memory) { return abi.encodeWithSelector( bytes4(keccak256("OnlyCallableBySelfError(address)")), sender ); } function IllegalReentrancyError() internal pure returns (bytes memory) { return abi.encodeWithSelector( bytes4(keccak256("IllegalReentrancyError()")) ); } } /* Copyright 2020 ZeroEx Intl. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ pragma solidity ^0.6.5; library LibOwnableRichErrors { // solhint-disable func-name-mixedcase function OnlyOwnerError( address sender, address owner ) internal pure returns (bytes memory) { return abi.encodeWithSelector( bytes4(keccak256("OnlyOwnerError(address,address)")), sender, owner ); } function TransferOwnerToZeroError() internal pure returns (bytes memory) { return abi.encodeWithSelector( bytes4(keccak256("TransferOwnerToZeroError()")) ); } function MigrateCallFailedError(address target, bytes memory resultData) internal pure returns (bytes memory) { return abi.encodeWithSelector( bytes4(keccak256("MigrateCallFailedError(address,bytes)")), target, resultData ); } } /* Copyright 2020 ZeroEx Intl. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ pragma solidity ^0.6.5; library LibSimpleFunctionRegistryRichErrors { // solhint-disable func-name-mixedcase function NotInRollbackHistoryError(bytes4 selector, address targetImpl) internal pure returns (bytes memory) { return abi.encodeWithSelector( bytes4(keccak256("NotInRollbackHistoryError(bytes4,address)")), selector, targetImpl ); } } /* Copyright 2020 ZeroEx Intl. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ pragma solidity ^0.6.5; library LibSpenderRichErrors { // solhint-disable func-name-mixedcase function SpenderERC20TransferFromFailedError( address token, address owner, address to, uint256 amount, bytes memory errorData ) internal pure returns (bytes memory) { return abi.encodeWithSelector( bytes4(keccak256("SpenderERC20TransferFromFailedError(address,address,address,uint256,bytes)")), token, owner, to, amount, errorData ); } } /* Copyright 2020 ZeroEx Intl. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ pragma solidity ^0.6.5; library LibTransformERC20RichErrors { // solhint-disable func-name-mixedcase,separate-by-one-line-in-contract function InsufficientEthAttachedError( uint256 ethAttached, uint256 ethNeeded ) internal pure returns (bytes memory) { return abi.encodeWithSelector( bytes4(keccak256("InsufficientEthAttachedError(uint256,uint256)")), ethAttached, ethNeeded ); } function IncompleteTransformERC20Error( address outputToken, uint256 outputTokenAmount, uint256 minOutputTokenAmount ) internal pure returns (bytes memory) { return abi.encodeWithSelector( bytes4(keccak256("IncompleteTransformERC20Error(address,uint256,uint256)")), outputToken, outputTokenAmount, minOutputTokenAmount ); } function NegativeTransformERC20OutputError( address outputToken, uint256 outputTokenLostAmount ) internal pure returns (bytes memory) { return abi.encodeWithSelector( bytes4(keccak256("NegativeTransformERC20OutputError(address,uint256)")), outputToken, outputTokenLostAmount ); } function TransformerFailedError( address transformer, bytes memory transformerData, bytes memory resultData ) internal pure returns (bytes memory) { return abi.encodeWithSelector( bytes4(keccak256("TransformerFailedError(address,bytes,bytes)")), transformer, transformerData, resultData ); } // Common Transformer errors /////////////////////////////////////////////// function OnlyCallableByDeployerError( address caller, address deployer ) internal pure returns (bytes memory) { return abi.encodeWithSelector( bytes4(keccak256("OnlyCallableByDeployerError(address,address)")), caller, deployer ); } function InvalidExecutionContextError( address actualContext, address expectedContext ) internal pure returns (bytes memory) { return abi.encodeWithSelector( bytes4(keccak256("InvalidExecutionContextError(address,address)")), actualContext, expectedContext ); } enum InvalidTransformDataErrorCode { INVALID_TOKENS, INVALID_ARRAY_LENGTH } function InvalidTransformDataError( InvalidTransformDataErrorCode errorCode, bytes memory transformData ) internal pure returns (bytes memory) { return abi.encodeWithSelector( bytes4(keccak256("InvalidTransformDataError(uint8,bytes)")), errorCode, transformData ); } // FillQuoteTransformer errors ///////////////////////////////////////////// function IncompleteFillSellQuoteError( address sellToken, uint256 soldAmount, uint256 sellAmount ) internal pure returns (bytes memory) { return abi.encodeWithSelector( bytes4(keccak256("IncompleteFillSellQuoteError(address,uint256,uint256)")), sellToken, soldAmount, sellAmount ); } function IncompleteFillBuyQuoteError( address buyToken, uint256 boughtAmount, uint256 buyAmount ) internal pure returns (bytes memory) { return abi.encodeWithSelector( bytes4(keccak256("IncompleteFillBuyQuoteError(address,uint256,uint256)")), buyToken, boughtAmount, buyAmount ); } function InsufficientTakerTokenError( uint256 tokenBalance, uint256 tokensNeeded ) internal pure returns (bytes memory) { return abi.encodeWithSelector( bytes4(keccak256("InsufficientTakerTokenError(uint256,uint256)")), tokenBalance, tokensNeeded ); } function InsufficientProtocolFeeError( uint256 ethBalance, uint256 ethNeeded ) internal pure returns (bytes memory) { return abi.encodeWithSelector( bytes4(keccak256("InsufficientProtocolFeeError(uint256,uint256)")), ethBalance, ethNeeded ); } function InvalidERC20AssetDataError( bytes memory assetData ) internal pure returns (bytes memory) { return abi.encodeWithSelector( bytes4(keccak256("InvalidERC20AssetDataError(bytes)")), assetData ); } function InvalidTakerFeeTokenError( address token ) internal pure returns (bytes memory) { return abi.encodeWithSelector( bytes4(keccak256("InvalidTakerFeeTokenError(address)")), token ); } } /* Copyright 2020 ZeroEx Intl. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ pragma solidity ^0.6.5; library LibWalletRichErrors { // solhint-disable func-name-mixedcase function WalletExecuteCallFailedError( address wallet, address callTarget, bytes memory callData, uint256 callValue, bytes memory errorData ) internal pure returns (bytes memory) { return abi.encodeWithSelector( bytes4(keccak256("WalletExecuteCallFailedError(address,address,bytes,uint256,bytes)")), wallet, callTarget, callData, callValue, errorData ); } function WalletExecuteDelegateCallFailedError( address wallet, address callTarget, bytes memory callData, bytes memory errorData ) internal pure returns (bytes memory) { return abi.encodeWithSelector( bytes4(keccak256("WalletExecuteDelegateCallFailedError(address,address,bytes,bytes)")), wallet, callTarget, callData, errorData ); } } /* Copyright 2020 ZeroEx Intl. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ pragma solidity ^0.6.5; pragma experimental ABIEncoderV2; import "@0x/contracts-utils/contracts/src/v06/errors/LibRichErrorsV06.sol"; import "@0x/contracts-utils/contracts/src/v06/AuthorizableV06.sol"; import "../errors/LibSpenderRichErrors.sol"; import "./IAllowanceTarget.sol"; /// @dev The allowance target for the TokenSpender feature. contract AllowanceTarget is IAllowanceTarget, AuthorizableV06 { // solhint-disable no-unused-vars,indent,no-empty-blocks using LibRichErrorsV06 for bytes; /// @dev Execute an arbitrary call. Only an authority can call this. /// @param target The call target. /// @param callData The call data. /// @return resultData The data returned by the call. function executeCall( address payable target, bytes calldata callData ) external override onlyAuthorized returns (bytes memory resultData) { bool success; (success, resultData) = target.call(callData); if (!success) { resultData.rrevert(); } } } /* Copyright 2020 ZeroEx Intl. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ pragma solidity ^0.6.5; import "./interfaces/IAuthorizableV06.sol"; import "./errors/LibRichErrorsV06.sol"; import "./errors/LibAuthorizableRichErrorsV06.sol"; import "./OwnableV06.sol"; // solhint-disable no-empty-blocks contract AuthorizableV06 is OwnableV06, IAuthorizableV06 { /// @dev Only authorized addresses can invoke functions with this modifier. modifier onlyAuthorized { _assertSenderIsAuthorized(); _; } // @dev Whether an address is authorized to call privileged functions. // @param 0 Address to query. // @return 0 Whether the address is authorized. mapping (address => bool) public override authorized; // @dev Whether an address is authorized to call privileged functions. // @param 0 Index of authorized address. // @return 0 Authorized address. address[] public override authorities; /// @dev Initializes the `owner` address. constructor() public OwnableV06() {} /// @dev Authorizes an address. /// @param target Address to authorize. function addAuthorizedAddress(address target) external override onlyOwner { _addAuthorizedAddress(target); } /// @dev Removes authorizion of an address. /// @param target Address to remove authorization from. function removeAuthorizedAddress(address target) external override onlyOwner { if (!authorized[target]) { LibRichErrorsV06.rrevert(LibAuthorizableRichErrorsV06.TargetNotAuthorizedError(target)); } for (uint256 i = 0; i < authorities.length; i++) { if (authorities[i] == target) { _removeAuthorizedAddressAtIndex(target, i); break; } } } /// @dev Removes authorizion of an address. /// @param target Address to remove authorization from. /// @param index Index of target in authorities array. function removeAuthorizedAddressAtIndex( address target, uint256 index ) external override onlyOwner { _removeAuthorizedAddressAtIndex(target, index); } /// @dev Gets all authorized addresses. /// @return Array of authorized addresses. function getAuthorizedAddresses() external override view returns (address[] memory) { return authorities; } /// @dev Reverts if msg.sender is not authorized. function _assertSenderIsAuthorized() internal view { if (!authorized[msg.sender]) { LibRichErrorsV06.rrevert(LibAuthorizableRichErrorsV06.SenderNotAuthorizedError(msg.sender)); } } /// @dev Authorizes an address. /// @param target Address to authorize. function _addAuthorizedAddress(address target) internal { // Ensure that the target is not the zero address. if (target == address(0)) { LibRichErrorsV06.rrevert(LibAuthorizableRichErrorsV06.ZeroCantBeAuthorizedError()); } // Ensure that the target is not already authorized. if (authorized[target]) { LibRichErrorsV06.rrevert(LibAuthorizableRichErrorsV06.TargetAlreadyAuthorizedError(target)); } authorized[target] = true; authorities.push(target); emit AuthorizedAddressAdded(target, msg.sender); } /// @dev Removes authorizion of an address. /// @param target Address to remove authorization from. /// @param index Index of target in authorities array. function _removeAuthorizedAddressAtIndex( address target, uint256 index ) internal { if (!authorized[target]) { LibRichErrorsV06.rrevert(LibAuthorizableRichErrorsV06.TargetNotAuthorizedError(target)); } if (index >= authorities.length) { LibRichErrorsV06.rrevert(LibAuthorizableRichErrorsV06.IndexOutOfBoundsError( index, authorities.length )); } if (authorities[index] != target) { LibRichErrorsV06.rrevert(LibAuthorizableRichErrorsV06.AuthorizedAddressMismatchError( authorities[index], target )); } delete authorized[target]; authorities[index] = authorities[authorities.length - 1]; authorities.pop(); emit AuthorizedAddressRemoved(target, msg.sender); } } /* Copyright 2020 ZeroEx Intl. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ pragma solidity ^0.6.5; import "./IOwnableV06.sol"; interface IAuthorizableV06 is IOwnableV06 { // Event logged when a new address is authorized. event AuthorizedAddressAdded( address indexed target, address indexed caller ); // Event logged when a currently authorized address is unauthorized. event AuthorizedAddressRemoved( address indexed target, address indexed caller ); /// @dev Authorizes an address. /// @param target Address to authorize. function addAuthorizedAddress(address target) external; /// @dev Removes authorizion of an address. /// @param target Address to remove authorization from. function removeAuthorizedAddress(address target) external; /// @dev Removes authorizion of an address. /// @param target Address to remove authorization from. /// @param index Index of target in authorities array. function removeAuthorizedAddressAtIndex( address target, uint256 index ) external; /// @dev Gets all authorized addresses. /// @return authorizedAddresses Array of authorized addresses. function getAuthorizedAddresses() external view returns (address[] memory authorizedAddresses); /// @dev Whether an adderss is authorized to call privileged functions. /// @param addr Address to query. /// @return isAuthorized Whether the address is authorized. function authorized(address addr) external view returns (bool isAuthorized); /// @dev All addresseses authorized to call privileged functions. /// @param idx Index of authorized address. /// @return addr Authorized address. function authorities(uint256 idx) external view returns (address addr); } /* Copyright 2020 ZeroEx Intl. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ pragma solidity ^0.6.5; interface IOwnableV06 { /// @dev Emitted by Ownable when ownership is transferred. /// @param previousOwner The previous owner of the contract. /// @param newOwner The new owner of the contract. event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /// @dev Transfers ownership of the contract to a new address. /// @param newOwner The address that will become the owner. function transferOwnership(address newOwner) external; /// @dev The owner of this contract. /// @return ownerAddress The owner address. function owner() external view returns (address ownerAddress); } /* Copyright 2020 ZeroEx Intl. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ pragma solidity ^0.6.5; library LibAuthorizableRichErrorsV06 { // bytes4(keccak256("AuthorizedAddressMismatchError(address,address)")) bytes4 internal constant AUTHORIZED_ADDRESS_MISMATCH_ERROR_SELECTOR = 0x140a84db; // bytes4(keccak256("IndexOutOfBoundsError(uint256,uint256)")) bytes4 internal constant INDEX_OUT_OF_BOUNDS_ERROR_SELECTOR = 0xe9f83771; // bytes4(keccak256("SenderNotAuthorizedError(address)")) bytes4 internal constant SENDER_NOT_AUTHORIZED_ERROR_SELECTOR = 0xb65a25b9; // bytes4(keccak256("TargetAlreadyAuthorizedError(address)")) bytes4 internal constant TARGET_ALREADY_AUTHORIZED_ERROR_SELECTOR = 0xde16f1a0; // bytes4(keccak256("TargetNotAuthorizedError(address)")) bytes4 internal constant TARGET_NOT_AUTHORIZED_ERROR_SELECTOR = 0xeb5108a2; // bytes4(keccak256("ZeroCantBeAuthorizedError()")) bytes internal constant ZERO_CANT_BE_AUTHORIZED_ERROR_BYTES = hex"57654fe4"; // solhint-disable func-name-mixedcase function AuthorizedAddressMismatchError( address authorized, address target ) internal pure returns (bytes memory) { return abi.encodeWithSelector( AUTHORIZED_ADDRESS_MISMATCH_ERROR_SELECTOR, authorized, target ); } function IndexOutOfBoundsError( uint256 index, uint256 length ) internal pure returns (bytes memory) { return abi.encodeWithSelector( INDEX_OUT_OF_BOUNDS_ERROR_SELECTOR, index, length ); } function SenderNotAuthorizedError(address sender) internal pure returns (bytes memory) { return abi.encodeWithSelector( SENDER_NOT_AUTHORIZED_ERROR_SELECTOR, sender ); } function TargetAlreadyAuthorizedError(address target) internal pure returns (bytes memory) { return abi.encodeWithSelector( TARGET_ALREADY_AUTHORIZED_ERROR_SELECTOR, target ); } function TargetNotAuthorizedError(address target) internal pure returns (bytes memory) { return abi.encodeWithSelector( TARGET_NOT_AUTHORIZED_ERROR_SELECTOR, target ); } function ZeroCantBeAuthorizedError() internal pure returns (bytes memory) { return ZERO_CANT_BE_AUTHORIZED_ERROR_BYTES; } } /* Copyright 2019 ZeroEx Intl. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ pragma solidity ^0.6.5; import "./interfaces/IOwnableV06.sol"; import "./errors/LibRichErrorsV06.sol"; import "./errors/LibOwnableRichErrorsV06.sol"; contract OwnableV06 is IOwnableV06 { /// @dev The owner of this contract. /// @return 0 The owner address. address public override owner; constructor() public { owner = msg.sender; } modifier onlyOwner() { _assertSenderIsOwner(); _; } /// @dev Change the owner of this contract. /// @param newOwner New owner address. function transferOwnership(address newOwner) public override onlyOwner { if (newOwner == address(0)) { LibRichErrorsV06.rrevert(LibOwnableRichErrorsV06.TransferOwnerToZeroError()); } else { owner = newOwner; emit OwnershipTransferred(msg.sender, newOwner); } } function _assertSenderIsOwner() internal view { if (msg.sender != owner) { LibRichErrorsV06.rrevert(LibOwnableRichErrorsV06.OnlyOwnerError( msg.sender, owner )); } } } /* Copyright 2020 ZeroEx Intl. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ pragma solidity ^0.6.5; library LibOwnableRichErrorsV06 { // bytes4(keccak256("OnlyOwnerError(address,address)")) bytes4 internal constant ONLY_OWNER_ERROR_SELECTOR = 0x1de45ad1; // bytes4(keccak256("TransferOwnerToZeroError()")) bytes internal constant TRANSFER_OWNER_TO_ZERO_ERROR_BYTES = hex"e69edc3e"; // solhint-disable func-name-mixedcase function OnlyOwnerError( address sender, address owner ) internal pure returns (bytes memory) { return abi.encodeWithSelector( ONLY_OWNER_ERROR_SELECTOR, sender, owner ); } function TransferOwnerToZeroError() internal pure returns (bytes memory) { return TRANSFER_OWNER_TO_ZERO_ERROR_BYTES; } } /* Copyright 2020 ZeroEx Intl. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ pragma solidity ^0.6.5; pragma experimental ABIEncoderV2; import "@0x/contracts-utils/contracts/src/v06/interfaces/IAuthorizableV06.sol"; /// @dev The allowance target for the TokenSpender feature. interface IAllowanceTarget is IAuthorizableV06 { /// @dev Execute an arbitrary call. Only an authority can call this. /// @param target The call target. /// @param callData The call data. /// @return resultData The data returned by the call. function executeCall( address payable target, bytes calldata callData ) external returns (bytes memory resultData); } /* Copyright 2020 ZeroEx Intl. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ pragma solidity ^0.6.5; pragma experimental ABIEncoderV2; import "@0x/contracts-utils/contracts/src/v06/errors/LibRichErrorsV06.sol"; import "@0x/contracts-utils/contracts/src/v06/errors/LibOwnableRichErrorsV06.sol"; import "../errors/LibWalletRichErrors.sol"; import "./IFlashWallet.sol"; /// @dev A contract that can execute arbitrary calls from its owner. contract FlashWallet is IFlashWallet { // solhint-disable no-unused-vars,indent,no-empty-blocks using LibRichErrorsV06 for bytes; // solhint-disable /// @dev Store the owner/deployer as an immutable to make this contract stateless. address public override immutable owner; // solhint-enable constructor() public { // The deployer is the owner. owner = msg.sender; } /// @dev Allows only the (immutable) owner to call a function. modifier onlyOwner() virtual { if (msg.sender != owner) { LibOwnableRichErrorsV06.OnlyOwnerError( msg.sender, owner ).rrevert(); } _; } /// @dev Execute an arbitrary call. Only an authority can call this. /// @param target The call target. /// @param callData The call data. /// @param value Ether to attach to the call. /// @return resultData The data returned by the call. function executeCall( address payable target, bytes calldata callData, uint256 value ) external payable override onlyOwner returns (bytes memory resultData) { bool success; (success, resultData) = target.call{value: value}(callData); if (!success) { LibWalletRichErrors .WalletExecuteCallFailedError( address(this), target, callData, value, resultData ) .rrevert(); } } /// @dev Execute an arbitrary delegatecall, in the context of this puppet. /// Only an authority can call this. /// @param target The call target. /// @param callData The call data. /// @return resultData The data returned by the call. function executeDelegateCall( address payable target, bytes calldata callData ) external payable override onlyOwner returns (bytes memory resultData) { bool success; (success, resultData) = target.delegatecall(callData); if (!success) { LibWalletRichErrors .WalletExecuteDelegateCallFailedError( address(this), target, callData, resultData ) .rrevert(); } } // solhint-disable /// @dev Allows this contract to receive ether. receive() external override payable {} // solhint-enable /// @dev Signal support for receiving ERC1155 tokens. /// @param interfaceID The interface ID, as per ERC-165 rules. /// @return hasSupport `true` if this contract supports an ERC-165 interface. function supportsInterface(bytes4 interfaceID) external pure returns (bool hasSupport) { return interfaceID == this.supportsInterface.selector || interfaceID == this.onERC1155Received.selector ^ this.onERC1155BatchReceived.selector || interfaceID == this.tokenFallback.selector; } /// @dev Allow this contract to receive ERC1155 tokens. /// @return success `bytes4(keccak256("onERC1155Received(address,address,uint256,uint256,bytes)"))` function onERC1155Received( address, // operator, address, // from, uint256, // id, uint256, // value, bytes calldata //data ) external pure returns (bytes4 success) { return this.onERC1155Received.selector; } /// @dev Allow this contract to receive ERC1155 tokens. /// @return success `bytes4(keccak256("onERC1155BatchReceived(address,address,uint256[],uint256[],bytes)"))` function onERC1155BatchReceived( address, // operator, address, // from, uint256[] calldata, // ids, uint256[] calldata, // values, bytes calldata // data ) external pure returns (bytes4 success) { return this.onERC1155BatchReceived.selector; } /// @dev Allows this contract to receive ERC223 tokens. function tokenFallback( address, // from, uint256, // value, bytes calldata // value ) external pure {} } /* Copyright 2020 ZeroEx Intl. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ pragma solidity ^0.6.5; pragma experimental ABIEncoderV2; import "@0x/contracts-utils/contracts/src/v06/interfaces/IOwnableV06.sol"; /// @dev A contract that can execute arbitrary calls from its owner. interface IFlashWallet { /// @dev Execute an arbitrary call. Only an authority can call this. /// @param target The call target. /// @param callData The call data. /// @param value Ether to attach to the call. /// @return resultData The data returned by the call. function executeCall( address payable target, bytes calldata callData, uint256 value ) external payable returns (bytes memory resultData); /// @dev Execute an arbitrary delegatecall, in the context of this puppet. /// Only an authority can call this. /// @param target The call target. /// @param callData The call data. /// @return resultData The data returned by the call. function executeDelegateCall( address payable target, bytes calldata callData ) external payable returns (bytes memory resultData); /// @dev Allows the puppet to receive ETH. receive() external payable; /// @dev Fetch the immutable owner/deployer of this contract. /// @return owner_ The immutable owner/deployer/ function owner() external view returns (address owner_); } /* Copyright 2020 ZeroEx Intl. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ pragma solidity ^0.6.5; pragma experimental ABIEncoderV2; import "@0x/contracts-utils/contracts/src/v06/AuthorizableV06.sol"; /// @dev A contract with a `die()` function. interface IKillable { function die() external; } /// @dev Deployer contract for ERC20 transformers. /// Only authorities may call `deploy()` and `kill()`. contract TransformerDeployer is AuthorizableV06 { /// @dev Emitted when a contract is deployed via `deploy()`. /// @param deployedAddress The address of the deployed contract. /// @param nonce The deployment nonce. /// @param sender The caller of `deploy()`. event Deployed(address deployedAddress, uint256 nonce, address sender); /// @dev Emitted when a contract is killed via `kill()`. /// @param target The address of the contract being killed.. /// @param sender The caller of `kill()`. event Killed(address target, address sender); // @dev The current nonce of this contract. uint256 public nonce = 1; // @dev Mapping of deployed contract address to deployment nonce. mapping (address => uint256) public toDeploymentNonce; /// @dev Create this contract and register authorities. constructor(address[] memory authorities) public { for (uint256 i = 0; i < authorities.length; ++i) { _addAuthorizedAddress(authorities[i]); } } /// @dev Deploy a new contract. Only callable by an authority. /// Any attached ETH will also be forwarded. function deploy(bytes memory bytecode) public payable onlyAuthorized returns (address deployedAddress) { uint256 deploymentNonce = nonce; nonce += 1; assembly { deployedAddress := create(callvalue(), add(bytecode, 32), mload(bytecode)) } toDeploymentNonce[deployedAddress] = deploymentNonce; emit Deployed(deployedAddress, deploymentNonce, msg.sender); } /// @dev Call `die()` on a contract. Only callable by an authority. function kill(IKillable target) public onlyAuthorized { target.die(); emit Killed(address(target), msg.sender); } } /* Copyright 2020 ZeroEx Intl. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ pragma solidity ^0.6.5; pragma experimental ABIEncoderV2; /// @dev Basic interface for a feature contract. interface IFeature { // solhint-disable func-name-mixedcase /// @dev The name of this feature set. function FEATURE_NAME() external view returns (string memory name); /// @dev The version of this feature set. function FEATURE_VERSION() external view returns (uint256 version); } /* Copyright 2020 ZeroEx Intl. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ pragma solidity ^0.6.5; pragma experimental ABIEncoderV2; import "@0x/contracts-utils/contracts/src/v06/interfaces/IOwnableV06.sol"; // solhint-disable no-empty-blocks /// @dev Owner management and migration features. interface IOwnable is IOwnableV06 { /// @dev Emitted when `migrate()` is called. /// @param caller The caller of `migrate()`. /// @param migrator The migration contract. /// @param newOwner The address of the new owner. event Migrated(address caller, address migrator, address newOwner); /// @dev Execute a migration function in the context of the ZeroEx contract. /// The result of the function being called should be the magic bytes /// 0x2c64c5ef (`keccack('MIGRATE_SUCCESS')`). Only callable by the owner. /// The owner will be temporarily set to `address(this)` inside the call. /// Before returning, the owner will be set to `newOwner`. /// @param target The migrator contract address. /// @param newOwner The address of the new owner. /// @param data The call data. function migrate(address target, bytes calldata data, address newOwner) external; } /* Copyright 2020 ZeroEx Intl. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ pragma solidity ^0.6.5; pragma experimental ABIEncoderV2; /// @dev Basic registry management features. interface ISimpleFunctionRegistry { /// @dev A function implementation was updated via `extend()` or `rollback()`. /// @param selector The function selector. /// @param oldImpl The implementation contract address being replaced. /// @param newImpl The replacement implementation contract address. event ProxyFunctionUpdated(bytes4 indexed selector, address oldImpl, address newImpl); /// @dev Roll back to a prior implementation of a function. /// @param selector The function selector. /// @param targetImpl The address of an older implementation of the function. function rollback(bytes4 selector, address targetImpl) external; /// @dev Register or replace a function. /// @param selector The function selector. /// @param impl The implementation contract for the function. function extend(bytes4 selector, address impl) external; /// @dev Retrieve the length of the rollback history for a function. /// @param selector The function selector. /// @return rollbackLength The number of items in the rollback history for /// the function. function getRollbackLength(bytes4 selector) external view returns (uint256 rollbackLength); /// @dev Retrieve an entry in the rollback history for a function. /// @param selector The function selector. /// @param idx The index in the rollback history. /// @return impl An implementation address for the function at /// index `idx`. function getRollbackEntryAtIndex(bytes4 selector, uint256 idx) external view returns (address impl); } /* Copyright 2020 ZeroEx Intl. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ pragma solidity ^0.6.5; pragma experimental ABIEncoderV2; import "@0x/contracts-erc20/contracts/src/v06/IERC20TokenV06.sol"; /// @dev Feature that allows spending token allowances. interface ITokenSpender { /// @dev Transfers ERC20 tokens from `owner` to `to`. /// Only callable from within. /// @param token The token to spend. /// @param owner The owner of the tokens. /// @param to The recipient of the tokens. /// @param amount The amount of `token` to transfer. function _spendERC20Tokens( IERC20TokenV06 token, address owner, address to, uint256 amount ) external; /// @dev Gets the maximum amount of an ERC20 token `token` that can be /// pulled from `owner`. /// @param token The token to spend. /// @param owner The owner of the tokens. /// @return amount The amount of tokens that can be pulled. function getSpendableERC20BalanceOf(IERC20TokenV06 token, address owner) external view returns (uint256 amount); /// @dev Get the address of the allowance target. /// @return target The target of token allowances. function getAllowanceTarget() external view returns (address target); } /* Copyright 2020 ZeroEx Intl. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ pragma solidity ^0.6.5; interface IERC20TokenV06 { // solhint-disable no-simple-event-func-name event Transfer( address indexed from, address indexed to, uint256 value ); event Approval( address indexed owner, address indexed spender, uint256 value ); /// @dev send `value` token to `to` from `msg.sender` /// @param to The address of the recipient /// @param value The amount of token to be transferred /// @return True if transfer was successful function transfer(address to, uint256 value) external returns (bool); /// @dev send `value` token to `to` from `from` on the condition it is approved by `from` /// @param from The address of the sender /// @param to The address of the recipient /// @param value The amount of token to be transferred /// @return True if transfer was successful function transferFrom( address from, address to, uint256 value ) external returns (bool); /// @dev `msg.sender` approves `spender` to spend `value` tokens /// @param spender The address of the account able to transfer the tokens /// @param value The amount of wei to be approved for transfer /// @return Always true if the call has enough gas to complete execution function approve(address spender, uint256 value) external returns (bool); /// @dev Query total supply of token /// @return Total supply of token function totalSupply() external view returns (uint256); /// @dev Get the balance of `owner`. /// @param owner The address from which the balance will be retrieved /// @return Balance of owner function balanceOf(address owner) external view returns (uint256); /// @dev Get the allowance for `spender` to spend from `owner`. /// @param owner The address of the account owning tokens /// @param spender The address of the account able to transfer the tokens /// @return Amount of remaining tokens allowed to spent function allowance(address owner, address spender) external view returns (uint256); /// @dev Get the number of decimals this token has. function decimals() external view returns (uint8); } /* Copyright 2020 ZeroEx Intl. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ pragma solidity ^0.6.5; pragma experimental ABIEncoderV2; import "@0x/contracts-erc20/contracts/src/v06/IERC20TokenV06.sol"; import "../transformers/IERC20Transformer.sol"; import "../external/IFlashWallet.sol"; /// @dev Feature to composably transform between ERC20 tokens. interface ITransformERC20 { /// @dev Defines a transformation to run in `transformERC20()`. struct Transformation { // The deployment nonce for the transformer. // The address of the transformer contract will be derived from this // value. uint32 deploymentNonce; // Arbitrary data to pass to the transformer. bytes data; } /// @dev Raised upon a successful `transformERC20`. /// @param taker The taker (caller) address. /// @param inputToken The token being provided by the taker. /// If `0xeee...`, ETH is implied and should be provided with the call.` /// @param outputToken The token to be acquired by the taker. /// `0xeee...` implies ETH. /// @param inputTokenAmount The amount of `inputToken` to take from the taker. /// @param outputTokenAmount The amount of `outputToken` received by the taker. event TransformedERC20( address indexed taker, address inputToken, address outputToken, uint256 inputTokenAmount, uint256 outputTokenAmount ); /// @dev Raised when `setTransformerDeployer()` is called. /// @param transformerDeployer The new deployer address. event TransformerDeployerUpdated(address transformerDeployer); /// @dev Replace the allowed deployer for transformers. /// Only callable by the owner. /// @param transformerDeployer The address of the trusted deployer for transformers. function setTransformerDeployer(address transformerDeployer) external; /// @dev Deploy a new flash wallet instance and replace the current one with it. /// Useful if we somehow break the current wallet instance. /// Anyone can call this. /// @return wallet The new wallet instance. function createTransformWallet() external returns (IFlashWallet wallet); /// @dev Executes a series of transformations to convert an ERC20 `inputToken` /// to an ERC20 `outputToken`. /// @param inputToken The token being provided by the sender. /// If `0xeee...`, ETH is implied and should be provided with the call.` /// @param outputToken The token to be acquired by the sender. /// `0xeee...` implies ETH. /// @param inputTokenAmount The amount of `inputToken` to take from the sender. /// @param minOutputTokenAmount The minimum amount of `outputToken` the sender /// must receive for the entire transformation to succeed. /// @param transformations The transformations to execute on the token balance(s) /// in sequence. /// @return outputTokenAmount The amount of `outputToken` received by the sender. function transformERC20( IERC20TokenV06 inputToken, IERC20TokenV06 outputToken, uint256 inputTokenAmount, uint256 minOutputTokenAmount, Transformation[] calldata transformations ) external payable returns (uint256 outputTokenAmount); /// @dev Internal version of `transformERC20()`. Only callable from within. /// @param callDataHash Hash of the ingress calldata. /// @param taker The taker address. /// @param inputToken The token being provided by the taker. /// If `0xeee...`, ETH is implied and should be provided with the call.` /// @param outputToken The token to be acquired by the taker. /// `0xeee...` implies ETH. /// @param inputTokenAmount The amount of `inputToken` to take from the taker. /// @param minOutputTokenAmount The minimum amount of `outputToken` the taker /// must receive for the entire transformation to succeed. /// @param transformations The transformations to execute on the token balance(s) /// in sequence. /// @return outputTokenAmount The amount of `outputToken` received by the taker. function _transformERC20( bytes32 callDataHash, address payable taker, IERC20TokenV06 inputToken, IERC20TokenV06 outputToken, uint256 inputTokenAmount, uint256 minOutputTokenAmount, Transformation[] calldata transformations ) external payable returns (uint256 outputTokenAmount); /// @dev Return the current wallet instance that will serve as the execution /// context for transformations. /// @return wallet The wallet instance. function getTransformWallet() external view returns (IFlashWallet wallet); /// @dev Return the allowed deployer for transformers. /// @return deployer The transform deployer address. function getTransformerDeployer() external view returns (address deployer); } /* Copyright 2020 ZeroEx Intl. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ pragma solidity ^0.6.5; pragma experimental ABIEncoderV2; import "@0x/contracts-erc20/contracts/src/v06/IERC20TokenV06.sol"; /// @dev A transformation callback used in `TransformERC20.transformERC20()`. interface IERC20Transformer { /// @dev Called from `TransformERC20.transformERC20()`. This will be /// delegatecalled in the context of the FlashWallet instance being used. /// @param callDataHash The hash of the `TransformERC20.transformERC20()` calldata. /// @param taker The taker address (caller of `TransformERC20.transformERC20()`). /// @param data Arbitrary data to pass to the transformer. /// @return success The success bytes (`LibERC20Transformer.TRANSFORMER_SUCCESS`). function transform( bytes32 callDataHash, address payable taker, bytes calldata data ) external returns (bytes4 success); } /* Copyright 2020 ZeroEx Intl. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ pragma solidity ^0.6.5; pragma experimental ABIEncoderV2; import "@0x/contracts-utils/contracts/src/v06/errors/LibRichErrorsV06.sol"; import "../fixins/FixinCommon.sol"; import "../errors/LibOwnableRichErrors.sol"; import "../storage/LibOwnableStorage.sol"; import "../migrations/LibBootstrap.sol"; import "../migrations/LibMigrate.sol"; import "./IFeature.sol"; import "./IOwnable.sol"; import "./SimpleFunctionRegistry.sol"; /// @dev Owner management features. contract Ownable is IFeature, IOwnable, FixinCommon { // solhint-disable /// @dev Name of this feature. string public constant override FEATURE_NAME = "Ownable"; /// @dev Version of this feature. uint256 public immutable override FEATURE_VERSION = _encodeVersion(1, 0, 0); /// @dev The deployed address of this contract. address immutable private _implementation; // solhint-enable using LibRichErrorsV06 for bytes; constructor() public { _implementation = address(this); } /// @dev Initializes this feature. The intial owner will be set to this (ZeroEx) /// to allow the bootstrappers to call `extend()`. Ownership should be /// transferred to the real owner by the bootstrapper after /// bootstrapping is complete. /// @return success Magic bytes if successful. function bootstrap() external returns (bytes4 success) { // Set the owner to ourselves to allow bootstrappers to call `extend()`. LibOwnableStorage.getStorage().owner = address(this); // Register feature functions. SimpleFunctionRegistry(address(this))._extendSelf(this.transferOwnership.selector, _implementation); SimpleFunctionRegistry(address(this))._extendSelf(this.owner.selector, _implementation); SimpleFunctionRegistry(address(this))._extendSelf(this.migrate.selector, _implementation); return LibBootstrap.BOOTSTRAP_SUCCESS; } /// @dev Change the owner of this contract. /// Only directly callable by the owner. /// @param newOwner New owner address. function transferOwnership(address newOwner) external override onlyOwner { LibOwnableStorage.Storage storage proxyStor = LibOwnableStorage.getStorage(); if (newOwner == address(0)) { LibOwnableRichErrors.TransferOwnerToZeroError().rrevert(); } else { proxyStor.owner = newOwner; emit OwnershipTransferred(msg.sender, newOwner); } } /// @dev Execute a migration function in the context of the ZeroEx contract. /// The result of the function being called should be the magic bytes /// 0x2c64c5ef (`keccack('MIGRATE_SUCCESS')`). Only callable by the owner. /// Temporarily sets the owner to ourselves so we can perform admin functions. /// Before returning, the owner will be set to `newOwner`. /// @param target The migrator contract address. /// @param data The call data. /// @param newOwner The address of the new owner. function migrate(address target, bytes calldata data, address newOwner) external override onlyOwner { if (newOwner == address(0)) { LibOwnableRichErrors.TransferOwnerToZeroError().rrevert(); } LibOwnableStorage.Storage storage stor = LibOwnableStorage.getStorage(); // The owner will be temporarily set to `address(this)` inside the call. stor.owner = address(this); // Perform the migration. LibMigrate.delegatecallMigrateFunction(target, data); // Update the owner. stor.owner = newOwner; emit Migrated(msg.sender, target, newOwner); } /// @dev Get the owner of this contract. /// @return owner_ The owner of this contract. function owner() external override view returns (address owner_) { return LibOwnableStorage.getStorage().owner; } } /* Copyright 2020 ZeroEx Intl. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ pragma solidity ^0.6.5; pragma experimental ABIEncoderV2; import "@0x/contracts-utils/contracts/src/v06/errors/LibRichErrorsV06.sol"; import "../errors/LibCommonRichErrors.sol"; import "../errors/LibOwnableRichErrors.sol"; import "../features/IOwnable.sol"; /// @dev Common feature utilities. contract FixinCommon { using LibRichErrorsV06 for bytes; /// @dev The caller must be this contract. modifier onlySelf() virtual { if (msg.sender != address(this)) { LibCommonRichErrors.OnlyCallableBySelfError(msg.sender).rrevert(); } _; } /// @dev The caller of this function must be the owner. modifier onlyOwner() virtual { { address owner = IOwnable(address(this)).owner(); if (msg.sender != owner) { LibOwnableRichErrors.OnlyOwnerError( msg.sender, owner ).rrevert(); } } _; } /// @dev Encode a feature version as a `uint256`. /// @param major The major version number of the feature. /// @param minor The minor version number of the feature. /// @param revision The revision number of the feature. /// @return encodedVersion The encoded version number. function _encodeVersion(uint32 major, uint32 minor, uint32 revision) internal pure returns (uint256 encodedVersion) { return (major << 64) | (minor << 32) | revision; } } /* Copyright 2020 ZeroEx Intl. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ pragma solidity ^0.6.5; pragma experimental ABIEncoderV2; import "./LibStorage.sol"; /// @dev Storage helpers for the `Ownable` feature. library LibOwnableStorage { /// @dev Storage bucket for this feature. struct Storage { // The owner of this contract. address owner; } /// @dev Get the storage bucket for this contract. function getStorage() internal pure returns (Storage storage stor) { uint256 storageSlot = LibStorage.getStorageSlot( LibStorage.StorageId.Ownable ); // Dip into assembly to change the slot pointed to by the local // variable `stor`. // See https://solidity.readthedocs.io/en/v0.6.8/assembly.html?highlight=slot#access-to-external-variables-functions-and-libraries assembly { stor_slot := storageSlot } } } /* Copyright 2020 ZeroEx Intl. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ pragma solidity ^0.6.5; pragma experimental ABIEncoderV2; import "@0x/contracts-utils/contracts/src/v06/errors/LibRichErrorsV06.sol"; import "../errors/LibOwnableRichErrors.sol"; library LibMigrate { /// @dev Magic bytes returned by a migrator to indicate success. /// This is `keccack('MIGRATE_SUCCESS')`. bytes4 internal constant MIGRATE_SUCCESS = 0x2c64c5ef; using LibRichErrorsV06 for bytes; /// @dev Perform a delegatecall and ensure it returns the magic bytes. /// @param target The call target. /// @param data The call data. function delegatecallMigrateFunction( address target, bytes memory data ) internal { (bool success, bytes memory resultData) = target.delegatecall(data); if (!success || resultData.length != 32 || abi.decode(resultData, (bytes4)) != MIGRATE_SUCCESS) { LibOwnableRichErrors.MigrateCallFailedError(target, resultData).rrevert(); } } } /* Copyright 2020 ZeroEx Intl. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ pragma solidity ^0.6.5; pragma experimental ABIEncoderV2; import "@0x/contracts-utils/contracts/src/v06/errors/LibRichErrorsV06.sol"; import "../fixins/FixinCommon.sol"; import "../storage/LibProxyStorage.sol"; import "../storage/LibSimpleFunctionRegistryStorage.sol"; import "../errors/LibSimpleFunctionRegistryRichErrors.sol"; import "../migrations/LibBootstrap.sol"; import "./IFeature.sol"; import "./ISimpleFunctionRegistry.sol"; /// @dev Basic registry management features. contract SimpleFunctionRegistry is IFeature, ISimpleFunctionRegistry, FixinCommon { // solhint-disable /// @dev Name of this feature. string public constant override FEATURE_NAME = "SimpleFunctionRegistry"; /// @dev Version of this feature. uint256 public immutable override FEATURE_VERSION = _encodeVersion(1, 0, 0); /// @dev The deployed address of this contract. address private immutable _implementation; // solhint-enable using LibRichErrorsV06 for bytes; constructor() public { _implementation = address(this); } /// @dev Initializes this feature, registering its own functions. /// @return success Magic bytes if successful. function bootstrap() external returns (bytes4 success) { // Register the registration functions (inception vibes). _extend(this.extend.selector, _implementation); _extend(this._extendSelf.selector, _implementation); // Register the rollback function. _extend(this.rollback.selector, _implementation); // Register getters. _extend(this.getRollbackLength.selector, _implementation); _extend(this.getRollbackEntryAtIndex.selector, _implementation); return LibBootstrap.BOOTSTRAP_SUCCESS; } /// @dev Roll back to a prior implementation of a function. /// Only directly callable by an authority. /// @param selector The function selector. /// @param targetImpl The address of an older implementation of the function. function rollback(bytes4 selector, address targetImpl) external override onlyOwner { ( LibSimpleFunctionRegistryStorage.Storage storage stor, LibProxyStorage.Storage storage proxyStor ) = _getStorages(); address currentImpl = proxyStor.impls[selector]; if (currentImpl == targetImpl) { // Do nothing if already at targetImpl. return; } // Walk history backwards until we find the target implementation. address[] storage history = stor.implHistory[selector]; uint256 i = history.length; for (; i > 0; --i) { address impl = history[i - 1]; history.pop(); if (impl == targetImpl) { break; } } if (i == 0) { LibSimpleFunctionRegistryRichErrors.NotInRollbackHistoryError( selector, targetImpl ).rrevert(); } proxyStor.impls[selector] = targetImpl; emit ProxyFunctionUpdated(selector, currentImpl, targetImpl); } /// @dev Register or replace a function. /// Only directly callable by an authority. /// @param selector The function selector. /// @param impl The implementation contract for the function. function extend(bytes4 selector, address impl) external override onlyOwner { _extend(selector, impl); } /// @dev Register or replace a function. /// Only callable from within. /// This function is only used during the bootstrap process and /// should be deregistered by the deployer after bootstrapping is /// complete. /// @param selector The function selector. /// @param impl The implementation contract for the function. function _extendSelf(bytes4 selector, address impl) external onlySelf { _extend(selector, impl); } /// @dev Retrieve the length of the rollback history for a function. /// @param selector The function selector. /// @return rollbackLength The number of items in the rollback history for /// the function. function getRollbackLength(bytes4 selector) external override view returns (uint256 rollbackLength) { return LibSimpleFunctionRegistryStorage.getStorage().implHistory[selector].length; } /// @dev Retrieve an entry in the rollback history for a function. /// @param selector The function selector. /// @param idx The index in the rollback history. /// @return impl An implementation address for the function at /// index `idx`. function getRollbackEntryAtIndex(bytes4 selector, uint256 idx) external override view returns (address impl) { return LibSimpleFunctionRegistryStorage.getStorage().implHistory[selector][idx]; } /// @dev Register or replace a function. /// @param selector The function selector. /// @param impl The implementation contract for the function. function _extend(bytes4 selector, address impl) private { ( LibSimpleFunctionRegistryStorage.Storage storage stor, LibProxyStorage.Storage storage proxyStor ) = _getStorages(); address oldImpl = proxyStor.impls[selector]; address[] storage history = stor.implHistory[selector]; history.push(oldImpl); proxyStor.impls[selector] = impl; emit ProxyFunctionUpdated(selector, oldImpl, impl); } /// @dev Get the storage buckets for this feature and the proxy. /// @return stor Storage bucket for this feature. /// @return proxyStor age bucket for the proxy. function _getStorages() private pure returns ( LibSimpleFunctionRegistryStorage.Storage storage stor, LibProxyStorage.Storage storage proxyStor ) { return ( LibSimpleFunctionRegistryStorage.getStorage(), LibProxyStorage.getStorage() ); } } /* Copyright 2020 ZeroEx Intl. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ pragma solidity ^0.6.5; pragma experimental ABIEncoderV2; import "./LibStorage.sol"; /// @dev Storage helpers for the `SimpleFunctionRegistry` feature. library LibSimpleFunctionRegistryStorage { /// @dev Storage bucket for this feature. struct Storage { // Mapping of function selector -> implementation history. mapping(bytes4 => address[]) implHistory; } /// @dev Get the storage bucket for this contract. function getStorage() internal pure returns (Storage storage stor) { uint256 storageSlot = LibStorage.getStorageSlot( LibStorage.StorageId.SimpleFunctionRegistry ); // Dip into assembly to change the slot pointed to by the local // variable `stor`. // See https://solidity.readthedocs.io/en/v0.6.8/assembly.html?highlight=slot#access-to-external-variables-functions-and-libraries assembly { stor_slot := storageSlot } } } /* Copyright 2020 ZeroEx Intl. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ pragma solidity ^0.6.5; pragma experimental ABIEncoderV2; import "@0x/contracts-utils/contracts/src/v06/errors/LibRichErrorsV06.sol"; import "@0x/contracts-utils/contracts/src/v06/LibSafeMathV06.sol"; import "@0x/contracts-erc20/contracts/src/v06/IERC20TokenV06.sol"; import "@0x/contracts-erc20/contracts/src/v06/LibERC20TokenV06.sol"; import "../errors/LibSpenderRichErrors.sol"; import "../fixins/FixinCommon.sol"; import "../migrations/LibMigrate.sol"; import "../external/IAllowanceTarget.sol"; import "../storage/LibTokenSpenderStorage.sol"; import "./ITokenSpender.sol"; import "./IFeature.sol"; import "./ISimpleFunctionRegistry.sol"; /// @dev Feature that allows spending token allowances. contract TokenSpender is IFeature, ITokenSpender, FixinCommon { // solhint-disable /// @dev Name of this feature. string public constant override FEATURE_NAME = "TokenSpender"; /// @dev Version of this feature. uint256 public immutable override FEATURE_VERSION = _encodeVersion(1, 0, 0); /// @dev The implementation address of this feature. address private immutable _implementation; // solhint-enable using LibRichErrorsV06 for bytes; constructor() public { _implementation = address(this); } /// @dev Initialize and register this feature. Should be delegatecalled /// into during a `Migrate.migrate()`. /// @param allowanceTarget An `allowanceTarget` instance, configured to have /// the ZeroeEx contract as an authority. /// @return success `MIGRATE_SUCCESS` on success. function migrate(IAllowanceTarget allowanceTarget) external returns (bytes4 success) { LibTokenSpenderStorage.getStorage().allowanceTarget = allowanceTarget; ISimpleFunctionRegistry(address(this)) .extend(this.getAllowanceTarget.selector, _implementation); ISimpleFunctionRegistry(address(this)) .extend(this._spendERC20Tokens.selector, _implementation); ISimpleFunctionRegistry(address(this)) .extend(this.getSpendableERC20BalanceOf.selector, _implementation); return LibMigrate.MIGRATE_SUCCESS; } /// @dev Transfers ERC20 tokens from `owner` to `to`. Only callable from within. /// @param token The token to spend. /// @param owner The owner of the tokens. /// @param to The recipient of the tokens. /// @param amount The amount of `token` to transfer. function _spendERC20Tokens( IERC20TokenV06 token, address owner, address to, uint256 amount ) external override onlySelf { IAllowanceTarget spender = LibTokenSpenderStorage.getStorage().allowanceTarget; // Have the allowance target execute an ERC20 `transferFrom()`. (bool didSucceed, bytes memory resultData) = address(spender).call( abi.encodeWithSelector( IAllowanceTarget.executeCall.selector, address(token), abi.encodeWithSelector( IERC20TokenV06.transferFrom.selector, owner, to, amount ) ) ); if (didSucceed) { resultData = abi.decode(resultData, (bytes)); } if (!didSucceed || !LibERC20TokenV06.isSuccessfulResult(resultData)) { LibSpenderRichErrors.SpenderERC20TransferFromFailedError( address(token), owner, to, amount, resultData ).rrevert(); } } /// @dev Gets the maximum amount of an ERC20 token `token` that can be /// pulled from `owner` by the token spender. /// @param token The token to spend. /// @param owner The owner of the tokens. /// @return amount The amount of tokens that can be pulled. function getSpendableERC20BalanceOf(IERC20TokenV06 token, address owner) external override view returns (uint256 amount) { return LibSafeMathV06.min256( token.allowance(owner, address(LibTokenSpenderStorage.getStorage().allowanceTarget)), token.balanceOf(owner) ); } /// @dev Get the address of the allowance target. /// @return target The target of token allowances. function getAllowanceTarget() external override view returns (address target) { return address(LibTokenSpenderStorage.getStorage().allowanceTarget); } } /* Copyright 2020 ZeroEx Intl. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ pragma solidity ^0.6.5; import "./errors/LibRichErrorsV06.sol"; import "./errors/LibSafeMathRichErrorsV06.sol"; library LibSafeMathV06 { function safeMul(uint256 a, uint256 b) internal pure returns (uint256) { if (a == 0) { return 0; } uint256 c = a * b; if (c / a != b) { LibRichErrorsV06.rrevert(LibSafeMathRichErrorsV06.Uint256BinOpError( LibSafeMathRichErrorsV06.BinOpErrorCodes.MULTIPLICATION_OVERFLOW, a, b )); } return c; } function safeDiv(uint256 a, uint256 b) internal pure returns (uint256) { if (b == 0) { LibRichErrorsV06.rrevert(LibSafeMathRichErrorsV06.Uint256BinOpError( LibSafeMathRichErrorsV06.BinOpErrorCodes.DIVISION_BY_ZERO, a, b )); } uint256 c = a / b; return c; } function safeSub(uint256 a, uint256 b) internal pure returns (uint256) { if (b > a) { LibRichErrorsV06.rrevert(LibSafeMathRichErrorsV06.Uint256BinOpError( LibSafeMathRichErrorsV06.BinOpErrorCodes.SUBTRACTION_UNDERFLOW, a, b )); } return a - b; } function safeAdd(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; if (c < a) { LibRichErrorsV06.rrevert(LibSafeMathRichErrorsV06.Uint256BinOpError( LibSafeMathRichErrorsV06.BinOpErrorCodes.ADDITION_OVERFLOW, a, b )); } return c; } function max256(uint256 a, uint256 b) internal pure returns (uint256) { return a >= b ? a : b; } function min256(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } } /* Copyright 2020 ZeroEx Intl. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ pragma solidity ^0.6.5; library LibSafeMathRichErrorsV06 { // bytes4(keccak256("Uint256BinOpError(uint8,uint256,uint256)")) bytes4 internal constant UINT256_BINOP_ERROR_SELECTOR = 0xe946c1bb; // bytes4(keccak256("Uint256DowncastError(uint8,uint256)")) bytes4 internal constant UINT256_DOWNCAST_ERROR_SELECTOR = 0xc996af7b; enum BinOpErrorCodes { ADDITION_OVERFLOW, MULTIPLICATION_OVERFLOW, SUBTRACTION_UNDERFLOW, DIVISION_BY_ZERO } enum DowncastErrorCodes { VALUE_TOO_LARGE_TO_DOWNCAST_TO_UINT32, VALUE_TOO_LARGE_TO_DOWNCAST_TO_UINT64, VALUE_TOO_LARGE_TO_DOWNCAST_TO_UINT96 } // solhint-disable func-name-mixedcase function Uint256BinOpError( BinOpErrorCodes errorCode, uint256 a, uint256 b ) internal pure returns (bytes memory) { return abi.encodeWithSelector( UINT256_BINOP_ERROR_SELECTOR, errorCode, a, b ); } function Uint256DowncastError( DowncastErrorCodes errorCode, uint256 a ) internal pure returns (bytes memory) { return abi.encodeWithSelector( UINT256_DOWNCAST_ERROR_SELECTOR, errorCode, a ); } } /* Copyright 2020 ZeroEx Intl. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ pragma solidity ^0.6.5; import "@0x/contracts-utils/contracts/src/v06/errors/LibRichErrorsV06.sol"; import "@0x/contracts-utils/contracts/src/v06/LibBytesV06.sol"; import "./IERC20TokenV06.sol"; library LibERC20TokenV06 { bytes constant private DECIMALS_CALL_DATA = hex"313ce567"; /// @dev Calls `IERC20TokenV06(token).approve()`. /// Reverts if the result fails `isSuccessfulResult()` or the call reverts. /// @param token The address of the token contract. /// @param spender The address that receives an allowance. /// @param allowance The allowance to set. function compatApprove( IERC20TokenV06 token, address spender, uint256 allowance ) internal { bytes memory callData = abi.encodeWithSelector( token.approve.selector, spender, allowance ); _callWithOptionalBooleanResult(address(token), callData); } /// @dev Calls `IERC20TokenV06(token).approve()` and sets the allowance to the /// maximum if the current approval is not already >= an amount. /// Reverts if the result fails `isSuccessfulResult()` or the call reverts. /// @param token The address of the token contract. /// @param spender The address that receives an allowance. /// @param amount The minimum allowance needed. function approveIfBelow( IERC20TokenV06 token, address spender, uint256 amount ) internal { if (token.allowance(address(this), spender) < amount) { compatApprove(token, spender, uint256(-1)); } } /// @dev Calls `IERC20TokenV06(token).transfer()`. /// Reverts if the result fails `isSuccessfulResult()` or the call reverts. /// @param token The address of the token contract. /// @param to The address that receives the tokens /// @param amount Number of tokens to transfer. function compatTransfer( IERC20TokenV06 token, address to, uint256 amount ) internal { bytes memory callData = abi.encodeWithSelector( token.transfer.selector, to, amount ); _callWithOptionalBooleanResult(address(token), callData); } /// @dev Calls `IERC20TokenV06(token).transferFrom()`. /// Reverts if the result fails `isSuccessfulResult()` or the call reverts. /// @param token The address of the token contract. /// @param from The owner of the tokens. /// @param to The address that receives the tokens /// @param amount Number of tokens to transfer. function compatTransferFrom( IERC20TokenV06 token, address from, address to, uint256 amount ) internal { bytes memory callData = abi.encodeWithSelector( token.transferFrom.selector, from, to, amount ); _callWithOptionalBooleanResult(address(token), callData); } /// @dev Retrieves the number of decimals for a token. /// Returns `18` if the call reverts. /// @param token The address of the token contract. /// @return tokenDecimals The number of decimals places for the token. function compatDecimals(IERC20TokenV06 token) internal view returns (uint8 tokenDecimals) { tokenDecimals = 18; (bool didSucceed, bytes memory resultData) = address(token).staticcall(DECIMALS_CALL_DATA); if (didSucceed && resultData.length == 32) { tokenDecimals = uint8(LibBytesV06.readUint256(resultData, 0)); } } /// @dev Retrieves the allowance for a token, owner, and spender. /// Returns `0` if the call reverts. /// @param token The address of the token contract. /// @param owner The owner of the tokens. /// @param spender The address the spender. /// @return allowance_ The allowance for a token, owner, and spender. function compatAllowance(IERC20TokenV06 token, address owner, address spender) internal view returns (uint256 allowance_) { (bool didSucceed, bytes memory resultData) = address(token).staticcall( abi.encodeWithSelector( token.allowance.selector, owner, spender ) ); if (didSucceed && resultData.length == 32) { allowance_ = LibBytesV06.readUint256(resultData, 0); } } /// @dev Retrieves the balance for a token owner. /// Returns `0` if the call reverts. /// @param token The address of the token contract. /// @param owner The owner of the tokens. /// @return balance The token balance of an owner. function compatBalanceOf(IERC20TokenV06 token, address owner) internal view returns (uint256 balance) { (bool didSucceed, bytes memory resultData) = address(token).staticcall( abi.encodeWithSelector( token.balanceOf.selector, owner ) ); if (didSucceed && resultData.length == 32) { balance = LibBytesV06.readUint256(resultData, 0); } } /// @dev Check if the data returned by a non-static call to an ERC20 token /// is a successful result. Supported functions are `transfer()`, /// `transferFrom()`, and `approve()`. /// @param resultData The raw data returned by a non-static call to the ERC20 token. /// @return isSuccessful Whether the result data indicates success. function isSuccessfulResult(bytes memory resultData) internal pure returns (bool isSuccessful) { if (resultData.length == 0) { return true; } if (resultData.length == 32) { uint256 result = LibBytesV06.readUint256(resultData, 0); if (result == 1) { return true; } } } /// @dev Executes a call on address `target` with calldata `callData` /// and asserts that either nothing was returned or a single boolean /// was returned equal to `true`. /// @param target The call target. /// @param callData The abi-encoded call data. function _callWithOptionalBooleanResult( address target, bytes memory callData ) private { (bool didSucceed, bytes memory resultData) = target.call(callData); if (didSucceed && isSuccessfulResult(resultData)) { return; } LibRichErrorsV06.rrevert(resultData); } } /* Copyright 2020 ZeroEx Intl. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ pragma solidity ^0.6.5; pragma experimental ABIEncoderV2; import "./LibStorage.sol"; import "../external/IAllowanceTarget.sol"; /// @dev Storage helpers for the `TokenSpender` feature. library LibTokenSpenderStorage { /// @dev Storage bucket for this feature. struct Storage { // Allowance target contract. IAllowanceTarget allowanceTarget; } /// @dev Get the storage bucket for this contract. function getStorage() internal pure returns (Storage storage stor) { uint256 storageSlot = LibStorage.getStorageSlot( LibStorage.StorageId.TokenSpender ); // Dip into assembly to change the slot pointed to by the local // variable `stor`. // See https://solidity.readthedocs.io/en/v0.6.8/assembly.html?highlight=slot#access-to-external-variables-functions-and-libraries assembly { stor_slot := storageSlot } } } /* Copyright 2020 ZeroEx Intl. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ pragma solidity ^0.6.5; pragma experimental ABIEncoderV2; import "@0x/contracts-erc20/contracts/src/v06/IERC20TokenV06.sol"; import "@0x/contracts-erc20/contracts/src/v06/LibERC20TokenV06.sol"; import "@0x/contracts-utils/contracts/src/v06/errors/LibRichErrorsV06.sol"; import "@0x/contracts-utils/contracts/src/v06/LibSafeMathV06.sol"; import "../errors/LibTransformERC20RichErrors.sol"; import "../fixins/FixinCommon.sol"; import "../migrations/LibMigrate.sol"; import "../external/IFlashWallet.sol"; import "../external/FlashWallet.sol"; import "../storage/LibTransformERC20Storage.sol"; import "../transformers/IERC20Transformer.sol"; import "../transformers/LibERC20Transformer.sol"; import "./ITransformERC20.sol"; import "./ITokenSpender.sol"; import "./IFeature.sol"; import "./ISimpleFunctionRegistry.sol"; /// @dev Feature to composably transform between ERC20 tokens. contract TransformERC20 is IFeature, ITransformERC20, FixinCommon { /// @dev Stack vars for `_transformERC20Private()`. struct TransformERC20PrivateState { IFlashWallet wallet; address transformerDeployer; uint256 takerOutputTokenBalanceBefore; uint256 takerOutputTokenBalanceAfter; } // solhint-disable /// @dev Name of this feature. string public constant override FEATURE_NAME = "TransformERC20"; /// @dev Version of this feature. uint256 public immutable override FEATURE_VERSION = _encodeVersion(1, 0, 0); /// @dev The implementation address of this feature. address private immutable _implementation; // solhint-enable using LibSafeMathV06 for uint256; using LibRichErrorsV06 for bytes; constructor() public { _implementation = address(this); } /// @dev Initialize and register this feature. /// Should be delegatecalled by `Migrate.migrate()`. /// @param transformerDeployer The trusted deployer for transformers. /// @return success `LibMigrate.SUCCESS` on success. function migrate(address transformerDeployer) external returns (bytes4 success) { ISimpleFunctionRegistry(address(this)) .extend(this.getTransformerDeployer.selector, _implementation); ISimpleFunctionRegistry(address(this)) .extend(this.createTransformWallet.selector, _implementation); ISimpleFunctionRegistry(address(this)) .extend(this.getTransformWallet.selector, _implementation); ISimpleFunctionRegistry(address(this)) .extend(this.setTransformerDeployer.selector, _implementation); ISimpleFunctionRegistry(address(this)) .extend(this.transformERC20.selector, _implementation); ISimpleFunctionRegistry(address(this)) .extend(this._transformERC20.selector, _implementation); createTransformWallet(); LibTransformERC20Storage.getStorage().transformerDeployer = transformerDeployer; return LibMigrate.MIGRATE_SUCCESS; } /// @dev Replace the allowed deployer for transformers. /// Only callable by the owner. /// @param transformerDeployer The address of the trusted deployer for transformers. function setTransformerDeployer(address transformerDeployer) external override onlyOwner { LibTransformERC20Storage.getStorage().transformerDeployer = transformerDeployer; emit TransformerDeployerUpdated(transformerDeployer); } /// @dev Return the allowed deployer for transformers. /// @return deployer The transform deployer address. function getTransformerDeployer() public override view returns (address deployer) { return LibTransformERC20Storage.getStorage().transformerDeployer; } /// @dev Deploy a new wallet instance and replace the current one with it. /// Useful if we somehow break the current wallet instance. /// Anyone can call this. /// @return wallet The new wallet instance. function createTransformWallet() public override returns (IFlashWallet wallet) { wallet = new FlashWallet(); LibTransformERC20Storage.getStorage().wallet = wallet; } /// @dev Executes a series of transformations to convert an ERC20 `inputToken` /// to an ERC20 `outputToken`. /// @param inputToken The token being provided by the sender. /// If `0xeee...`, ETH is implied and should be provided with the call.` /// @param outputToken The token to be acquired by the sender. /// `0xeee...` implies ETH. /// @param inputTokenAmount The amount of `inputToken` to take from the sender. /// If set to `uint256(-1)`, the entire spendable balance of the taker /// will be solt. /// @param minOutputTokenAmount The minimum amount of `outputToken` the sender /// must receive for the entire transformation to succeed. If set to zero, /// the minimum output token transfer will not be asserted. /// @param transformations The transformations to execute on the token balance(s) /// in sequence. /// @return outputTokenAmount The amount of `outputToken` received by the sender. function transformERC20( IERC20TokenV06 inputToken, IERC20TokenV06 outputToken, uint256 inputTokenAmount, uint256 minOutputTokenAmount, Transformation[] memory transformations ) public override payable returns (uint256 outputTokenAmount) { return _transformERC20Private( keccak256(msg.data), msg.sender, inputToken, outputToken, inputTokenAmount, minOutputTokenAmount, transformations ); } /// @dev Internal version of `transformERC20()`. Only callable from within. /// @param callDataHash Hash of the ingress calldata. /// @param taker The taker address. /// @param inputToken The token being provided by the taker. /// If `0xeee...`, ETH is implied and should be provided with the call.` /// @param outputToken The token to be acquired by the taker. /// `0xeee...` implies ETH. /// @param inputTokenAmount The amount of `inputToken` to take from the taker. /// If set to `uint256(-1)`, the entire spendable balance of the taker /// will be solt. /// @param minOutputTokenAmount The minimum amount of `outputToken` the taker /// must receive for the entire transformation to succeed. If set to zero, /// the minimum output token transfer will not be asserted. /// @param transformations The transformations to execute on the token balance(s) /// in sequence. /// @return outputTokenAmount The amount of `outputToken` received by the taker. function _transformERC20( bytes32 callDataHash, address payable taker, IERC20TokenV06 inputToken, IERC20TokenV06 outputToken, uint256 inputTokenAmount, uint256 minOutputTokenAmount, Transformation[] memory transformations ) public override payable onlySelf returns (uint256 outputTokenAmount) { return _transformERC20Private( callDataHash, taker, inputToken, outputToken, inputTokenAmount, minOutputTokenAmount, transformations ); } /// @dev Private version of `transformERC20()`. /// @param callDataHash Hash of the ingress calldata. /// @param taker The taker address. /// @param inputToken The token being provided by the taker. /// If `0xeee...`, ETH is implied and should be provided with the call.` /// @param outputToken The token to be acquired by the taker. /// `0xeee...` implies ETH. /// @param inputTokenAmount The amount of `inputToken` to take from the taker. /// If set to `uint256(-1)`, the entire spendable balance of the taker /// will be solt. /// @param minOutputTokenAmount The minimum amount of `outputToken` the taker /// must receive for the entire transformation to succeed. If set to zero, /// the minimum output token transfer will not be asserted. /// @param transformations The transformations to execute on the token balance(s) /// in sequence. /// @return outputTokenAmount The amount of `outputToken` received by the taker. function _transformERC20Private( bytes32 callDataHash, address payable taker, IERC20TokenV06 inputToken, IERC20TokenV06 outputToken, uint256 inputTokenAmount, uint256 minOutputTokenAmount, Transformation[] memory transformations ) private returns (uint256 outputTokenAmount) { // If the input token amount is -1, transform the taker's entire // spendable balance. if (inputTokenAmount == uint256(-1)) { inputTokenAmount = ITokenSpender(address(this)) .getSpendableERC20BalanceOf(inputToken, taker); } TransformERC20PrivateState memory state; state.wallet = getTransformWallet(); state.transformerDeployer = getTransformerDeployer(); // Remember the initial output token balance of the taker. state.takerOutputTokenBalanceBefore = LibERC20Transformer.getTokenBalanceOf(outputToken, taker); // Pull input tokens from the taker to the wallet and transfer attached ETH. _transferInputTokensAndAttachedEth( inputToken, taker, address(state.wallet), inputTokenAmount ); // Perform transformations. for (uint256 i = 0; i < transformations.length; ++i) { _executeTransformation( state.wallet, transformations[i], state.transformerDeployer, taker, callDataHash ); } // Compute how much output token has been transferred to the taker. state.takerOutputTokenBalanceAfter = LibERC20Transformer.getTokenBalanceOf(outputToken, taker); if (state.takerOutputTokenBalanceAfter > state.takerOutputTokenBalanceBefore) { outputTokenAmount = state.takerOutputTokenBalanceAfter.safeSub( state.takerOutputTokenBalanceBefore ); } else if (state.takerOutputTokenBalanceAfter < state.takerOutputTokenBalanceBefore) { LibTransformERC20RichErrors.NegativeTransformERC20OutputError( address(outputToken), state.takerOutputTokenBalanceBefore - state.takerOutputTokenBalanceAfter ).rrevert(); } // Ensure enough output token has been sent to the taker. if (outputTokenAmount < minOutputTokenAmount) { LibTransformERC20RichErrors.IncompleteTransformERC20Error( address(outputToken), outputTokenAmount, minOutputTokenAmount ).rrevert(); } // Emit an event. emit TransformedERC20( taker, address(inputToken), address(outputToken), inputTokenAmount, outputTokenAmount ); } /// @dev Return the current wallet instance that will serve as the execution /// context for transformations. /// @return wallet The wallet instance. function getTransformWallet() public override view returns (IFlashWallet wallet) { return LibTransformERC20Storage.getStorage().wallet; } /// @dev Transfer input tokens from the taker and any attached ETH to `to` /// @param inputToken The token to pull from the taker. /// @param from The from (taker) address. /// @param to The recipient of tokens and ETH. /// @param amount Amount of `inputToken` tokens to transfer. function _transferInputTokensAndAttachedEth( IERC20TokenV06 inputToken, address from, address payable to, uint256 amount ) private { // Transfer any attached ETH. if (msg.value != 0) { to.transfer(msg.value); } // Transfer input tokens. if (!LibERC20Transformer.isTokenETH(inputToken)) { // Token is not ETH, so pull ERC20 tokens. ITokenSpender(address(this))._spendERC20Tokens( inputToken, from, to, amount ); } else if (msg.value < amount) { // Token is ETH, so the caller must attach enough ETH to the call. LibTransformERC20RichErrors.InsufficientEthAttachedError( msg.value, amount ).rrevert(); } } /// @dev Executs a transformer in the context of `wallet`. /// @param wallet The wallet instance. /// @param transformation The transformation. /// @param transformerDeployer The address of the transformer deployer. /// @param taker The taker address. /// @param callDataHash Hash of the calldata. function _executeTransformation( IFlashWallet wallet, Transformation memory transformation, address transformerDeployer, address payable taker, bytes32 callDataHash ) private { // Derive the transformer address from the deployment nonce. address payable transformer = LibERC20Transformer.getDeployedAddress( transformerDeployer, transformation.deploymentNonce ); // Call `transformer.transform()` as the wallet. bytes memory resultData = wallet.executeDelegateCall( // The call target. transformer, // Call data. abi.encodeWithSelector( IERC20Transformer.transform.selector, callDataHash, taker, transformation.data ) ); // Ensure the transformer returned the magic bytes. if (resultData.length != 32 || abi.decode(resultData, (bytes4)) != LibERC20Transformer.TRANSFORMER_SUCCESS ) { LibTransformERC20RichErrors.TransformerFailedError( transformer, transformation.data, resultData ).rrevert(); } } } /* Copyright 2020 ZeroEx Intl. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ pragma solidity ^0.6.5; pragma experimental ABIEncoderV2; import "./LibStorage.sol"; import "../external/IFlashWallet.sol"; /// @dev Storage helpers for the `TokenSpender` feature. library LibTransformERC20Storage { /// @dev Storage bucket for this feature. struct Storage { // The current wallet instance. IFlashWallet wallet; // The transformer deployer address. address transformerDeployer; } /// @dev Get the storage bucket for this contract. function getStorage() internal pure returns (Storage storage stor) { uint256 storageSlot = LibStorage.getStorageSlot( LibStorage.StorageId.TransformERC20 ); // Dip into assembly to change the slot pointed to by the local // variable `stor`. // See https://solidity.readthedocs.io/en/v0.6.8/assembly.html?highlight=slot#access-to-external-variables-functions-and-libraries assembly { stor_slot := storageSlot } } } /* Copyright 2020 ZeroEx Intl. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ pragma solidity ^0.6.5; pragma experimental ABIEncoderV2; import "@0x/contracts-erc20/contracts/src/v06/IERC20TokenV06.sol"; import "@0x/contracts-erc20/contracts/src/v06/LibERC20TokenV06.sol"; library LibERC20Transformer { using LibERC20TokenV06 for IERC20TokenV06; /// @dev ETH pseudo-token address. address constant internal ETH_TOKEN_ADDRESS = 0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE; /// @dev Return value indicating success in `IERC20Transformer.transform()`. /// This is just `keccak256('TRANSFORMER_SUCCESS')`. bytes4 constant internal TRANSFORMER_SUCCESS = 0x13c9929e; /// @dev Transfer ERC20 tokens and ETH. /// @param token An ERC20 or the ETH pseudo-token address (`ETH_TOKEN_ADDRESS`). /// @param to The recipient. /// @param amount The transfer amount. function transformerTransfer( IERC20TokenV06 token, address payable to, uint256 amount ) internal { if (isTokenETH(token)) { to.transfer(amount); } else { token.compatTransfer(to, amount); } } /// @dev Check if a token is the ETH pseudo-token. /// @param token The token to check. /// @return isETH `true` if the token is the ETH pseudo-token. function isTokenETH(IERC20TokenV06 token) internal pure returns (bool isETH) { return address(token) == ETH_TOKEN_ADDRESS; } /// @dev Check the balance of an ERC20 token or ETH. /// @param token An ERC20 or the ETH pseudo-token address (`ETH_TOKEN_ADDRESS`). /// @param owner Holder of the tokens. /// @return tokenBalance The balance of `owner`. function getTokenBalanceOf(IERC20TokenV06 token, address owner) internal view returns (uint256 tokenBalance) { if (isTokenETH(token)) { return owner.balance; } return token.balanceOf(owner); } /// @dev RLP-encode a 32-bit or less account nonce. /// @param nonce A positive integer in the range 0 <= nonce < 2^32. /// @return rlpNonce The RLP encoding. function rlpEncodeNonce(uint32 nonce) internal pure returns (bytes memory rlpNonce) { // See https://github.com/ethereum/wiki/wiki/RLP for RLP encoding rules. if (nonce == 0) { rlpNonce = new bytes(1); rlpNonce[0] = 0x80; } else if (nonce < 0x80) { rlpNonce = new bytes(1); rlpNonce[0] = byte(uint8(nonce)); } else if (nonce <= 0xFF) { rlpNonce = new bytes(2); rlpNonce[0] = 0x81; rlpNonce[1] = byte(uint8(nonce)); } else if (nonce <= 0xFFFF) { rlpNonce = new bytes(3); rlpNonce[0] = 0x82; rlpNonce[1] = byte(uint8((nonce & 0xFF00) >> 8)); rlpNonce[2] = byte(uint8(nonce)); } else if (nonce <= 0xFFFFFF) { rlpNonce = new bytes(4); rlpNonce[0] = 0x83; rlpNonce[1] = byte(uint8((nonce & 0xFF0000) >> 16)); rlpNonce[2] = byte(uint8((nonce & 0xFF00) >> 8)); rlpNonce[3] = byte(uint8(nonce)); } else { rlpNonce = new bytes(5); rlpNonce[0] = 0x84; rlpNonce[1] = byte(uint8((nonce & 0xFF000000) >> 24)); rlpNonce[2] = byte(uint8((nonce & 0xFF0000) >> 16)); rlpNonce[3] = byte(uint8((nonce & 0xFF00) >> 8)); rlpNonce[4] = byte(uint8(nonce)); } } /// @dev Compute the expected deployment address by `deployer` at /// the nonce given by `deploymentNonce`. /// @param deployer The address of the deployer. /// @param deploymentNonce The nonce that the deployer had when deploying /// a contract. /// @return deploymentAddress The deployment address. function getDeployedAddress(address deployer, uint32 deploymentNonce) internal pure returns (address payable deploymentAddress) { // The address of if a deployed contract is the lower 20 bytes of the // hash of the RLP-encoded deployer's account address + account nonce. // See: https://ethereum.stackexchange.com/questions/760/how-is-the-address-of-an-ethereum-contract-computed bytes memory rlpNonce = rlpEncodeNonce(deploymentNonce); return address(uint160(uint256(keccak256(abi.encodePacked( byte(uint8(0xC0 + 21 + rlpNonce.length)), byte(uint8(0x80 + 20)), deployer, rlpNonce ))))); } } /* Copyright 2020 ZeroEx Intl. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ pragma solidity ^0.6.5; pragma experimental ABIEncoderV2; import "../ZeroEx.sol"; import "../features/IOwnable.sol"; import "../features/TokenSpender.sol"; import "../features/TransformERC20.sol"; import "../external/AllowanceTarget.sol"; import "./InitialMigration.sol"; /// @dev A contract for deploying and configuring the full ZeroEx contract. contract FullMigration { // solhint-disable no-empty-blocks,indent /// @dev Features to add the the proxy contract. struct Features { SimpleFunctionRegistry registry; Ownable ownable; TokenSpender tokenSpender; TransformERC20 transformERC20; } /// @dev Parameters needed to initialize features. struct MigrateOpts { address transformerDeployer; } /// @dev The allowed caller of `deploy()`. address public immutable deployer; /// @dev The initial migration contract. InitialMigration private _initialMigration; /// @dev Instantiate this contract and set the allowed caller of `deploy()` /// to `deployer`. /// @param deployer_ The allowed caller of `deploy()`. constructor(address payable deployer_) public { deployer = deployer_; // Create an initial migration contract with this contract set to the // allowed deployer. _initialMigration = new InitialMigration(address(this)); } /// @dev Deploy the `ZeroEx` contract with the full feature set, /// transfer ownership to `owner`, then self-destruct. /// @param owner The owner of the contract. /// @param features Features to add to the proxy. /// @return zeroEx The deployed and configured `ZeroEx` contract. /// @param migrateOpts Parameters needed to initialize features. function deploy( address payable owner, Features memory features, MigrateOpts memory migrateOpts ) public returns (ZeroEx zeroEx) { require(msg.sender == deployer, "FullMigration/INVALID_SENDER"); // Perform the initial migration with the owner set to this contract. zeroEx = _initialMigration.deploy( address(uint160(address(this))), InitialMigration.BootstrapFeatures({ registry: features.registry, ownable: features.ownable }) ); // Add features. _addFeatures(zeroEx, owner, features, migrateOpts); // Transfer ownership to the real owner. IOwnable(address(zeroEx)).transferOwnership(owner); // Self-destruct. this.die(owner); } /// @dev Destroy this contract. Only callable from ourselves (from `deploy()`). /// @param ethRecipient Receiver of any ETH in this contract. function die(address payable ethRecipient) external virtual { require(msg.sender == address(this), "FullMigration/INVALID_SENDER"); // This contract should not hold any funds but we send // them to the ethRecipient just in case. selfdestruct(ethRecipient); } /// @dev Deploy and register features to the ZeroEx contract. /// @param zeroEx The bootstrapped ZeroEx contract. /// @param owner The ultimate owner of the ZeroEx contract. /// @param features Features to add to the proxy. /// @param migrateOpts Parameters needed to initialize features. function _addFeatures( ZeroEx zeroEx, address owner, Features memory features, MigrateOpts memory migrateOpts ) private { IOwnable ownable = IOwnable(address(zeroEx)); // TokenSpender { // Create the allowance target. AllowanceTarget allowanceTarget = new AllowanceTarget(); // Let the ZeroEx contract use the allowance target. allowanceTarget.addAuthorizedAddress(address(zeroEx)); // Transfer ownership of the allowance target to the (real) owner. allowanceTarget.transferOwnership(owner); // Register the feature. ownable.migrate( address(features.tokenSpender), abi.encodeWithSelector( TokenSpender.migrate.selector, allowanceTarget ), address(this) ); } // TransformERC20 { // Register the feature. ownable.migrate( address(features.transformERC20), abi.encodeWithSelector( TransformERC20.migrate.selector, migrateOpts.transformerDeployer ), address(this) ); } } } /* Copyright 2020 ZeroEx Intl. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ pragma solidity ^0.6.5; pragma experimental ABIEncoderV2; import "../ZeroEx.sol"; import "../features/IBootstrap.sol"; import "../features/SimpleFunctionRegistry.sol"; import "../features/Ownable.sol"; import "./LibBootstrap.sol"; /// @dev A contract for deploying and configuring a minimal ZeroEx contract. contract InitialMigration { /// @dev Features to bootstrap into the the proxy contract. struct BootstrapFeatures { SimpleFunctionRegistry registry; Ownable ownable; } /// @dev The allowed caller of `deploy()`. In production, this would be /// the governor. address public immutable deployer; /// @dev The real address of this contract. address private immutable _implementation; /// @dev Instantiate this contract and set the allowed caller of `deploy()` /// to `deployer_`. /// @param deployer_ The allowed caller of `deploy()`. constructor(address deployer_) public { deployer = deployer_; _implementation = address(this); } /// @dev Deploy the `ZeroEx` contract with the minimum feature set, /// transfers ownership to `owner`, then self-destructs. /// Only callable by `deployer` set in the contstructor. /// @param owner The owner of the contract. /// @param features Features to bootstrap into the proxy. /// @return zeroEx The deployed and configured `ZeroEx` contract. function deploy(address payable owner, BootstrapFeatures memory features) public virtual returns (ZeroEx zeroEx) { // Must be called by the allowed deployer. require(msg.sender == deployer, "InitialMigration/INVALID_SENDER"); // Deploy the ZeroEx contract, setting ourselves as the bootstrapper. zeroEx = new ZeroEx(); // Bootstrap the initial feature set. IBootstrap(address(zeroEx)).bootstrap( address(this), abi.encodeWithSelector(this.bootstrap.selector, owner, features) ); // Self-destruct. This contract should not hold any funds but we send // them to the owner just in case. this.die(owner); } /// @dev Sets up the initial state of the `ZeroEx` contract. /// The `ZeroEx` contract will delegatecall into this function. /// @param owner The new owner of the ZeroEx contract. /// @param features Features to bootstrap into the proxy. /// @return success Magic bytes if successful. function bootstrap(address owner, BootstrapFeatures memory features) public virtual returns (bytes4 success) { // Deploy and migrate the initial features. // Order matters here. // Initialize Registry. LibBootstrap.delegatecallBootstrapFunction( address(features.registry), abi.encodeWithSelector( SimpleFunctionRegistry.bootstrap.selector ) ); // Initialize Ownable. LibBootstrap.delegatecallBootstrapFunction( address(features.ownable), abi.encodeWithSelector( Ownable.bootstrap.selector ) ); // De-register `SimpleFunctionRegistry._extendSelf`. SimpleFunctionRegistry(address(this)).rollback( SimpleFunctionRegistry._extendSelf.selector, address(0) ); // Transfer ownership to the real owner. Ownable(address(this)).transferOwnership(owner); success = LibBootstrap.BOOTSTRAP_SUCCESS; } /// @dev Self-destructs this contract. Only callable by this contract. /// @param ethRecipient Who to transfer outstanding ETH to. function die(address payable ethRecipient) public virtual { require(msg.sender == _implementation, "InitialMigration/INVALID_SENDER"); selfdestruct(ethRecipient); } } /* Copyright 2020 ZeroEx Intl. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ pragma solidity ^0.6.5; pragma experimental ABIEncoderV2; import "@0x/contracts-utils/contracts/src/v06/errors/LibRichErrorsV06.sol"; import "@0x/contracts-utils/contracts/src/v06/LibSafeMathV06.sol"; import "@0x/contracts-erc20/contracts/src/v06/IERC20TokenV06.sol"; import "@0x/contracts-erc20/contracts/src/v06/LibERC20TokenV06.sol"; import "../errors/LibTransformERC20RichErrors.sol"; import "./Transformer.sol"; import "./LibERC20Transformer.sol"; /// @dev A transformer that transfers tokens to arbitrary addresses. contract AffiliateFeeTransformer is Transformer { // solhint-disable no-empty-blocks using LibRichErrorsV06 for bytes; using LibSafeMathV06 for uint256; using LibERC20Transformer for IERC20TokenV06; /// @dev Information for a single fee. struct TokenFee { // The token to transfer to `recipient`. IERC20TokenV06 token; // Amount of each `token` to transfer to `recipient`. // If `amount == uint256(-1)`, the entire balance of `token` will be // transferred. uint256 amount; // Recipient of `token`. address payable recipient; } uint256 private constant MAX_UINT256 = uint256(-1); /// @dev Create this contract. constructor() public Transformer() {} /// @dev Transfers tokens to recipients. /// @param data ABI-encoded `TokenFee[]`, indicating which tokens to transfer. /// @return success The success bytes (`LibERC20Transformer.TRANSFORMER_SUCCESS`). function transform( bytes32, // callDataHash, address payable, // taker, bytes calldata data ) external override returns (bytes4 success) { TokenFee[] memory fees = abi.decode(data, (TokenFee[])); // Transfer tokens to recipients. for (uint256 i = 0; i < fees.length; ++i) { uint256 amount = fees[i].amount; if (amount == MAX_UINT256) { amount = LibERC20Transformer.getTokenBalanceOf(fees[i].token, address(this)); } if (amount != 0) { fees[i].token.transformerTransfer(fees[i].recipient, amount); } } return LibERC20Transformer.TRANSFORMER_SUCCESS; } } /* Copyright 2020 ZeroEx Intl. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ pragma solidity ^0.6.5; pragma experimental ABIEncoderV2; import "@0x/contracts-utils/contracts/src/v06/errors/LibRichErrorsV06.sol"; import "../errors/LibTransformERC20RichErrors.sol"; import "./IERC20Transformer.sol"; /// @dev Abstract base class for transformers. abstract contract Transformer is IERC20Transformer { using LibRichErrorsV06 for bytes; /// @dev The address of the deployer. address public immutable deployer; /// @dev The original address of this contract. address private immutable _implementation; /// @dev Create this contract. constructor() public { deployer = msg.sender; _implementation = address(this); } /// @dev Destruct this contract. Only callable by the deployer and will not /// succeed in the context of a delegatecall (from another contract). /// @param ethRecipient The recipient of ETH held in this contract. function die(address payable ethRecipient) external virtual { // Only the deployer can call this. if (msg.sender != deployer) { LibTransformERC20RichErrors .OnlyCallableByDeployerError(msg.sender, deployer) .rrevert(); } // Must be executing our own context. if (address(this) != _implementation) { LibTransformERC20RichErrors .InvalidExecutionContextError(address(this), _implementation) .rrevert(); } selfdestruct(ethRecipient); } } /* Copyright 2020 ZeroEx Intl. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ pragma solidity ^0.6.5; pragma experimental ABIEncoderV2; import "@0x/contracts-utils/contracts/src/v06/errors/LibRichErrorsV06.sol"; import "@0x/contracts-erc20/contracts/src/v06/IERC20TokenV06.sol"; import "@0x/contracts-utils/contracts/src/v06/LibBytesV06.sol"; import "@0x/contracts-erc20/contracts/src/v06/LibERC20TokenV06.sol"; import "@0x/contracts-utils/contracts/src/v06/LibSafeMathV06.sol"; import "@0x/contracts-utils/contracts/src/v06/LibMathV06.sol"; import "../errors/LibTransformERC20RichErrors.sol"; import "../vendor/v3/IExchange.sol"; import "./Transformer.sol"; import "./LibERC20Transformer.sol"; /// @dev A transformer that fills an ERC20 market sell/buy quote. contract FillQuoteTransformer is Transformer { using LibERC20TokenV06 for IERC20TokenV06; using LibERC20Transformer for IERC20TokenV06; using LibSafeMathV06 for uint256; using LibRichErrorsV06 for bytes; /// @dev Whether we are performing a market sell or buy. enum Side { Sell, Buy } /// @dev Transform data to ABI-encode and pass into `transform()`. struct TransformData { // Whether we aer performing a market sell or buy. Side side; // The token being sold. // This should be an actual token, not the ETH pseudo-token. IERC20TokenV06 sellToken; // The token being bought. // This should be an actual token, not the ETH pseudo-token. IERC20TokenV06 buyToken; // The orders to fill. IExchange.Order[] orders; // Signatures for each respective order in `orders`. bytes[] signatures; // Maximum fill amount for each order. This may be shorter than the // number of orders, where missing entries will be treated as `uint256(-1)`. // For sells, this will be the maximum sell amount (taker asset). // For buys, this will be the maximum buy amount (maker asset). uint256[] maxOrderFillAmounts; // Amount of `sellToken` to sell or `buyToken` to buy. // For sells, this may be `uint256(-1)` to sell the entire balance of // `sellToken`. uint256 fillAmount; } /// @dev Results of a call to `_fillOrder()`. struct FillOrderResults { // The amount of taker tokens sold, according to balance checks. uint256 takerTokenSoldAmount; // The amount of maker tokens sold, according to balance checks. uint256 makerTokenBoughtAmount; // The amount of protocol fee paid. uint256 protocolFeePaid; } /// @dev The Exchange ERC20Proxy ID. bytes4 private constant ERC20_ASSET_PROXY_ID = 0xf47261b0; /// @dev Maximum uint256 value. uint256 private constant MAX_UINT256 = uint256(-1); /// @dev The Exchange contract. IExchange public immutable exchange; /// @dev The ERC20Proxy address. address public immutable erc20Proxy; /// @dev Create this contract. /// @param exchange_ The Exchange V3 instance. constructor(IExchange exchange_) public Transformer() { exchange = exchange_; erc20Proxy = exchange_.getAssetProxy(ERC20_ASSET_PROXY_ID); } /// @dev Sell this contract's entire balance of of `sellToken` in exchange /// for `buyToken` by filling `orders`. Protocol fees should be attached /// to this call. `buyToken` and excess ETH will be transferred back to the caller. /// @param data_ ABI-encoded `TransformData`. /// @return success The success bytes (`LibERC20Transformer.TRANSFORMER_SUCCESS`). function transform( bytes32, // callDataHash, address payable, // taker, bytes calldata data_ ) external override returns (bytes4 success) { TransformData memory data = abi.decode(data_, (TransformData)); // Validate data fields. if (data.sellToken.isTokenETH() || data.buyToken.isTokenETH()) { LibTransformERC20RichErrors.InvalidTransformDataError( LibTransformERC20RichErrors.InvalidTransformDataErrorCode.INVALID_TOKENS, data_ ).rrevert(); } if (data.orders.length != data.signatures.length) { LibTransformERC20RichErrors.InvalidTransformDataError( LibTransformERC20RichErrors.InvalidTransformDataErrorCode.INVALID_ARRAY_LENGTH, data_ ).rrevert(); } if (data.side == Side.Sell && data.fillAmount == MAX_UINT256) { // If `sellAmount == -1 then we are selling // the entire balance of `sellToken`. This is useful in cases where // the exact sell amount is not exactly known in advance, like when // unwrapping Chai/cUSDC/cDAI. data.fillAmount = data.sellToken.getTokenBalanceOf(address(this)); } // Approve the ERC20 proxy to spend `sellToken`. data.sellToken.approveIfBelow(erc20Proxy, data.fillAmount); // Fill the orders. uint256 singleProtocolFee = exchange.protocolFeeMultiplier().safeMul(tx.gasprice); uint256 ethRemaining = address(this).balance; uint256 boughtAmount = 0; uint256 soldAmount = 0; for (uint256 i = 0; i < data.orders.length; ++i) { // Check if we've hit our targets. if (data.side == Side.Sell) { // Market sell check. if (soldAmount >= data.fillAmount) { break; } } else { // Market buy check. if (boughtAmount >= data.fillAmount) { break; } } // Ensure we have enough ETH to cover the protocol fee. if (ethRemaining < singleProtocolFee) { LibTransformERC20RichErrors .InsufficientProtocolFeeError(ethRemaining, singleProtocolFee) .rrevert(); } // Fill the order. FillOrderResults memory results; if (data.side == Side.Sell) { // Market sell. results = _sellToOrder( data.buyToken, data.sellToken, data.orders[i], data.signatures[i], data.fillAmount.safeSub(soldAmount).min256( data.maxOrderFillAmounts.length > i ? data.maxOrderFillAmounts[i] : MAX_UINT256 ), singleProtocolFee ); } else { // Market buy. results = _buyFromOrder( data.buyToken, data.sellToken, data.orders[i], data.signatures[i], data.fillAmount.safeSub(boughtAmount).min256( data.maxOrderFillAmounts.length > i ? data.maxOrderFillAmounts[i] : MAX_UINT256 ), singleProtocolFee ); } // Accumulate totals. soldAmount = soldAmount.safeAdd(results.takerTokenSoldAmount); boughtAmount = boughtAmount.safeAdd(results.makerTokenBoughtAmount); ethRemaining = ethRemaining.safeSub(results.protocolFeePaid); } // Ensure we hit our targets. if (data.side == Side.Sell) { // Market sell check. if (soldAmount < data.fillAmount) { LibTransformERC20RichErrors .IncompleteFillSellQuoteError( address(data.sellToken), soldAmount, data.fillAmount ).rrevert(); } } else { // Market buy check. if (boughtAmount < data.fillAmount) { LibTransformERC20RichErrors .IncompleteFillBuyQuoteError( address(data.buyToken), boughtAmount, data.fillAmount ).rrevert(); } } return LibERC20Transformer.TRANSFORMER_SUCCESS; } /// @dev Try to sell up to `sellAmount` from an order. /// @param makerToken The maker/buy token. /// @param takerToken The taker/sell token. /// @param order The order to fill. /// @param signature The signature for `order`. /// @param sellAmount Amount of taker token to sell. /// @param protocolFee The protocol fee needed to fill `order`. function _sellToOrder( IERC20TokenV06 makerToken, IERC20TokenV06 takerToken, IExchange.Order memory order, bytes memory signature, uint256 sellAmount, uint256 protocolFee ) private returns (FillOrderResults memory results) { IERC20TokenV06 takerFeeToken = _getTokenFromERC20AssetData(order.takerFeeAssetData); uint256 takerTokenFillAmount = sellAmount; if (order.takerFee != 0) { if (takerFeeToken == makerToken) { // Taker fee is payable in the maker token, so we need to // approve the proxy to spend the maker token. // It isn't worth computing the actual taker fee // since `approveIfBelow()` will set the allowance to infinite. We // just need a reasonable upper bound to avoid unnecessarily re-approving. takerFeeToken.approveIfBelow(erc20Proxy, order.takerFee); } else if (takerFeeToken == takerToken){ // Taker fee is payable in the taker token, so we need to // reduce the fill amount to cover the fee. // takerTokenFillAmount' = // (takerTokenFillAmount * order.takerAssetAmount) / // (order.takerAssetAmount + order.takerFee) takerTokenFillAmount = LibMathV06.getPartialAmountCeil( order.takerAssetAmount, order.takerAssetAmount.safeAdd(order.takerFee), sellAmount ); } else { // Only support taker or maker asset denominated taker fees. LibTransformERC20RichErrors.InvalidTakerFeeTokenError( address(takerFeeToken) ).rrevert(); } } // Clamp fill amount to order size. takerTokenFillAmount = LibSafeMathV06.min256( takerTokenFillAmount, order.takerAssetAmount ); // Perform the fill. return _fillOrder( order, signature, takerTokenFillAmount, protocolFee, makerToken, takerFeeToken == takerToken ); } /// @dev Try to buy up to `buyAmount` from an order. /// @param makerToken The maker/buy token. /// @param takerToken The taker/sell token. /// @param order The order to fill. /// @param signature The signature for `order`. /// @param buyAmount Amount of maker token to buy. /// @param protocolFee The protocol fee needed to fill `order`. function _buyFromOrder( IERC20TokenV06 makerToken, IERC20TokenV06 takerToken, IExchange.Order memory order, bytes memory signature, uint256 buyAmount, uint256 protocolFee ) private returns (FillOrderResults memory results) { IERC20TokenV06 takerFeeToken = _getTokenFromERC20AssetData(order.takerFeeAssetData); // Compute the default taker token fill amount. uint256 takerTokenFillAmount = LibMathV06.getPartialAmountCeil( buyAmount, order.makerAssetAmount, order.takerAssetAmount ); if (order.takerFee != 0) { if (takerFeeToken == makerToken) { // Taker fee is payable in the maker token. // Adjust the taker token fill amount to account for maker // tokens being lost to the taker fee. // takerTokenFillAmount' = // (order.takerAssetAmount * buyAmount) / // (order.makerAssetAmount - order.takerFee) takerTokenFillAmount = LibMathV06.getPartialAmountCeil( buyAmount, order.makerAssetAmount.safeSub(order.takerFee), order.takerAssetAmount ); // Approve the proxy to spend the maker token. // It isn't worth computing the actual taker fee // since `approveIfBelow()` will set the allowance to infinite. We // just need a reasonable upper bound to avoid unnecessarily re-approving. takerFeeToken.approveIfBelow(erc20Proxy, order.takerFee); } else if (takerFeeToken != takerToken) { // Only support taker or maker asset denominated taker fees. LibTransformERC20RichErrors.InvalidTakerFeeTokenError( address(takerFeeToken) ).rrevert(); } } // Clamp to order size. takerTokenFillAmount = LibSafeMathV06.min256( order.takerAssetAmount, takerTokenFillAmount ); // Perform the fill. return _fillOrder( order, signature, takerTokenFillAmount, protocolFee, makerToken, takerFeeToken == takerToken ); } /// @dev Attempt to fill an order. If the fill reverts, the revert will be /// swallowed and `results` will be zeroed out. /// @param order The order to fill. /// @param signature The order signature. /// @param takerAssetFillAmount How much taker asset to fill. /// @param protocolFee The protocol fee needed to fill this order. /// @param makerToken The maker token. /// @param isTakerFeeInTakerToken Whether the taker fee token is the same as the /// taker token. function _fillOrder( IExchange.Order memory order, bytes memory signature, uint256 takerAssetFillAmount, uint256 protocolFee, IERC20TokenV06 makerToken, bool isTakerFeeInTakerToken ) private returns (FillOrderResults memory results) { // Track changes in the maker token balance. uint256 initialMakerTokenBalance = makerToken.balanceOf(address(this)); try exchange.fillOrder {value: protocolFee} (order, takerAssetFillAmount, signature) returns (IExchange.FillResults memory fillResults) { // Update maker quantity based on changes in token balances. results.makerTokenBoughtAmount = makerToken.balanceOf(address(this)) .safeSub(initialMakerTokenBalance); // We can trust the other fill result quantities. results.protocolFeePaid = fillResults.protocolFeePaid; results.takerTokenSoldAmount = fillResults.takerAssetFilledAmount; // If the taker fee is payable in the taker asset, include the // taker fee in the total amount sold. if (isTakerFeeInTakerToken) { results.takerTokenSoldAmount = results.takerTokenSoldAmount.safeAdd(fillResults.takerFeePaid); } } catch (bytes memory) { // Swallow failures, leaving all results as zero. } } /// @dev Extract the token from plain ERC20 asset data. /// If the asset-data is empty, a zero token address will be returned. /// @param assetData The order asset data. function _getTokenFromERC20AssetData(bytes memory assetData) private pure returns (IERC20TokenV06 token) { if (assetData.length == 0) { return IERC20TokenV06(address(0)); } if (assetData.length != 36 || LibBytesV06.readBytes4(assetData, 0) != ERC20_ASSET_PROXY_ID) { LibTransformERC20RichErrors .InvalidERC20AssetDataError(assetData) .rrevert(); } return IERC20TokenV06(LibBytesV06.readAddress(assetData, 16)); } } /* Copyright 2019 ZeroEx Intl. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ pragma solidity ^0.6.5; import "./LibSafeMathV06.sol"; import "./errors/LibRichErrorsV06.sol"; import "./errors/LibMathRichErrorsV06.sol"; library LibMathV06 { using LibSafeMathV06 for uint256; /// @dev Calculates partial value given a numerator and denominator rounded down. /// Reverts if rounding error is >= 0.1% /// @param numerator Numerator. /// @param denominator Denominator. /// @param target Value to calculate partial of. /// @return partialAmount Partial value of target rounded down. function safeGetPartialAmountFloor( uint256 numerator, uint256 denominator, uint256 target ) internal pure returns (uint256 partialAmount) { if (isRoundingErrorFloor( numerator, denominator, target )) { LibRichErrorsV06.rrevert(LibMathRichErrorsV06.RoundingError( numerator, denominator, target )); } partialAmount = numerator.safeMul(target).safeDiv(denominator); return partialAmount; } /// @dev Calculates partial value given a numerator and denominator rounded down. /// Reverts if rounding error is >= 0.1% /// @param numerator Numerator. /// @param denominator Denominator. /// @param target Value to calculate partial of. /// @return partialAmount Partial value of target rounded up. function safeGetPartialAmountCeil( uint256 numerator, uint256 denominator, uint256 target ) internal pure returns (uint256 partialAmount) { if (isRoundingErrorCeil( numerator, denominator, target )) { LibRichErrorsV06.rrevert(LibMathRichErrorsV06.RoundingError( numerator, denominator, target )); } // safeDiv computes `floor(a / b)`. We use the identity (a, b integer): // ceil(a / b) = floor((a + b - 1) / b) // To implement `ceil(a / b)` using safeDiv. partialAmount = numerator.safeMul(target) .safeAdd(denominator.safeSub(1)) .safeDiv(denominator); return partialAmount; } /// @dev Calculates partial value given a numerator and denominator rounded down. /// @param numerator Numerator. /// @param denominator Denominator. /// @param target Value to calculate partial of. /// @return partialAmount Partial value of target rounded down. function getPartialAmountFloor( uint256 numerator, uint256 denominator, uint256 target ) internal pure returns (uint256 partialAmount) { partialAmount = numerator.safeMul(target).safeDiv(denominator); return partialAmount; } /// @dev Calculates partial value given a numerator and denominator rounded down. /// @param numerator Numerator. /// @param denominator Denominator. /// @param target Value to calculate partial of. /// @return partialAmount Partial value of target rounded up. function getPartialAmountCeil( uint256 numerator, uint256 denominator, uint256 target ) internal pure returns (uint256 partialAmount) { // safeDiv computes `floor(a / b)`. We use the identity (a, b integer): // ceil(a / b) = floor((a + b - 1) / b) // To implement `ceil(a / b)` using safeDiv. partialAmount = numerator.safeMul(target) .safeAdd(denominator.safeSub(1)) .safeDiv(denominator); return partialAmount; } /// @dev Checks if rounding error >= 0.1% when rounding down. /// @param numerator Numerator. /// @param denominator Denominator. /// @param target Value to multiply with numerator/denominator. /// @return isError Rounding error is present. function isRoundingErrorFloor( uint256 numerator, uint256 denominator, uint256 target ) internal pure returns (bool isError) { if (denominator == 0) { LibRichErrorsV06.rrevert(LibMathRichErrorsV06.DivisionByZeroError()); } // The absolute rounding error is the difference between the rounded // value and the ideal value. The relative rounding error is the // absolute rounding error divided by the absolute value of the // ideal value. This is undefined when the ideal value is zero. // // The ideal value is `numerator * target / denominator`. // Let's call `numerator * target % denominator` the remainder. // The absolute error is `remainder / denominator`. // // When the ideal value is zero, we require the absolute error to // be zero. Fortunately, this is always the case. The ideal value is // zero iff `numerator == 0` and/or `target == 0`. In this case the // remainder and absolute error are also zero. if (target == 0 || numerator == 0) { return false; } // Otherwise, we want the relative rounding error to be strictly // less than 0.1%. // The relative error is `remainder / (numerator * target)`. // We want the relative error less than 1 / 1000: // remainder / (numerator * denominator) < 1 / 1000 // or equivalently: // 1000 * remainder < numerator * target // so we have a rounding error iff: // 1000 * remainder >= numerator * target uint256 remainder = mulmod( target, numerator, denominator ); isError = remainder.safeMul(1000) >= numerator.safeMul(target); return isError; } /// @dev Checks if rounding error >= 0.1% when rounding up. /// @param numerator Numerator. /// @param denominator Denominator. /// @param target Value to multiply with numerator/denominator. /// @return isError Rounding error is present. function isRoundingErrorCeil( uint256 numerator, uint256 denominator, uint256 target ) internal pure returns (bool isError) { if (denominator == 0) { LibRichErrorsV06.rrevert(LibMathRichErrorsV06.DivisionByZeroError()); } // See the comments in `isRoundingError`. if (target == 0 || numerator == 0) { // When either is zero, the ideal value and rounded value are zero // and there is no rounding error. (Although the relative error // is undefined.) return false; } // Compute remainder as before uint256 remainder = mulmod( target, numerator, denominator ); remainder = denominator.safeSub(remainder) % denominator; isError = remainder.safeMul(1000) >= numerator.safeMul(target); return isError; } } /* Copyright 2020 ZeroEx Intl. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ pragma solidity ^0.6.5; library LibMathRichErrorsV06 { // bytes4(keccak256("DivisionByZeroError()")) bytes internal constant DIVISION_BY_ZERO_ERROR = hex"a791837c"; // bytes4(keccak256("RoundingError(uint256,uint256,uint256)")) bytes4 internal constant ROUNDING_ERROR_SELECTOR = 0x339f3de2; // solhint-disable func-name-mixedcase function DivisionByZeroError() internal pure returns (bytes memory) { return DIVISION_BY_ZERO_ERROR; } function RoundingError( uint256 numerator, uint256 denominator, uint256 target ) internal pure returns (bytes memory) { return abi.encodeWithSelector( ROUNDING_ERROR_SELECTOR, numerator, denominator, target ); } } /* Copyright 2020 ZeroEx Intl. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ pragma solidity ^0.6.5; pragma experimental ABIEncoderV2; /// @dev Interface to the V3 Exchange. interface IExchange { /// @dev V3 Order structure. struct Order { // Address that created the order. address makerAddress; // Address that is allowed to fill the order. // If set to 0, any address is allowed to fill the order. address takerAddress; // Address that will recieve fees when order is filled. address feeRecipientAddress; // Address that is allowed to call Exchange contract methods that affect this order. // If set to 0, any address is allowed to call these methods. address senderAddress; // Amount of makerAsset being offered by maker. Must be greater than 0. uint256 makerAssetAmount; // Amount of takerAsset being bid on by maker. Must be greater than 0. uint256 takerAssetAmount; // Fee paid to feeRecipient by maker when order is filled. uint256 makerFee; // Fee paid to feeRecipient by taker when order is filled. uint256 takerFee; // Timestamp in seconds at which order expires. uint256 expirationTimeSeconds; // Arbitrary number to facilitate uniqueness of the order's hash. uint256 salt; // Encoded data that can be decoded by a specified proxy contract when transferring makerAsset. // The leading bytes4 references the id of the asset proxy. bytes makerAssetData; // Encoded data that can be decoded by a specified proxy contract when transferring takerAsset. // The leading bytes4 references the id of the asset proxy. bytes takerAssetData; // Encoded data that can be decoded by a specified proxy contract when transferring makerFeeAsset. // The leading bytes4 references the id of the asset proxy. bytes makerFeeAssetData; // Encoded data that can be decoded by a specified proxy contract when transferring takerFeeAsset. // The leading bytes4 references the id of the asset proxy. bytes takerFeeAssetData; } /// @dev V3 `fillOrder()` results.` struct FillResults { // Total amount of makerAsset(s) filled. uint256 makerAssetFilledAmount; // Total amount of takerAsset(s) filled. uint256 takerAssetFilledAmount; // Total amount of fees paid by maker(s) to feeRecipient(s). uint256 makerFeePaid; // Total amount of fees paid by taker to feeRecipients(s). uint256 takerFeePaid; // Total amount of fees paid by taker to the staking contract. uint256 protocolFeePaid; } /// @dev Fills the input order. /// @param order Order struct containing order specifications. /// @param takerAssetFillAmount Desired amount of takerAsset to sell. /// @param signature Proof that order has been created by maker. /// @return fillResults Amounts filled and fees paid by maker and taker. function fillOrder( Order calldata order, uint256 takerAssetFillAmount, bytes calldata signature ) external payable returns (FillResults memory fillResults); /// @dev Returns the protocolFeeMultiplier /// @return multiplier The multiplier for protocol fees. function protocolFeeMultiplier() external view returns (uint256 multiplier); /// @dev Gets an asset proxy. /// @param assetProxyId Id of the asset proxy. /// @return proxyAddress The asset proxy registered to assetProxyId. /// Returns 0x0 if no proxy is registered. function getAssetProxy(bytes4 assetProxyId) external view returns (address proxyAddress); } /* Copyright 2020 ZeroEx Intl. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ pragma solidity ^0.6.5; pragma experimental ABIEncoderV2; import "@0x/contracts-utils/contracts/src/v06/errors/LibRichErrorsV06.sol"; import "@0x/contracts-utils/contracts/src/v06/LibSafeMathV06.sol"; import "@0x/contracts-erc20/contracts/src/v06/IERC20TokenV06.sol"; import "@0x/contracts-erc20/contracts/src/v06/LibERC20TokenV06.sol"; import "../errors/LibTransformERC20RichErrors.sol"; import "./Transformer.sol"; import "./LibERC20Transformer.sol"; /// @dev A transformer that transfers tokens to the taker. contract PayTakerTransformer is Transformer { // solhint-disable no-empty-blocks using LibRichErrorsV06 for bytes; using LibSafeMathV06 for uint256; using LibERC20Transformer for IERC20TokenV06; /// @dev Transform data to ABI-encode and pass into `transform()`. struct TransformData { // The tokens to transfer to the taker. IERC20TokenV06[] tokens; // Amount of each token in `tokens` to transfer to the taker. // `uint(-1)` will transfer the entire balance. uint256[] amounts; } /// @dev Maximum uint256 value. uint256 private constant MAX_UINT256 = uint256(-1); /// @dev Create this contract. constructor() public Transformer() {} /// @dev Forwards tokens to the taker. /// @param taker The taker address (caller of `TransformERC20.transformERC20()`). /// @param data_ ABI-encoded `TransformData`, indicating which tokens to transfer. /// @return success The success bytes (`LibERC20Transformer.TRANSFORMER_SUCCESS`). function transform( bytes32, // callDataHash, address payable taker, bytes calldata data_ ) external override returns (bytes4 success) { TransformData memory data = abi.decode(data_, (TransformData)); // Transfer tokens directly to the taker. for (uint256 i = 0; i < data.tokens.length; ++i) { // The `amounts` array can be shorter than the `tokens` array. // Missing elements are treated as `uint256(-1)`. uint256 amount = data.amounts.length > i ? data.amounts[i] : uint256(-1); if (amount == MAX_UINT256) { amount = data.tokens[i].getTokenBalanceOf(address(this)); } if (amount != 0) { data.tokens[i].transformerTransfer(taker, amount); } } return LibERC20Transformer.TRANSFORMER_SUCCESS; } } /* Copyright 2020 ZeroEx Intl. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ pragma solidity ^0.6.5; pragma experimental ABIEncoderV2; import "@0x/contracts-utils/contracts/src/v06/errors/LibRichErrorsV06.sol"; import "@0x/contracts-utils/contracts/src/v06/LibSafeMathV06.sol"; import "@0x/contracts-erc20/contracts/src/v06/IEtherTokenV06.sol"; import "../errors/LibTransformERC20RichErrors.sol"; import "./Transformer.sol"; import "./LibERC20Transformer.sol"; /// @dev A transformer that wraps or unwraps WETH. contract WethTransformer is Transformer { using LibRichErrorsV06 for bytes; using LibSafeMathV06 for uint256; using LibERC20Transformer for IERC20TokenV06; /// @dev Transform data to ABI-encode and pass into `transform()`. struct TransformData { // The token to wrap/unwrap. Must be either ETH or WETH. IERC20TokenV06 token; // Amount of `token` to wrap or unwrap. // `uint(-1)` will unwrap the entire balance. uint256 amount; } /// @dev The WETH contract address. IEtherTokenV06 public immutable weth; /// @dev Maximum uint256 value. uint256 private constant MAX_UINT256 = uint256(-1); /// @dev Construct the transformer and store the WETH address in an immutable. /// @param weth_ The weth token. constructor(IEtherTokenV06 weth_) public Transformer() { weth = weth_; } /// @dev Wraps and unwraps WETH. /// @param data_ ABI-encoded `TransformData`, indicating which token to wrap/umwrap. /// @return success The success bytes (`LibERC20Transformer.TRANSFORMER_SUCCESS`). function transform( bytes32, // callDataHash, address payable, // taker, bytes calldata data_ ) external override returns (bytes4 success) { TransformData memory data = abi.decode(data_, (TransformData)); if (!data.token.isTokenETH() && data.token != weth) { LibTransformERC20RichErrors.InvalidTransformDataError( LibTransformERC20RichErrors.InvalidTransformDataErrorCode.INVALID_TOKENS, data_ ).rrevert(); } uint256 amount = data.amount; if (amount == MAX_UINT256) { amount = data.token.getTokenBalanceOf(address(this)); } if (amount != 0) { if (data.token.isTokenETH()) { // Wrap ETH. weth.deposit{value: amount}(); } else { // Unwrap WETH. weth.withdraw(amount); } } return LibERC20Transformer.TRANSFORMER_SUCCESS; } } /* Copyright 2020 ZeroEx Intl. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ pragma solidity ^0.6.5; import "./IERC20TokenV06.sol"; interface IEtherTokenV06 is IERC20TokenV06 { /// @dev Wrap ether. function deposit() external payable; /// @dev Unwrap ether. function withdraw(uint256 amount) external; } /* Copyright 2020 ZeroEx Intl. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ pragma solidity ^0.6.5; pragma experimental ABIEncoderV2; interface ITestSimpleFunctionRegistryFeature { function testFn() external view returns (uint256 id); } /* Copyright 2020 ZeroEx Intl. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ pragma solidity ^0.6.5; pragma experimental ABIEncoderV2; contract TestCallTarget { event CallTargetCalled( address context, address sender, bytes data, uint256 value ); bytes4 private constant MAGIC_BYTES = 0x12345678; bytes private constant REVERTING_DATA = hex"1337"; fallback() external payable { if (keccak256(msg.data) == keccak256(REVERTING_DATA)) { revert("TestCallTarget/REVERT"); } emit CallTargetCalled( address(this), msg.sender, msg.data, msg.value ); bytes4 rval = MAGIC_BYTES; assembly { mstore(0, rval) return(0, 32) } } } /* Copyright 2020 ZeroEx Intl. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ pragma solidity ^0.6.5; pragma experimental ABIEncoderV2; contract TestDelegateCaller { function executeDelegateCall( address target, bytes calldata callData ) external { (bool success, bytes memory resultData) = target.delegatecall(callData); if (!success) { assembly { revert(add(resultData, 32), mload(resultData)) } } assembly { return(add(resultData, 32), mload(resultData)) } } } /* Copyright 2020 ZeroEx Intl. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ pragma solidity ^0.6.5; pragma experimental ABIEncoderV2; import "@0x/contracts-utils/contracts/src/v06/LibBytesV06.sol"; import "@0x/contracts-utils/contracts/src/v06/LibMathV06.sol"; import "@0x/contracts-utils/contracts/src/v06/LibSafeMathV06.sol"; import "../src/vendor/v3/IExchange.sol"; import "./TestMintableERC20Token.sol"; contract TestFillQuoteTransformerExchange { struct FillBehavior { // How much of the order is filled, in taker asset amount. uint256 filledTakerAssetAmount; // Scaling for maker assets minted, in 1e18. uint256 makerAssetMintRatio; } uint256 private constant PROTOCOL_FEE_MULTIPLIER = 1337; using LibSafeMathV06 for uint256; function fillOrder( IExchange.Order calldata order, uint256 takerAssetFillAmount, bytes calldata signature ) external payable returns (IExchange.FillResults memory fillResults) { require( signature.length != 0, "TestFillQuoteTransformerExchange/INVALID_SIGNATURE" ); // The signature is the ABI-encoded FillBehavior data. FillBehavior memory behavior = abi.decode(signature, (FillBehavior)); uint256 protocolFee = PROTOCOL_FEE_MULTIPLIER * tx.gasprice; require( msg.value == protocolFee, "TestFillQuoteTransformerExchange/INSUFFICIENT_PROTOCOL_FEE" ); // Return excess protocol fee. msg.sender.transfer(msg.value - protocolFee); // Take taker tokens. TestMintableERC20Token takerToken = _getTokenFromAssetData(order.takerAssetData); takerAssetFillAmount = LibSafeMathV06.min256( order.takerAssetAmount.safeSub(behavior.filledTakerAssetAmount), takerAssetFillAmount ); require( takerToken.getSpendableAmount(msg.sender, address(this)) >= takerAssetFillAmount, "TestFillQuoteTransformerExchange/INSUFFICIENT_TAKER_FUNDS" ); takerToken.transferFrom(msg.sender, order.makerAddress, takerAssetFillAmount); // Mint maker tokens. uint256 makerAssetFilledAmount = LibMathV06.getPartialAmountFloor( takerAssetFillAmount, order.takerAssetAmount, order.makerAssetAmount ); TestMintableERC20Token makerToken = _getTokenFromAssetData(order.makerAssetData); makerToken.mint( msg.sender, LibMathV06.getPartialAmountFloor( behavior.makerAssetMintRatio, 1e18, makerAssetFilledAmount ) ); // Take taker fee. TestMintableERC20Token takerFeeToken = _getTokenFromAssetData(order.takerFeeAssetData); uint256 takerFee = LibMathV06.getPartialAmountFloor( takerAssetFillAmount, order.takerAssetAmount, order.takerFee ); require( takerFeeToken.getSpendableAmount(msg.sender, address(this)) >= takerFee, "TestFillQuoteTransformerExchange/INSUFFICIENT_TAKER_FEE_FUNDS" ); takerFeeToken.transferFrom(msg.sender, order.feeRecipientAddress, takerFee); fillResults.makerAssetFilledAmount = makerAssetFilledAmount; fillResults.takerAssetFilledAmount = takerAssetFillAmount; fillResults.makerFeePaid = uint256(-1); fillResults.takerFeePaid = takerFee; fillResults.protocolFeePaid = protocolFee; } function encodeBehaviorData(FillBehavior calldata behavior) external pure returns (bytes memory encoded) { return abi.encode(behavior); } function protocolFeeMultiplier() external pure returns (uint256) { return PROTOCOL_FEE_MULTIPLIER; } function getAssetProxy(bytes4) external view returns (address) { return address(this); } function _getTokenFromAssetData(bytes memory assetData) private pure returns (TestMintableERC20Token token) { return TestMintableERC20Token(LibBytesV06.readAddress(assetData, 16)); } } /* Copyright 2020 ZeroEx Intl. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ pragma solidity ^0.6.5; pragma experimental ABIEncoderV2; contract TestMintableERC20Token { mapping(address => uint256) public balanceOf; mapping(address => mapping(address => uint256)) public allowance; function transfer(address to, uint256 amount) external virtual returns (bool) { return transferFrom(msg.sender, to, amount); } function approve(address spender, uint256 amount) external virtual returns (bool) { allowance[msg.sender][spender] = amount; return true; } function mint(address owner, uint256 amount) external virtual { balanceOf[owner] += amount; } function burn(address owner, uint256 amount) external virtual { require(balanceOf[owner] >= amount, "TestMintableERC20Token/INSUFFICIENT_FUNDS"); balanceOf[owner] -= amount; } function transferFrom(address from, address to, uint256 amount) public virtual returns (bool) { if (from != msg.sender) { require( allowance[from][msg.sender] >= amount, "TestMintableERC20Token/INSUFFICIENT_ALLOWANCE" ); allowance[from][msg.sender] -= amount; } require(balanceOf[from] >= amount, "TestMintableERC20Token/INSUFFICIENT_FUNDS"); balanceOf[from] -= amount; balanceOf[to] += amount; return true; } function getSpendableAmount(address owner, address spender) external view returns (uint256) { return balanceOf[owner] < allowance[owner][spender] ? balanceOf[owner] : allowance[owner][spender]; } } /* Copyright 2020 ZeroEx Intl. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ pragma solidity ^0.6.5; pragma experimental ABIEncoderV2; import "../src/transformers/IERC20Transformer.sol"; import "./TestMintableERC20Token.sol"; import "./TestTransformerHost.sol"; contract TestFillQuoteTransformerHost is TestTransformerHost { function executeTransform( IERC20Transformer transformer, TestMintableERC20Token inputToken, uint256 inputTokenAmount, bytes calldata data ) external payable { if (inputTokenAmount != 0) { inputToken.mint(address(this), inputTokenAmount); } // Have to make this call externally because transformers aren't payable. this.rawExecuteTransform(transformer, bytes32(0), msg.sender, data); } } /* Copyright 2020 ZeroEx Intl. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ pragma solidity ^0.6.5; pragma experimental ABIEncoderV2; import "@0x/contracts-utils/contracts/src/v06/errors/LibRichErrorsV06.sol"; import "@0x/contracts-erc20/contracts/src/v06/IERC20TokenV06.sol"; import "../src/transformers/IERC20Transformer.sol"; import "../src/transformers/LibERC20Transformer.sol"; contract TestTransformerHost { using LibERC20Transformer for IERC20TokenV06; using LibRichErrorsV06 for bytes; function rawExecuteTransform( IERC20Transformer transformer, bytes32 callDataHash, address taker, bytes calldata data ) external { (bool _success, bytes memory resultData) = address(transformer).delegatecall(abi.encodeWithSelector( transformer.transform.selector, callDataHash, taker, data )); if (!_success) { resultData.rrevert(); } require( abi.decode(resultData, (bytes4)) == LibERC20Transformer.TRANSFORMER_SUCCESS, "TestTransformerHost/INVALID_TRANSFORMER_RESULT" ); } // solhint-disable receive() external payable {} // solhint-enable } /* Copyright 2020 ZeroEx Intl. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ pragma solidity ^0.6.5; pragma experimental ABIEncoderV2; import "../src/ZeroEx.sol"; import "../src/features/IBootstrap.sol"; import "../src/migrations/FullMigration.sol"; contract TestFullMigration is FullMigration { address public dieRecipient; // solhint-disable-next-line no-empty-blocks constructor(address payable deployer) public FullMigration(deployer) {} function die(address payable ethRecipient) external override { dieRecipient = ethRecipient; } } /* Copyright 2020 ZeroEx Intl. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ pragma solidity ^0.6.5; pragma experimental ABIEncoderV2; import "../src/ZeroEx.sol"; import "../src/features/IBootstrap.sol"; import "../src/migrations/InitialMigration.sol"; contract TestInitialMigration is InitialMigration { address public bootstrapFeature; address public dieRecipient; // solhint-disable-next-line no-empty-blocks constructor(address deployer) public InitialMigration(deployer) {} function callBootstrap(ZeroEx zeroEx) external { IBootstrap(address(zeroEx)).bootstrap(address(this), new bytes(0)); } function bootstrap(address owner, BootstrapFeatures memory features) public override returns (bytes4 success) { success = InitialMigration.bootstrap(owner, features); // Snoop the bootstrap feature contract. bootstrapFeature = ZeroEx(address(uint160(address(this)))) .getFunctionImplementation(IBootstrap.bootstrap.selector); } function die(address payable ethRecipient) public override { dieRecipient = ethRecipient; } } /* Copyright 2020 ZeroEx Intl. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ pragma solidity ^0.6.5; pragma experimental ABIEncoderV2; import "../src/migrations/LibMigrate.sol"; import "../src/features/IOwnable.sol"; contract TestMigrator { event TestMigrateCalled( bytes callData, address owner ); function succeedingMigrate() external returns (bytes4 success) { emit TestMigrateCalled( msg.data, IOwnable(address(this)).owner() ); return LibMigrate.MIGRATE_SUCCESS; } function failingMigrate() external returns (bytes4 success) { emit TestMigrateCalled( msg.data, IOwnable(address(this)).owner() ); return 0xdeadbeef; } function revertingMigrate() external pure { revert("OOPSIE"); } } /* Copyright 2020 ZeroEx Intl. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ pragma solidity ^0.6.5; pragma experimental ABIEncoderV2; import "@0x/contracts-erc20/contracts/src/v06/IERC20TokenV06.sol"; import "../src/transformers/IERC20Transformer.sol"; import "../src/transformers/LibERC20Transformer.sol"; import "./TestMintableERC20Token.sol"; contract TestMintTokenERC20Transformer is IERC20Transformer { struct TransformData { IERC20TokenV06 inputToken; TestMintableERC20Token outputToken; uint256 burnAmount; uint256 mintAmount; uint256 feeAmount; } event MintTransform( address context, address caller, bytes32 callDataHash, address taker, bytes data, uint256 inputTokenBalance, uint256 ethBalance ); function transform( bytes32 callDataHash, address payable taker, bytes calldata data_ ) external override returns (bytes4 success) { TransformData memory data = abi.decode(data_, (TransformData)); emit MintTransform( address(this), msg.sender, callDataHash, taker, data_, data.inputToken.balanceOf(address(this)), address(this).balance ); // "Burn" input tokens. data.inputToken.transfer(address(0), data.burnAmount); // Mint output tokens. if (LibERC20Transformer.isTokenETH(IERC20TokenV06(address(data.outputToken)))) { taker.transfer(data.mintAmount); } else { data.outputToken.mint( taker, data.mintAmount ); // Burn fees from output. data.outputToken.burn(taker, data.feeAmount); } return LibERC20Transformer.TRANSFORMER_SUCCESS; } } /* Copyright 2020 ZeroEx Intl. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ pragma solidity ^0.6.5; pragma experimental ABIEncoderV2; import "../src/fixins/FixinCommon.sol"; contract TestSimpleFunctionRegistryFeatureImpl1 is FixinCommon { function testFn() external pure returns (uint256 id) { return 1337; } } /* Copyright 2020 ZeroEx Intl. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ pragma solidity ^0.6.5; pragma experimental ABIEncoderV2; import "../src/fixins/FixinCommon.sol"; contract TestSimpleFunctionRegistryFeatureImpl2 is FixinCommon { function testFn() external pure returns (uint256 id) { return 1338; } } /* Copyright 2020 ZeroEx Intl. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ pragma solidity ^0.6.5; pragma experimental ABIEncoderV2; import "../src/features/TokenSpender.sol"; contract TestTokenSpender is TokenSpender { modifier onlySelf() override { _; } } /* Copyright 2020 ZeroEx Intl. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ pragma solidity ^0.6.5; pragma experimental ABIEncoderV2; import "./TestMintableERC20Token.sol"; contract TestTokenSpenderERC20Token is TestMintableERC20Token { event TransferFromCalled( address sender, address from, address to, uint256 amount ); // `transferFrom()` behavior depends on the value of `amount`. uint256 constant private EMPTY_RETURN_AMOUNT = 1337; uint256 constant private FALSE_RETURN_AMOUNT = 1338; uint256 constant private REVERT_RETURN_AMOUNT = 1339; function transferFrom(address from, address to, uint256 amount) public override returns (bool) { emit TransferFromCalled(msg.sender, from, to, amount); if (amount == EMPTY_RETURN_AMOUNT) { assembly { return(0, 0) } } if (amount == FALSE_RETURN_AMOUNT) { return false; } if (amount == REVERT_RETURN_AMOUNT) { revert("TestTokenSpenderERC20Token/Revert"); } return true; } function setBalanceAndAllowanceOf( address owner, uint256 balance, address spender, uint256 allowance_ ) external { balanceOf[owner] = balance; allowance[owner][spender] = allowance_; } } /* Copyright 2020 ZeroEx Intl. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ pragma solidity ^0.6.5; pragma experimental ABIEncoderV2; import "../src/features/TransformERC20.sol"; contract TestTransformERC20 is TransformERC20 { // solhint-disable no-empty-blocks constructor() TransformERC20() public {} modifier onlySelf() override { _; } } /* Copyright 2020 ZeroEx Intl. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ pragma solidity ^0.6.5; pragma experimental ABIEncoderV2; import "../src/transformers/Transformer.sol"; import "../src/transformers/LibERC20Transformer.sol"; contract TestTransformerBase is Transformer { function transform( bytes32, address payable, bytes calldata ) external override returns (bytes4 success) { return LibERC20Transformer.TRANSFORMER_SUCCESS; } } /* Copyright 2020 ZeroEx Intl. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ pragma solidity ^0.6.5; pragma experimental ABIEncoderV2; import "../src/transformers/LibERC20Transformer.sol"; contract TestTransformerDeployerTransformer { address payable public immutable deployer; constructor() public payable { deployer = msg.sender; } modifier onlyDeployer() { require(msg.sender == deployer, "TestTransformerDeployerTransformer/ONLY_DEPLOYER"); _; } function die() external onlyDeployer { selfdestruct(deployer); } function isDeployedByDeployer(uint32 nonce) external view returns (bool) { return LibERC20Transformer.getDeployedAddress(deployer, nonce) == address(this); } } /* Copyright 2020 ZeroEx Intl. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ pragma solidity ^0.6.5; pragma experimental ABIEncoderV2; import "./TestMintableERC20Token.sol"; contract TestWeth is TestMintableERC20Token { function deposit() external payable { this.mint(msg.sender, msg.value); } function withdraw(uint256 amount) external { require(balanceOf[msg.sender] >= amount, "TestWeth/INSUFFICIENT_FUNDS"); balanceOf[msg.sender] -= amount; msg.sender.transfer(amount); } } /* Copyright 2020 ZeroEx Intl. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ pragma solidity ^0.6.5; pragma experimental ABIEncoderV2; import "../src/transformers/IERC20Transformer.sol"; import "./TestMintableERC20Token.sol"; import "./TestTransformerHost.sol"; import "./TestWeth.sol"; contract TestWethTransformerHost is TestTransformerHost { // solhint-disable TestWeth private immutable _weth; // solhint-enable constructor(TestWeth weth) public { _weth = weth; } function executeTransform( uint256 wethAmount, IERC20Transformer transformer, bytes calldata data ) external payable { if (wethAmount != 0) { _weth.deposit{value: wethAmount}(); } // Have to make this call externally because transformers aren't payable. this.rawExecuteTransform(transformer, bytes32(0), msg.sender, data); } } /* Copyright 2020 ZeroEx Intl. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ pragma solidity ^0.6.5; pragma experimental ABIEncoderV2; import "../src/fixins/FixinCommon.sol"; import "../src/ZeroEx.sol"; contract TestZeroExFeature is FixinCommon { event PayableFnCalled(uint256 value); event NotPayableFnCalled(); function payableFn() external payable { emit PayableFnCalled(msg.value); } function notPayableFn() external { emit NotPayableFnCalled(); } // solhint-disable no-empty-blocks function unimplmentedFn() external {} function internalFn() external onlySelf {} }
File 9 of 9: UniswapV3Feature
// SPDX-License-Identifier: Apache-2.0 /* Copyright 2023 ZeroEx Intl. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ pragma solidity >=0.6.5 <0.9; interface IERC20Token { event Transfer(address indexed from, address indexed to, uint256 value); event Approval(address indexed owner, address indexed spender, uint256 value); /// @dev send `value` token to `to` from `msg.sender` /// @param to The address of the recipient /// @param value The amount of token to be transferred /// @return True if transfer was successful function transfer(address to, uint256 value) external returns (bool); /// @dev send `value` token to `to` from `from` on the condition it is approved by `from` /// @param from The address of the sender /// @param to The address of the recipient /// @param value The amount of token to be transferred /// @return True if transfer was successful function transferFrom(address from, address to, uint256 value) external returns (bool); /// @dev `msg.sender` approves `spender` to spend `value` tokens /// @param spender The address of the account able to transfer the tokens /// @param value The amount of wei to be approved for transfer /// @return Always true if the call has enough gas to complete execution function approve(address spender, uint256 value) external returns (bool); /// @dev Query total supply of token /// @return Total supply of token function totalSupply() external view returns (uint256); /// @dev Get the balance of `owner`. /// @param owner The address from which the balance will be retrieved /// @return Balance of owner function balanceOf(address owner) external view returns (uint256); /// @dev Get the allowance for `spender` to spend from `owner`. /// @param owner The address of the account owning tokens /// @param spender The address of the account able to transfer the tokens /// @return Amount of remaining tokens allowed to spent function allowance(address owner, address spender) external view returns (uint256); /// @dev Get the number of decimals this token has. function decimals() external view returns (uint8); } // SPDX-License-Identifier: Apache-2.0 /* Copyright 2020 ZeroEx Intl. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ pragma solidity ^0.6.5; import "./IERC20Token.sol"; interface IEtherToken is IERC20Token { /// @dev Wrap ether. function deposit() external payable; /// @dev Unwrap ether. function withdraw(uint256 amount) external; } // SPDX-License-Identifier: Apache-2.0 /* Copyright 2020 ZeroEx Intl. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ pragma solidity ^0.6.5; import "./errors/LibRichErrorsV06.sol"; import "./errors/LibSafeMathRichErrorsV06.sol"; library LibSafeMathV06 { function safeMul(uint256 a, uint256 b) internal pure returns (uint256) { if (a == 0) { return 0; } uint256 c = a * b; if (c / a != b) { LibRichErrorsV06.rrevert( LibSafeMathRichErrorsV06.Uint256BinOpError( LibSafeMathRichErrorsV06.BinOpErrorCodes.MULTIPLICATION_OVERFLOW, a, b ) ); } return c; } function safeDiv(uint256 a, uint256 b) internal pure returns (uint256) { if (b == 0) { LibRichErrorsV06.rrevert( LibSafeMathRichErrorsV06.Uint256BinOpError( LibSafeMathRichErrorsV06.BinOpErrorCodes.DIVISION_BY_ZERO, a, b ) ); } uint256 c = a / b; return c; } function safeSub(uint256 a, uint256 b) internal pure returns (uint256) { if (b > a) { LibRichErrorsV06.rrevert( LibSafeMathRichErrorsV06.Uint256BinOpError( LibSafeMathRichErrorsV06.BinOpErrorCodes.SUBTRACTION_UNDERFLOW, a, b ) ); } return a - b; } function safeAdd(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; if (c < a) { LibRichErrorsV06.rrevert( LibSafeMathRichErrorsV06.Uint256BinOpError( LibSafeMathRichErrorsV06.BinOpErrorCodes.ADDITION_OVERFLOW, a, b ) ); } return c; } function max256(uint256 a, uint256 b) internal pure returns (uint256) { return a >= b ? a : b; } function min256(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } function safeMul128(uint128 a, uint128 b) internal pure returns (uint128) { if (a == 0) { return 0; } uint128 c = a * b; if (c / a != b) { LibRichErrorsV06.rrevert( LibSafeMathRichErrorsV06.Uint256BinOpError( LibSafeMathRichErrorsV06.BinOpErrorCodes.MULTIPLICATION_OVERFLOW, a, b ) ); } return c; } function safeDiv128(uint128 a, uint128 b) internal pure returns (uint128) { if (b == 0) { LibRichErrorsV06.rrevert( LibSafeMathRichErrorsV06.Uint256BinOpError( LibSafeMathRichErrorsV06.BinOpErrorCodes.DIVISION_BY_ZERO, a, b ) ); } uint128 c = a / b; return c; } function safeSub128(uint128 a, uint128 b) internal pure returns (uint128) { if (b > a) { LibRichErrorsV06.rrevert( LibSafeMathRichErrorsV06.Uint256BinOpError( LibSafeMathRichErrorsV06.BinOpErrorCodes.SUBTRACTION_UNDERFLOW, a, b ) ); } return a - b; } function safeAdd128(uint128 a, uint128 b) internal pure returns (uint128) { uint128 c = a + b; if (c < a) { LibRichErrorsV06.rrevert( LibSafeMathRichErrorsV06.Uint256BinOpError( LibSafeMathRichErrorsV06.BinOpErrorCodes.ADDITION_OVERFLOW, a, b ) ); } return c; } function max128(uint128 a, uint128 b) internal pure returns (uint128) { return a >= b ? a : b; } function min128(uint128 a, uint128 b) internal pure returns (uint128) { return a < b ? a : b; } function safeDowncastToUint128(uint256 a) internal pure returns (uint128) { if (a > type(uint128).max) { LibRichErrorsV06.rrevert( LibSafeMathRichErrorsV06.Uint256DowncastError( LibSafeMathRichErrorsV06.DowncastErrorCodes.VALUE_TOO_LARGE_TO_DOWNCAST_TO_UINT128, a ) ); } return uint128(a); } } // SPDX-License-Identifier: Apache-2.0 /* Copyright 2020 ZeroEx Intl. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ pragma solidity ^0.6.5; library LibRichErrorsV06 { // bytes4(keccak256("Error(string)")) bytes4 internal constant STANDARD_ERROR_SELECTOR = 0x08c379a0; /// @dev ABI encode a standard, string revert error payload. /// This is the same payload that would be included by a `revert(string)` /// solidity statement. It has the function signature `Error(string)`. /// @param message The error string. /// @return The ABI encoded error. function StandardError(string memory message) internal pure returns (bytes memory) { return abi.encodeWithSelector(STANDARD_ERROR_SELECTOR, bytes(message)); } /// @dev Reverts an encoded rich revert reason `errorData`. /// @param errorData ABI encoded error data. function rrevert(bytes memory errorData) internal pure { assembly { revert(add(errorData, 0x20), mload(errorData)) } } } // SPDX-License-Identifier: Apache-2.0 /* Copyright 2020 ZeroEx Intl. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ pragma solidity ^0.6.5; library LibSafeMathRichErrorsV06 { // bytes4(keccak256("Uint256BinOpError(uint8,uint256,uint256)")) bytes4 internal constant UINT256_BINOP_ERROR_SELECTOR = 0xe946c1bb; // bytes4(keccak256("Uint256DowncastError(uint8,uint256)")) bytes4 internal constant UINT256_DOWNCAST_ERROR_SELECTOR = 0xc996af7b; enum BinOpErrorCodes { ADDITION_OVERFLOW, MULTIPLICATION_OVERFLOW, SUBTRACTION_UNDERFLOW, DIVISION_BY_ZERO } enum DowncastErrorCodes { VALUE_TOO_LARGE_TO_DOWNCAST_TO_UINT32, VALUE_TOO_LARGE_TO_DOWNCAST_TO_UINT64, VALUE_TOO_LARGE_TO_DOWNCAST_TO_UINT96, VALUE_TOO_LARGE_TO_DOWNCAST_TO_UINT128 } function Uint256BinOpError(BinOpErrorCodes errorCode, uint256 a, uint256 b) internal pure returns (bytes memory) { return abi.encodeWithSelector(UINT256_BINOP_ERROR_SELECTOR, errorCode, a, b); } function Uint256DowncastError(DowncastErrorCodes errorCode, uint256 a) internal pure returns (bytes memory) { return abi.encodeWithSelector(UINT256_DOWNCAST_ERROR_SELECTOR, errorCode, a); } } // SPDX-License-Identifier: Apache-2.0 /* Copyright 2020 ZeroEx Intl. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ pragma solidity ^0.6.5; interface IOwnableV06 { /// @dev Emitted by Ownable when ownership is transferred. /// @param previousOwner The previous owner of the contract. /// @param newOwner The new owner of the contract. event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /// @dev Transfers ownership of the contract to a new address. /// @param newOwner The address that will become the owner. function transferOwnership(address newOwner) external; /// @dev The owner of this contract. /// @return ownerAddress The owner address. function owner() external view returns (address ownerAddress); } // SPDX-License-Identifier: Apache-2.0 /* Copyright 2023 ZeroEx Intl. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ pragma solidity ^0.6.5; library LibCommonRichErrors { function OnlyCallableBySelfError(address sender) internal pure returns (bytes memory) { return abi.encodeWithSelector(bytes4(keccak256("OnlyCallableBySelfError(address)")), sender); } function IllegalReentrancyError(bytes4 selector, uint256 reentrancyFlags) internal pure returns (bytes memory) { return abi.encodeWithSelector( bytes4(keccak256("IllegalReentrancyError(bytes4,uint256)")), selector, reentrancyFlags ); } } // SPDX-License-Identifier: Apache-2.0 /* Copyright 2023 ZeroEx Intl. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ pragma solidity ^0.6.5; library LibOwnableRichErrors { function OnlyOwnerError(address sender, address owner) internal pure returns (bytes memory) { return abi.encodeWithSelector(bytes4(keccak256("OnlyOwnerError(address,address)")), sender, owner); } function TransferOwnerToZeroError() internal pure returns (bytes memory) { return abi.encodeWithSelector(bytes4(keccak256("TransferOwnerToZeroError()"))); } function MigrateCallFailedError(address target, bytes memory resultData) internal pure returns (bytes memory) { return abi.encodeWithSelector(bytes4(keccak256("MigrateCallFailedError(address,bytes)")), target, resultData); } } // SPDX-License-Identifier: Apache-2.0 /* Copyright 2023 ZeroEx Intl. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ pragma solidity ^0.6.5; pragma experimental ABIEncoderV2; import "@0x/contracts-erc20/src/IERC20Token.sol"; import "@0x/contracts-erc20/src/IEtherToken.sol"; import "../vendor/IUniswapV3Pool.sol"; import "../migrations/LibMigrate.sol"; import "../fixins/FixinCommon.sol"; import "../fixins/FixinTokenSpender.sol"; import "./interfaces/IFeature.sol"; import "./interfaces/IUniswapV3Feature.sol"; /// @dev VIP uniswap fill functions. contract UniswapV3Feature is IFeature, IUniswapV3Feature, FixinCommon, FixinTokenSpender { /// @dev Name of this feature. string public constant override FEATURE_NAME = "UniswapV3Feature"; /// @dev Version of this feature. uint256 public immutable override FEATURE_VERSION = _encodeVersion(1, 1, 0); /// @dev WETH contract. IEtherToken private immutable WETH; /// @dev UniswapV3 Factory contract address prepended with '0xff' and left-aligned. bytes32 private immutable UNI_FF_FACTORY_ADDRESS; /// @dev UniswapV3 pool init code hash. bytes32 private immutable UNI_POOL_INIT_CODE_HASH; /// @dev Minimum size of an encoded swap path: /// sizeof(address(inputToken) | uint24(fee) | address(outputToken)) uint256 private constant SINGLE_HOP_PATH_SIZE = 20 + 3 + 20; /// @dev How many bytes to skip ahead in an encoded path to start at the next hop: /// sizeof(address(inputToken) | uint24(fee)) uint256 private constant PATH_SKIP_HOP_SIZE = 20 + 3; /// @dev The size of the swap callback data. uint256 private constant SWAP_CALLBACK_DATA_SIZE = 128; /// @dev Minimum tick price sqrt ratio. uint160 internal constant MIN_PRICE_SQRT_RATIO = 4295128739; /// @dev Minimum tick price sqrt ratio. uint160 internal constant MAX_PRICE_SQRT_RATIO = 1461446703485210103287273052203988822378723970342; /// @dev Mask of lower 20 bytes. uint256 private constant ADDRESS_MASK = 0x00ffffffffffffffffffffffffffffffffffffffff; /// @dev Mask of lower 3 bytes. uint256 private constant UINT24_MASK = 0xffffff; /// @dev Construct this contract. /// @param weth The WETH contract. /// @param uniFactory The UniswapV3 factory contract. /// @param poolInitCodeHash The UniswapV3 pool init code hash. constructor(IEtherToken weth, address uniFactory, bytes32 poolInitCodeHash) public { WETH = weth; UNI_FF_FACTORY_ADDRESS = bytes32((uint256(0xff) << 248) | (uint256(uniFactory) << 88)); UNI_POOL_INIT_CODE_HASH = poolInitCodeHash; } /// @dev Initialize and register this feature. /// Should be delegatecalled by `Migrate.migrate()`. /// @return success `LibMigrate.SUCCESS` on success. function migrate() external returns (bytes4 success) { _registerFeatureFunction(this.sellEthForTokenToUniswapV3.selector); _registerFeatureFunction(this.sellTokenForEthToUniswapV3.selector); _registerFeatureFunction(this.sellTokenForTokenToUniswapV3.selector); _registerFeatureFunction(this._sellTokenForTokenToUniswapV3.selector); _registerFeatureFunction(this._sellHeldTokenForTokenToUniswapV3.selector); _registerFeatureFunction(this.uniswapV3SwapCallback.selector); return LibMigrate.MIGRATE_SUCCESS; } /// @dev Sell attached ETH directly against uniswap v3. /// @param encodedPath Uniswap-encoded path, where the first token is WETH. /// @param recipient The recipient of the bought tokens. Can be zero for sender. /// @param minBuyAmount Minimum amount of the last token in the path to buy. /// @return buyAmount Amount of the last token in the path bought. function sellEthForTokenToUniswapV3( bytes memory encodedPath, uint256 minBuyAmount, address recipient ) public payable override returns (uint256 buyAmount) { // Wrap ETH. WETH.deposit{value: msg.value}(); return _swap( encodedPath, msg.value, minBuyAmount, address(this), // we are payer because we hold the WETH _normalizeRecipient(recipient) ); } /// @dev Sell a token for ETH directly against uniswap v3. /// @param encodedPath Uniswap-encoded path, where the last token is WETH. /// @param sellAmount amount of the first token in the path to sell. /// @param minBuyAmount Minimum amount of ETH to buy. /// @param recipient The recipient of the bought tokens. Can be zero for sender. /// @return buyAmount Amount of ETH bought. function sellTokenForEthToUniswapV3( bytes memory encodedPath, uint256 sellAmount, uint256 minBuyAmount, address payable recipient ) public override returns (uint256 buyAmount) { buyAmount = _swap( encodedPath, sellAmount, minBuyAmount, msg.sender, address(this) // we are recipient because we need to unwrap WETH ); WETH.withdraw(buyAmount); // Transfer ETH to recipient. (bool success, bytes memory revertData) = _normalizeRecipient(recipient).call{value: buyAmount}(""); if (!success) { revertData.rrevert(); } } /// @dev Sell a token for another token directly against uniswap v3. /// @param encodedPath Uniswap-encoded path. /// @param sellAmount amount of the first token in the path to sell. /// @param minBuyAmount Minimum amount of the last token in the path to buy. /// @param recipient The recipient of the bought tokens. Can be zero for sender. /// @return buyAmount Amount of the last token in the path bought. function sellTokenForTokenToUniswapV3( bytes memory encodedPath, uint256 sellAmount, uint256 minBuyAmount, address recipient ) public override returns (uint256 buyAmount) { buyAmount = _swap(encodedPath, sellAmount, minBuyAmount, msg.sender, _normalizeRecipient(recipient)); } /// @dev Sell a token for another token directly against uniswap v3. Internal variant. /// @param encodedPath Uniswap-encoded path. /// @param sellAmount amount of the first token in the path to sell. /// @param minBuyAmount Minimum amount of the last token in the path to buy. /// @param recipient The recipient of the bought tokens. Can be zero for payer. /// @param payer The address to pull the sold tokens from. /// @return buyAmount Amount of the last token in the path bought. function _sellTokenForTokenToUniswapV3( bytes memory encodedPath, uint256 sellAmount, uint256 minBuyAmount, address recipient, address payer ) public override onlySelf returns (uint256 buyAmount) { buyAmount = _swap(encodedPath, sellAmount, minBuyAmount, payer, _normalizeRecipient(recipient, payer)); } /// @dev Sell a token for another token directly against uniswap v3. /// Private variant, uses tokens held by `address(this)`. /// @param encodedPath Uniswap-encoded path. /// @param sellAmount amount of the first token in the path to sell. /// @param minBuyAmount Minimum amount of the last token in the path to buy. /// @param recipient The recipient of the bought tokens. Can be zero for sender. /// @return buyAmount Amount of the last token in the path bought. function _sellHeldTokenForTokenToUniswapV3( bytes memory encodedPath, uint256 sellAmount, uint256 minBuyAmount, address recipient ) public override onlySelf returns (uint256 buyAmount) { buyAmount = _swap(encodedPath, sellAmount, minBuyAmount, address(this), _normalizeRecipient(recipient)); } /// @dev The UniswapV3 pool swap callback which pays the funds requested /// by the caller/pool to the pool. Can only be called by a valid /// UniswapV3 pool. /// @param amount0Delta Token0 amount owed. /// @param amount1Delta Token1 amount owed. /// @param data Arbitrary data forwarded from swap() caller. An ABI-encoded /// struct of: inputToken, outputToken, fee, payer function uniswapV3SwapCallback(int256 amount0Delta, int256 amount1Delta, bytes calldata data) external override { IERC20Token token0; IERC20Token token1; address payer; { uint24 fee; // Decode the data. require(data.length == SWAP_CALLBACK_DATA_SIZE, "UniswapFeature/INVALID_SWAP_CALLBACK_DATA"); assembly { let p := add(36, calldataload(68)) token0 := calldataload(p) token1 := calldataload(add(p, 32)) fee := calldataload(add(p, 64)) payer := calldataload(add(p, 96)) } (token0, token1) = token0 < token1 ? (token0, token1) : (token1, token0); // Only a valid pool contract can call this function. require( msg.sender == address(_toPool(token0, fee, token1)), "UniswapV3Feature/INVALID_SWAP_CALLBACK_CALLER" ); } // Pay the amount owed to the pool. if (amount0Delta > 0) { _pay(token0, payer, msg.sender, uint256(amount0Delta)); } else if (amount1Delta > 0) { _pay(token1, payer, msg.sender, uint256(amount1Delta)); } else { revert("UniswapV3Feature/INVALID_SWAP_AMOUNTS"); } } // Executes successive swaps along an encoded uniswap path. function _swap( bytes memory encodedPath, uint256 sellAmount, uint256 minBuyAmount, address payer, address recipient ) private returns (uint256 buyAmount) { if (sellAmount != 0) { require(sellAmount <= uint256(type(int256).max), "UniswapV3Feature/SELL_AMOUNT_OVERFLOW"); // Perform a swap for each hop in the path. bytes memory swapCallbackData = new bytes(SWAP_CALLBACK_DATA_SIZE); while (true) { bool isPathMultiHop = _isPathMultiHop(encodedPath); bool zeroForOne; IUniswapV3Pool pool; { (IERC20Token inputToken, uint24 fee, IERC20Token outputToken) = _decodeFirstPoolInfoFromPath( encodedPath ); pool = _toPool(inputToken, fee, outputToken); zeroForOne = inputToken < outputToken; _updateSwapCallbackData(swapCallbackData, inputToken, outputToken, fee, payer); } (int256 amount0, int256 amount1) = pool.swap( // Intermediate tokens go to this contract. isPathMultiHop ? address(this) : recipient, zeroForOne, int256(sellAmount), zeroForOne ? MIN_PRICE_SQRT_RATIO + 1 : MAX_PRICE_SQRT_RATIO - 1, swapCallbackData ); { int256 _buyAmount = -(zeroForOne ? amount1 : amount0); require(_buyAmount >= 0, "UniswapV3Feature/INVALID_BUY_AMOUNT"); buyAmount = uint256(_buyAmount); } if (!isPathMultiHop) { // Done. break; } // Continue with next hop. payer = address(this); // Subsequent hops are paid for by us. sellAmount = buyAmount; // Skip to next hop along path. encodedPath = _shiftHopFromPathInPlace(encodedPath); } } require(minBuyAmount <= buyAmount, "UniswapV3Feature/UNDERBOUGHT"); } // Pay tokens from `payer` to `to`, using `transferFrom()` if // `payer` != this contract. function _pay(IERC20Token token, address payer, address to, uint256 amount) private { if (payer != address(this)) { _transferERC20TokensFrom(token, payer, to, amount); } else { _transferERC20Tokens(token, to, amount); } } // Update `swapCallbackData` in place with new values. function _updateSwapCallbackData( bytes memory swapCallbackData, IERC20Token inputToken, IERC20Token outputToken, uint24 fee, address payer ) private pure { assembly { let p := add(swapCallbackData, 32) mstore(p, inputToken) mstore(add(p, 32), outputToken) mstore(add(p, 64), and(UINT24_MASK, fee)) mstore(add(p, 96), and(ADDRESS_MASK, payer)) } } // Compute the pool address given two tokens and a fee. function _toPool( IERC20Token inputToken, uint24 fee, IERC20Token outputToken ) private view returns (IUniswapV3Pool pool) { // address(keccak256(abi.encodePacked( // hex"ff", // UNI_FACTORY_ADDRESS, // keccak256(abi.encode(inputToken, outputToken, fee)), // UNI_POOL_INIT_CODE_HASH // ))) bytes32 ffFactoryAddress = UNI_FF_FACTORY_ADDRESS; bytes32 poolInitCodeHash = UNI_POOL_INIT_CODE_HASH; (IERC20Token token0, IERC20Token token1) = inputToken < outputToken ? (inputToken, outputToken) : (outputToken, inputToken); assembly { let s := mload(0x40) let p := s mstore(p, ffFactoryAddress) p := add(p, 21) // Compute the inner hash in-place mstore(p, token0) mstore(add(p, 32), token1) mstore(add(p, 64), and(UINT24_MASK, fee)) mstore(p, keccak256(p, 96)) p := add(p, 32) mstore(p, poolInitCodeHash) pool := and(ADDRESS_MASK, keccak256(s, 85)) } } // Return whether or not an encoded uniswap path contains more than one hop. function _isPathMultiHop(bytes memory encodedPath) private pure returns (bool isMultiHop) { return encodedPath.length > SINGLE_HOP_PATH_SIZE; } // Return the first input token, output token, and fee of an encoded uniswap path. function _decodeFirstPoolInfoFromPath( bytes memory encodedPath ) private pure returns (IERC20Token inputToken, uint24 fee, IERC20Token outputToken) { require(encodedPath.length >= SINGLE_HOP_PATH_SIZE, "UniswapV3Feature/BAD_PATH_ENCODING"); assembly { let p := add(encodedPath, 32) inputToken := shr(96, mload(p)) p := add(p, 20) fee := shr(232, mload(p)) p := add(p, 3) outputToken := shr(96, mload(p)) } } // Skip past the first hop of an encoded uniswap path in-place. function _shiftHopFromPathInPlace(bytes memory encodedPath) private pure returns (bytes memory shiftedEncodedPath) { require(encodedPath.length >= PATH_SKIP_HOP_SIZE, "UniswapV3Feature/BAD_PATH_ENCODING"); uint256 shiftSize = PATH_SKIP_HOP_SIZE; uint256 newSize = encodedPath.length - shiftSize; assembly { shiftedEncodedPath := add(encodedPath, shiftSize) mstore(shiftedEncodedPath, newSize) } } // Convert null address values to alternative address. function _normalizeRecipient( address recipient, address alternative ) private pure returns (address payable normalizedRecipient) { return recipient == address(0) ? payable(alternative) : payable(recipient); } // Convert null address values to msg.sender. function _normalizeRecipient(address recipient) private view returns (address payable normalizedRecipient) { return _normalizeRecipient(recipient, msg.sender); } } // SPDX-License-Identifier: Apache-2.0 /* Copyright 2023 ZeroEx Intl. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ pragma solidity ^0.6.5; pragma experimental ABIEncoderV2; /// @dev Basic interface for a feature contract. interface IFeature { /// @dev The name of this feature set. function FEATURE_NAME() external view returns (string memory name); /// @dev The version of this feature set. function FEATURE_VERSION() external view returns (uint256 version); } // SPDX-License-Identifier: Apache-2.0 /* Copyright 2023 ZeroEx Intl. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ pragma solidity ^0.6.5; pragma experimental ABIEncoderV2; import "@0x/contracts-utils/contracts/src/v06/interfaces/IOwnableV06.sol"; /// @dev Owner management and migration features. interface IOwnableFeature is IOwnableV06 { /// @dev Emitted when `migrate()` is called. /// @param caller The caller of `migrate()`. /// @param migrator The migration contract. /// @param newOwner The address of the new owner. event Migrated(address caller, address migrator, address newOwner); /// @dev Execute a migration function in the context of the ZeroEx contract. /// The result of the function being called should be the magic bytes /// 0x2c64c5ef (`keccack('MIGRATE_SUCCESS')`). Only callable by the owner. /// The owner will be temporarily set to `address(this)` inside the call. /// Before returning, the owner will be set to `newOwner`. /// @param target The migrator contract address. /// @param newOwner The address of the new owner. /// @param data The call data. function migrate(address target, bytes calldata data, address newOwner) external; } // SPDX-License-Identifier: Apache-2.0 /* Copyright 2023 ZeroEx Intl. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ pragma solidity ^0.6.5; pragma experimental ABIEncoderV2; /// @dev Basic registry management features. interface ISimpleFunctionRegistryFeature { /// @dev A function implementation was updated via `extend()` or `rollback()`. /// @param selector The function selector. /// @param oldImpl The implementation contract address being replaced. /// @param newImpl The replacement implementation contract address. event ProxyFunctionUpdated(bytes4 indexed selector, address oldImpl, address newImpl); /// @dev Roll back to a prior implementation of a function. /// @param selector The function selector. /// @param targetImpl The address of an older implementation of the function. function rollback(bytes4 selector, address targetImpl) external; /// @dev Register or replace a function. /// @param selector The function selector. /// @param impl The implementation contract for the function. function extend(bytes4 selector, address impl) external; /// @dev Retrieve the length of the rollback history for a function. /// @param selector The function selector. /// @return rollbackLength The number of items in the rollback history for /// the function. function getRollbackLength(bytes4 selector) external view returns (uint256 rollbackLength); /// @dev Retrieve an entry in the rollback history for a function. /// @param selector The function selector. /// @param idx The index in the rollback history. /// @return impl An implementation address for the function at /// index `idx`. function getRollbackEntryAtIndex(bytes4 selector, uint256 idx) external view returns (address impl); } // SPDX-License-Identifier: Apache-2.0 /* Copyright 2023 ZeroEx Intl. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ pragma solidity ^0.6.5; pragma experimental ABIEncoderV2; /// @dev VIP uniswap v3 fill functions. interface IUniswapV3Feature { /// @dev Sell attached ETH directly against uniswap v3. /// @param encodedPath Uniswap-encoded path, where the first token is WETH. /// @param minBuyAmount Minimum amount of the last token in the path to buy. /// @param recipient The recipient of the bought tokens. Can be zero for sender. /// @return buyAmount Amount of the last token in the path bought. function sellEthForTokenToUniswapV3( bytes memory encodedPath, uint256 minBuyAmount, address recipient ) external payable returns (uint256 buyAmount); /// @dev Sell a token for ETH directly against uniswap v3. /// @param encodedPath Uniswap-encoded path, where the last token is WETH. /// @param sellAmount amount of the first token in the path to sell. /// @param minBuyAmount Minimum amount of ETH to buy. /// @param recipient The recipient of the bought tokens. Can be zero for sender. /// @return buyAmount Amount of ETH bought. function sellTokenForEthToUniswapV3( bytes memory encodedPath, uint256 sellAmount, uint256 minBuyAmount, address payable recipient ) external returns (uint256 buyAmount); /// @dev Sell a token for another token directly against uniswap v3. /// @param encodedPath Uniswap-encoded path. /// @param sellAmount amount of the first token in the path to sell. /// @param minBuyAmount Minimum amount of the last token in the path to buy. /// @param recipient The recipient of the bought tokens. Can be zero for sender. /// @return buyAmount Amount of the last token in the path bought. function sellTokenForTokenToUniswapV3( bytes memory encodedPath, uint256 sellAmount, uint256 minBuyAmount, address recipient ) external returns (uint256 buyAmount); /// @dev Sell a token for another token directly against uniswap v3. Internal variant. /// @param encodedPath Uniswap-encoded path. /// @param sellAmount amount of the first token in the path to sell. /// @param minBuyAmount Minimum amount of the last token in the path to buy. /// @param recipient The recipient of the bought tokens. Can be zero for payer. /// @param payer The address to pull the sold tokens from. /// @return buyAmount Amount of the last token in the path bought. function _sellTokenForTokenToUniswapV3( bytes memory encodedPath, uint256 sellAmount, uint256 minBuyAmount, address recipient, address payer ) external returns (uint256 buyAmount); /// @dev Sell a token for another token directly against uniswap v3. /// Private variant, uses tokens held by `address(this)`. /// @param encodedPath Uniswap-encoded path. /// @param sellAmount amount of the first token in the path to sell. /// @param minBuyAmount Minimum amount of the last token in the path to buy. /// @param recipient The recipient of the bought tokens. Can be zero for sender. /// @return buyAmount Amount of the last token in the path bought. function _sellHeldTokenForTokenToUniswapV3( bytes memory encodedPath, uint256 sellAmount, uint256 minBuyAmount, address recipient ) external returns (uint256 buyAmount); /// @dev The UniswapV3 pool swap callback which pays the funds requested /// by the caller/pool to the pool. Can only be called by a valid /// UniswapV3 pool. /// @param amount0Delta Token0 amount owed. /// @param amount1Delta Token1 amount owed. /// @param data Arbitrary data forwarded from swap() caller. An ABI-encoded /// struct of: inputToken, outputToken, fee, payer function uniswapV3SwapCallback(int256 amount0Delta, int256 amount1Delta, bytes calldata data) external; } // SPDX-License-Identifier: Apache-2.0 /* Copyright 2023 ZeroEx Intl. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ pragma solidity ^0.6.5; pragma experimental ABIEncoderV2; import "@0x/contracts-utils/contracts/src/v06/errors/LibRichErrorsV06.sol"; import "../errors/LibCommonRichErrors.sol"; import "../errors/LibOwnableRichErrors.sol"; import "../features/interfaces/IOwnableFeature.sol"; import "../features/interfaces/ISimpleFunctionRegistryFeature.sol"; /// @dev Common feature utilities. abstract contract FixinCommon { using LibRichErrorsV06 for bytes; /// @dev The implementation address of this feature. address internal immutable _implementation; /// @dev The caller must be this contract. modifier onlySelf() virtual { if (msg.sender != address(this)) { LibCommonRichErrors.OnlyCallableBySelfError(msg.sender).rrevert(); } _; } /// @dev The caller of this function must be the owner. modifier onlyOwner() virtual { { address owner = IOwnableFeature(address(this)).owner(); if (msg.sender != owner) { LibOwnableRichErrors.OnlyOwnerError(msg.sender, owner).rrevert(); } } _; } constructor() internal { // Remember this feature's original address. _implementation = address(this); } /// @dev Registers a function implemented by this feature at `_implementation`. /// Can and should only be called within a `migrate()`. /// @param selector The selector of the function whose implementation /// is at `_implementation`. function _registerFeatureFunction(bytes4 selector) internal { ISimpleFunctionRegistryFeature(address(this)).extend(selector, _implementation); } /// @dev Encode a feature version as a `uint256`. /// @param major The major version number of the feature. /// @param minor The minor version number of the feature. /// @param revision The revision number of the feature. /// @return encodedVersion The encoded version number. function _encodeVersion( uint32 major, uint32 minor, uint32 revision ) internal pure returns (uint256 encodedVersion) { return (uint256(major) << 64) | (uint256(minor) << 32) | uint256(revision); } } // SPDX-License-Identifier: Apache-2.0 /* Copyright 2023 ZeroEx Intl. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ pragma solidity ^0.6.5; pragma experimental ABIEncoderV2; import "@0x/contracts-erc20/src/IERC20Token.sol"; import "@0x/contracts-utils/contracts/src/v06/LibSafeMathV06.sol"; /// @dev Helpers for moving tokens around. abstract contract FixinTokenSpender { // Mask of the lower 20 bytes of a bytes32. uint256 private constant ADDRESS_MASK = 0x000000000000000000000000ffffffffffffffffffffffffffffffffffffffff; /// @dev Transfers ERC20 tokens from `owner` to `to`. /// @param token The token to spend. /// @param owner The owner of the tokens. /// @param to The recipient of the tokens. /// @param amount The amount of `token` to transfer. function _transferERC20TokensFrom(IERC20Token token, address owner, address to, uint256 amount) internal { require(address(token) != address(this), "FixinTokenSpender/CANNOT_INVOKE_SELF"); assembly { let ptr := mload(0x40) // free memory pointer // selector for transferFrom(address,address,uint256) mstore(ptr, 0x23b872dd00000000000000000000000000000000000000000000000000000000) mstore(add(ptr, 0x04), and(owner, ADDRESS_MASK)) mstore(add(ptr, 0x24), and(to, ADDRESS_MASK)) mstore(add(ptr, 0x44), amount) let success := call(gas(), and(token, ADDRESS_MASK), 0, ptr, 0x64, ptr, 32) let rdsize := returndatasize() // Check for ERC20 success. ERC20 tokens should return a boolean, // but some don't. We accept 0-length return data as success, or at // least 32 bytes that starts with a 32-byte boolean true. success := and( success, // call itself succeeded or( iszero(rdsize), // no return data, or and( iszero(lt(rdsize, 32)), // at least 32 bytes eq(mload(ptr), 1) // starts with uint256(1) ) ) ) if iszero(success) { returndatacopy(ptr, 0, rdsize) revert(ptr, rdsize) } } } /// @dev Transfers ERC20 tokens from ourselves to `to`. /// @param token The token to spend. /// @param to The recipient of the tokens. /// @param amount The amount of `token` to transfer. function _transferERC20Tokens(IERC20Token token, address to, uint256 amount) internal { require(address(token) != address(this), "FixinTokenSpender/CANNOT_INVOKE_SELF"); assembly { let ptr := mload(0x40) // free memory pointer // selector for transfer(address,uint256) mstore(ptr, 0xa9059cbb00000000000000000000000000000000000000000000000000000000) mstore(add(ptr, 0x04), and(to, ADDRESS_MASK)) mstore(add(ptr, 0x24), amount) let success := call(gas(), and(token, ADDRESS_MASK), 0, ptr, 0x44, ptr, 32) let rdsize := returndatasize() // Check for ERC20 success. ERC20 tokens should return a boolean, // but some don't. We accept 0-length return data as success, or at // least 32 bytes that starts with a 32-byte boolean true. success := and( success, // call itself succeeded or( iszero(rdsize), // no return data, or and( iszero(lt(rdsize, 32)), // at least 32 bytes eq(mload(ptr), 1) // starts with uint256(1) ) ) ) if iszero(success) { returndatacopy(ptr, 0, rdsize) revert(ptr, rdsize) } } } /// @dev Transfers some amount of ETH to the given recipient and /// reverts if the transfer fails. /// @param recipient The recipient of the ETH. /// @param amount The amount of ETH to transfer. function _transferEth(address payable recipient, uint256 amount) internal { if (amount > 0) { (bool success, ) = recipient.call{value: amount}(""); require(success, "FixinTokenSpender::_transferEth/TRANSFER_FAILED"); } } /// @dev Gets the maximum amount of an ERC20 token `token` that can be /// pulled from `owner` by this address. /// @param token The token to spend. /// @param owner The owner of the tokens. /// @return amount The amount of tokens that can be pulled. function _getSpendableERC20BalanceOf(IERC20Token token, address owner) internal view returns (uint256) { return LibSafeMathV06.min256(token.allowance(owner, address(this)), token.balanceOf(owner)); } } // SPDX-License-Identifier: Apache-2.0 /* Copyright 2023 ZeroEx Intl. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ pragma solidity ^0.6.5; pragma experimental ABIEncoderV2; import "@0x/contracts-utils/contracts/src/v06/errors/LibRichErrorsV06.sol"; import "../errors/LibOwnableRichErrors.sol"; library LibMigrate { /// @dev Magic bytes returned by a migrator to indicate success. /// This is `keccack('MIGRATE_SUCCESS')`. bytes4 internal constant MIGRATE_SUCCESS = 0x2c64c5ef; using LibRichErrorsV06 for bytes; /// @dev Perform a delegatecall and ensure it returns the magic bytes. /// @param target The call target. /// @param data The call data. function delegatecallMigrateFunction(address target, bytes memory data) internal { (bool success, bytes memory resultData) = target.delegatecall(data); if (!success || resultData.length != 32 || abi.decode(resultData, (bytes4)) != MIGRATE_SUCCESS) { LibOwnableRichErrors.MigrateCallFailedError(target, resultData).rrevert(); } } } // SPDX-License-Identifier: Apache-2.0 /* Copyright 2023 ZeroEx Intl. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ pragma solidity ^0.6.12; interface IUniswapV3Pool { /// @notice Swap token0 for token1, or token1 for token0 /// @dev The caller of this method receives a callback in the form of IUniswapV3SwapCallback#uniswapV3SwapCallback /// @param recipient The address to receive the output of the swap /// @param zeroForOne The direction of the swap, true for token0 to token1, false for token1 to token0 /// @param amountSpecified The amount of the swap, which implicitly configures the swap as exact input (positive), /// or exact output (negative) /// @param sqrtPriceLimitX96 The Q64.96 sqrt price limit. If zero for one, the price cannot be less than this /// value after the swap. If one for zero, the price cannot be greater than this value after the swap /// @param data Any data to be passed through to the callback /// @return amount0 The delta of the balance of token0 of the pool, exact when negative, minimum when positive /// @return amount1 The delta of the balance of token1 of the pool, exact when negative, minimum when positive function swap( address recipient, bool zeroForOne, int256 amountSpecified, uint160 sqrtPriceLimitX96, bytes calldata data ) external returns (int256 amount0, int256 amount1); }